TW202228466A - 射頻(rf)曝露合規性 - Google Patents

射頻(rf)曝露合規性 Download PDF

Info

Publication number
TW202228466A
TW202228466A TW110142291A TW110142291A TW202228466A TW 202228466 A TW202228466 A TW 202228466A TW 110142291 A TW110142291 A TW 110142291A TW 110142291 A TW110142291 A TW 110142291A TW 202228466 A TW202228466 A TW 202228466A
Authority
TW
Taiwan
Prior art keywords
transmit
time
transmit power
transmission
power
Prior art date
Application number
TW110142291A
Other languages
English (en)
Inventor
凌 盧
賈卡迪希 納達庫杜蒂
保羅 庫其安
瑞賈 席迪
Original Assignee
美商高通公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商高通公司 filed Critical 美商高通公司
Publication of TW202228466A publication Critical patent/TW202228466A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/22TPC being performed according to specific parameters taking into account previous information or commands
    • H04W52/225Calculation of statistics, e.g. average, variance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/22TPC being performed according to specific parameters taking into account previous information or commands
    • H04W52/228TPC being performed according to specific parameters taking into account previous information or commands using past power values or information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/248TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters where transmission power control commands are generated based on a path parameter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
    • H04W52/262TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service] taking into account adaptive modulation and coding [AMC] scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/285TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission taking into account the mobility of the user
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/22TPC being performed according to specific parameters taking into account previous information or commands
    • H04W52/223TPC being performed according to specific parameters taking into account previous information or commands predicting future states of the transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transmitters (AREA)
  • Transceivers (AREA)

Abstract

本公開的某些方面提供了用於基於傳輸的樣式和/或未來條件在維持射頻(RF)曝露合規性的同時確定發射功率的技術和裝置。示例方法通常包括:獲得與一個或多個第一傳輸相關聯的樣式,至少部分基於該樣式和RF曝露極限來確定用於一個或多個第二傳輸的發射功率,以及以所確定的發射功率發射一個或多個第二傳輸。

Description

射頻(RF)曝露合規性
本專利申請要求以下申請的優先權:2020年11月13日提交的美國臨時申請第63/113,488號;2021年1月26日提交的美國臨時申請第63/141,834號;2021年2月23日提交的美國臨時申請第63/152,773號;以及2021年4月15日提交的美國臨時申請第63/175,464號,在此通過引用將上述申請中的每個申請的全部內容明確併入本文。
本公開的各方面涉及無線通信,更具體地,涉及在維持射頻(RF)曝露合規性的同時確定發射功率。
無線通信系統被廣泛部署以提供各種電信服務,諸如電話、視頻、資料、訊息傳遞、廣播等。現代無線通信設備(諸如蜂巢式電話)通常被要求滿足由國內和國際的標準和規定設置的射頻(RF)曝露極限。為了確保符合標準,目前,這種設備在運往市場之前要經過廣泛的認證過程。為了確保無線通信設備符合RF曝露極限,已經開發了使無線通信設備能夠評估來自無線通信設備的RF曝露並相應地調整無線通信設備的發射功率以遵守RF曝露極限的技術。
本公開的系統、方法和設備各自具有幾個方面,其中沒有一個方面單獨負責其期望的屬性。在不限制由所附申請專利範圍表達的本公開的範圍的情況下,現在將簡要討論一些特徵。在考慮了該討論之後,特別是在閱讀了題為“具體實施方式”的部分之後,人們將理解本公開的特徵如何提供包括符合射頻(RF)曝露極限的期望發射功率的優點。
本公開中描述的主題的某些方面可以在用戶設備(UE)的無線通信方法中實現。該方法通常包括:獲得與一個或多個第一傳輸相關聯的樣式;至少部分基於該樣式和RF曝露極限來確定用於一個或多個第二傳輸的發射功率;以及以所確定的發射功率發射一個或多個第二傳輸。
本公開中描述的主題的某些方面可以在用於無線通信的裝置中實現。該裝置通常包括記憶體、處理器和發射器。處理器耦合到記憶體,使得處理器和記憶體被配置為:獲得與一個或多個第一傳輸相關聯的樣式,以及至少部分基於該樣式和RF曝露極限來確定用於一個或多個第二傳輸的發射功率;並且發射器被配置為以所確定的發射功率發射一個或多個第二傳輸。
本公開中描述的主題的某些方面可以在用於無線通信的裝置中實現。該裝置通常包括:用於獲得與一個或多個第一傳輸相關聯的樣式的構件;用於至少部分基於該樣式和RF曝露極限來確定用於一個或多個第二傳輸的發射功率的構件;以及用於以所確定的發射功率發射一個或多個第二傳輸的構件。
本公開中描述的主題的某些方面可以在其上儲存有指令的計算機可讀媒體中實現,該指令用於:獲得與一個或多個第一傳輸相關聯的樣式;至少部分基於該樣式和RF曝露極限來確定用於一個或多個第二傳輸的發射功率;以及以所確定的發射功率發射一個或多個第二傳輸。
本公開中描述的主題的某些方面可以在用於無線通信的裝置中實現。該裝置通常包括記憶體和耦合到記憶體的處理器。處理器和記憶體被配置為:獲得與一個或多個第一傳輸相關聯的樣式,至少部分基於該樣式和射頻(RF)曝露極限來確定用於一個或多個第二傳輸的發射功率,以及以所確定的發射功率發射一個或多個第二傳輸。
本公開中描述的主題的某些方面可以在用於無線通信的裝置中實現。該裝置通常包括記憶體和耦合到記憶體的處理器。處理器和記憶體被配置為:獲得用於到接收實體的傳輸的資料和與傳輸相關聯的無線電條件,至少部分基於無線電條件來確定與資料相關聯的發射時間,以及至少部分基於所確定的發射時間和射頻(RF)曝露極限,以發射功率向接收實體發射指示資料的信號。
本公開中描述的主題的某些方面可以在用於無線通信的裝置中實現。該裝置通常包括記憶體和耦合到記憶體的處理器。處理器和記憶體被配置為:基於用於從裝置到接收實體的傳輸的資料和與傳輸相關聯的一個或多個無線電條件,從多個傳輸模式中選擇傳輸模式,以及至少部分基於所選擇的傳輸模式和射頻(RF)曝露極限,以發射功率向接收實體發射指示資料的信號。
本公開中描述的主題的某些方面可以在用於無線通信的裝置中實現。該裝置通常包括:獲得用於到接收實體的傳輸的資料以及與傳輸相關聯的無線電條件;至少部分基於無線電條件來確定與資料相關聯的發射時間;以及至少部分基於所確定的發射時間和射頻(RF)曝露極限,以發射功率向接收實體發射指示資料的信號。
本公開中描述的主題的某些方面可以在用於無線通信的裝置中實現。該裝置通常包括:基於用於從無線設備到接收實體的傳輸的資料以及與傳輸相關聯的一個或多個無線電條件,從多個傳輸模式中選擇傳輸模式;以及至少部分基於所選擇的傳輸模式和射頻(RF)曝露極限,以發射功率向接收實體發射指示資料的信號。
本公開中描述的主題的某些方面可以在其上儲存有指令的計算機可讀媒體中實現,該指令用於:獲得用於到接收實體的傳輸的資料和與傳輸相關聯的無線電條件;至少部分基於無線電條件來確定與資料相關聯的發射時間;以及至少部分基於所確定的發射時間和射頻(RF)曝露極限,以發射功率向接收實體發射指示資料的信號。
本公開中描述的主題的某些方面可以在其上儲存有指令的計算機可讀媒體中實現,該指令用於:基於用於從無線設備到接收實體的傳輸的資料和與傳輸相關聯的一個或多個無線電條件,從多個傳輸模式中選擇傳輸模式;以及至少部分基於所選擇的傳輸模式和射頻(RF)曝露極限,以發射功率向接收實體發射指示資料的信號。
本公開中描述的主題的某些方面可以在由無線設備進行無線通信的方法中實現。該方法通常包括:獲得用於到接收實體的傳輸的資料和與傳輸相關聯的無線電條件;至少部分基於無線電條件來確定與資料相關聯的發射時間;以及至少部分基於所確定的發射時間和射頻(RF)曝露極限,以發射功率向接收實體發射指示資料的信號。
本公開中描述的主題的某些方面可以在由無線設備進行無線通信的方法中實現。該方法通常包括:基於用於從無線設備到接收實體的傳輸的資料和與傳輸相關聯的一個或多個無線電條件,從多個傳輸模式中選擇傳輸模式;以及至少部分基於所選擇的傳輸模式和射頻(RF)曝露極限,以發射功率向接收實體發射指示資料的信號。
為了實現前述的和相關的目的,一個或多個方面包括在下文中充分描述並在申請專利範圍中特別指出的特徵。以下描述和附圖詳細闡述了一個或多個方面的某些說明性特徵。然而,這些特徵僅指示了可以採用各個方面的原理的各種方式中的一些。
本公開的各方面提供了用於基於一個或多個樣式和/或未來條件來確保射頻(RF)曝露合規性的裝置、方法、處理系統和計算機可讀媒體。
在某些情況下,可以執行RF曝露的時間平均,以符合特定時間窗口內的RF曝露極限。多模式/多頻帶無線通信設備具有多個發射天線,這些發射天線可以被配置為在一個或多個sub-6 GHz頻帶和/或一個或多個大於6 GHz的頻帶(諸如毫米波(例如,FR2)或FR3頻帶)中同時進行發射。如本文所述,sub-6 GHz頻帶的RF曝露可以根據特定吸收率(SAR)來評估,而大於6 GHz的頻帶的RF曝露可以根據功率密度(PD)來評估。由於關於同時曝露的規定,因此無線通信設備可以限制用於sub-6 GHz頻帶和/或大於6 GHz的頻帶的最大發射功率。
本公開的各方面提供了用於例如基於一個或多個樣式和/或未來條件來確保RF曝露合規性的增強技術。樣式(pattern)可以包括與各個時間段(諸如過去的幾分鐘、幾小時或幾天)內的過去傳輸相關聯的發射功率樣式(例如,作為時間的函數的瞬時發射功率)和/或指示應用(例如,語音或視頻呼叫應用)可能產生的週期性流量突發的應用樣式。在某些方面,樣式可以用於識別即將到來的傳輸將何時發生,並且樣式可以與關聯於即將到來的傳輸的各種特性(諸如發射時間、隨時間變化的發射功率、天線切換、網路條件、感測器資訊等)相關。
作為示例,如果樣式指示即將到來的傳輸的發射時間可能相對較長(例如,發射時間大於與RF曝露極限相關聯的時間窗口)和/或很可能在該時間窗口內維持一致的上行鏈路傳輸,則發射器可以向即將到來的傳輸分配更低的功率位準(例如P limit,其中P limit< P max)。如果樣式指示即將到來的傳輸的發射時間可能相對較短(例如,發射時間小於與RF曝露極限相關聯的時間窗口)和/或傳輸可能是非連續的(例如,可能是突發和/或間隙),則發射器可以向符合RF曝露極限的即將到來的傳輸分配更高的瞬時功率(例如,高於P limit)。
在某些方面,在確定用於RF曝露合規性的發射功率時,UE可以考慮未來條件(諸如發射時間和/或無線電條件)。本公開的各方面提供了用於基於與資料和/或無線電條件相關聯的發射時間在各種傳輸模式(例如,如本文所述)之間切換同時確保RF曝露合規性的技術和裝置。在某些方面,發射時間可以從與資料相關聯的大小(例如,資料緩衝區大小)和當前資料速率推導出。作為示例,如果資料緩衝區大小很大(例如,發射時間大於與RF曝露極限相關聯的時間窗口),則發射器可以在峰值模式下操作,以便以最大平均功率位準(例如,P limit)實現連續發射。如果資料緩衝區大小很小(例如,發射時間小於與RF曝露極限相關的時間窗口),則在預留功率餘量足以用於高功率傳輸的情況下,發射器可以在時間平均模式下操作,並且以最大功率進行發射以完成傳輸。發射時間可以基於資料緩衝區大小和無線電條件來確定。例如,信號或通信環境可以限制或指示可以在瞬時時間或在某個即將到來的時間量內發射的資料吞吐量或資料量。在一些方面,所確定的發射時間可以基於實際值或測量值。例如,無線電條件可以基於測量的RSRP來確定。在一些方面,所確定的發射時間可以基於預測值,例如基於一個或多個樣式。例如,無線電條件可以基於用戶很可能在樣式所指示的一天中的某個時間或某個位置經歷的路徑損耗來確定。
本文描述的用於確保RF曝露合規性的各種技術可以實現用於資料傳輸的期望發射功率。期望的發射功率可以提供期望的上行鏈路/側鏈路性能,諸如期望的資料速率、載波聚合和/或小區邊緣的連接。
以下描述提供了通信系統中RF曝露合規性的示例,並且不限制申請專利範圍中闡述的範圍、適用性或示例。在不脫離本公開的範圍的情況下,可以對所討論的元素的功能和佈置進行改變。各種示例可以適當地省略、替換或添加各種程序或組件。例如,所描述的方法可以以不同於所描述的次序來執行,並且可以添加、省略或組合各種步驟。此外,關於一些示例所描述的特徵可以在一些其他示例中組合。例如,可以使用本文闡述的任意數量的方面來實現裝置或實踐方法。此外,本公開的範圍旨在覆蓋這種裝置或方法,其使用除了本文闡述的本公開的各個方面之外或與之不同的其他結構、功能、或者結構和功能來實踐。應當理解,本文公開的本公開的任何方面可以由申請專利範圍的一個或多個元素來體現。詞語“示例性的”在本文中用來意指“用作示例、實例或說明”。本文描述為“示例性的”任何方面不一定被解釋為勝於或優於其他方面。
通常,在給定的地理區域中可以部署任意數量的無線網路。每個無線網路可以支持特定的無線存取技術(RAT),並且可以在一個或多個頻率上操作。RAT也可以被稱為無線電技術、空中介面等。頻率也可以被稱為載波、子載波、頻道、音調、子頻帶等。每個頻率可以支持給定地理區域中的單個RAT,以便避免不同RAT的無線網路之間的干擾,或者可以支持多個RAT。
本文描述的技術可以用於各種無線網路和無線電技術。雖然本文可以使用通常與3G、4G和/或新無線電(例如,5G NR)無線技術相關聯的術語來描述各方面,但是本公開的各方面可以應用於其他基於世代的通信系統和/或諸如802.11、802.15等無線技術。
NR存取可以支持各種無線通信服務,諸如以寬帶寬(例如,80 MHz或以上)為目標的增強型行動寬頻(eMBB)、以高載波頻率(例如,24 GHz至53 GHz或以上)為目標的毫米波(mmWave)、以非向後兼容MTC技術為目標的大規模機器類型通信MTC(mMTC)和/或以超可靠低延遲通信(URLLC)為目標的任務關鍵通信。這些服務可能有特定的延遲和可靠性設置。這些服務也可以具有不同的發射時間間隔(TTI),以滿足相應的服務品質(QoS)設置。此外,這些服務可以共存於相同的子幀中。NR支持波束形成,並且波束方向可以動態配置。還可以支持具有預編碼的多輸入多輸出(MIMO)傳輸,多層傳輸也可以。可以支持多個單元格的聚合。
圖1示出了其中可以執行本公開的各方面的示例無線通信網路100。例如,無線通信網路100可以是NR系統(例如,5G NR網路)、演進型通用地面無線電存取(E-UTRA)系統(例如,4G網路)、通用行動電信系統(UMTS)(例如,2G/3G網路)或分碼多工存取(CDMA)系統(例如,2G/3G網路),或者可以被配置用於根據諸如一個或多個802.11標準等的IEEE標準進行通信。
如圖1所示,無線通信網路100可以包括多個BS 110a-z(在本文也各自單獨稱為BS 110或統稱為BS 110)和其他網路實體。BS 110可以為特定的地理區域(有時被稱為“小區”)提供通信覆蓋,“小區”可以是固定的或者可以根據行動BS 110的位置而移動。在一些示例中,BS 110可以使用任何合適的傳輸網路通過各種類型的回程介面(例如,直接實體連接、無線連接、虛擬網路等)彼此互連和/或互連到無線通信網路100中的一個或多個其他BS或網路節點(未示出)。在圖1所示的示例中,BS 110a、110b和110c可以分別是大型小區102a、102b和102c的大型BS。BS 110x可以是微微小區102x的微微BS。BS 110y和110z可以分別是毫微微小區102y和102z的毫微微BS。BS可以支持一個或多個小區。
BS 110與無線通信網路100中的UE 120a-y(在本文也各自單獨稱為UE 120或統稱為UE 120)通信。如圖1所示,根據本公開的各方面,UE 120a包括基於各種樣式和/或未來條件來確定向接收實體(諸如BS 110a或另一UE 120)傳輸的發射功率的RF曝露管理器122。UE 120(例如,120x、120y等)可以分散在整個無線通信網路100中,並且每個UE 120可以是固定的或行動的。無線通信網路100還可以包括中繼站(例如,中繼站110r)(也稱為中繼等),中繼站從上游站(例如,BS 110a或UE 120r)接收資料和/或其他資訊的傳輸,並且向下游站(例如,UE 120或BS 110)發送資料和/或其他資訊的傳輸,或者中繼UE 120之間的傳輸,以促進設備之間的通信。
網路控制器130可以與BS 110的集合通信,並且為這些BS 110(例如,經由回程)提供協調和控制。在某些情況下,網路控制器130可以包括例如5G NR系統中的集中式單元(CU)和/或分布式單元(DU)。在一些方面,網路控制器130可以與核心網路132(例如,5G核心網路(5GC))通信,核心網路132提供各種網路功能,諸如存取和行動性管理、會話管理、用戶平面功能、策略控制功能、認證伺服器功能、統一資料管理、應用功能、網路曝露功能、網路儲存庫功能、網路切片選擇功能等。
無線通信網路100中的另一無線設備可以替代地或附加地包括RF曝露管理器。例如,一個或多個BS 110可以被配置為客戶端設備(CPE),並且如本文所述配置的RF曝露管理器可以在BS或CPE中實現。
圖2示出了可以用於實現本公開的各方面的BS 110a和UE 120a(例如,圖1的無線通信網路100)的示例組件。
在BS 110a處,發射處理器220可以從資料源212接收資料,並且從控制器/處理器240接收控制資訊。控制資訊可以用於實體廣播通道(PBCH)、實體控制格式指示通道(PCFICH)、實體混合ARQ指示通道(PHICH)、實體下行鏈路控制通道(PDCCH)、組公共PDCCH(GC PDCCH)等。資料可以用於實體下行鏈路共享通道(PDSCH)等。媒體存取控制(MAC)-控制元件(MAC-CE)是可以用於無線節點之間的控制命令交換的MAC層通信結構。MAC-CE可以在共享通道(諸如實體下行鏈路共享通道(PDSCH)、實體上行鏈路共享通道(PUSCH)或實體側鏈路共享通道(PSSCH))中攜帶。
處理器220可以處理(例如,編碼和符號映射)資料和控制資訊,以分別獲得資料符號和控制符號。發射處理器220還可以為諸如主同步信號(PSS)、輔同步信號(SSS)、PBCH解調參考信號(DMRS)和通道狀態資訊參考信號(CSI-RS)生成參考符號。如果適用,則發射(TX)多輸入多輸出(MIMO)處理器230可以對資料符號、控制符號和/或參考符號執行空間處理(例如,預編碼),並且可以向收發器232a-232t中的調變器(MOD)提供輸出符號流。收發器232a-232t中的每個調變器可以處理相應的輸出符號流(例如,用於OFDM等)以獲得輸出樣本流。收發器232a-232t中的每一個收發器可以進一步處理(例如,類比轉換、放大、濾波和上變頻)輸出樣本流以獲得下行鏈路信號。來自收發器232a-232t的下行鏈路信號可以分別經由天線234a-234t發射。
在UE 120a處,天線252a-252r可以從BS 110a接收下行鏈路信號,並且可以分別向收發器254a-254r中的解調器(DEMOD)提供接收信號。收發器254a-254r中的每一個收發器可以調節(例如,濾波、放大、下變頻和數位化)相應的接收信號以獲得輸入樣本。收發器254a-254r中的每個解調器可以進一步處理輸入樣本(例如,用於OFDM等)以獲得接收符號。MIMO檢測器256可以從收發器254a-254r中的所有解調器獲得接收符號,對接收符號執行MIMO檢測(如果適用),以及提供檢測到的符號。接收處理器258可以處理(例如,解調、解交織和解碼)檢測到的符號,向資料槽260提供用於UE 120a的解碼資料,並且向控制器/處理器280提供解碼後的控制資訊。
在上行鏈路上,在UE 120a處,發射處理器264可以接收和處理來自資料源262的資料(例如,用於實體上行鏈路共享通道(PUSCH))和來自控制器/處理器280的控制資訊(例如,用於實體上行鏈路控制通道(PUCCH))。發射處理器264還可以生成(例如,用於探測參考信號(SRS)的)參考信號的參考符號。來自發射處理器264的符號可以由TX MIMO處理器266預編碼(如果適用),並且由收發器254a-254r中的調變器(MOD)和其他組件進一步處理(例如,用於SC-FDM等),並且發射到BS 110a。在BS 110a處,來自UE 120a的上行鏈路信號可以由天線234接收,由收發器232a-232t中的調變器和其他組件處理,由MIMO檢測器236檢測(如果適用),並且由接收處理器238進一步處理,以獲得由UE 120a發送的解碼後的資料和控制資訊。接收處理器238可以向資料槽239提供解碼後的資料,並且向控制器/處理器240提供解碼後的控制資訊。
記憶體242和282可以分別儲存用於BS 110a和UE 120a的資料和程式代碼。排程器244可以排程UE在下行鏈路和/或上行鏈路上進行資料傳輸。
UE 120a的天線252、處理器266、258、264和/或控制器/處理器280和/或BS 110a的天線234、處理器220、230、238和/或控制器/處理器240可以用於執行本文描述的各種技術和方法。如圖2所示,根據本文描述的各方面,UE 120a的控制器/處理器280具有RF曝露管理器281,RF曝露管理器281基於各種樣式和/或未來條件來確定用於到接收實體(諸如BS 110a)的傳輸的發射功率。儘管在控制器/處理器處示出,但是UE 120a和BS 110a的其他組件可以用於執行本文描述的操作。
NR可以在上行鏈路和下行鏈路上利用具有循環前綴(CP)的正交分頻多工存取(OFDM)。NR可以支持使用分時雙工(TDD)的半雙工操作。OFDM和單載波分頻多工(SC-FDM)將系統頻寬分割成多個正交子載波,這些子載波通常也稱為音調(tone)、頻段(bin)等。每個子載波可以用資料來調變。調變符號可以在頻域用OFDM發送,並且在時域用SC-FDM發送。相鄰子載波之間的間隔可以是固定的,並且子載波的總數可以取決於系統頻寬。系統頻寬也可以被分割成子頻帶。例如,子頻帶可以覆蓋多個資源區塊()。
雖然相對於圖1和圖2將UE 120a描述為與BS通信和/或在網路內通信,但是UE 120a可以被配置為直接與另一UE 120通信/直接向另一UE 120發射,或者與另一無線設備通信/向另一無線設備發射,而不通過網路進行中繼通信。在一些方面,圖2中示出並在上面描述的BS 110a是另一UE 120的示例。
示例RF收發器
圖3是根據本公開的某些方面的可以用在上述任何無線設備中的示例RF收發器電路300的方塊圖。RF收發器電路300包括用於經由一個或多個天線306發射信號的至少一個發射(TX)路徑302(也稱為發射鏈)和用於經由天線306接收信號的至少一個接收(RX)路徑304(也稱為接收鏈)。當TX路徑302和RX路徑304共享天線306時,路徑可以經由介面308與天線連接,介面308可以包括各種合適的RF設備中的任何一種,諸如開關、雙工器、雙訊器、多工器等。
從數位類比轉換器(DAC)310接收同相(I)或正交(Q)基頻類比信號,TX路徑302可以包括基頻濾波器(BBF)312、混頻器314、驅動放大器(DA)316和功率放大器(PA)318。BBF 312、混頻器314和DA 316可以被包括在一個或多個射頻積體電路(RFIC)中。對於一些實現方式,PA 318可以在(多個)RFIC外部。
BBF 312對從DAC 310接收的基頻信號進行濾波,並且混頻器314將濾波後的基頻信號與發射本地振盪器(LO)信號進行混頻,以將感興趣的基頻信號轉換到不同的頻率(例如,從基頻上變頻到射頻)。該頻率轉換過程產生LO頻率與感興趣基頻信號頻率之間的和頻及差頻。和頻及差頻被稱為拍頻(beat frequency)。拍頻通常在RF範圍內,使得混頻器314所輸出的信號通常是RF信號,RF信號可以在通過天線306的傳輸之前被DA 316和/或PA 318放大。雖然示出了一個混頻器314,但是可以使用幾個混頻器來將濾波後的基頻信號上變頻到一個或多個中頻,然後將中頻信號上變頻到用於傳輸的頻率。
RX路徑304可以包括低雜訊放大器(LNA)324、混頻器326和基頻濾波器(BBF)328。LNA 324、混頻器326和BBF 328可以被包括在一個或多個RFIC中,這些RFIC可以是也可以不是包括TX路徑組件的相同RFIC。經由天線306接收的RF信號可以被LNA 324放大,並且混頻器326將放大後的RF信號與接收本地振盪器(LO)信號進行混頻,以將感興趣的RF信號轉換到不同的基頻頻率(例如,下變頻)。由混頻器326輸出的基頻信號可以在被類比數位轉換器(ADC)330轉換成數位I或Q信號以進行數位信號處理之前被BBF 328濾波。
一些系統可以採用帶有電壓控制振盪器(VCO)的頻率合成器來生成具有特定調諧範圍的穩定可調諧的LO。因此,發射LO可以由TX頻率合成器320產生,發射LO可以在混頻器314中與基頻信號進行混頻之前被放大器322緩衝或放大。類似地,接收LO可以由RX頻率合成器332產生,接收LO可以在混頻器326中與RF信號進行混頻之前被放大器334緩衝或放大。
控制器336可以指導RF收發器電路300的操作,諸如經由TX路徑302發射信號和/或經由RX路徑304接收信號。控制器336可以是處理器、數位信號處理器(DSP)、特殊應用積體電路(ASIC)、現場可程式閘陣列(FPGA)或其他可程式邏輯器件(PLD)、分立閘或電晶體邏輯、分立硬體組件或其任意組合。記憶體338可以儲存用於操作RF收發器電路300的資料和程式代碼。控制器336和/或記憶體338可以包括控制邏輯。在某些情況下,控制器336可以基於施加到TX路徑302的發射功率位準(例如,PA 318處的某些增益位準)來確定時間平均的RF曝露測量,以設置符合由國內/國外規定和/或國際標準設置的RF曝露極限的發射功率位準,如本文進一步描述的。
示例RF曝露合規性
RF曝露可以用特定吸收率(SAR)來表示,SAR衡量人體組織每單位質量的能量吸收,並且其單位可以是瓦每千克(W/kg)。RF曝露也可以根據功率密度(PD)來表示,PD衡量每單位面積的能量吸收,並且其單位可以是mW/cm 2。在某些情況下,對於使用高於6 GHz的傳輸頻率的無線通信設備,可以根據PD來施加最大允許曝露(MPE)極限。MPE極限是基於面積的曝露的規定度量,例如,能量密度極限被定義為在定義的面積內平均的每平方米瓦數(W/m 2)X和在頻率相關的時間窗口內的時間平均,以便防止由組織溫度變化表示的人體曝露危險。
SAR可以用於評估小於6 GHz的傳輸頻率的RF曝露,這種RF曝露覆蓋諸如2G/3G(例如,CDMA)、4G(例如,LTE)、5G(例如,6 GHz頻帶的NR)、IEEE 802.11ac等的無線通信技術。PD可以用於評估高於10 GHz的傳輸頻率的RF曝露,這種RF曝露覆蓋諸如IEEE 802.11ad、802.11ay、毫米波頻帶的5G等無線通信技術。因此,不同的度量可以用於評估不同無線通信技術的RF曝露。
無線通信設備(例如,UE 120)可以使用多種無線通信技術同時發射信號。例如,無線通信設備可以使用工作在6 GHz或6 GHz以下的第一無線通信技術(例如,3G、4G、5G等)和工作在6 GHz以上的第二無線通信技術(例如,24至60 GHz頻帶中的毫米波5G、IEEE 802.11ad或802.11ay)同時發射信號。在某些方面,無線通信設備可以使用根據SAR來測量RF曝露的第一無線通信技術(例如,3G、4G、sub-6 GHz頻帶中的5G、IEEE 802.11ac等)和根據PD來測量RF曝露的第二無線通信技術(例如,24至60 GHz頻帶中的5G、IEEE 802.11ad、802.11ay等)來同時發射信號。
為了評估來自使用第一技術(例如,3G、4G、sub-6 GHz頻帶中的5G、IEEE 802.11ac等)的傳輸的RF曝露,無線通信設備可以包括儲存在記憶體(例如,圖2的記憶體282或圖3的記憶體338)中的第一技術的多個SAR分佈。每個SAR分佈可以對應於第一技術的無線通信設備所支持的多個發射場景中的相應一個發射場景。發射場景可以對應於天線(例如,圖2的天線252a至252r或圖3的天線306)、頻帶、通道和/或身體位置的各種組合,如下文進一步討論的。在一些示例中,一個或多個SAR分佈包括單個值(例如,基於以下描述而確定的峰值,或者峰值的總和)。
每個發射場景的SAR分佈(也稱為SAR圖)可以基於使用人體模型在測試實驗室中執行的測量(例如,電場測量)來生成。在生成SAR分佈之後,SAR分佈被儲存在記憶體中,以使處理器(例如,圖2的處理器280或圖3的控制器336)能夠實時評估RF曝露,如下面進一步討論的。每個SAR分佈可以包括SAR值集合,其中每個SAR值可以對應於(例如,人體模型上)不同的位置。每個SAR值可以包括在相應位置處的1g或10g質量內平均的SAR值。
每個SAR分佈中的SAR值對應於特定的發射功率位準(例如,在測試實驗室中測量SAR值時的發射功率位準)。由於SAR隨發射功率位準而縮放,因此處理器可以通過將SAR分佈中的每個SAR值乘以以下發射功率縮放值來縮放任何發射功率位準的SAR分佈:
Figure 02_image001
(1) 其中,Tx c是相應發射場景的當前發射功率位準,並且Tx SAR是與儲存的SAR分佈中的SAR值相對應的發射功率位準(例如,在測試實驗室中測量SAR值時的發射功率位準)。
如上所述,無線通信設備可以支持第一技術的多個發射場景。在某些方面,發射場景可以由參數集來指定。該參數集可以包括以下一個或多個:指示用於傳輸的一個或多個天線(即,活動天線)的天線參數、指示用於傳輸的一個或多個頻帶(即,活動頻帶)的頻帶參數、指示用於傳輸的一個或多個通道(即,活動通道)的通道參數、指示無線通信設備相對於用戶身體位置(頭部、軀幹、遠離身體等)的位置的身體位置參數、和/或其他參數。在無線通信設備支持大量發射場景的情況下,在測試環境(例如,測試實驗室)中對每個發射場景執行測量可能非常耗時且昂貴。為了減少測試時間,可以對發射場景子集執行測量,以生成發射場景子集的SAR分佈。在該示例中,可以通過組合發射場景子集的兩個或更多個SAR分佈來生成剩餘發射場景中的每個發射場景的SAR分佈,如下文進一步討論的。
例如,可以對每一個天線執行SAR測量,以生成每一個天線的SAR分佈。在該示例中,可以通過組合兩個或更多個活動天線的SAR分佈來生成兩個或更多個天線在其中是活動的發射場景的SAR分佈。
在另一示例中,可以對多個頻帶中的每一個頻帶執行SAR測量,以生成多個頻帶中的每一個頻帶的SAR分佈。在該示例中,可以通過組合兩個或更多個活動頻帶的SAR分佈來生成兩個或更多個頻帶在其中是活動的發射場景的SAR分佈。
在某些方面,通過將SAR分佈中的每個SAR值除以SAR極限,可以相對於SAR極限對SAR分佈進行歸一化。在這種情況下,當歸一化SAR值大於1時,歸一化SAR值超過SAR極限,並且當歸一化SAR值小於1時,歸一化SAR值低於SAR極限。在這些方面,儲存在記憶體中的每個SAR分佈可以相對於SAR極限進行歸一化。
在某些方面,發射場景的歸一化SAR分佈可以通過組合兩個或更多個歸一化SAR分佈來生成。例如,可以通過組合兩個或更多個活動天線的歸一化SAR分佈來生成兩個或更多個天線在其中是活動的發射場景的歸一化SAR分佈。對於不同發射功率位準用於活動天線的情況,在組合活動天線的歸一化SAR分佈之前,每個活動天線的歸一化SAR分佈可以由相應的發射功率位準來縮放。來自多個活動天線的同時傳輸的歸一化SAR分佈可以由下式給出:
Figure 02_image003
(2) 其中,SAR lim為SAR極限,SAR norm_combined為來自活動天線的同時傳輸的組合歸一化SAR分佈,i為活動天線的索引,SAR i為第i個活動天線的SAR分佈,Tx i為第i個活動天線的發射功率位準,Tx SARi為第i個活動天線的SAR分佈的發射功率位準,並且K為活動天線的數量。
等式(2)可以改寫如下:
Figure 02_image005
(3a) 其中SAR norm_i是第i個活動天線的歸一化SAR分佈。在使用多個活動天線以相同發射頻率進行同時傳輸的情況下(例如,多入多出(MIMO)),通過對各個歸一化SAR分佈的平方根求和並且計算該總和的平方,獲得組合歸一化SAR分佈,如下式給出:
Figure 02_image007
(3b)
在另一示例中,不同頻帶的歸一化SAR分佈可以被儲存在記憶體中。在該示例中,可以通過組合兩個或更多個活動頻帶的歸一化SAR分佈來生成其中兩個或更多個頻帶活動的發射場景的歸一化SAR分佈。對於發射功率位準針對活動頻帶而不同的情況,在組合活動頻帶的歸一化SAR分佈之前,每個活動頻帶的歸一化SAR分佈可以由相應的發射功率位準來縮放。在該示例中,也可以使用等式(3a)來計算組合SAR分佈,其中i為活動頻帶的索引,SAR norm_i為第i個活動頻帶的歸一化SAR分佈,Tx i為第i個活動頻帶的發射功率位準,並且Tx SARi為第i個活動頻帶的歸一化SAR分佈的發射功率位準。
為了評估來自使用第二技術(例如,24至60 GHz頻帶中的5G、IEEE 802.11ad、802.11ay等)的傳輸的RF曝露,無線通信設備可以包括儲存在記憶體(例如,圖2的記憶體282或圖3的記憶體338)中的第二技術的多個PD分佈。每個PD分佈可以對應於第二技術的無線通信設備所支持的多個發射場景中的相應一個發射場景。發射場景可以對應於天線(例如,圖2的天線252a至252r或圖3的天線306)、頻帶、通道和/或身體位置的各種組合,如下文進一步討論的。在一些示例中,一個或多個PD分佈包括單個值(例如,基於以下描述而確定的峰值,或者峰值的總和)。
每個發射場景的PD分佈(也稱為PD圖)可以基於使用人體模型在測試實驗室中執行的測量(例如,電場測量)來生成。在生成PD分佈之後,PD分佈被儲存在記憶體中,以使處理器(例如,圖2的處理器280或圖3的控制器336)能夠實時評估RF曝露,如下面進一步討論的。每個PD分佈可以包括PD值集合,其中每個PD值可以對應於(例如,人體模型上)不同的位置。
每個PD分佈中的PD值對應於特定的發射功率位準(例如,在測試實驗室中測量PD值時的發射功率位準)。由於PD隨發射功率位準而縮放,因此處理器可以通過將PD分佈中的每個PD值乘以以下發射功率縮放值來縮放任何發射功率位準的PD分佈:
Figure 02_image009
(4) 其中,Tx c為相應的發射場景的當前發射功率位準,並且Tx PD是與PD分佈中的PD值相對應的發射功率位準(例如,在測試實驗室中測量PD值時的發射功率位準)。
如上所述,無線通信設備可以支持第二技術的多個發射場景。在某些方面,發射場景可以由參數集來指定。該參數集可以包括以下一個或多個:指示用於傳輸的一個或多個天線(即,活動天線)的天線參數、指示用於傳輸的一個或多個頻帶(即,活動頻帶)的頻帶參數、指示用於傳輸的一個或多個通道(即,活動通道)的通道參數、指示無線通信設備相對於用戶身體位置(頭部、軀幹、遠離身體等)的位置的身體位置參數、和/或其他參數。在無線通信設備支持大量發射場景的情況下,在測試環境(例如,測試實驗室)中對每個發射場景執行測量可能非常耗時且昂貴。為了減少測試時間,可以對發射場景子集執行測量,以生成發射場景子集的PD分佈。在該示例中,可以通過組合發射場景子集的兩個或更多個PD分佈來生成剩餘發射場景中的每個發射場景的PD分佈,如下文進一步討論的。
例如,可以對每一個天線執行PD測量,以生成每一個天線的PD分佈。在該示例中,可以通過組合兩個或更多個活動天線的PD分佈來生成其中兩個或更多個天線活動的發射場景的PD分佈。
在另一示例中,可以對多個頻帶中的每一個頻帶執行PD測量,以生成多個頻帶中的每一個頻帶的PD分佈。在該示例中,可以通過組合兩個或更多個活動頻帶的PD分佈來生成其中兩個或更多個頻帶活動的發射場景的PD分佈。
在某些方面,可以通過將PD分佈中的每個PD值除以PD極限來相對於PD極限對PD分佈進行歸一化。在這種情況下,當歸一化PD值大於1時,歸一化PD值超過PD極限,並且當歸一化PD值小於1時,歸一化PD值低於PD極限。在這些方面,儲存在記憶體中的每個PD分佈可以相對於PD極限進行歸一化。
在某些方面,發射場景的歸一化PD分佈可以通過組合兩個或更多個歸一化PD分佈來生成。例如,可以通過組合兩個或更多個活動天線的歸一化PD分佈來生成兩個或更多個天線在其中是活動的發射場景的歸一化PD分佈。對於不同發射功率位準用於活動天線的情況,在組合活動天線的歸一化PD分佈之前,每個活動天線的歸一化PD分佈可以由相應的發射功率位準來縮放。來自多個活動天線的同時傳輸的歸一化PD分佈可以由下式給出:
Figure 02_image011
(5) 其中,PD lim為PD極限,PD norm_combined為來自活動天線的同時傳輸的組合歸一化PD分佈,i為活動天線的索引,PD i為第i個活動天線的PD分佈,Tx i為第i個活動天線的發射功率位準,Tx PDi為第i個活動天線的PD分佈的發射功率位準,並且L為活動天線的數量。
等式(5)可以改寫如下:
Figure 02_image013
(6a) 其中PD norm_i為第i個活動天線的歸一化PD分佈。在使用多個活動天線以相同發射頻率進行同時傳輸的情況下(例如,MIMO),通過對各個歸一化PD分佈的平方根求和並計算該總和的平方來獲得組合歸一化PD分佈,如下式所示:
Figure 02_image015
(6b)
在另一示例中,不同頻帶的歸一化PD分佈可以被儲存在記憶體中。在該示例中,可以通過組合兩個或更多個活動頻帶的歸一化PD分佈來生成兩個或更多個頻帶在其中是活動的發射場景的歸一化PD分佈。對於發射功率位準針對活動頻帶而不同的情況,在組合活動頻帶的歸一化PD分佈之前,每個活動頻帶的歸一化PD分佈可以由相應的發射功率位準來縮放。在該示例中,也可以使用等式(6a)來計算組合PD分佈,其中i為活動頻帶的索引,PD norm_ i為第i個活動頻帶的歸一化PD分佈,Tx i為第i個活動頻帶的發射功率位準,並且Tx PDi為第i個活動頻帶的歸一化PD分佈的發射功率位準。
如上所述,UE 120可以使用第一技術(例如,3G、4G、IEEE 802.11ac等)和第二技術(例如,5G、IEEE 802.11ad等)來同時發射信號,其中對於第一技術和第二技術使用不同度量來測量RF曝露(例如,對於第一技術為SAR,而對於第二技術為PD)。在這種情況下,處理器280可以確定第一技術的第一最大允許功率位準和第二技術的第二最大允許功率位準,以用於在遵守RF曝露極限的未來時隙中的傳輸。在未來時隙期間,第一技術和第二技術的發射功率位準分別被所確定的第一最大允許功率位準和第二最大允許功率位準所約束(即限制),以確保符合RF曝露極限,如下文進一步所述。在本公開中,術語“最大允許功率位準”是指由RF曝露極限施加的“最大允許功率位準”,除非另有說明。應當理解,“最大允許功率位準”不一定等於符合RF曝露極限的絕對最大功率位準,並且可以小於符合RF曝露極限的絕對最大功率位準(例如,為了提供安全餘量)。“最大允許功率位準”可以用於設置對發射器處的傳輸的功率位準極限,使得傳輸的功率位準不被允許超過“最大允許功率位準”,以確保RF曝露合規性。
處理器280可以如下確定第一最大允許功率位準和第二最大允許功率位準。處理器可以確定第一技術在第一發射功率位準下的歸一化SAR分佈,確定第二技術在第二發射功率位準下的歸一化PD分佈,並且組合歸一化SAR分佈和歸一化PD分佈以生成組合歸一化RF曝露分佈(以下簡稱為組合歸一化分佈)。組合歸一化分佈中每個位置的值可以通過將該位置的歸一化SAR值與該位置的歸一化PD值組合或通過另一種技術來確定。
處理器280然後可以通過將組合歸一化分佈中的峰值與1進行比較來確定第一發射功率位準和第二發射功率位準是否遵守RF曝露極限。如果峰值等於或小於1(即滿足條件≤1),則處理器280可以確定第一發射功率位準和第二發射功率位準遵守RF曝露極限(例如,SAR極限和PD極限),並且在未來時隙期間將第一發射功率位準和第二發射功率位準分別用作第一最大允許功率位準和第二最大允許功率位準。如果峰值大於1,則處理器280可以確定第一發射功率位準和第二發射功率位準不遵守RF曝露極限。使用第一技術和第二技術的同時傳輸的RF曝露合規性的條件可以由下式給出:
Figure 02_image017
(7)
圖4是示出歸一化SAR分佈410和歸一化PD分佈420的圖,其中歸一化SAR分佈410和歸一化PD分佈420被組合以生成組合歸一化分佈430。圖4還示出了組合歸一化分佈430中的峰值針對RF曝露合規性等於或小於1的條件。儘管分佈410、420和430中的每一個在圖4中被描繪為二維分佈,但是應當理解,本公開不限於該示例。
等式(7)中的歸一化SAR分佈可以如上所述通過組合的兩個或更多個歸一化SAR分佈來生成(例如,對於使用多個活動天線的發射場景)。類似地,等式(7)中的歸一化PD分佈可以如上所述通過組合兩個或更多個歸一化PD分佈來生成(例如,對於使用多個活動天線的發射場景)。在這種情況下,等式(7)中的RF曝露合規性的條件可以使用等式(3a)和(6a)改寫如下:
Figure 02_image019
(8) 對於MIMO情況,可以改為將等式(3b)和(6b)進行組合。如等式(8)所示,組合歸一化分佈可以是第一技術的發射功率位準和第二技術的發射功率位準的函數。組合歸一化分佈中的所有點可以滿足等式(8)中的歸一化極限1。此外,當組合SAR和PD分佈時,SAR和PD分佈可以在空間上對準或者與它們的峰值位置對準,使得由等式(8)給出的組合分佈表示對於人體給定位置的組合RF曝露。
在某些情況下,發射器可以通過在以下示例方案之一下操作來確保RF曝露合規性:(a)沒有允許在時間窗口期間丟棄連接的預留餘量的“無預留時間平均模式”,(b)如本文關於圖5B所述的“峰值模式”,或者(c)如本文關於圖5C所述的“時間平均模式”。
在某些情況下,在與RF曝露極限相關聯的指定時間窗口(T)(例如,對於60 GHz頻帶為2秒,對於≤6 GHz頻帶為100或360秒,等等)內,可以執行RF曝露的時間平均以符合RF曝露極限。例如,根據本公開的某些方面,圖5A是在與RF曝露極限相關聯的時間窗口(T)內變化的隨時間變化的發射功率(P(t))的坐標圖500A。作為示例,在時間窗口(T)中的某些傳輸時機中,瞬時發射功率可以超過最大時間平均發射功率位準P limit。也就是說,發射功率可以大於最大時間平均發射功率位準P limit。在某些情況下,UE可以以P max進行發射,P max是UE所支持的最大發射功率。在某些情況下,在某些傳輸時機中,UE可以以小於或等於最大時間平均發射功率位準P limit的發射功率進行發射。最大時間平均發射功率位準P limit表示關於發射功率的RF曝露極限的時間平均閾值,並且在某些情況下,P limit可以被稱為最大時間平均功率位準或極限,或最大平均發射功率位準。坐標圖500A還示出了發射突發之間的間隙,其中間隙表示沒有從設備發送傳輸的時段。
在某些情況下,發射功率可以被維持在對於RF曝露合規性所允許的最大平均發射功率位準(例如,P limit),這實現了時間窗口期間的連續發射。例如,圖5B是示出根據本公開的某些方面的發射功率被限制到P limit的示例的隨時間變化的發射功率(P(t))的坐標圖500B。如圖所示,UE可以以符合RF曝露極限的P limit進行連續發射。
圖5C是示出根據本公開的某些方面的提供預留功率餘量以實現時間窗口(T)內的連續發射的時間平均模式的隨時間變化的發射功率(P(t))的坐標圖500C。如圖所示,在發射器被關閉以預留足夠的發射功率餘量(例如,P limit與P reserve之間的差)之前,發射功率可以從最大瞬時功率(P max)後退到預留功率(P reserve),使得UE可以以較低的功率(P reserve)繼續發射,以在時間窗口期間維持連續發射(例如,維持與接收實體的無線電連接)。在一些方面,P reserve被設置為用於維持鏈路的最小功率,或者被設置為這種最小功率加上餘量。處於P max的發射持續時間可以稱為突發發射時間(或高功率持續時間)。當將來有更多餘量可用時(在T秒之後),可以允許發射器再次以更高的功率進行發射(例如,在處於P max的短突發中)。
在時間平均模式下,P max和P reserve持續時間可以由處理器或控制邏輯控制,以確保時間平均功率在時間窗口中不超過P limit。在一些方面,在圖5C所示的時間平均模式中,UE可以以高於平均功率位準但低於P max的功率進行發射。雖然在圖5C中示出了單個發射突發,但是應當理解,UE可以改為在時間窗口(T)內利用多個發射突發,例如,如本文關於圖5A所描述的,其中發射突發由發射功率維持在P reserve或低於P reserve的時段分隔開。此外,應當理解,每個發射突發的發射功率可以變化(在突發內和/或與其他突發相比),並且至少一部分突發可以以高於最大平均功率位準(例如,P limit)的功率進行發射。
雖然圖5A至圖5C示出了在窗口、時機、突發等內的連續發射,但是應當理解,可以實現傳輸的工作週期。在這種實現方式中,發射功率可以週期性地為零,並且在工作週期的其他部分期間維持在較高的位準(例如,如圖5A-圖5C所示的位準)。
在某些方面,針對給定的P max、P limit、P reserve和T來計算的處於P max的突發發射時間P(t)可以取決於到接收實體的傳輸的工作週期來縮放。例如,突發發射時間可以通過與工作週期相關聯的因子(1/工作週期)來調整,其中工作週期在[0, 1]之間。如本文所使用的,傳輸的工作週期可以指排程或分配傳輸的特定時段的一部分。在一些方面,與突發發射時間相關聯的時段可以獨立於用於RF曝露合規性的時間窗口(T)。在某些情況下,工作週期可以用特定的RAT來歸一化(例如,預先確定)和/或隨時間變化(例如,由於無線電條件、行動性和/或用戶行為的變化)。在一些示例中,工作週期由基站(例如,gNB)確定並傳送給UE。在100%工作週期的情況下,可以假設UE被排程用於連續發射,這可能導致圖5B所示的發射功率。在另一示例中,假設突發發射時間的持續時間小於時間窗口,並且突發發射時間的時段大於時間窗口,使得突發發射時間的單個脈衝在時間窗口中是活動的(或在其中發生)。由於在時間窗口的一部分期間沒有傳輸(例如,P(t)可以在時間窗口的一部分內變為零),發射器可以增加處於P max的突發發射時間。
基於示例傳輸樣式的RF曝露合規性
多模式/多頻帶UE具有多個發射天線,這些發射天線可以被配置為在一個或多個sub-6 GHz頻帶和/或一個或多個大於6 GHz的頻帶(諸如毫米波頻帶)中同時發射。如本文所述,sub-6 GHz頻帶的RF曝露可以根據SAR來評估,而大於6 GHz的頻帶的RF曝露可以根據PD來評估。由於關於同時曝露的規定,無線通信設備可以限制sub-6 GHz頻帶和/或大於6 GHz的頻帶的最大發射功率。
本公開的各方面提供了用於基於一個或多個樣式來確保RF曝露合規性的技術。這些樣式可以包括與各個時間段(諸如過去幾分鐘、幾小時或幾天)內的過去傳輸相關聯的發射功率樣式和/或指示應用(例如,語音或視頻呼叫應用)可以生成的週期性流量突發的應用樣式和/或指示正在發射的特定應用或應用類型的應用樣式。在某些方面,樣式可以用於識別即將到來的傳輸何時發生,並且樣式可以與關聯於即將到來的傳輸的各種特性(諸如發射時間、隨時間變化的發射功率、天線切換、網路條件、感測器資訊等)相關。
作為示例,如果樣式指示即將到來的傳輸的發射時間可能相對較長(例如,發射時間大於與RF曝露極限相關聯的時間窗口)和/或可以在該時間窗口內維持一致的上行鏈路傳輸,則發射器可以向即將到來的傳輸分配較低的功率位準(例如,P limit,其中P limit< P max)。如果樣式指示即將到來的傳輸的發射時間可能相對較短(例如,發射時間小於與RF曝露極限相關聯的時間窗口)和/或傳輸很可能是非連續的(例如,很可能是突發和/或間隙),則發射器可以向即將到來的傳輸(例如,至少一個突發)分配高瞬時功率(例如,高於P limit和/或小於或等於P max),但仍然保持符合RF曝露極限。
本文描述的用於確保RF曝露合規性的各種技術可以實現用於資料傳輸的期望發射功率。期望的發射功率可以提供期望的上行鏈路/側鏈路性能,諸如期望的資料速率、載波聚合和/或小區邊緣處的連接。
圖6是示出根據本公開的某些方面的無線通信的示例操作600的流程圖。操作600可以例如由UE(例如,無線通信網路100中的UE 120a)來執行。操作600可以被實現為在一個或多個處理器(例如,圖2的控制器/處理器280)上執行和運行的軟體組件。此外,UE在操作600中的信號傳輸可以例如由一個或多個天線(例如,圖2的天線252)來實現。在某些方面,UE對信號的發射和/或接收可以經由獲得和/或輸出信號的一個或多個處理器(例如,控制器/處理器280)的匯流排介面來實現。
操作600可以在方塊602開始,其中UE可以獲得與一個或多個第一傳輸相關聯的樣式。例如,UE可以獲得發射功率樣式,發射功率樣式指示與UE所發送的過去傳輸相關聯的隨時間(諸如過去幾分鐘、幾小時或幾天)變化的發射功率。如本文所使用的,“樣式”通常是指第一傳輸(其可以是過去的傳輸或其樣本)的特性,和/或在沒有第一傳輸的情況下(例如當樣式表示沒有上行鏈路或側鏈路流量時)的發射器的特性。也就是說,除了第一傳輸之外或作為第一傳輸的替代,樣式可以與發射器相關聯。特性可以包括例如對以下各項的指示:隨時間變化的發射功率、隨時間變化的網路條件、隨時間變化的用戶行為、隨時間變化的應用類型、隨時間變化的應用行為、語音和/或資料是否隨時間變化而發射、隨時間變化而發射的資料類型、隨時間變化的傳輸的優先級或類別、隨時間變化的天線使用、隨時間變化的感測器資訊等。在某些方面,樣式可以包括隨時間變化的特性的週期性特徵,諸如對過去的傳輸具有週期性的指示。在一些方面,某些樣式可以被解釋為“指紋”,“指紋”指示UE所處的某個環境或UE的某個場景/用戶條件。
在方塊604,UE可以至少部分基於樣式和RF曝露極限來確定用於一個或多個第二傳輸的發射功率。如本文進一步描述的,UE可以將樣式與即將到來的傳輸、關聯於即將到來的傳輸的發射時間、用於即將到來的傳輸的發射功率和/或關聯於RF曝露極限的發射功率極限相關聯。例如,發射功率樣式可以指示UE在一天期間的某個時間段以週期性突發進行發射。當即將到來的傳輸與過去突發的週期性對準時,UE可以基於與過去突發相關聯的樣式來確定用於即將到來的傳輸的發射功率。在某些方面,UE可以週期性地將樣式儲存為記憶體中的特性(例如,儲存在記憶體282中,或者儲存在與處理器280或數據機緊密耦合的記憶體中),並且提取樣式以在方塊604確定發射功率。
在一些方面,所確定的發射功率處於或接近P limit,除非基於在方塊602中獲得的樣式確定附加的RF曝露餘量可能可用。如果UE確定附加的餘量可能可用,則UE可以確定高於P limit的發射功率(例如,高達P max)。確定以較高發射功率進行發射還可以基於一個或多個其他因子或樣式。例如,當餘量可能可用並且進一步確定UE處於小區邊緣或者可能行進到這種區域,或者餘量可能可用並且正在發射具有更高優先級的資訊時,可以使用更高的發射功率。在一些方面,默認處於或接近P limit的發射功率並選擇性地增加發射功率可以增加以P limit發送傳輸的可能性(例如,這可以增加通量和/或可靠性)和/或減少以較低或後退功率發送傳輸的時間量(例如,為了遵守曝露極限)。在方塊604,UE可以確定傳輸模式(例如,如關於圖5A-圖5C所述),並且基於和/或遵循所確定的傳輸模式,可以確定發射功率處於或接近(例如,低於)P limit,或高於P limit(例如,增加到P limit以上)。
在方塊606,UE可以以所確定的發射功率發射一個或多個第二傳輸。例如,UE可以以所確定的發射功率向基站(例如,BS 110a)發射傳輸。在某些情況下,UE可以經由側鏈路通道向另一UE進行傳輸。
方塊602、604處的樣式可以包括與第一傳輸相關聯的一個或多個樣式。在一些方面,除了其他類型的資訊和/或樣式之外,樣式可以包括發射功率樣式、用戶行為樣式、天線使用樣式、應用類型、應用樣式、無線網路樣式、傳輸類型或優先級樣式、或者感測器資訊中的至少一項。發射功率樣式可以包括例如在某個時間窗口或時間窗口集合內隨時間變化的發射功率(例如,作為時間的函數的瞬時發射功率)。在某些情況下,如果來自發射功率樣式的平均功率大於或等於確定的閾值(例如,小於或等於P limit的閾值),則UE可以始終將功率限制到較低的功率位準(例如,P limit或更低)。否則,UE可以在時間窗口內允許更高的瞬時發射功率(> P limit)。也就是說,來自發射功率樣式的平均功率可以指示如何確定用於第二傳輸的發射功率。作為示例,假設來自發射功率樣式的平均功率小於平均發射功率位準的一半(例如,P limit)。這可以指示,UE目前和/或在不久的將來很可能發射非常少的上行鏈路或側鏈路流量,並且可以安全地增加發射功率以符合RF曝露極限。在某些情況下,發射功率樣式可以指示傳輸的持續時間,並且該持續時間可以用於確定發射功率。例如,如果發射功率樣式指示即將到來的傳輸的發射時間很可能相對較長(例如,發射時間很可能大於與RF曝露極限相關聯的時間窗口)和/或很可能在該時間窗口內維持一致的上行鏈路傳輸,則發射器可以向即將到來的傳輸分配較低的功率位準(例如,P limit,其中P limit< P max)。
對於某些方面,用於確定樣式的時間窗口可以與關聯於RF曝露極限的另一時間窗口(例如,圖5A和圖5B中的時間窗口(T))是分開的。例如,用於樣式的時間窗口可以包括關於在用於計算當前RF曝露的時間窗口之前的傳輸的資訊。在一些方面,這種先驗資訊可以在用於計算當前RF曝露的窗口之前幾秒、幾分鐘或幾小時、或者幾天或更長時間。在一些方面,發射功率樣式的時間窗口可以具有與關聯於當前RF曝露極限的時間窗口相同或不同的持續時間。發射功率樣式可以包括在與RF曝露極限相關聯的一個或多個時間窗口內的一個或多個發射功率。例如,發射功率樣式的時間窗口可以具有一秒或多秒、一分鐘或多分鐘、一小時或多小時、或者一天或多天的持續時間。UE可以使用與過去傳輸相關聯的發射功率樣式來識別即將到來的(未來的)傳輸將何時發生,並且UE可以基於發射功率樣式(以及RF曝露合規性)來確定用於即將到來的傳輸的發射功率。
在某些方面,發射功率樣式可以指示時間間隔內的滾動或移動平均發射功率,其中該時間間隔可以與關聯於RF曝露極限的時間窗口是分開的。平均發射功率可以在選擇發射功率的限額(cap)時使用。例如,UE可以使用與RF曝露極限相關聯的特定演算法來確定潛在瞬時發射功率,並且UE可以將該確定的潛在瞬時發射功率限額到與過去發射功率使用(例如,過去X秒內的滾動平均發射功率)成倒數的位準,其中“X”可以小於與RF曝露極限相關聯的時間窗口。這種倒數可以在發射突發(例如,如圖5A所示)或連續發射(例如,如圖5B所示)的場景中有效地調整發射功率。在一些方面,如本文所述的基於平均發射功率的對發射功率的限額可以考慮隨時間變化的網路工作週期、低或高發射功率和/或用戶行為的變化。如本文所述的對發射功率的限額可以應用於分頻雙工(FDD)和/或分時雙工(TDD)方案。如本文所述的對發射功率的限額可以考慮近、中和/或遠小區功率位準和/或用戶行為(例如,突發使用相比於連續使用)。
用於確定單個發射場景中的限額發射功率的示例表達式如下:
Figure 02_image021
(9) 其中
Figure 02_image023
是用於單個傳輸的發射功率的限額位準; MTPL是根據特定演算法為RF曝露時間窗口確定的潛在瞬時最大發射功率位準; prev.usage可以是X秒內的歸一化平均發射功率(例如,X秒內的平均發射功率/P limit)和單位值(unity)(即1,針對P limit/P limit的歸一化)中的最小值(例如,當中的最低值);並且P limit可以是與時間窗口T內平均的RF曝露極限相對應的最大平均發射功率。在等式(9)下,如果X秒的最近歷史的平均發射功率為零,例如,在突發流量場景中,
Figure 02_image023
可以等於
Figure 02_image025
且不被限額,因為
Figure 02_image027
將極高。因此,
Figure 02_image023
最初可以等於P max。在連續發射的場景中,在傳輸開始時,由於在發射功率樣式中缺少先前的發射歷史,
Figure 02_image023
也可以等於
Figure 02_image025
且不被限額。當UE繼續發射時,由於
Figure 02_image027
項小於或等於
Figure 02_image025
項,上限
Figure 02_image027
因此還有瞬時發射功率將開始降低並穩定到P limit,並且在時間窗口接近結束時,由於
Figure 02_image025
項小於
Figure 02_image027
項,發射功率可以小於P limit
用於確定雙重發射場景中的限額發射功率的示例表達式如下:
Figure 02_image029
,
Figure 02_image031
,
Figure 02_image033
(10a)
Figure 02_image035
,
Figure 02_image037
,
Figure 02_image039
(10b) 其中“pri”表示主發射無線電裝置(radio)的參數,“sec”表示輔發射無線電裝置的參數,並且 num_Tx表示活動的發射無線電裝置的總數,在該示例中為2。活動的發射無線電裝置可以是指將在第二傳輸期間同時進行發射的(多個)發射天線和/或(多個)天線模組(包括天線陣列)。
用於在多發射場景中確定限額發射功率的示例表達式如下:
Figure 02_image041
,
Figure 02_image043
,
Figure 02_image045
(11) 其中 i是多個無線電裝置當中的特定無線電裝置的索引。
關於操作600,方塊604處的發射功率確定可以包括至少部分基於時間間隔(例如,X秒,其可以小於與RF曝露極限相關聯的時間窗口)內的歸一化平均發射功率(例如,
Figure 02_image047
)來確定第一發射功率(例如,
Figure 02_image025
)並且確定第二發射功率(例如,
Figure 02_image027
)。UE可以選擇第三發射功率作為第一發射功率和第二發射功率中的最小值,例如,如本文關於等式(9)所述。UE可以確定用於一個或多個第二傳輸的發射功率,使得發射功率小於或等於第三發射功率。第二發射功率可以至少部分基於過去時間間隔中的歸一化平均發射功率的倒數(例如,
Figure 02_image049
)。第二發射功率可以是對應於RF曝露極限的最大平均功率(例如,P limit)與歸一化平均發射功率和單位值中的最小值的倒數的乘積(例如,
Figure 02_image027
)。
在多發射場景中,方塊604處的發射功率確定可以包括:確定用於多個無線電裝置中的每個無線電裝置的第一發射功率和確定用於多個無線電裝置中的每個無線電裝置的第二發射功率,其中第二發射功率可以至少部分基於在一時間間隔內的用於相應無線電裝置的歸一化平均發射功率。UE可以選擇用於多個無線電裝置中的每個無線電裝置的第三發射功率,作為用於相應無線電裝置的第一發射功率和第二發射功率中的最小值。UE可以確定用於一個或多個第二傳輸的發射功率,使得用於多個無線電裝置中的每個無線電裝置的發射功率小於或等於用於相應無線電裝置的第三發射功率。
第二發射功率的確定可以包括至少部分基於對應於相應無線電裝置的RF曝露極限的最大平均功率與用於多個無線電裝置的歸一化平均發射功率和單位值中的最小值之和的倒數之間的乘積來確定第四發射功率(例如,
Figure 02_image051
)。第四發射功率可以進一步基於用於相應無線電裝置的歸一化平均發射功率與用於多個無線電裝置的歸一化平均發射功率的總和之間的比例。UE可以確定第五發射功率(例如,
Figure 02_image053
),第五發射功率是與RF曝露極限相對應的最大平均功率除以多個無線電裝置的數量。UE可以基於第四發射功率和第五發射功率中的最大值(例如,當中最大的值)(例如,
Figure 02_image055
)來選擇第二發射功率。
在某些方面,在選擇發射功率上限時使用的平均發射功率的時間間隔可以例如基於時間平均曝露(或平均發射功率)和/或網路條件而動態更新。時間間隔可以基於以下表達式來確定:
Figure 02_image057
(12) 其中 m可以是以秒為單位的X的最低值,並且 n可以是以秒為單位的 X的最高值,並且 average_exposure( t)可以是在與RF曝露極限相關聯的過去時間窗口(T)內的用於所有發射無線電裝置的總平均歸一化曝露(或者來自所有無線電裝置的所有過去傳輸的平均發射功率/P limit的總和)。在某些情況下, n可以小於與RF曝露極限相關的時間窗口。不同的 X值可以適用於短突發傳輸與長傳輸。等式(12)可以使UE能夠隨著上行鏈路和/或側鏈路流量隨時間變化來調整時間間隔。此外, m和/或 n還可以取決於與無線電裝置相關聯的時間平均窗口而在一個發射無線電裝置到另一發射無線電裝置之間變化。例如,如果兩個發射無線電裝置在兩個不同的時間平均窗口(例如,sub-6 GHz無線電裝置的時間窗口和毫米波無線電裝置的單獨時間窗口)內進行平均,則 X的值在兩個無線電裝置之間可以不同,並且在某些情況下, m和/或 n的值在兩個無線電裝置之間可以不同。
關於操作600,方塊604處的發射功率確定可以包括至少部分基於與RF曝露極限相對應的時間窗口(T)內的平均功率來調整歸一化平均發射功率的時間間隔。在一些方面,平均功率可以是時間窗口內發射功率的滾動或移動平均值。時間間隔調整可以包括選擇隨過去時間窗口內的平均功率而變化(例如,成比例)的第一時間間隔( m)和第二時間間隔( n)當中的最大值,例如,如本文關於等式(12)所述。在某些情況下,第一時間間隔和第二時間間隔取決於一個或多個第二傳輸的傳輸頻率。也就是說,第一時間間隔的值和/或第二時間間隔的值可以取決於傳輸頻率而變化。例如,sub-6 GHz傳輸的第二時間間隔可以高於毫米波傳輸的相應第二時間間隔。
在某些方面,可以基於一個或多個網路條件來調整時間間隔。例如,在較差的網路條件下(諸如UE處於小區邊緣和/或處於行動性場景中),由於遇到較差的網路條件下的更大的冗餘和更長的傳輸,時間間隔可以被調整為更長的持續時間,諸如如等式(12)中的 n。在期望的網路條件下(諸如UE是靜止的並且非常接近基站),由於在期望的網路條件下遇到減少的冗餘和更短的傳輸,時間間隔可以被調整到短持續時間,諸如等式(12)中的 m。關於操作600,方塊604處的發射功率確定可以包括至少部分基於一個或多個當前網路條件(諸如本文關於網路樣式進一步描述的一個或多個參數)來調整歸一化平均發射功率的時間間隔。
在某些方面,本文所述的對最大發射功率的上限可以實現一種不更改確定
Figure 02_image025
的基礎演算法或處理的實現方式,這保證了RF曝露合規性。換句話說,因為
Figure 02_image025
的原始演算法或處理沒有被更變,所以上限可以應用于生成
Figure 02_image025
的任何演算法或處理。在一些方面,確定
Figure 02_image025
函數的演算法或處理與確定上限的演算法或處理分開或獨立。例如,可以執行第一過程來確定遵守RF曝露極限的發射功率,並且可以獨立地執行第二過程來確定是否對所確定的發射功率限額。在一些方面,與第一過程相比,第二過程運行在不同的層(例如,在開放系統互連(OSI)模型中的,例如,應用層或其他層)上。
方塊604處的發射功率確定可以包括確定第一發射功率(例如,
Figure 02_image025
)以及對第一發射功率應用限額以確定第二發射功率(例如,
Figure 02_image059
),例如,如本文中關於等式(9)所述。UE可以確定用於一個或多個第二傳輸的發射功率,使得發射功率小於或等於第二發射功率。
在某些方面,在方塊604,UE可以通過選擇三個選項中的一個來確定發射功率:(1)根據RF曝露合規性的特定演算法而確定的瞬時發射功率(例如,
Figure 02_image025
);(2)瞬時發射功率和基於在時間間隔內的用於無線電裝置的歸一化平均發射功率的發射功率(例如,
Figure 02_image027
)中的最小值,其中最小值運算確保符合RF曝露極限;以及(3)瞬時發射功率和與RF曝露極限相對應的最大平均功率(例如,P limit)中的最小值,其中最小值運算同樣確保符合RF曝露極限。
關於操作600,方塊604處的發射功率確定還可以包括:至少部分基於過去時間窗口中的時間平均RF曝露來確定用於一個或多個第二傳輸的第一發射功率(例如,
Figure 02_image025
);至少部分基於在時間間隔內的用於無線電裝置的歸一化平均發射功率來確定第二發射功率(例如,
Figure 02_image027
);以及確定第三發射功率(例如,P limit),第三發射功率是與RF曝露極限相對應的最大平均功率。UE可以選擇作為用於無線電裝置的第一發射功率和第二發射功率中的最小值的第四發射功率,並且選擇作為用於無線電裝置的第一發射功率和第三發射功率中的最小值的第五發射功率。例如,取決於如本文所述的樣式,UE可以在第一發射功率、第四發射功率和第五發射功率中選擇第六發射功率。UE可以確定用於一個或多個第二傳輸的發射功率,使得發射功率小於或等於無線電裝置的第六發射功率。
在多發射場景中,方塊604處的發射功率確定還可以包括:確定用於多個無線電裝置中的每個無線電裝置的第一發射功率(例如,
Figure 02_image061
),其中第一發射功率至少部分基於過去時間窗口中的時間平均RF曝露;確定用於多個無線電裝置中的每個無線電裝置的第二發射功率(例如,
Figure 02_image063
),其中第二發射功率至少部分基於在時間間隔內的用於相應無線電裝置的歸一化平均發射功率;以及確定用於多個無線電裝置中的每個無線電裝置的第三發射功率(例如,
Figure 02_image053
),其中第三發射功率是與RF曝露極限相對應的最大平均功率(例如,P limit)除以多個無線電裝置的數量。UE可以選擇用於多個無線電裝置中的每個無線電裝置的第四發射功率,作為用於相應無線電裝置的第一發射功率和第二發射功率中的最小值,並且選擇用於多個無線電裝置中的每個無線電裝置的第五發射功率,作為用於相應無線電裝置的第一發射功率和第三發射功率中的最小值。例如,取決於如本文所述的樣式,UE可以在第一發射功率、第四發射功率和第五發射功率中選擇用於多個無線電裝置中的每個無線電裝置的第六發射功率。UE可以確定用於一個或多個第二傳輸的發射功率,使得用於多個無線電裝置中的每個無線電裝置的發射功率小於或等於用於相應無線電裝置的第六發射功率。
天線使用樣式可以指示UE何時切換到不同的傳輸天線以及UE使用特定天線進行隨時間變化的傳輸的持續時間。例如,UE可以基於天線使用樣式來識別UE何時切換到不同的傳輸天線,並且UE可以針對第二傳輸執行這種切換,以便獲得更多的RF曝露餘量(例如,如果用於天線改變的目標天線不是非常接近於人體組織)或者確定具有更多RF曝露餘量的另一天線很可能在稍後的時間可供使用,從而附加的功率可以在未來超過RF曝露極限的風險相對較低的情況下被分配給當前傳輸。
本公開的某些方面可以提供一種用於例如基於與其他無線電裝置相關聯的天線使用來設置特定無線電裝置的發射功率上限的裝置和/或技術,其中發射功率上限獨立於與RF曝露極限相關聯的平均功率極限和無線電裝置所支持的最大發射功率。也就是說,一個或多個無線電裝置(例如,sub-6 GHz無線電裝置)的隨時間變化的天線使用可以用於確定多無線電裝置發射場景中的用於另一無線電裝置(例如,毫米波無線電裝置)的發射功率。當確保RF曝露合規性時,基於所有無線電裝置的過去使用的總可用RF曝露餘量可以基於無線電裝置的優先級和/或期望餘量進一步劃分成無線電裝置的單獨餘量。如本文進一步描述的,特定無線電裝置的餘量可以例如基於其他無線電裝置的使用來隨時間變化進行調整。如果無線電裝置期望隨時間變化而一致的性能,則可以基於其他無線電裝置的平均過去使用來限制RF餘量。例如,假設頻率範圍1(FR1)(sub-6 GHz)無線電裝置的過去的使用指示FR1無線電裝置正在使用總RF曝露餘量的相對小的部分。在這種情況下,UE可以基於FR1無線電裝置的過去使用為頻率範圍2(FR2)(毫米波)無線電裝置分配發射功率上限,以提供一致的性能。作為示例,UE可以分配將大部分RF曝露餘量(例如,90%)用於FR2無線電裝置的發射功率上限。
在多發射(例如,當多個無線電裝置用於併發發射時)和/或多無線電裝置場景(例如,當無線通信設備配備有多個無線電裝置時)中,總可用RF曝露餘量可以根據以下表達式來確定: A = 100% - (radio 1+ … + radio i)的過去時間平均使用    (13) 其中A是總可用RF曝露餘量,並且過去時間平均使用可以是每個無線電裝置在特定時間間隔(諸如與RF曝露極限相關聯的時間窗口的某一比例、整個時間窗口、或者比該時間窗口長的時間間隔(例如,多個時間窗口、一個或多個小時、或一天或多天))內的時間平均發射功率的總和。
分配給每個無線電裝置的單獨RF曝露餘量可以根據以下表達式來確定: Margin 1= x 1*A (for radio1), Margin 2=x 2*A (for radio2), . . ., Margin i= x i*A (for radio i),                (14) 其中x 1至x i是用於將總可用RF曝露餘量的一部分分配給相應無線電裝置的因子,並且x 1+x 2+ . . . + x i= 1。在某些方面,UE可以取決於一個或多個標準為一個或多個無線電裝置調整x 1至x i的值。例如,特定無線電裝置的x值可以基於該無線電裝置被用於傳輸的可能性來確定,例如基於與該無線電裝置相關聯的應用、資料緩衝區、流量模型或樣式。在某些情況下,特定無線電裝置的x值可以基於優先級來確定,諸如特定通道和/或RAT相對於另一通道和/或RAT的優先級(例如,LTE相比於5G),其中無線電裝置可以與特定通道相關聯。通道優先級可以基於與通道相關聯的傳輸工作週期。在應用或服務的上下文中,假設一個無線電裝置正在發射用於即時視頻呼叫的內容,並且另一無線電裝置正在發射資料。在這種情況下,例如,UE可以向服務於視頻呼叫的無線電裝置提供優先級,這可能導致RF餘量的較大部分(即,較大x值)被分配給該無線電裝置。
特定無線電裝置(例如,radio k)的發射功率上限可以根據以下表達式來確定: cap_radio k= 100% -剩餘無線電裝置(radio 1+ radio 2+ …. + radio k-1+ radio K+1)的過去時間平均使用               (15)
分配給radio k的RF餘量可根據以下表達式來確定: minimum(x k*A, cap_radio k)               (16)
操作600還可以涉及UE確定特定無線電裝置的發射功率上限,如本文所述。在一些方面,天線使用樣式可以包括多個無線電裝置(諸如圖2的收發器254a-254r)當中的每個無線電裝置的使用樣式。在方塊604,例如,根據等式(13),UE可以基於多個無線電裝置中的每個無線電裝置的使用樣式來確定總可用RF曝露餘量。在一些方面,UE可以確定最大可用使用(例如,100%)與無線電裝置的使用樣式之和(例如,平均發射功率之和)之間的差。在某些情況下,諸如單發射場景(例如,當僅單個無線電裝置用於傳輸時)和/或單無線電裝置場景(例如,當無線通信設備配備有單個無線電裝置時),UE可以基於無線電裝置的使用樣式來確定無線電裝置的發射功率上限,並且UE可以至少部分基於發射功率上限來確定用於一個或多個第二傳輸的發射功率。在這種情況下,發射功率上限可以小於UE所支持的最大發射功率(P max),並且大於與RF曝露極限(P limit≤ P cap≤ P max)相關聯的平均功率極限(P limit)。
例如,根據等式(14),UE可以基於總可用RF曝露餘量向每個無線電裝置分配RF曝露餘量。在一些方面,UE可以將某一比例的總可用RF曝露餘量分配給每個無線電裝置,作為相應無線電裝置的RF曝露餘量。在某些情況下,在向特定無線電裝置分配RF曝露餘量時,UE可以向特定無線電裝置應用優先級。也就是說,UE可以至少部分基於與至少一個無線電裝置相關聯的優先級,將某一比例的總可用RF曝露餘量分配給每個無線電裝置。優先級和/或比例可以與關聯於相應無線電裝置的頻帶、應用、服務、網路條件或曝露場景(例如,頭部曝露、身體曝露、四肢曝露或熱點曝露)中的至少一項相關聯。也就是說,UE可以通過改變x 1至x i的值來即時控制多個無線電裝置之間的可用RF曝露餘量的劃分。在一些方面,UE可以結合無線電優先級來調整因子x 1至x i,該無線電優先級可以隨著應用、網路條件和/或使用場景(例如,熱點模式)隨時間變化而改變。換句話說,優先級和比例可以響應于應用、服務、網路條件等的變化而隨時間變化進行調整。例如,UE可以基於特定無線電裝置的工作頻帶(諸如毫米波無線電裝置)將更大比例的總可用RF曝露餘量分配給該無線電裝置。作為示例,假設UE總共有四個無線電裝置。在該示例中,UE可以將毫米波無線電裝置的因子x k調整為0.5,並且在剩餘無線電裝置之間均勻地分配剩餘的RF曝露餘量(例如,0.16)。
例如,根據等式(15),UE可以基於其他無線電裝置中的每個無線電裝置的使用樣式來確定無線電裝置之一的發射功率上限(例如,cap_radio k)。在一些方面,UE可以將發射功率上限確定為最大可用使用(例如,100%)與其他無線電裝置中的每個無線電裝置的使用樣式之和(例如,其他無線電裝置的平均發射功率之和)之間的差。
UE可以至少部分基於發射功率上限和分配給無線電裝置之一的RF曝露餘量來確定用於第二傳輸的發射功率。例如,UE可以確定發射功率小於或等於等式(16)中分配的RF餘量。在某些情況下,UE可以響應於多個無線電裝置(在多無線電裝置情況下)和/或一個無線電裝置(在單無線電裝置情況下)的使用樣式的變化來調整發射功率上限。作為示例,假設sub-6 GHz無線電裝置的使用樣式指示例如由於sub-6 GHz無線電裝置的使用降低,可以向毫米波無線電裝置分配更多發射功率。響應于更新的使用樣式,UE可以基於其他無線電裝置的使用樣式來增加分配給毫米波無線電裝置的發射功率上限。
在某些方面,UE可以響應於與無線電裝置相關聯的發射場景的變化來調整發射功率上限。例如,發射場景可以與併發地使用的某些無線電裝置、曝露場景(頭部曝露、身體曝露、四肢曝露等)和/或UE所在的區域相關聯。
在某些方面,UE可以至少部分基於流量模型來調整發射功率上限。UE可以開發與無線電裝置相關聯的流量模型,其中流量模型指示何時調整發射功率上限。作為示例,流量模型可以設置為:在一天的某個時間期間,可以向特定無線電裝置分配更高發射功率上限。
在一些方面,多個無線電裝置當中的每個無線電裝置的使用樣式可以包括與相應無線電裝置相關聯的過去時間間隔中的平均發射功率。例如,UE可以確定與RF曝露極限相關聯的過去時間窗口內的用於每個無線電裝置的平均發射功率。
在方塊606,UE可以在與RF曝露極限相關聯的時間窗口的第一部分內以發射功率上限發射第二傳輸,並且可以在時間窗口的第二部分內以小於發射功率上限的另一發射功率發射第二傳輸,例如,如本文關於圖9B所述。
用戶行為樣式可以指示用戶何時使用或不使用UE進行無線通信。用戶行為樣式可以包括與用戶何時和/或如何使用或不使用UE進行無線通信相關聯的一個或多個時間。例如,如果用戶很可能以週期性/非週期性突發或以連續方式(例如,在長持續時間內)生成傳輸資料,則用戶行為樣式可以指示用戶通常何時避免使用UE,諸如在睡眠、鍛煉或其他活動期間。在這種時段期間,基於用戶可能不會發起附加傳輸的假設,UE可以允許發射功率在用於RF曝露合規性的時間窗口中超過平均功率位準(例如,P limit)。也就是說,在由用戶行為樣式指示的很可能的低使用或無使用的這種時段期間,UE可以確定不太可能連續發射(例如,由於用戶不太可能發起這種傳輸),從而允許處於高於P limit的瞬時功率(例如,在P max)的傳輸。相反,在用戶通常使用UE的時段期間(例如,當用戶在早上醒來時、在午餐期間在或晚上時),例如,基於用戶將會發起附加傳輸從而大部分傳輸窗口將很可能被處於或接近P limit的傳輸佔據的假設,UE可以約束處於高於P limit的瞬時功率的傳輸。也就是說,在如用戶行為樣式所指示的上行鏈路活動更有可能的時段期間,UE可以將發射功率設置為小於或等於最大平均發射功率位準P limit。關於操作600,可以基於用戶行為樣式針對第二傳輸來調整在方塊604確定的發射功率。
應用樣式可以指示與生成用於傳輸的資料的應用(例如,行動軟體應用)相關聯的各種特性。在一些方面,應用樣式可以包括應用的行為,其可以指示與應用相關聯的一個或多個發射時間或一個或多個隨時間變化的發射功率中的至少一個。例如,如果應用樣式指示應用生成用於在週期性突發中傳輸的資料,則UE可以將週期性突發與關聯於RF曝露極限的時間窗口關聯起來,並且基於週期性突發的持續時間來確定可用于應用傳輸的發射功率。在某些情況下,樣式可以指示與應用樣式相關聯的應用類型。也就是說,應用類型可以指示生成用於傳輸的資料的應用的種類。例如,應用類型可以是對應用是以下各項的指示:社交媒體應用、訊息傳遞應用、電子郵件應用、視頻呼叫應用、視頻會議應用、視頻遊戲、視頻流應用、導航應用等。在某些方面,UE可以基於應用類型對用於一個或多個應用的發射功率進行優先級排序。例如,UE可以基於應用類型樣式和/或來自UE所採用的應用處理器(例如,控制器280)的顯式指示來識別第二傳輸的應用類型,並且UE可以基於優先于其他應用類型的應用類型來確定用於第二傳輸的發射功率。例如,與其他應用相比,UE可以將更多的發射功率分配給流式傳輸音頻和/或視頻的應用,諸如視頻呼叫應用或視頻會議應用。在一些場景中,當UE已經確定更高優先級的另一應用很可能將在相同的曝露時間窗口內發射資料時,UE可以避免允許較低優先級的應用以高於最大平均功率位準(例如,P limit)的瞬時功率位準進行發射。
無線網路樣式可以指示無線網路條件的各個方面。無線網路樣式可以包括以下至少一項:UE與接收實體(例如,一個或多個基站或其他UE)之間的通道品質、與一個或多個第一傳輸相關聯的調變和編碼方案(MCS)、與一個或多個第一傳輸相關聯的編碼速率(例如,非冗餘的資料流的比例)、與一個或多個第一傳輸相關聯的週期性,與一個或多個第一傳輸相關聯的工作週期、或行動性場景(諸如對UE在一個或多個第一傳輸期間的行動性的指示)。在某些情況下,無線網路樣式可以指示UE隨時間變化而遇到的過去的無線電條件(諸如通道品質、MCS、編碼速率等)。UE可以使用過去的無線電條件來預測未來的無線電條件,並且相應地為這種無線電條件分配發射功率。例如,假設UE識別出UE在一天中的特定時間段參與行動性場景(諸如上下班通勤)。在這種情況下,UE可以分配某一發射功率來適應行動性場景。例如,當UE基於由無線網路樣式指示的行動性場景識別出小區邊緣(例如,較差的無線電條件)時,UE可以允許等於或高於最大平均發射功率極限(P limit)的發射功率。相反,當UE識別出UE實際上不可行動時,取決於第一傳輸,由於假設無線電條件不會不利地改變(諸如在行動性場景期間),UE可以為第二傳輸分配小於或等於最大平均發射功率極限(P limit)的發射功率。
與無線網路條件相關聯的其他參數也可以被包括在無線網路樣式中,諸如小區識別符、聚合分量載波的數量、MIMO層的數量、頻寬、子載波間隔、頻率範圍(例如,5G NR下的FR1或FR2)等。在一些方面,通道品質可以包括路徑損耗、通道品質指示符、信噪比(SNR)、信號干擾雜訊比(SINR)、信號雜訊失真比(SNDR)、參考信號接收功率(RSRP)和/或接收信號強度指示(RSSI)。
傳輸類型或優先級樣式可以指示已經發送了什麼類型的傳輸和/或它們的相對優先級是什麼。例如,該樣式可以包括關於語音呼叫或資料是否已經被發射及其樣式的資訊。這種樣式可能能夠區分語音和資料是否併發地發射和/或在發射另一種類型的通信(例如,資料)時是否可能發起某種類型的通信(例如,語音)。樣式可以包括傳輸的相對優先級,諸如比資料具有更高優先級的語音或者比其他類型的資料(例如,電子郵件或文件上傳)具有更高優先級的某種類型的資料(例如,基於互聯網協定的語音(VoIP)、視頻會議、某種類型的流)。在一些這種方面中,當樣式指示可能期望另一更高優先級的傳輸時,或者當可能要發射的資訊類型經常涉及長傳輸時間(例如,大於曝露時間窗口)和/或隨時間變化而相對一致的功率量時,UE將不會分配或不太可能分配高於最大平均功率位準(P limit)的瞬時發射功率。在一些方面,上述樣式中的一個或多個(例如,天線使用樣式、應用樣式和/或傳輸類型樣式)可以用於確定是利用4G服務還是5G服務,和/或是在sub-6 GHz頻帶還是毫米波頻帶中進行發射。
感測器資訊可以包括各種感測器資料或由UE生成的資訊。感測器資訊可以包括隨時間變化的RF曝露感測器資訊,諸如隨時間變化的或者當UE遠離人體組織被放置時(例如,在熱點場景中或正在充電時)的UE到各種人體部位(例如,手部、頭部或身體)的距離。UE可以使用RF曝露感測器資訊來調整與RF曝露極限相關聯的最大平均發射功率位準(例如,P limit)。例如,在感測器資訊指示UE將非常接近人體組織的情況下(例如,當UE通常被放置在用戶的口袋中時),UE可以調整(例如,降低)最大平均發射功率位準(P limit)以符合該RF曝露場景。相反,如果感測器資訊指示UE不會非常接近人體組織,則UE可以調整(例如,增加)最大平均發射功率位準(P limit)以符合這種其他RF曝露場景。感測器資訊可以包括對UE與非人類對象的接近的指示、對UE處於自由空間的指示、對用戶使用場景的指示、對UE的使用狀態的指示、或者對在UE處何時發生天線切換的指示中的至少一項。在一些方面,用戶使用場景可以指示UE接近用戶的哪個身體部位(例如,手部、頭部或身體)。使用狀態可以指示UE是否正在人體組織附近被使用,諸如UE被用作熱點而不在人體組織附近。
在某些方面,在方塊606,UE可以使用各種樣式以基於樣式確定發射功率。UE可以使用機器學習以基於樣式預測/學習未來的傳輸事件。例如,UE可以使用機器學習以基於例如由無線網路樣式和/或用戶行為樣式表示的過去的網路條件和/或用戶行為來預測/學習未來的網路/無線電條件(例如,從家到工作的路線)和/或用戶行為。也就是說,UE可以使用機器學習以將即將到來的用戶行為(例如,資料突發或大資料分組)映射到當前網路條件(例如,靜止),或者將當前用戶行為映射到即將到來的網路條件(例如,在行動性場景中),或者將即將到來的用戶行為和即將到來的網路條件都進行映射。在某些方面,UE可以使用機器學習以根據樣式預測與即將到來的傳輸相關聯的其他特性(諸如天線切換、感測器資訊、應用類型和/或行為等)。在一些方面,用樣式預測的特性可以用各種模型或估計(諸如機器學習、人工智能、神經網路、回歸分析等)來生成。
在方塊606,對於某些方面,UE可以至少部分基於樣式用機器學習確定發射功率。在某些情況下,UE可以基於樣式(例如,用戶行為樣式)利用機器學習生成即將到來的用戶行為,並且基於即將到來的用戶行為和當前網路條件來確定發射功率。在某些方面,UE可以基於樣式(例如,無線網路樣式)用機器學習生成即將到來的網路條件,並且基於當前用戶行為和即將到來的網路條件來確定發射功率。在某些情況下,UE可以基於樣式(例如,無線網路樣式和用戶行為樣式)用機器學習生成即將到來的網路條件和即將到來的用戶行為,並且基於即將到來的網路條件和即將到來的用戶行為來確定發射功率。
在一些方面,UE可以將樣式與關聯於一個或多個第二傳輸的發射時間項關聯,並且將發射時間與關聯於RF曝露極限的時間窗口進行比較。UE可以基於該比較來確定發射功率。例如,假設該樣式與小於關聯於RF曝露極限的時間窗口的即將到來的傳輸的短發射時間相關,則UE可以為這種傳輸分配大於最大平均發射功率位準(P limit)和/或小於最大支持發射功率(P max)的發射功率。
在一些方面,RF曝露極限可以符合根據規定/標準機構(例如,美國的聯邦通信委員會(FCC);加拿大的創新、科學和經濟發展部(ISED);或歐盟(EU)所遵循的國際非電離輻射防護委員會(ICNIRP)標準)設置的極限。RF曝露極限可以包括各種頻率範圍的SAR極限和/或PD極限。在一些方面,在方塊604,UE可以確定發射功率以符合RF曝露極限。例如,當經由多種無線技術進行通信時,如本文關於圖4所述,UE可以將組合的歸一化分佈與多種技術的RF曝露合規性閾值進行比較。RF曝露極限可以在特定時間窗口(諸如對於24 GHz與42 GHz之間的發射頻率為4秒,對於小於3 GHz的發射頻率為100秒,或者對於小於6 GHz的發射頻率為360秒)內隨時間變化進行平均。
圖7A是示出根據本公開的某些方面的用於確定隨時間變化的一個或多個發射功率的示例樣式702的坐標圖700A。在該示例中,樣式702具有兩個週期性的第一傳輸704,其中每個第一傳輸具有持續時間706,持續時間706小於與RF曝露極限相關聯的時間窗口(T)。UE可以根據樣式702確定第二傳輸708、710很可能在即將到來的時間窗口中發射。基於樣式702,UE可以確定用於第二傳輸708、710的發射功率。例如,UE可以識別出第一傳輸704具有小於時間窗口(T)的發射時間(即,持續時間706)。這樣,例如,基於還指示UE很可能經歷行動性場景的樣式,UE可以向第二傳輸708分配大於P limit的發射功率(諸如P max)。例如,基於還指示UE很可能不行動的樣式,UE可以以更接近P limit的發射功率向第二傳輸710分配發射功率。UE可以基於諸如過去的網路條件、用戶行為、應用類型等樣式來確定是否分配小於、等於或大於最大平均發射功率位準(P limit)的發射功率。在一些方面,樣式702可以是一個或多個各種樣式(或從其中推導出),諸如發射功率樣式、用戶行為樣式、應用樣式、無線網路樣式和/或感測器資訊樣式。儘管使用兩個時間窗口來確定圖形700A中的樣式,但是應當理解,多於或少於兩個時間窗口(或不基於曝露時間窗口的其他持續時間)可以用於樣式的基礎。
圖7B是示出根據本公開的某些方面的用於確定隨時間變化的一個或多個發射功率的另一示例樣式722的坐標圖700B。在該示例中,樣式722具有週期性傳輸724,週期性傳輸724具有大於RF曝露的時間窗口(T)的持續時間726。UE可以根據樣式722確定將消耗即將到來的時間窗口中可用的大部分功率的附加傳輸可能在即將到來的時間窗口中發射。基於樣式722,UE可以確定用於第二傳輸728的發射功率。例如,UE可以識別出第一傳輸724具有大於時間窗口(T)的發射時間(即,持續時間726)。這樣,UE可以向第二傳輸728分配等於或小於最大平均發射功率位準(P limit)的發射功率。在某些情況下,UE可以識別出即將到來的傳輸可能僅與一個或多個時間窗口(T)的一部分重疊,使得可以在時間窗口(T)之一中將附加發射功率730分配給第二傳輸。
圖8A是示出根據本公開的某些方面的用於確定用於短傳輸(例如,持續時間小於RF曝露時間窗口的傳輸,也稱為“突發傳輸”)的隨時間變化的一個或多個發射功率的示例樣式802的坐標圖800A。在該示例中,樣式802可以指示時間間隔804內的平均發射功率。在某些情況下,樣式802可以包括發射功率的滾動或移動平均值。UE可以基於樣式802(例如,使用等式(9))來選擇新的發射功率上限。由於樣式802內的平均發射功率小於P limit,UE可以恢復使用作為可用於傳輸的最大發射功率(例如,P max)的 MTPL。UE可以為傳輸806分配等於或小於 MTPL的發射功率, MTPL可以等於P max
圖8B是示出根據本公開的某些方面的用於確定用於長傳輸(例如,持續時間大於RF曝露時間窗口的傳輸)的隨時間變化的一個或多個發射功率的其他示例樣式822a-c的坐標圖800B。在該示例中,傳輸808可以跨越與RF曝露極限相關聯的多個時間窗口(T)。在傳輸808的開始,平均發射功率在第一樣式822a的時間間隔804內為零,使得UE可以例如在等式(9)下選擇P max作為最大發射功率。由於倒數限額,發射功率可能以平均發射功率的倒數函數的速率衰減,並且隨著時間間隔內的平均發射功率接近P limit,發射功率可能穩定在P limit。在隨後的傳輸時機(例如,在相同的時間窗口T期間),平均發射功率可以在第二樣式822b的時間間隔804內等於P limit。在這種情況下,例如,由於 MTPL大於
Figure 02_image027
,UE可以有效地選擇P limit作為 MTPL
Figure 02_image027
中的最小值。在稍後的傳輸時機(例如,在相同的時間窗口T期間),平均發射功率可以在第三樣式822c的時間間隔804內仍然等於P limit。然而, MTPL可以小於P limit以便確保符合RF曝露極限,使得UE選擇用於時間窗口(T)的剩餘部分的 MTPL作為可用於傳輸808的最大發射功率。
在某些方面,UE在後續時間窗口(T)開始時選擇的發射功率小於在傳輸808開始時選擇的發射功率。雖然在圖8B所示的示例中,第一樣式822a的平均發射功率為零,但是在與樣式822c相對應的間隔804的結束與隨後的時間窗口(T)的開始之間發射的平均功率被示為非零(例如,零與P limit之間)。因此,在該後續時間窗口(T)開始時由UE(例如,根據等式(9))選擇的發射功率可以小於P max(但大於P limit)。此外,在該隨後的時間窗口(T)結束時選擇的平均發射功率可以比在第一時間窗口結束時選擇的平均發射功率更接近P limit。這可能導致由UE在甚至更晚的發射窗口(T)開始時選擇的發射功率(例如,由圖8B中最右邊的峰值表示)也更接近P limit。因此,可以觀察到,在某些方面,對於連續/長(例如,持續時間大於時間窗口)傳輸,由UE選擇的發射功率將接近P limit
雖然在本文中關於使用表示歷史行為或條件的樣式來確定符合RF曝露極限的發射功率描述了本公開的某些方面以便於理解,但是UE也可以使用當前條件(諸如當前無線電條件和/或資料緩衝區)來應用本公開的各方面,以基於樣式來驗證、調整或補償發射功率確定。例如,UE可以基於過去資訊的樣式來確定當前或未來時間窗口中很可能的或預期的使用或發射功率,並且此後可以將很可能的或預期的使用或發射功率與儲存在發射緩衝區中的資料進行比較。在一些這種方面中,UE可以確定用於當前或未來傳輸的第一功率,並且如果發射緩衝區中的資料與預期使用相差大於第一閾值,或者將涉及發射功率量與預期發射功率相差大於第二閾值,則可以在第一功率被用於設置瞬時發射功率之前進行調整。
應當理解,基於樣式(例如,發射功率樣式、用戶行為樣式等)確定發射功率提供了各種優點。在某些情況下,發射功率確定可以使UE能夠分配適應符合RF曝露極限的歷史條件和/或樣式的發射功率。利用這種自適應發射功率方案,UE可能能夠為特定的用戶行為、網路條件、應用類型等提供期望的發射功率。
圖9A是示出根據本公開的某些方面的第一無線電裝置的示例天線使用樣式902的坐標圖900A。在該示例中,第一無線電裝置的天線使用樣式902示出第一傳輸904可以在小於與RF曝露極限相關聯的時間窗口T 0的突發中發射。在這種情況下,這可能為另一無線電裝置(諸如第二無線電裝置)留下附加的RF曝露餘量。
圖9B是示出根據本公開的某些方面的基於圖9A所示的天線使用樣式來設置對第二無線電裝置的發射功率上限(P cap)的示例的坐標圖900B。在該示例中,UE可以根據等式(15)和/或等式(16)來確定第二無線電裝置的發射功率上限(P cap)。在某些情況下,在從圖9A中的時間窗口T 0的實例起的某個時間偏移(t)之後,UE可以在時間窗口T 1的第一部分908內以發射功率上限發射第二傳輸906,並且在時間窗口T 1的第二部分910內以小於發射功率上限的另一發射功率發射第二傳輸906,以將平均發射功率維持在與RF曝露極限相關聯的P limit內。由於時間窗口T 0可以表示過去使用樣式的時間,所以T 1可以在時間上與T 0間隔某一時間偏移(t)。在某些方面,發射功率上限可以有助於在與RF曝露極限相關聯的時間窗口期間的第二無線電裝置的一致的性能位準。
發射功率上限可以適用於單個無線電裝置發射場景(例如,其中單個無線電裝置正在發射)或多無線電裝置發射場景(例如,多個無線電裝置併發地發射)。對P max限額可以延長無線通信設備在P limit以上進行發射的時間窗口部分。對於單個無線電裝置,在P cap被設置為小於P max的情況下,當與以P max位準進行發射相比時,在遇到曝露極限之前,發射功率可以以P cap位準上發射更長時間。類似地,對於多無線電裝置場景,無線電裝置的RF曝露餘量的一部分(x k*A)可以對於radio k進行限額,並且radio k的P cap可以根據(x k*A* P limit _radio_k)來確定,其中P limit是與RF曝露極限相關聯的平均發射功率。
在維持RF曝露合規性的同時取決於發射時間的示例發射能量
在某些方面,在確定RF曝露合規性的發射功率時,UE可以考慮未來條件(諸如發射時間和/或無線電條件)。本公開的各方面提供了用於基於與資料和/或無線電條件相關聯的發射時間來確定發射功率和/或在本文描述的各種傳輸模式之間進行切換同時確保RF曝露合規性的技術和裝置。在某些方面,發射時間可以根據與資料相關聯的大小(例如,資料緩衝區大小)和當前(或預測的未來)資料速率來推導。作為示例,如果資料緩衝區大小很大(例如,發射時間大於與RF曝露極限相關聯的時間窗口),則發射器可以在峰值模式下操作(例如,本文關於圖5B所描述的),以實現處於平均功率位準(例如,P limit)的連續發射。如果資料緩衝區大小很小(例如,發射時間小於與RF曝露極限相關聯的時間窗口),則發射器可以在時間平均模式下操作(例如,本文關於圖5C所描述的),並且如果需要完成傳輸,則以最大功率發射,隨後是預留功率。
本文描述的用於確保RF曝露合規性的各種技術可以實現用於資料傳輸的期望發射功率和/或期望功耗。期望的發射功率可以提供期望的上行鏈路/側鏈路性能,諸如期望的資料速率、載波聚合和/或小區邊緣處的連接。
圖10A是示出根據本公開的某些方面的用於無線通信的示例操作1000A的流程圖。操作1000A可以例如由UE(例如,無線通信網路100中的UE 120a)來執行。操作1000A可以被實現為在一個或多個處理器(例如,圖2的控制器/處理器280)上執行和運行的軟體組件。此外,UE在操作1000中的信號傳輸可以例如由一個或多個天線(例如,圖2的天線252)來實現。在某些方面,UE對信號的發射和/或接收可以經由獲得和/或輸出信號的一個或多個處理器(例如,控制器/處理器280)的匯流排介面來實現。
操作1000A可以開始於方塊1002,在方塊1002,UE可以獲得用於到接收實體(例如,BS 110a或另一UE)的傳輸的資料以及與傳輸相關聯的無線電條件。在方塊1004,UE可以至少部分基於無線電條件來確定與資料相關聯的發射時間。在方塊1006,UE可以至少部分基於所確定的發射時間和RF曝露極限,以發射功率向接收實體發射指示資料的信號。在一些方面,方塊1004可以替代地或附加地包括基於無線電條件(或一個或多個其他條件)和/或資料從多個傳輸模式中選擇模式,並且方塊1006可以替代地包括至少部分基於所選擇的傳輸模式和RF曝露極限,以發射功率向接收實體發射指示資料的信號。在某些方面,可以基於應用或服務(諸如視頻呼叫、語音呼叫、實況視頻流、在線遊戲等)來選擇傳輸模式。例如,在視頻呼叫中,傳輸模式可以被選擇為一致地進行發射(諸如峰值模式或類似于本文關於圖11A至圖11C描述的峰值模式),而不管無線電條件或其他條件如何。
在某些方面,UE可以確定將會用於向接收實體發射資料的發射時間量,以便選擇傳輸模式(例如,時間平均模式或峰值模式)。發射時間的確定可以使用各種因子(諸如給定的發射功率、資料大小或緩衝區大小、以及資料速率)來推導,因子可以使用當前的無線電條件來推導。資料速率可以取決於各種因子或條件,諸如UE與接收實體之間的通道品質、UE與接收實體之間的路徑損耗、與到接收實體的傳輸相關聯的週期性和/或工作週期、調變和編碼方案(MCS)、編碼速率(例如,非冗餘的資料流的比例)、聚合分量載波的數量、MIMO層的數量、頻寬、子載波間隔、頻率範圍(例如,5G NR下的FR1或FR2)等。例如,高MCS(例如,256QAM)、高發射功率(例如,P max)、高工作週期、低路徑損耗和小資料大小可能導致相對較短的發射時間(例如,發射時間小於與RF曝露極限相關聯的時間窗口)。在一些方面,在方塊1002,可以利用處理器和/或數據機(諸如收發器254中的控制器280和/或數據機(調變器/解調器))來獲得無線電條件。
關於操作1000A,無線電條件可以包括以下至少一個:UE與接收實體之間的通道品質、與傳輸相關聯的MCS、與傳輸相關聯的編碼速率、與傳輸相關聯的聚合分量載波的數量、與傳輸相關聯的MIMO層的數量、頻寬、子載波間隔、與傳輸相關聯的頻率範圍、或者與到接收實體的傳輸相關聯的週期性。在一些方面,通道品質可以包括路徑損耗、通道品質指示、信噪比(SNR)、信號干擾雜訊比(SINR)、信號雜訊失真比(SNDR)、參考信號接收功率(RSRP)和/或接收信號強度指示(RSSI)。在一些方面,無線電條件可以對應于本文關於圖6至圖9B描述的無線網路樣式或基於這種樣式來確定。
無線電條件可以用於推導用於向接收實體發射資料的資料速率或通量。資料速率可以根據兆位元每秒(Mbps)來確定。例如,UE可以基於無線電條件來確定與向接收實體發射資料相關聯的資料速率,並且UE可以基於資料速率和與資料相關聯的大小來確定發射時間。在某些方面,UE可以使用3GPP標準(諸如技術規範38.306第4.1.2節)中規定的近似最大上行鏈路資料速率的公式來確定資料速率。
在某些方面,與資料相關聯的大小可以根據字節、位元或計算機/數位資訊的其他單位。與資料相關聯的大小可以對應于用於臨時儲存用於傳輸的資料的資料緩衝區大小。例如,UE可以至少部分基於與資料相關聯的緩衝區大小來確定發射時間。在一些方面,UE可以基於與資料相關聯的緩衝區大小(其可以被稱為“上傳資料緩衝區大小”)和根據無線電條件確定的資料速率來確定發射時間。在某些方面,代替在方塊1002獲得資料,UE可以獲得與資料相關聯的大小,並且UE可以基於資料速率和資料大小來確定與資料相關聯的發射時間。
在某些方面,可以針對各種發射功率(諸如瞬時功率極限(例如,圖5C中的P max)和平均功率(例如,圖5B中的P limit))確定發射時間。如本文所使用的,瞬時功率極限可以是指UE所支持的最大發射功率(諸如P max)或者高於平均功率的其他發射功率。平均功率可以是指峰值發射功率,該峰值發射功率可以在符合RF曝露極限的與RF曝露極限(諸如P limit)相關聯的時間窗口的持續時間內被維持。也就是說,平均功率可以是與RF曝露極限相對應的平均功率位準(例如,與規定要求和/或設備製造商設置對準,其基於規定要求但可以低於規定要求)。
作為示例,發射時間可以從與多個發射功率相關聯的多個發射時間中選擇,其中多個發射功率可以包括在方塊1006發射信號時的發射功率。多個發射時間可以包括與UE所支持的瞬時功率極限(例如,UE所支持的最大發射功率)相關聯的第一發射時間和與對應於RF曝露極限的平均功率相關聯的第二發射時間。在一些方面,第一發射時間可以是UE以瞬時功率極限(例如,P max)發射資料所花費的持續時間,而不管任何功率預留餘量和RF曝露合規性,並且第二發射時間可以是UE以平均功率(P limit)發射資料所花費的持續時間。
利用所確定的發射時間,UE可以選擇傳輸模式(諸如時間平均模式或峰值模式)以確保RF曝露符合RF曝露極限。作為示例,時間平均模式可以適用于短發射時間或突發流量,以使UE能夠以其最大功率(例如,P max)進行發射,同時仍然維持RF曝露合規性並在與RF曝露極限相關聯的時間窗口內預留發射功率餘量。峰值模式可以適合於具有相對較長傳輸持續時間的傳輸(例如,持續時間大於時間窗口的傳輸)。在某些情況下,發射器可以基於根據無線電條件(並且在一些情況下是根據上傳資料緩衝區大小)確定的發射時間,智慧地在時間平均模式與峰值模式之間進行切換。在一些方面,發射時間不是被明確地計算或確定的,但傳輸模式是使用本文討論的概念基於上述一個或多個(無線電)條件和用於傳輸的資料來確定或以其他方式選擇的。
在一些方面,在方塊1006,UE可以基於與在方塊1004確定的發射時間相關聯的各種閾值/條件(或以其他方式基於條件)來選擇用於發射信號的傳輸模式。例如,如果在方塊1004確定的處於P max的發射時間小於或等於突發發射時間,則在方塊1006,UE可以在時間平均模式下操作以發射信號,其中突發發射時間可以是指UE可以以P max進行發射並且具有足夠預留功率在與RF曝露極限相關聯的時間窗口內,以降低的發射功率繼續發射的最大持續時間。降低的發射功率可以處於足以維持與接收實體的連接的位準。突發發射時間可以是如圖5C所示的與P max相關聯的持續時間(或者多個突發的組合持續時間)。這裡,處於P max的發射時間和突發發射時間可以基於估計的(上行鏈路)傳輸工作週期(如本文所述)進行縮放,以用於處於P max的發射時間與突發發射時間之間的比較和/或用於與時間窗口進行比較。例如,如果傳輸工作週期足夠低,則按(1/工作週期)縮放的突發發射時間可以大於時間窗口,在這種情況下,對於這種低的傳輸工作週期,UE可以在時間平均模式下以P max進行連續發射,而時間平均曝露不超過P limit。類似地,如果P limit≥P max,則突發發射時間將大於時間窗口(例如,4、100或360秒),在這種情況下,UE在時間平均模式或峰值模式下的操作將允許UE以P max進行連續發射,並且時間平均發射功率將不會超過P limit
UE可以為給定的P max、P limit和/或P reserve確定峰值發射。如果在方塊1004確定的處於P limit的發射時間大於與RF曝露極限相關聯的時間窗口(例如,4、100或360秒),則在方塊1006,UE可以在峰值模式下操作以發射信號。如果在方塊1004確定的任何發射時間大於突發發射時間且小於與RF曝露極限相關聯的時間窗口,則在方塊1006,UE可以在時間平均模式下操作以發射信號。在這種情況下,UE可以以P max與P limit之間的功率位準發射信號,以在該功率位準提供更長的高功率持續時間,或者以P max和較低的P reserve進行發射以增加處於P max位準的高功率持續時間。換句話說,在方塊1006的發射功率可以在發射信號的同時進行調整(例如,增加或減少),以確保符合RF曝露極限。
關於操作1000A,如果在方塊1004確定的第一發射時間小於或等於與符合RF曝露極限的瞬時功率極限相關聯的突發發射時間,則在方塊1006的發射功率可以受到瞬時功率極限(例如,P max)的限制,其中突發發射時間小於與RF曝露極限相關聯的時間窗口。在一些方面,如果在方塊1004確定的第二發射時間大於或等於與RF曝露極限相關聯的時間窗口,則發射功率可以受到平均功率的限制。如果在方塊1004確定的與多個發射功率中的任何一個發射功率相關聯的發射時間小於或等於時間窗口並且大於或等於突發發射時間,則在方塊1006的發射功率可以小於或等於瞬時功率極限並且大於發射時間的第一部分的平均功率,並且在方塊1006的發射功率可以小於發射時間的第二部分的平均功率。
作為示例,關於操作1000A,如果在方塊1004確定的發射時間小於或等於突發發射時間,則在方塊1006的發射功率可以根據時間平均模式(例如本文關於圖5C描述的時間平均模式)來設置。如果在方塊1004確定的發射時間大於或等於與RF曝露極限相關聯的時間窗口,則在方塊1006的發射功率可以根據峰值模式(例如本文關於圖5B描述的峰值模式)來設置。如果在方塊1004確定的與多個發射功率中的任何一個發射功率相關聯的發射時間小於或等於時間窗口並且大於或等於突發發射時間,則在方塊1006的發射功率可以根據時間平均模式來設置,使得發射功率針對發射時間的第一部分小於或等於瞬時功率極限並且大於平均功率,並且方塊1006的發射功率針對發射時間的第二部分可以小於平均功率。
在某些方面,發射時間的確定可以在當前網路條件在到接收實體的整個傳輸期間保持相同的假設下確定。在行動性條件下(例如,當UE在無線網路內移動並向一個或多個接收實體進行發射時),UE可以使用各種模型來估計發射時間。例如,UE可以使用機器學習來預測/學習未來的網路/無線電條件(例如,從家到工作的路線),並且在方塊1004,UE可以使用預測的網路/無線電條件來計算發射時間和/或選擇傳輸模式,例如,以在選擇時間平均模式、峰值模式、它們的組合、或者一個或多個其他模式時做出決定。關於操作1000A,UE可以至少部分基於未來預測的無線電條件來確定在與UE相關聯的行動性條件下的發射時間。在一些方面,未來預測的無線電條件可以用機器學習、人工智慧、神經網路、回歸分析等來生成。在一些方面,針對整個資料傳輸選擇傳輸模式。在其他方面,可以針對將要發射資料的每個時間窗口選擇傳輸模式。例如,當在兩個時間窗口期間發射資料時,UE可以在兩個時間窗口的第一時間窗口期間選擇峰值模式並使用峰值模式發射資料的一部分,並且可以在兩個時間窗口的第二個時間窗口期間選擇時間平均模式並使用時間平均模式發射資料的剩餘部分。本領域的技術人員將理解,這些僅僅是示例,並且UE可以根據本文描述的概念進行其他選擇或其他選擇組合。
在一些方面,本文關於操作1000A和/或操作1000B描述的未來/當前的無線電條件、行動性條件、緩衝區大小或其他條件可以基於樣式來生成,例如,如上面針對圖6-圖9B描述的,樣式可以包括與過去的網路條件、用戶行為等相關聯的參數。在一些方面,可以預測資料或緩衝區大小、資料速率、發射時間等,或者可以基於樣式修改或修正與這些方面之一相關的確定值。因此,在方塊1004中確定發射時間或本文描述的任何其他操作可以基於當前或測量的值(例如,當前在緩衝區中的資料、測量的SNR等)和/或基於(例如基於機器學習、人工智慧和(多個)已知或確定的樣式等)預測的未來值(例如,很可能在時間窗口內在緩衝區中接收的附加資料、變化的網路條件等)。
在某些方面,RF曝露極限可以符合根據規定/標準機構(例如,美國的聯邦通信委員會(FCC);加拿大的創新、科學和經濟發展部(ISED);或歐盟(EU)所遵循的國際非電離輻射防護委員會(ICNIRP)標準)設置的極限。RF曝露極限可以包括各種頻率範圍的SAR極限和/或PD極限。RF曝露極限可以在特定時間窗口(諸如對於24 GHz與42 GHz之間的發射頻率為4秒,對於小於3 GHz的發射頻率為100秒,或者對於小於6 GHz的發射頻率為360秒)內隨時間變化進行平均。
圖10B是示出根據本公開的某些方面的用於無線通信的示例操作1000B的流程圖。操作1000B可以例如由UE(例如,無線通信網路100中的UE 120a)來執行。
操作1000B可以開始於方塊1008,在方塊1008中,UE可以基於用於從UE到接收實體(例如,BS 110和/或另一UE 120)的傳輸的資料以及與傳輸相關聯的一個或多個無線電條件,從多個傳輸模式中選擇傳輸模式(例如,時間平均模式和峰值模式)。資料和/或無線電條件可以是當前的和/或測量的,和/或未來的和/或(例如使用機器學習、人工智慧和/或與過去的行為和/或樣式相關聯的參數)預測的。在方塊1010,UE可以至少部分基於所選擇的傳輸模式和RF曝露極限,以發射功率向接收實體發射指示資料的信號。
在方塊1010(或1006),UE可以以高於RF曝露極限的平均功率的功率位準發射資料的至少一部分。在方塊1010(或1006),對於在其中資料的該部分被發射的時間窗口的至少一部分,UE可以以低於平均功率位準的預留功率位準(例如,預留功率P reserve)進行發射。在某些方面,例如,如本文進一步描述的,可以調整預留功率位準。
多個傳輸模式可以至少包括第一模式和第二模式,其中第一模式包括以高於RF曝露極限的平均功率以及低於該平均功率的位準的傳輸,並且第二模式包括以等於或低於該平均功率的位準的傳輸。換句話說,第一模式可以對應于本文關於圖5C描述的時間平均模式,並且第二模式可以對應于本文關於圖5B描述的峰值模式。
對於某些方面,例如,在執行操作600、操作1000A和/或操作1000B時,本文描述的用於確定發射功率的操作可以考慮或顧及傳輸工作週期。例如,P(t)處於P max的突發發射時間可以由傳輸工作週期來縮放。對於短工作週期,發射功率可以基於獨立於操作600、操作1000A和/或操作1000B的工作週期來確定,而對於長工作週期,發射功率可以根據操作600、操作1000A和/或操作1000B來確定。例如,如果工作週期使得無論發射時使用的功率如何都不會達到最大曝露(例如,因為發射功率為零的時間量將導致平均功率小於P limit),則即使當突發發射時間大於時間窗口時,UE也可以將發射時的功率設置為P max(例如,可以選擇時間平均模式)。
在某些方面,除了操作600、操作1000A和/或操作1000B之外,或者作為操作600、操作1000A和/或操作1000B的替代,UE可以基於一個或多個標準來調整預留功率(P reserve)。例如,在決定在操作1000A和/或操作1000B中是執行時間平均模式還是峰值模式之後,可以通過調整預留功率(諸如增加預留功率或降低預留功率到特定位準)來獲得特定的發射功率行為。用於調整預留功率的標準可以包括用於預測某些未來條件(例如,無線電條件、用戶行為、行動性條件等)和/或估計當前條件(例如,本文描述的樣式)的機器學習或人工智慧。該標準可以包括與傳輸相關聯的發射時間,例如,如本文關於操作1000A和/或操作1000B所描述的。該標準可以包括優選的發射功率行為或傳輸模式,諸如圖5B中描述的峰值模式。該標準可以包括本文描述的條件和/或樣式。
如果預留功率(P reserve)被設置為P limit,則傳輸將例如在單發射場景中執行類似於圖5B所示的峰值模式。如果預留功率增加,則P max的持續時間減少,並且預留功率的持續時間增加,這可以提供隨時間變化而一致的發射功率。在高邊,代替將預留功率設置為P limit,可以將預留功率設置為接近P limit(例如,P limit的95%),使得例如5%的能量可以用於處於P max的高功率突發。在某些情況下,在多發射場景中來自無線電裝置的任何未使用的預留功率可以被分配作為高功率突發餘量或附加餘量的一部分,以供其他無線電裝置使用。在一些方面,預留功率可以根據某些狀態(諸如高(例如,P limit的95%)、常規(例如,P limit的80%)和低(例如,P limit的10%))來定義和選擇。
在某些方面,例如,如本文關於圖6所述,可以在多發射場景中調整預留功率。例如,假設第一無線電裝置請求第一預留功率,並且第二無線電裝置請求第二預留功率。如果在考慮第一預留功率和第二預留功率之後有預留功率可用,則可以增加在第一無線電裝置與第二無線電裝置之間共享的總預留功率。例如,剩餘預留功率(P delta)可以根據以下表達式來確定:
Figure 02_image065
(17) 其中P reserve_high可以被設置為小於或等於P limit的特定功率位準(例如,P limit的95%),並且P reserve_radios等於為每個無線電這種選擇的預留功率之和(例如,用於第一無線電裝置的第一預留功率和用於第二無線電裝置的第二預留功率之和)。由於在多發射場景中的無線電裝置之間P limit值可能不同,所以表達式(17)可以通過相對於每個無線電裝置的P limit歸一化所有量來執行。例如,P reserve_high將被歸一化的reserve_high(例如,=0.95)替換,P reserve_radios將被歸一化的reserve_radios(例如,為每個活動無線電裝置選擇的預留功率之和,諸如0.90 = P reserve1/P limit1+ P reserve2/P limit2+ … + P reserveN/P limitN)替換,並且P delta將被歸一化的delta(例如,0.05)替換。剩餘的預留功率(P delta)可以在無線電裝置之間進行分配,以增加用於相應無線電裝置的預留功率。例如,用於第一無線電裝置的第一預留功率可以增加P delta的一部分,並且第二預留功率可以增加P delta的剩餘部分。可以使用因子來確定P delta的分段,諸如1/(N個無線電裝置)。在某些方面,例如,基於用於無線電裝置的應用或服務,可以在無線電裝置之間不同地分割預留功率。
圖11A至圖11C是根據本公開的某些方面的隨時間變化的發射功率(P(t))的坐標圖1100A-1100C,其示出了使用動態預留功率的時間平均模式。參考圖11A,預留功率(P reserve)可以被設置為零或無,使得在時間窗口(T)中獲得P max的最長持續時間。參考圖11B,預留功率(P reserve)可以被設置為小於預留功率的某個值(例如,P reserve_reg)的功率位準。參考圖11C,預留功率(P reserve)可以被設置為高於預留功率的某個值(例如,P reserve_reg)的功率位準。
操作1000B的各個方面可以應用於操作1000A,反之亦然。例如,UE可以基於從無線電條件、資料大小、資料速率和/或特定發射功率推導出的(多個)確定的發射時間(如本文關於方塊1004所述),在方塊1008執行選擇。在方塊1006(或1010),UE可以基於與方塊1008相關聯的所選擇的傳輸模式來發射信號。在某些方面,用於操作1000A和/或操作1000B的發射功率可以結合另一種演算法來設置,諸如本文關於圖7A至圖9B描述的操作,或者獨立於另一種演算法來執行。在一些這種示例中,由於應用了關於圖7A-圖9B描述的演算法,發射功率可以被設置為低於在操作1000A或1000B中確定的發射功率。
雖然在本文中關於基於估計的發射時間在時間平均模式或峰值模式之間進行選擇描述了本公開的各個方面以便於理解,但是本公開的各方面也可以應用於基於估計的發射時間和/或一個或多個(無線電)條件來選擇其他傳輸模式,諸如簡單的時間平均模式或時間平均模式和峰值模式的組合。在一些示例中,可以(例如,在方塊604、1004、1008)選擇或確定模式和/或發射功率,以便最大化發射設備(例如,UE)以等於或高於P limit進行發射的時間量(或者以等於或高於P limit進行發射的功率量)。例如,如果時間窗口內的一個或幾個突發將足以發射資料,則UE可以確定發射高於P limit的(多個)突發,因為將存在發射功率不管怎樣將會為零的某個時間期間(諸如當UE完成發射所有資料時),並且高於P limit的發射增加或最大化了等於或高於P limit的發射功率。作為另一示例,如果發射突發將使得UE稍後將發射功率降低到低於P limit(例如,P reserve),則UE可以確定改為以P limit發射所有資料,使得稍後不需要花費時間以低於P limit進行發射。
雖然圖1至圖11C中描繪的示例在本文中是關於UE執行用於提供RF曝露合規性的各種方法來描述的以便於理解,但是本公開的各方面也可以應用于執行在本文描述的RF曝露合規性的其他無線通信設備(無線設備),諸如基站和/或CPE。此外,例如,雖然示例是關於UE(或其他無線設備)與網路實體之間的通信來描述的,但是UE或其他無線設備可以與除網路實體之外的設備(例如另一UE或用戶家中不是網路實體的另一設備)進行通信。
圖12示出了可以包括被配置為執行用於本文公開的技術的操作(諸如圖6、10A和/或10B中示出的操作)的各種組件(例如,對應於構件加功能組件)的通信設備1200(例如,UE 120)。通信設備1200包括耦合到收發器1208(例如,發射器和/或接收器)的處理系統1202。收發器1208被配置為經由天線1210為通信設備1200發射和接收信號,諸如本文描述的各種信號。處理系統1202可以被配置為對通信設備1200執行處理功能,包括處理由通信設備1200接收的信號和/或要由其發射的信號。
處理系統1202包括經由匯流排1206耦合到計算機可讀媒體/記憶體1212的處理器1204。在某些方面,計算機可讀媒體/記憶體1212被配置為儲存指令(例如,計算機可執行代碼),該指令在由處理器1204執行時使得處理器1204執行圖6、圖10A和/或圖10B所示的操作,或者用於執行本文討論的用於提供RF曝露合規性的各種技術的其他操作。在某些方面,計算機可讀媒體/記憶體1212儲存用於獲得的代碼1214、用於確定或選擇(或者分配或生成)的代碼1216、用於發射的代碼1218、用於選擇的代碼1220、用於調整的代碼1222、用於分配的代碼1224和/或用於生成的代碼1226。在某些方面,處理系統1202具有被配置為實現儲存在計算機可讀媒體/記憶體1212中的代碼的電路1228。在某些方面,電路1228經由匯流排1206耦合到處理器1204和/或計算機可讀媒體/記憶體1212。例如,電路1228包括用於獲得的電路系統1230、用於確定或選擇(或者分配或生成)的電路系統1232、用於發射的電路系統1234、用於選擇的電路系統1236、用於調整的電路系統1238、用於分配的電路系統1240和/或用於生成的電路系統1242。
通信設備1200的各種組件可以提供用於執行本文描述(包括關於圖6至圖10B描述)的方法的構件。
在一些示例中,用於發射或發送的構件(或用於輸出以進行傳輸的構件)可以包括圖2所示的UE 120的收發器254和/或(多個)天線252和/或圖12所示的通信設備1200的收發器1208和天線1210。
在一些示例中,用於接收的構件(或用於獲得的構件)可以包括圖2所示的UE 120的收發器254和/或(多個)天線252和/或圖12所示的通信設備1200的收發器1208和天線1210。
在一些示例中,用於獲得的構件、用於確定的構件、用於選擇的構件、用於調整的構件和/或用於生成的構件可以包括各種處理系統組件,例如:圖12中的一個或多個處理器1204,或者圖2中描繪的UE 120的各方面,包括接收處理器258、發射處理器264、TX MIMO處理器266和/或控制器/處理器280(包括RF曝露管理器281)。
示例方面
除了上面描述的各個方面之外,各方面的特定組合也在本公開的範圍內,其中一些在下面詳細描述:
方面1:一種由用戶設備(UE)進行無線通信的方法,包括:獲得與一個或多個第一傳輸相關聯的樣式;至少部分基於樣式和射頻(RF)曝露極限來確定用於一個或多個第二傳輸的發射功率;以及以所確定的發射功率發射一個或多個第二傳輸。
方面2:根據方面1所述的方法,其中樣式包括以下至少一項:發射功率樣式;天線使用樣式;用戶行為樣式;傳輸類型;優先級樣式;應用樣式;應用類型;無線網路樣式;或者感測器資訊。
方面3:根據方面2所述的方法,其中發射功率樣式包括在與RF曝露極限相關聯的一個或多個時間窗口內的一個或多個發射功率。
方面4:根據方面2或3所述的方法,其中當UE切換到不同的傳輸天線時,天線使用樣式包括隨時間變化的指示。
方面5:根據方面2所述的方法,其中天線使用樣式包括多個無線電裝置中的每個無線電裝置的使用樣式。
方面6:根據方面2所述的方法,其中確定發射功率包括:基於多個無線電裝置中的每個無線電裝置的使用樣式來確定總可用RF曝露餘量;基於總可用RF曝露餘量向每個無線電裝置分配RF曝露餘量;基於每個其他無線電裝置的使用樣式來確定無線電裝置之一的發射功率上限;以及至少部分基於發射功率上限和分配給無線電裝置之一的RF曝露餘量來確定用於一個或多個第二傳輸的發射功率。
方面7:根據方面2所述的方法,其中確定發射功率包括:基於無線電裝置的使用樣式來確定該無線電裝置的發射功率上限;以及至少部分基於發射功率上限來確定用於一個或多個第二傳輸的發射功率。
方面8:根據方面7所述的方法,其中發射功率上限小於UE所支持的最大發射功率並且大於與RF曝露極限相關聯的平均功率極限。
方面9:根據方面6所述的方法,其中多個無線電裝置中的每個無線電裝置的使用樣式包括與相應無線電裝置相關聯的過去時間間隔中的平均發射功率。
方面10:根據方面6所述的方法,其中確定總可用RF曝露餘量包括:確定最大可用使用與無線電裝置的使用樣式之和之間的差。
方面11:根據方面10所述的方法,其中分配RF曝露餘量包括:向每個無線電裝置分配某一比例的總可用RF曝露餘量,作為相應無線電裝置的RF曝露餘量。
方面12:根據方面11所述的方法,其中分配該比例的總可用RF曝露餘量包括:至少部分基於與至少一個無線電裝置相關聯的優先級向每個無線電裝置分配該比例的總可用RF曝露餘量。
方面13:根據方面12所述的方法,其中總可用RF曝露餘量的優先級或比例中的至少一項與關聯於至少一個無線電裝置的頻帶、應用、服務、網路條件或曝露場景中的至少一項相關聯。
方面14:根據方面10所述的方法,其中確定發射功率上限包括:確定最大可用使用與每個其他無線電裝置的使用樣式之和之間的差。
方面15:根據方面6所述的方法,其中確定發射功率包括確定發射功率以使得發射功率小於或等於發射功率上限和分配給無線電裝置之一的RF曝露餘量中的最小值。
方面16:根據方面6所述的方法,其中確定發射功率包括:響應於無線電裝置的使用樣式的變化來調整發射功率上限。
方面17:根據方面7所述的方法,其中確定發射功率包括:響應於無線電裝置的使用樣式的變化來調整發射功率上限。
方面18:根據方面16所述的方法,其中調整發射功率上限包括:響應于與無線電裝置相關聯的發射場景的變化來調整發射功率上限。
方面19:根據方面16所述的方法,其中調整發射功率上限包括:至少部分基於流量模型來調整發射功率上限。
方面20:根據方面6或7所述的方法,其中發射一個或多個第二傳輸包括:在與RF曝露極限相關聯的時間窗口的第一部分內以發射功率上限發射一個或多個第二傳輸,並且在時間窗口的第二部分內以小於發射功率上限的另一發射功率發射一個或多個第二傳輸。
方面16:根據方面2-15中任一方面所述的方法,其中用戶行為樣式包括與用戶何時使用UE進行無線通信相關聯的一個或多個時間。
方面17:根據方面2-16中任一方面所述的方法,其中應用樣式包括與一個或多個應用相關聯的一個或多個發射時間或一個或多個發射功率中的至少一項。
方面18:根據方面2-17中任一方面所述的方法,其中應用類型指示生成用於傳輸的資料的應用的類型。
方面19:根據方面18所述的方法,其中確定發射功率包括:確定一個或多個第二傳輸的應用類型;以及基於優先於其他應用類型的應用類型來確定發射功率。
方面20:根據方面2-19中任一方面所述的方法,其中無線網路樣式包括以下至少一項:UE與接收實體之間的通道品質;與一個或多個第一傳輸相關聯的調變和編碼方案(MCS);與一個或多個第一傳輸相關聯的編碼速率;與一個或多個第一傳輸相關聯的週期性;與一個或多個第一傳輸相關聯的工作週期;或者對UE在一個或多個第一傳輸期間的移動性的指示。
方面21:根據方面2-20中任一方面所述的方法,其中感測器資訊樣式包括以下至少一項:對UE與非人類對象的接近的指示、對UE處於自由空間的指示、對用戶使用場景的指示、對UE的使用狀態的指示、或者對UE處何時發生天線切換的指示。
方面22:根據方面21所述的方法,其中用戶使用場景指示UE與用戶的哪個身體部位接近。
方面23:根據方面1-22中任一方面所述的方法,其中確定發射功率包括:至少部分基於樣式利用機器學習來確定發射功率。
方面24:根據方面23所述的方法,其中確定發射功率包括:利用機器學習生成即將到來的用戶行為;以及基於即將到來的用戶行為和當前網路條件來確定發射功率。
方面25:根據方面23所述的方法,其中確定發射功率包括:利用機器學習生成即將到來的網路條件;以及基於當前用戶行為和即將到來的網路條件來確定發射功率。
方面26:根據方面23所述的方法,其中確定發射功率包括:利用機器學習生成即將到來的網路條件和即將到來的用戶行為;以及基於即將到來的網路條件和即將到來的用戶行為來確定發射功率。
方面27:根據方面1-26中任一方面所述的方法,其中確定發射功率包括:將樣式與關聯於一個或多個第二傳輸的發射時間相關聯;將發射時間與關聯於RF曝露極限的時間窗口進行比較;以及基於該比較來確定發射功率。
方面28:根據方面1-27中任一方面所述的方法,其中RF曝露極限包括特定吸收率(SAR)極限、功率密度(PD)極限或其組合。
方面29:根據方面1-28中任一方面所述的方法,其中一個或多個第一傳輸中的至少一個第一傳輸發生在用於基於RF曝露極限確定發射功率的當前時間窗口之前的時間。
方面30:根據方面1-29中任一方面所述的方法,其中該確定包括:當樣式指示RF曝露餘量可能可用時,將發射功率確定為高於平均功率位準的功率,否則將發射功率確定為平均功率位準。
方面31:根據方面30所述的方法,其中將發射功率確定為高於平均功率位準的功率還包括:確定網路條件指示更高的發射功率將是有益的,或者確定正在發射高優先級資訊。
方面32:根據方面1-31中任一方面所述的方法,其中該確定包括:將儲存在發射緩衝區中的資料與基於樣式而預測的使用進行比較,或者將用於發射資料緩衝區中的資料的發射功率與基於樣式而預測的發射功率進行比較。
方面34:一種用於無線通信的裝置,包括:記憶體;處理器,耦合到記憶體,處理器和記憶體被配置為:獲得與一個或多個第一傳輸相關聯的樣式,並且至少部分基於樣式和RF曝露極限來確定用於一個或多個第二傳輸的發射功率;以及發射器,被配置為以所確定的發射功率發射一個或多個第二傳輸。
方面35:根據方面34所述的裝置,該裝置被配置為執行方面1至32中的任一方面。
方面36:一種用於無線通信的裝置,包括:用於獲得與一個或多個第一傳輸相關聯的樣式的構件;用於至少部分基於樣式和RF曝露極限來確定用於一個或多個第二傳輸的發射功率的構件;以及用於以所確定的發射功率發射一個或多個第二傳輸的構件。
方面37:根據方面36所述的裝置,該裝置包括用於執行方面1至32中任一方面的構件。
方面38:一種其上儲存有指令的計算機可讀媒體,該指令用於:獲得與一個或多個第一傳輸相關聯的樣式;至少部分基於樣式和RF曝露極限來確定用於一個或多個第二傳輸的發射功率;以及以所確定的發射功率發射一個或多個第二傳輸。
方面39:根據方面38所述的計算機可讀媒體,該計算機可讀媒體在其上儲存有用於執行方面1至32中任一方面的指令。
除了上面描述的各個方面之外,各方面的特定組合也在本公開的範圍內,其中一些在下面詳細描述:
方面1:一種用於無線通信的裝置,包括:記憶體;以及處理器,耦合到記憶體,處理器和記憶體被配置為:獲得與一個或多個第一傳輸相關聯的樣式,至少部分基於樣式和射頻(RF)曝露極限來確定用於一個或多個第二傳輸的發射功率,並且以所確定的發射功率發射一個或多個第二傳輸。
方面2:根據方面1所述的裝置,其中樣式包括以下至少一項:發射功率樣式;天線使用樣式;用戶行為樣式;傳輸類型;優先級樣式;應用樣式;應用類型;無線網路樣式;或者感測器資訊。
方面3:根據方面1或2所述的裝置,其中處理器和記憶體還被配置為:確定第一發射功率;至少部分基於時間間隔內的平均發射功率來確定第二發射功率;選擇作為第一發射功率和第二發射功率中的最小值的第三發射功率;以及確定用於一個或多個第二傳輸的發射功率,使得該發射功率小於或等於第三發射功率。
方面4:根據方面3所述的裝置,其中第二發射功率至少部分基於過去時間間隔中的歸一化平均發射功率的倒數。
方面5:根據方面1-4中任一方面所述的裝置,其中處理器和記憶體還被配置為:確定用於多個無線電裝置中的每個無線電裝置的第一發射功率;確定用於多個無線電裝置中的每個無線電裝置的第二發射功率,其中第二發射功率至少部分基於在時間間隔內用於相應無線電裝置的歸一化平均發射功率;選擇用於多個無線電裝置中的每個無線電裝置的、作為用於相應無線電裝置的第一發射功率和第二發射功率中的最小值的第三發射功率;以及確定用於一個或多個第二傳輸的發射功率,使得用於多個無線電裝置中的每個無線電裝置的發射功率小於或等於用於相應無線電裝置的第三發射功率。
方面6:根據方面5所述的裝置,其中處理器和記憶體還被配置為:至少部分基於以下兩項之間的乘積來確定第四發射功率:對應於相應無線電裝置的RF曝露極限的最大平均功率,與用於多個無線電裝置的歸一化平均發射功率和單位值中的最小值之和的倒數,其中第四發射功率還基於用於相應無線電裝置的歸一化平均發射功率與用於多個無線電裝置的歸一化平均發射功率的總和之間的比例;確定第五發射功率,第五發射功率是與RF曝露極限相對應的最大平均功率除以多個無線電裝置的數量;以及基於第四發射功率和第五發射功率中的最大值來選擇第二發射功率。
方面7:根據方面5或6所述的裝置,其中處理器和記憶體還被配置為:至少部分基於與RF曝露極限相對應的時間窗口內的平均功率來調整歸一化平均發射功率的時間間隔;以及選擇隨著過去時間窗口內的平均發射功率變化的、第一時間間隔和第二時間間隔當中的最大值作為時間間隔,其中第一時間間隔和第二時間間隔取決於一個或多個第二傳輸的傳輸頻率。
方面8:根據方面5-7中任一方面所述的裝置,其中處理器和記憶體還被配置為至少部分基於一個或多個當前網路條件來調整歸一化平均發射功率的時間間隔。
方面9:根據方面1-8中任一方面所述的裝置,其中處理器和記憶體還被配置為:確定第一發射功率;對第一發射功率應用限額以確定第二發射功率;以及確定用於一個或多個第二傳輸的發射功率,使得該發射功率小於或等於第二發射功率。
方面10:根據方面1-9中任一方面所述的裝置,其中處理器和記憶體還被配置為:至少部分基於過去時間窗口中的時間平均RF曝露來確定用於一個或多個第二傳輸的第一發射功率;至少部分基於在時間間隔內的用於無線電裝置的歸一化平均發射功率來確定第二發射功率;確定第三發射功率,第三發射功率是與RF曝露極限相對應的最大平均功率;選擇作為用於無線電裝置的第一發射功率和第二發射功率中的最小值的第四發射功率;選擇作為用於無線電裝置的第一發射功率和第三發射功率中的最小值的第五發射功率;從第一發射功率、第四發射功率和第五發射功率中選擇第六發射功率;以及確定用於一個或多個第二傳輸的發射功率,使得該發射功率小於或等於用於無線電裝置的第六發射功率。
方面11:根據方面1-10中任一方面所述的裝置,其中處理器和記憶體還被配置為:確定用於多個無線電裝置中的每個無線電裝置的第一發射功率,其中第一發射功率至少部分基於過去時間窗口中的時間平均RF曝露;確定用於多個無線電裝置中的每個無線電裝置的第二發射功率,其中第二發射功率至少部分基於在時間間隔內的用於相應無線電裝置的歸一化平均發射功率;確定用於多個無線電裝置中的每個無線電裝置的第三發射功率,其中第三發射功率是與RF曝露極限相對應的最大平均功率除以多個無線電裝置的數量;選擇用於多個無線電裝置中的每個無線電裝置的、作為用於相應無線電裝置的第一發射功率和第二發射功率中的最小值的第四發射功率;選擇用於多個無線電裝置中的每個無線電裝置的、作為用於相應無線電裝置的第一發射功率和第三發射功率中的最小值的第五發射功率;從用於相應無線電裝置的第一發射功率、第四發射功率和第五發射功率當中選擇用於多個無線電裝置中的每個無線電裝置的第六發射功率;以及確定用於一個或多個第二傳輸的發射功率,使得用於多個無線電裝置中的每個無線電裝置的發射功率小於或等於用於相應無線電裝置的第六發射功率。
方面12:根據方面2-11中任一方面所述的裝置,其中處理器和記憶體還被配置為:基於多個無線電裝置中的每個無線電裝置的使用樣式來確定總可用RF曝露餘量;基於總可用RF曝露餘量向每個無線電裝置分配RF曝露餘量;基於其他無線電裝置中的每個其他無線電裝置的使用樣式來確定無線電裝置之一的發射功率上限;以及至少部分基於發射功率上限和分配給無線電裝置之一的RF曝露餘量來確定用於一個或多個第二傳輸的發射功率。
方面13:根據方面2-12中任一方面所述的裝置,其中處理器和記憶體還被配置為:基於無線電裝置的使用樣式來確定無線電裝置的發射功率上限;以及至少部分基於發射功率上限來確定用於一個或多個第二傳輸的發射功率,其中發射功率上限小於裝置所支持的最大發射功率並且大於與RF曝露極限相關聯的平均功率極限。
方面14:根據方面12或13所述的裝置,其中多個無線電裝置中的每個無線電裝置的使用樣式包括與相應無線電裝置相關聯的過去時間間隔中的平均發射功率。
方面15:根據方面12-14中任一方面所述的裝置,其中處理器和記憶體還被配置為:確定無線電裝置的使用樣式之和與最大可用使用的差作為總可用RF曝露餘量。
方面16:根據方面15所述的裝置,其中處理器和記憶體還被配置為:將某一比例的總可用RF曝露餘量分配給每個無線電裝置,作為相應無線電裝置的RF曝露餘量;至少部分基於與至少一個無線電裝置相關聯的優先級,向每個無線電裝置分配該比例的總可用RF曝露餘量;並且確定其他無線電裝置中的每個其他無線電裝置的使用樣式之和與最大可用使用的差作為發射功率上限。
方面17:根據方面16所述的裝置,其中總可用RF曝露餘量的優先級或比例中的至少一項與關聯於至少一個無線電裝置的頻帶、應用、服務、網路條件或曝露場景中的至少一項相關聯。
方面18:根據方面12-17中任一方面所述的裝置,其中處理器和記憶體還被配置為:確定發射功率,使得該發射功率小於或等於發射功率上限和分配給無線電裝置之一的RF曝露餘量中的最小值。
方面19:根據方面12-18中任一方面所述的裝置,其中處理器和記憶體還被配置為:響應於無線電裝置的使用樣式的變化來調整發射功率上限。
方面20:根據方面2-19中任一方面所述的裝置,其中處理器和記憶體還被配置為:確定一個或多個第二傳輸的應用類型;以及基於優先於其他應用類型的應用類型來確定發射功率。
方面21:根據方面1-20中任一方面所述的裝置,其中處理器和記憶體還被配置為:至少部分基於樣式利用機器學習來確定發射功率。
方面22:根據方面21所述的裝置,其中,處理器和記憶體還被配置為:利用機器學習生成即將到來的用戶行為或即將到來的網路條件中的至少一項;並且基於即將到來的用戶行為、當前用戶行為、即將到來的網路條件或當前網路條件中的至少一項來確定發射功率。
方面23:根據方面1-22中任一方面所述的裝置,其中處理器和記憶體還被配置為:將樣式與關聯於一個或多個第二傳輸的發射時間相關聯;將發射時間與關聯於RF曝露極限的時間窗口進行比較;並且基於該比較來確定發射功率。
方面24:根據方面2-23中任一方面所述的裝置,其中:發射功率樣式包括與RF曝露極限相關聯的一個或多個時間窗口內的一個或多個發射功率;天線使用樣式包括多個無線電裝置中的每個無線電裝置的使用樣式;用戶行為樣式包括與用戶何時使用裝置進行無線通信相關聯的一個或多個時間;應用樣式包括與一個或多個應用相關聯的一個或多個發射時間或一個或多個發射功率中的至少一項;應用類型指示生成用於傳輸的資料的應用的種類;無線網路樣式包括以下至少一項:裝置與接收實體之間的通道品質;與一個或多個第一傳輸相關聯的調變和編碼方案(MCS);與一個或多個第一傳輸相關聯的編碼速率;與一個或多個第一傳輸相關聯的週期性;與一個或多個第一傳輸相關聯的工作週期;或者對裝置在一個或多個第一傳輸期間的移動性的指示;感測器資訊包括以下至少一項:對裝置與非人類對象的接近的指示、對裝置處於自由空間的指示、對用戶使用場景的指示、對裝置的使用狀態的指示、或者對在裝置處何時發生天線切換的指示;並且用戶使用場景指示裝置接近用戶的哪個身體部位。
方面25:根據方面1-24中任一方面所述的裝置,其中RF曝露極限包括特定吸收率(SAR)極限、功率密度(PD)極限或其組合。
方面26:一種由無線設備進行無線通信的方法,包括:獲得與一個或多個第一傳輸相關聯的樣式;至少部分基於樣式和射頻(RF)曝露極限來確定用於一個或多個第二傳輸的發射功率;以及以所確定的發射功率發射一個或多個第二傳輸。
方面27:根據方面26所述的方法,其中樣式包括以下至少一項:發射功率樣式;天線使用樣式;用戶行為樣式;傳輸類型;優先級樣式;應用樣式;應用類型;無線網路樣式;或者感測器資訊。
方面28:根據方面26或27所述的方法,其中確定發射功率包括:確定用於多個無線電裝置中的每個無線電裝置的第一發射功率;確定用於多個無線電裝置中的每個無線電裝置的第二發射功率,其中第二發射功率至少部分基於在時間間隔內的用於相應無線電裝置的歸一化平均發射功率;選擇用於多個無線電裝置中的每個無線電裝置的、作為用於相應無線電裝置的第一發射功率和第二發射功率中的最小值的第三發射功率;以及確定用於一個或多個第二傳輸的發射功率,使得用於多個無線電裝置中的每個無線電裝置的發射功率小於或等於用於相應無線電裝置的第三發射功率。
方面29:根據方面27或28所述的方法,其中確定發射功率包括:基於多個無線電裝置中的每個無線電裝置的使用樣式來確定總可用RF曝露餘量;基於總可用RF曝露餘量向每個無線電裝置分配RF曝露餘量;基於其他無線電裝置中的每個無線電裝置的使用樣式來確定無線電裝置之一的發射功率上限;以及至少部分基於發射功率上限和分配給無線電裝置之一的RF曝露餘量來確定用於一個或多個第二傳輸的發射功率。
方面30:根據方面27-29中任一方面所述的方法,其中確定發射功率包括:基於無線電裝置的使用樣式來確定無線電裝置的發射功率上限;以及至少部分基於發射功率上限來確定用於一個或多個第二傳輸的發射功率,其中發射功率上限小於無線設備所支持的最大發射功率並且大於與RF曝露極限相關聯的平均功率極限。
方面31:一種用於無線通信的裝置,包括:記憶體;以及處理器,耦合到記憶體,處理器和記憶體被配置為:獲得用於到接收實體的傳輸的資料和與傳輸相關聯的無線電條件,至少部分基於無線電條件來確定與資料相關聯的發射時間,以及至少部分基於所確定的發射時間和射頻(RF)曝露極限,以發射功率向接收實體發射指示資料的信號。
方面32:根據方面31所述的裝置,其中:發射時間是從與多個發射功率相關聯的多個發射時間中選擇的;並且多個發射功率包括發射信號的發射功率。
方面33:根據方面32所述的裝置,其中多個發射時間包括與由裝置支持的瞬時功率極限相關聯的第一發射時間和與對應於RF曝露極限的平均功率相關聯的第二發射時間。
方面34:根據方面33所述的裝置,其中:如果第一發射時間小於或等於與符合RF曝露極限的瞬時功率極限相關聯的突發發射時間,則發射功率受到瞬時功率極限的限制,其中突發發射時間小於與RF曝露極限相關聯的時間窗口;如果第二發射時間大於或等於與RF曝露極限相關聯的時間窗口,則發射功率受到平均功率的限制;並且如果與多個發射功率中的任何一個發射功率相關聯的發射時間小於或等於時間窗口並且大於或等於突發發射時間,則發射功率針對發射時間的第一部分小於或等於瞬時功率極限並且大於平均功率,並且發射功率針對發射時間的第二部分小於平均功率。
方面35:根據方面33或34所述的裝置,其中:如果發射時間小於或等於與符合RF曝露極限的瞬時功率極限相關聯的突發發射時間,則發射功率根據時間平均模式來設置,其中突發發射時間小於與RF曝露極限相關聯的時間窗口;如果發射時間大於或等於與RF曝露極限相關聯的時間窗口,則發射功率根據峰值模式來設置;並且如果與多個發射功率中的任何一個發射功率相關聯的發射時間小於或等於時間窗口並且大於或等於突發發射時間,則發射功率根據時間平均模式來設置,使得發射功率針對發射時間的第一部分小於或等於瞬時功率極限並且大於平均功率,並且發射功率針對發射時間的第二部分小於平均功率。
方面36:根據方面31-35中任一方面所述的裝置,其中無線電裝置條件包括以下至少一項:裝置與接收實體之間的通道品質;與傳輸相關聯的調變和編碼方案(MCS);與傳輸相關聯的編碼速率;或者與到接收實體的傳輸相關聯的週期性。
方面37:根據方面31-36中任一方面所述的裝置,其中處理器和記憶體還被配置為:基於無線電條件確定與向接收實體發射資料相關聯的資料速率;並且基於資料速率和與資料相關聯的大小來確定發射時間。
方面38:根據方面31-37中任一方面所述的裝置,其中處理器和記憶體還被配置為至少部分基於未來預測的無線電條件來確定在與裝置相關聯的移動性條件下的發射時間。
方面39:根據方面38所述的裝置,其中,處理器和記憶體還被配置為利用機器學習來生成未來預測的無線電條件。
方面40:根據方面31-39中任一方面所述的裝置,其中處理器和記憶體還被配置為至少部分基於與資料相關聯的緩衝區大小來確定發射時間。
方面41:根據方面31-40中任一方面所述的裝置,其中處理器和記憶體被配置為基於與第一時間窗口相關聯的樣式來確定無線電條件,其中第一時間窗口與關聯於RF曝露極限的第二時間窗口是分開的。
方面42:一種用於無線通信的裝置,包括:記憶體;以及處理器,耦合到記憶體,處理器和記憶體還被配置為:基於用於從裝置到接收實體的傳輸的資料和與傳輸相關聯的一個或多個無線電條件,從多個傳輸模式中選擇傳輸模式,並且至少部分基於所選擇的傳輸模式和射頻(RF)曝露極限,以發射功率向接收實體發射指示資料的信號。
方面43:根據方面42所述的裝置,其中處理器和記憶體還被配置為以高於RF曝露極限的平均功率位準的功率位準發射資料的至少一部分。
方面44:根據方面43所述的裝置,其中處理器和記憶體被配置為基於傳輸的工作週期,在與RF曝露極限相關聯的時間窗口期間,以高於RF曝露極限的平均功率位準的功率位準進行發射。
方面45:根據方面43或44所述的裝置,其中處理器和記憶體還被配置為在發射資料的該部分的時間窗口的至少一部分內,以低於平均功率位準的預留功率位準進行發射。
方面46:根據方面45所述的裝置,其中處理器和記憶體還被配置為調整預留功率位準。
方面47:根據方面42-46中任一方面所述的裝置,其中:多個傳輸模式至少包括第一模式和第二模式,第一模式包括以高於RF曝露極限的平均功率位準以及低於平均功率位準的功率位準的傳輸,並且第二模式包括以等於或低於平均功率位準的功率位準的傳輸;並且一個或多個無線電條件包括以下至少一項:裝置與接收實體之間的通道品質;與傳輸相關聯的調變和編碼方案(MCS);與傳輸相關聯的編碼速率;或者與到接收實體的傳輸相關聯的週期性。
方面48:一種由無線設備進行無線通信的方法,包括:獲得用於到接收實體的傳輸的資料以及與傳輸相關聯的無線電條件;至少部分基於無線電條件來確定與資料相關聯的發射時間;以及至少部分基於所確定的發射時間和射頻(RF)曝露極限,以發射功率向接收實體發射指示資料的信號。
方面49:根據方面48所述的方法,其中:發射時間是從與多個發射功率相關聯的多個發射時間中選擇的;並且多個發射功率包括信號以其被發射的發射功率,其中多個發射時間包括與由無線設備支持的瞬時功率極限相關聯的第一發射時間和與對應於RF曝露極限的平均功率相關聯的第二發射時間。
方面50:根據方面49所述的方法,其中:如果第一發射時間小於或等於與符合RF曝露極限的瞬時功率極限相關聯的突發發射時間,則發射功率受到瞬時功率極限的限制,其中突發發射時間小於與RF曝露極限相關聯的時間窗口;如果第二發射時間大於或等於與RF曝露極限相關的時間窗口,則發射功率受到平均功率的限制;並且如果與多個發射功率中的任何一個發射功率相關聯的發射時間小於或等於時間窗口並且大於或等於突發發射時間,則發射功率針對發射時間的第一部分小於或等於瞬時功率極限並且大於平均功率,並且發射功率針對發射時間的第二部分小於平均功率。
方面51:根據方面49或50中任一方面所述的方法,其中:如果發射時間小於或等於與符合RF曝露極限的瞬時功率極限相關聯的突發發射時間,則發射功率根據時間平均模式來設置,突發發射時間小於與RF曝露極限相關聯的時間窗口;如果發射時間大於或等於與RF曝露極限相關聯的時間窗口,則發射功率根據峰值模式來設置;並且如果與多個發射功率中的任何一個發射功率相關聯的發射時間小於或等於時間窗口並且大於或等於突發發射時間,則發射功率根據時間平均模式來設置,使得發射功率針對發射時間的第一部分小於或等於瞬時功率極限並且大於平均功率,並且發射功率針對發射時間的第二部分小於平均功率。
方面52:根據方面48-51中任一方面所述的方法,其中無線電裝置條件包括以下至少一項:無線設備與接收實體之間的通道品質;與傳輸相關聯的調變和編碼方案(MCS);與傳輸相關聯的編碼速率;或者與到接收實體的傳輸相關聯的週期性。
方面53:根據方面48-52中任一方面所述的方法,其中確定發射時間包括:基於無線電條件確定與向接收實體發射資料相關聯的資料速率;以及基於資料速率和與資料相關聯的大小來確定發射時間。
方面54:根據方面48-53中任一方面所述的方法,其中確定發射時間包括:至少部分基於未來預測的無線電條件來確定在與無線設備相關聯的移動性條件下的發射時間。
方面55:根據方面48-54中任一方面所述的方法,其中確定發射時間包括:至少部分基於與資料相關聯的緩衝區大小來確定發射時間。
方面56:一種由無線設備進行無線通信的方法,包括:基於用於從無線設備到接收實體的傳輸的資料以及與傳輸相關聯的一個或多個無線電條件,從多個傳輸模式中選擇傳輸模式;以及至少部分基於所選擇的傳輸模式和RF曝露極限,以發射功率向接收實體發射指示資料的信號。
方面57:根據方面56所述的方法,其中該發射包括:以高於RF曝露極限的平均功率位準的功率位準發射資料的至少一部分。
方面58:根據方面57所述的方法,其中該發射包括:在發射資料的該部分的時間窗口的至少一部分內,以低於平均功率位準的預留功率位準進行發射。
方面59:根據方面58所述的方法,其中該發射包括調整預留功率位準。
方面60:根據方面56-59中任一方面的方法,其中:多個傳輸模式至少包括第一模式和第二模式,第一模式包括以高於RF曝露極限的平均功率位準以及低於平均功率位準的功率位準的傳輸,並且第二模式包括以等於或低於平均功率位準的功率位準的傳輸;並且一個或多個無線電條件包括以下至少一項:無線設備與接收實體之間的通道品質;與傳輸相關聯的調變和編碼方案(MCS);與傳輸相關聯的編碼速率;或者與到接收實體的傳輸相關聯的週期性。
方面61:一種裝置,包括:包括可執行指令的記憶體和一個或多個處理器,一個或多個處理器被配置為執行可執行指令並且使得裝置執行根據方面26-30或48-60中任一方面所述的方法。
方面62:一種裝置,包括用於執行根據方面26-30或48-60中任一方面所述的方法的構件。
方面63:一種包括可執行指令的計算機可讀媒體,當可執行指令由裝置的一個或多個處理器執行時使得裝置執行根據方面26-30或48-60中任一方面所述的方法。
方面64:一種體現在計算機可讀儲存媒體上的計算機程式產品,包括用於執行根據方面26-30或48-60中任一方面所述的方法的代碼。
本文描述的技術可以用於各種無線通信技術,諸如NR(例如,5G NR)、3GPP長期演進(LTE)、高級LTE(LTE-A)、分碼多工存取(CDMA)、分時多工存取(TDMA)、分頻多工存取(FDMA)、正交分頻多工存取(OFDMA)、單載波分頻多工存取(SC-FDMA)、分時同步分碼多工存取(TD-SCDMA)和其他網路。術語“網路”和“系統”經常互換使用。CDMA網路可以實現無線電技術,諸如通用陸地無線電存取(UTRA)、cdma2000等。UTRA包括寬頻CDMA(WCDMA)和CDMA的其他變體。cdma2000涵蓋IS-2000、IS-95和IS-856標準。TDMA網路可以實現諸如全球行動通信系統(GSM)的無線電技術。OFDMA網路可以實現諸如NR(例如5G RA)、演進UTRA(E-UTRA)、超行動寬帶(UMB)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、快閃OFDMA等無線電技術。UTRA和E-UTRA是通用移動通信系統(UMTS)的一部分。LTE和LTE-A是使用E-UTRA的UMTS版本。UTRA、E-UTRA、UMTS、LTE、LTE-A和GSM在來自名為“第三代合作夥伴計劃”(3GPP)的組織的文檔中進行了描述。cdma2000和UMB在來自名為“第三代合作夥伴項目2”(3GPP2)的組織的文檔中進行了描述。NR是一種正在開發的新興無線通信技術。
在3GPP中,術語“小區”可以指節點B(NB)的覆蓋區域和/或服務於該覆蓋區域的NB子系統,這取決於使用該術語的上下文。在NR系統中,術語“小區”和BS、下一代節點B(gNB或gNodeB)、存取點(AP)、分布式單元(DU)、載波或傳輸接收點(TRP)可以互換使用。BS可以為大型小區、微微小區、毫微微小區和/或其他類型的小區提供通信覆蓋。大型小區可以覆蓋相對較大的地理區域(例如,半徑幾公里),並且可以允許具有服務訂閱的UE不受限制地存取。微微小區可以覆蓋相對較小的地理區域,並且可以允許具有服務訂閱的UE不受限制地存取。毫微微小區可以覆蓋相對較小的地理區域(例如,家庭),並且可以允許與該毫微微小區有關聯的UE(例如,封閉用戶組(CSG)中的UE、家庭中的用戶的UE等)進行受限存取。用於大型小區的BS可以被稱為大型BS。用於微微小區的BS可以被稱為微微BS。用於毫微微小區的BS可以被稱為毫微微BS或家庭BS。
UE也可以被稱為行動站、終端、存取終端、訂戶單元、站、客戶端設備(CPE)、蜂巢式電話、智慧型手機、個人數位助理(PDA)、無線數據機、無線通信設備、手持設備、膝上型計算機、無線電話、無線本地迴路(WLL)站、平板計算機、相機、遊戲設備、上網本、智慧型筆電、超輕薄筆電、電器、醫療設備或醫療裝備,生物感測器/設備、可穿戴設備(諸如慧型手錶、智慧型服裝、智慧型眼鏡、智慧型腕帶、智慧型珠寶(例如,智慧型戒指、智慧型手鐲等))、娛樂設備(例如,音樂設備、影像裝置、衛星收音機等)、車輛組件或感測器、智慧型儀表/感測器、工業製造裝備、全球定位系統(GPS)設備、或者被配置為經由無線或有線媒體通信的任何其他合適的設備。一些UE可以被認為是機器類型通信(MTC)設備或演進型MTC(eMTC)設備。MTC和eMTC UE包括例如機器人、無人機、遠程設備、感測器、儀錶、監視器、位置標籤等,它們可以與BS、另一設備(例如遠程設備)或一些其他實體通信。例如,無線節點可以經由有線或無線通信鏈路為網路(例如,諸如互聯網或蜂巢式網路的廣域網)提供連接。一些UE可以被認為是物聯網(IoT)設備,其可以是窄頻IoT(NB-IoT)設備。
在一些示例中,對空中介面的存取可以被排程。排程實體(例如,BS)為其服務區域或小區內的一些或所有設備和裝備之間的通信分配資源。排程實體可以負責為一個或多個從屬實體進行排程、分配、重新配置和釋放資源。也就是說,對於所排程的通信,從屬實體利用由排程實體分配的資源。基站不是可以充當排程實體的唯一實體。在一些示例中,UE可以充當排程實體,並且可以為一個或多個從屬實體(例如,一個或多個其他UE)排程資源,並且其他UE可以將UE所排程的資源用於無線通信。在一些示例中,UE可以在對等(P2P)網路和/或網狀網路中充當排程實體。在網狀網路示例中,除了與排程實體通信之外,UE還可以彼此直接通信。
本文公開的方法包括用於實現這些方法的一個或多個步驟或動作。在不脫離申請專利範圍的範圍的情況下,方法步驟和/或動作可以彼此互換。換句話說,除非指定了步驟或動作的特定次序,否則在不脫離申請專利範圍的範圍的情況下,可以修改特定步驟和/或動作的次序和/或使用。
如本文所使用的,涉及項目列表“中的至少一個/項”的短語是指那些項目的任意組合,包括單個成員。作為示例,“a、b或c中的至少一個/項”旨在覆蓋a、b、c、a-b、a-c、b-c和a-b-c,以及與相同元素的倍數的任意組合(例如,a-a、a-a-a、a-a-b、a-a-c、a-b-b、a-c-c、b-b、b-b-b、b-b-c、c-c和c-c-c,或a、b和c的任意其他排序)。
如本文所使用的,術語“確定”涵蓋各種各樣的動作。例如,“確定”可以包括計算、運算、處理、推導、調查、查找(例如,在表格、資料庫或另一資料結構中查找)、查明等。此外,“確定”可以包括接收(例如,接收資訊)、存取(例如,存取記憶體中的資料)等。此外,“確定”可以包括解析、選擇、選取、建立等。
提供前面的描述是為了使本領域的任何技術人員能夠實踐本文描述的各個方面。對這些方面的各種修改對於本領域技術人員來說將是顯而易見的,並且本文定義的一般原理可以應用於其他方面。因此,申請專利範圍不旨在局限于本文所示的方面,而是要符合與申請專利範圍的語言一致的完整範圍,其中除非特別說明,否則對單數形式的元素的引用不旨在意指“一個且僅一個”,而是“一個或多個”。除非特別說明,否則術語“一些”是指一個或多個。本領域普通技術人員已知的或以後將會知道的貫穿本公開內容描述的各個方面的元素的所有結構和功能的等同物通過引用明確地結合于本文,並且旨在被申請專利範圍所涵蓋。此外,無論申請專利範圍中是否明確陳述了這種公開內容,本文公開的內容都不旨在專用於公眾。任何申請專利範圍元素都不能根據35 U.S.C. § 112(f)的規定進行解釋,除非該元素是使用短語“用於……的構件件”來明確陳述的,或者在方法申請專利範圍的情況下,該元素是使用短語“用於……的步驟”來陳述的。
上述方法的各種操作可以通過能夠執行對應的功能的任何合適的構件來執行。構件可以包括各種硬體和/或(多個)軟體組件和/或(多個)模組,包括但不限於電路、特殊應用積體電路(ASIC)或處理器。通常,在圖中示出了操作的情況下,這些操作可以具有利用相似編號的相對應的構件加功能組件。
結合本公開描述的各種說明性邏輯方塊、模組和電路可以利用通用處理器、數位信號處理器(DSP)、特殊應用積體電路(ASIC)、現場可程式閘陣列(FPGA)或其他可程式邏輯元件(PLD)、分立閘或電晶體邏輯、分立硬體組件或被設計成執行本文描述的功能的它們的任意組合來實現或執行。通用處理器可以是微處理器,但是替代地,處理器可以是任何市售的處理器、控制器、微控制器或狀態機。處理器也可以被實現為計算設備的組合,例如,DSP和微處理器的組合、多個微處理器、一個或多個微處理器與DSP核心的結合、或者任何其他這種配置。
如果以硬體實現,示例硬體配置可以包括無線節點中的處理系統。處理系統可以用匯流排架構來實現。取決於處理系統的具體應用和總體設計約束,匯流排可以包括任意數量的互連匯流排和網橋。匯流排可以將各種電路鏈接在一起,包括處理器、機器可讀媒體和匯流排介面。匯流排介面可以用於經由匯流排將網路適配器等連接到處理系統。網路適配器可以用於實現實體(PHY)層的信號處理功能。在用戶設備(UE)的情況下(參見圖1),用戶介面(例如,鍵盤、顯示器、滑鼠、操縱桿等)也可以連接到匯流排。匯流排還可以鏈接各種其他電路,諸如定時源、外圍設備、電壓調節器、電源管理電路等,這些在本領域中是習知的,因此將不再進一步描述。處理器可以用一個或多個通用和/或專用處理器來實現。示例包括微處理器、微控制器、DSP處理器和其他可以執行軟體的電路。本領域的技術人員將認識到如何取決於特定的應用和施加在整個系統上的總體設計約束來最好地實現所描述的處理系統的功能。
如果以軟體實現,這些功能可以作為一個或多個指令或代碼儲存或傳輸到計算機可讀媒體上。軟體應廣義地理解為意指指令、資料或其任意組合,無論是指軟體、韌體、中介軟體、微代碼、硬體描述語言還是其他。計算機可讀媒體包括計算機儲存媒體和通信媒體,通信媒體包括便於將計算機程式從一個地方轉移到另一個地方的任何媒體。處理器可以負責管理匯流排和一般處理,包括執行儲存在機器可讀儲存媒體上的軟體模組。計算機可讀儲存媒體可以耦合到處理器,使得處理器可以從儲存媒體讀取資訊和向儲存媒體寫入資訊。替代地,儲存媒體可以整合到處理器中。舉例來說,機器可讀媒體可以包括傳輸線、由資料調變的載波和/或與無線節點分開的其上儲存有指令的計算機可讀儲存媒體,所有這些都可以由處理器通過匯流排介面來存取。替代地或附加地,機器可讀媒體或其任何部分可以整合到處理器中,諸如快取記憶體和/或通用暫存器文件的情況。舉例來說,機器可讀儲存媒體的示例可以包括RAM(隨機存取記憶體)、快閃記憶體、ROM(唯讀記憶體)、PROM(可程式化唯讀記憶體)、EPROM(可抹除可程式化唯讀記憶體)、EEPROM(電可除程式化唯讀記憶體)、暫存器、磁碟、光碟、硬碟、或任何其他合適的儲存媒體、或其任意組合。機器可讀媒體可以體現在計算機程式產品中。
軟體模組可以包括單個指令或許多指令,並且可以分佈在幾個不同的代碼段上、不同的程式之間以及多個儲存媒體上。計算機可讀媒體可以包括多個軟體模組。軟體模組包括指令,該指令在由諸如處理器的裝置執行時使得處理系統執行各種功能。軟體模組可以包括發射模組和接收模組。每個軟體模組可以駐留在單個儲存設備中,或者分佈在多個儲存設備上。舉例來說,當觸發事件發生時,軟體模組可以從硬碟驅動器加載到RAM中。在軟體模組的執行期間,處理器可以將一些指令加載到快取記憶體中以提高存取速度。然後,一個或多個快取記憶體行可以被加載到通用暫存器文件中,以供處理器執行。當提及下面軟體模組的功能時,應該理解,當執行來自該軟體模組的指令時,這種功能由處理器實現。
此外,任何連接都被恰當地稱為計算機可讀媒體。例如,如果使用同軸電纜、光纖電纜、雙絞線、數位用戶線路(DSL)或無線技術(諸如紅外(IR)、無線電和微波)從網站、伺服器或其他遠程源傳輸軟體,則同軸電纜、光纖電纜、雙絞線、DSL或無線技術(諸如紅外、無線電和微波)都包括在媒體的定義中。如本文所使用的,磁碟和光碟包括光碟片(CD)、雷射碟、光碟、數位影音光碟(DVD)、軟碟和藍光®光盤,其中磁碟通常磁性地再現資料,而光碟雷射光光學地再現資料。因此,在一些方面,計算機可讀媒體可以包括非暫時性計算機可讀媒體(例如,有形媒體)。此外,對於其他方面,計算機可讀媒體可以包括暫時性計算機可讀媒體(例如,信號)。以上的組合也應該包括在計算機可讀媒體的範圍內。
因此,某些方面可以包括用於執行本文呈現的操作的計算機程式產品。例如,這種計算機程式產品可以包括其上儲存有(和/或編碼有)指令的計算機可讀媒體,該指令可由一個或多個處理器執行以執行本文描述的操作,例如,該指令用於執行本文描述並在圖6、圖10A和/或圖10B中示出的操作。
此外,應當理解,用於執行本文描述的方法和技術的模組和/或其他適當的構件可以在適用時由UE和/或基站下載和/或以其他方式獲得。例如,這種設備可以耦合到伺服器,以便於用於執行本文描述的方法的構件的轉移。替代地,本文描述的各種方法可以經由儲存構件(例如,RAM、ROM、諸如光碟片(CD)或軟碟的實體儲存媒體等)來提供,使得UE和/或基站可以在將儲存構件耦合或提供給設備時獲得各種方法。此外,可以利用用於向設備提供本文描述的方法和技術的任何其他合適的技術。
應當理解,申請專利範圍不限於上述精確的配置和組件。在不脫離申請專利範圍的範圍的情況下,可以對上述方法和裝置的佈置、操作和細節進行各種修改、改變和變化。
100:無線通信網路 102a、102b、102c:大型小區 102x:微微小區 102y、102z:毫微微小區 110:BS 110a、110b、110c:大型BS 110r:中繼站 110x:微微BS 110y、110z:毫微微BS 120、120a、120r、120x、120z:UE 122:RF曝露管理器 130:網路控制器 132:核心網路 120a:用戶設備(UE) 212:資料 220:發射處理器 230:發射(TX)多輸入多輸出(MIMO)處理器 232a、232t:收發器 234a、234t:天線 236:MIMO檢測器 238:接收處理器 239:資料槽 240:控制器/處理器 242:記憶體 244:排程器 252a、252r:天線 254a、254r:收發器 256:MIMO檢測器 258:接收處理器 260:資料槽 262:資料源 264:發射處理器 280:控制器/處理器 281:RF曝露管理器 282:記憶體 300:RF收發器電路 302:TX路徑 304:RX路徑 306:天線 308:介面 310:數位類比轉換器(DAC) 312:基頻濾波器(BBF) 314:混頻器 316:驅動放大器(DA) 318:功率放大器(PA) 320:TX頻率合成器 322:放大器 324:低雜訊放大器(LNA) 326:混頻器 328:基頻濾波器(BBF) 330:模擬數位轉換器(ADC) 332:RX頻率合成器 334:放大器 336:控制器 338:記憶體 410:歸一化SAR分佈 420:歸一化PD分佈 430:組合歸一化分佈 500A:坐標圖 500B:坐標圖 500C:坐標圖 600:操作 602:方塊 604:方塊 606:方塊 700A:圖形 700B:圖形 702:樣式 704:第一傳輸 706:持續時間 708:第二傳輸 710:第二傳輸 722:樣式 724:週期性傳輸 726:持續時間 728:第二傳輸 730:發射功率 800A:坐標圖 800B:坐標圖 802:樣式 804:時間間隔 806:傳輸 808:傳輸 822a:第一樣式 822b:第二樣式 822c:第三樣式 900A:坐標圖 900B:坐標圖 902:樣式 904:第一傳輸 906:第二傳輸 908:時間窗口的第一部分 910:時間窗口的第二部分 1000A、1000B:操作 1002:方塊 1004:方塊 1006:方塊 1008:方塊 1010:方塊 1100A、1100B、1100C:坐標圖 1200:通信設備 1202:處理系統 1204:處理器 1206:匯流排 1208:收發器 1210:天線 1212:計算機可讀媒體/記憶體 1214:用於獲得的代碼 1216:用於確定的代碼 1218:用於發射的代碼 1220:用於選擇的代碼 1222:用於調整的代碼 1224:用於分配的代碼 1226:用於生成的代碼 1228:電路 1230:用於獲得的電路系統 1232:用於確定的電路系統 1234:用於發射的電路系統 1236:用於選擇的電路系統 1238:用於調整的電路系統 1240:用於分配的電路系統 1242:用於生成的電路系統
為了能夠詳細理解本公開的上述特徵,可以參考各方面進行更具體的描述(如上簡要總結的),這些方面中的一些在附圖中示出。然而,應當注意,附圖僅示出了本公開的某些典型方面,因此不應被認為是對其範圍的限制,因為描述可以承認其他同等有效的方面。
圖1是概念性地示出根據本公開的某些方面的示例無線通信網路的方塊圖。
圖2是概念性地示出根據本公開的某些方面的示例基站(BS)和用戶設備(UE)的設計的方塊圖。
圖3是根據本公開的某些方面的示例射頻(RF)收發器的方塊圖。
圖4是示出根據本公開的某些方面的與歸一化功率密度(PD)分佈相結合的歸一化特定吸收率(SAR)分佈的示例的圖。
圖5A、圖5B和圖5C是示出根據本公開的某些方面的符合RF曝露極限的隨時間變化的發射功率的示例的曲線圖。
圖6是示出根據本公開的某些方面的用於無線通信的示例操作的流程圖。
圖7A、圖7B、圖8A、圖8B和圖9A是示出根據本公開的某些方面的用於確定隨時間變化的一個或多個發射功率的示例樣式的曲線圖。
圖9B是示出根據本公開的某些方面的基於圖9A所示的樣式應用發射功率上限的坐標圖。
圖10A和圖10B是示出根據本公開的某些方面的用於無線通信的示例操作的流程圖。
圖11A-圖11C是根據本公開的某些方面的隨時間變化的發射功率(P(t))的坐標圖1100A-1100C,其示出了使用動態預留功率的時間平均模式。
圖12示出了根據本公開的某些方面的通信設備(例如,UE),其可以包括被配置為執行用於本文公開的技術的操作的各種組件。
為了便於理解,在可能的情況下,使用相同附圖標記來表示附圖共有的相同元素。可以設想,在一個方面公開的元素可以有益地用於其他方面,而無需具體敘述。
1000A:操作
1002:方塊
1004:方塊
1006:方塊

Claims (30)

  1. 一種用於無線通信的裝置,包括: 記憶體;以及 處理器,耦合到所述記憶體,所述處理器和所述記憶體被配置為: 獲得用於到接收實體的傳輸的資料、以及與所述傳輸相關聯的無線電條件, 至少部分基於所述無線電條件來確定與所述資料相關聯的發射時間,以及 至少部分基於所確定的所述發射時間和射頻(RF)曝露極限,以發射功率向所述接收實體發射指示所述資料的信號。
  2. 根據請求項1所述的裝置,其中: 所述發射時間是從與多個發射功率相關聯的多個發射時間中選擇的;以及 所述多個發射功率包括所述信號以其被發射的所述發射功率。
  3. 根據請求項2所述的裝置,其中所述多個發射時間包括與由所述裝置支持的瞬時功率極限相關聯的第一發射時間、以及與對應於所述RF曝露極限的平均功率相關聯的第二發射時間。
  4. 根據請求項3所述的裝置,其中: 如果所述第一發射時間小於或等於與符合所述RF曝露極限的所述瞬時功率極限相關聯的突發發射時間,則所述發射功率受到所述瞬時功率極限的限制,其中所述突發發射時間小於與所述RF曝露極限相關聯的時間窗口; 如果所述第二發射時間大於或等於與所述RF曝露極限相關聯的所述時間窗口,則所述發射功率受到所述平均功率的限制;以及 如果與所述多個發射功率中的任何一個發射功率相關聯的所述發射時間小於或等於所述時間窗口、並且大於或等於所述突發發射時間,則所述發射功率針對所述發射時間的第一部分小於或等於所述瞬時功率極限、並且大於所述平均功率,並且所述發射功率針對所述發射時間的第二部分小於所述平均功率。
  5. 根據請求項3所述的裝置,其中: 如果所述發射時間小於或等於與符合所述RF曝露極限的所述瞬時功率極限相關聯的突發發射時間,則所述發射功率根據時間平均模式來設置,其中所述突發發射時間小於與所述RF曝露極限相關聯的時間窗口; 如果所述發射時間大於或等於與所述RF曝露極限相關聯的所述時間窗口,則所述發射功率根據峰值模式來設置;以及 如果與所述多個發射功率中的任何一個發射功率相關聯的所述發射時間小於或等於所述時間窗口、並且大於或等於所述突發發射時間,則所述發射功率根據所述時間平均模式來設置,使得所述發射功率針對所述發射時間的第一部分小於或等於所述瞬時功率極限、並且大於所述平均功率,並且所述發射功率針對所述發射時間的第二部分小於所述平均功率。
  6. 根據請求項1所述的裝置,其中所述無線電條件包括以下至少一項: 所述裝置與所述接收實體之間的通道品質; 與所述傳輸相關聯的調變和編碼方案(MCS); 與所述傳輸相關聯的編碼速率;或者 與到所述接收實體的傳輸相關聯的週期性。
  7. 根據請求項1所述的裝置,其中所述處理器和所述記憶體還被配置為: 基於所述無線電條件來確定與向所述接收實體發射所述資料相關聯的資料速率;以及 基於所述資料速率和與所述資料相關聯的大小來確定所述發射時間。
  8. 根據請求項1所述的裝置,其中所述處理器和所述記憶體還被配置為至少部分基於未來預測的無線電條件來確定在與所述裝置相關聯的移動性條件下的所述發射時間。
  9. 根據請求項8所述的裝置,其中所述處理器和所述記憶體還被配置為利用機器學習來生成所述未來預測的無線電條件。
  10. 根據請求項1所述的裝置,其中所述處理器和所述記憶體還被配置為至少部分基於與所述資料相關聯的緩衝區大小來確定所述發射時間。
  11. 根據請求項1所述的裝置,其中所述處理器和所述記憶體被配置為基於與第一時間窗口相關聯的樣式來確定所述無線電條件,其中所述第一時間窗口與關聯於所述RF曝露極限的第二時間窗口是分開的。
  12. 一種用於無線通信的裝置,包括: 記憶體;以及 處理器,耦合到所述記憶體,所述處理器和所述記憶體還被配置為: 基於用於從所述裝置到接收實體的傳輸的資料、以及與所述傳輸相關聯的一個或多個無線電條件,從多個傳輸模式中選擇傳輸模式,以及 至少部分基於所選擇的所述傳輸模式和射頻(RF)曝露極限,以發射功率向所述接收實體發射指示所述資料的信號。
  13. 根據請求項12所述的裝置,其中所述處理器和所述記憶體還被配置為以高於所述RF曝露極限的平均功率位準的功率位準發射所述資料的至少一部分。
  14. 根據請求項13所述的裝置,其中所述處理器和所述記憶體被配置為基於所述傳輸的工作週期,在與所述RF曝露極限相關聯的時間窗口期間,以高於所述RF曝露極限的所述平均功率位準的所述功率位準進行發射。
  15. 根據請求項13所述的裝置,其中所述處理器和所述記憶體還被配置為在發射所述資料的所述部分的時間窗口的至少一部分內,以低於所述平均功率位準的預留功率位準進行發射。
  16. 根據請求項15所述的裝置,其中所述處理器和所述記憶體還被配置為調整所述預留功率位準。
  17. 根據請求項12所述的裝置,其中: 所述多個傳輸模式至少包括第一模式和第二模式,所述第一模式包括以高於所述RF曝露極限的平均功率位準、以及低於所述平均功率位準的功率位準的傳輸,並且所述第二模式包括以等於或低於所述平均功率位準的功率位準的傳輸;以及 所述一個或多個無線電條件包括以下至少一項: 所述裝置與接收實體之間的通道品質; 與所述傳輸相關聯的調變和編碼方案(MCS); 與所述傳輸相關聯的編碼速率;或者 與到所述接收實體的傳輸相關聯的週期性。
  18. 一種由無線設備進行無線通信的方法,包括: 獲得用於到接收實體的傳輸的資料、以及與所述傳輸相關聯的無線電條件; 至少部分基於所述無線電條件來確定與所述資料相關聯的發射時間;以及 至少部分基於所確定的所述發射時間和射頻(RF)曝露極限,以發射功率向所述接收實體發射指示所述資料的信號。
  19. 根據請求項18所述的方法,其中: 所述發射時間是從與多個發射功率相關聯的多個發射時間中選擇的;以及 所述多個發射功率包括所述信號以其被發射的所述發射功率, 其中所述多個發射時間包括與由所述無線設備支持的瞬時功率極限相關聯的第一發射時間、以及與對應於所述RF曝露極限的平均功率相關聯的第二發射時間。
  20. 根據請求項19所述的方法,其中: 如果所述第一發射時間小於或等於與符合所述RF曝露極限的所述瞬時功率極限相關聯的突發發射時間,則所述發射功率受到所述瞬時功率極限的限制,其中所述突發發射時間小於與所述RF曝露極限相關聯的時間窗口; 如果所述第二發射時間大於或等於與所述RF曝露極限相關聯的所述時間窗口,則所述發射功率受到所述平均功率的限制;以及 如果與所述多個發射功率中的任何一個發射功率相關聯的所述發射時間小於或等於所述時間窗口、並且大於或等於所述突發發射時間,則所述發射功率針對所述發射時間的第一部分小於或等於所述瞬時功率極限、並且大於所述平均功率,並且所述發射功率針對所述發射時間的第二部分小於所述平均功率。
  21. 根據請求項19所述的方法,其中: 如果所述發射時間小於或等於與符合所述RF曝露極限的所述瞬時功率極限相關聯的突發發射時間,則所述發射功率根據時間平均模式來設置,所述突發發射時間小於與所述RF曝露極限相關聯的時間窗口; 如果所述發射時間大於或等於與所述RF曝露極限相關聯的所述時間窗口,則所述發射功率根據峰值模式來設置;以及 如果與所述多個發射功率中的任何一個發射功率相關聯的所述發射時間小於或等於所述時間窗口、並且大於或等於所述突發發射時間,則所述發射功率根據所述時間平均模式來設置,使得所述發射功率針對所述發射時間的第一部分小於或等於所述瞬時功率極限、並且大於所述平均功率,並且所述發射功率針對所述發射時間的第二部分小於所述平均功率。
  22. 根據請求項18所述的方法,其中所述無線電條件包括以下至少一項: 所述無線設備與所述接收實體之間的通道品質; 與所述傳輸相關聯的調變和編碼方案(MCS); 與所述傳輸相關聯的編碼速率;或者 與到所述接收實體的傳輸相關聯的週期性。
  23. 根據請求項18所述的方法,其中確定所述發射時間包括: 基於所述無線電條件來確定與向所述接收實體發射所述資料相關聯的資料速率;以及 基於所述資料速率和與所述資料相關聯的大小來確定所述發射時間。
  24. 根據請求項18所述的方法,其中確定所述發射時間包括:至少部分基於未來預測的無線電條件來確定在與所述無線設備相關聯的移動性條件下的所述發射時間。
  25. 根據請求項18所述的方法,其中確定所述發射時間包括:至少部分基於與所述資料相關聯的緩衝區大小來確定所述發射時間。
  26. 一種由無線設備進行無線通信的方法,包括: 基於用於從所述無線設備到接收實體的傳輸的資料、以及與所述傳輸相關聯的一個或多個無線電條件,從多個傳輸模式中選擇傳輸模式;以及 至少部分基於所選擇的所述傳輸模式和射頻(RF)曝露極限,以發射功率向所述接收實體發射指示所述資料的信號。
  27. 根據請求項26所述的方法,其中所述發射包括:以高於所述RF曝露極限的平均功率位準的功率位準發射所述資料的至少一部分。
  28. 根據請求項27所述的方法,其中所述發射包括:在發射所述資料的所述部分的時間窗口的至少一部分內,以低於所述平均功率位準的預留功率位準進行發射。
  29. 根據請求項28所述的方法,其中所述發射包括:調整所述預留功率位準。
  30. 根據請求項26所述的方法,其中: 所述多個傳輸模式至少包括第一模式和第二模式,所述第一模式包括以高於所述RF曝露極限的平均功率位準、以及低於所述平均功率位準的功率位準的傳輸,並且所述第二模式包括以等於或低於所述平均功率位準的功率位準的傳輸;以及 所述一個或多個無線電條件包括以下至少一項: 所述無線設備與所述接收實體之間的通道品質; 與所述傳輸相關聯的調變和編碼方案(MCS); 與所述傳輸相關聯的編碼速率;或者 與到所述接收實體的傳輸相關聯的週期性。
TW110142291A 2020-11-13 2021-11-12 射頻(rf)曝露合規性 TW202228466A (zh)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US202063113488P 2020-11-13 2020-11-13
US63/113,488 2020-11-13
US202163141834P 2021-01-26 2021-01-26
US63/141,834 2021-01-26
US202163152773P 2021-02-23 2021-02-23
US63/152,773 2021-02-23
US202163175464P 2021-04-15 2021-04-15
US63/175,464 2021-04-15
US17/454,614 2021-11-11
US17/454,614 US20220159582A1 (en) 2020-11-13 2021-11-11 Radio frequency (rf) exposure compliance

Publications (1)

Publication Number Publication Date
TW202228466A true TW202228466A (zh) 2022-07-16

Family

ID=81587097

Family Applications (2)

Application Number Title Priority Date Filing Date
TW110142292A TW202226865A (zh) 2020-11-13 2021-11-12 射頻(rf)暴露合規性
TW110142291A TW202228466A (zh) 2020-11-13 2021-11-12 射頻(rf)曝露合規性

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW110142292A TW202226865A (zh) 2020-11-13 2021-11-12 射頻(rf)暴露合規性

Country Status (7)

Country Link
US (2) US20220159581A1 (zh)
EP (2) EP4245072A1 (zh)
JP (2) JP2023549479A (zh)
KR (2) KR20230101821A (zh)
CN (2) CN116368871A (zh)
TW (2) TW202226865A (zh)
WO (2) WO2022104371A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220159581A1 (en) * 2020-11-13 2022-05-19 Qualcomm Incorporated Radio frequency (rf) exposure compliance
US11671997B2 (en) * 2020-12-17 2023-06-06 Meta Platforms Technologies, Llc Wireless link control based on time averaged specific absorption rate and quality of service
WO2023235800A1 (en) * 2022-06-01 2023-12-07 Qualcomm Incorporated Multi-radio transmission adjustment for time-averaged radio frequency exposure
US20240106480A1 (en) * 2022-09-23 2024-03-28 Qualcomm Incorporated Radio frequency exposure compliance

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5524275A (en) * 1993-12-17 1996-06-04 Ericsson Ge Mobile Communications Inc. Averaged RF exposure control
US6747993B2 (en) * 2001-02-01 2004-06-08 Motorola, Inc. Method and apparatus for adjusting a communication timer in a communication network
US20040142715A1 (en) * 2003-01-16 2004-07-22 Oses David Puig Method and apparatus to predictively regulate forward link packet data transmission power in a wireless communications system
WO2006082627A1 (ja) * 2005-02-01 2006-08-10 Mitsubishi Denki Kabushiki Kaisha 送信制御方法、移動局および通信システム
JP2008072700A (ja) * 2006-08-18 2008-03-27 Hitachi Communication Technologies Ltd 無線基地局、無線端末および無線通信システムにおける通信制御方法
EP2410661B1 (en) * 2010-07-20 2014-10-29 BlackBerry Limited Radiation power level control system and method for a wireless communication device based on a tracked radiation history
US8995938B2 (en) * 2011-11-14 2015-03-31 Blackberry Limited Radiation power level control system and method for a wireless communication device having tunable elements
US9237519B2 (en) * 2013-06-23 2016-01-12 Apple Inc. Managing power consumption of transmission circuitry in a wireless communication device
US9622187B2 (en) * 2015-08-26 2017-04-11 Qualcomm Incorporated Real-time specific absorption rate implementation in wireless devices
US10652833B2 (en) * 2018-07-05 2020-05-12 Qualcomm Incorporated Evaluating radio frequency (RF) exposure in real time
US10447413B1 (en) * 2018-11-13 2019-10-15 Qualcomm Incorporated Evaluating radio frequency exposure
US10951388B2 (en) * 2019-05-07 2021-03-16 Verizon Patent And Licensing Inc. Managing user equipment time division duplex uplink duty cycles
US20220159581A1 (en) * 2020-11-13 2022-05-19 Qualcomm Incorporated Radio frequency (rf) exposure compliance
US20240196344A1 (en) * 2022-12-08 2024-06-13 Intel Corporation Specific absorption rate management and selection of link rate considering specific absorption rate parameters

Also Published As

Publication number Publication date
KR20230101821A (ko) 2023-07-06
JP2023549479A (ja) 2023-11-27
EP4245073A1 (en) 2023-09-20
TW202226865A (zh) 2022-07-01
KR20230104165A (ko) 2023-07-07
WO2022104369A1 (en) 2022-05-19
US20220159581A1 (en) 2022-05-19
EP4245072A1 (en) 2023-09-20
CN116368871A (zh) 2023-06-30
US20220159582A1 (en) 2022-05-19
JP2023549480A (ja) 2023-11-27
CN116438856A (zh) 2023-07-14
WO2022104371A1 (en) 2022-05-19

Similar Documents

Publication Publication Date Title
CN112534887B (zh) 物理上行链路共享信道功率缩放以增强用户设备处的功率利用
TW202228466A (zh) 射頻(rf)曝露合規性
JP7530389B2 (ja) 最大許容曝露量を管理するための信号タイプに基づく電力制限
JP2022533974A (ja) 最大電力暴露とリンクバジェットとのバランスをとるビーム選択
TW202224471A (zh) 符合rf暴露要求的傳輸功率分配
US20230180151A1 (en) Energy allocation among multiple radios and/or across different time windows for radio frequency (rf) exposure compliance
US20230180150A1 (en) Energy allocation among multiple radios for radio frequency (rf) exposure compliance
US20240015669A1 (en) Duty cycle determination for radio frequency exposure evaluation
US20240106481A1 (en) Transmit energy allocation among different radios
US20230397123A1 (en) Transmit energy allocation among different radios
US20230189168A1 (en) Radio frequency exposure compliance for transitions between exposure control schemes
KR20240121223A (ko) Rf(radio frequency) 노출 준수를 위한 다수의 라디오들 사이의 에너지 할당
US20240214953A1 (en) Radio frequency exposure management for multiple radios
KR20240116465A (ko) Rf(radio frequency) 노출 준수를 위한, 다수의 라디오들 사이의 및/또는 상이한 시간 윈도우들에 걸친 에너지 할당
WO2023102561A1 (en) Energy allocation among multiple radios for radio frequency (rf) exposure compliance
CN118355699A (zh) 用于射频(rf)暴露符合性的多个无线电之间的能量分配
WO2024011201A1 (en) Duty cycle determination for radio frequency exposure evaluation
WO2023102562A1 (en) Energy allocation among multiple radios and/or across different time windows for radio frequency (rf) exposure compliance
WO2024072665A1 (en) Transmit energy allocation among different radios
TW202406383A (zh) 不同無線電之間的傳輸能量分配
WO2023235800A1 (en) Multi-radio transmission adjustment for time-averaged radio frequency exposure
TW202327389A (zh) 考慮暴露限制的用於實現更高的上行鏈路效能的波束選擇
WO2023114749A1 (en) Radio frequency exposure compliance for transitions between exposure control schemes
WO2024137795A1 (en) Radio frequency exposure management for multiple radios
WO2023081680A1 (en) Utilizing device state information in simultaneous radio transmission scenarios for radio frequency (rf) exposure compliance