TW202224347A - 在具有可程式化偏置電流之電流積分相位內插器中量測轉換速率的方法以及設備 - Google Patents

在具有可程式化偏置電流之電流積分相位內插器中量測轉換速率的方法以及設備 Download PDF

Info

Publication number
TW202224347A
TW202224347A TW110145811A TW110145811A TW202224347A TW 202224347 A TW202224347 A TW 202224347A TW 110145811 A TW110145811 A TW 110145811A TW 110145811 A TW110145811 A TW 110145811A TW 202224347 A TW202224347 A TW 202224347A
Authority
TW
Taiwan
Prior art keywords
output
inverter
circuit
inverter circuit
current
Prior art date
Application number
TW110145811A
Other languages
English (en)
Other versions
TWI793900B (zh
Inventor
約翰 肯尼
Original Assignee
美商美國亞德諾半導體公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商美國亞德諾半導體公司 filed Critical 美商美國亞德諾半導體公司
Publication of TW202224347A publication Critical patent/TW202224347A/zh
Application granted granted Critical
Publication of TWI793900B publication Critical patent/TWI793900B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/19Monitoring patterns of pulse trains
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/081Details of the phase-locked loop provided with an additional controlled phase shifter
    • H03L7/0812Details of the phase-locked loop provided with an additional controlled phase shifter and where no voltage or current controlled oscillator is used
    • H03L7/0814Details of the phase-locked loop provided with an additional controlled phase shifter and where no voltage or current controlled oscillator is used the phase shifting device being digitally controlled
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/31727Clock circuits aspects, e.g. test clock circuit details, timing aspects for signal generation, circuits for testing clocks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/081Details of the phase-locked loop provided with an additional controlled phase shifter
    • H03L7/0812Details of the phase-locked loop provided with an additional controlled phase shifter and where no voltage or current controlled oscillator is used
    • H03L7/0816Details of the phase-locked loop provided with an additional controlled phase shifter and where no voltage or current controlled oscillator is used the controlled phase shifter and the frequency- or phase-detection arrangement being connected to a common input
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/10Measuring sum, difference or ratio
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16528Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values using digital techniques or performing arithmetic operations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/02Arrangements for measuring frequency, e.g. pulse repetition rate; Arrangements for measuring period of current or voltage
    • G01R23/12Arrangements for measuring frequency, e.g. pulse repetition rate; Arrangements for measuring period of current or voltage by converting frequency into phase shift
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/156Arrangements in which a continuous pulse train is transformed into a train having a desired pattern
    • H03K5/1565Arrangements in which a continuous pulse train is transformed into a train having a desired pattern the output pulses having a constant duty cycle
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/0807Details of the phase-locked loop concerning mainly a recovery circuit for the reference signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/081Details of the phase-locked loop provided with an additional controlled phase shifter
    • H03L7/0812Details of the phase-locked loop provided with an additional controlled phase shifter and where no voltage or current controlled oscillator is used
    • H03L7/0818Details of the phase-locked loop provided with an additional controlled phase shifter and where no voltage or current controlled oscillator is used the controlled phase shifter comprising coarse and fine delay or phase-shifting means
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/16Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
    • H03L7/18Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop
    • H03L7/183Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop a time difference being used for locking the loop, the counter counting between fixed numbers or the frequency divider dividing by a fixed number
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K4/00Generating pulses having essentially a finite slope or stepped portions
    • H03K4/06Generating pulses having essentially a finite slope or stepped portions having triangular shape
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0016Arrangements for synchronising receiver with transmitter correction of synchronization errors
    • H04L7/002Arrangements for synchronising receiver with transmitter correction of synchronization errors correction by interpolation
    • H04L7/0025Arrangements for synchronising receiver with transmitter correction of synchronization errors correction by interpolation interpolation of clock signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/02Speed or phase control by the received code signals, the signals containing no special synchronisation information
    • H04L7/033Speed or phase control by the received code signals, the signals containing no special synchronisation information using the transitions of the received signal to control the phase of the synchronising-signal-generating means, e.g. using a phase-locked loop

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Analogue/Digital Conversion (AREA)
  • Amplifiers (AREA)
  • Manipulation Of Pulses (AREA)

Abstract

本揭露描述了一種設備,此設備包括具有可程式化偏置電流的電流積分相位內插器核心;耦接至此電流積分相位內插器核心之輸出的反相器電路,用於從其接收包含週期性鋸齒波形的訊號;數位類比(D/A)轉換器,用於設定反相器電路之輸入共模電壓;工作週期量測(DCM)電路,用於量測從反相器電路輸出之時脈訊號的工作週期失真(DCD);以及一電路,用於計算時脈訊號之DCD的第一狀態與時脈訊號之DCD的第二狀態之間的差值,第一狀態對應於反相器電路被設為高壓的輸入共模電壓,第二狀態對應於反相器電路被設為低壓的輸入共模電壓。

Description

用於在電流積分相位內插器中量測轉換速率的技術
本揭露大體係關於電流積分相位內插器領域,且更特定而言,係關於在電流積分相位內插器(current integrating phase interpolator,CIPI)中量測轉換速率的技術。
電流積分是一種用於實現位元到相位轉換的功率效率技術。 該電路功能通常稱為相位內插器。相位內插器是有線解串器中的構建模塊中的一者,這些模塊還包括相位檢測器、迴路濾波器、以及位元到相位轉換器。實現全 2p相位移位的相位內插器通常需要一些轉換速率控制。
本揭露的一實施例提供一種設備,包括具有可程式化偏置電流之電流積分相位內插器核心;AC耦合反相器電路,耦接至電流積分相位內插器核心的輸出以用於從其接收包括週期性鋸齒波形的訊號;數位類比(D/A)轉換器,用於設定AC耦合反相器電路之輸入共模電壓;工作週期量測(DCM)電路,用於量測從AC耦合反相器電路輸出之時脈訊號的工作週期失真(DCD);以及一電路,用於在反相器電路之輸入共模電壓被設置至高電壓及反相器電路之輸入共模電壓被設置至低電壓時,計算時脈訊號之DCD中的差值。
本揭露的另一實施例提供一種設備,包括具有可程式化偏置電流之電流積分相位內插器核心;反相器電路,耦接至此電流積分相位內插器核心的輸出以用於從其接收包括週期性鋸齒波形的訊號,反相器電路進一步包括具有輸入及輸出之一反相器及用於將數位類比(D/A)轉換器選擇性地耦接至此反相器之輸入的一開關,用於將反相器電路之輸入共模電壓設置為高壓及低壓中的一個;工作週期量測(DCM)電路,用於量測從反相器電路輸出之時脈訊號的工作週期失真(DCD);以及一電路,用於在反相器電路之輸入共模電壓被設置至高壓及反相器電路之輸入共模電壓被設置至低壓時計算時脈訊號之DCD中的差值,及比較所計算的差值與閾值並基於此比較調整可程式化偏置電流的位準。
本揭露的另一實施例提供一種在電流積分相位內插器(CIPI)中量測轉速速率的方法,此電流積分相位內插器具有可程式化偏置電流,此方法包括:將反相器之共閾電壓設置為低位準;在反相器對應於低位準共閾電壓的輸出處量測訊號的第一工作週期失真(DCD);將反相器之共閾電壓設置為高位準;在反相器對應於高位準共閾電壓之輸出處量測訊號的第二DCD;比較第一及第二DCD與閾值之間的差值;以及基於此比較的結果調整CIPI的可程式化偏置電流。
電流積分為用於實現位元至相位轉換或相位內插的功率有效技術。圖1A及圖1B根據本文描述之實施例的特徵圖示用於實施具有可程式化偏置電流之電流積分相位內插器(CIPI)的電路100,其可在有線解串器200用建置區塊(building block),如圖2圖示,在例如收發器裝置中使用。有線解串器200可以包括相位檢測器202、環形濾波器204、位元至相位轉換器206,其可使用電路100實施(圖1A及圖1B),以及時脈倍增單元(clock multiplier unit,CMU)208。應認識到,實施完全2π相移的相位內插器通常需要一些轉換速率控制。
再次参考圖1A及圖1B,在電路100之第一級101,諸如波形102表示之偽差動方形波訊號被施加在CKIP及CKIN的每一處以作為時脈訊號,其用作電流不足(或電流切換)反相器INV0及INV1的輸入。PMOS電流源106a供應可程式化偏置電流I B,而NMOS電流源106b吸收電流I B。當CKIP為低位準時,INV0將電流I B從VDD引導至輸出OUTN。在輸出OUTN處的訊號以I B/C L之斜率向VDD轉換,其中C L在OUTN上為主導電容。同時,CKIN為高位準時,使得在輸出OUTP處的訊號以相同速率(I B/C L)向VSS轉換。在輸出OUTN處的訊號的期望形狀為鋸齒,如波形108表示。在整個擺動範圍VSWING內維持恆定電流需要PMOS電流源106a及NMOS電流源106b兩者保持飽和。若在具有1 V電源的VDD及VSS兩者上分配150 mV的餘量,則VSWING應小於700 mV。為了舉例,假設輸出OUTN上的共模電壓VCM1等於VDD/2。
輸出OUTN及OUTP組成電路100之第一級101的輸出,並分別被施加至選截(pick-off)放大器INV2及INV3,其被實施作為具有電阻性反饋之AC耦合反相器。反相器INV2及INV3將施加在輸入IN及IP的鋸齒波形(例如,波形108)在輸出CKOP及CKON處轉換成方形波或矩形波。在時脈輸出CKOP上的訊號的最低抖動位準可以藉由將至INV2的鋸齒波形的斜率最大化來實現。最佳斜率最大化VSWING,同時保持PMOS電流源106a及NMOS電流源106b飽和;通常,電壓擺動用相位雜訊換取餘量。在某些實施例中,在VDD為1.0V的情況下,最佳VSWING對於相位雜訊應大於0.6V,且對於餘量應小於0.7V。
電容CL通常為固定的。裝置及寄生互連電容通常足夠大使得無需明確地向CL添加電容。因此,可調整的電流IB為控制VSWING的主要機制。在某些實施例中,IB的覆蓋率應具有至少2:1可程式化動態範圍以適應頻率倍頻程(frequency octave)。應注意,在另一實施例中,IB為固定的,並且CL的可調整值可用作控制VSWING的機制。
需要一種電路來檢測鋸齒波形(諸如波形108)的斜率,其中鋸齒的頻率覆蓋寬範圍。如先前所述,第一級101在輸出OUTN及OUTP處輸出的訊號利用電阻性反饋(具體而言,INV2及INV3)驅動AC耦合反相器。根據某些實施例,反相器INV2、INV3之電阻性反饋可藉由打開開關SW0及SW2來打斷,並且來自D/A轉換器116之DC電壓可用於藉由閉合開關SW1及SW3而在反相器INV2、INV3之輸入IN、IP處設定共模電壓。D/A轉換器116以一受控量來改變共模電壓,以在放大器INV2及INV3之輸出(即,分別為CKOP、CKON)處改變工作週期(duty cycle)失真。將放大器INV2及INV3之輸出(分別為CKOP及CKON)輸入至工作週期量測(duty cycle measurement,DCM)電路119的多工器118。
將放大器INV2、INV3中一者的輸出經由多工器118施加至比較器120。環形振盪器122在矩形波形的週期內執行隨機走步(random walk)以產生訊號CKRO,其作為時脈訊號被施加至比較器120及一對計數器124、126中的每一個。計數器124經配置以對比較器120輸出的COMP訊號變高的次數進行計數;計數器126經配置以對訊號CKRO變高的次數進行計數。將認識到,由環形振盪器122執行的功能可由其他元件/電路系統(包括例如時脈裝置)執行。
如下文將更詳細地描述,當施加至AC耦合反相器INV2、INV3的鋸齒波形的共模被設置為低於VDD/2的一已知電壓時,工作週期為窄1s及寬0s。在操作中,環形振盪器122在矩形波形的週期內執行隨機走步,並且當比較器120之輸出為高位準時,計數器124遞增。計數值CNT1[19:0]及CNT2[19:0]被提供給有限狀態機(finite state machine,FSM) 128。當計數器126之輸出達到預定值(例如,1024)時,計數器124之輸出為低閾值之工作週期的估值。
類似地,當施加至AC耦合反相器的鋸齒波形之共模電壓被設為超過VDD/2之一已知電壓時,工作週期為寬1s及窄0s。如先前所述,環形振盪器122在矩形波形的週期內執行隨機走步,並且當比較器120之輸出為高位準時,計數器124遞增。計數值CNT1[19:0]及CNT2[19:0]被提供給有限狀態機(FSM)128。當計數器126之輸出達到預定值(例如,1024)時,計數器124之輸出為高閾值之工作週期的估值。
根據下文更詳細描述之實施例的特徵,偏置電流IB被調整為導致低閾值之計數器124的輸出與高閾值之計數器124的輸出之間的差值的最小量,此高閾值小於目標整數閾值。
圖3圖示AC耦合反相器INV2之正常運行方式。如圖3圖示,輸出OUTN上之鋸齒波形具有VCM1之共模電壓(圖表302)。在一個實施例中,將VCM1設為VDD/2,使得輸出OUTN處的訊號對稱於VDD及VSS擺動。AC耦合反相器INV2將輸出OUTN上的共模電壓(VCM1)與輸入IN處之共模電壓(VCM2)解耦(圖表304)。在正常運行方式中,閉合開關sw0,使得電阻性反饋能夠從反相器INV2之輸出CKOP至反相器INV2之輸入IN。透過反饋,調整共模電壓VCM2,所以輸出CKOP上訊號的工作週期接近50/50(圖表306)。
相位內插器的轉換速率與偏置電流及電壓擺幅有關,表達式如下:
Figure 02_image001
在沒有電壓截波的情況下,輸出在1/4時脈週期內擺動其全量程電壓。可以藉由改變輸入訊號被施加至反相器INV2的輸入IN的共模電壓,並隨後量測所得矩形波輸出的工作週期,來估算轉換速率。量測兩個施加的共模電壓VCM2之工作週期,其中電壓之間的差值為ΔV。兩個施加的共模電壓VCM2的所量測的工作週期之差用於計算Δ T
在沒有電壓截波的情況下,輸出在第1/4時脈週期內擺動其全量程電壓。可以藉由改變訊號 IN被施加至反相器的共模電壓,並隨後量測所得矩形波輸出的工作週期來估算轉換速率。量測兩個施加的共模電壓之工作週期,其中這些電壓之間的差為Δ V。兩個施加的共模電壓的所量測的工作週期之差用於計算Δ T
AC耦合反相器,諸如反相器INV2、INV3,只要輸入至反相器的訊號為具有有限斜率的週期性波形(例如,正弦波或三角波),則可用作具有可程式化閾電壓的比較器前置放大器。根據本文描述之實施例的特徵,藉由打開開關sw0且閉合開關sw1來停止AC耦合反相器INV2周圍的電阻性反饋,以使得DC電壓能夠由D/A轉換器116施加。
根據本文描述之實施例的特徵,轉換速率可如下進行校正。改變共模電壓VCM2可使輸入IN上的DC電壓相對於反相器INV2的閾值發生移位。圖4圖示具有朝向VSS之共模位準移位的AC耦合反相器INV2的操作。在圖4圖示的實例中,將VCM2設為VLOW(例如,0.4VDD),並假設反相器INV2之電壓閾值為0.5VDD。若在輸入IN處施加具有0.6V擺幅之理想鋸齒波形(圖表402),則在輸出CKOP處的訊號將具有67/33之工作週期(圖表404)。
熟習此項技術者將認識到,AC耦合反相器之功能可由其他元件/電路執行,諸如具有可程式化閾電壓的DC耦合反相器。
在另一實例中,假設反相器之閾電壓被設置為輸入至反相器的鋸齒波形訊號(例如,0.35V)的負峰值(0.2V)與正峰值(0.8V)之間的.25,則從反相器輸出之矩形波訊號的工作週期將為.75/.25,其中擺幅為0.6V。假設使用DCM電路119(圖1A及圖1B)以128個取樣時脈對矩形波訊號進行取樣,理想情況下計數器輸出應為96。
再次参考圖1A及圖1B,其中多工器118的時脈選擇輸入CKSEL被設為0,多工器118將輸出CKOP處的時脈訊號施加至比較器120之輸入。隨機技術用於估算輸出CKOP處訊號的工作週期。當ENMEAS上的訊號從低位準轉換為高位準時,RESETB及ENRO兩者處的訊號變為高位準。此時,計數器124、126都被啟用,環形振盪器122也是如此。CKRO在CKOP週期中實施隨機走步,如圖6所示。計數器126的輸出計數在CKRO的每個上升邊緣遞增,直至達到由N[3:0]設置的閾值;總計數為2 3+ 𝑁 [3:0]。例如,對於N=9,計數器126計數到8192,此時ENRO變為低位準。計數器124僅當CKOP為高位準時遞增。如圖6圖示,輸入工作週期失真(duty cycle distortion,DCD)為67/33,對於相對於反相器閾值的-0.1V共模電壓移位,COUNTLOW中的預期值為8192/3=5461。
接下來,如圖5圖示,VCM2朝VDD移位。在圖5所示之實例中,VCM2被設為VHIGH(例如,0.6VDD)(圖表502)。若輸入IN處的訊號為具有0.6V擺幅之理想鋸齒形,則輸出CKOP處的訊號將具有33/67之工作週期(圖表504)。
在另一實例中,假設反相器之閾電壓被設置為輸入至反相器的鋸齒波訊號(例如,.65V)的負峰值(0.2V)與正峰值(0.8V)之間的.75,則從反相器輸出之矩形波訊號的工作週期將為.25/.75,其中擺幅為0.6V。假設使用DCM電路119(圖1A及圖1B)以128個取樣時脈對矩形波訊號進行取樣,理想情況下計數器輸出應為32。
再次参考圖1A及圖1B,當ENMEAS上的訊號從低位準轉換至高位準時,RESETB及ENRO兩者處的訊號變為高位準。此時,計數器124、126都被啟用,環形振盪器122也是如此。如圖6圖示,輸出CKRO處的訊號在輸出CKOP處訊號的週期內實施隨機走步。計數器122在輸出CKRO處的訊號的每個上升邊緣遞增,直至達到由N[3:0]設置的閾值;總計數為2 3+ 𝑁 [3:0]。例如,對於N=9,計數器126計數到8192,此時ENRO變為低位準。計數器124輸出CKOP處的訊號為高位準。如圖6圖示,其中輸入工作週期失真(DCD)為33/67,當共模相對於反相器閾值移位0.1V時,COUNTHIGH中的預期值=2/3(8192)=2731。
此實例的COUNTHIGH與COUNTLOW之差為2731,這意味著鋸齒波在VDD-0.1V處低閾值與VDD +0.1V處高閾值之間花費了約其週期的1/3。
圖7圖示電流切換反相器INV0、INV1之操作。如圖7圖示,當節點CKREF處之電壓為高位準時,節點OUTIN處之電流為-I B,而節點OUTIP處之電流為+I B。反之,當節點CKREF處之電壓為低位準時,節點OUTIN處之電流為+I B,而節點OUTIN處之電流為-I B
本文描述的架構的益處之一為不需要高解析率D/A轉換器。圖8圖示可用於實施D/A轉換器116(圖1A及圖1B)的示例D/A轉換器900。如圖8圖示,D/A轉換器900僅具有幾個級別,並將用於決定I B的閾值由(|COUNTHIGH-COUNTLOW|)的目標設置。在某些實施例中,D/A轉換器900可用來源於電源之電壓參考自偏壓。
根據本文描述之實施例,在I B上執行二分搜尋演算法用於校正轉換速率,其中控制字元不帶正負號的整數ibslewfs [5:0]。其他搜尋技術,諸如從低至高或從高至低掃描I B,可以作為二分搜尋的替代方案來實施。
在一個實施例中,最小目標的VSWING為0.6VDD以平衡餘量與相位雜訊。以電源為參考的D/A轉換器設置VLOW=0.4VDD及VHIGH=0.6VDD。每次量測的環形振盪器週期的數量為M=2 3+𝑁[3:0]。當VSWING為0.6VDD時,COUNTHIGH與COUNTLOW之差應為COUNTTHRESH=M/3。若輸出OUTN上的擺幅過低,則|COUNTHIGH-COUNTLOW|>COUNTTHRESH。D/A輸出電壓與反相器閾值之間的偏差將導致COUNTLOW及COUNTHIGH分別偏離M/3。然而,此差值消除了這種失配。用於實現演算法實施例的示例擬代碼如下: Ibslewfs=b'000000; ENMEAS=b'0; do bitindex=0 to 5                              // Starts from MSB to LSB. Set Ibslewfs[5-bitindex]=b'1; DAOUT= VLOW; ENSLEWMEAS=b'1; while(~ MEASDONE); COUNTLOW= CNT2o; ENSLEWMEAS=b'0; DAOUT= VHIGH; ENSLEWMEAS=b'1; while(~ MEASDONE); COUNTHIGH= CNT2o; if(( COUNTHIGH- COUNTLOW)< COUNTTHRESH) // signal is too large Set Ibslewfs[5-bitindex]=b'0; Enddo // Guarantee minimum swing DAOUT= VLOW; ENSLEWMEAS=b'1; while(~ MEASDONE); COUNTLOW= CNT2o; ENSLEWMEAS=b'0; DAOUT= VHIGH; ENSLEWMEAS=b'1; while(~ MEASDONE); COUNTHIGH= CNT2o; if( COUNTHIGH- COUNTLOWCOUNTTHRESH) // signal is too small Ibslewfs+= 1;
示例系統及裝置
電路100可以在可能需要CIPI中的轉換速率的分佈量測的任何電子裝置或系統中實現。此種裝置/系統之一些實例在圖10至圖12中示出。
在一些實施例中,電路100可在無線電系統中實施。無線電系統為以約3千赫(kHz)至300吉赫(GHz)之射頻範圍內的電磁波形式發射及接收訊號的系統。無線電系統可用於無數不同的應用,諸如飛機、汽車及工業雷達、蜂窩技術、Wi-Fi及其他短程通訊技術以及軍事應用。一個實例在圖9示出,提供包括射頻收發器1010及基帶積體電路(baseband IC,BBIC)1020之電子裝置1000的示意圖,此基帶積體電路1020例如使用由JESD支援之高速串列介面耦接至射頻收發器1010。在一些實施例中,電路100的部分可在裝置時脈電路系統部件1012中實施,而電路100的其他部分可在JESD 1014中實施。在其他實施例中,電路100的各種部分可被包括在電子裝置1000的其他部分中。
圖10根據本文揭露之任一實施例為示例系統2100的方塊圖,此示例系統可包括配置成在CIPI中量測轉換速率的一或多個系統。例如,系統2100之部件的任一適合者可包括本文揭露之電路100及/或裝置1000中的一或多個。若干部件在圖10中被示為包括在系統2100中,但是這些部件中之任何一或多者可以被省略或複製,只要適合於此應用即可。在一些實施例中,系統2100中包括之一些或所有部件可以附接至一或多個主機板。在一些實施例中,一些或所有這些部件被製作在單個晶片系統(system-on-a-chip,SoC)晶粒上。
另外,在各種實施例中,系統2100可不包括圖10中示出的一或多個部件,但系統2100可包括用於耦接至此一或多個部件的介面電路系統。例如,系統2100可以不包括顯示裝置2106,但可以包括顯示裝置2106可以耦接之顯示裝置介面電路系統(例如,連接器及驅動器電路系統)。在另一組實例中,系統2100可以不包括音訊輸入裝置2118或音訊輸出裝置2108,但可以包括音訊輸入或輸出裝置介面電路系統(例如,連接器及支援電路系統),且音訊輸入裝置2118或音訊輸出裝置2108可以耦接至此音訊輸入或輸出裝置介面電路系統。
系統2100可以包括處理裝置2102(例如,一或多個處理裝置)。如本文所用,術語「處理裝置」或「處理器」可指處理來自暫存器及/或記憶體的電子資料以將此電子資料轉換成可以存儲在暫存器及/或記憶體中的其他電子資料的任何裝置或裝置的一部分。處理裝置2102可以包括一或多個數位訊號處理器(digital signal processors,DSPs)、特定應用積體電路(application-specific integrated circuits,ASICs)、中央處理單元(central processing units,CPUs)、圖形處理單元(graphics processing units,GPUs)、密碼處理器(在硬體內執行密碼演算法的專用處理器)、伺服器處理器、或任何其他適當處理裝置。系統2100可以包括記憶體2104,其自身可包括一或多個記憶體裝置,諸如揮發性記憶體(例如,動態RAM (dynamic RAM,DRAM))、非揮發性記憶體(例如,唯讀記憶體(read-only memory,ROM))、快閃記憶體、固態記憶體、及/或硬碟。在一些實施例中,記憶體2104可包括與處理裝置2102共用晶粒的記憶體。此記憶體可用作高速緩存記憶體,並且可包括嵌入DRAM (embedded DRAM;  eDRAM)或自旋轉移力矩磁RAM (spin transfer torque magnetic RAM; STT-MRAM)。
在一些實施例中,系統2100可包括通訊晶片2112(例如,一或多個通訊晶片)。例如,通訊晶片2112可被配置用於管理無線通訊以將資料往返系統2100傳送。術語「無線」及其衍化物可用於描述電路、裝置、系統、方法、技術、通訊通道等,其可透過使用調制電磁輻射穿過非固體媒體來傳送資料。此術語並不意指相關聯的裝置不包含任何電線,儘管在一些實施例中它們可能不包含電線。
通訊晶片2112可實施若干無線標準或協定中的任一者,包括但不限於電機電子工程師協會(Institute for Electrical and Electronic Engineers,IEEE)標準,包括Wi-Fi(IEEE 802.11系列)、IEEE 802.16標準(例如IEEE 802.16-2005修正案),長期演進技術(Long-Term Evolution,LTE)項目以及任何修訂、更新、及/或修正(例如,高級LTE項目、超移動寬頻(ultra-mobile broadband; UMB)項目(也稱為「3GPP2」)等)。IEEE 802.16相容的寬頻無線接入(Broadband Wireless Access,BWA)網路通常稱為WiMAX網路,代表全球微波接入互通性的首字母縮略詞,這是通過IEEE 802.16標準的一致性及互通性測試的產品的認證標誌。通訊晶片2112可以根據全球行動通訊系統(Global System for Mobile Communication,GSM)、通用封包無線電服務(General Packet Radio Service,GPRS)、全球移動通訊系統(Universal Mobile Telecommunications System,UMTS)、高速封包接取(High Speed Packet Access,HSPA)、演進的HSPA(E-HSPA)、或LTE網路進行操作。通訊晶片2112可根據GSM演進增強資料(Enhanced Data for GSM Evolution,EDGE)、GSM EDGE無線電接取網路(GSM EDGE Radio Access Network,GERAN)、通用地面無線電接取網路(Universal Terrestrial Radio Access Network,UTRAN)、或演進的UTRAN (E-UTRAN)進行操作。通訊晶片2112可以根據碼分多址(Code Division Multiple Access,CDMA)、時分多址(Time Division Multiple Access,TDMA)、數位增強無線通訊(Digital Enhanced Cordless Telecommunications,DECT)、演進資料優化(Evolution-Data Optimized,EV-DO)及其衍生物,以及指定為3G、4G、5G及以上的任何其他無線協定進行操作。通訊晶片2112在其他實施例中可以根據其他無線協定進行操作。系統2100可以包括天線2122以促進無線通訊及/或接收其他無線通訊(諸如AM或FM無線電傳輸)。
在一些實施例中,通訊晶片2112可以管理有線通訊,諸如電子、光學、或任何其他適當的通訊協定(例如,乙太網)。如上文所述,通訊晶片2112可包括多個通訊晶片。例如,第一通訊晶片2112可專用於短程無線通訊,諸如Wi-Fi或藍牙,以及第二通訊晶片2112可專用於長程無線通訊,諸如全球定位系統(global positioning system,GPS)、EDGE、GPRS、CDMA、WiMAX、LTE、EV-DO,或其他。在一些實施例中,第一通訊晶片2112可專用無線通訊,以及第二通訊晶片2112可專用於有線通訊。
系統2100可以包括電池/電源電路系統2114。電池/電源電路系統2114可以包括一或多個儲能裝置(例如,電池或電容器)及/或電路系統,用於將系統2100之部件耦接至與系統2100分開的能源(例如,AC線路功率)。
系統2100可以包括顯示裝置2106(或對應介面電路系統,如上文論述)。顯示裝置2106可以包括任何視覺指示器,諸如平視顯示器、電腦監測器、投影器、觸屏顯示器、液晶顯示器(liquid crystal display,LCD)、發光二極體顯示器、或平板顯示器。
系統2100可以包括音訊輸出裝置2108(或對應介面電路系統,如上文論述)。音訊輸出裝置2108可以包括產生聲示器的任何裝置,諸如喇叭、頭戴式耳機、或耳塞。
系統2100可以包括音訊輸入裝置2118(或對應介面電路系統,如上文論述)。音訊輸入裝置2118可以包括產生表示聲音之一訊號的任何裝置,諸如麥克風、麥克風陣列、或數位儀器(例如,具有樂器數位介面(musical instrument digital interface,MIDI)輸出的儀器)。
系統2100可以包括GPS裝置2116(或對應介面電路系統,如上文論述)。GPS裝置2116可與星載系統通訊,並且可以接收系統2100的位置,如本領域已知的。
系統2100可以包括另一輸出裝置2110(或對應介面電路系統,如上文論述)。另一輸出裝置2110的實例可以包括音訊編解碼器、視訊編解碼器、列印機、用於將資訊提供給其他裝置的有線或無線發射機、或額外儲存裝置。
系統2100可以包括另一輸入裝置2120(或對應介面電路系統,如上文論述)。其他輸入裝置2120的實例可以包括加速表、陀螺儀、指南針、影像捕獲裝置、鍵盤、游標控制裝置諸如滑鼠、尖筆、觸控板、條碼讀出器、快速回應(Quick Response,QR)代碼讀出器、任何感測器或射頻識別(radio frequency identification,RFID)讀出器。
系統2100可具有任何期望形成因素,諸如手提式或移動電子裝置(例如,手機、智慧型電話、移動互連裝置、音樂播放機、平板電腦、膝上型電腦、上網本電腦、超級本電腦、個人數位助理(personal digital assistant,PDA)、超移動個人電腦等)、桌上型電子裝置、伺服器裝置或其他聯網計算部件、列印機、掃描器、監測器、機上盒、娛樂控制單元、車輛控制單元、數位照相機、數位視訊記錄器、或可穿戴電子裝置。在一些實施例中,系統2100可為處理資料的任何其他電子裝置。
圖11根據本文揭露之任一實施例為示例射頻裝置2200的方塊圖,此裝置可包括具有配置成在CIPI中提供轉換速率量測之一或多個系統的一或多個部件。例如,射頻裝置2200的部件中的任意適合者可包括一晶粒,此晶粒包括根據本文揭露之任一實施例經配置以在CIPI中提供轉換速率量測的至少一個系統或其部分。在一些實施例中,射頻裝置2200可被包括在系統2100的任意部件內,如參考圖10描述,或可耦接至系統2100的任意部件,例如,耦接至系統2100的記憶體2104及/或耦接至系統2100的處理裝置2102。在另外實施例中,射頻裝置2200可進一步包括参考圖10描述的任意部件,諸如但不限於電池/電源電路2114、記憶體2104、及圖10所示之各種輸入及輸出裝置。
一般而言,射頻裝置2200可為可支援以約3千赫(kHz)至300吉赫(GHz)之射頻範圍內之電磁波形式無線發射及/或接收訊號的任何裝置或系統。在一些實施例中,射頻裝置2200可以用於無線通訊,例如,在任何合適之蜂巢無線通訊技術(諸如,GSM、WCDMA或LTE)之基站(BS)或用戶設備(UE)裝置中。在另一實例中,射頻裝置2200可以用作毫米波無線技術之BS或UE裝置或在其中使用,此毫米波無線技術為諸如第五代(5G)無線(即高頻/短波長頻譜,例如具有在約20GHz與60GHz之間之頻率,對應於在約5毫米與15毫米之間之波長)。在又一實例中,射頻裝置2200可以用於使用Wi-Fi技術(例如,2.4GHz之一頻帶,對應於約12 cm之一波長,或者5.8GHz之一頻帶,頻譜,對應於約5cm之一波長)之無線通訊,例如,在Wi-Fi賦能裝置中,諸如桌上型電腦、膝上型電腦、視訊遊戲控制台、智慧型電話、平板電腦、智慧型TV、數位音訊播放機、汽車、列印機等。在一些實施方式中,Wi-Fi賦能裝置可例如為用以與其他節點通訊資料的智慧型系統中的節點,例如,智慧型感測器。仍然在另一實例中,射頻裝置2200可以用於使用藍牙技術(例如,約2.4GHz至約2.485GHz之一頻帶,對應於約12cm之一波長)之無線通訊。在其他實施例中,射頻裝置2200可以用於發射及/或接收射頻訊號,用於除通訊之外之目的,例如,在汽車雷達系統中,或者在諸如磁共振成像(MRI)等醫療應用中。
在各種實施例中,射頻裝置2200可以被包括在可以在蜂巢網路中使用之頻率分配之頻分雙工(FDD)或時域雙工(TDD)變體中。在FDD系統中,上行鏈路(即,自UE裝置發射至BS之射頻訊號)及下行鏈路(即,自BS發射至US裝置之射頻訊號)可以同時使用分離之頻帶。在TDD系統中,上行鏈路與下行鏈路可以使用相同之頻率,但是在不同的時間。
若干部件在圖11中被示為包括在射頻裝置2200中,但是此些部件中之任何一或多者可以被省略或複製,只要適合於此應用即可。例如,在一些實施例中,射頻裝置2200可為支援射頻訊號之無線發射及接收之一射頻裝置(例如,射頻收發器),在此種情況下,其可以包括本文稱為發射(transmit,TX)路徑之部件及本文稱為接收(receive,RX)路徑之部件。然而,在其他實施例中,射頻裝置2200可為僅支援無線接收之一射頻裝置(例如,射頻接收器),在此種情況下,其可以包括接收路徑之部件,但不包括發射路徑之部件;或者射頻裝置2200可為僅支援無線發射之射頻裝置(例如,射頻發射器),在此種情況下,其可以包括發射路徑之部件,但不包括接收路徑之部件。
在一些實施例中,射頻裝置2200中包括之一些或所有部件可以附接至一或多個主機板。在一些實施例中,一些或所有此些部件被製作在單個晶粒上,例如,在單個晶片系統(SoC)晶粒上。
另外,在各種實施例中,射頻裝置2200可不包括圖11中示出的一或多個部件,但射頻裝置2200可包括用於耦接至此一或多個部件的介面電路系統。例如,射頻裝置2200可不包括天線2202,但可包括天線2202可以耦接之天線介面電路系統(例如,匹配電路系統、連接器及驅動器電路系統)。在另一組實例中,射頻裝置2200可不包括數位處理單元2208或本地振盪器2206,但可包括裝置介面電路系統(例如,連接器及支援電路系統),且數位處理單元2208或本地振盪器2206可以耦接至此裝置介面電路系統。
如圖11所示,射頻裝置2200可包括天線2202、雙工器2204、本地振盪器2206、數位處理單元2208。同樣如圖11所示,射頻裝置2200可包括接收路徑,此接收路徑可包括接收路徑放大器2212、接收路徑預混合濾波器2214、接收路徑混頻器2216、接收路徑後混合濾波器2218及類比數位轉換器(ADC)2220。如圖11進一步所示,射頻裝置2200可包括發射路徑,此發射路徑可包括發射路徑放大器2222、發射路徑後混合濾波器2224、發射路徑混頻器2226、發射路徑預混合濾波器2228及數位類比轉換器(DAC)2230。更進一步,射頻裝置2200可進一步包括阻抗調配器2232、射頻開關2234、及控制邏輯2236。在各種實施例中,射頻裝置2200可包括圖11中示出的任一部件的多個例子。在一些實施例中,接收路徑放大器2212、發射路徑放大器2222、雙工器2204及射頻開關2234可以被認為形成射頻裝置2200之射頻前端(FE),或者是其一部分。在一些實施例中,接收路徑放大器2212、發射路徑放大器2222、雙工器2204及射頻開關2234可以被認為形成射頻裝置2200之射頻前端,或者是其一部分。在一些實施例中,接收路徑混頻器2216及發射路徑混頻器2226(可能具有圖11所示之與其關聯的預混合濾波器及後混合濾波器)可被認為形成射頻裝置2200之射頻收發器,或者是其一部分(或者若分別僅有接收路徑或發射路徑部件被包括在射頻裝置2200中,則為射頻接收器或射頻發射器)。在一些實施例中,射頻裝置2200可以進一步包括一或多個控制邏輯元件/電路,在圖11中顯示為控制邏輯2236,例如射頻前端控制介面。在一些實施例中,控制邏輯2236可經配置以控制任何系統之操作的至少部分,此系統經配置以在射頻裝置2200之任何部件內的CIPI(如本文描述)中提供轉換速率量測。在一些實施例中,控制邏輯2236可以用於執行射頻裝置2200內之其他功能控制,例如,增強複雜射頻系統環境之控制、支援包絡跟蹤技術之實施方式、降低耗散功率等。
天線2202可以經配置以根據任何無線標準或協定(例如Wi-Fi、LTE或GSM)以及被指定為3G、4G、5G及以上之任何其他無線協定,無線地發射及/或接收射頻訊號。若射頻裝置2200為FDD收發器,則天線2202可以經配置用於在分離之(即,不重疊及不連續之)頻帶中,例如在彼此分離例如20MHz之頻帶中,同時接收及發射通訊訊號。若射頻裝置2200為TDD收發器,則天線2202可以經配置用於在發射及接收路徑可能相同或重疊之頻帶中依序接收及發射通訊訊號。在一些實施例中,射頻裝置2200可為多頻帶射頻裝置,在此種情況下,天線2202可以被配置用於同時接收在分離頻帶中具有多個射頻分量之訊號及/或被配置用於同時發射在分離頻帶中具有多個射頻分量之訊號。在此類實施例中,天線2202可為單個寬帶天線或複數個特定頻帶天線(即,複數條天線,每條天線經配置以接收及/或發射一特定頻帶中之訊號)。在各種實施例中,天線2202可以包括複數個天線元件,例如,形成相控天線陣列之複數個天線元件(即,可以使用複數個天線元件及相移來發射及接收射頻訊號之通訊系統或天線陣列)。與單天線系統相比,相控天線陣列可以提供諸如增加增益、轉向操縱能力及同時通訊等優點。在一些實施例中,射頻裝置2200可以包括多於一條天線2202來實現天線分集。在一些此類實施例中,射頻開關2234可以被部署成在不同天線之間開關。
天線2202之輸出可以耦接至雙工器2204之輸入。雙工器2204可為被配置用於對多個訊號進行濾波以容許在雙工器2204與天線2202之間之單個路徑上進行雙向通訊的任何合適部件。雙工器2204可以被配置用於向射頻裝置2200之接收路徑提供接收訊號,並且自射頻裝置2200之發射路徑接收發射訊號。
射頻裝置2200可以包括一或多個本地振盪器2206,其經配置以提供本地振盪器訊號,此些本地振盪器訊號可以用於對由天線2202接收之射頻訊號進行降頻轉換及/或對待由天線2202發射之訊號進行增頻轉換。
射頻裝置2200可以包括數位處理單元2208,其可以包括一或多個處理裝置。在一些實施例中,數位處理單元2208可被實施作為圖10所示之處理裝置2102,上文描述了此數位處理單元(當用作數位處理單元2208時,處理裝置2102可實施,但不一定必須實施經配置以在本文所述之CIPI中提供轉換速率量測之任何系統)。數位處理單元2208可以經配置以執行與接收及/或發射訊號之數位處理相關的各種功能。此種功能之實例包括但不限於抽取/降取樣、誤差校正、數位降頻轉換或增頻轉換、DC偏差消除、自動增益控制等。儘管圖11中未示出,但在一些實施例中,射頻裝置2200可進一步包括記憶體裝置,例如,參考圖10描述的記憶體裝置2104,其經配置以與數位處理單元2208協作。當在射頻裝置2200內使用或耦接至射頻裝置2200時,記憶體裝置2104可以實施,但不一定必須實施配置以在本文所述之CIPI中提供轉換速率量測的任何系統。
轉至可以包括在射頻裝置2200中之接收路徑之細節,接收路徑放大器2212可以包括低雜訊放大器(low-noise amplifier,LNA)。接收路徑放大器2212之輸入可以例如經由雙工器2204耦接至天線2202的天線埠(未示出)。接收路徑放大器2212可以放大由天線2202接收之射頻訊號。
接收路徑放大器2212之輸出可以耦接至接收路徑預混合濾波器2214之輸入,其可為諧波或帶通(例如,低通)濾波器,其經配置以對已經被接收路徑放大器2212放大之所接收射頻訊號進行濾波。
接收路徑預混合濾波器2214之輸出可以耦接至接收路徑混頻器2216(亦被稱為降頻轉換器)之輸入。接收路徑混頻器2216可以包括兩個輸入及一個輸出。第一輸入可以經配置以接收指示由天線2202接收之訊號的接收訊號,此些接收訊號可為電流訊號(例如,第一輸入可以接收接收路徑預混合濾波器2214之輸出)。第二輸入可以經配置以自本地振盪器2206之一接收本地振盪器訊號。隨後,接收路徑混頻器2216可以混合在其兩個輸入接收之訊號,以產生在接收路徑混頻器2216之輸出處提供的降頻轉換接收訊號。如本文所使用的,降頻轉換是指將所接收射頻訊號與本地振盪器訊號混合以產生一較低頻率訊號的製程。特別地,發射路徑混頻器(例如,降頻轉換器)2216可以經配置以當在兩個輸入埠提供兩個輸入頻率時,在輸出埠產生和頻率及/或差頻率。在一些實施例中,射頻裝置2200可以實施直接轉換接收器(direct-conversion receiver,DCR),亦稱為零差、同步或零中頻接收器,在此種情況下,接收路徑混頻器2216可以經配置以使用本地振盪器訊號解調輸入之無線電訊號,本地振盪器訊號之頻率等於或非常接近無線電訊號之載波頻率。在其他實施例中,射頻裝置2200可以利用降頻轉換至中頻(intermediate frequency,IF)。中頻可用於超外差無線電接收器,其中在完成所接收訊號中資訊之最終檢測之前,所接收射頻訊號被移位至中頻。出於若干原因,轉換至中頻可能有用。例如,當使用若干級濾波器時,其皆可以設置為固定頻率,這使得此些濾波器更容易構建及調諧。在一些實施例中,接收路徑混頻器2216可以包括若干此種中頻轉換級。
儘管在圖11之接收路徑中示出單個接收路徑混頻器2216,但在一些實施例中,接收路徑混頻器2216可以被實施作為正交降頻轉換器,在此種情況下,其將包括第一接收路徑混頻器及第二接收路徑混頻器。第一接收路徑混頻器可以被配置用於執行降頻轉換,以藉由混合由天線2202接收之接收訊號與由本地振盪器2206提供之本地振盪器訊號之同相分量來產生同相(I)降頻轉換接收訊號。第二接收路徑混頻器可以被配置用於執行降頻轉換,以藉由混合由天線2202接收之接收訊號與由本地振盪器2206提供之本地振盪器訊號之正交分量(正交分量為與本地振盪器訊號之同相分量在相位上偏置90度之分量)來產生正交(Q)降頻轉換接收訊號。第一接收路徑混頻器之輸出可以被提供給I訊號路徑,並且第二接收路徑混頻器之輸出可以被提供給Q訊號路徑,此Q訊號路徑可以與I訊號路徑相差為實質上90度。
可選地,接收路徑混頻器2216之輸出可以耦接至接收路徑後混合濾波器2218,其可為低通濾波器。在接收路徑混頻器2216為如上所述實施第一混頻器及第二混頻器之正交混頻器的情況下,分別在第一混頻器及第二混頻器之輸出提供之同相及正交分量可以耦接至濾波器2218中包括之相應單獨之第一接收路徑後混合濾波器及第二接收路徑後混合濾波器。
ADC 2220可以經配置以將來自接收路徑混頻器2216之混合接收訊號自類比域轉換為數位域。ADC 2220可為正交ADC,其類似於接收路徑正交混頻器2216,可以包括兩個ADC,其經配置以將在同相分量及正交分量中分離之降頻轉換接收路徑訊號數位化。ADC 2220之輸出可以被提供給數位處理單元2208,數位處理單元2208經配置以執行與接收訊號之數位處理相關的各種功能,使得可以提取在接收訊號中編碼之資訊。
轉至可以包括在射頻裝置2200中之發射路徑之細節,稍後由天線2202發射之數位訊號(發射訊號)可以自數位處理單元2208提供給DAC 2230。類似於ADC 2220,DAC 2230可以包括兩個DAC,其經配置以分別將數位I及Q路徑發射訊號分量轉換為類比形式。
可選地,DAC 2230之輸出可以耦接至發射路徑預混合濾波器2228,其可為一帶通(例如,低通)濾波器(或者在正交處理之情況下,一對帶通(例如,低通)濾波器),其經配置以自DAC 2230輸出之類比發射訊號中濾除期望頻帶之外的訊號分量。數位發射訊號隨後可以被提供給發射路徑混頻器2226,其亦可以被稱為增頻轉換器。類似於接收路徑混頻器2216,發射路徑混頻器2226可以包括一對發射路徑混頻器,用於同相及正交分量混合。類似於可包括在接收路徑中之第一接收路徑混頻器及第二接收路徑混頻器,發射路徑混頻器2226之每一發射路徑混頻器可包括兩個輸入及一個輸出。第一輸入可以接收由相應之DAC 2230轉換成類比形式的發射訊號分量,此些訊號分量將被增頻轉換以產生待發射之射頻訊號。第一發射路徑混頻器可以藉由將由DAC 2230轉換成類比形式之發射訊號分量與自本地振盪器2206(在各種實施例中,本地振盪器2206可以包括複數個不同本地振盪器,或者經配置以向接收路徑中之混頻器2216及發射路徑中之混頻器2226提供不同本地振盪器頻率)提供之發射路徑本地振盪器訊號之同相分量進行混合來產生同相(I)增頻轉換訊號。第二發射路徑混頻器可以藉由將由DAC 2230轉換成類比形式之發射訊號分量與發射路徑本地振盪器訊號之正交分量進行混合來產生正交相位(Q)增頻轉換訊號。第二發射路徑混頻器之輸出可以加至第一發射路徑混頻器之輸出,以產生真實射頻訊號。每個發射路徑混頻器之第二輸入可以耦接至本地振盪器2206。
可選地,射頻裝置2200可以包括發射路徑後混合濾波器2224,其經配置以對發射路徑混頻器2226之輸出進行濾波。
發射路徑放大器2222可為功率放大器(PA),其經配置以在將增頻轉換之射頻訊號提供給天線2202用於發射之前將其放大。
在各種實施例中,接收路徑預混合濾波器2214、接收路徑後混合濾波器2218、發射後混合濾波器2224及發射預混合濾波器2228中之任一者皆可以被實施作為射頻濾波器。在一些實施例中,射頻濾波器可以被實施作為複數個射頻濾波器或一濾波器組。一濾波器組可以包括複數個射頻濾波器,此些射頻濾波器可以耦接至一開關,例如射頻開關2234,其經配置以選擇性地打開及關閉複數個射頻濾波器中之任一者(例如,啟動此些射頻濾波器中之任一者),以便達成濾波器組之期望濾波特性(即,以便將濾波器組程式化)。例如,當射頻裝置2200為BS或UE裝置或包括在其中時,此種濾波器組可以用於在不同射頻頻率範圍之間切換。在另一實例中,此種濾波器組可經程式化以抑制不同雙工距離上之發射洩漏。
阻抗調諧器2232可以包括任何合適之電路系統,其經配置以匹配不同射頻電路系統之輸入及輸出阻抗,以最小化射頻裝置2200中之訊號損耗。例如,阻抗調諧器2232可以包括天線阻抗調諧器。能夠調諧天線2202之阻抗可能特別有利,此乃因天線之阻抗為射頻裝置2200所處環境之一函數,例如,天線之阻抗根據例如天線是否握在手中、放置在車頂上等而變化。
如上所述,射頻開關2234可為經配置以透過傳輸路徑佈線高頻訊號的裝置,例如,以便在圖11所示之任一部件的複數個例子之間選擇性地切換,例如,以實現射頻裝置2200之期望行為及特性。例如,在一些實施例中,射頻開關可以用於在不同天線2202之間切換。在其他實施例中,射頻開關可以用於在射頻裝置2200之複數個射頻濾波器之間切換(例如,藉由選擇性地打開及關閉射頻濾波器)。通常,射頻系統將包括複數個此種射頻開關。
射頻裝置2200提供一種簡化版本,並且在其他實施例中可包括未在圖11中具體示出的其他部件。例如,射頻裝置2200之接收路徑可以包括在接收路徑混頻器2216與ADC 2220之間的電流-電壓放大器,其可以經配置以放大降頻轉換訊號並將降頻轉換訊號轉換成電壓訊號。在另一實例中,射頻裝置2200之接收路徑可以包括用於產生平衡訊號之平衡不平衡變壓器。在又一實例中,射頻裝置2200可以進一步包括時脈產生器,其可以例如包括合適PLL,其經配置以接收參考時脈訊號並使用其來產生不同時脈訊號,此時脈訊號隨後可以用於對ADC 2220、DAC 2230之操作進行定時,及/或亦可以被本地振盪器2206用來產生要在接收路徑或發送路徑中使用之本地振盪器訊號。一或多個系統經配置以在本文所述之CIPI中提供轉換速率量測,可被包括以在CIPI中提供轉換速率量測用於此些部件中一或多者的操作。
示例資料處理系統
圖12根據本揭露之一些實施例提供圖示示例資料處理系統2300的方塊圖,此示例資料處理系統可經配置以控制配置成在CIPI中提供轉換速率量測的一或多個系統之操作。例如,資料處理系統2300可經配置以實施或控制如本文所述之電路100及/或裝置1000之部分。在一些實施例中,資料處理系統2300可以經配置以實施圖11所示之控制邏輯2236。
如圖12所示,資料處理系統2300可包括至少一個處理器2302,例如,透過系統匯流排2306耦接至記憶體元件2304的硬體處理器2302。如此,資料處理系統可以將程式代碼儲存在記憶體元件2304中。此外,處理器2302可以執行經由系統匯流排2306自記憶體元件2304存取之程式代碼。在一個態樣中,資料處理系統可以被實施作為適於儲存及/或執行程式代碼之電腦。然而,應理解,資料處理系統2300可以以任何系統之形式實施,此系統包括能夠執行本揭露中描述之功能的處理器及記憶體。
在一些實施例中,處理器2302可以執行軟體或演算法來執行本揭露中論述之活動,特別是與在CIPI中提供轉換速率量測相關的活動,如本文所述。處理器2302可以包括提供可程式化邏輯之硬體、軟體或韌體之任何組合,包括但不限於微處理器、數位訊號處理器(DSP)、現場可程式化閘陣列(FPGA)、可程式化邏輯陣列(PLA)、特定應用IC (ASIC)或虛擬機處理器。處理器2302可以通訊地耦接至記憶體元件2304,例如在直接記憶體存取(DMA)配置中,使得處理器2302可以自記憶體元件2304讀取或者向記憶體元件2304寫入。
一般而言,記憶體元件2304可以包括任何合適之揮發性或非揮發性記憶體技術,包括雙資料速率(double data rate,DDR)隨機存取記憶體(random access memory,(RAM))、同步RAM (SRAM)、動態RAM (DRAM)、快閃、唯讀記憶體(ROM)、光學媒體、虛擬記憶體區域、磁性或磁帶記憶體或任何其他合適之技術。除非另有說明,否則本文論述之任何記憶體元件皆應被解釋為包含在廣義術語「記憶體」中。被量測、處理、跟蹤或發送至資料處理系統2300之任何部件或自其發送的資訊可以在任何資料庫、暫存器、控制列表、快取或儲存結構中提供,所有此些結構皆可以在任何合適之時間範圍內被引用。任何此種儲存選項皆可以包括在本文使用之廣義術語「記憶體」中。類似地,本文描述之任何可能處理元件、模組及機器應被解釋為包含在廣義術語「處理器」中。本附圖中示出之每個元件,例如,電路100及/或裝置1000之任意元件,亦可包括用於在網路環境中接收、發射、及/或以其他方式通訊資料或資訊的適合介面,以便它們可以與例如資料處理系統2300通訊。
在某些示例實施方式中,用於在如本文概述的CIPI中實現轉換速率量測的機構可藉由在一或多個有形媒體中編碼的邏輯來實施,此媒體可包括非暫態媒體,例如,ASIC中提供的嵌入邏輯、DSP指令、由處理器執行的軟體(可能包括目標代碼及源代碼)、或其他類似機器等。在其中一些例子中,記憶體元件,諸如圖12中所示之記憶體元件2304,可儲存用於本文所述操作的資料或資訊。這包括能夠儲存被執行以進行本文所述活動的軟體、邏輯、代碼、或處理器指令之記憶體元件。處理器可以執行與資料或資訊相關聯之任何類型的指令,以實現本文詳述之操作。在一個實例中,處理器,諸如圖12所示之處理器2302,可以將元件或製品(例如,資料)從一個狀態或事物轉換至另一狀態或事物。在另一實例中,本文概述之活動可以用固定邏輯或可程式化邏輯(例如,由處理器執行之軟體/電腦指令)來實施,並且本文識別之元件可為某種類型之可程式化處理器、可程式化數位邏輯(例如,FPGA、DSP、可擦除可程式化唯讀記憶體(erasable programmable read-only memory,EPROM)、電可擦除可程式化唯讀記憶體(electrically erasable programmable read-only memory,EEPROM))或包括數位邏輯、軟體、代碼、電子指令或其任何合適組合之ASIC。
記憶體元件2304可以包括一或多個物理記憶體裝置,例如本地記憶體2308及一或多個大容量儲存裝置2310。本地記憶體可以指在程式代碼之實際執行期間通常使用的RAM或其他非持久記憶體裝置。大容量儲存裝置可以被實施作為硬盤驅動機或其他持久資料儲存裝置。處理系統2300還可以包括一或多個快取記憶體(未示出),其提供至少一些程式代碼之臨時儲存,以便減少在執行期間必須自大容量儲存裝置2310檢索程式代碼之次數。
如圖12所示,記憶體元件2304可以儲存應用2318。在各種實施例中,應用2318可以儲存在本地記憶體2308、一或多個大容量儲存裝置2310中,或者與本地記憶體及大容量儲存裝置分開。應當理解,資料處理系統2300可以進一步執行作業系統(圖12中未示出),此作業系統可以促進應用2318之執行。應用2318,以可執行程式代碼來實施,可由資料處理系統2300,例如,由處理器2302來執行。響應於執行此應用,資料處理系統2300可經配置以執行本文所述之一或多個操作或方法步驟。
可選地,被描述為輸入裝置2312及輸出裝置2314之輸入/輸出(Input/output; I/O)裝置可以耦接至資料處理系統。輸入裝置之實例可以包括但不限於鍵盤、諸如滑鼠等定點裝置等。輸出裝置之實例可以包括但不限於監視器或顯示器、揚聲器等。在一些實施例中,輸出裝置2314可為任何類型之螢幕顯示器,諸如電漿顯示器、液晶顯示器(LCD)、有機發光二極體(OLED)顯示器、電致發光(EL)顯示器或任何其他指示器,諸如刻度盤、氣壓計或LED。在一些實施方式中,系統可以包括用於輸出裝置2314之驅動器(未示出)。輸入及/或輸出裝置2312、2314可以直接或藉由中間輸入/輸出控制器耦接至資料處理系統。
在實施例中,輸入及輸出裝置可以被實施作為組合輸入/輸出裝置(圖12中用圍繞輸入裝置2312及輸出裝置2314之虛線圖示)。此種組合裝置之實例為觸敏顯示器,有時亦稱為「觸控螢幕顯示器」或簡稱為「觸控螢幕」。在此種實施例中,對裝置之輸入可以藉由在觸控螢幕顯示器上或附近移動物理對象,例如尖筆或用戶之手指來提供。
可選地,網路配接器2316亦可以耦接至資料處理系統,以使其能夠藉由中間私有或公共網路耦接至其他系統、電腦系統、遠端網路裝置及/或遠端儲存裝置。網路配接器可以包括用於接收由所述系統、裝置及/或網路發送至資料處理系統2300之資料的資料接收器,以及用於將資料自資料處理系統2300發送至所述系統、裝置及/或網路的資料發送器。數據機、電纜數據機及乙太網卡為可以與資料處理系統2300一起使用之不同類型的網路配接器之實例。
實例
實例1為一種設備,包括具有可程式化偏置電流之電流積分相位內插器核心;AC耦合反相器電路,耦接至電流積分相位內插器核心的輸出以用於從其接收包括週期性鋸齒波形的訊號;數位類比(D/A)轉換器,用於設定AC耦合反相器電路之輸入共模電壓;工作週期量測(DCM)電路,用於量測從AC耦合反相器電路輸出之時脈訊號的工作週期失真(DCD);以及一電路,用於在反相器電路之輸入共模電壓被設置至高電壓及反相器電路之輸入共模電壓被設置至低電壓時,計算時脈訊號之DCD中的差值。
在實例2中,實例1之設備可進一步包括一電路,用於比較所計算之差值與閾值,並基於此比較調整可程式化偏置電流的位準。
在實例3中,實例1至實例2中任一者之設備可進一步包括,若所計算之差值大於閾值,則增大可程式化偏置電流之位準。
在實例4中,實例1至實例3中任一者之設備可進一步包括,若所計算之差值小於閾值,則降低可程式化偏置電流之位準。
在實例5中,實例1至實例4中任一者之設備可包括反相器電路,其進一步包括具有輸入及輸出之反相器;及經由第一開關耦接在此輸入與輸出之間的電阻器,此電阻器用於在閉合第一開關時將直流(DC)反饋從輸出提供至輸入。
在實例6中,實例1至實例5中任一者之設備可進一步包括反相器電路,其進一步包括第二開關,用於在開啟第一開關且閉合第二開關時選擇性地將D/A轉換器耦接至反相器的輸入。
在實例7中,實例1至實例6中任一者之設備可進一步包括DCM電路,其包括用於在自反相器電路輸出之時脈訊號的取樣週期中執行隨機走步的時脈電路。
在實例8中,實例1至實例7中任一者之設備可進一步包括DCM電路,其包括具有一輸入之比較器,此輸入包括從反相器電路輸出之時脈訊號的緩衝版本。
在實例9中,實例1至實例8中任一者之設備可進一步包括為比較器產生時脈訊號的時脈電路。
在實例10中,實例1至實例9中任一者之設備可進一步包括DCM電路,其包括在比較器之輸出為高時遞增的計數器。
在實例11中,實例1至實例10中任一者之設備可進一步包括DCM電路,其包括在由時脈電路產生的時脈訊號的每個取樣邊緣遞增的計數器。
在實例12中,實例1至實例11中任一者之設備可進一步包括電流積分相位內插器核心,其包括電流切換反相器。
實例13為一種設備,包括具有可程式化偏置電流之電流積分相位內插器核心;反相器電路,耦接至此電流積分相位內插器核心的輸出以用於從其接收包括週期性鋸齒波形的訊號,反相器電路進一步包括具有輸入及輸出之一反相器及用於將數位類比(D/A)轉換器選擇性地耦接至此反相器之輸入的一開關,用於將反相器電路之輸入共模電壓設置為高壓及低壓中的一個;工作週期量測(DCM)電路,用於量測從反相器電路輸出之時脈訊號的工作週期失真(DCD);以及一電路,用於在反相器電路之輸入共模電壓被設置至高壓及反相器電路之輸入共模電壓被設置至低壓時計算時脈訊號之DCD中的差值,及比較所計算的差值與閾值並基於此比較調整可程式化偏置電流的位準。
在實例14中,實例13之設備可進一步包括,若所計算之差值大於閾值,則增大可程式化偏置電流之位準。
在實例15中,實例13至實例14中任一者之設備可進一步包括,若所計算之差值小於閾值,則降低可程式化偏置電流之位準。
在實例16中,實例13至實例15中任一者之設備可進一步包括一時脈電路,用於在自反相器電路輸出之時脈訊號的取樣週期中執行隨機走步;及具有一輸入之比較器,此輸入包括從反相器電路輸出之時脈訊號的緩衝版本。
在實例17中,實例13至實例16中任一者之設備可進一步包括為比較器產生時脈訊號的時脈電路。
在實例18中,實例13至實例17中任一者之設備可進一步包括DCM電路,其包括在比較器之輸出為高時遞增的第一計數器,及在由時脈電路產生的時脈訊號的每個取樣邊緣遞增的第二計數器。
實例19為一種在電流積分相位內插器(CIPI)中量測轉速速率的方法,此電流積分相位內插器具有可程式化偏置電流,此方法包括:將反相器之共閾電壓設置為低位準;在反相器對應於低位準共閾電壓的輸出處量測訊號的第一工作週期失真(DCD);將AC耦合反相器之共閾電壓設置為高位準;在反相器對應於高位準共閾電壓之輸出處量測訊號的第二DCD;比較第一及第二DCD與閾值之間的差值;以及基於此比較的結果調整CIPI的可程式化偏置電流。
在實例20中,實例19的方法可進一步包括調整步驟,包括若差值大於閾值則增大可程式化偏置電流的位準及若差值小於閾值則降低可程式化偏置電流的位準。
變體及實施方式
儘管上文參考本文所示之示例性實施方式描述了本揭露之實施例,但是熟習此項技術者將認識到,上述各種教導可應用於各種其他實施方式。
在以上實施例之論述中,系統之部件,諸如組合器/相加器、正反器、多工器、及/或其他部件可以容易地被替換、取代或以其他方式修改,以適應特定電路系統之需求。此外,應當注意,互補電子裝置、硬體、軟體等的使用為實現本揭露之教導提供了同樣可行的選擇,此教導與在CIPI中提供轉換速率量測相關。
如本文所述,用於在CIPI中實施轉換速率量測的各種系統的零件可以包括用於執行本文描述之功能的电子電路系統。在一些情況下,系統之一或多個零件可以由專門配置用於執行本文描述之功能的處理器來提供。例如,處理器可以包括一或多個特定應用部件,或者可以包括經配置以執行本文描述之功能的可程式化邏輯閘。電路系統可以在類比域、數位域或混合訊號域中操作。在一些情況下,處理器可以經配置以藉由執行儲存在非暫時性電腦可讀儲存媒體上之一或多個指令來執行本文描述的功能。
在一些實施例中,可以在相關聯電子裝置的板上實現圖式之任意數目的電路。板可以是通用電路板,所述通用電路板可以容納電子裝置的內部電子系統的各種部件,並且進一步為其他週邊設備提供連接器。更具體地,板可以提供電連接,藉由此電連接,系統的其他部件可以進行電通訊。任何合適的處理器(包括DSP、微處理器、支援晶片組等)、電腦可讀非暫時性記憶體元件等可基於特定配置需求、處理需求、電腦設計等適當地耦接至板。其他部件,諸如外部儲存器、附加感測器、用於音訊/視訊顯示器的控制器及週邊裝置可以作為外掛程式卡、經由電纜附接至板上,或者集成到板本身上。在各種實施例中,本文描述之功能可以以模擬形式實施作為在以支援此些功能之結構佈置的一或多個可配置(例如,可程式化)元件內運行之軟體或韌體。提供模擬之軟體或韌體可以在包括指令之非暫時性電腦可讀取儲存媒體上提供,以容許處理器執行此些功能。
在一些實施例中,圖式之電路可以被實施作為獨立模組(例如,具有經配置以執行特定應用或功能之相關部件及電路系統的裝置),或者被實施作為電子裝置之特定應用硬體中的外掛程式模組。注意,本揭露之特定實施例可以部分或全部容易地包括在晶片系統(SOC)封裝中。SOC表示將電腦或其他電子系統之部件整合至單個晶片中的積體電路。它可以包含數位、類比、混合訊號以及通常射頻功能:所有此些功能皆可以在單個晶片基板上提供。其他實施例可以包括多晶片模組(MCM),複數個分離之IC位於單個電子封裝內,並且經配置以透過電子封裝彼此緊密交互。
本文概述之所有規範、尺寸及關係(例如,附圖中示出之用於在CIPI中提供轉換速率量測之各種裝置及系統的部件數量、或此類裝置及系統的部分,等等)僅供舉例及教導之用。在不脫離本揭露之精神或所附請求項之範圍的情況下,此種資訊可以有相當大之變化。此些規範僅適用於一個非限制性實例,因此他們應當如此解釋。在前面之描述中,已經參考特定處理器及/或部件佈置描述了示例性實施例。在不脫離所附請求項之範圍的情況下,可以對此類實施例進行各種修改及改變。因此,描述及附圖被認為是說明性的,而非限制性的。
注意,在本文提供之眾多實例中,可以用兩個、三個、四個或更多個電子組件來描述交互。然而,此舉僅用於簡明及舉例之目的。應理解,此系統可以以任何合適之方式被合併。沿著類似的設計備選方案,圖式中所示之組件、模組及元件的任何一個可以以各種可能的配置進行組合,所有這些配置顯然都在本揭露的廣泛範圍內。在某些情況下,僅藉由引用有限數量之電子元件來描述給定流程集的一或多個功能可能更容易。應當理解,圖式中之電路及其教導易於擴展,並且可以容納大量組件、以及更複雜或繁雜的佈置及配置。因此,所提供實例不應限制範圍或抑制電路的廣泛教導,因為其可能應用於無數其他架構。
此外,與在本文提及之CIPI中提供轉換速率量測相關的功能僅圖示可由附圖示出之系統執行或在其內部執行的一些可能功能。在適當情況下,可以刪除或移除此些操作中之一些,或者可以在不脫離本揭露之範圍的情況下對此些操作進行相當大之修改或改變。另外,可以顯著改變此些操作之定時。前述操作流程僅供舉例及論述之用。本文描述之實施例提供了相當大之靈活性,此乃因在不脫離本揭露之教導的情況下,可以提供任何合適之佈置、時間表、配置及定時機制。
注意,上述設備的所有可選特徵也可以相對于本文描述的方法或製程實施,並且實例中的細節可以在一或多個實施例中的任何地方使用。
熟習本領域者可以確定許多其他改變、替換、變化、變更及修改,並且本揭示意欲包括落入所附申請專利範圍內的所有此類改變、替換、變化、變更及修改。
100:電路 101:第一級 102:波形(偽差動方形波訊號CKIP, CKIN) 106a:PMOS電流源 106b:NMOS電流源 108:波形 116:D/A轉換器(D/A) 118:多工器 119:工作週期量測(DCM)電路 120:比較器(COMP) 122:環形振盪器(RING OSC.) 124:計數器(計數器2) 126:計數器(計數器1) 128:有限狀態機(FSM) 200:有線解串器 202:相位檢測器(!!PD) 204:環形濾波器 206:位元至相位轉換器 208:時脈倍增單元(CMU) 302:圖表 304:圖表 306:圖表 402:圖表 502:圖表 504:圖表 900:D/A轉換器 1000:電子元件 1010:RF收發器 1012:裝置時脈電路系統部件(裝置_clk電路系統) 1014:JESD 1020:基帶積體電路(BBIC) 2100:系統 2102:處理裝置 2104:記憶體 2106:顯示裝置 2108:音訊輸出裝置 2110:另一輸出裝置 2112:通訊晶片 2114:電池/電源電路系統(電池/電源) 2116:GPS裝置 2118:音訊輸入裝置 2120:輸入裝置 2122:天線 2200:射頻裝置 2202:天線 2204:雙工器 2206:本地振盪器 2208:數位處理單元 2212:接收路徑放大器 2214:接收路徑預混合濾波器 2216:接收路徑混頻器 2218:接收路徑後混合濾波器 2220:類比數位轉換器(ADC) 2222:發射路徑放大器 2224:發射路徑後混合濾波器 2226:發射路徑混頻器 2228:發射路徑預混合濾波器 2230:數位類比轉換器(DAC) 2232:阻抗調諧器 2234:射頻開關 2236:控制邏輯 2300:資料處理系統 2302:處理器 2304:記憶體元件 2306:系統匯流排(BUS) 2308:本地記憶體 2310:大容量儲存裝置 2312:輸入裝置 2314:輸出裝置 2316:網路配接器 2318:應用 C AC:電容 C L:主導電容 CKOP,CKON:輸出 CKREF,CKREFB:節點 CKRO:訊號 CKSEL:時脈選擇輸入 CNT1[19:0],CNT2[19:0]:計數值 I B:可程式化偏置電流 IN,IP:輸入 INV0,INV1:反相器 INV2,INV3:選截放大器(反相器) OUTIN,OUTIP:節點 OUTN,OUTP:輸出 SW0~SW3:開關 VCM1,VCM2:共模電壓 VSWING:擺動範圍
為更全面地理解本揭露以及其特徵及優點,結合附圖參考以下說明,其中相同之元件符號表示相同之零件,其中: 圖1A及圖1B根據本文所述之實施例一起圖示用於在電流積分相位內插器(CIPI)中量測轉換速率之電路的示意方塊圖。 圖2圖示基於延遲鎖定迴路(delay locked loop,DLL)之時脈及資料回復(clock and data recovery,CDR)電路的示意方塊圖,其中,可實施圖1A及圖1B示出的電路。 圖3圖示交流(alternating current,AC)耦合反相器之實施例的操作,用於實施圖1A及圖1B中示出的電路。 圖4根據本文描述之實施例圖示具有朝向VSS之共模位準移位的圖3之AC耦合反相器的操作。 圖5根據本文描述之實施例圖示具有朝向VDD之共模位準移位的圖3之AC耦合反相器的操作。 圖6根據本文描述之實施例圖示圖表,示出圖1A及圖1B之電路的時脈週期中的隨機走步(random walk)。 圖7圖示電流切換反相器之操作,用於實施圖1A及圖1B中示出的電路。 圖8根據本文描述之實施例為數位類比(digital to analog,D/A)轉換器的示意方塊圖,用於結合圖1A及圖1B之電路設定共模電壓閾值。 圖9根據本揭露之一些實施例提供電子裝置的示意圖,其中在CIPI中可實施轉換速率量測。 圖10根據本揭露之一些實施例為示例系統的方塊圖,此示例系統可包括配置成在CIPI中提供轉換速率量測的一或多個系統。 圖11根據本揭露之一些實施例為示例射頻(radio frequency,RF)裝置的方塊圖,此裝置可包括配置成在CIPI中提供轉換速率量測的一或多個系統。 圖12根據本揭露之一些實施例提供圖示示例資料處理系統的方塊圖,此示例資料處理系統可經配置以控制配置成在CIPI中提供轉換速率量測的一或多個系統之操作。
100:電路
101:第一級
102:波形(偽差動方形波訊號CKIP,CKIN)
106a:PMOS電流源
106b:NMOS電流源
108:波形
116:D/A轉換器(D/A)
CAC:電容
CL:主導電容
CKOP,CKON:輸出
IB:可程式化偏置電流
IN,IP:輸入
INV0,INV1:反相器
INV2,INV3:選截放大器(反相器)
OUTN,OUTP:輸出
SW0~SW3:開關
VCM1:共模電壓
VSWING:擺動範圍

Claims (20)

  1. 一種設備,包括: 一電流積分相位內插器核心,具有一可程式化偏置電流; 一反相器電路,耦接至該電流積分相位內插器核心的一輸出,用於從其接收包含一週期性鋸齒波形的一訊號; 一數位類比(D/A)轉換器,用於設定該反相器電路之一輸入共模電壓; 一工作週期量測(DCM)電路,用於量測從該反相器電路輸出之一時脈訊號的一工作週期失真(DCD);以及 一電路,用於計算該時脈訊號之該DCD的一第一狀態與該時脈訊號之該DCD的一第二狀態之間的一差值,該第一狀態對應於該反相器電路被設為一高壓的該輸入共模電壓,該第二狀態對應於該反相器電路被設為一低壓的該輸入共模電壓。
  2. 如請求項1之設備,更包括一電路,用於比較所計算之該差值與一閾值,並基於該比較調整該可程式化偏置電流的一位準。
  3. 如請求項2之設備,其中,若所計算之該差值大於該閾值,則增大該可程式化偏置電流之該位準。
  4. 如請求項2之設備,其中,若計算之該差值小於該閾值,則遞減該可程式化偏置電流之該位準。
  5. 如請求項1之設備,其中,該反相器電路更包括: 一反相器,具有一輸入及一輸出;以及 一電阻器,經由一第一開關耦接在該輸入與該輸出之間,該電阻器用於在閉合該第一開關時將一直流(DC)反饋從該輸出提供至該輸入。
  6. 如請求項5之設備,其中,該反相器電路更包括一第二開關,用於在開啟該第一開關且閉合該第二開關時選擇性地將該D/A轉換器耦接至該反相器的該輸入。
  7. 如請求項1之設備,其中,該DCM電路包括用於在自該反相器電路輸出之該時脈訊號的一取樣週期執行一隨機走步的一時脈電路系統。
  8. 如請求項1之設備,其中,該反相器電路包括至少一個AC耦合反相器。
  9. 如請求項1之設備,其中,該反相器電路包括至少一個DC耦合反相器,其包括一可程式化閾電壓。
  10. 如請求項1之設備,其中,該時脈訊號包括一矩形波訊號。
  11. 如請求項1之設備,其中,該DCM電路包括: 一計數器,在該比較器之輸出為高時遞增;以及 一計數器,在由該時脈電路系統產生之該時脈訊號的每個取樣邊緣上遞增。
  12. 如請求項1之設備,其中,該電流積分相位內插器核心包括多個電流切換反相器。
  13. 一種設備,包括: 一電流積分相位內插器核心,具有一可程式化偏置電流; 一反相器電路,耦接至該電流積分相位內插器核心之一輸出,用於從其接收包含一週期性鋸齒波形的一訊號,該反相器電路更包括一AC耦合反相器與一DC耦合反相器中至少一個,該DC耦合反相器包括一可程式化閾電壓; 一工作週期量測(DCM)電路,用於量測從該反相器電路輸出之一時脈訊號的一工作週期失真(DCD);以及 一電路,用於計算該時脈訊號之該DCD的一第一狀態與該時脈訊號之該DCD的一第二狀態之間的一差值,該第一狀態對應於該反相器電路被設為一高壓的該輸入共模電壓,該第二狀態對應於該反相器電路被設為一低壓的該輸入共模電壓,以及用於比較計算之該差值與一閾值並基於該比較調整該可程式化偏置電流的一位準。
  14. 如請求項13之設備,其中,若計算之該差值大於該閾值,則增大該可程式化偏置電流之該位準。
  15. 如請求項13之設備,其中,若計算之該差值小於該閾值,則降低該可程式化偏置電流之該位準。
  16. 如請求項13之設備,其中,該DCM電路包括用於在自該反相器電路輸出之該時脈訊號的一取樣週期執行一隨機走步的一時脈電路。
  17. 一種在具有一可程式化偏置電流之一電流積分相位內插器(CIPI)中量測一轉換速率的方法,該方法包括以下步驟: 將一反相器之一共閾電壓設為一低位準; 在該反相器對應於該低位準共閾電壓的一輸出處量測一訊號的一第一工作週期失真(DCD); 將該AC耦合反相器之該共閾電壓設為一高位準; 在該反相器對應於高位準的該共閾電壓的該輸出處量測該訊號的一第二DCD; 比較該第一及第二DCD與一閾值之間的一差值;以及 基於該比較之一結果調整該CIPI的一可程式化偏置電流。
  18. 如請求項17之方法,其中,該調整步驟包括若該差值大於該閾值則增大該可程式化偏置電流的一位準,以及該調整步驟包括若該差值小於該閾值則降低該可程式化偏置電流的該位準。
  19. 如請求項17之方法,進一步包括以下步驟,在該比較步驟之前,計算該等第一與第二DCD之間的該差值。
  20. 如請求項17之方法,其中,在從該反相器電路輸出之一時脈訊號的一取樣週期執行一隨機走步。
TW110145811A 2020-12-09 2021-12-08 在具有可程式化偏置電流之電流積分相位內插器中量測轉換速率的方法以及設備 TWI793900B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US17/116,875 US11165431B1 (en) 2020-12-09 2020-12-09 Techniques for measuring slew rate in current integrating phase interpolator
US17/116,875 2020-12-09
US17/382,104 US11303282B1 (en) 2020-12-09 2021-07-21 Techniques for measuring slew rate in current integrating phase interpolator
US17/382,104 2021-07-21

Publications (2)

Publication Number Publication Date
TW202224347A true TW202224347A (zh) 2022-06-16
TWI793900B TWI793900B (zh) 2023-02-21

Family

ID=78331390

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110145811A TWI793900B (zh) 2020-12-09 2021-12-08 在具有可程式化偏置電流之電流積分相位內插器中量測轉換速率的方法以及設備

Country Status (5)

Country Link
US (2) US11165431B1 (zh)
KR (1) KR20220081910A (zh)
CN (1) CN114614800A (zh)
DE (1) DE102021132337A1 (zh)
TW (1) TWI793900B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11165431B1 (en) * 2020-12-09 2021-11-02 Analog Devices, Inc. Techniques for measuring slew rate in current integrating phase interpolator
US11664791B2 (en) * 2021-09-01 2023-05-30 Micron Technology, Inc. AC coupled duty-cycle correction

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4052697B2 (ja) * 1996-10-09 2008-02-27 富士通株式会社 信号伝送システム、および、該信号伝送システムのレシーバ回路
KR100331566B1 (ko) * 2000-01-22 2002-04-06 윤종용 클럭 동기 회로 및 이를 구비하는 반도체 장치
US7143125B2 (en) * 2003-04-16 2006-11-28 Motorola, Inc. Method and apparatus for noise shaping in direct digital synthesis circuits
US7848473B2 (en) * 2004-12-22 2010-12-07 Agere Systems Inc. Phase interpolator having a phase jump
US7432750B1 (en) * 2005-12-07 2008-10-07 Netlogic Microsystems, Inc. Methods and apparatus for frequency synthesis with feedback interpolation
US7443250B2 (en) * 2006-09-29 2008-10-28 Silicon Laboratories Inc. Programmable phase-locked loop responsive to a selected bandwidth and a selected reference clock signal frequency to adjust circuit characteristics
US7486145B2 (en) * 2007-01-10 2009-02-03 International Business Machines Corporation Circuits and methods for implementing sub-integer-N frequency dividers using phase rotators
US8093958B2 (en) * 2007-12-05 2012-01-10 Integrated Device Technology, Inc. Clock, frequency reference, and other reference signal generator with a controlled quality factor
US20090290624A1 (en) * 2008-05-23 2009-11-26 Arm Limited Programmable jitter generation circuit
US7965118B2 (en) * 2008-07-11 2011-06-21 Honeywell International Inc. Method and apparatus for achieving 50% duty cycle on the output VCO of a phased locked loop
US7872494B2 (en) * 2009-06-12 2011-01-18 Freescale Semiconductor, Inc. Memory controller calibration
DK2400665T3 (en) * 2010-06-22 2016-03-29 Oticon As High voltage-oscillation input / output that is activated in a standard IC process using passive impedance transformation
IT1401466B1 (it) * 2010-06-25 2013-07-26 St Microelectronics Srl Circuito elettronico per pilotare un amplificatore a commutazione
US8164373B2 (en) * 2010-07-29 2012-04-24 International Business Machines Corporation Drive strength control of phase rotators
KR101727719B1 (ko) * 2010-10-11 2017-04-18 삼성전자주식회사 위상 보간기 및 그를 포함하는 반도체 장치 및 위상 보간 방법
US8542046B2 (en) * 2011-05-04 2013-09-24 Intel Corporation Apparatus, system, and method for voltage swing and duty cycle adjustment
US8963588B2 (en) * 2011-08-22 2015-02-24 Infineon Technologies Ag Fractional frequency divider
US9009520B2 (en) * 2011-08-29 2015-04-14 International Business Machines Corporation Closed-loop multiphase slew rate controller for signal drive in a computer system
US8653869B2 (en) * 2011-10-20 2014-02-18 Media Tek Singapore Pte. Ltd. Segmented fractional-N PLL
TWI499214B (zh) * 2012-05-14 2015-09-01 Etron Technology Inc 延遲鎖相迴路及延遲鎖相迴路產生應用時脈的方法
US8519761B1 (en) * 2012-05-25 2013-08-27 International Business Machines Corporation Closed-loop slew-rate control for phase interpolator optimization
US8638149B1 (en) * 2012-08-06 2014-01-28 International Business Machines Corporation Equalized rise and fall slew rates for a buffer
US8692599B2 (en) * 2012-08-22 2014-04-08 Silicon Laboratories Inc. Interpolative divider linearity enhancement techniques
US8803720B2 (en) * 2012-12-12 2014-08-12 Intel Mobile Communications GmbH RF-DAC cell and method for providing an RF output signal
US9762250B2 (en) * 2013-11-27 2017-09-12 Silicon Laboratories Inc. Cancellation of spurious tones within a phase-locked loop with a time-to-digital converter
US9178521B2 (en) * 2014-02-28 2015-11-03 Intel Corporation Fast settling mixed signal phase interpolator with integrated duty cycle correction
US9160345B1 (en) * 2014-09-04 2015-10-13 Inphi Corporation Phase interpolator
US9985594B2 (en) * 2015-04-02 2018-05-29 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Gated CDS integrator
CN110708022A (zh) * 2015-05-08 2020-01-17 意法半导体研发(深圳)有限公司 具有减少的emi生成的高效d类放大器
US9698722B2 (en) * 2015-06-19 2017-07-04 Deere & Company Method and inverter with thermal management for controlling an electric machine
US9531394B1 (en) * 2015-06-22 2016-12-27 Silicon Laboratories Inc. Calibration of digital-to-time converter
US9362936B1 (en) * 2015-06-22 2016-06-07 Silicon Laboratories Inc. Digital-to-time converter
US9876489B1 (en) * 2016-09-07 2018-01-23 Xilinx, Inc. Method of implementing a differential integrating phase interpolator
US10855294B2 (en) * 2016-11-08 2020-12-01 Texas Instruments Incorporated High linearity phase interpolator
US10484167B2 (en) * 2018-03-13 2019-11-19 Xilinx, Inc. Circuit for and method of receiving a signal in an integrated circuit device
US10892742B2 (en) * 2019-01-07 2021-01-12 Texas Instruments Incorporated Duty-cycle calibration based on differential clock sensing
US10742227B1 (en) * 2019-02-25 2020-08-11 Intel Corporation Differential source follower with current steering devices
US20200373927A1 (en) * 2019-05-26 2020-11-26 Jinghang Liang Differential Alias-Locked Loop
US11916554B2 (en) * 2019-12-16 2024-02-27 Intel Corporation Techniques for duty cycle correction
US11165431B1 (en) * 2020-12-09 2021-11-02 Analog Devices, Inc. Techniques for measuring slew rate in current integrating phase interpolator

Also Published As

Publication number Publication date
DE102021132337A1 (de) 2022-06-09
TWI793900B (zh) 2023-02-21
KR20220081910A (ko) 2022-06-16
CN114614800A (zh) 2022-06-10
US11303282B1 (en) 2022-04-12
US11165431B1 (en) 2021-11-02

Similar Documents

Publication Publication Date Title
US10469184B1 (en) Radio frequency ranging using phase difference
TWI793900B (zh) 在具有可程式化偏置電流之電流積分相位內插器中量測轉換速率的方法以及設備
US20210306128A1 (en) Single local oscillator in a multi-band frequency division duplex transceiver
US11349487B2 (en) Phase synchronization updates without synchronous signal transfer
US10963002B1 (en) Clock generation architecture using a poly-phase filter with self-correction capability
US11513209B2 (en) Radio frequency ranging using phase difference
US20080298495A1 (en) Method and apparatus for generating corrected quadrature phase signal pairs in a communication device
US11404780B2 (en) Phase shifter and wireless communication apparatus
US8442472B2 (en) Technique to generate divide by two and 25% duty cycle
TWI792484B (zh) 電子組件以及開關驅動器電路
US10320433B2 (en) Radio receiving device and transmitting and receiving device
CN110301094B (zh) 在受控延迟线路中采用相位误差检测的多相位时钟生成
US8816766B2 (en) Semiconductor integrated circuit, and reception apparatus and radio communication terminal including semiconductor integrated circuit
US20210165440A1 (en) Clock signal polarity controlling circuit
US20220231707A1 (en) Programmable radio timing controller
US11057125B1 (en) Programmable digital loopback for RF applications
US20230353160A1 (en) Analog tracking circuit to improve dynamic and static image rejection of a frequency converter
JP2012195638A (ja) 送受信回路