TW202203446A - 影像感測器 - Google Patents

影像感測器 Download PDF

Info

Publication number
TW202203446A
TW202203446A TW110120328A TW110120328A TW202203446A TW 202203446 A TW202203446 A TW 202203446A TW 110120328 A TW110120328 A TW 110120328A TW 110120328 A TW110120328 A TW 110120328A TW 202203446 A TW202203446 A TW 202203446A
Authority
TW
Taiwan
Prior art keywords
partition wall
width
color filter
substrate
image sensor
Prior art date
Application number
TW110120328A
Other languages
English (en)
Other versions
TWI771036B (zh
Inventor
黃光宇
楊文斐
陳皇任
陳浩民
Original Assignee
采鈺科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 采鈺科技股份有限公司 filed Critical 采鈺科技股份有限公司
Publication of TW202203446A publication Critical patent/TW202203446A/zh
Application granted granted Critical
Publication of TWI771036B publication Critical patent/TWI771036B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14629Reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14623Optical shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1463Pixel isolation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14645Colour imagers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Optical Filters (AREA)

Abstract

一種影像感測器,包括:基底;彩色濾光單元,設置於基底上;以及網格結構,設置於基底上,且圍繞彩色濾光單元的每一個。網格結構包括:第一隔牆,設置於基底上,位於彩色濾光單元之間;以及第二隔牆,設置於第一隔牆的正上方,位於彩色濾光單元之間。第二隔牆的頂寬度小於第二隔牆的底寬度。

Description

影像感測器
本發明實施例是關於影像感測器及其形成方法,特別是關於影像感測器的網格結構的配置。
影像感測器,如互補式金屬氧化物半導體影像感測器(complementary metal oxide semiconductor image sensor, CIS),被廣泛地運用在影像拍攝設備中,如數位靜止影像相機、數位攝影相機、以及其他類似設備。影像感測器的光感測單元可偵測環境中的色彩變化,並可根據光感測單元接收到的光量產生訊號電荷。此外,可傳輸並放大在光感測單元中所產生的訊號電荷,從而獲得影像訊號。
基於業界需求,畫素尺寸持續地縮小,而畫素清晰度持續地提升。為了維持高性能,入射光線應在每個彩色濾光單元內匯聚,以達到有效的光接收,而不被相鄰的彩色濾光單元的光線所干擾。每個彩色濾光單元係藉由網格結構區格化,其網格結構具有比彩色濾光單元更低的折射率。由於光線傾向往較高折射率介質的方向,網格結構可阻止潛在的光線干擾相鄰的彩色濾光單元。然而,需要更多創新的方法設計網格結構以配合持續縮小尺寸的畫素。
在一實施例中,一種影像感測器包括:基底;彩色濾光單元,設置於基底上;以及網格結構,設置於基底上,且圍繞彩色濾光單元的每一個。網格結構包括:第一隔牆,設置於基底上,位於彩色濾光單元之間;以及第二隔牆,設置於第一隔牆的正上方,位於彩色濾光單元之間。第二隔牆的頂寬度小於第二隔牆的底寬度。
在另一實施例中,一種影像感測器包括:基底;彩色濾光單元,設置於基底上;以及網格結構,設置於基底上,且圍繞彩色濾光單元的每一個。網格結構包括:第一隔牆,相對於基底具有垂直側面和基座寬度,設置於基底上,位於彩色濾光單元之間;第二隔牆,相對於基底具有傾斜側面,設置於第一隔牆的正上方,位於彩色濾光單元之間;以及第三隔牆,具有第一寬度,設置於第二隔牆的正上方,位於彩色濾光單元之間,其中第一寬度小於基座寬度。
以下揭露提供了許多不同的實施例或範例,用於實施本發明的不同部件。組件和配置的具體範例描述如下,以簡化本揭露實施例。當然,這些僅僅是範例,並非用以限定本揭露實施例。舉例來說,敘述中提及第一部件形成於第二部件之上,可包括形成第一和第二部件直接接觸的實施例,也可包括額外的部件形成於第一和第二部件之間,使得第一和第二部件不直接接觸的實施例。
應理解的是,額外的操作步驟可實施於所述方法之前、之間或之後,且在所述方法的其他實施例中,部分的操作步驟可被取代或省略。
此外,與空間相關用詞,例如「在… 下方」、「下方」、「較低的」、「在… 上方」、「上方」、「較高的」和類似用語可用於此,以便描述如圖所示一元件或部件和其他元件或部件之間的關係。這些空間用語企圖包括使用或操作中的裝置的不同方位,以及圖式所述的方位。當裝置被轉至其他方位(旋轉90°或其他方位),則在此所使用的空間相對描述可同樣依旋轉後的方位來解讀。
在本揭露實施例中,「約」、「大約」、「大抵」之用語通常表示在一給定值或範圍的±20%之內,或±10%之內,或±5%之內,或±3%之內,或±2%之內,或±1%之內,或甚至±0.5%之內。在此給定的數量為大約的數量。亦即,在沒有特定說明「約」、「大約」、「大抵」的情況下,仍可隱含「約」、「大約」、「大抵」之含義。
除非另外定義,在此使用的全部用語(包括技術及科學用語)具有與所屬技術領域中具有通常知識者所通常理解的相同涵義。應能理解的是,這些用語,例如在通常使用的字典中定義的用語,應被解讀成具有與相關技術及本揭露的背景或上下文一致的意思,而不應以一理想化或過度正式的方式解讀,除非在本揭露實施例中有特別定義。
以下所揭露之不同實施例可能重複使用相同的參考符號及∕或標記。這些重複係為了簡化與清晰的目的,並非用以主導所討論的各種實施例及∕或結構之間的關係。
網格結構(或隔網結構)一般來說將(對應感測單元的)每個彩色濾光單元彼此隔開,使得入射光可被轉換成每個感測單元所欲的顏色,而不被相鄰的感測單元影響。然而,市場要求具有較小畫素尺寸的影像感測器,其間接地提高了在每個彩色濾光單元內的入射光線進入相鄰的彩色濾光單元中的可能性,造成不想要的結果。當光線不被每個彩色濾光單元下方的感測單元充分地接收時,可能會削弱影像感測器的量子效率(quantum efficiency)。再者,彩色濾光單元之間的光干擾也可能增加串擾(cross talk),其破壞影像感測器的整體性能。本揭露實施例提供幾種創新的網格結構設計來解決上述問題。本揭露實施例的網格結構可匯聚在每個彩色濾光單元內的入射光線於所對應的感測單元上,從而提升量子效率並消除串擾,在影像感測器中得到更優越的性能。
第1圖是根據本揭露的一些實施例,影像感測器的剖面示意圖。影像感測器實際上可包括數百萬顆感測單元。第1圖僅呈現實際影像感測器的一部分。根據本揭露的一些實施例,影像感測器10包括基底100、複數個感測單元102、抗反射層104、彩色濾光單元106、遮光結構108、網格結構110、以及複數個微透鏡120。在本實施例中,網格結構110包括第一隔牆112、第二隔牆114、以及第三隔牆116,其依序堆疊。在一些實施例中,第一隔牆112和第三隔牆116具有矩形剖面,而第二隔牆114具有梯形剖面。第一隔牆112具有基座寬度W,而第三隔牆116具有第一寬度W1 。基座寬度W大於第一寬度W1 。此外,第二隔牆114的底寬度等於基座寬度W,且第二隔牆114的頂寬度等於第一寬度W1
參照第1圖。在一些實施例中,影像感測器10包括基底100。在一些實施例中,基底100可為例如晶圓或晶粒,但本揭露實施例並不以此為限。在一些實施例中,基底100可為半導體基底,例如矽基底。此外,在一些實施例中,半導體基底亦可為:元素半導體(elemental semiconductor),包括鍺(germanium);化合物半導體(compound semiconductor),包含氮化鎵(gallium nitride, GaN)、碳化矽(silicon carbide, SiC)、砷化鎵(gallium arsenide, GaAs)、磷化鎵(gallium phosphide, GaP)、磷化銦(indium phosphide, InP)、砷化銦(indium arsenide, InAs)及∕或銻化銦(indium antimonide, InSb);合金半導體(alloy semiconductor),包含矽鍺(silicon germanium, SiGe)合金、磷砷鎵(gallium arsenide phosphide, GaAsP)合金、砷鋁銦(aluminum indium arsenide, AlInAs)合金、砷鋁鎵(aluminum gallium arsenide, AlGaAs)合金、砷鎵銦(gallium indium arsenide, GaInAs)合金、磷鎵銦(gallium indium phosphide, GaInP)合金、及∕或砷磷鎵銦(gallium indium arsenide phosphide, GaInAsP)合金、或其組合。
在其他實施例中,基底100也可以是絕緣層上半導體(semiconductor on insulator, SOI)基底。絕緣層上半導體基底可包含底板、設置於底板上之埋入式氧化物(buried oxide, BOX)層、以及設置於埋入式氧化物層上之半導體層。此外,基底100可為N型或P型導電類型。
在一些實施例中,基底100可包括各種隔離部件(未繪示)以定義主動區,並電性隔離基底100內或基底100上的主動區部件。在一些實施例中,隔離部件可包括淺溝槽隔離(shallow trench isolation, STI)部件、局部矽氧化(local oxidation of silicon, LOCOS)部件、其他合適的隔離部件、或其組合。在一些實施例中,形成隔離部件可包括例如在基底100上形成絕緣層、選擇性地蝕刻絕緣層和基底100以形成基底100內的溝槽、在溝槽中成長富含氮(如氧氮化矽(silicon oxynitride, SiON))的襯層,並以沉積製程將絕緣材料(例如二氧化矽(silicon dioxide, SiO2 )、氮化矽(silicon nitride, SiN)、或氮氧化矽)填入溝槽中、然後對溝槽中的絕緣材料進行退火製程,再對基底100進行平坦化製程以移除多餘的絕緣材料,使溝槽中的絕緣材料與基底100的頂面齊平。
在一些實施例中,基底100可包括各種以如離子佈植及∕或擴散製程所形成之P型摻雜區及∕或N型摻雜區(未繪示)。在一些實施例中,可在主動區(以隔離部件所定義)形成電晶體、光電二極體(photodiode)、或其他類似元件。
在基底100中埋入複數個感測單元102。在一些實施例中,複數個感測單元102為光電二極體。配置每個感測單元102用以感測光,並根據落在其上之光強度產生強度訊號。藉由強度訊號形成影像訊號。
在基底100上設置抗反射層104。在一些實施例中,配置抗反射層104用以減少傳輸至複數個感測單元102的光的反射。在一些實施例中,抗反射層104的設置是水平地對應於(或是平行相對於)感測單元102的陣列。在一些實施例中,抗反射層104的材料可包括氧氮化矽(SiOx Ny ,其中x和y係在0至1的範圍)。可藉由任何合適的沉積製程形成抗反射層104。
在一些實施例中,影像感測器10可包括設置在抗反射層104和基底100上的彩色濾光單元106,其對應至感測單元102的陣列。在一些實施例中,彩色濾光單元106的高度可介於大約0.3μm和2.0μm之間。在一些實施例中,彩色濾光單元106可為紅色、綠色、藍色、白色、或紅外線(infrared)。彩色濾光單元106的每一個可對應至影像感測器10的個別感測單元102,彩色濾光單元106的顏色取決於影像感測器10的需求。個別感測單元102,如光電二極體,可將所接收到的光訊號轉換成電子訊號。
在一些實施例中,每個彩色濾光單元106允許預定範圍的光波長通過。舉例來說,紅色濾光單元允許在620nm至750nm範圍的光波長(紅光)傳輸至對應的感測單元102,綠色濾光單元允許在495nm至570nm範圍的光波長(綠光)傳輸至對應的感測單元102,而藍色濾光單元允許在450nm至495nm範圍的光波長(藍光)傳輸至對應的感測單元102。
參照第1圖。在彩色濾光單元106之間設置網格結構110。在一些實施例中,網格結構110係連接至並圍繞每個彩色濾光單元106。再者,在抗反射層104和基底100上設置網格結構110,且露出在感測單元102的陣列正上方的區域,或將感測單元102的陣列區格化。根據本揭露的一些實施例,網格結構110可具有比彩色濾光單元106更低的折射率(refractive index)。折射率係物質改變光速的特性,其為真空中的光速除以物質中的光速所獲得的數值。當光在兩個不同的材料之間以一個角度傳播時,折射率決定了光傳播(折射)的角度。根據本揭露的一些實施例,網格結構110的折射率係在介於大約1.0和1.5之間,而彩色濾光單元106的折射率係在介於約1.3和2.0之間。由於光傾向朝著具有較高折射率的介質,彩色濾光單元106和網格結構110可形成光導管結構以引導光至複數個感測單元102。換言之,當入射光線進入彩色濾光單元106時,網格結構110可在特定彩色濾光單元106內隔離入射光線以達到光阱(light-trapping)作用。
網格結構110的材料可包括透明介電材料。在一些實施例中,網格結構110的材料可包括矽石球和氣泡(以無機材料摻雜的材料)、或聚矽氧烷(polysiloxane)。首先,在抗反射層104上塗佈網格材料層。接著,在網格材料層上塗佈遮罩層(未繪示)。在一些實施例中,遮罩層的材料為光阻。對遮罩層進行光微影製程以圖案化。接著,藉由使用圖案化後的遮罩層對網格材料層進行蝕刻製程。蝕刻製程可為乾蝕刻。在蝕刻製程之後,在抗反射層104上移除一部分的網格材料層,並在其中形成多個開口。後續將以彩色濾光單元106填入開口。根據本揭露的一些實施例,可施行多重光微影和蝕刻製程以形成具有不同寬度的矩形隔牆(第一隔牆112和第三隔牆116)。再者,沉積具有不同碳鍵(carbon bond)的材料層,接著以不同氟離子濃度的蝕刻氣體蝕刻,可得到梯形隔牆(第二隔牆114)。
如先前所提及,本實施例提供設計網格結構110的創新方式。根據本揭露的一些實施例,第三隔牆116的第一寬度W1 比第一隔牆112的基座寬度W小大約20%至60%,例如大約20%至50%。根據本揭露的一些實施例,基座寬度W和第一寬度W1 係在平行基底100的橫向(transversal)方向上量測。在第一隔牆112和第三隔牆116之間設置第二隔牆114。舉例來說,第一隔牆112鄰接第二隔牆114的底部,而第三隔牆116鄰接第二隔牆114的頂部。根據本揭露的一些實施例,第二隔牆114的頂寬度等於第三隔牆116的第一寬度W1 ,而第二隔牆114的底寬度等於第一隔牆112的基座寬度W。由於第三隔牆116的第一寬度W1 小於第一隔牆112的基座寬度W,第二隔牆114的頂寬度因而小於第二隔牆114的底寬度。因此,第二隔牆114相對於基底100具有傾斜側面,所以第二隔牆114的剖面呈現為梯形的。本揭露所得的網格結構110相對於基底100包括垂直側面和傾斜側面。
在一些實施例中,遮光結構108可埋入於網格結構110內,其細節將於後續描述。傳統網格結構具有單一矩形剖面。基於應用需求,有時可位移遮光結構。為了因應遮光結構的位移設計,網格結構需要夠寬。然而,若網格結構變得太寬,已經縮小的彩色濾光單元的尺寸將進一步被壓縮。當彩色濾光單元的尺寸太小,整體影像感測器的性能可能受到嚴重的影響。藉由設計網格結構110以具有不同寬度的各種部分,除了可改善遮光結構的位移設計的製程寬裕度,彩色濾光單元的尺寸可保持夠充足以維持影像感測器的性能。再者,本揭露的網格結構110造成彩色濾光單元106的每一個形成為漏斗狀。當入射光被迫因漏斗狀而匯入於彩色濾光單元106內時,光線可逐漸地朝向個別感測單元102聚焦。
如先前所提及,本揭露的網格結構110可提升量子效率並消除串擾。在一些實施例中,量子效率為光電轉換效率,其為入射光可多有效地被轉換成電子訊號的量測。串擾為不同顏色的光干擾所欲顏色的光的訊號讀取。換言之,較低量子效率和較高串擾為不想要的特性,其可影響影像感測器的性能。網格結構110可有效地解決上述問題,導致較高量子效率和較低串擾。
然而,若網格結構110僅包括多個不同寬度的矩形隔牆堆疊在一起,網格結構可能成為階梯狀。當入射光傳輸至水平階梯表面上時,光線可能被反射遠離下方的感測單元102。儘管這樣的反射可消除串擾,卻不能顯著地改善量子效率。因此,如第1圖所示,使用傾斜側面連接不同位置的兩個垂直側面可減輕漏光問題,而改善了在彩色濾光單元106中的波導效應(waveguide effect)和穿過彩色濾光單元106的光量。再者,整合垂直側面和傾斜側面可增加影像感測器10的設計彈性,以符合業界更多的應用要求。
參照第1圖,網格結構110具有總高度H,而第一隔牆112具有第一高度H1 。根據本揭露的一些實施例,由於串擾效應可在主動區邊緣顯著地增加,為了消除串擾,第一隔牆112的第一高度H1 比網格結構110的總高度H低大約60%至80%。根據本揭露的一些實施例,第二隔牆114的傾斜側面相對於基底100具有大約20°至75°的內角度θ,為了減輕漏光問題。基於已定義的參數(舉例來說,基座寬度W、第一寬度W1 、以及內角度θ),第二隔牆114的高度(於此縮寫為H_114)可藉由以下方程式取得:
Figure 02_image001
(1) 在方程式(1)中,基座寬度W和第一寬度W1­­ 之間的差值定義第一隔牆112側向地凸出超過第三隔牆116兩側側壁的量。其差值的一半則定義第一隔牆112側向地凸出超過第三隔牆116單一側壁的量。基於三角函數的定律,將在單一側上凸出的尺寸乘以內角度θ的正切(tangent, tan)可獲得第二隔牆114的高度。
由方程式(1),第三隔牆116的高度(於此縮寫為H_116)可藉由以下方程式取得:
Figure 02_image003
(2) 在方程式(2)中,第三隔牆116的高度可簡單地藉由將網格結構110的總高度H減去第一高度H1 和第二隔牆114的高度所計算出來。
為了形成具有傾斜側面的第二隔牆114,發明人利用不同材料和不同蝕刻氣體之間的化學反應的各種特性。一開始,可塗佈隔牆材料層以包括具有不同碳鍵的各種膜層,這些膜層的材料可以是不同的。根據本揭露的一些實施例,可在蝕刻腔體中導入氟離子作為強烈的活性氣體,其氟離子的濃度可在整個蝕刻製程期間持續地被調整。在一些實施例中,當氟離子與碳鍵接觸時,將發生化學反應以產生難以被蝕刻的硬化碳材料。
舉例來說,可排列隔牆材料層的碳鍵以在底部具有最高的量,其碳鍵量朝著頂部逐漸地減少,可藉由連續沉積具有減少順序碳鍵的材料層以達到這樣的排列。在蝕刻期間,在活性氣體內的氟離子可在最高的濃度下開始蝕刻最頂部具有最低碳鍵量的材料層。隨著蝕刻進行至蝕刻下方具有較大碳鍵量的膜層時,在活性氣體內的氟離子可對應地降低。在這些條件下,由於產生較不硬的碳材料,可一開始(由頂部)蝕去較大面積的隔牆材料。然而,由於產生較硬的碳材料,可朝著最後(於底部)蝕去最小面積的隔牆材料。藉由準確地計算氟離子濃度和碳鍵,並使用材料的蝕刻率精準地控制蝕刻時間,可形成第二隔牆114的傾斜側面。請注意,碳鍵量不會影響第二隔牆114材料的折射率。
根據本揭露形成第二隔牆114的特定實施例,可依序沉積大約10%至30%的隔牆材料層。最底部的材料層可包括氣矽石球(以無機材料摻雜的材料),具有介於約40%和80%之間的碳鍵濃度。最頂部材料層可包括聚矽氧烷、丙二醇甲醚醋酸酯(propylene glycol monomethyl ether)、3-甲氧基-1-丁醇(3-methoxy-1-butanol),具有介於約20%和60%之間的碳鍵濃度。在一些實施例中,蝕刻製程可由蝕刻最頂部材料層開始,其蝕刻氣體可包括介於約15%和30%之間的氟離子濃度。在其他實施例中,也可使用二氟甲烷(CH2 F2 )、三氟甲烷(CHF3 )、氟甲烷(CH3 F)、二氧化碳(CO2 )、氧氣(O2 )、氫氣(H2 )、氬氣(Ar)、其他類似化學品、或其組合的蝕刻氣體。當蝕刻最頂部材料層正下方的材料層時,可減少氟離子濃度大約30%至50%。當蝕刻最底部材料層時,可調整氟離子濃度至零。
參照第1圖。在抗反射層104和基底100上介於彩色濾光單元106之間設置遮光結構108。在本揭露的一些實施例中,遮光結構108為網狀,其區格化彩色濾光單元106的每一個。在一些實施例中,遮光結構108係埋入於網格結構110內。換言之,遮光結構108為對應網格結構110的網狀形式。在一些實施例中,網格結構110的高度可大於或等於遮光結構108,取決於影像感測器10的設計需求。遮光結構108的排列可避免在對應的彩色濾光單元106下方的其中一個感測單元102從不同顏色的鄰近彩色濾光單元106接收到額外的光,其可能會影響接收訊號的準確度。在本揭露的一些實施例中,遮光結構108的高度可介於大約0.005μm和2.000μm之間。在一些實施例中,遮光結構108的材料可包括不透明金屬(如鎢(tungsten, W)、鋁(aluminum, Al))、不透明金屬氮化物(如氮化鈦(titanium nitride, TiN))、不透明金屬氧化物(如氧化鈦(titanium oxide, TiO))、其他合適材料、或其組合,但本揭露實施例並不以此為限。可藉由在基底100上沉積金屬層,然後使用光微影和蝕刻製程圖案化金屬層以形成遮光結構108,但本揭露實施例並不以此為限。在本揭露的特定實施例中,遮光結構108可為埋入式彩色濾光陣列(buried color filter array, BCFA),其包括被鋁包繞的鎢金屬。
參照第1圖。在彩色濾光單元106和網格結構110上設置複數個微透鏡120。根據本揭露的一些實施例,複數個微透鏡120可分別對應至複數個感測單元102。在本實施例中,可將複數個微透鏡120排列成平行於基底100的陣列。在一些實施例中,複數個微透鏡120用以將入射光透過彩色濾光單元106匯聚於在基底100的複數個感測單元102中。在一些實施例中,複數個微透鏡120的材料可為透明材料。舉例來說,其材料可包括玻璃、環氧樹脂、矽樹脂、聚氨酯(polyurethane)、任何其他合適的材料、或其組合,但本揭露實施例並不以此為限。在一些實施例中,可藉由光阻回流法(reflow)、熱壓法(hot embossing)、任何其他可用的方法、或其組合形成複數個微透鏡120。在一些實施例中,形成複數個微透鏡120的步驟可包括旋轉塗佈(spin-on coating)製程、微影製程、蝕刻製程、任何其他可用的製程、或其組合,但本揭露實施例並不以此為限。
如第1圖所示,根據一些實施例,本揭露的影像感測器10包括:基底100;設置於基底100上的彩色濾光單元106;以及設置於基底100上且圍繞彩色濾光單元106的每一個的網格結構110。網格結構110包括:設置於基底100上並位於彩色濾光單元106之間的第一隔牆112;設置於第一隔牆112的正上方並位於彩色濾光單元106之間第二隔牆114;以及設置於第二隔牆114的正上方並位於彩色濾光單元106之間第三隔牆116。第一隔牆112的剖面為矩形,而第二隔牆114的剖面為梯形,其頂寬度小於底寬度。
第2圖是根據本揭露的其他實施例,影像感測器10的剖面示意圖。相較於第1圖,第2圖繪示影像感測器10的替代實施例。基底100、複數個感測單元102、抗反射層104、彩色濾光單元106、遮光結構108、網格結構110、以及複數個微透鏡120的特徵與第1圖所示類似,其細節將不於此重複贅述。在第2圖中的遮光結構108並未完全地對應網格結構110。舉例來說,遮光結構108可埋入於一部分的網格結構110中,而不存在於其他部分的網格結構110中。在一些實施例中,取決於設計需求,僅在網格結構110的一些部分中埋入遮光結構108,或遮光結構108完全地不存在於影像感測器10。如第2圖所示,當兩個或更多相鄰的彩色濾光單元106為相同顏色時,或當一個感測單元102可能顯著地比鄰近的感測單元102覆蓋更大的面積時,可在網格結構110的一些部分中省略遮光結構108。
第3圖是根據本揭露的其他實施例,影像感測器10的剖面示意圖。相較於第1圖,第3圖繪示影像感測器10的替代實施例。基底100、複數個感測單元102、抗反射層104、彩色濾光單元106、遮光結構108、網格結構110、以及複數個微透鏡120的特徵與第1圖所示類似,其細節將不於此重複贅述。在第1圖和第2圖中,整個網格結構110係由相同折射率的材料所形成。在第3圖中所示的影像感測器10繪示出網格結構110可包括具有多於一種折射率的材料。根據本揭露的一些實施例,第一隔牆112具有第一折射率n1 ,而第三隔牆116具有第二折射率n2 。在本實施例中,第二隔牆114可具有第一折射率n1 (與第一隔牆112相同),或第二隔牆114可具有第二折射率n2 (與第三隔牆116相同)。在一些實施例中,第二隔牆114甚至可具有不同於第一折射率n1 和第二折射率n2 的另一個折射率,但本揭露實施例並不以此為限。請注意,折射率的差異並非取決於材料。舉例來說,可以不同的材料形成第一隔牆112、第二隔牆114、以及第三隔牆116,其三者仍具有相同的折射率。
如第3圖所示,根據一些實施例,本揭露的影像感測器10包括:基底100;設置於基底100上的彩色濾光單元106;以及設置於基底100上且圍繞彩色濾光單元106的每一個的網格結構110。網格結構110包括:設置於基底100上且位於彩色濾光單元106之間的第一隔牆112,其相對於基底100具有垂直側面和基座寬度W;設置於第一隔牆112的正上方且位於彩色濾光單元106之間的第二隔牆114,其相對於基底100具有傾斜側面;以及設置於第二隔牆114的正上方且位於彩色濾光單元106之間的第三隔牆116,其具有第一寬度W1 ,其中第一寬度W1 小於基座寬度W。第一隔牆112具有第一折射率n1 ,而第三隔牆116具有第二折射率n2 ,其中第一折射率n1 和第二折射率n2 不同。
第4圖是根據本揭露的一些實施例,傳統影像感測器和第3圖所示的影像感測器10之間量子效率曲線圖的比較。在一些實施例中,傳統影像感測器包括具有相同材料的單一矩形隔牆的網格結構。如先前所提及,紅光具有620nm至750nm的波長,綠光具有495nm至570nm的波長,而藍光具有450nm至495nm的波長。如第4圖所示,根據量子效率光譜,曲線圖繪示出本揭露第3圖所示的影像感測器10的靈敏度和串擾均獲得顯著的改善。在本揭露的特定實施例中,影像感測器10的紅光峰值比傳統影像感測器增加約2%,影像感測器10的綠光峰值比傳統影像感測器增加約1%,而影像感測器10的藍光峰值比傳統影像感測器增加約1%。此外,影像感測器10的串擾比傳統影像感測器減少約0.6%。由模擬所獲得的比較資料整理於表1中。 表1
項目 模擬參數 傳統設計 影像感測器10
1 量子效率峰值 綠光 75% 76%
2 紅光 62% 64%
3 藍光 70% 71%
4 串擾 8.1% 7.5%
5 串擾比例(藍光:紅光 @ 530nm) 6.3/4.6 5.8/3.7
6 串擾比例(藍光:綠光 @ 650nm) 2.4/6.0 2.4/5.6
在表1中,項目1~3分別為綠光、紅光、以及藍光的量子效率峰值資料。項目4~6為串擾資料,其中影像感測器10繪示的串擾比傳統影像感測器顯著地減少。在項目5中,在530nm的波長下量測藍光串擾和紅光串擾的比例。請注意,530nm係在綠光所屬的波長範圍,因而在理想情形下,藍光和紅光的訊號讀取不應存在。在項目6中,在650nm的波長下量測藍光串擾和綠光串擾的比例。請注意,650nm係在紅光所屬的波長範圍,因而在理想情形下,藍光和綠光的訊號讀取不應存在。因此,減少串擾可改善整體性能,如影像感測器10所呈現。也請注意,綠色濾光單元經常佔據整體影像感測器的約50%,而紅色濾光單元和藍色綠光單元各佔據整體影像感測器的約25%。在這樣的基礎上,綠色濾光單元可最為受到紅光串擾和藍光串擾的影響,如表1的項目5中所示。
第5圖是根據本揭露的一些實施例,影像感測器10的剖面示意圖。相較於第1圖,第5圖繪示影像感測器10的替代實施例。基底100、複數個感測單元102、抗反射層104、彩色濾光單元106、遮光結構108、網格結構110、以及複數個微透鏡120的特徵與第1圖所示類似,其細節將不於此重複贅述。在第5圖中所示的影像感測器10的網格結構110的第三隔牆116並非為矩形。舉例來說,第三隔牆116可具有圓滑側面。第三隔牆116的頂部可為圓滑的(接續圓滑的側面)或尖的(三角狀),但本揭露實施例並不以此為限。
參照第5圖。當第三隔牆116包括圓滑側面和圓滑頂部時,其剖面可呈現為類似半橢圓狀,其具有長邊橢圓半徑(lengthwise elliptical radius)R。根據本揭露的一些實施例,第5圖所示的長邊橢圓半徑R可等於或小於第三隔牆116的高度,其尺寸係在方程式(2)中量測。取決於第一寬度W1 和蝕刻條件,第三隔牆116可包括圓滑側面和尖頂部,其具有頂角度θtop 。在一些實施例中,頂角度θtop 小於第二隔牆114的內角度θ。根據本揭露的一些實施例,頂角度θtop 可藉由以下方程式取得:
Figure 02_image005
(3) 在方程式(3)中,應注意的是,在反正切(inverse tangent, tan-1 )括號內的大括號中(braces,顯示為{})的公式事實上為方程式(2)的內容,或是計算第三隔牆116的高度。取第一寬度W1 的一半對第三隔牆116的高度的比例的反正切,接著乘以2可得到頂角度θtop 的上限,或大於頂角度θtop 的最終值。
第6圖是根據本揭露的其他實施例,影像感測器10的剖面示意圖。相較於第1圖,第6圖繪示影像感測器10的替代實施例。基底100、複數個感測單元102、抗反射層104、彩色濾光單元106、遮光結構108、網格結構110、以及複數個微透鏡120的特徵與第1圖所示類似,其細節將不於此重複贅述。應注意的是,在第6圖中所示的影像感測器10的網格結構110包括不止三個隔牆。應意識到,儘管遮光結構108係設置在所示的網格結構110的底部隔牆內,遮光結構108也可延伸進入不止一個隔牆中。換言之,遮光結構108的配置係獨立於網格結構110,只要遮光結構108係埋入於網格結構110內。也請注意,如第3圖中所示的影像感測器10,網格結構110可包括具有不同折射率的隔牆。根據本揭露的一些實施例,網格結構110可包括高達10種不同折射率的材料,或除了第一折射率n1 和第二折射率n2 以外,高達其他8種折射率(舉例來說,第三折射率n3 、第四折射率n4 、第五折射率n 、第六折射率n6 、第七折射率n7 …n10 )。根據本揭露的一些實施例,網格結構110的所有折射率大約介於1.0和1.5之間。
參照第6圖。儘管所呈現的網格結構110比第1圖所示的更複雜,兩者皆被幾個基本原則規範。舉例來說,在基底100上和彩色濾光單元106之間交替排列矩形隔牆和梯形隔牆。根據本揭露的一些實施例,每個梯形隔牆具有與鄰接至下方的矩形隔牆的寬度相等的底寬度,以及與鄰接至上方的矩形隔牆的寬度相等的頂寬度。在每個梯形隔牆中,頂寬度比底寬度小大約20%至60%,例如大約20%至50%。換言之,在每個梯形隔牆上的矩形隔牆係比在其梯形隔牆下的矩形隔牆窄大約20%至60%,例如大約20%至50%。舉例來說,如第6圖所示,第一寬度W1 比基座寬度W小大約20%至60%(例如大約20%至50%),第二寬度W2 比第一寬度W1 小大約20%至60%(例如大約20%至50%),而第三寬度W3 比第二寬度W2 小大約20%至60%(例如大約20%至50%)。根據本揭露的一些實施例,網格結構110可包括多達11個矩形隔牆(舉例來說,具有W、W1 、W2 、W3 …W10 的寬度),且梯形隔牆交替於其間。根據本揭露的一些實施例,每個矩形隔牆的高度小於網格結構110的總高度H大約60%至80%。
參照第6圖。由於在網格結構110內可有高達總共11個矩形隔牆,因而可有多達10個梯形隔牆交替於這些矩形隔牆之間。梯形隔牆可各具有大約20°至75°的內角度θ(舉例來說,θ1 、θ2 、θ3 …θ10 )。基於已定義的參數(舉例來說,每個梯形隔牆的頂寬度和底寬度、以及內角度θ),所對應的梯形隔牆的高度可參照方程式(1)取得。應意識到,由基座寬度W至第一寬度W1 、由第一寬度W1 至第二寬度W2 、或由第二寬度W2 至第三寬度W3 的縮小比例可能相同或不同,且不需要在基底100上遞增或遞減的順序。請注意,當減少矩形隔牆的寬度至一定的程度時,最頂部的矩形隔牆可最終成為圓滑頂部或尖頂部(如第5圖所示)。相似地,梯形隔牆的內角度θ1 、θ2 、以及θ3 可能相同或不同,且不需要在基底100上遞增或遞減的順序。矩形隔牆的第一高度H1 、第二高度H2 、以及第三高度H3 可能相同或不同,且不需要在基底100上遞增或遞減的順序。
以上概述數個實施例之特徵,以使本發明所屬技術領域中具有通常知識者可以更加理解本揭露實施例的觀點。本發明所屬技術領域中具有通常知識者應該理解,可輕易地以本揭露實施例為基礎,設計或修改其他製程和結構,以達到與在此介紹的實施例相同之目的及∕或優勢。本發明所屬技術領域中具有通常知識者也應該理解到,此類等效的結構並無悖離本揭露實施例的精神與範圍,且可在不違背本揭露實施例之精神和範圍之下,做各式各樣的改變、取代和替換。因此,本揭露實施例之保護範圍當視後附之申請專利範圍所界定者為準。另外,雖然本揭露已以數個較佳實施例揭露如上,然其並非用以限定本揭露實施例的範圍。
整份說明書對特徵、優點或類似語言的引用,並非意味可以利用本揭露實施例實現的所有特徵和優點應該或者可以在本揭露的任何單一實施例中實現。相對地,涉及特徵和優點的語言被理解為其意味著結合實施例描述的特定特徵、優點或特性包括在本揭露的至少一個實施例中。因而,在整份說明書中對特徵和優點以及類似語言的討論可以但不一定代表相同的實施例。
再者,在一或多個實施例中,可以任何合適的方式組合本揭露實施例的所描述的特徵、優點和特性。根據本文的描述,所屬技術領域中具有通常知識者將意識到,可在沒有特定實施例的一個或多個特定特徵或優點的情況下實現本揭露實施例。在其他情況下,在某些實施例中可辨識附加的特徵和優點,這些特徵和優點可能不存在於本揭露的所有實施例中。
10:影像感測器 100:基底 102:感測單元 104:抗反射層 106:彩色濾光單元 108:遮光結構 110:網格結構 112:第一隔牆 114:第二隔牆 116:第三隔牆 120:微透鏡 H:總高度 H1 :第一高度 H2 :第二高度 H3 :第三高度 n1 :第一折射率 n2 :第二折射率 n3 :第三折射率 n4 :第四折射率 n5 :第五折射率 n6 :第六折射率 n7 :第七折射率 R:長邊橢圓半徑 W:基座寬度 W1 :第一寬度 W2 :第二寬度 W3 :第三寬度 θ:內角度 θ1 :內角度 θ2 :內角度 θ3 :內角度 θtop :頂角度
以下將配合所附圖式詳述本揭露實施例之各面向。應注意的是,依據在業界的標準做法,各種特徵並未按照比例繪製。事實上,可任意地放大或縮小各種元件的尺寸,以清楚地表現出本揭露實施例的特徵。 第1圖是根據本揭露的一些實施例,影像感測器的剖面示意圖。 第2圖是根據本揭露的其他實施例,影像感測器的剖面示意圖。 第3圖是根據本揭露的其他實施例,影像感測器的剖面示意圖。 第4圖是根據本揭露的一些實施例,兩個影像感測器之間量子效率(quantum efficiency)曲線圖的比較。 第5圖是根據本揭露的一些實施例,影像感測器的剖面示意圖。 第6圖是根據本揭露的其他實施例,影像感測器的剖面示意圖。
10:影像感測器
100:基底
102:感測單元
104:抗反射層
106:彩色濾光單元
108:遮光結構
110:網格結構
112:第一隔牆
114:第二隔牆
116:第三隔牆
120:微透鏡
H:總高度
H1 :第一高度
W:基座寬度
W1 :第一寬度
θ:內角度

Claims (11)

  1. 一種影像感測器,包括: 一基底; 多個彩色濾光單元,設置於該基底上;以及 一網格結構,設置於該基底上,且圍繞該些彩色濾光單元的每一個,其中該網格結構包括: 一第一隔牆,設置於該基底上,位於該些彩色濾光單元之間; 一第二隔牆,設置於該第一隔牆的正上方,位於該些彩色濾光單元之間;以及 其中該第二隔牆的一頂寬度小於該第二隔牆的一底寬度。
  2. 如請求項1之影像感測器,更包括: 複數個感測單元,形成於該基底內; 一遮光結構,埋入於該網格結構內,其中該網格結構的一第一折射率介於1.0和1.5之間的範圍;以及 複數個微透鏡,分別設置在該些彩色濾光單元上。
  3. 如請求項1之影像感測器,更包括一第三隔牆,設置於該第二隔牆的正上方,位於該些彩色濾光單元之間,其中該第一隔牆和該第三隔牆的剖面為矩形,而該第二隔牆的剖面為梯形。
  4. 如請求項3之影像感測器,其中該第一隔牆具有一基座寬度,而該第三隔牆具有一第一寬度,其中該基座寬度和該第一寬度係在平行於該基底的橫向方向量測,其中該第三隔牆的該第一寬度小於該第一隔牆的該基座寬度約20%至60%,其中該第二隔牆的該底寬度等於該第一隔牆的該基座寬度,而該第二隔牆的該頂寬度等於該第三隔牆的該第一寬度。
  5. 如請求項1之影像感測器,其中該第一隔牆的一第一高度低於該網格結構的一總高度約60%至80%,且該第二隔牆的側面相對於該基底具有約20°至75°的一內角度。
  6. 如請求項3之影像感測器,其中該第三隔牆的剖面為半橢圓形,或該第三隔牆的剖面具有一圓化側面和一尖頂部,其中該尖頂部的頂角度小於該第二隔牆的該內角度。
  7. 如請求項1之影像感測器,其中該網格結構更包括一或多個矩形隔牆和一或多個梯形隔牆,其中該些矩形隔牆和該些梯形隔牆交替設置於該基底上和該些彩色濾光單元之間,其中該些梯形隔牆的每一個具有一底寬度和一頂寬度,該頂寬度小於該底寬度約20%至60%。
  8. 一種影像感測器,包括: 一基底; 多個彩色濾光單元,設置於該基底上;以及 一網格結構,設置於該基底上,且圍繞該些彩色濾光單元的每一個,其中該網格結構包括: 一第一隔牆,相對於該基底具有垂直側面和一基座寬度,設置於該基底上,位於該些彩色濾光單元之間; 一第二隔牆,相對於該基底具有一傾斜側面,設置於該第一隔牆的正上方,位於該些彩色濾光單元之間;以及 一第三隔牆,具有一第一寬度,設置於該第二隔牆的正上方,位於該些彩色濾光單元之間,其中該第一寬度小於該基座寬度。
  9. 如請求項8之影像感測器,其中該第一隔牆具有一第一折射率,而該第三隔牆具有一第二折射率,其中該第一折射率和該第二折射率不同,其中該第二隔牆具有該第一折射率或該第二折射率,其中該第一隔牆和該第三隔牆的剖面為矩形,而該第二隔牆的剖面為梯形。
  10. 如請求項8之影像感測器,其中該第三隔牆的剖面為半橢圓形,或具有一圓化側面和一尖頂部。
  11. 如請求項8之影像感測器,其中該網格結構更包括一或多個矩形隔牆和一或多個梯形隔牆,其中該些矩形隔牆和該些梯形隔牆交替設置於該基底上和該些彩色濾光單元之間,其中該些矩形隔牆和該些梯形隔牆更包括一或多個折射率,不同於該第一折射率和該第二折射率,其中該些梯形隔牆的每一個具有一底寬度和一頂寬度,該頂寬度小於該底寬度約20%至60%。
TW110120328A 2020-07-07 2021-06-04 影像感測器 TWI771036B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202063048865P 2020-07-07 2020-07-07
US63/048,865 2020-07-07
US17/173,469 2021-02-11
US17/173,469 US20220013560A1 (en) 2020-07-07 2021-02-11 Image sensor

Publications (2)

Publication Number Publication Date
TW202203446A true TW202203446A (zh) 2022-01-16
TWI771036B TWI771036B (zh) 2022-07-11

Family

ID=75639667

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110120328A TWI771036B (zh) 2020-07-07 2021-06-04 影像感測器

Country Status (6)

Country Link
US (1) US20220013560A1 (zh)
EP (1) EP3937243A1 (zh)
JP (1) JP7270679B2 (zh)
KR (1) KR102578647B1 (zh)
CN (1) CN113903757A (zh)
TW (1) TWI771036B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117121207A (zh) * 2021-04-20 2023-11-24 索尼半导体解决方案公司 光检测装置和电子设备
JP2023112469A (ja) * 2022-02-01 2023-08-14 浜松ホトニクス株式会社 光検出器

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005294647A (ja) * 2004-04-01 2005-10-20 Matsushita Electric Ind Co Ltd 固体撮像装置およびその製造方法
JP2006121065A (ja) * 2004-09-24 2006-05-11 Fuji Photo Film Co Ltd 固体撮像素子
US7816641B2 (en) * 2007-12-28 2010-10-19 Candela Microsystems (S) Pte. Ltd. Light guide array for an image sensor
TWI553844B (zh) * 2009-07-02 2016-10-11 邰祐南 影像感測器及形成影像感測器的方法
CN102893400B (zh) * 2010-05-14 2015-04-22 松下电器产业株式会社 固体摄像装置及其制造方法
US20140339606A1 (en) * 2013-05-16 2014-11-20 Visera Technologies Company Limited Bsi cmos image sensor
US9608021B2 (en) * 2013-11-14 2017-03-28 Taiwan Semiconductor Manufacturing Co., Ltd. Image sensor and method for manufacturing thereof
US9825078B2 (en) * 2014-11-13 2017-11-21 Visera Technologies Company Limited Camera device having an image sensor comprising a conductive layer and a reflection layer stacked together to form a light pipe structure accommodating a filter unit
US10319760B2 (en) * 2015-07-20 2019-06-11 Visera Technologies Company Limited Image sensor
JP6465839B2 (ja) * 2016-07-06 2019-02-06 キヤノン株式会社 光電変換装置、撮像システム、移動体、および、光電変換装置の製造方法
KR102490821B1 (ko) * 2018-01-23 2023-01-19 삼성전자주식회사 이미지 센서 및 그 제조 방법
US20190096930A1 (en) * 2017-09-26 2019-03-28 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor image sensor
JP2019087659A (ja) * 2017-11-08 2019-06-06 ソニーセミコンダクタソリューションズ株式会社 撮像素子およびその製造方法、並びに電子機器
US10665627B2 (en) * 2017-11-15 2020-05-26 Taiwan Semiconductor Manufacturing Co., Ltd. Image sensor device and method for forming the image sensor device having a first lens and a second lens over the first lens
KR102498582B1 (ko) * 2018-02-26 2023-02-14 에스케이하이닉스 주식회사 파티션 패턴들을 가진 이미지 센서
US10658410B2 (en) * 2018-08-27 2020-05-19 Taiwan Semiconductor Manufacturing Co., Ltd. Image sensor having improved full well capacity and related method of formation
CN109860219A (zh) * 2019-04-10 2019-06-07 德淮半导体有限公司 图像传感器及其形成方法
US10686000B1 (en) * 2019-04-12 2020-06-16 Visera Technologies Company Limited Solid-state imaging device
WO2021005961A1 (ja) * 2019-07-11 2021-01-14 ソニーセミコンダクタソリューションズ株式会社 撮像素子および撮像装置
US11532658B2 (en) * 2020-01-17 2022-12-20 Taiwan Semiconductor Manufacturing Co., Ltd. Image sensor grid and method of fabrication of same

Also Published As

Publication number Publication date
KR20220005978A (ko) 2022-01-14
JP7270679B2 (ja) 2023-05-10
JP2022014884A (ja) 2022-01-20
KR102578647B1 (ko) 2023-09-15
CN113903757A (zh) 2022-01-07
EP3937243A1 (en) 2022-01-12
US20220013560A1 (en) 2022-01-13
TWI771036B (zh) 2022-07-11

Similar Documents

Publication Publication Date Title
US11735618B2 (en) Stacked grid design for improved optical performance and isolation
US7816641B2 (en) Light guide array for an image sensor
US9570493B2 (en) Dielectric grid bottom profile for light focusing
US20110031381A1 (en) Light guide array for an image sensor
KR20200002571A (ko) 균열에 내성이 있는 딥 트렌치 절연 구조물
US9030587B2 (en) Solid-state image sensor with light-guiding portion
TWI771036B (zh) 影像感測器
US10910425B2 (en) Solid-state image sensor
JP2010093081A (ja) 固体撮像装置およびその製造方法
JP2015222814A (ja) イメージセンサー用の光導波路アレイ
US8455811B2 (en) Light guide array for an image sensor
CN113380837B (zh) 具有表面微柱体结构的固态影像传感器暨其制作方法
TWI622165B (zh) 影像感測器及其製作方法
TWI804362B (zh) 影像感測器
TWI799057B (zh) 影像感測器積體晶片及其形成方法
TWI808717B (zh) 影像感測器及其製造方法
TW202327062A (zh) 半導體裝置
KR20230116362A (ko) 이미지 센서
KR20090040574A (ko) 이미지센서 및 그 제조방법