TW202146641A - 用於類脂酸之生產的代謝工程技術 - Google Patents

用於類脂酸之生產的代謝工程技術 Download PDF

Info

Publication number
TW202146641A
TW202146641A TW110107389A TW110107389A TW202146641A TW 202146641 A TW202146641 A TW 202146641A TW 110107389 A TW110107389 A TW 110107389A TW 110107389 A TW110107389 A TW 110107389A TW 202146641 A TW202146641 A TW 202146641A
Authority
TW
Taiwan
Prior art keywords
yeast
genetically engineered
cell
seq
protein
Prior art date
Application number
TW110107389A
Other languages
English (en)
Inventor
旭 張
陳彬彬
儒崙 符
華 凌
Original Assignee
新加坡國立大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新加坡國立大學 filed Critical 新加坡國立大學
Publication of TW202146641A publication Critical patent/TW202146641A/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/16Yeasts; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P11/00Preparation of sulfur-containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y208/00Transferases transferring sulfur-containing groups (2.8)
    • C12Y208/01Sulfurtransferases (2.8.1)
    • C12Y208/01008Lipoyl synthase (2.8.1.8)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Botany (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本發明提供一種經分離之經基因工程改造之細菌或酵母細胞,其中該細胞已經至少一聚核苷酸分子轉型;該至少一聚核苷酸分子包含可操作地連接於至少一啟動子之異源類脂酸路徑基因,其編碼一辛醯轉移酶、一類脂醯合成酶、一經類脂醯化之蛋白質受質、一類脂醯胺酶及/或一S-腺苷甲硫胺酸合成酶,其中該經基因工程改造之細菌或酵母細胞產生游離類脂酸。

Description

用於類脂酸之生產的代謝工程技術
發明領域
本發明提供一種能夠增強游離類脂酸之產生之經基因工程改造之細菌或酵母細胞、重組載體及用於產生游離類脂酸之方法。更特定言之,所述游離類脂酸為R-類脂酸。
發明背景
類脂酸係涉及大部分生物體中之好氧代謝及甘胺酸裂解系統之若干關鍵酶所需的必需輔因子(Cronan等人,Advances in Microbial Physiology , RK. Poole, 編者, Academic Press. 103-146 (2005);Cronan,Microbiology and Molecular Biology Reviews 80: 429-450 (2016))。歸因於其直接或間接與自由基結合之能力,其可用作膳食補充之抗氧化劑(Croce等人,Toxicology in Vitro 17: 753-759 (2003))。此外,來自臨床試驗之發現已展示類脂酸可增加胰島素敏感性,其支持類脂酸作為抗糖尿病藥物之應用(Lee等人,Biochemical and Biophysical Research Communications 443: 885-891 (2005))。類脂酸亦展示抑制***腫瘤細胞增殖,指示其作為抗癌藥物之潛在應用(Li等人,Genetics and Molecular Research 14: 17934-17940 (2015))。目前,類脂酸主要經由化學合成製程獲得,該等化學合成製程習知地產生等量的類脂酸之二種對映異構R及S形式(Balkenhohl及Paust,Zeitschrift for Naturforschung Section B -a Journal of Chemical Sciences 54: 649-654 (1999);Ide等人,Journal of Functional Foods 5: 71-79 (2013))。然而,在生物系統中,類脂酸僅以R形式存在;S-類脂酸為在化學合成期間的副產物。因此,R-類脂酸通常展示優於S-類脂酸之生物活性,且在一些情況下,S-類脂酸對健康有害。舉例而言,R-類脂酸展示保護眼睛中之晶狀體免於形成白內障,而S-類脂酸藉由增強晶狀體之劣化展示相反效果(Kilic等人,Biochem Mol Biol Int 37: 361-370 (1995))。因此,獲得呈對映異構純形式之R-類脂酸為有益的,以使類脂酸之健康作用最大化且防止由S-類脂酸引起之潛在副作用。然而,用於獲得純R-類脂酸之手性分離及不對稱合成方法引起類脂酸的S形式或具有非所要手性之前驅體之損耗(US 5,281,722A;US 6,670,484 B2;US 6,864,374 B2;Purude等人,Tetra -hedron -Asymmetry 26: 281-287 (2015)),因此降低合成化合物時資源利用的效率。
此外,相比於外消旋類脂酸合成,製備純R-類脂酸之此等程序延長生產製程,且需要額外試劑及溶劑,其產生較高製造成本及對環境之較大影響。鑒於R-類脂酸之化學合成亦涉及有毒試劑及催化劑,且需要許多步驟,用於產生游離R-類脂酸之微生物細胞工廠之生物工程技術呈現以可持續及環境友好方式獲得對映異構純R-類脂酸的有吸引力的途徑。經由代謝工程技術之類脂酸之細菌生產已展示於細菌,包括大腸桿菌(Escherichia coli )、食爬蟲假單胞菌(Pseudomonas reptilivora )、單核球增多性李氏菌(Listeria monocytogenes )及枯草桿菌(Bacillus subtilis )等等(Ji等人,Biotechnology Letters 30: 1825-1828 (2008);Moon等人,Applied Microbiology and Biotechnology 83: 329-337 (2009);Christensen等人,Mol Microbiol 80: 350-363 (2011);Storm,Curr Pharm Des 18: 3480-3489 (2012);Sun等人,PLoS one 12: e0169369-e0169369 (2017))。在過去二十年間,類脂酸生物合成及蛋白質類脂醯化路徑在大腸桿菌中研究最充分。大腸桿菌中存在用於類脂酸生物合成及蛋白質類脂醯化之二種互補路徑:(i)從頭生物合成路徑,其中內源辛酸藉由LipB連接於缺輔基蛋白,隨後藉由LipA進行硫***;及(ii)清除路徑,其中外源類脂酸或辛酸藉由Lp1A轉移至蛋白質之去類脂醯化缺輔基形式(Sun等人,PLoS one 12: e0169369-e0169369 (2017))。
與細菌相比,釀酒酵母菌(Saccharomyces cerevisiae ),一模範酵母菌株,由於其耐受低溫、pH變化及噬菌體攻擊的固有能力而提供多個用於生物化學生產之優勢(Chen等人,Metabolic Engineering 31: 53-61 (2015);Jin等人,Biotechnol Bioeng 113: 842-851 (2016);Foo等人,Biotechnology and Bioengineering 114: 232-237 (2017))。重要的是,不同於大腸桿菌,酵母不具有經由ATP消耗及能量消耗過程將游離類脂酸結合於蛋白質之類脂酸清除路徑(Booker,Chemistry & Biology 11: 10-12 (2004))。因此,釀酒酵母菌固有地不消耗游離類脂酸,其為允許積聚我們的目標化合物,亦即游離R-類脂酸,之有益特徵。
在酵母中,存在三種熟知的類脂酸酯依賴性酶系統(lipoate-dependent enzyme systems):甘胺酸裂解系統(GCV)、α-酮戊二酸去氫酶(KGDC)及丙酮酸去氫酶(PDH) (Schonauer等人,Journal of Biological Chemistry 284: 23234-23242 (2009))。GCV涉及甘胺酸裂解為氨及C1單元,其對於利用甘胺酸作為氮之唯一來源為至關重要的(Sinclair及Dawes,Genetics 140: 1213-1222 (1995);Piper等人,FEMS Yeast Research 2: 59-71 (2002))。KGDC催化2-酮戊二酸(2-oxoglutarate)氧化去羧成丁二醯基-CoA,即若干胺基酸之前驅體及丁二酸酯(succinate)之來源,呼吸鏈之入口點(Repetto及Tzagoloff,Molecular and Cellular Biology 11: 3931-3939 (1991))。PDH催化丙酮酸酯(pyruvate)之氧化去羧,藉此連接胞溶質糖解及粒線體呼吸(Boubekeur等人,Journal of Biological Chemistry , 274(30): 21044-21048 (1999))。Gcv3p、Kgd2p及Lat1p分別為GCV、KGDC及PDH之類脂酸酯結合次單元(Nagarajan及Storms,Journal of Biological Chemistry 272: 4444-4450 (1997))。與大腸桿菌不同的是,對酵母中類脂酸合成及與目標蛋白質之連接的瞭解較不充分。為形成經類脂醯化之Gcv3p、Kgd2p及Lat1p,已假設有用於酵母粒線體中之類脂酸合成及蛋白質連接的二步轉化(two-step conversion)(Hermes及Cronan,Yeast 30: 415-427 (2013))。Lip2p及Lip3p展現可編碼利用辛醯基-ACP或辛醯基-CoA將辛醯基連接於類脂酸酯依賴性蛋白質之缺輔基形式之辛醯轉移酶(Stuart等人,FEBS Letters 408: 217-220 (1997);Marvin等人,FEMS Microbiology Letters 199: 131-136 (2001);Hermes及Cronan,Yeast 30: 415-427 (2013))。類脂醯合成酶Lip5p催化將二個硫***辛酸酯(octanoate)碳鏈中(Sulo及Martin,Journal of Biological Chemistry 268: 17634-17639 (1993))。最終,類脂酸經由其羧基與蛋白質之離胺酸殘基之ε胺基之間的醯胺鍵結合於Gcv3p、Kgd2p及Lat1p (Sulo及Martin,Journal of Biological Chemistry 268: 17634-17639 (1993))。引起關注地,已發現所有三種蛋白質之類脂醯化均需要Lip2p及Lip5p,而Kgd2p及Lat1p之類脂醯化需要Lip3p但Gcv3p之類脂醯化不需要(Hermes及Cronan,Yeast 30: 415-427 (2013))。為自類脂酸酯結合蛋白質釋放游離類脂酸,已分離且表徵來自糞腸球菌(Enterococcus faecalis )之類脂醯胺酶(EfLPA),醯胺水解酶(amidohydrolases)之Ser-Ser-Lys家族之一成員(Jiang及Cronan,Journal of Biological Chemistry 280: 2244-2256 (2005))。此酶已展現自GCV之類脂酸結合H蛋白及來自大腸桿菌之KGDC及PDH之E2次單元釋放游離類脂酸(Spalding及Prigge,PLoS one 4: e7392 (2009))。儘管已在細菌宿主中展現了EfLPA之功能性異源表現,但EfLPA在酵母中之活性就本案發明人所知為未知的。
需要改良用於產生游離R-類脂酸之方法。因此,將釀酒酵母菌作為用於游離R-類脂酸生物合成之潛在生產宿主進行研究。下文中,類脂酸特定言之係指R-類脂酸。
發明概要
EfLPA已展現自GCV之類脂酸結合H蛋白及來自大腸桿菌之KGDC及PDH之E2次單元釋放游離類脂酸(Spalding及Prigge,PLoS one 4: e7392 (2009))。本案發明人採用代謝工程技術策略以改進類脂酸之生產。首先,確認酵母中類脂酸酯結合蛋白質之可用性,且該等蛋白質隨後經由液體層析-串聯質譜分析(LC-MS/MS)進行表徵。測定EfLPA之活體外活性以便驗證其功能性表現且選擇適合的經類脂醯化之蛋白質作為EfLPA之目標受質。為開發生產游離類脂酸之菌株,EfLPA經修飾以易位至經類脂醯化之蛋白質所存在的粒線體。最後,為增強類脂酸之生產,使所選擇之受質蛋白質(亦即Gcv3p)、催化酶(亦即Lip2p及Lip5p)及輔因子再生酶(亦即Sam1p及Sam2p)過度表現(圖1)。蛋白質體分析、酶表徵及代謝工程技術方法共同地使釀酒酵母菌中之前所未有的游離類脂酸之生產能夠實現。
在第一態樣中,本發明提供一種經分離之經基因工程改造之細菌或酵母細胞,其中所述細菌或酵母細胞已經至少一聚核苷酸分子轉型;該至少一聚核苷酸分子包含可操作地連接於至少一啟動子之類脂酸路徑基因,其編碼辛醯轉移酶、類脂醯合成酶、經類脂醯化之蛋白質受質、類脂醯胺酶及/或S-腺苷甲硫胺酸合成酶,其中至少一類脂酸路徑基因為異源的,且該經基因工程改造之細菌或酵母細胞相較於未轉型細胞能夠增加游離類脂酸之生產。
經類脂醯化之蛋白質受質可為本技藝中已知的任何適合之受質且可選自包含Gcv3p、Lat1p及Kgd2p之群。
應理解,所述S-腺苷甲硫胺酸合成酶可為本技藝中已知之任何適合酶,其較佳來自選自包含以下之群的細胞:克魯維酵母(Kluyveromyces)、念珠菌(Candida)、畢赤酵母(Pichia)、耶氏酵母(Yarrowia)、德巴利酵母(Debaryomyces)、酵母屬(Saccharomyces spp.)及粟酒裂殖酵母(Schizosaccharomyces pombe )。較佳地,所述S-腺苷甲硫胺酸合成酶為S-腺苷甲硫胺酸合成酶1 (Sam1)及/或S-腺苷甲硫胺酸合成酶2 (Sam2),更佳地,Sam1及Sam2來自釀酒酵母菌。
在一些實施例中,所述類脂酸路徑基因包含LIP2 (辛醯轉移酶)、LIP5 (類脂醯合成酶)、GCV3 (甘胺酸裂解系統之H蛋白)、LPA (類脂醯胺酶)、SAM1 及/或SAM2
在一些實施例中,所述類脂酸路徑基因表現於粒線體中。
在一些實施例中,所述類脂酸路徑基因藉助於粒線體靶向肽(MTP)表現於粒線體中。發現諸如Gcv3p、Lat1p及Kgd2p之蛋白質可經由其原生MTP靶向至粒線體,而LPA、Sam1p及Sam2p可使用非原生MTP,諸如來自酵母細胞色素c氧化酶次單元IV之MTP,靶向至粒線體。
在一些實施例中,所述粒線體靶向肽(MTP)來自酵母細胞色素c氧化酶次單元IV (COX4)。在一些實施例中,該COX4 MTP之胺基酸序列為5'-MLSLRQSIRFFKPATRTLCSSRYLLQQKP-3' (SEQ ID NO: 45)。
在一些實施例中,所述酵母係選自包含以下之群:克魯維酵母、念珠菌、畢赤酵母、耶氏酵母、德巴利酵母、酵母屬及粟酒裂殖酵母。較佳地,所述酵母為釀酒酵母菌。
在一些實施例中,該至少一啟動子為組成型啟動子。
在一些實施例中,所述類脂醯胺酶(LPA)來自糞腸球菌,稱為EfLPA。較佳地,該EfLPA之基因係經密碼子最佳化以供在釀酒酵母菌中表現。若使用該EfLPA基因,則較佳針對類脂醯化靶向的蛋白質受質為Gcv3p。
在一些實施例中,所述類脂酸路徑基因由一或多種質體表現。或者,編碼所述異源類脂酸路徑基因中之一或多者的表現盒可使用整合載體,諸如實例1中所描述之pIS385,整合至基因體中。應理解,整合至宿主DNA中可提供永久性表現,而質體表現往往為暫時的。
在一些實施例中,該等類脂酸路徑基因中之至少一者整合於所述細菌或酵母之基因體中。
在一些實施例中,所述LIP2LIP5GCV3LPASAM1 及/或SAM2 基因分別編碼包含SEQ ID NO: 1、SEQ ID NO: 3、SEQ ID NO: 5、SEQ ID NO: 7、SEQ ID NO: 9及/或SEQ ID NO: 11中所示之序列的胺基酸序列。應理解,歸因於基因密碼中之冗餘,核酸序列可與參考序列具有小於100%一致性且仍編碼相同胺基酸序列。
在一些實施例中,所述LIP2 基因包含與SEQ ID NO: 2中所示之序列具有至少70%序列一致性、至少80%序列一致性、至少85%序列一致性、至少90%序列一致性、至少95%序列一致性或100%序列一致性的聚核苷酸序列;所述LIP5 包含與SEQ ID NO: 4中所示之序列具有至少70%序列一致性、至少80%序列一致性、至少85%序列一致性、至少90%序列一致性、至少95%序列一致性或100%序列一致性的聚核苷酸序列;所述GCV3 基因包含與SEQ ID NO: 6中所示之序列具有至少70%序列一致性、至少80%序列一致性、至少85%序列一致性、至少90%序列一致性、至少95%序列一致性或100%序列一致性的聚核苷酸序列;所述LPA 基因包含與SEQ ID NO: 8中所示之序列具有至少70%序列一致性、至少80%序列一致性、至少85%序列一致性、至少90%序列一致性、至少95%序列一致性或100%序列一致性之聚核苷酸序列;所述SAM1 基因包含與SEQ ID NO: 10中所示之序列具有至少70%序列一致性、至少80%序列一致性、至少85%序列一致性、至少90%序列一致性、至少95%序列一致性或100%序列一致性的聚核苷酸序列;及/或所述SAM2 基因包含與SEQ ID NO: 12中所示之序列具有至少70%序列一致性、至少80%序列一致性、至少85%序列一致性、至少90%序列一致性、至少95%序列一致性或100%序列一致性的聚核苷酸序列。
在第二態樣中,本發明提供一種重組表現載體,其包含根據本發明之任何態樣之可操作地連接於啟動子之一或多個異源類脂酸路徑基因,其中表現之蛋白質定位至粒線體。
在一些實施例中,所述啟動子為組成型啟動子。
在第三態樣中,本發明提供一種在經基因工程改造之細胞中產生游離類脂酸之方法,其包含以下步驟: a)在用於類脂酸生物合成之條件下於培養基中培養多個根據本發明之任何態樣之經基因工程改造之細胞,以及 b)用半胱胺酸補充該培養基, 其中該經基因工程改造之細胞相較於未轉型細胞能夠增加游離類脂酸之生產。
在一些實施例中,所述培養基補充有濃度為至少0.05 mg/ml、至少0.1 mg/ml、至少0.2 mg/ml、至少0.5 mg/ml或在0.05 mg/ml至0.7 mg/ml範圍內、較佳在0.1 mg/ml至0.4 mg/ml範圍內之半胱胺酸。
在一些實施例中,該方法進一步包含分離該游離類脂酸。
在一較佳實施例中,所述細胞為細菌或酵母細胞。
更佳地,所述細胞為釀酒酵母菌。
較佳實施例之詳細說明
在本說明書中提及之書目參考為方便起見以參考文獻列表形式列出且附在實例末尾。此類書目參考之全部內容以引用方式併入本文中。關於先前技術之任何論述並非承認該先前技術為本發明領域中之公共常識的一部分。定義
為方便起見,此處收集本說明書、實例及隨附申請專利範圍中所採用之某些術語。
必須注意,除非上下文另外明確規定,否則如本文及隨附申請專利範圍中所用,單數形式「一(a)」、「一(an)」及「該/所述(the)」包括多個提及物。
如本文所用,術語「包含」或「包括」應解釋為指明如所提及之所述特徵、整體、步驟或組分之存在,但不排除一或多個特徵、整體、步驟或組分或其群組之存在或添加。然而,在本揭露內容之上下文中,術語「包含」或「包括」亦包括「由……組成」。字組「包含(comprising)」之變化形式,諸如「包含(comprise)」及「包含(comprises)」,及「包括(including)」之變化形式,諸如「包括(include)」及「包括(includes)」具有相應變化的意義。
如本文所用,術語「核苷酸」、「核酸」或「核酸序列」係指寡核苷酸、聚核苷酸或其任何片段;係指基因體或合成來源之DNA或RNA,其可為單股或雙股的且可表示有義或反義股;係指肽核酸(PNA);或係指任何DNA樣或RNA樣材料。
如本文所用,術語「可操作地連接」意謂應用該術語之組分呈允許其在適合條件下執行其固有功能之關係。舉例而言,「可操作地連接」於蛋白質編碼序列之控制序列係與該蛋白質編碼序列接合以使得在與該控制序列之轉錄活性相容之條件下實現該蛋白質編碼序列之表現。舉例而言,當第一核酸序列與第二核酸序列以功能關係置放時,該第一核酸序列係與該第二核酸序列可操作地連接。舉例而言,若啟動子影響編碼序列之轉錄或表現,則該啟動子係可操作地連接於該編碼序列。一般而言,可操作地連接之數個DNA序列為相鄰的,且當必需接合二個蛋白質編碼區時,係在相同閱讀框架中。
如本文所用,術語「胺基酸」或「胺基酸序列」係指寡肽、肽、多肽或蛋白質序列或此等中任一者之片段,且係指天然存在或合成之分子。當「胺基酸序列」在本文中敍述為指天然存在之蛋白質分子之胺基酸序列時,「胺基酸序列」及類似術語不意欲將該胺基酸序列限制為與所述蛋白質分子相關之完全原生胺基酸序列。
如本文所用,術語「多肽」、「肽」或「蛋白質」係指一或多個胺基酸鏈,其中各鏈包含由肽鍵共價連接之胺基酸,且其中該多肽或肽可包含多個非共價連接在一起及/或由肽鍵共價連接在一起之鏈,其具有原生蛋白質的序列,亦即由天然存在且具體為非重組細胞產生之蛋白質的序列,或由經基因工程改造或重組細胞產生之蛋白質的序列,且包含具有原生蛋白質之胺基酸序列的分子,或對原生序列之一或多個胺基酸進行缺失、添加及/或取代而得之分子。「多肽」、「肽」或「蛋白質」可包含一個(稱為「單體」)或多個(稱為「多聚體」)胺基酸鏈。
適用於類脂酸生物合成之培養基包括LB培養液、YPD、2YT及任何其他適合之培養基。所述培養基可包括抗生素,諸如安比西林(ampicillin)、康黴素(kanamycin)、氯黴素(chloramphenicol)、異丙基β-D-1-半乳哌喃糖苷(IPTG)及L-***糖。熟習此藝者將知曉各組分之適當濃度。
載體可包括一或多種催化酶核酸,其呈適合於在宿主細胞中表現該一或多種核酸之形式。較佳地,重組表現載體包括一或多個可操作地連接於一或多個待表現之核酸序列的調節序列。術語「調節序列」包括啟動子、強化子、核糖體結合位點及/或IRES元件及其他表現控制元件(例如聚腺苷酸化信號)。表現載體之設計可視諸如待轉型之宿主細胞之選擇、所要蛋白質之表現位準及其類似因素的因素而定。可將本發明之表現載體引入至宿主細胞中以藉此產生由如本文所描述之核酸編碼之蛋白質或多肽,包括融合蛋白或多肽(例如,催化酶蛋白)。
本發明之重組表現載體可經設計以用於在原核或真核細胞中,更尤其是在原核細胞中,表現催化酶蛋白。舉例而言,本發明之多肽可在細菌(例如藍綠細菌)或酵母細胞中表現。適合之宿主細胞進一步論述於Goeddel, (1990) Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif.中。現已大體描述本發明,參考以下實例將更容易理解本發明,該等實例係以說明方式提供且並不意欲限制本發明。
熟習此藝者應瞭解,本發明可根據本文所給出之方法在無過度實驗的情況下實踐。所述方法、技術及化學品係如所給出之參考文獻中所述或來自標準生物技術及分子生物學教科書中之方案。實例 實例1 材料及方法 菌株及培養基
除非另外說明,否則大腸桿菌TOP10 (Invitrogen)及Luria-Bertani (Becton, Dickinson and Company)係用於選殖實驗。適用時,使用100 mg/L安比西林來選擇陽性菌落。酵母菌株釀酒酵母菌BY4741 (ATCC)係用於針對類脂酸生產之基因工程改造。
在豐富培養基YPD/YPGR (1%酵母提取物、2%蛋白腖、及2% D-葡萄糖或2%半乳糖與1%棉子糖)、缺乏尿嘧啶的合成基本培養基SC-U (0.67%酵母氮源基礎、0.192%尿嘧啶缺失及2% D-葡萄糖)、缺乏離胺酸之培養基SC-L (0.67%酵母氮源基礎、0.18%離胺酸缺失及2% D-葡萄糖)、缺乏白胺酸之培養基SC-LE (0.67%酵母氮源基礎、0.16%白胺酸缺失及2% D-葡萄糖)、或缺乏白胺酸及尿嘧啶兩者之培養基SC-LU (0.67%酵母氮源基礎、0.154%白胺酸及尿嘧啶缺失、及2% D-葡萄糖)中培養釀酒酵母菌BY4741野生型及突變菌株。補充2%瓊脂以製造固體培養基。酵母生長培養基組分購自Sigma-Aldrich、MP Biomedicals及BD (Becton, Dickinson and Company)。使用5-氟乳清酸(5-FOA,Fermentas)或遺傳黴素(G418,PAA Laboratories)進行選擇。必要時,將半胱胺酸(0.2 mg/mL)及硫酸亞鐵(0.2 mg/mL) (Sigma-Aldrich)補充至生長培養物中。將酵母細胞在30℃下在燒瓶中培養且以225 rpm振盪。質體構築及基因整合
EfLPA 基因(GenBank登錄號AY735444)係針對釀酒酵母菌進行密碼子最佳化且藉由整合DNA技術合成。將具有及不具有粒線體靶向肽(MTP)序列之EfLPA 基因接合於自釀酒酵母菌基因體DNA擴增之PGAL1 啟動子與TCYC1 終止子之間。將具有及不具有MTP的EfLPA 表現盒***載體pRS41K (Euroscarf),分別產生質體pRS41K-PGAL1 -mEfLPA-TCYC1 及pRS41K-PGAL1 -EfLPA-TCYC1 。分別針對具有及不具有MTP之EGFP ,類似地構築質體pRS41K-PGAL1 -mEGFP-TCYC1 及pRS41K-PGAL1 -EGFP-TCYC1 。所構築之重組質體列於表1中。表2中展示所用引子之列表。
  1. 此研究中所用之菌株及質體
菌株或質體 描述 來源
菌株  
大腸桿菌Top10 F- mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZΔ M15ΔlacX74 recA1 araD 139Δ(ara-leu) 7697galU galK rpsL(StrR ) endA1 nupG 1
釀酒酵母菌
   BY4741 MATahis3Δ1 leu2Δ0 met15Δ0 ura3Δ0 2
   BY4741-GCV3 BY4741,具有PTEF1 -GCV3-TCYC1 (lys2位點) 3
   BY4741-LAT1 BY4741,具有PTEF1 -LAT1-TADH1 (lys2位點) 3
   BY4741-KGD2 BY4741,具有PTEF1 -KGD2-TKGD2 (lys2位點) 3
   BY4741-對照 BY4741,具有質體pRS41K 3
   BY4741-EfLPA BY4741,具有質體pRS41K-PGAL1 -EfLPA-TCYC1 3
   BY4741-mEfLPA BY4741,具有質體pRS41K-PGAL1 -mEfLPA-TCYC1 3
   BY4741-EGFP BY4741,具有質體pRS41K-PGAL1 -EGFP-TCYC1 3
   BY4741-mEGFP BY4741,具有質體pRS41K-PGAL1 -mEGFP-TCYC1 3
   BY4741-GCV3- mEfLPA BY4741,具有PTEF1 -GCV3-TCYC1 (lys2位點)及質體pRS41K- -PGAL1 -mEfLPA-TCYC1 3
   BY4741-GCV3-LIP2- LIP5-    -mEfLPA BY4741,具有PTEF1 -GCV3-TCYC1 (lys2位點), PTEF1 -LIP2-TLIP2 (CS6位點), PPGI1 -LIP5-TLIP5 (CS6位點)及質體pRS41K-PGAL1 -mEfLPA-TCYC1 3
   BY4741-GCV3-LIP2- LIP5-    -mSAM1-mEfLPA BY4741,具有PTEF1 -GCV3-TCYC1 (lys2位點), PTEF1 -LIP2-TLIP2 (CS6位點), PPGI1 -LIP5-TLIP5 (CS6位點), PADH1 -mSAM1-TSAM1 (CS8)及質體pRS41K--PGAL1 -mEfLPA-TCYC1 3
   BY4741-GCV3-LIP2- LIP5-    -mSAM2-mEfLPA BY4741,具有PTEF1 -GCV3-TCYC1 (lys2位點), PTEF1 -LIP2-TLIP2 (CS6位點), PPGI1 -LIP5-TLIP5 (CS6位點), PADH1 -mSAM2-TSAM2 (CS8)及質體pRS41K-PGAL1 -mEfLPA-TCYC1 3
質體  
pIS385 AmpR,URA3 4
pRS41K ARS/CEN來源,kanMX   4
pRS41K-PGAL1 -EfLPA- TCYC1 pRS41K,攜帶PGAL1 控制下之EfLPA 3
pRS41K-PGAL1 - mEfLPA-TCYC1 pRS41K,攜帶PGAL1 控制下之MTP-EfLPA 3
pRS41K-PGAL1 -EGFP- TCYC1 pRS41K,攜帶PGAL1 控制下之EGFP 3
pRS41K-PGAL1 - mEGFP-TCYC1 pRS41K,攜帶PGAL1 控制下之MTP-EGFP 3
1. Invitrogen;2. ATCC;3.此研究;4. Euroscarf 2. 此研究中使用之引子。 限制位點呈粗體。
引子 引子序列 5 ' -3 ' SEQ ID NO
PGAL1 -F AAACGAGCTC AGTACGGATTAGAAGCC 13
PGAL1 -R TTTTTAGGGTTTTTTCTCCTTGACGTT 14
TCYC1 -F ATCCGCTCTAACCGAAAAGG 15
TCYC1 -R AAACGAGCTC CTTCGAGCGTCCCAAAACC 16
EfLPA-F CGTCAAGGAGAAAAAACCCTAAAAAATGCTAGCCCAAGAA 17
mEfLPA-F CGTCAAGGAGAAAAAACCCTAAAAAATGCTTTCACTACGTCAATCTATAAGATTTTTCAAGCCAGCCACAAGAACTTTGTGTAGCTCTAGATATCTGCTTCAGCAAAAACCCATGCTAGCCCAAGAA 18
EfLPA-R   CTAACTCCTTCCTTTTCGGTTAGAGCGGATTCATTAATGGTGATGGTGATGATGCTTACGGGTCTTTCTAATGTAGA 19
EGFP-F CGTCAAGGAGAAAAAACCCTAAAAAATGTCTAAAGGTGAA 20
mEGFP-F CGTCAAGGAGAAAAAACCCTAAAAAATGCTTTCACTACGTCAATCTATAAGATTTTTCAAGCCAGCCACAAGAACTTTGTGTAGCTCTAGATATCTGCTTCAGCAAAAACCCATGTCTAAAGGTGAA 21
EGFP-R CTAACTCCTTCCTTTTCGGTTAGAGCGGATTCATTAATGGTGATGGTGATGATGTTTGTACAATTCATC 22
PTEF1 -F ACCGCTCGAG CATAGCTTCAAAATGTTTCTACTCCTTT 23
PTEF1 -R TTGTAATTAAAACTTAGATTAGATTGC 24
GCV3-F GCAATCTAATCTAAGTTTTAATTACAAATGTTACGCACTACTAGACTATGG 25
GCV3-R CTAACTCCTTCCTTTTCGGTTAGAGCGGATTCATTAATGGTGATGGTGATGATGGTCATCATGAACCAGTGT 26
KGD2-F GCAATCTAATCTAAGTTTTAATTACAAATGCTTTCCAGAGCGACG 27
KGD2-R ATCAGATTGGTATGGGCTGCAAATTTCAAATCATTAATGGTGATGGTGATGATGCCATAACAACATTTTTCTAG 28
TKGD2 -F TTTGAAATTTGCAGCCCATAC 29
TKGD2 -R ATTCGAGCTC ATGTGGAAATCAAAAGAATATTAGTTGAT 30
LAT1-F GCAATCTAATCTAAGTTTTAATTACAAATGTCTGCCTTTGTCAGGGTG 31
LAT1-R   TAATAAAAATCATAAATCATAAGAAATTCGTCATTAATGGTGATGGTGATGATGCAATAGCATTTCCAAAGGAT 32
TADH1 -F CGAATTTCTTATGATTTATGATTTTTA 33
TADH1 -R ACGCGGATCC GAGCGACCTCATGCTATACCT 34
LIP2- LIP5 -CS6-F AACCTCGAGGAGAAGTTTTTTTACCCCTCTCCACAGATCCTCGAG CATAGCTTCAAAATGTTTCTAC 35
LIP2- LIP5 -CS6-R TAATTAGGTAGACCGGGTAGATTTTTCCGTAACCTTGGTGTCGAGCTC ACGCATTTTTTTCTTTTGC 36
SAM1/2 -CS8-F CAAAATTACCTACGGTAATTAGTGAAAGGCCAAAATCTAATGTTACAATAGTATACTAGAAGAATGAGCCAAG 37
SAM1-CS8-R GACCGTTCCCTTGTGTTGTACCAGTGGTAGGGTTCTTCTCGGTAGCTTCTATAAGATAAAGTTTGGTTTGTTGATC 38
SAM2-CS8-R GACCGTTCCCTTGTGTTGTACCAGTGGTAGGGTTCTTCTCGGTAGCTTCTCCTCAAAGACATTCTATATTTCAACC 39
表現盒PTEF1 -GCV3-TCYC1 、PTEF1 -KGD2-TKGD2 及PTEF1 -LAT1-TADH1 之染色體整合至LYS2 位點中係基於先前由Sadowski等人(Sadowski等人,Yeast 24: 447-455 (2007))描述之方法進行,其中含有URA3可選標記物之整合載體pIS385 (Euroscarf)係用於整合。另外,基於成簇規律間隔短回文重複序列(CRISPR)及此前確立的CRISPR相關(Cas)系統(DiCarlo等人,Nucleic Acids Research 41: 4336-4343 (2013)),盒PTEF1 -LIP2-TLIP2 及PPGI1 -LIP5-TLIP5 整合於基因間位點CS6中,而PADH1 -mSAM1-TSAM1 及PADH1 -mSAM2-TSAM2 整合於基因間位點CS8中(Xia等人,ACS Synthetic Biology 6: 276-283 (2017))。為了選殖GCV3LAT1KGD2LIP2LIP5SAM1SAM2 ,釀酒酵母菌之基因體DNA用作PCR模板。上述所有蛋白質均經由其原生MTP (對於Gcv3p、Lat1p及Kgd2p)或來自酵母細胞色素c氧化酶次單元IV (COX4)之MTP (對於mEfLPA、mSam1p及mSam2p)定位至粒線體(Maarse等人,The EMBO Journal 3: 2831-2837 (1984))。將六組胺酸標籤添加至此等蛋白質之C端或N端以用於表現分析。所用寡核苷酸引子列於表2中。經類脂醯化及辛醯化 之蛋白質之偵測
細胞在5 ml酵母提取物蛋白腖右旋糖(YPD)培養基中預培養隔夜,且接著使用500 ml燒瓶在100 ml YPD培養基中稀釋以達成0.4之初始OD600 。在生長18小時之後,藉由離心收集細胞。使細胞集結粒再懸浮於25 ml溶解緩衝液(0.3 M NaCl,50 mM磷酸鈉,pH 6.5)中。用高壓均質機(EmulsiFlex-C3, AVESTIN, Inc.)在25000 psi下溶解細胞。藉由離心收集可溶性細胞溶解物且混合等體積的8 M鹽酸胍。300 μl最終產物注射至Agilent 1260 Infinity二元HPLC (Agilent)中。在1.5 ml/min之溶劑流動速率及80℃之管柱溫度下用mRP-C18高回收率蛋白管柱(Agilent)解析蛋白質。移動相A及B分別為0.1%三氟乙酸/水及0.1%三氟乙酸/乙腈。蛋白質用以下梯度溶離:0至1分鐘(10%至30% B)、1至12分鐘(30%至50% B)、12至13分鐘(50%至80% B)、13至14分鐘(80% B)、14至15分鐘(80%至10% B)及15至17分鐘(10% B)。自1分鐘開始進行蛋白質收集且收集12個連續1分鐘溶離份。蛋白質在Speedvac濃縮器(Thermo Fisher Scientific)中乾燥隔夜。將各溶離份之蛋白質用50 μl具有1 μg Glu-C (Promega)之0.5 M碳酸氫三乙銨再懸浮。將混合物培育隔夜。
將7 μl經消化肽裝載至配備有PortID-晶片-43 (II)管柱(Agilent)之Agilent 1260 infinity HPLC-晶片/MS系統(Agilent)中。乙腈之線性梯度用於以0.35 μl/min之恆定流動速率自該HPLC-晶片系統溶離肽。對於LC分離,使用0.2%甲酸/水(移動相A)及0.2%甲酸/乙腈(移動相B)。樣品用以下梯度經由奈米泵溶離:0至1分鐘(7%至10% B)、1至35分鐘(10%至30% B)、35至37分鐘(30%至80% B)、37至38分鐘(80% B)、38至40分鐘(80%至7% B)及40至43分鐘(7% B)。將溶離樣品直接輸注至質譜儀中以進行偵測。質譜以3個光譜/秒之掃描速率在100至1600 m/z之範圍內掃描。MS/MS掃描範圍為80至2000 m/z,掃描速率為4個光譜/秒。質量資料在175 V之碎裂電壓(fragmentor voltage)及65 V之截取錐電壓(skimmer voltage)下,在陽離子模式下收集。肽轉譯後修飾 ( PTM ) 分析
PEAKS 8軟體(Bioinformatics Solutions Inc.,滑鐵盧,加拿大)之SPIDER功能(Zhang等人,Molecular & Cellular Proteomics : MCP 11: M111.010587 (2012))係用於基於質量差異鑑別具有PTM的肽。使用以下搜尋參數搜尋酵母肽。前驅體質量誤差容差為100 ppm (百萬分之一),而片段質量誤差容差為0.1 Da。固定PTM為脲基甲基化(carbamidomethylation)(C) (+57.02)且可變PTM為類脂醯基(K) (+188.03)、辛醯基(TS) (+126.10)、氧化(M) (+15.99)及氧化(HW) (+15.99)。分別將肽及蛋白質鑑別可靠度評分(−10lgP,其中P係鑑別機率)設定為臨限值15及20,其對應於信賴鑑別。所用資料庫為UniProtKB/Swiss-Prot。蛋白質模型化以供結構視覺化
SWISS-MODEL (Waterhouse等人,Nucleic Acids Research 46: W296-W303 (2018))係用於使用同源性模型化技術自Gcv3p、Kgd2p及Lat1p蛋白之胺基酸序列建構其3D結構模型。基於聚集來自蛋白質資料庫(Protein Data Bank,PDB)之實驗結構之資訊的SWISS-MODEL模板庫(SMTL)中可獲得之模板預測結構。PyMOL分子圖形系統(Schrödinger, Inc.,紐約,USA) (Schrodinger, 「The PyMOL Molecular Graphics System, Version 1.8」 (2015))係用以觀測結構。
具有41%、37%及48%序列一致性之模板同源蛋白質分別用於Gcv3p、Kgd2p及Lat1p之模型化。Gcv3p之模板蛋白質為來自結核分枝桿菌(Mycobacterium tuberculosis )之甘胺酸裂解系統蛋白質H (PDB鏈id:3hgb.1.A),而對於Kgd2p及Lat1p,由於缺乏具有全長晶體結構之模板而僅模型化N端(類脂醯基區域)。Kgd2p之N端(類脂醯基區域)之模板為棕色固氮菌(Azotobacter vinelandii )中之2-酮戊二酸去氫酶複合物之E2組分的類脂醯基區域(PDB鏈id:1ghj.1.A)。Lat1p之N端(類脂醯基區域)係使用智人中之丙酮酸去氫酶複合物的二氫類脂醯基離胺酸殘基乙醯基轉移酶組分(PDB鏈id:1y8n.1.B)模型化。蛋白質過度表現及純化
細胞在5 ml培養基中預培養隔夜且接著使用200 ml燒瓶在50 ml誘導培養基中稀釋以達成0.4之初始OD600 。在細胞生長隔夜之後,藉由離心收集酵母細胞。將細胞集結粒再懸浮於溶解緩衝液(0.5 M NaCl,20 mM磷酸鈉,20 mM咪唑,pH 6.8)中且用高壓均質機(EmulsiFlex-C3, AVESTIN, Inc.)在25000 psi下溶解。在離心之後,將不溶性蛋白質及細胞碎片與可溶性蛋白質分離。為檢驗蛋白質表現,所述可溶性蛋白質用Laemmli樣品緩衝劑(Bio-Rad)煮沸且在SDS-聚丙烯醯胺凝膠上分離。將該凝膠中之蛋白質轉移至西方墨點膜上且如先前所描述使用HRP結合之抗6×His標籤抗體(ThermoFisher Scientific) (Chen等人,Biotechnology for Biofuels 6: 21 (2013))。為偵測粒線體中表現之蛋白質,使用酵母粒線體分離套組(Biovision)提取粒線體蛋白質。所提取之蛋白質將用Laemmli樣品緩衝劑煮沸且經由如所描述之西方墨點法偵測。
為了純化所述蛋白質,所述可溶性蛋白質與鎳-IMAC樹脂(GE Healthcare)一起培育隔夜以進行蛋白質結合。在蛋白質結合及洗滌之後,用溶離緩衝液(0.5 M NaCl、20 mM磷酸鈉、300 mM咪唑,pH 6.8)溶離經His標記之蛋白質。蛋白質濃縮器(Thermo Scientific)係用於將所述溶離緩衝液換成PBS緩衝液以進行下游蛋白質活性測試。游離類脂酸 偵測
使用經修改之Chng等人研發之LC-MS/MS方法(Chng等人,Journal of Pharmaceutical and Biomedical Analysis 51: 754-757 (2010))提取及偵測游離類脂酸。將等體積乙腈添加至細胞培養物或溶解物之上清液中。將混合物渦旋混合2分鐘。在-30℃下冷卻30分鐘後,將含有類脂酸之上層相轉移至潔淨試管中以蒸發至乾燥。用200 μl 50%乙腈/水復原殘留物。所提取之類脂酸樣品在負模式下注入LC-MS/MS系統(Agilent 1290液相層析及Agilent 6550 iFunnel Q-TOF)中。在0.7 ml/min之流動速率下,藉由0至5.8分鐘(80%至68% A)、5.8至6.5分鐘(68%至15% A)及6.5至7分鐘(15%至95% A)之梯度溶液,用Agilent Eclipse Plus C18管柱(2.1×100 mm,1.8 μm,Agilent)實現層析分離。移動相A為0.1%乙酸(用氫氧化氨溶液調節為pH 4)且移動相B為乙腈。噴霧器設定為40 psig,而鞘流氣流動速率為11 l/min。類脂酸之最佳化碰撞能量為8 eV。藉由使用2-丙基戊酸(Tokyo Chemical Industry Co., Ltd.)作為內標進行定量。
亦使用氣相層析-質譜(GC-MS)確認類脂酸之身分。簡言之,將HPLC級乙酸乙酯(Sigma)添加至細胞培養物或溶解物之上清液以提取類脂酸。藉由離心將混合物分離成二相。將含有類脂酸之上層相與含有1%三甲基氯矽烷之N,O-雙(三甲基矽烷基)三氟乙醯胺(BSTFA)以4:1比率混合。使用GC-MS在以下條件下分析衍生化類脂酸。HP-5ms管柱(30 m×0.25 mm;0.25 μm膜;Agilent)與設定為1 ml/min之氦流動速率一起使用。在不分流注射條件下並且入口設定成250℃,進行1 μl之注射。GC溫度曲線如下:維持45℃之初始溫度2分鐘,接著以10℃/min之速率升溫至280℃,此溫度保持3.5分鐘。質譜儀偵測器在電子電離(EI)模式中掃描30至800 amu。為了幫助鑑別峰,將可靠類脂酸(Sigma)標準物用作參考物。螢光顯微法
使攜帶質體pRS41K-PGAL1 -EGFP-TCYC1 及pRS41K-PGAL1 -mEGFP-TCYC1 之釀酒酵母菌BY4741細胞在誘導培養基(具有200 mg/L G418之YPGR)中生長至早期對數期。收集該等細胞且將其安放在塗有聚-L-離胺酸之玻璃載片上。用螢光顯微鏡(Leica DMi8)使EGFP螢光視覺化。 實例2作為游離類脂酸生物合成之受質之經類脂醯化之蛋白質的蛋白質體分析及表徵
為工程改造酵母以用於游離類脂酸生物合成,我們首先旨在評價各種形式之類脂酸酯結合蛋白質之可用性並理解其形成過程。我們假設此將有助於我們選擇適合的經類脂醯化之蛋白質作為EfLPA後續在醯胺鍵處進行酶裂解以釋放游離類脂酸的受質。類脂酸經由醯胺鍵共價鍵結至蛋白質而在釀酒酵母菌中存在。假設其生物合成開始於將辛醯基部分自辛醯基-ACP轉移至缺輔基形式之類脂酸酯依賴性蛋白質,接著藉由***二個硫原子修飾該辛醯基部分(Schonauer等人,Journal of Biological Chemistry 284: 23234-23242 (2009))。由於類脂酸主要結合於三種蛋白質,亦即Gcv3p、Lat1p及Kgd2p,我們設法聚焦於經由LC-MS/MS來分析此等蛋白質,以更好地理解蛋白質類脂醯化機制。
為了研究Gcv3p、Lat1p及Kgd2p之類脂醯化,我們自釀酒酵母菌提取總蛋白質且藉由利用逆相管柱之HPLC將該等蛋白質分離成12個部分以降低我們蛋白質樣品之複雜度。與其使用先前報導用以產生長肽片段之胰蛋白酶及胰凝乳蛋白酶(Gey等人,PLoS one 9:e103956 (2014)),在此研究中,各蛋白質樣品係使用Glu-C消化以產生較短肽,由此提供較好的精確度。藉由LC-MS/MS分析經消化之肽混合物。總計,基於各肽之m/z值及MS/MS光譜鑑別了2,713個肽。如圖3A中所示,偵測到m/z 895.3918之單電荷肽。此片段對應於來自在K102 (離胺酸102 )處攜帶類脂酸修飾之Gcv3p的100 SV K SASE106 (SEQ ID NO: 40)序列。類似地,m/z 1021.4584之單電荷肽揭露來自K114 經類脂酸修飾的Kgd2p之序列112 TD K IDIE118 (SEQ ID NO: 41)的存在(圖3B)。所偵測作為前驅體離子之m/z 636.7529之雙電荷經類脂醯化之肽指示來自Lat1p之序列73 TD K AQMDFE81 (SEQ ID NO: 42)亦在K75 經類脂酸修飾(圖3C)。因此,我們自資料推斷,Gcv3p、Kgd2p及Lat1p在野生型細胞BY4741中分別在位置K102 、K114 及K75 處經類脂醯化。詳細計算展示於圖2中。
除了經類脂醯化之肽之外,我們亦在Gcv3p中觀測到可能源於類脂酸酯-蛋白質之前驅體的辛醯化肽。m/z 833.4583及833.4628之二種單電荷肽之偵測分別指示Gcv3p片段在S100 (絲胺酸100 ) (100 S VKSASE106 ;SEQ ID NO: 43)或S103 位置(100 SVK S ASE106 ;SEQ ID NO: 44)處的單一辛醯基修飾(圖3D及3E)。此表明,意外地,類脂酸酯及辛酸酯之結合不發生在同一殘基上,而是分別發生在離胺酸及近端絲胺酸殘基上。此等資料提供Gcv3p蛋白質在經類脂酸酯修飾之離胺酸殘基附近之絲胺酸殘基處的辛醯化之首個基於MS之證據,指示Gcv3p在S100 或S103 負載有辛酸酯以在形成具有經類脂酸酯修飾之K102 的類脂酸酯-Gcv3p之前充當前驅體。因此,代替離胺酸直接辛醯化再將硫原子添加至辛基碳鏈中,我們提出類脂醯基-Gcv3p之形成係經由以下三個步驟:(i)絲胺酸(S100 或S103 )側鏈經辛醯基官能基而酯化,(ii)離胺酸(K102 )側鏈藉由自S100 或S103 之辛醯基部分的醯基轉移而醯胺化,及(iii)硫原子藉由類脂醯合成酶Lip5p而***辛醯基部分中(圖4A)。引起關注地,未偵測到來源於Kgd2p及Lat1p之辛醯化肽。一種可能性為辛醯化Kgd2p及Lat1p蛋白質可在其產生之後中間轉化為經類脂酸酯修飾之蛋白質。或者,Kgd2p及Lat1p之類脂醯化可經由自類脂酸酯-Gcv3p的醯胺基轉移而發生,因為Gcv3p及Lip3p對於形成經類脂酸酯修飾之Kgd2p及Lat1p為必需的,且Lip3p已被提出為可能的醯胺基轉移酶(Schonauer等人,Journal of Biological Chemistry 284: 23234-23242 (2009);Hiltunen等人,Biochmica et Biophysica Acta (BBA ) - Bioenergetics 1797: 1195-1202 (2010))。
為了闡明蛋白質結構特徵及視覺化辛醯化及類脂醯化位點之位置,我們藉由同源性模型化來預測Gcv3p、Kgd2p及Lat1p之結構(圖4B、4C及4D)。供修飾之所有殘基,亦即Gcv3p中之K102 、S100 及S103 ;Kgd2p中之K114 ;及Lat1p中之K75 ,係定位於通常為表面暴露的β-轉折上(Marcelino及Gierasch,Biopolymers 89: 380-391 (2008))。因此,其相應辛醯基-PTM及類脂醯基-PTM存在於蛋白質表面上,且對此等殘基上待進行之酶催化作用,亦即藉由Lip2p/Lip3p將辛酸連接於絲胺酸殘基、藉由Lip5p將硫原子***至辛醯化離胺酸殘基及藉由EfLPA使類脂酸與離胺酸殘基之間的醯胺鍵水解,係可獲取的。總體而言,我們鑑別了在野生型BY4741菌株中Gcv3p、Kgd2p及Lat1p經類脂醯化之離胺酸殘基,亦即分別為K102 、K114 及K75 。Gcv3p中辛醯化絲胺酸殘基之發現表明離胺酸殘基之辛醯化涉及將辛醯基部分預裝載於絲胺酸殘基上,接著醯基轉移至離胺酸側鏈的類脂醯化機制。我們亦由Gcv3p、Kgd2p及Lat1p之預測蛋白結構確認,其經類脂醯化之離胺酸殘基可由EfLPA獲取來進行水解。因此,接著表徵EfLPA對經類脂醯化之Gcv3p、Kgd2p及Lat1p之活性以確定此等經類脂醯化之酶作為EfLPA之受質以產生游離類脂酸的適合性。 實例3有關游離類脂酸生物合成之 EfLPA 的活體外表徵
游離類脂酸藉由用類脂醯胺酶來酶裂解連接類脂醯基部分與類脂酸酯依賴性蛋白質之離胺酸的醯胺鍵產生。來自糞腸球菌之EfLPA先前已展示自大腸桿菌中之經類脂酸酯修飾之蛋白質釋放類脂酸(Spalding及Prigge,PLoS one 4: e7392 (2009))。如圖3中所展現,酵母中類脂酸主要結合於三種蛋白質,亦即Gcv3p、Lat1p及Kgd2p,但尚未報導EfLPA對此等經類脂醯化之酵母蛋白質是否具有功能性。因此,為了針對游離類脂酸生物合成工程改造釀酒酵母菌,我們表徵EfLPA針對此等經類脂醯化之蛋白質之活體外酶活性。我們假設經由此活體外研究,可鑑別出EfLPA對其具有催化活性的適合受質蛋白質候選物,以供後續過度表現從而增加可合成類脂酸之位點之可用性。
為了測試EfLPA針對來自酵母的經類脂醯化之蛋白質之催化活性,具有六組胺酸標籤之EfLPA 在強半乳糖誘導型PGAL1 啟動子下自低複本數質體表現。與六組胺酸標籤融合之類脂酸酯結合蛋白質(亦即Gcv3p、Kgd2p及Lat1p)個別地在來自基因體的強組成型啟動子PTEF1 下表現。如圖5A中所示,釀酒酵母菌中Gcv3p、Kgd2p、Lat1p及EfLPA之表現藉由西方墨點法確認。Gcv3p展示比其他蛋白質高得多的蛋白質表現,而Kgd2p展示最低蛋白質表現。Kgd2p及Lat1p之低表現位準的原因不清楚,但已展示必需蛋白質具有相對較短的蛋白質半衰期,其可歸因於必需蛋白質之嚴格保真度要求及破壞的低臨限值(Martin-Perez及Villén,Cell Systems 5: 283-294.e285 (2017))。因此,Kgd2p及Lat1p之低蛋白質表現可歸因於快速蛋白質轉換,因為Kgd2p及Lat1p二者均涉及好氧呼吸,一細胞代謝中之中心過程(Schonauer等人,Journal of Biological Chemistry 284: 23234-23242 (2009))。EfLPA蛋白之西方墨點分析展示多個條帶,其與先前報導(Spalding及Prigge,PLoS one 4: e7392 (2009))一致。
為確定EfLPA是否具有針對來自酵母之經類脂醯化之蛋白質的廣泛類脂醯胺酶活性,經純化Gcv3p、Kgd2p及Lat1p蛋白質個別地與經純化EfLPA在37℃下一起培育2小時。藉由LC-MS/MS分析來自酶反應混合物之提取產物。在僅含有EfLPA、Gcv3p、Kgd2p或Lat1p之對照反應混合物中未偵測到類脂酸。引起關注地,在含有EfLPA與個別Kgd2p或Lat1p之反應混合物中未觀測到類脂酸。僅EfLPA與Gcv3p之反應產生指示類脂酸之m/z 205.0360峰(圖5B)。上述前驅體離子m/z 205.0360之產物離子掃描展現在m/z 64.9521、93.0706、127.0576及171.0485下清晰且豐富的產物離子(圖5C),其與類脂酸參考標準物之質譜(圖5D)一致。所提取之產物另外藉由GC-MS分析以進一步確認類脂酸之存在。三甲基矽烷基衍生化產物之分析展示具有與參考標準物一致之對應質譜之峰(圖5E及4F)。此等結果展現活體外EfLPA針對來自酵母的Gcv3p具有類脂醯胺酶活性且可潛在地用作醯胺水解酶以自酵母中之經類脂酸酯修飾之蛋白質釋放游離類脂酸。不清楚為何EfLPA未自Kgd2p或Lat1p產生類脂酸。Gcv3p、Kgd2p及Lat1p之結構模型展示所有經修飾殘基(亦即Gcv3p中之K102 、S100 及S103 ;Kgd2p中之K114 ;及Lat1p中之K75 )皆存在於在蛋白質表面上暴露於溶劑的β-轉折上,且因此類脂醯化位點之不可獲取性不大可能為EfLPA對Kgd2p及Lat1p缺乏類脂醯胺酶活性的原因。其他可能性可為(i) Lat1p及Kgd2p之蛋白質表現位準過低(圖5A)、(ii)相較於Gcv3p,較少類脂酸部分連接於Lat1p及Kgd2p蛋白質(Hermes及Cronan,Yeast 30: 415-427 (2013))、或(iii) EfLPA之受質特異性不包括Lat1p及Kgd2p二者。
綜合而言,所述活體外結果展示Gcv3p,作為相較於Lat1p及Kgd2p的EfLPA之較佳受質,為三個候選物中用於後續路徑工程技術以使游離類脂酸生物合成最佳化之最適合蛋白質受質。此外,Gcv3p為小於Kgd2p及Lat1p之蛋白質(分別為19 kDa、50 KDa及52 kDa),且因此其過度表現利用的資源比後二種蛋白質少。此外,不同於類脂酸酯-Gcv3p之形成,Kgd2p及Lat1p之類脂醯化需要額外酶,亦即Lip3p,若另外需要LIP3 過度表現,則此會降低類脂醯化之效率且增加代謝負荷。總體而言,我們確認了EfLPA功能性表現於釀酒酵母菌中且對Gcv3p具有活性,Gcv3p因此被我們選擇作為較佳的經類脂醯化之蛋白質受質。此等酶用於後續工程改造釀酒酵母菌以在活體內過度產生游離類脂酸。 實例4活體內粒線體中 EfLPA 之過度表現產生類脂酸生物合成
如所提及,類脂酸合成發生於酵母之粒線體中。為了使得能夠活體內生物合成類脂酸,EfLPA必須易位至粒線體,在此EfLPA自經類脂醯化之蛋白質受質水解出類脂酸。為此目的,研究來自酵母細胞色素c氧化酶次單元IV (COX4)之29個胺基酸的粒線體靶向肽(MTP) (Maarse等人,The EMBO Journal 3: 2831-2837 (1984))以將蛋白質易位至粒線體。如圖6A中所示,與MTP融合之EGFP定位於粒線體中,而無MTP之EGFP擴散在細胞溶質中。為使EfLPA定位至粒線體,將EfLPA與所表徵之MTP融合。粒線體蛋白質經提取且藉由西方墨點法分析以測定EfLPA之粒線體易位。僅來自表現MTP-EfLPA融合蛋白(mEfLPA)之細胞的提取物展示對應於該蛋白質之條帶,而在來自具有空質體之野生型BY4741及表現不具有MTP的EfLPA之細胞之提取物中未觀測到條帶,因此確認EfLPA當與MTP融合時易位至粒線體(圖6B)。
藉由定量生長3天之細胞培養物中之類脂酸濃度,我們評價了粒線體中之EfLPA之活體內活性。我們發現具有空質體的野生型BY4741及表現不具有MTP之EfLPA 的BY4741不產生可偵測的類脂酸,而在粒線體中表現EfLPA 之BY4741-mEfLPA菌株以10.1 µg/L產生游離類脂酸(圖6C)。因此,在本文中構築的BY4741-mEfLPA為報導具有活體內產生游離類脂酸之能力的第一種酵母菌株,且充當用於進一步工程改造以改良效價之基礎菌株。 實例5路徑酶之表現及輔因子之再生改良了類脂酸之生產
用於活體內產生類脂酸之總體基因工程改造展示於圖7A中。作為改良類脂酸之生產之第一步,我們嘗試藉由過度表現適合的蛋白質候選物以使得可形成更多的經類脂醯化之蛋白質以充當EfLPA水解之受質,來增加類脂醯化位點之可用性。特定言之,如部分3.2中所確定,GCV3p被選擇為供過度表現之蛋白質候選物。為此目的,我們在來自基因體的PTEF1 下共表現GCV3 以伴隨著mEfLPA ,因此產生菌株BY4741-GCV3-mEfLPA。然而,如圖7B中所示,GCV3p之過度表現未改良游離類脂酸之生產。此表明自菌株BY4741-mEfLPA產生游離類脂酸之瓶頸並非可在游離類脂酸產生期間再循環的受質蛋白質不足,而係合成類脂醯基部分所需之催化酶及/或輔因子可能活性不足(圖1)。
催化酶Lip2p (一種辛醯轉移酶)已展現將缺輔基-Gcv3p轉化為辛醯基-Gcv3p,而另一催化酶Lip5p (一種類脂醯合成酶)催化辛醯基-Gcv3p轉化為類脂醯基-Gcv3p (Hermes及Cronan,Yeast 30: 415-427 (2013)) (圖1)。因此,為增加類脂醯基-Gcv3p之位準,LIP2 在強PTEF1 啟動子下表現,而LIP5 在弱PPGI1 啟動子下表現(因為LIP5 在強PTEF1 啟動子下之表現引起細胞不活性)。然而,相較於僅表現mEfLPA 之細胞,過度表現GCV3LIP2LIP5mEfLPA 之所得菌株展示類似的類脂酸生產(圖7B),表明Lip2p及Lip5p之活性對於類脂酸生產而言非限速者。
酵母中類脂酸生產之另一可能限速因素為輔因子,尤其S-腺苷甲硫胺酸(SAM),之可用性,該輔因子為辛醯基部分之硫化所需的。來自大腸桿菌之同源類脂醯合成酶使用自由基SAM化學作用將二個硫***辛醯基部分中,此為在類脂醯合成酶中需要輔因子SAM及鐵-硫叢集兩者之一過程(Cicchillo等人,Biochemistry 43: 6378-6386 (2004))。自SAM產生自由基中間物以自辛醯基部分之C-6及C-8提取氫原子,從而允許藉由涉及碳中心自由基之機制進行後續硫***。類脂醯合成酶中之鐵-硫叢集在裂解SAM以用於自由基產生期間提供電子且亦可在類脂醯化期間充當硫原子來源(Cicchillo及Booker,Journal of the American Chemical Society 127: 2860-2861 (2005))。因此,增加SAM及功能性鐵-硫叢集之可用性可驅動類脂醯基部分之形成。在釀酒酵母菌中,SAM可由甲硫胺酸及ATP藉由類脂醯合成酶Sam1p及Sam2p產生(Marobbio等人,The EMBO Journal 22: 5975-5982 (2003);Dato等人,Microbial Cell Factories 13: 147 (2014))。為了藉由自甲硫胺酸及ATP再生增加SAM可用性,使SAM1SAM2 與MTP融合以用於粒線體易位且在弱PADH1 啟動子下過度表現。粒線體mSAM1mSAM2 之過度表現分別將類脂酸生產增加至14.8 µg/L及17.0 µg/L (圖7B),表明SAM可用性係類脂酸生產之關鍵瓶頸。為了在類脂醯合成酶中形成鐵-硫叢集,需要自培養基導入亞鐵離子,且硫必須經由鐵-硫叢集組裝機構自半胱胺酸釋放(Lill等人,Biochimica et Biophysica Acta (BBA ) - Molecular Cell Research 1763: 652-667 (2006))。因此,為進一步驅動類脂醯基部分之合成,最高類脂酸生產者(亦即過度表現GCV3LIP2LIP5mSAM2mEfLPA 之菌株)之細胞培養物補充有硫酸亞鐵及半胱胺酸,其可轉運至粒線體中(Philpott及Protchenko,Eukaryotic Cell 7: 20-27 (2008);Lee等人,Plant and Cell Physiology 55: 64-73 (2014))。添加硫酸亞鐵並不有益於類脂酸產生(11.3 µg/L)。相比之下,補充半胱胺酸使類脂酸生產增加至29.2 µg/L,表示效價相比於來自基礎菌株BY4741-mEfLPA之效價增加幾乎2.9倍。此結果表明半胱胺酸提供硫以供鐵-硫叢集生成且被類脂醯合成酶Lip5p利用以將硫原子***辛醯基之碳鏈中。
儘管我們已鑑別出類脂酸生產路徑中之幾個限速步驟,但仍有許多增強類脂酸生產的改良空間。為進一步增強類脂酸之效價,將來可進一步工程改造離子-硫叢集生成及SAM可用性,其為類脂酸生物生產之限制因素。另外,為產生類脂酸分子,需要莫耳當量之前驅體辛醯基-ACP (圖7A)。因此,可研究增加辛醯基-ACP供應之方法以改良類脂酸生產。此外,由於所有反應均在粒線體中進行,因此工程改造菌株以增加胞器群體(Visser W.等人,Antonie van leeuwenhoek 67: 243-253 (1995))可為另一種增加類脂酸效價之潛在方法(Zhou等人,Journal of the American Chemical Society 138: 15368-15377 (2016))。需要更多研究來解決類脂酸生物合成路徑中之瓶頸以顯著地增加生產位準。酵母中類脂酸生物合成之進一步改良未來可能隨著釀酒酵母菌之合成生物學及合成基因體學之快速發展而加速,該等發展將提供用於工程改造酵母以獲得有益特徵且充當優良微生物細胞工廠之新穎工具(Chen等人,Biotechnology Advances 36: 1870-1881 (2018);Jee及Chang,Nature 557: 647-648 (2018);Xia等人,Biotechnol Adv 37: 107393 (2019))。 總結
在此研究中,我們旨在研發一種藉由釀酒酵母菌之代謝工程技術的環境友好型類脂酸生產之基於生物之方法。為實現此目的,我們設法(i)理解釀酒酵母菌中之類脂醯化過程,(ii)表徵EfLPA針對來自酵母之經類脂醯化之蛋白質的功能,(iii)採用EfLPA以使得釀酒酵母菌能夠在活體內產生游離類脂酸,及(iv)使用代謝工程技術策略來改良類脂酸生產。我們首先經由LC-MS/MS確認了蛋白質結合類脂酸酯的存在。使用同源性模型化技術,預測Gcv3p、Kgd2p及Lat1p之蛋白質結構,且發現供修飾之殘基暴露於溶劑,且因此對於在此等殘基上起作用的酶係可獲取的。經由活體外活性分析,驗證EfLPA自酵母類脂醯基-Gcv3p釋放類脂酸,因此展現首次報導的EfLPA在酵母中功能性表現以自類脂酸酯結合酵母蛋白質釋放類脂酸。隨後,EfLPA在粒線體中之過度表現使得活體內產生類脂酸,因此實現前所未有的酵母釀酒酵母菌中之游離類脂酸生物合成。為增強類脂酸產生,採用代謝工程技術方法,包括路徑酶之過度表現及輔因子之再生,且釀酒酵母菌中之類脂酸生產之效價增強幾乎2.9倍至29.2 µg/L。總體而言,此研究中之蛋白質分析、酶表徵、結構模型化及組合代謝工程技術方法提供對類脂酸產生路徑之更佳理解且揭露改良其之策略。我們設想自此研究獲得之知識將提供對釀酒酵母菌中之類脂酸生物合成之理解,且引領未來酵母中之類脂酸生產工作。參考文獻
Balkenhohl, F., and Paust, J. (1999). A short and productive synthesis of racemic alpha-lipoic acid.Zeitschrift Fur Naturforschung Section B-a Journal of Chemical Sciences 54, 649-654. doi: 10.1515/znb-1999-0513.
Blaschke, G., Scheidemantel, U., Bethge, H., Moller, R., Beisswenger, T., and Huthmacher, K. (1994).Preparation and use of salts of the pure enantiomers of alpha-lipoic acid . US5281722A.
Booker, S.J. (2004). Unraveling the Pathway of Lipoic Acid Biosynthesis.Chemistry & Biology 11, 10-12. doi: 10.1016/j.chembiol.2004.01.002.
Boubekeur, S., Bunoust, O., Camougrand, N., Castroviejo, M., Rigoulet, M., and Guérin, B. (1999). A Mitochondrial Pyruvate Dehydrogenase Bypass in the YeastSaccharomyces cerevisiae .Journal of Biological Chemistry 274, 21044-21048. doi: 10.1074/jbc.274.30.21044.
Philpott, C.C. and Protchenko O. (2008). Response to Iron Deprivation inSaccharomyces cerevisiae .Eukaryotic Cell 7, 20-27. doi: 10.1128/EC.00354-07.
Chen, B., Lee, D.-Y., and Chang, M.W. (2015). Combinatorial metabolic engineering ofSaccharomyces cerevisiae for terminal alkene production.Metabolic Engineering 31, 53-61. doi: 10.1016/j.ymben.2015.06.009.
Chen, B., Lee, H.L., Heng, Y.C., Chua, N., Teo, W.S., Choi, W.J., Leong, S.S.J., Foo, J.L., and Chang, M.W. (2018). Synthetic biology toolkits and applications inSaccharomyces cerevisiae .Biotechnology Advances 36, 1870-1881. doi: 10.1016/j.biotechadv.2018.07.005.
Chen, B., Ling, H., and Chang, M.W. (2013). Transporter engineering for improved tolerance against alkane biofuels inSaccharomyces cerevisiae .Biotechnology for Biofuels 6, 21.
Chng, H.T., New, L.S., Neo, A.H., Goh, C.W., Browne, E.R., and Chan, E.C.Y. (2010). A sensitive LC/MS/MS bioanalysis assay of orally administered lipoic acid in rat blood and brain tissue.Journal of Pharmaceutical and Biomedical Analysis 51, 754-757. doi: 10.1016/j.jpba.2009.09.028.
Christensen Q.H., Martin N., Mansilla M.C., De Mendoza D., Cronan J.E. (2011). A novel amidotransferase required for lipoic acid cofactor assembly inBacillus subtilis .Mol Microbiol 80, 350-363. doi: 10.1111/j.1365-2958.2011.07598.x.
Lee, C.P., Wirtz, M., Hell, R. (2014). Evidence for Several Cysteine Transport Mechanisms in the Mitochondrial Membranes ofArabidopsis thaliana .Plant and Cell Physiology 55, 64-73. doi: 10.1093/pcp/pct155.
Cicchillo, R.M., and Booker, S.J. (2005). Mechanistic Investigations of Lipoic Acid Biosynthesis inEscherichia coli :  Both Sulfur Atoms in Lipoic Acid are Contributed by the Same Lipoyl Synthase Polypeptide.Journal of the American Chemical Society 127, 2860-2861. doi: 10.1021/ja042428u.
Cicchillo, R.M., Iwig, D.F., Jones, A.D., Nesbitt, N.M., Baleanu-Gogonea, C., Souder, M.G., Tu, L., and Booker, S.J. (2004). Lipoyl Synthase Requires Two Equivalents of S-Adenosyl-l-methionine To Synthesize One Equivalent of Lipoic Acid.Biochemistry 43, 6378-6386. doi: 10.1021/bi049528x.
Croce, C.D., Bronzetti, G., Cini, M., Caltavuturo, L., and Poi, G. (2003). Protective effect of lipoic acid against hydrogen peroxide in yeast cells.Toxicology in Vitro 17, 753-759. doi: 10.1016/j.tiv.2003.06.001.
Cronan, J.E. (2016). Assembly of Lipoic Acid on Its Cognate Enzymes: an Extraordinary and Essential Biosynthetic Pathway.Microbiology and Molecular Biology Reviews 80, 429-450. doi: 10.1128/mmbr.00073-15.
Cronan, J.E., Zhao, X., and Jiang, Y. (2005). "Function, Attachment and Synthesis of Lipoic Acid inEscherichia coli ," inAdvances in Microbial Physiology, ed. R.K. Poole. Academic Press), 103-146.
Dato, L., Berterame, N.M., Ricci, M.A., Paganoni, P., Palmieri, L., Porro, D., and Branduardi, P. (2014). Changes in SAM2 expression affect lactic acid tolerance and lactic acid production inSaccharomyces cerevisiae .Microbial Cell Factories 13, 147. doi: 10.1186/s12934-014-0147-7.
Dicarlo, J.E., Norville, J.E., Mali, P., Rios, X., Aach, J., and Church, G.M. (2013). Genome engineering inSaccharomyces cerevisiae using CRISPR-Cas systems.Nucleic Acids Research 41, 4336-4343. doi: 10.1093/nar/gkt135.
Foo, J.L., Susanto, A.V., Keasling, J.D., Leong, S.S.J., and Chang, M.W. (2017). Whole-cell biocatalytic and de novo production of alkanes from free fatty acids inSaccharomyces cerevisiae .Biotechnology and Bioengineering 114, 232-237. doi: 10.1002/bit.25920.
Gey, U., Czupalla, C., Hoflack, B., Krause, U., and Rödel, G. (2014). Proteomic Analysis Reveals a Novel Function of the Kinase Sat4p inSaccharomyces cerevisiae Mitochondria.PLOS ONE 9, e103956. doi: 10.1371/journal.pone.0103956.
Hermes, F.A., and Cronan, J.E. (2013). The Role of theSaccharomyces cerevisiae Lipoate Protein Ligase Homologue, Lip3, in Lipoic Acid Synthesis.Yeast (Chichester, England) 30, 415-427. doi: 10.1002/yea.2979.
Hiltunen, J.K., Autio, K.J., Schonauer, M.S., Kursu, V.a.S., Dieckmann, C.L., and Kastaniotis, A.J. (2010). Mitochondrial fatty acid synthesis and respiration.Biochimica et Biophysica Acta (BBA) - Bioenergetics 1797, 1195-1202. doi: 10.1016/j.bbabio.2010.03.006.
Ide, T., Azechi, A., Suzuki, N., Kunimatsu, Y., Nakajima, C., and Kitade, S. (2013). Effects of dietary α-lipoic acid enantiomers on hepatic fatty acid metabolism in rats.Journal of Functional Foods 5, 71-79. doi: 10.1016/j.jff.2012.08.005.
Foo, J.L., and Chang, M.W. (2018). Synthetic yeast genome reveals its versatility.Nature 557, 647-648. doi: 10.1038/d41586-018-05164-3.
Ji, J.-H., Yu, I.-S., Kim, H.-J., and Oh, D.-K. (2008). Optimization of octanoic acid and sulfur donor concentrations for lipoic acid production byPseudomonas reptilivora .Biotechnology Letters 30, 1825-1828. doi: 10.1007/s10529-008-9769-3.
Jiang, Y., and Cronan, J.E. (2005). Expression Cloning and Demonstration ofEnterococcus faecalis Lipoamidase (Pyruvate Dehydrogenase Inactivase) as a Ser-Ser-Lys Triad Amidohydrolase.Journal of Biological Chemistry 280, 2244-2256. doi: 10.1074/jbc.M408612200.
Jin, Z., Wong, A., Foo, J.L., Ng, J., Cao, Y.X., Chang, M.W., and Yuan, Y.J. (2016). EngineeringSaccharomyces cerevisiae to produce odd chain-length fatty alcohols.Biotechnol Bioeng 113, 842-851. doi: 10.1002/bit.25856.
Kilic, F., Handelman, G.J., Serbinova, E., Packer, L., and Trevithick, J.R. (1995). Modelling cortical cataractogenesis 17: in vitro effect of a-lipoic acid on glucose-induced lens membrane damage, a model of diabetic cataractogenesis.Biochem Mol Biol Int 37, 361-370.
Lee, W.J., Song, K.-H., Koh, E.H., Won, J.C., Kim, H.S., Park, H.-S., Kim, M.-S., Kim, S.-W., Lee, K.-U., and Park, J.-Y. (2005). α-Lipoic acid increases insulin sensitivity by activating AMPK in skeletal muscle.Biochemical and Biophysical Research Communications 332, 885-891. doi: 10.1016/j.bbrc.2005.05.035.
Li, B.J., Hao, X.Y., Ren, G.H., and Gong, Y. (2015). Effect of lipoic acid combined with paclitaxel on breast cancer cells.Genetics and molecular research 14, 17934-17940. doi: 10.4238/2015.December.22.18.
Lill, R., Dutkiewicz, R., Elsässer, H.-P., Hausmann, A., Netz, D.J.A., Pierik, A.J., Stehling, O., Urzica, E., and Mühlenhoff, U. (2006). Mechanisms of iron-sulfur protein maturation in mitochondria, cytosol and nucleus of eukaryotes.Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1763, 652-667. doi: 10.1016/j.bbamcr.2006.05.011.
Maarse, A.C., Van Loon, A.P., Riezman, H., Gregor, I., Schatz, G., and Grivell, L.A. (1984). Subunit IV of yeast cytochrome c oxidase: cloning and nucleotide sequencing of the gene and partial amino acid sequencing of the mature protein.The EMBO Journal 3, 2831-2837.
Marcelino, A.M.C., and Gierasch, L.M. (2008). Roles of β-turns in protein folding: From peptide models to protein engineering.Biopolymers 89, 380-391. doi: doi:10.1002/bip.20960.
Marobbio, C.M.T., Agrimi, G., Lasorsa, F.M., and Palmieri, F. (2003). Identification and functional reconstitution of yeast mitochondrial carrier for S-adenosylmethionine.The EMBO Journal 22, 5975-5982. doi: 10.1093/emboj/cdg574.
Martin-Perez, M., and Villén, J. (2017). Determinants and Regulation of Protein Turnover in Yeast.Cell systems 5, 283-294.e285. doi: 10.1016/j.cels.2017.08.008.
Marvin, M.E., Williams, P.H., and Cashmore, A.M. (2001). The isolation and characterisation of aSaccharomyces cerevisiae gene (LIP2) involved in the attachment of lipoic acid groups to mitochondrial enzymes.FEMS Microbiology Letters 199, 131-136. doi: 10.1111/j.1574-6968.2001.tb10663.x.
Moon, H.-J., Jeya, M., Yu, I.-S., Ji, J.-H., Oh, D.-K., and Lee, J.-K. (2009). Chaperone-aided expression of LipA and LplA followed by the increase in α-lipoic acid production.Applied microbiology and biotechnology 83, 329-337. doi: 10.1007/s00253-009-1899-6.
Nagarajan, L., and Storms, R.K. (1997). Molecular Characterization of GCV3, theSaccharomyces cerevisiae Gene Coding for the Glycine Cleavage System Hydrogen Carrier Protein.Journal of Biological Chemistry 272, 4444-4450. doi: 10.1074/jbc.272.7.4444.
Piper, M.D.W., Hong, S.-P., Eißing, T., Sealey, P., and Dawes, I.W. (2002). Regulation of the yeast glycine cleavage genes is responsive to the availability of multiple nutrients.FEMS Yeast Research 2, 59-71. doi: doi:10.1111/j.1567-1364.2002.tb00069.x.
Purude, A.N., Pawar, K.P., Patil, N.B., Kalkote, U.R., and Chavan, S.P. (2015). Total synthesis of (R)-lipoic acid and (S)-lipoic acid via an Mn (III)-salen-catalyzed oxidative kinetic resolution.Tetrahedron-Asymmetry 26, 281-287. doi: 10.1016/j.tetasy.2015.02.001.
Repetto, B., and Tzagoloff, A. (1991). In vivo assembly of yeast mitochondrial alpha-ketoglutarate dehydrogenase complex.Molecular and Cellular Biology 11, 3931-3939.
Sadowski, I., Su, T.-C., and Parent, J. (2007). Disintegrator vectors for single-copy yeast chromosomal integration.Yeast 24, 447-455. doi: 10.1002/yea.1469.
Schonauer, M.S., Kastaniotis, A.J., Kursu, V.a.S., Hiltunen, J.K., and Dieckmann, C.L. (2009). Lipoic Acid Synthesis and Attachment in Yeast Mitochondria.Journal of Biological Chemistry 284, 23234-23242. doi: 10.1074/jbc.M109.015594.
Schrodinger, Llc (2015). "The PyMOL Molecular Graphics System, Version 1.8".).
Sinclair, D.A., and Dawes, I.W. (1995). Genetics of the synthesis of serine from glycine and the utilization of glycine as sole nitrogen source bySaccharomyces cerevisiae .Genetics 140, 1213-1222.
Spalding, M.D., and Prigge, S.T. (2009). The Amidase Domain of Lipoamidase Specifically Inactivates Lipoylated Proteins In Vivo.PLOS ONE 4, e7392. doi: 10.1371/journal.pone.0007392.
Storm J, M.S. (2012). Lipoic acid metabolism of Plasmodium--a suitable drug target.Curr Pharm Des 18, 3480-3489. doi: doi:10.2174/138161212801327266.
Stuart, B., Changkyu, O., Ursula, H., and Eckhart, S. (1997). Mitochondrial acyl carrier protein is involved in lipoic acid synthesis inSaccharomyces cerevisiae .FEBS Letters 408, 217-220. doi: doi:10.1016/S0014-5793(97)00428-6.
Sulo, P., and Martin, N.C. (1993). Isolation and characterization of LIP5. A lipoate biosynthetic locus ofSaccharomyces cerevisiae .Journal of Biological Chemistry 268, 17634-17639.
Sun, Y., Zhang, W., Ma, J., Pang, H., and Wang, H. (2017). Overproduction of α-Lipoic Acid by Gene ManipulatedEscherichia coli .PloS one 12, e0169369-e0169369. doi: 10.1371/journal.pone.0169369.
Villani, F., Nardi, A., Falabella, A., and Falabella, G. (2005).Synthesis of r(+)alpha-lipoic acid . US6864374B2.
Villani, F., Nardi, A., Salvi, A., and Falabella, G. (2003).Process for the production of r(+)α-lipoic acid US6670484B2.
Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F.T., De beer, T.A p., Rempfer, C., Bordoli, L., Lepore, R., and Schwede, T. (2018). SWISS-MODEL: homology modelling of protein structures and complexes.Nucleic Acids Research 46, W296-W303. doi: 10.1093/nar/gky427.
Visser W., Van Spronsen E.A., Nanninga N., Pronk J.T., Kuenen J.G., Van Dijken J.P. (1995). Effects of growth conditions on mitochondrial morphology inSaccharomyces cerevisiae .Antonie van leeuwenhoek 67, 243-253.
Xia, P.-F., Zhang, G.-C., Walker, B., Seo, S.-O., Kwak, S., Liu, J.-J., Kim, H., Ort, D.R., Wang, S.-G., and Jin, Y.-S. (2017). Recycling Carbon Dioxide during Xylose Fermentation by EngineeredSaccharomyces cerevisiae .ACS Synthetic Biology 6, 276-283. doi: 10.1021/acssynbio.6b00167.
Xia, P.F., Ling, H., Foo, J.L., and Chang, M.W. (2019). Synthetic genetic circuits for programmable biological functionalities.Biotechnol Adv 37, 107393. doi: 10.1016/j.biotechadv.2019.04.015.
Zhang, J., Xin, L., Shan, B., Chen, W., Xie, M., Yuen, D., Zhang, W., Zhang, Z., Lajoie, G.A., and Ma, B. (2012). PEAKS DB: De Novo Sequencing Assisted Database Search for Sensitive and Accurate Peptide Identification.Molecular & Cellular Proteomics : MCP 11, M111.010587. doi: 10.1074/mcp.M111.010587.
Zhou, Y.J., Buijs, N.A., Zhu, Z., Gómez, D.O., Boonsombuti, A., Siewers, V., and Nielsen, J. (2016). Harnessing Yeast Peroxisomes for Biosynthesis of Fatty-Acid-Derived Biofuels and Chemicals with Relieved Side-Pathway Competition.Journal of the American Chemical Society 138, 15368-15377. doi: 10.1021/jacs.6b07394.
(無)
圖1 展示用於在經工程改造之釀酒酵母菌中產生類脂酸之代謝路徑的示意圖。缺輔基-Gcv3p為受質蛋白質,而辛醯基-Gcv3p及類脂醯基-Gcv3p為該類脂酸產生路徑中之二種中間物。類脂醯基-Gcv3p為甘胺酸裂解系統(GCV)之類脂酸結合H次單元。Lip2p及Lip5p充當催化酶。EfLPA為用於釋放類脂酸之裂解酶。Sam2p係如虛線框中所示,使S-腺苷甲硫胺酸輔因子再生所需的輔因子再生酶。Lip2p:辛醯轉移酶;Lip5p:類脂醯合成酶;EfLPA:來自糞腸球菌之類脂醯胺酶;Sam2p:S-腺苷甲硫胺酸合成酶2。所有反應皆在粒線體中。
圖2A -E 展示對類脂醯基/辛醯基修飾之肽中產物離子(b及y)的偵測。(A) -(C) 展示具有類脂酸修飾之肽的MS/MS光譜中離子的所計算m/z。(D) -(E) 展示具有辛酸修飾之肽之MS/MS光譜中離子之所計算m/z。所獲得之序列展示於表格頂部。偵測到之b離子用*展示,而偵測到之y離子用^展示。「#」指示胺基酸在序列中之位置。188.03及126.10分別表示類脂醯基及辛醯基之質量。
圖3A -E 展示類脂醯基/辛醯基修飾之肽之偵測。(A) -(C) 展示具有類脂酸修飾之肽的MS/MS光譜。偵測到單電荷的Gcv3p之肽(m/z=895.3918)( A ) 及Kgd2p之肽(m/z=1021.4584)( B ) 以及雙電荷的Lat1p之肽(m/z=636.7529)( C ) 分別在位置K102、K114及K75處有類脂酸修飾。(D)-(E) 展示具有辛酸修飾之肽的MS/MS光譜。偵測到單電荷的肽(m/z=833.4583)在位置S100處有辛酸修飾( D ) 及肽(m/z=833.4628)在位置S103處有辛酸修飾( E ) 。S:絲胺酸;V:纈胺酸;K:離胺酸;A:丙胺酸;E:麩胺酸;T:蘇胺酸;D:天冬胺酸;I:異白胺酸;Q:麩醯胺酸;M:甲硫胺酸;F:***酸;類脂醯基:類脂醯基修飾;辛醯基:辛醯基修飾。
圖4A -D 展示(A ) 所提出之Gcv3p的硫***機制,以及(B ) Gcv3p、(C ) KGD2之類脂醯基區域、及(D ) LAT1之類脂醯基區域的3D蛋白質結構。螺旋以淺藍色展示,薄板以紅色展示且環圈以紫色展示。蛋白質之表面以灰色展示。K表示離胺酸殘基,而S表示絲胺酸殘基。
圖5A -F 展示GCV3、KGD2、LAT1及EfLPA之蛋白質表現以及EfLPA針對GCV3之活體外類脂醯胺酶活性。(A ) GCV3、KGD2、LAT1及EfLPA之表現。藉由西方墨點分析確認GCV3、KGD2、LAT1及EfLPA之表現。(B ) 來自EfLPA及Gcv3p混合物之提取產物的LC-MS/MS層析圖。在滯留時間4.362分鐘處藉由箭頭指示類脂酸之峰。( C ) 類脂酸之單電荷離子的LC-MS/MS光譜。(B)中所偵測到的類脂酸藉由MS/MS進一步片段化。( D ) 類脂酸標準參考物之單電荷離子的LC-MS/MS光譜。前驅體離子,(C)為205.0360且(D)為205.0365,二者均用菱形標記。標記產物離子之m/z值。( E ) 來自EfLPA及Gcv3p混合物之提取物之GCMS層析圖。在23.675分鐘之滯留時間偵測到三甲基矽烷基化(trimethylsilylated)類脂酸(類脂醯基-TMS)。( F ) (E)中之類脂醯基-TMS峰之GCMS光譜展示於頂部光譜中。其與使用三甲基矽烷基化類脂酸可靠參考標準物獲得之底部GCMS光譜一致。
圖6A -C 展示活體內EfLPA及類脂酸生產之次細胞定位。( A ) 粒線體靶向肽之表徵。收集攜帶與粒線體信號肽融合及不與粒線體信號肽融合之EGFP (mEGFP及EGFP)的細胞。展示螢光圖。(B ) EfLPA之次細胞定位。提取BY4741-對照、BY4741-EfLPA及BY4741-mEfLPA細胞之粒線體中之蛋白質。藉由西方墨點分析確認粒線體中攜帶6×His標籤之EfLPA之表現。(C ) 活體內類脂酸之生產。自BY4741-對照、BY4741-EfLPA及BY4741-mEfLPA細胞提取類脂酸且藉由LC-MS/MS分析定量。
圖7A -B 展示使用不同經工程改造菌株的類脂酸之生產。(A ) 類脂酸生產之整體路徑工程技術。虛線框表示Sam2p催化之輔因子再生反應。( B ) 由不同酶之表現產生之總類脂酸之比較。「+」及「−」指示存在及不存在各別修飾。所示資料為三個生物複本之平均值±SD。
 
Figure 12_A0101_SEQ_0001
Figure 12_A0101_SEQ_0002
Figure 12_A0101_SEQ_0003
Figure 12_A0101_SEQ_0004
Figure 12_A0101_SEQ_0005
Figure 12_A0101_SEQ_0006
Figure 12_A0101_SEQ_0007
Figure 12_A0101_SEQ_0008
Figure 12_A0101_SEQ_0009
Figure 12_A0101_SEQ_0010
Figure 12_A0101_SEQ_0011
Figure 12_A0101_SEQ_0012
Figure 12_A0101_SEQ_0013
Figure 12_A0101_SEQ_0014
Figure 12_A0101_SEQ_0015
Figure 12_A0101_SEQ_0016
Figure 12_A0101_SEQ_0017
Figure 12_A0101_SEQ_0018
Figure 12_A0101_SEQ_0019
Figure 12_A0101_SEQ_0020
Figure 12_A0101_SEQ_0021
Figure 12_A0101_SEQ_0022
Figure 12_A0101_SEQ_0023
Figure 12_A0101_SEQ_0024
Figure 12_A0101_SEQ_0025
Figure 12_A0101_SEQ_0026
Figure 12_A0101_SEQ_0027
Figure 12_A0101_SEQ_0028
Figure 12_A0101_SEQ_0029
Figure 12_A0101_SEQ_0030
Figure 12_A0101_SEQ_0031
Figure 12_A0101_SEQ_0032

Claims (21)

  1. 一種經分離之經基因工程改造之細菌或酵母細胞,其中該細胞已經至少一聚核苷酸分子轉型; 該至少一聚核苷酸分子包含可操作地連接於至少一啟動子之類脂酸路徑基因,其編碼一辛醯轉移酶、一類脂醯合成酶、一經類脂醯化之蛋白質受質、一類脂醯胺酶及/或一S-腺苷甲硫胺酸合成酶, 其中至少一類脂酸路徑基因為異源的,且該經基因工程改造之細菌或酵母細胞相較於一未轉型細胞能夠增加游離類脂酸之生產。
  2. 如請求項1之經分離之經基因工程改造之細菌或酵母細胞,其中該經類脂醯化之蛋白質受質係選自包含Gcv3p (甘胺酸裂解系統之H蛋白)、Lat1p及Kgd2p之一群。
  3. 如請求項1或2之經分離之經基因工程改造之細菌或酵母細胞,其中該S-腺苷甲硫胺酸合成酶係來自選自包含以下之一群的一細胞:克魯維酵母(Kluyveromyces)、念珠菌(Candida)、畢赤酵母(Pichia)、耶氏酵母(Yarrowia)、德巴利酵母(Debaryomyces)、酵母屬(Saccharomyces spp.)及粟酒裂殖酵母(Schizosaccharomyces pombe )。
  4. 如請求項1至3中任一項之經分離之經基因工程改造之細菌或酵母細胞,其中該等類脂酸路徑基因包含至少一選自由以下組成之群的基因:LIP2 (辛醯轉移酶)、LIP5 (類脂醯合成酶)、GCV3 (甘胺酸裂解系統之H蛋白)、LPA (類脂醯胺酶)、SAM1 及/或SAM2
  5. 如請求項1至4中任一項之經分離之經基因工程改造之細菌或酵母細胞,其中該等類脂酸路徑基因表現於粒線體中。
  6. 如請求項5之經分離之經基因工程改造之細菌或酵母,其中該等類脂酸路徑基因藉助於一粒線體靶向肽(MTP)表現於該粒線體中。
  7. 如請求項6之經分離之經基因工程改造之細菌或酵母,其中用於LPA、Sam1及/或Sam2之該粒線體靶向肽(MTP)來自酵母細胞色素c氧化酶次單元IV (COX4)。
  8. 如請求項1至7中任一項之經分離之經基因工程改造之酵母,其中該酵母係選自包含以下之一群:克魯維酵母、念珠菌、畢赤酵母、耶氏酵母、德巴利酵母、酵母屬及粟酒裂殖酵母。
  9. 如請求項1至8中任一項之經分離之經基因工程改造之細菌或酵母,其中該至少一啟動子為一組成型啟動子。
  10. 如請求項1至9中任一項之經分離之經基因工程改造之細菌或酵母,其中該等類脂酸路徑基因由一或多種質體表現。
  11. 如請求項1至10中任一項之經分離之經基因工程改造之細菌或酵母,其中該等類脂酸路徑基因中之至少一者整合於該細菌或酵母基因體中。
  12. 如請求項1至11中任一項之經分離之經基因工程改造之細菌或酵母,其中該類脂醯胺酶來自糞腸球菌(Enterococcus faecalis ) (EfLPA)。
  13. 如請求項4至12中任一項之經分離之經基因工程改造之細菌或酵母,其中該等LIP2LIP5GCV3LPASAM1 及/或SAM2 基因分別編碼包含SEQ ID NO: 1、SEQ ID NO: 3、SEQ ID NO: 5、SEQ ID NO: 7、SEQ ID NO: 9及/或SEQ ID NO: 11之一胺基酸序列。
  14. 如請求項4至13中任一項之經分離之經基因工程改造之細菌或酵母,其中該等LIP2LIP5GCV3LPASAM1 及/或SAM2 基因分別包含與SEQ ID NO: 2、SEQ ID NO: 4、SEQ ID NO: 6、SEQ ID NO: 8、SEQ ID NO: 10及/或SEQ ID NO: 12具有至少70%序列一致性、至少80%序列一致性、至少90%序列一致性或100%序列一致性之一聚核苷酸序列。
  15. 一種重組表現載體,其包含可操作地連接於一啟動子的一或多個如請求項1至14中任一項中所定義之異源類脂酸路徑基因,其中來自該等路徑基因之一表現蛋白質定位至該粒線體。
  16. 如請求項15之重組載體,其中該啟動子為一組成型啟動子。
  17. 一種在一經基因工程改造之細胞中產生游離類脂酸之方法,其包含以下步驟: a)在用於類脂酸生物合成之條件下於培養基中培養多個如請求項1至14中任一項之經基因工程改造之細胞,以及 b)用半胱胺酸補充該培養基, 其中該經基因工程改造之細胞相較於一未轉型細胞能夠增加游離類脂酸之生產。
  18. 如請求項17之方法,其中該培養基補充有濃度為至少0.05 mg/ml、至少0.1 mg/ml、至少0.2 mg/ml、至少0.5 mg/ml或在0.05 mg/ml至0.7 mg/ml範圍內、較佳在0.1 mg/ml至0.4 mg/ml範圍內之半胱胺酸。
  19. 如請求項17或18之方法,其進一步包含分離該游離類脂酸。
  20. 如請求項17至19中任一項之方法,其中該經工程改造之細胞為一酵母細胞。
  21. 如請求項20之方法,其中該經工程改造之細胞為釀酒酵母菌(Saccharomyces cerevisiae )。
TW110107389A 2020-03-02 2021-03-02 用於類脂酸之生產的代謝工程技術 TW202146641A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SG10202001884X 2020-03-02
SG10202001884X 2020-03-02

Publications (1)

Publication Number Publication Date
TW202146641A true TW202146641A (zh) 2021-12-16

Family

ID=77614515

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110107389A TW202146641A (zh) 2020-03-02 2021-03-02 用於類脂酸之生產的代謝工程技術

Country Status (4)

Country Link
US (1) US20230123431A1 (zh)
CN (1) CN115605579A (zh)
TW (1) TW202146641A (zh)
WO (1) WO2021177896A1 (zh)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002307432A1 (en) * 2001-04-20 2002-11-05 Cargill, Incorporated Production of alpha-lipoic acid
DE10258127A1 (de) * 2002-12-12 2004-07-08 Consortium für elektrochemische Industrie GmbH Verfahen zur fermentativen Herstellung von R-α-Liponsäure

Also Published As

Publication number Publication date
US20230123431A1 (en) 2023-04-20
CN115605579A (zh) 2023-01-13
WO2021177896A1 (en) 2021-09-10

Similar Documents

Publication Publication Date Title
Lee et al. Employing bacterial microcompartment technology to engineer a shell-free enzyme-aggregate for enhanced 1, 2-propanediol production in Escherichia coli
EP3622080B1 (en) Improved methods for producing isobutene from 3-methylcrotonic acid
JP7331691B2 (ja) 3-ヒドロキシアジピン酸、α-ヒドロムコン酸および/またはアジピン酸を生産するための遺伝子改変微生物および当該化学品の製造方法
EP2379730B1 (en) Method for the preparation of diols
US20110151530A1 (en) Enzymatic production of 2-hydroxy-isobutyrate (2-hiba)
KR20210138642A (ko) 비-식물 숙주 세포를 생산하는 트로판 알칼로이드(ta), 및 이의 제조 및 사용 방법
US20240124904A1 (en) Methods and organisms with increased carbon flux efficiencies
JP2022159411A (ja) アルデヒドデヒドロゲナーゼバリアントおよび使用の方法
Chen et al. Mechanism-driven metabolic engineering for bio-based production of free R-lipoic acid in Saccharomyces cerevisiae mitochondria
Steinle et al. Metabolic engineering of Saccharomyces cerevisiae for production of novel cyanophycins with an extended range of constituent amino acids
US9388439B2 (en) Acetyltransferase from wickerhamomyces ciferrii
Liu et al. Production of acrylic acid and propionic acid by constructing a portion of the 3-hydroxypropionate/4-hydroxybutyrate cycle from Metallosphaera sedula in Escherichia coli
Duan et al. High-level de novo biosynthesis of cordycepin by systems metabolic engineering in Yarrowia lipolytica
Baldi et al. Functional expression of a bacterial α-ketoglutarate dehydrogenase in the cytosol of Saccharomyces cerevisiae
Liu et al. Engineering Rhodosporidium toruloides for production of 3-hydroxypropionic acid from lignocellulosic hydrolysate
Zhang et al. SWAN
Yin et al. Enhanced selenocysteine biosynthesis for seleno-methylselenocysteine production in Bacillus subtilis
Kim et al. Complementation of reducing power for 5-hydroxyvaleric acid and 1, 5-pentanediol production via glucose dehydrogenase in Escherichia coli whole-cell system
WO2021187533A1 (ja) 3-ヒドロキシアジピン酸および/またはα-ヒドロムコン酸を生産するための遺伝子改変微生物および当該化学品の製造方法
US10227617B2 (en) Sequestration of carbon dioxide with hydrogen to useful products
JPWO2019159831A1 (ja) 組換え宿主細胞及びd−ブタントリオールの新規製造方法
TW202146641A (zh) 用於類脂酸之生產的代謝工程技術
JP4850064B2 (ja) 無細胞タンパク質生合成用溶解物の産生法
JP7331839B2 (ja) 13-ヒドロキシ-9(z)-オクタデセン酸の製造方法
WO2021193666A1 (ja) 改良型鉄代謝工学による新規キシロース代謝系を介した有用物質の製造方法