TW202146450A - Methods and compositions for preventing type 1 diabetes - Google Patents

Methods and compositions for preventing type 1 diabetes Download PDF

Info

Publication number
TW202146450A
TW202146450A TW110102871A TW110102871A TW202146450A TW 202146450 A TW202146450 A TW 202146450A TW 110102871 A TW110102871 A TW 110102871A TW 110102871 A TW110102871 A TW 110102871A TW 202146450 A TW202146450 A TW 202146450A
Authority
TW
Taiwan
Prior art keywords
diabetes
less
equal
teplizumab
months
Prior art date
Application number
TW110102871A
Other languages
Chinese (zh)
Inventor
法蘭西斯科 里昂
凱文 C 霍洛德
Original Assignee
美商預防生物股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商預防生物股份有限公司 filed Critical 美商預防生物股份有限公司
Priority to KR1020237001157A priority Critical patent/KR20230092863A/en
Priority to BR112022025381A priority patent/BR112022025381A2/en
Priority to PCT/US2021/037039 priority patent/WO2021252917A2/en
Priority to AU2021287998A priority patent/AU2021287998A1/en
Priority to CA3182445A priority patent/CA3182445A1/en
Priority to MX2022015872A priority patent/MX2022015872A/en
Priority to EP21821720.6A priority patent/EP4164689A2/en
Priority to JP2022576539A priority patent/JP2023530109A/en
Priority to IL298999A priority patent/IL298999A/en
Priority to US17/345,495 priority patent/US12006366B2/en
Publication of TW202146450A publication Critical patent/TW202146450A/en

Links

Images

Landscapes

  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

Provided herein, in one aspect, is a method of preventing or delaying the onset of clinical type 1 diabetes (T1D), comprising: providing a non-diabetic subject who is at risk for T1D; administering a prophylactically effective amount of an anti-CD3 antibody to the non-diabetic subject; and determining, prior to or after the administering step, that the non-diabetic subject has more than about 10% TIGIT+KLRG1+CD8+ T-cells in all CD3+ T cells, which is indicative of successful prevention or delay of the onset of clinical T1D.

Description

用於預防第1型糖尿病的方法及組成物Methods and compositions for preventing type 1 diabetes

序列表sequence listing

ASCII文字檔,於2020年6月10日製作,2020年6月11日透過EFS-Web提呈,標題“010900seq.txt”,具有6,040位元組大小,其整體在此併入本案以為參考。 發明領域ASCII text file, produced on June 10, 2020, submitted via EFS-Web on June 11, 2020, titled "010900seq.txt", with a size of 6,040 bytes, the entirety of which is incorporated herein by reference. Field of Invention

本揭示大略而言有關於預防或延遲有罹患臨床第1型糖尿病(T1D) 風險之受試者發病的組成物及方法,更具體地抗CD3抗體之用途。The present disclosure relates generally to compositions and methods for preventing or delaying the onset of clinical Type 1 diabetes (T1D) in subjects at risk of developing clinical Type 1 diabetes (T1D), and more particularly to the use of anti-CD3 antibodies.

發明背景Background of the Invention

第1型糖尿病(T1D)是自體免疫破壞蘭氏島上的胰島素生成β細胞引起的,導致生存需要依賴外源胰島素的注射。大約有160萬的美國人罹患第1型糖尿病,繼氣喘之後,其仍是孩童時期最常見的疾病之一。儘管護理改善,但大部分患有T1D的個體無法一貫地達到期望的血糖目標。對於患有第1型糖尿病之個體,持續存在著發病率及死亡率風險增加的擔憂。二個近來的研究顯示,在10歲前確診的兒童減少17.7年的夀命,而成人確診的男性與女性蘇格蘭人分別減少11與13年的夀命。Type 1 diabetes (T1D) is caused by autoimmune destruction of insulin-producing β-cells on the Isle of Langerhans, resulting in a dependency on exogenous insulin injections for survival. About 1.6 million Americans have type 1 diabetes, and after asthma, it remains one of the most common childhood diseases. Despite improvements in care, most individuals with T1D do not consistently achieve desired glycemic goals. Concerns persist about an increased risk of morbidity and mortality for individuals with type 1 diabetes. Two recent studies showed that children diagnosed before the age of 10 lost 17.7 years of life, while adult diagnosed male and female Scots lost 11 and 13 years respectively.

在遺傳易感的個體中,在明顯的高血糖之前,T1D會經歷無症狀時期,第一個特徵是出現自體抗體(第1期),然後血糖異常(第2期)。在第2期中,對葡萄糖負荷的代謝反應受損,但其它代謝指數例如醣化血紅素正常且不需要胰島素治療。此等免疫及代謝特徵鑑定出具有發展成明顯高血糖之臨床疾病且需要胰島素治療的高風險個體(第3期)。在新發臨床T1D中進行研究時顯示出幾種免疫干預措施可延遲β細胞功能的衰退。一個有前景的治療法是FcR非結合性抗CD3單株抗體特普珠單抗(teplizumab),數個研究已顯示短期治療可持久地減少β細胞功能的喪失,確診並治療後有長達7年的可見效果。該藥物會修改CD8+ T淋巴細胞(其被認為是引起β細胞殺傷的重要作用細胞)的功能。In genetically predisposed individuals, T1D goes through an asymptomatic period, first characterized by the development of autoantibodies (stage 1), followed by dysglycemia (stage 2), before overt hyperglycemia. In Phase 2, the metabolic response to glucose load is impaired, but other metabolic indices such as glycated hemoglobin are normal and insulin therapy is not required. These immunological and metabolic profiles identify individuals at high risk for developing clinically significant hyperglycemia requiring insulin therapy (Phase 3). Several immune interventions have been shown to delay the decline of beta cell function when studied in de novo clinical T1D. A promising treatment is the FcR non-binding anti-CD3 monoclonal antibody teplizumab, and several studies have shown that short-term treatment can lastingly reduce loss of beta cell function, up to 70% after diagnosis and treatment. Years of visible effect. The drug modifies the function of CD8+ T lymphocytes, which are thought to be important players in causing beta cell killing.

迄今為止,還沒有在臨床確診(即第1或第2期)之前開始的干預措施可改變臨床第3期T1D的進展。因此,需要存在可預防或延遲高風險個體中臨床T1D的發病之治療。To date, no intervention initiated before clinical diagnosis (ie, stage 1 or 2) has altered the progression of clinical stage 3 T1D. Therefore, there is a need for treatments that can prevent or delay the onset of clinical T1D in high-risk individuals.

發明概要Summary of Invention

一種用於預防或延遲臨床第1型糖尿糖(T1D)之發病的方法,其包含: 提供有罹患T1D風險之一非糖尿病受試者; 對該非糖尿病受試者投與一預防性有效量的抗CD3抗體;及 在該投與步驟之前或之後,確定該非糖尿病受試者之全部CD3+T細胞中具有超過約10%的TIGIT+KLRG1+CD8+T細胞,其指示成功地預防或延遲臨床T1D之發病。A method for preventing or delaying the onset of clinical Type 1 diabetes (T1D), comprising: Provide a non-diabetic subject who is at risk of developing T1D; administering to the non-diabetic subject a prophylactically effective amount of an anti-CD3 antibody; and Before or after the administering step, the non-diabetic subject is determined to have greater than about 10% TIGIT+KLRG1+CD8+ T cells in all CD3+ T cells, which is indicative of successful prevention or delay of the onset of clinical T1D.

在一些實施例中,該非糖尿病受試者是患有T1D患者的親屬。In some embodiments, the non-diabetic subject is a relative of a patient with T1D.

在一些實施例中,該方法進一步包括確定該非糖尿病受試者(1)實質上無抗鋅轉運蛋白8 (ZnT8)之抗體,(2)是HLA-DR4+和/或(3)不是HLA-DR3+。In some embodiments, the method further comprises determining that the non-diabetic subject is (1) substantially free of antibodies to zinc transporter 8 (ZnT8), (2) is HLA-DR4+ and/or (3) is not HLA-DR3+ .

在一些實施例中,該非糖尿病受試者具有2或多種選自下列之糖尿病相關自體抗體:胰島細胞抗體(ICA)、胰島素自體抗體(IAA)及針對麩胺酸脫羧基酶(GAD)、酪胺酸磷酸酶(IA-2/ICA512)或ZnT8之抗體。In some embodiments, the non-diabetic subject has 2 or more diabetes-associated autoantibodies selected from the group consisting of islet cell antibody (ICA), insulin autoantibody (IAA), and glutamate decarboxylase (GAD) , tyrosine phosphatase (IA-2/ICA512) or ZnT8 antibody.

在一些實施例中,該非糖尿病受試者在口服葡萄糖耐受性試驗(OGTT)中具有異常的葡萄糖耐受性。在一些實施例中,該OGTT中異常的葡萄糖耐受性,是空腹葡萄糖位準為110-125mg/dL,或2小時血漿≥140及<200mg/dL,或OGTT之30、60或90分鐘的干預葡萄糖值> 200mg/dL。In some embodiments, the non-diabetic subject has abnormal glucose tolerance in an oral glucose tolerance test (OGTT). In some embodiments, the abnormal glucose tolerance in the OGTT is a fasting glucose level of 110-125 mg/dL, or 2-hour plasma > 140 and < 200 mg/dL, or 30, 60, or 90 minutes of the OGTT Intervention glucose value > 200mg/dL.

在一些實施例中,該非糖尿病受試者沒有抗ZnT8抗體。In some embodiments, the non-diabetic subject does not have anti-ZnT8 antibodies.

在一些實施例中,該非糖尿病受試者是HLA-DR4+且不是HLA-DR3+。In some embodiments, the non-diabetic subject is HLA-DR4+ and not HLA-DR3+.

在一些實施例中,該抗CD3抗體是選自特普珠單抗、奧替利珠單抗(otelixizumab)或福拉魯單抗(foralumab)。在一些實施例中,該預防性有效量的抗體包含以10-1000微克/平方米(μg/m2 )皮下(SC)注射或靜脈(IV)輸注或經口投與抗CD3抗體10至14天的療程,較佳地在第0-3天分別以51μg/m2 、103μg/m2 、207μg/m2 及413μg/m2 及在第4–13天每一天一劑826μg/m2 IV輸注14天的療程。In some embodiments, the anti-CD3 antibody is selected from teplizumab, otelixizumab, or foralumab. In some embodiments, the prophylactically effective amount of the antibody comprises 10-1000 micrograms per square meter (μg/m 2 ) subcutaneous (SC) injection or intravenous (IV) infusion or oral administration of an anti-CD3 antibody 10 to 14 day regimen, preferably days 0-3, respectively, at the 51μg / m 2, 103μg / m 2, 207μg / m 2 and 413μg / m 2 and each of the 4-13 days sky agent 826μg / m 2 IV Infusion for a 14-day course of treatment.

在一些實施例中,該預防性有效量將臨床確診T1D的中位數時間延遲至少50%、至少80%或至少90%,或至少12個月、至少18個月、至少24個月、至少36個月、至少48個月或至少60個月。In some embodiments, the prophylactically effective amount delays the median time to clinical diagnosis of T1D by at least 50%, at least 80%, or at least 90%, or by at least 12 months, at least 18 months, at least 24 months, at least 36 months, at least 48 months or at least 60 months.

在一些實施例中,TIGIT+KLRG1+CD8+T細胞之測定,是通過流式細胞分析技術。In some embodiments, the determination of TIGIT+KLRG1+CD8+ T cells is by flow cytometry.

在一些實施例中,該方法進一步包括確定表現增生標記Ki67和/或CD57之CD8+T細胞的百分比減少。In some embodiments, the method further comprises determining the percentage reduction of CD8+ T cells expressing the proliferation markers Ki67 and/or CD57.

一種預知抗CD3抗體在預防或延遲第1型糖尿病(T1D)發病之反應性的方法,其包含: 提供有罹患T1D風險之一非糖尿病受試者; 對該非糖尿病受試者投與一預防性有效量的抗CD3抗體;及 測定C肽之曲線下方面積(AUC):葡萄糖AUC之比值,其中該比值增加表示對抗CD3抗體具反應性和/或不進展成臨床T1D。A method for predicting the responsiveness of anti-CD3 antibodies in preventing or delaying the onset of type 1 diabetes (T1D), comprising: Provide a non-diabetic subject who is at risk of developing T1D; administering to the non-diabetic subject a prophylactically effective amount of an anti-CD3 antibody; and The area under the curve (AUC) for C-peptide: glucose AUC ratio was determined, where an increase in the ratio indicates anti-CD3 antibody responsiveness and/or no progression to clinical T1D.

較佳實施例之詳細說明DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

在一些實施例中,本文提供一種用於預防或延遲臨床第1型糖尿病(T1D)之發病的方法,其包含:提供有罹患T1D風險之一非糖尿病受試者;對該非糖尿病受試者投與一預防性有效量的抗CD3抗體;及在該投與步驟之前或之後,確定該非糖尿病受試者之全部CD3+T細胞中具有超過約10%的TIGIT+KLRG1+CD8+T細胞,其指示成功地預防或延遲臨床T1D之發病。In some embodiments, provided herein is a method for preventing or delaying the onset of clinical type 1 diabetes (T1D), comprising: providing a non-diabetic subject at risk of developing T1D; administering to the non-diabetic subject with a prophylactically effective amount of anti-CD3 antibody; and before or after the administering step, determine that the non-diabetic subject has more than about 10% TIGIT+KLRG1+CD8+ T cells in all CD3+ T cells of the non-diabetic subject, which Indicates success in preventing or delaying the onset of clinical T1D.

在一些實施例中,提供一種預知抗CD3抗體如特普珠單抗在預防或延遲T1D發病之反應性的方法。該方法可包含:提供有罹患T1D風險之一非糖尿病受試者;對該非糖尿病受試者投與一預防性有效量的抗CD3抗體如特普珠單抗;及測定C肽之曲線下方面積(AUC):葡萄糖AUC之比值,其中該比值增加表示對抗CD3抗體具反應性。定義 In some embodiments, a method of predicting the responsiveness of an anti-CD3 antibody, such as teplizumab, in preventing or delaying the onset of T1D is provided. The method may comprise: providing a non-diabetic subject at risk of developing T1D; administering to the non-diabetic subject a prophylactically effective amount of an anti-CD3 antibody such as teplizumab; and determining the area under the curve of C-peptide (AUC): Ratio of glucose to AUC, where an increase in this ratio indicates reactivity with anti-CD3 antibodies. definition

某些術語之定義如下。在整個申請中提供其他的定義。Certain terms are defined below. Additional definitions are provided throughout this application.

在本文中使用的冠詞“一”及“一個”意指一個或超過一個,如至少一個該冠詞之語法客體。"一"或"一個"一詞在本文中當與術語"包含"一起使用時,可意指"一個",但亦與"一或多個"、"至少一個"及"一或超過一個"的意思一樣。The articles "a" and "an" as used herein mean one or more than one, such as at least one of the grammatical objects of the article. The word "a" or "an" when used herein with the term "comprising" can mean "an" but also "one or more", "at least one" and "one or more than one" mean the same.

本文中所使用的“約”及“大概”通常意指在考慮到測量值的性質或精確度之情況下,所測量數量之可接受的誤差程度。例示誤差程度是給定的範圍之20百分比(%)內,典型地在10%內,更典型地在5%內。術語“實質上”意指超過50%,較佳地超過80%及最佳地超過90%或95%。As used herein, "about" and "approximately" generally mean an acceptable degree of error in the quantity measured, taking into account the nature or precision of the measurement. Exemplary degrees of error are within 20 percent (%) of a given range, typically within 10 percent, more typically within 5 percent. The term "substantially" means more than 50%, preferably more than 80% and most preferably more than 90% or 95%.

本文中所使用的術語"包含",其在一指定實施例中用於提及組成物、方法及其個別組份時,還開放至包括未指定的元素。As used herein, the term "comprising," when used in reference to compositions, methods, and individual components thereof in a given embodiment, is also open to including unspecified elements.

本文中所使用的術語"基本上由…構成"意指一指定實施例所需的那些元素。該術語允許存在不會實質影響本揭示之實施例之基本與新穎性或功能特徵之額外元素。As used herein, the term "consisting essentially of" means those elements required for a given embodiment. This term allows for the presence of additional elements that do not materially affect the basic and novel or functional characteristics of the disclosed embodiments.

術語"由…構成"意指本文所述的組成物、方法及其個別組份,其不包括沒有在實施例的說明中引述之任何元素。The term "consisting of" means the compositions, methods, and individual components thereof described herein, excluding any element not recited in the description of the examples.

本文中的術語"抗體"以最廣泛的意義使用,包括各種抗體結構,包括,但不限於,單株抗體、多株抗體、多專一性抗體(如,雙專一性抗體)及抗體片段,只要其等表現出期望的抗原結合活性即可。The term "antibody" is used herein in the broadest sense to include various antibody structures including, but not limited to, monoclonal antibodies, polyclonal antibodies, multispecific antibodies (eg, bispecific antibodies), and antibody fragments, as long as The desired antigen-binding activity may be exhibited or the like.

"抗體片段"意指除完整的抗體之外的分子,其包含完整抗體中會與該完整抗體所結合的抗原結合之部分。抗體片段的例子包括,但不限於,Fv、Fab、Fab'、Fab'-SH、F(ab')2 ;雙體;線性抗體;單鏈抗體分子(如,scFv);及由抗體片段形成的多專一性抗體。"Antibody fragment" means a molecule other than an intact antibody that comprises the portion of the intact antibody that binds to the antigen to which the intact antibody binds. Examples of antibody fragments include, but are not limited to, Fv, Fab, Fab', Fab'-SH, F(ab') 2 ; diabodies; linear antibodies; single-chain antibody molecules (eg, scFv); and formed from antibody fragments of multispecific antibodies.

本文中所使用的術語"預防劑"意指CD3結合分子,如特普珠單抗,其可用於預防、治療、管理或改善一或多個T1D症狀。The term "prophylactic agent" as used herein means a CD3 binding molecule, such as teplizumab, which can be used to prevent, treat, manage or ameliorate one or more T1D symptoms.

本文中所使用,與第1型糖尿病相關疾病的"發病"之術語,意指患者符合美國糖尿病協會為第1型糖尿病診斷建立的標準(見,Mayfield et al., 2006, Am. Fam. Physician 58:1355-1362)。As used herein, the term "onset" of a disease associated with type 1 diabetes means that a patient meets the criteria established by the American Diabetes Association for the diagnosis of type 1 diabetes (see, Mayfield et al., 2006, Am. Fam. Physician 58:1355-1362).

本文中所使用的術語"預防",意指經由預防劑或治療劑的投與,產生預防受試者中一或多個T1D症狀的發作。The term "prevention," as used herein, means through the administration of a prophylactic or therapeutic agent, resulting in prevention of the onset of one or more T1D symptoms in a subject.

本文中所使用"計劃"包括投藥時間表及投藥方案。本文中之計劃是使用方法,包括預防與治療計劃。"投藥方案"或"療程"可包括在1至20天之時間內投與幾劑治療或預防劑。As used herein, "plan" includes dosing schedules and dosing regimens. The plans in this article are methods of use, including prevention and treatment plans. A "dosing regimen" or "course of treatment" may include the administration of several doses of a therapeutic or prophylactic agent over a period of 1 to 20 days.

本文中所使用的術語"受試者"及"患者"可相互交換使用。本文中所使用的術語"受試者"意指動物,較佳地哺乳動物,包括非靈長類(如,牛、豬、馬、貓、狗、大鼠及小鼠)及靈長類(如,猴子或人類),更佳地人類。As used herein, the terms "subject" and "patient" are used interchangeably. The term "subject" as used herein means animals, preferably mammals, including non-primates (eg, cows, pigs, horses, cats, dogs, rats, and mice) and primates ( e.g. monkey or human), preferably human.

本文中所使用的術語"預防上有效量"意指特普珠單抗足夠產生延遲或預防一或多個T1D症狀之發展、復發或發病之數量。在一些實施例中,預防性有效量較佳地意指特普珠單抗可延遲受試者的T1D發病至少20%、至少25%、至少30%、至少35%、至少40%、至少45%、至少50%、至少55%、至少60%、至少65%、至少70%、至少75%、至少80%、至少85%、至少90%、至少95%之數量。The term "prophylactically effective amount" as used herein means an amount of teplizumab sufficient to produce a delay or prevention of the development, recurrence or onset of one or more T1D symptoms. In some embodiments, a prophylactically effective amount preferably means that Teplizumab can delay the onset of T1D by at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45% in a subject %, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%.

本揭示之各種態樣將進一步於下文中描述。額外的定義陳述於整個說明書中。抗CD3 抗體及藥學組成物 Various aspects of the present disclosure are described further below. Additional definitions are set forth throughout the specification. Anti-CD3 antibody and pharmaceutical composition

術語"抗CD3抗體"及"與CD3結合的抗體"意指能夠以足夠的親和力結合分化簇3 (CD3)之抗體或抗體片段,使得該抗體可用作靶定CD3之預防、診斷和/或治療劑。在一些實施例中,用如放射免疫分析法(RIA)測量時,抗CD3抗體與不相關、非CD3蛋白之結合程度,低於該抗體與CD3之結合程度的約10%。在一些實施例中,與CD3結合之抗體具有解離常數(Kd) < 1 μΜ、< 100 nM、< 10 nM、< 1 nM、< 0.1 nM、< 0.01 nM或 < 0.001 nM (如,10-8 M或更小,如從10-8 M至10-13 M,如從10-9 M至10-13 M)。在一些實施例中,抗CD3抗體會結合至CD3的抗原決定位,其在不同物種的CD3中是保留的。The terms "anti-CD3 antibody" and "antibody that binds to CD3" mean an antibody or antibody fragment capable of binding to cluster of differentiation 3 (CD3) with sufficient affinity such that the antibody can be used as prophylactic, diagnostic and/or targeting CD3 therapeutic agent. In some embodiments, the degree of binding of an anti-CD3 antibody to an unrelated, non-CD3 protein, as measured by, eg, a radioimmunoassay (RIA), is less than about 10% of the degree of binding of the antibody to CD3. In some embodiments, the antibody that binds to CD3 has a dissociation constant (Kd) < 1 μM, < 100 nM, < 10 nM, < 1 nM, < 0.1 nM, < 0.01 nM, or < 0.001 nM (e.g., 10-8 M or less, such as from 10-8 M to 10-13 M, such as from 10-9 M to 10-13 M). In some embodiments, an anti-CD3 antibody will bind to an epitope of CD3 that is retained in CD3 of different species.

在一些實施例中,該抗CD3抗體可為ChAglyCD3 (奧替利珠單抗)。奧替利珠單抗是人源化Fc非結合性抗CD3,其一開始由Belgian Diabetes Registry (BDR)在第2期研究中進行評估,之後由Tolerx開發,之後與GSK合作進行第3期DEFEND新發病T1D試驗(NCT00678886、NCT01123083、NCT00763451)。奧替利珠單抗之投藥,是透過靜脈輸注8天。見如Wiczling et al., J. Clin. Pharmacol. 50 (5) (May 2010) 494–506;Keymeulen et al., N Engl J Med. 2005;352:2598-608;Keymeulen et al., Diabetologia. 2010;53:614-23;Hagopian et al., Diabetes. 2013;62:3901-8;Aronson et al., Diabetes Care. 2014;37:2746-54;Ambery et al., Diabet Med. 2014;31:399-402;Bolt et al., Eur. J. Immunol. lYY3. 23: 403-411;Vlasakakis et al., Br J Clin Pharmacol (2019) 85 704–714;Guglielmi et al, Expert Opinion on Biological Therapy, 16:6, 841-846;Keymeulen et al., N Engl J Med 2005;352:2598-608;Keymeulen et al., BLOOD 2010, VOL 115, No. 6;Sprangers et al., Immunotherapy (2011)3 (11), 1303–1316;Daifotis et al., Clinical Immunology (2013) 149, 268–278;所有在此併入本案以為參考。In some embodiments, the anti-CD3 antibody can be ChAglyCD3 (octilizumab). Otilizumab is a humanized Fc non-binding anti-CD3 that was initially evaluated in a Phase 2 study by the Belgian Diabetes Registry (BDR), then developed by Tolerx, and then in collaboration with GSK for Phase 3 DEFEND New-onset T1D trials (NCT00678886, NCT01123083, NCT00763451). Otelizumab was administered by intravenous infusion for 8 days. See, eg, Wiczling et al., J. Clin. Pharmacol. 50(5) (May 2010) 494–506; Keymeulen et al., N Engl J Med. 2005;352:2598-608; Keymeulen et al., Diabetologia. 2010;53:614-23;Hagopian et al., Diabetes. 2013;62:3901-8;Aronson et al., Diabetes Care. 2014;37:2746-54;Ambery et al., Diabet Med. 2014;31 :399-402; Bolt et al., Eur. J. Immunol. lYY3. 23: 403-411; Vlasakakis et al., Br J Clin Pharmacol (2019) 85 704-714; Guglielmi et al, Expert Opinion on Biological Therapy , 16:6, 841-846; Keymeulen et al., N Engl J Med 2005;352:2598-608; Keymeulen et al., BLOOD 2010, VOL 115, No. 6; Sprangers et al., Immunotherapy (2011) 3 (11), 1303–1316; Daifotis et al., Clinical Immunology (2013) 149, 268–278; all incorporated herein by reference.

在一些實施例中,該抗CD3抗體可為維西珠單抗(visilizumab) (亦稱作HuM291;Nuvion)。維西珠單抗是人源化抗CD3單株抗體,特徵為突變的IgG2亞型,缺少與Fcγ受體的結合,具有選擇性引起活化T細胞的細胞凋亡之能力。其在移植物抗宿主疾病(NCT00720629;NCT00032279)及潰瘍性結腸炎(NCT00267306)及克隆氏病(NCT00267709)之病人中進行了評估。見如Sandborn et al., Gut 59 (11) (Nov 2010) 1485–1492,在此併入本案以為參考。In some embodiments, the anti-CD3 antibody can be visilizumab (also known as HuM291; Nuvion). Vecilizumab is a humanized anti-CD3 monoclonal antibody characterized by a mutated IgG2 subtype that lacks binding to Fcγ receptors and has the ability to selectively induce apoptosis in activated T cells. It was evaluated in patients with graft-versus-host disease (NCT00720629; NCT00032279) and ulcerative colitis (NCT00267306) and Crohn's disease (NCT00267709). See, eg, Sandborn et al., Gut 59 (11) (Nov 2010) 1485–1492, incorporated herein by reference.

在一些實施例中,該抗CD3抗體可為福拉魯單抗,一種由Tiziana Life Sciences, PLC開發的全人源抗CD3單株抗體,用於NASH及T2D (NCT03291249)。見如Ogura et al., Clin Immunol. 2017;183:240-246;Ishikawa et al., Diabetes. 2007;56(8):2103-9;Wu et al., J Immunol. 2010;185(6):3401-7;全部在此併入本案以為參考。In some embodiments, the anti-CD3 antibody can be furarumumab, a fully human anti-CD3 monoclonal antibody developed by Tiziana Life Sciences, PLC for NASH and T2D (NCT03291249). See, e.g., Ogura et al., Clin Immunol. 2017;183:240-246; Ishikawa et al., Diabetes. 2007;56(8):2103-9; Wu et al., J Immunol. 2010;185(6) :3401-7; all incorporated herein by reference.

在一些實施例中,該抗CD3抗體可為特普珠單抗。特普珠單抗,亦稱作hOKT3yl(Ala-Ala) (在位置234與235處含有丙胺酸)是一種經過基因工程之抗CD3抗體,其會改變介導胰島之胰島素生成β細胞的破壞之T淋巴細胞的功能。特普珠單抗會與表現在成熟T細胞上之CD3ε鏈的抗原決定位結合,並藉此改變其等之功能。特普珠單抗之序列及組成物揭示於美國專利案第6,491,916號;第8,663,634號;及第9,056,906號中,各整體在此併入本案以為參考。輕及重鏈的完整序列述於下。粗體部分是互補決定區。 特普珠單抗輕鏈(序列辨識編號:1): DIQMTQSPSSLSASVGDRVTITCSASSSVSYMN WYQQTPGKAPKRWIYDTSKLAS GVPSRFSGSGSGTDYTFTISSLQPEDIATYYCQQWSSNPFTF GQGTKLQITRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC 特普珠單抗重鏈(序列辨識編號:2): QVQLVQSGGGVVQPGRSLRLSCKASGYTFTRYTMH WVRQAPGKGLEWIGYINPSRGYTNYNQKVKD RFTISRDNSKNTAFLQMDSLRPEDTGVYFCARYYDDHYCLDY WGQGTPVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKIn some embodiments, the anti-CD3 antibody can be teplizumab. Teplizumab, also known as hOKT3yl(Ala-Ala) (containing alanine at positions 234 and 235), is a genetically engineered anti-CD3 antibody that alters the mechanisms that mediate the destruction of insulin-producing beta cells in pancreatic islets. function of T lymphocytes. Teplizumab binds to epitopes of the CD3ε chain expressed on mature T cells and thereby alters their functions. The sequence and composition of teplizumab are disclosed in US Patent Nos. 6,491,916; 8,663,634; and 9,056,906, each of which is incorporated herein by reference in its entirety. The complete sequences of the light and heavy chains are described below. Bold parts are complementarity determining regions. Trump daclizumab light chain (SEQ ID. No.: 1): DIQMTQSPSSLSASVGDRVTITC SASSSVSYMN WYQQTPGKAPKRWIY DTSKLAS GVPSRFSGSGSGTDYTFTISSLQPEDIATYYC QQWSSNPFTF GQGTKLQITRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC Trapp natalizumab heavy chain (SEQ ID Identification: 2): QVQLVQSGGGVVQPGRSLRLSCKASGYTFT RYTMH WVRQAPGKGLEWIG YINPSRGYTNYNQKVKD RFTISRDNSKNTAFLQMDSLRPEDTGVYFCAR YYDDHYCLDY WGQGTPVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK

在一些實施例中,本文提供一種藥學組成物。此組成物包含一預防性有效量的抗CD3抗體及一藥學上可接受的載劑。在一些實施例中,術語"藥學上可接受的"意指經聯邦或州政府的監管機構核准或列示在美國藥典或其它一般公認藥典中,可用於動物,更具體地人。術語"載劑"意指與治療劑一起投與的稀釋劑、佐劑(如,弗氏佐劑(完全及不完全))、賦形劑或載具。此藥學載劑可為無菌液體,如水及油,包括石油、動物、植物或合成來源的油,如花生油、大豆油、礦物油、芝麻油等等。當該藥學組成物是靜脈投與的,則水是較佳的載劑。食鹽水及葡萄糖水及甘油溶液亦可用作液體載劑,具體地用於注射溶液。適合的藥學賦形劑包括澱粉、葡萄糖、乳糖、蔗糖、明膠、麥芽、大米、麵粉、白堊、矽膠、硬脂酸鈉、單硬脂酸甘油酯、滑石粉、氯化鈉、脫脂奶粉、甘油、丙烯、乙二醇、水、乙醇等等(見例如Handbook of Pharmaceutical Excipients, Arthur H. Kibbe (ed., 2000,其整體在此併入本案以為參考), Am. Pharmaceutical Association, Washington, D.C。In some embodiments, provided herein is a pharmaceutical composition. The composition comprises a prophylactically effective amount of anti-CD3 antibody and a pharmaceutically acceptable carrier. In some embodiments, the term "pharmaceutically acceptable" means approved by a regulatory agency of the Federal or a state government or listed in the US Pharmacopeia or other generally recognized pharmacopeia for use in animals, more particularly humans. The term "carrier" means a diluent, adjuvant (eg, Freund's adjuvant (complete and incomplete)), excipient, or vehicle with which the therapeutic agent is administered. Such pharmaceutical carriers can be sterile liquids such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil, and the like. When the pharmaceutical composition is administered intravenously, water is the preferred carrier. Saline and aqueous dextrose and glycerol solutions can also be employed as liquid carriers, particularly for injectable solutions. Suitable pharmaceutical excipients include starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, skimmed milk powder, Glycerol, propylene, ethylene glycol, water, ethanol, etc. (see, eg, Handbook of Pharmaceutical Excipients, Arthur H. Kibbe (ed., 2000, which is hereby incorporated by reference in its entirety), Am. Pharmaceutical Association, Washington, DC .

若需要,該組成物還可含有微量的潤濕或乳化劑或pH緩衝劑。此等組成物可採取溶液、懸液劑、乳劑、錠劑、丸劑、膠囊、粉劑、持續釋放配方等等之形式。口服配方可包括標準載劑,如藥學等級的甘露糖、乳糖、澱粉、硬脂酸鎂、糖精鈉、纖維素、碳酸鎂等。適合的藥學載劑之例子在"Remington's Pharmaceutical Sciences" by E. W. Martin中有說明。此組成物將含有一預防或治療上有效量的預防或治療劑,較佳地純化形式,與一適合量的載劑一起,以便提供可適當地投與至患者的形式。該配方應適合投與的模式。在一些實施例中,該藥學組成物是無菌的且呈適合投與至受試者之形式,該受試者較佳地為動物受試者,更佳地哺乳動物受試者,最佳地人受試者。If desired, the composition may also contain minor amounts of wetting or emulsifying agents or pH buffering agents. Such compositions may take the form of solutions, suspensions, emulsions, tablets, pills, capsules, powders, sustained release formulations and the like. Oral formulations can include standard carriers such as pharmaceutical grades of mannose, lactose, starch, magnesium stearate, sodium saccharin, cellulose, magnesium carbonate, and the like. Examples of suitable pharmaceutical carriers are described in "Remington's Pharmaceutical Sciences" by E. W. Martin. The composition will contain a prophylactically or therapeutically effective amount of the prophylactic or therapeutic agent, preferably in purified form, together with a suitable amount of carrier so as to provide a form suitable for administration to a patient. The formulation should suit the mode of administration. In some embodiments, the pharmaceutical composition is sterile and in a form suitable for administration to a subject, preferably an animal subject, more preferably a mammalian subject, most preferably human subjects.

在一些實施例中,可能需要將該藥學組成物局部投與至需要治療的區域;此可通過例如,但不限於,下列之方式達成:局部輸注、注射或植入物之方式,該植入物可為多孔性、非多孔性或膠狀材料,包括膜,如矽橡膠(sialastic)膜,或纖維。較佳地,投與抗CD3抗體時,需注意使用該抗CD3抗體不會吸收的材料。In some embodiments, it may be desirable to administer the pharmaceutical composition locally to the area in need of treatment; this may be accomplished by, for example, but not limited to, by local infusion, injection, or by means of an implant that implants The material can be porous, non-porous, or colloidal materials, including membranes, such as sialastic membranes, or fibers. Preferably, when administering the anti-CD3 antibody, care should be taken to use materials that the anti-CD3 antibody will not absorb.

在一些實施例中,該組成物可於載具中遞送,具體地微脂粒(見Langer, Science 249:1527-1533 (1990);Treat et al., in Liposomes in the Therapy of Infectious Disease and Cancer, Lopez-Berestein and Fidler (eds.), Liss, New York, pp. 353-365 (1989);Lopez-Berestein, ibid., pp. 317-327;見同上)。In some embodiments, the composition can be delivered in a vehicle, specifically liposomes (see Langer, Science 249:1527-1533 (1990); Treat et al., in Liposomes in the Therapy of Infectious Disease and Cancer , Lopez-Berestein and Fidler (eds.), Liss, New York, pp. 353-365 (1989); Lopez-Berestein, ibid., pp. 317-327; see ibid.).

在一些實施例中,該組成物可在控制釋放或持續釋放系統中遞送。在一些實施例中,可用泵來達到控制或持續釋放(見Langer,同上;Sefton, 1987, CRC Crit. Ref. Biomed. Eng. 14:20;Buchwald et al., 1980, Surgery 88:507;Saudek et al., 1989, N. Engl. J. Med. 321:574)。在一些實施例中,可使用聚合材料來達到本發明之抗體或其片段的控制或持續釋放(見如,Medical Applications of Controlled Release, Langer and Wise (eds.), CRC Pres., Boca Raton, Fla. (1974);Controlled Drug Bioavailability, Drug Product Design and Performance, Smolen and Ball (eds.), Wiley, New York (1984);Ranger and Peppas, 1983, J., Macromol. Sci. Rev. Macromol. Chem. 23:61;亦見Levy et al., 1985, Science 228:190;During et al., 1989, Ann. Neurol. 25:351;Howard et al., 1989, J. Neurosurg. 71:105);美國專利案第5,679,377號;美國專利案第5,916,597號;美國專利案第5,912,015號;美國專利案第5,989,463號;美國專利案第5,128,326號;PCT公開案號WO 99/15154;及PCT公開案號WO 99/20253。用於持續釋放配方之聚合物的例子包括,但不限於,聚(甲基丙烯酸2-羥乙酯)、聚(甲基丙烯酸甲酯)、聚(丙烯酸)、聚(乙烯-共-醋酸乙烯酯)、聚(甲基丙烯酸)、聚甘胺酸交酯(PLG)、聚酐、聚(N-乙烯基吡咯啶酮)、聚(乙烯醇)、聚丙烯醯胺、聚(乙二醇)、聚乳酸交酯(PLA)、聚(乳酸交酯-共-乙交酯) (PLGA)及原酸酯聚合體。在一些實施例中,用於持續釋放配方之聚合物是惰性、無可浸出雜質、儲存安定、無菌及生物可分解性的。在一些實施例中,控制或持續釋放系統可置於治療標的附近,即肺,因此僅需全身劑量的一小部分(見如,Goodson, in Medical Applications of Controlled Release, supra, vol. 2, pp. 115-138 (1984))。In some embodiments, the composition can be delivered in a controlled release or sustained release system. In some embodiments, a pump may be used to achieve controlled or sustained release (see Langer, supra; Sefton, 1987, CRC Crit. Ref. Biomed. Eng. 14:20; Buchwald et al., 1980, Surgery 88:507; Saudek et al., 1989, N. Engl. J. Med. 321:574). In some embodiments, polymeric materials can be used to achieve controlled or sustained release of the antibodies or fragments thereof of the invention (see, e.g., Medical Applications of Controlled Release, Langer and Wise (eds.), CRC Pres., Boca Raton, Fla. (1974); Controlled Drug Bioavailability, Drug Product Design and Performance, Smolen and Ball (eds.), Wiley, New York (1984); Ranger and Peppas, 1983, J., Macromol. Sci. Rev. Macromol. Chem. 23:61; see also Levy et al., 1985, Science 228:190; During et al., 1989, Ann. Neurol. 25:351; Howard et al., 1989, J. Neurosurg. 71:105); USA US Patent No. 5,679,377; US Patent No. 5,916,597; US Patent No. 5,912,015; US Patent No. 5,989,463; US Patent No. 5,128,326; PCT Publication No. WO 99/15154; and PCT Publication No. WO 99 /20253. Examples of polymers used in sustained release formulations include, but are not limited to, poly(2-hydroxyethyl methacrylate), poly(methyl methacrylate), poly(acrylic acid), poly(ethylene-co-vinyl acetate) ester), poly(methacrylic acid), polyglycinide (PLG), polyanhydride, poly(N-vinylpyrrolidone), poly(vinyl alcohol), polyacrylamide, poly(ethylene glycol) ), polylactide (PLA), poly(lactide-co-glycolide) (PLGA) and orthoester polymers. In some embodiments, polymers used in sustained release formulations are inert, free of leachable impurities, storage stable, sterile, and biodegradable. In some embodiments, the controlled or sustained release system can be placed near the target of treatment, i.e. the lungs, thus requiring only a fraction of the systemic dose (see, e.g., Goodson, in Medical Applications of Controlled Release, supra, vol. 2, pp. . 115-138 (1984)).

控制釋放系統在Langer (1990, Science 249:1527-1533)之回顧分析中有討論。可使用本領域之技術人員已知的任何技術來產生包含本發明之一或多個抗體或其片段之持續釋放配方。見如,美國專利案第4,526,938號;PCT公開案號WO 91/05548;PCT公開案號WO 96/20698;Ning et al., 1996, Radiotherapy & Oncology 39:179-189;Song et al., 1995, PDA Journal of Pharmaceutical Science & Technology 50:372-397;Cleek et al., 1997, Pro. Int'l. Symp. Control. Rel. Bioact. Mater. 24:853-854;及Lam et al., 1997, Proc. Int'l. Symp. Control Rel. Bioact. Mater. 24:759-760,其等各整體在此併入本案以為參考。Controlled release systems are discussed in a retrospective analysis by Langer (1990, Science 249:1527-1533). Sustained release formulations comprising one or more of the antibodies or fragments thereof of the invention can be produced using any technique known to those of skill in the art. See, eg, US Patent No. 4,526,938; PCT Publication No. WO 91/05548; PCT Publication No. WO 96/20698; Ning et al., 1996, Radiotherapy & Oncology 39:179-189; Song et al., 1995 , PDA Journal of Pharmaceutical Science & Technology 50:372-397; Cleek et al., 1997, Pro. Int'l. Symp. Control. Rel. Bioact. Mater. 24:853-854; and Lam et al., 1997 , Proc. Int'l. Symp. Control Rel. Bioact. Mater. 24:759-760, each of which is hereby incorporated by reference in its entirety.

可將藥學組成物配製成與其預期投與途徑相容的形式。投藥途徑包括,但不限於,腸胃外,如靜脈、皮內、皮下、經口、鼻內(如,吸入)、經皮(局部)、經黏膜及直腸投與。在一些實施例中,該組成物係根據常規程序配製成適合靜脈、皮下、肌肉、經口、鼻內或局部投與至人類的藥學組成物。在一些實施例中,藥學組成物係根據供皮下投與至人類的常規程序配製。通常,用於靜脈投與之組成物是配製於無菌等張水性緩衝液中之溶液。需要時,該組成物亦可包括助溶劑及局部麻醉劑如利多卡因(lignocamne),用以緩和注射位置的疼痛。Pharmaceutical compositions can be formulated in a form compatible with their intended route of administration. Routes of administration include, but are not limited to, parenteral, such as intravenous, intradermal, subcutaneous, oral, intranasal (eg, inhalation), transdermal (topical), transmucosal, and rectal administration. In some embodiments, the composition is formulated according to conventional procedures as a pharmaceutical composition suitable for intravenous, subcutaneous, intramuscular, oral, intranasal, or topical administration to humans. In some embodiments, the pharmaceutical composition is formulated according to conventional procedures for subcutaneous administration to humans. Typically, compositions for intravenous administration are solutions formulated in sterile isotonic aqueous buffer. If desired, the composition may also include cosolvents and local anesthetics such as lignocamne to relieve pain at the injection site.

可將該組成物配製成通過注射之腸胃外投藥,如通過單次快速注射或連續輸注。注射配方可以單位劑型存在,如於安瓿或多劑量容器中,並添加防腐劑。該組成物可採取如配製於油或水性載具中之懸液劑、溶液或乳劑之形式,且可含有配方劑如助懸、安定和和/或分散劑。或者,活性成份可為粉劑形式,用於在使用前與適合的載具如無菌無熱原水配製。The composition may be formulated for parenteral administration by injection, such as by bolus injection or continuous infusion. Formulations for injection can be presented in unit dosage form, eg, in ampoules or in multi-dose containers, with an added preservative. The compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents. Alternatively, the active ingredient may be in powder form for constitution with a suitable vehicle, eg, sterile pyrogen-free water, before use.

在一些實施例中,本揭示提供能夠連續投與該抗CD3抗體持續數小時或數天之劑型(如,聯合泵或其它用於此遞送之裝置),例如,持續1小時、2小時、3小時、4小時、6小時、8小時、10小時、12小時、16小時、20小時、24小時、30小時、36小時、4天、5天、7天、10天或14天的時間。在一些實施例中,本發明提供能夠連續投與漸增劑量之劑型,例如,在24小時、30小時、36小時、4天、5天、7天、10天或14 天內從51 ug/m2 /天增加至826 ug/m2 /天。In some embodiments, the present disclosure provides dosage forms (eg, in combination with a pump or other device for such delivery) that enable continuous administration of the anti-CD3 antibody for hours or days, eg, for 1 hour, 2 hours, 3 hours Hours, 4 hours, 6 hours, 8 hours, 10 hours, 12 hours, 16 hours, 20 hours, 24 hours, 30 hours, 36 hours, 4 days, 5 days, 7 days, 10 days, or 14 days. In some embodiments, the present invention provides dosage forms that enable continuous administration of escalating doses, eg, from 51 ug/kg over 24 hours, 30 hours, 36 hours, 4 days, 5 days, 7 days, 10 days, or 14 days. m 2 /day increased to 826 ug/m 2 /day.

可將該組成物配製成中性或鹽之形式。藥學上可接受的鹽類包括與從如鹽酸、磷酸、乙酸、草酸、酒石酸等衍生而來之陰離子形成的鹽類,及從如鈉、鉀、銨、鈣、氫氧化鐵、異丙胺、三乙胺、2-乙胺基乙醇、組胺酸、普魯卡因等之陽離子形成的鹽類。The composition can be formulated in neutral or salt form. Pharmaceutically acceptable salts include those formed with anions derived from, for example, hydrochloric, phosphoric, acetic, oxalic, tartaric, and the like, and from, for example, sodium, potassium, ammonium, calcium, ferric hydroxide, isopropylamine, tris Salts formed by cations of ethylamine, 2-ethylaminoethanol, histidine, procaine, etc.

一般而言,本文所揭示的組成物之成份係以分開或混合一起的單位劑型提供,例如裝在標示活性劑數量的全封閉式容器如安瓿或小袋中之凍乾粉劑或無水濃縮劑。在預期通過輸注投與該組成物之情況下,其可用含有無菌藥學等級水或食鹽水之輸注瓶分配。在預期通過注射投與該組成物之情況下,可提供具有無菌注射用水或食鹽水之安瓿,如此可在投藥前將成分混合。Generally, the components of the compositions disclosed herein are provided in unit dosage form either separately or mixed together, such as a lyophilized powder or anhydrous concentrate in a hermetically sealed container such as an ampule or sachet indicating the quantity of active agent. Where the composition is intended to be administered by infusion, it may be dispensed from an infusion bottle containing sterile pharmaceutical grade water or saline. Where administration of the composition by injection is contemplated, ampoules with sterile water or saline for injection can be provided so that the ingredients can be mixed prior to administration.

具體地,本揭示提供可將該抗CD3抗體或其藥學組成物包裝在標示藥劑數量的全封閉容器如安瓿或小袋中。在一些實施例中,該抗CD3抗體或其藥學組成物是以裝在全密封容器中之凍乾粉劑或無水濃縮劑之形式提供,可用如水或食鹽水配製至適合投與至受試者的濃度。較佳地,該抗CD3抗體或其藥學組成物是以至少5mg,更佳地至少10mg、至少15mg、至少25mg、至少35mg、至少45mg、至少50mg、至少75mg或至少100mg之單位劑量裝在全密封容器中之凍乾無菌粉劑的形式提供。該凍乾預防劑或本文之藥學組成物應儲存在2℃至8℃下其原始容器中,及該預防或治療劑或本發明之藥學組成物在配製好後應於1周內,較佳地5天內、72小時內、48小時內、24小時內、12小時內、6小時內、5小時內、3小時內或1小時內投與。在一些實施例中,該藥學組成物是以裝在標示藥劑數量及濃度的全密封容器中之液劑形式提供。較佳地,液劑形式投與的組成物以至少0.25mg/ml,更佳地至少0.5mg/ml、至少1mg/ml、至少2.5mg/ml、至少5mg/ml、至少8mg/ml、至少10mg/ml、至少15mg/ml、至少25mg/ml、至少50mg/ml、至少75mg/ml或至少100mg/ml裝在全密封容器中。該液劑應儲存在2℃至8℃下,其原始容器中。Specifically, the present disclosure provides that the anti-CD3 antibody or pharmaceutical composition thereof can be packaged in a fully closed container, such as an ampule or pouch, in which the quantity of the agent is indicated. In some embodiments, the anti-CD3 antibody or pharmaceutical composition thereof is provided in the form of a lyophilized powder or anhydrous concentrate in a hermetically sealed container, which can be formulated, for example, with water or saline, into a dosage form suitable for administration to a subject. concentration. Preferably, the anti-CD3 antibody or its pharmaceutical composition is packed in whole in a unit dose of at least 5 mg, more preferably at least 10 mg, at least 15 mg, at least 25 mg, at least 35 mg, at least 45 mg, at least 50 mg, at least 75 mg or at least 100 mg. Supplied as a lyophilized sterile powder in a sealed container. The lyophilized prophylactic agent or the pharmaceutical composition of the present invention should be stored in its original container at 2°C to 8°C, and the prophylactic or therapeutic agent or the pharmaceutical composition of the present invention should be prepared within 1 week, preferably Administer within 5 days, within 72 hours, within 48 hours, within 24 hours, within 12 hours, within 6 hours, within 5 hours, within 3 hours, or within 1 hour. In some embodiments, the pharmaceutical composition is provided as a liquid in a hermetically sealed container indicating the quantity and concentration of the drug. Preferably, the composition is administered in liquid form at at least 0.25 mg/ml, more preferably at least 0.5 mg/ml, at least 1 mg/ml, at least 2.5 mg/ml, at least 5 mg/ml, at least 8 mg/ml, at least 10 mg/ml, at least 15 mg/ml, at least 25 mg/ml, at least 50 mg/ml, at least 75 mg/ml or at least 100 mg/ml in a hermetically sealed container. The solution should be stored at 2°C to 8°C in its original container.

在一些實施例中,本揭示提供將本發明之組成物包裝在標示抗CD3抗體之數量的全封閉容器如安瓿或小袋中。In some embodiments, the present disclosure provides for packaging of the compositions of the present invention in a fully closed container, such as an ampule or pouch, indicating the quantity of anti-CD3 antibody.

若需要,可將該組成物提供在包裝或分配裝置中,其可含一或多個含有該活性成份之單位劑型。該包裝可包含例如金屬或塑料箔,如泡鼓包裝。If desired, the composition may be presented in a pack or dispenser device which may contain one or more unit dosage forms containing the active ingredient. The packaging may comprise, for example, metal or plastic foil, such as a blister pack.

本發明之組成物有效預防或改善一或多個與T1D相關的症狀之數量,可通過標準臨床技術決定。配方中應使用的精確劑量將取決於投藥途徑及病況的嚴重度,且應根據醫師的判斷及每個患者的情況做決定。有效劑量可從試管中或動物模型測試系統衍生而來的劑量-反應曲線推算而得。方法及用途 The amount of effective prevention or amelioration of one or more symptoms associated with T1D by the compositions of the present invention can be determined by standard clinical techniques. The precise dose to be employed in a formulation will depend on the route of administration and the seriousness of the condition, and should be decided according to the judgment of the physician and each patient's circumstances. Effective doses can be extrapolated from dose-response curves derived from in vitro or animal model test systems. Method and use

在一些實施例中,本揭示包括對易發展成第1型糖尿病或患有第1型糖尿病臨床前期,但不符合由美國糖尿病協會或糖尿病免疫學會建立的診斷標準之個體,投與抗人CD3抗體如特普珠單抗,以預防或延遲第1型糖尿病之發病和/或預防或延遲對此患者投與胰島素之必要。在一些實施例中,用於鑑定易感受試者之高風險因子包括診斷有第1型糖尿病之一等或二等親屬、空腹葡萄糖位準異常(如,禁食後(8個小時沒吃東西)至少一個葡萄糖位準的測定為100-125mg/dl))、對75 g OGTT反應的葡萄糖失耐(如,對75g OGTT之反應,至少一個2小時葡萄糖位準的測定為140-199 mg/dl)、HLA型為DR3、DR4或DR7之高加索人、HLA型為DR3或DR4非洲人後裔、HLA型為DR3、DR4或DR9之日本人後裔、曝露於病毒(如,柯薩奇B病毒、腸病毒、腺病毒、德國麻疹病毒、巨細胞病毒、EB病毒)、根據本領域公認的標準,對至少一種其他自體免疫性疾病的陽性診斷(如,甲狀腺疾病、乳糜瀉)和/或在血清或其它組織中檢測到自體抗體,具體地ICAs及第1型糖尿病相關自體抗體。在一些實施例中,鑑定為易發展成第1型糖尿病之受試者,具有至少一個本文中所述的和/或此技術領域中已知的風險因子。本揭示還包含易發展成第1型糖尿病之受試者的鑑定,其中該受試者存在二個以上、三個以上、四個以上或五個以上本文所揭示或此技術領域中已知的風險因子。In some embodiments, the present disclosure includes administration of anti-human CD3 to individuals susceptible to developing Type 1 diabetes or having preclinical Type 1 diabetes but not meeting diagnostic criteria established by the American Diabetes Association or the Diabetes Immunology Society Antibodies, such as teplizumab, to prevent or delay the onset of type 1 diabetes and/or prevent or delay the need to administer insulin to this patient. In some embodiments, high risk factors for identifying susceptible subjects include a diagnosis of a first- or second-degree relative of type 1 diabetes, abnormal fasting glucose levels (eg, post-fasting (8 hours without food) ) measurement of at least one glucose level is 100-125 mg/dl)), glucose intolerance in response to 75 g OGTT (eg, in response to 75 g OGTT, measurement of at least one 2-hour glucose level is 140-199 mg/dl) dl), Caucasian with HLA type DR3, DR4 or DR7, African descent with HLA type DR3 or DR4, Japanese descent with HLA type DR3, DR4 or DR9, exposure to a virus (eg, Coxsackie B virus, Enterovirus, adenovirus, German measles virus, cytomegalovirus, Epstein-Barr virus), positive diagnosis of at least one other autoimmune disease according to art-recognized criteria (eg, thyroid disease, celiac disease) and/or Autoantibodies, specifically ICAs and type 1 diabetes-associated autoantibodies, are detected in serum or other tissues. In some embodiments, a subject identified as susceptible to developing Type 1 diabetes has at least one risk factor described herein and/or known in the art. The present disclosure also includes the identification of subjects susceptible to developing Type 1 diabetes, wherein the subject has two or more, three or more, four or more, or five or more disclosed herein or known in the art risk factor.

與第1型糖尿病相關或易發展成第1型糖尿病的血清自體抗體是胰島細胞自體抗體(如,抗ICA512自體抗體)、麩胺酸去胺甲醯酶自體抗體(如,抗GAD65自體抗體)、IA2抗體、ZnT8抗體和/或抗胰島素自體抗體。據此,在根據此實施例之一具體範例中,本發明包含具有與易發展成第1型糖尿病相關或與早期第1型糖尿病相關之可檢測的自體抗體(如,抗IA2、抗ICA512、抗GAD或抗胰島素抗體)之個體的治療,其中該個體未診斷有第1型糖尿病和/或是第1型糖尿病之一等或二等親屬。在一些實施例中,通過ELISA、電化學發光(ECL)、放射分析(見如Yu et al., 1996, J. Clin. Endocrinol. Metab. 81:4264-4267)、凝集PCR (Tsai et al,ACS Central Science 2016 2 (3), 139-147)或任何其它本文中所述或本領域之技術人員已知用於免疫專一性檢測抗體之方法,檢測自體抗體的存在。Serum autoantibodies associated with or predisposing to type 1 diabetes are islet cell autoantibodies (eg, anti-ICA512 autoantibodies), glutamic acid deaminase autoantibodies (eg, anti-ICA512 autoantibodies). GAD65 autoantibody), IA2 antibody, ZnT8 antibody and/or anti-insulin autoantibody. Accordingly, in a specific example according to this embodiment, the present invention includes having detectable autoantibodies (eg, anti-IA2, anti-ICA512) associated with predisposition to developing type 1 diabetes or associated with early type 1 diabetes , anti-GAD or anti-insulin antibodies), wherein the individual has not been diagnosed with type 1 diabetes and/or is a first- or second-degree relative of type 1 diabetes. In some embodiments, by ELISA, electrochemiluminescence (ECL), radioassay (see, eg, Yu et al., 1996, J. Clin. Endocrinol. Metab. 81:4264-4267), agglutination PCR (Tsai et al, ACS Central Science 2016 2 (3), 139-147) or any other method described herein or known to those of skill in the art for immunospecific detection of antibodies to detect the presence of autoantibodies.

治療前、期間及後之β細胞功能,可用本文中所述的方法或本領域之技術人員已知之任何方法評估。例如,糖尿病控制與合併症試驗(DCCT)研究小組已建立醣化血紅素(HA1及HA1c)之百分比的監測作為評估血糖控制的標準(DCCT, 1993, N. Engl. J. Med. 329:977-986)。或者,可使用每日胰島素需求、C肽位準/反應、低血糖發作和/或FPIR之特徵作為β細胞功能的標記,或建立治療指引(分別見Keymeulen et al., 2005, N. Engl. J. Med. 352:2598-2608;Herold et al., 2005, Diabetes 54:1763-1769;美國專利申請公開案第2004/0038867 A1號;及Greenbaum et al., 2001, Diabetes 50:470-476)。例如,FPIR是IGTT後1分鐘與3分鐘之胰島素值的計算總合,其是依照Islet Cell Antibody Register User's Study準則進行(見如Bingley et al., 1996, Diabetes 45:1720-1728及McCulloch et al., 1993, Diabetes Care 16:911-915)。Beta cell function before, during, and after treatment can be assessed using the methods described herein or any method known to those of skill in the art. For example, the Diabetes Control and Comorbidities Trial (DCCT) research group has established the monitoring of percent glycated hemoglobin (HA1 and HA1c) as a criterion for assessing glycemic control (DCCT, 1993, N. Engl. J. Med. 329:977- 986). Alternatively, characteristics of daily insulin requirements, C-peptide level/response, hypoglycemic episodes, and/or FPIR can be used as markers of beta cell function, or to establish treatment guidelines (see Keymeulen et al., 2005, N. Engl. J. Med. 352:2598-2608; Herold et al., 2005, Diabetes 54:1763-1769; US Patent Application Publication No. 2004/0038867 A1; and Greenbaum et al., 2001, Diabetes 50:470-476 ). For example, FPIR is the calculated sum of insulin values at 1 and 3 minutes after IGTT, performed according to the Islet Cell Antibody Register User's Study criteria (see, eg, Bingley et al., 1996, Diabetes 45:1720-1728 and McCulloch et al. ., 1993, Diabetes Care 16:911-915).

在一些實施例中,該易發展成T1D之個體可為非糖尿病受試者,其為T1D患者之親屬。在一些實施例中,該非糖尿病受試者具有2個以上選自下列之糖尿病相關自體抗體:胰島細胞抗體(ICA)、胰島素自體抗體(IAA)及針對麩胺酸脫羧基酶(GAD)、酪胺酸磷酸酶(IA-2/ICA512)或ZnT8之抗體。In some embodiments, the individual prone to developing T1D may be a non-diabetic subject who is a relative of a T1D patient. In some embodiments, the non-diabetic subject has 2 or more diabetes-associated autoantibodies selected from the group consisting of islet cell antibody (ICA), insulin autoantibody (IAA), and glutamic acid decarboxylase (GAD) , tyrosine phosphatase (IA-2/ICA512) or ZnT8 antibody.

在一些實施例中,該非糖尿病受試者在葡萄糖耐受性測試(OGTT)中具有異常葡萄糖耐受性。OGTT中異常葡萄糖耐受性定義為空腹葡萄糖位準為110-125mg/dL,或2小時血漿≥ 140且< 200 mg/dL,或OGTT之30、60或90分鐘時的干預葡萄糖值> 200 mg/dL。In some embodiments, the non-diabetic subject has abnormal glucose tolerance on a glucose tolerance test (OGTT). Abnormal glucose tolerance in the OGTT was defined as a fasting glucose level of 110-125 mg/dL, or a 2-hour plasma ≥ 140 and < 200 mg/dL, or an intervening glucose value > 200 mg at 30, 60, or 90 minutes of the OGTT /dL.

在一些實施例中,會對抗CD3抗體如特普珠單抗有反應之非糖尿病受試者,沒有抗ZnT8抗體。在一些實施例中,此非糖尿病受試者是HLA-DR4+且不是HLA-DR3+。在一些實施例中,此會對抗CD3抗體如特普珠單抗有反應之非糖尿病受試者在投藥後(如,1個月後、2個月後、3個月後或更長或更短),表現出周邊血液單核細胞中TIGIT+KLRG1+CD8+T細胞(如,通過流式細胞分析法)之頻率(或相對數量)增加。In some embodiments, non-diabetic subjects who respond to anti-CD3 antibodies, such as teplizumab, do not have anti-ZnT8 antibodies. In some embodiments, the non-diabetic subject is HLA-DR4+ and not HLA-DR3+. In some embodiments, the non-diabetic subject who is responsive to an anti-CD3 antibody, such as teplizumab, is administered after administration (eg, after 1 month, after 2 months, after 3 months, or longer or more short), showing an increased frequency (or relative number) of TIGIT+KLRG1+CD8+ T cells (eg, by flow cytometry) in peripheral blood mononuclear cells.

在一些實施例中,該預防性有效量包含以10-1000微克/平方米(μg/m2 )皮下(SC)注射或靜脈( IV) 輸注抗CD3抗體如特普珠單抗10至14天之療程。在一範例中,該預防性有效量包含在第0至3天分別以51μg/m2 、103μg/m2 、207μg/m2 及413μg/m2 及在第4-13天每天一劑826μg/m2 IV輸注抗CD3抗體如特普珠單抗14天之療程。在一些實施例中,該預防性有效量延遲臨床診斷有T1D之中位數時間至少50%、至少80%、至少90%或至少12個月、至少18個月、至少24個月、至少36個月、至少48個月或至少60個月或更長。In some embodiments, the prophylactically effective amount comprises subcutaneous (SC) injection or intravenous ( IV ) infusion of an anti-CD3 antibody such as teprozumab at 10-1000 micrograms per square meter (μg/m 2 ) for 10 to 14 days course of treatment. In one example, the prophylactically effective amount contained in the first 0-3 days, respectively 51μg / m 2, 103μg / m 2, 207μg / m 2 and 413μg / m 2 and a 826μg daily on days 4-13 / m 2 IV infusion of an anti-CD3 antibody such as teplizumab for a 14-day course. In some embodiments, the prophylactically effective amount delays the median time to clinical diagnosis of T1D by at least 50%, at least 80%, at least 90%, or at least 12 months, at least 18 months, at least 24 months, at least 36 months months, at least 48 months or at least 60 months or longer.

在一些實施例中,投與抗CD3抗體如特普珠單抗之療程,可以2個月、4個月、6個月、8個月、9個月、10個月、12個月、15個月、18個月、24個月、30個月或36個月之間隔重複。在一些實施例中,用本文所述或此技術領域已知的方法測定在之前的治療後2個月、4個月、6個月、9個月、12個月、15個月、18個月、24個月、30個月或36個月時,抗CD3抗體如特普珠單抗之治療效果。In some embodiments, the course of administration of an anti-CD3 antibody, such as teplizumab, may be 2 months, 4 months, 6 months, 8 months, 9 months, 10 months, 12 months, 15 months Repeat at monthly, 18, 24, 30, or 36-month intervals. In some embodiments, 2 months, 4 months, 6 months, 9 months, 12 months, 15 months, 18 months after the previous treatment is determined by methods described herein or known in the art The therapeutic effect of anti-CD3 antibodies such as teplizumab at 30 months, 24 months, 30 months or 36 months.

在一些實施例中,對受試者投與一或多個單位劑劑大概0.5-50 ug/kg、大概0.5-40 ug/kg、大概0.5-30 ug/kg、大概0.5-20 ug/kg、大概0.5-15 ug/kg、大概0.5-10 ug/kg、大概0.5-5 ug/kg、大概1-5 ug/kg、大概1-10 ug/kg、大概20-40 ug/kg、大概20-30 ug/kg、大概22-28 ug/kg或大概25-26 ug/kg之抗CD3抗體如特普珠單抗,以預防、治療或改善一或多個T1D症狀。在一些實施例中,對受試者投與一或多個單位劑量約200 ug/kg、178 ug/kg、180 ug/kg、128 ug/kg、100 ug/kg、95 ug/kg、90 ug/kg、85 ug/kg、80 ug/kg、75 ug/kg、70 ug/kg、65 ug/kg、60 ug/kg、55 ug/kg、50 ug/kg、45 ug/kg、40 ug/kg、35 ug/kg、30 ug/kg、26 ug/kg、25 ug/kg、20 ug/kg、15 ug/kg、13 ug/kg、10 ug/kg、6.5 ug/kg、5 ug/kg、3.2 ug/kg、3 ug/kg、2.5 ug/kg、2 ug/kg、1.6 ug/kg、1.5 ug/kg、1 ug/kg、0.5 ug/kg、0.25 ug/kg、0.1 ug/kg或0.05 ug/kg之抗CD3抗體如特普珠單抗,以預防、治療或改善一或多個T1D症狀。In some embodiments, the subject is administered one or more unit doses of about 0.5-50 ug/kg, about 0.5-40 ug/kg, about 0.5-30 ug/kg, about 0.5-20 ug/kg , about 0.5-15 ug/kg, about 0.5-10 ug/kg, about 0.5-5 ug/kg, about 1-5 ug/kg, about 1-10 ug/kg, about 20-40 ug/kg, about 20-30 ug/kg, approximately 22-28 ug/kg, or approximately 25-26 ug/kg of an anti-CD3 antibody such as teplizumab to prevent, treat, or ameliorate one or more T1D symptoms. In some embodiments, the subject is administered one or more unit doses of about 200 ug/kg, 178 ug/kg, 180 ug/kg, 128 ug/kg, 100 ug/kg, 95 ug/kg, 90 ug/kg, 85 ug/kg, 80 ug/kg, 75 ug/kg, 70 ug/kg, 65 ug/kg, 60 ug/kg, 55 ug/kg, 50 ug/kg, 45 ug/kg, 40 ug/kg, 35 ug/kg, 30 ug/kg, 26 ug/kg, 25 ug/kg, 20 ug/kg, 15 ug/kg, 13 ug/kg, 10 ug/kg, 6.5 ug/kg, 5 ug/kg, 3.2 ug/kg, 3 ug/kg, 2.5 ug/kg, 2 ug/kg, 1.6 ug/kg, 1.5 ug/kg, 1 ug/kg, 0.5 ug/kg, 0.25 ug/kg, 0.1 ug/kg or 0.05 ug/kg of an anti-CD3 antibody such as teplizumab to prevent, treat or ameliorate one or more T1D symptoms.

在一些實施例中,以約5-1200 ug/m2 ,較佳地51-826 ug/m2 對受試者投與一或多劑抗CD3抗體如特普珠單抗。在一些實施例中,對受試者投與一或多個單位劑量為1200 ug/m2 、1150 ug/m2 、1100 ug/m2 、1050 ug/m2 、1000 ug/m2 、950 ug/m2 、900 ug/m2 、850 ug/m2 、800 ug/m2 、750 ug/m2 、700 ug/m2 、650 ug/m2 、600 ug/m2 、550 ug/m2 、500 ug/m2 、450 ug/m2 、400 ug/m2 、350 ug/m2 、300 ug/m2 、250 ug/m2 、200 ug/m2 、150 ug/m2 、100 ug/m2 、50 ug/m2 、40 ug/m2 、30 ug/m2 、20 ug/m2 、15 ug/m2 、10 ug/m2 或5 ug/m2 之抗CD3抗體如特普珠單抗,以預防、治療一或多個T1D症狀、減緩其進展、延遲其發病或改善一或多個T1D症狀。In some embodiments, the subject is administered one or more doses of an anti-CD3 antibody, such as teplizumab, at about 5-1200 ug/m 2 , preferably 51-826 ug/m 2 . In some embodiments, the subject is administered one or more unit doses of 1200 ug/m 2 , 1150 ug/m 2 , 1100 ug/m 2 , 1050 ug/m 2 , 1000 ug/m 2 , 950 ug/m 2 , 900 ug/m 2 , 850 ug/m 2 , 800 ug/m 2 , 750 ug/m 2 , 700 ug/m 2 , 650 ug/m 2 , 600 ug/m 2 , 550 ug/ m 2 , 500 ug/m 2 , 450 ug/m 2 , 400 ug/m 2 , 350 ug/m 2 , 300 ug/m 2 , 250 ug/m 2 , 200 ug/m 2 , 150 ug/m 2 , 100 ug/m 2 , 50 ug/m 2 , 40 ug/m 2 , 30 ug/m 2 , 20 ug/m 2 , 15 ug/m 2 , 10 ug/m 2 or 5 ug/m 2 A CD3 antibody, such as teplizumab, to prevent, treat, slow the progression, delay the onset, or ameliorate one or more symptoms of T1D.

在一些實施例中,對該受試者投與一治療方案,其包含一或多劑預防性有效量之抗CD3抗體如特普珠單抗,其中該療程為期2天、3天、4天、5天、6天、7天、8天、9天、10天、11天、12天、13天或14天。在一些實施例中,該治療方案包含每天、每2天、每3天或每4天投與該預防性有效量之劑。在一些實施例中,該治療方案包含在指定一週的星期一、星期二、星期三、星期四投與該預防性有效量之劑,及在同一週的星期五、星期六及星期天不投與該預防性有效量之劑,直到已經投與14劑、13劑、12劑、11劑、10劑、9劑或8劑。在一些實施例中,該方案的每一天投與相同的劑量。In some embodiments, the subject is administered a treatment regimen comprising one or more doses of a prophylactically effective amount of an anti-CD3 antibody such as teplizumab, wherein the course of treatment is for 2 days, 3 days, 4 days , 5 days, 6 days, 7 days, 8 days, 9 days, 10 days, 11 days, 12 days, 13 days or 14 days. In some embodiments, the treatment regimen comprises administering the prophylactically effective amount of the agent daily, every 2 days, every 3 days, or every 4 days. In some embodiments, the treatment regimen comprises administering the prophylactically effective amount of the agent on Mondays, Tuesdays, Wednesdays, and Thursdays of a given week, and not administering the prophylactically effective amount on Fridays, Saturdays, and Sundays of the same week doses until 14, 13, 12, 11, 10, 9, or 8 doses have been administered. In some embodiments, the same dose is administered each day of the regimen.

在一些實施例中,對受試者投與一治療方案,其包含一或多劑預防性有效量的抗CD3抗體如特普珠單抗,其中該預防性有效量為200 ug/kg/天、175 ug/kg/天、150 ug/kg/天、125 ug/kg/天、100 ug/kg/天、95 ug/kg/天、90 ug/kg/天、85 ug/kg/天、80 ug/kg/天、75 ug/kg/天、70 ug/kg/天、65 ug/kg/天、60 ug/kg/天、55 ug/kg/天、50 ug/kg/天、45 ug/kg/天、40 ug/kg/天、35 ug/kg/天、30 ug/kg/天、26 ug/kg/天、25 ug/kg/天、20 ug/kg/天、15 ug/kg/天、13 ug/kg/天、10 ug/kg/天、6.5 ug/kg/天、5 ug/kg/天、3.2 ug/kg/天、3 ug/kg/天、2.5 ug/kg/天、2 ug/kg/天、1.6 ug/kg/天、1.5 ug/kg/天、1 ug/kg/天、0.5 ug/kg/天、0.25 ug/kg/天、0.1 ug/kg/天或0.05 ug/kg/天;和/或其中該預防性有效量是1200 ug/m2 /天、1150 ug/m2 /天、1100 ug/m2 /天、1050 ug/m2 /天、1000 ug/m2 /天、950 ug/m2 /天、900 ug/m2 /天、850 ug/m2 /天、800 ug/m2 /天、750 ug/m2 /天、700 ug/m2 /天、650 ug/m2 /天、600 ug/m2 /天、550 ug/m2 /天、500 ug/m2 /天、450 ug/m2 /天、400 ug/m2 /天、350 ug/m2 /天、300 ug/m2 /天、250 ug/m2 天、200 ug/m2 /天、150 ug/m2 /天、100 ug/m2 /天、50 ug/m2 /天、40 ug/m2 天、30 ug/m2 /天、20 ug/m2 /天、15 ug/m2 /天、10 ug/m2 /天或5 ug/m2 /天。In some embodiments, the subject is administered a treatment regimen comprising one or more doses of a prophylactically effective amount of an anti-CD3 antibody such as teplizumab, wherein the prophylactically effective amount is 200 ug/kg/day , 175 ug/kg/day, 150 ug/kg/day, 125 ug/kg/day, 100 ug/kg/day, 95 ug/kg/day, 90 ug/kg/day, 85 ug/kg/day, 80 ug/kg/day, 75 ug/kg/day, 70 ug/kg/day, 65 ug/kg/day, 60 ug/kg/day, 55 ug/kg/day, 50 ug/kg/day, 45 ug/kg/day, 40 ug/kg/day, 35 ug/kg/day, 30 ug/kg/day, 26 ug/kg/day, 25 ug/kg/day, 20 ug/kg/day, 15 ug /kg/day, 13 ug/kg/day, 10 ug/kg/day, 6.5 ug/kg/day, 5 ug/kg/day, 3.2 ug/kg/day, 3 ug/kg/day, 2.5 ug/day kg/day, 2 ug/kg/day, 1.6 ug/kg/day, 1.5 ug/kg/day, 1 ug/kg/day, 0.5 ug/kg/day, 0.25 ug/kg/day, 0.1 ug/kg /day or 0.05 ug/kg/day; and/or wherein the prophylactically effective amount is 1200 ug/m 2 /day, 1150 ug/m 2 /day, 1100 ug/m 2 /day, 1050 ug/m 2 /day day, 1000 ug / m 2 / day, 950 ug / m 2 / day, 900 ug / m 2 / day, 850 ug / m 2 / day, 800 ug / m 2 / day, 750 ug / m 2 / day, 700 ug / m 2 / day, 650 ug / m 2 / day, 600 ug / m 2 / day, 550 ug / m 2 / day, 500 ug / m 2 / day, 450 ug / m 2 / day, 400 ug / m 2 / day, 350 ug / m 2 / day, 300 ug / m 2 / day, 250 ug / m 2 day, 200 ug / m 2 / day, 150 ug / m 2 / day, 100 ug / m 2 / day, 50 ug / m 2 / day, 40 ug / m 2 day, 30 ug / m 2 / day, 20 ug / m 2 / day, 15 ug / m 2 / day, 10 ug / m 2 / day or 5 ug / m 2 / day.

在一些實施例中,靜脈投與劑量小於或等於1200 ug/m2 、小於或等於1150 ug/m2 、小於或等於1100 ug/m2 、小於或等於1050 ug/m2 、小於或等於1000 ug/m2 、小於或等於950 ug/m2 、小於或等於900 ug/m2 、小於或等於850 ug/m2 、小於或等於800 ug/m2 、小於或等於750 ug/m2 、小於或等於700 ug/m2 、小於或等於650 ug/m2 、小於或等於600 ug/m2 、小於或等於550 ug/m2 、小於或等於500 ug/m2 、小於或等於450 ug/m2 、小於或等於400 ug/m2 、小於或等於350 ug/m2 、小於或等於300 ug/m2 、小於或等於250 ug/m2 、小於或等於200 ug/m2 、小於或等於150 ug/m2 、小於或等於100 ug/m2 、小於或等於50 ug/m2 、小於或等於40 ug/m2 、小於或等於30 ug/m2 、小於或等於20 ug/m2 、小於或等於15 ug/m2 、小於或等於10 ug/m2 、小於或等於5 ug/m2 之抗CD3抗體如特普珠單抗,為期約24小時、約22小時、約20小時、約18小時、約16小時、約14小時、約12小時、約10小時、約8小時、約6小時、約4小時、約2小時、約1.5小時、約1小時、約50分鐘、約40分鐘、約30分鐘、約20分鐘、約10分鐘、約5分鐘、約2分鐘、約1分鐘、約30秒或約10秒,以預防、治療或改善一或多個第1型糖尿病之症狀。該方案期間之總劑量較佳地總量小於9000 ug/m2 、8000 ug/m2 、7000 ug/m2 、6000 ug/m2 且可小於5000 ug/m2 、4000 ug/m2 、3000 ug/m2 、2000 ug/m2 或1000 ug/m2 。在一些實施例中,該方案中總投與劑量為100 ug/m2 至200 ug/m2 、100 ug/m2 至500 ug/m2 、100 ug/m2 至1000 ug/m2 或500 ug/m2 至1000 ug/m2In some embodiments, the intravenously administered dose is less than or equal to 1200 ug/m 2 , less than or equal to 1150 ug/m 2 , less than or equal to 1100 ug/m 2 , less than or equal to 1050 ug/m 2 , less than or equal to 1000 ug/m 2 , less than or equal to 950 ug/m 2 , less than or equal to 900 ug/m 2 , less than or equal to 850 ug/m 2 , less than or equal to 800 ug/m 2 , less than or equal to 750 ug/m 2 , 700 ug/m 2 or less, 650 ug/m 2 or less, 600 ug/m 2 or less, 550 ug/m 2 or less, 500 ug/m 2 or less, 450 ug or less /m 2 , less than or equal to 400 ug/m 2 , less than or equal to 350 ug/m 2 , less than or equal to 300 ug/m 2 , less than or equal to 250 ug/m 2 , less than or equal to 200 ug/m 2 , less than or equal to 150 ug/m 2 , less than or equal to 100 ug/m 2 , less than or equal to 50 ug/m 2 , less than or equal to 40 ug/m 2 , less than or equal to 30 ug/m 2 , less than or equal to 20 ug/ m 2 , less than or equal to 15 ug/m 2 , less than or equal to 10 ug/m 2 , less than or equal to 5 ug/m 2 of an anti-CD3 antibody such as teplizumab, for about 24 hours, about 22 hours, about 20 hours, about 18 hours, about 16 hours, about 14 hours, about 12 hours, about 10 hours, about 8 hours, about 6 hours, about 4 hours, about 2 hours, about 1.5 hours, about 1 hour, about 50 minutes , about 40 minutes, about 30 minutes, about 20 minutes, about 10 minutes, about 5 minutes, about 2 minutes, about 1 minute, about 30 seconds, or about 10 seconds, to prevent, treat, or ameliorate one or more type 1 Symptoms of diabetes. The total dose during the regimen is preferably less than 9000 ug/m 2 , 8000 ug/m 2 , 7000 ug/m 2 , 6000 ug/m 2 and may be less than 5000 ug/m 2 , 4000 ug/m 2 , 3000 ug/m 2 , 2000 ug/m 2 or 1000 ug/m 2 . In some embodiments, the total dose administered in the regimen is 100 ug/m 2 to 200 ug/m 2 , 100 ug/m 2 to 500 ug/m 2 , 100 ug/m 2 to 1000 ug/m 2 or 500 ug/m 2 to 1000 ug/m 2 .

在一些實施例中,該劑量在該治療方案的前四分之一、前半部分或前2/3逐步增加(如,為期10、12、14、16、18或20天每日一劑方案的頭2、3、4、5或6天),直到達到該CD3抗體如特普珠單抗之每日預防性有效量。在一些實施例中,對受試者投與一治療方案,其包含一或多劑預防性有效量的抗CD3抗體如特普珠單抗,其中該預防性有效量隨著方案進行每天增加如0.01 ug/kg、0.02 ug/kg、0.04 ug/kg、0.05 ug/kg、0.06 ug/kg、0.08 ug/kg、0.1 ug/kg、0.2 ug/kg、0.25 ug/kg、0.5 ug/kg、0.75 ug/kg、1 ug/kg、1.5 ug/kg、2 ug/kg、4 ug/kg、5 ug/kg、10 ug/kg、15 ug/kg、20 ug/kg、25 ug/kg、30 ug/kg、35 ug/kg、40 ug/kg、45 ug/kg、50 ug/kg、55 ug/kg、60 ug/kg、65 ug/kg、70 ug/kg、75 ug/kg、80 ug/kg、85 ug/kg、90 ug/kg、95 ug/kg、100 ug/kg、或125 ug/kg;或每天增加如1 ug/m2 、5 ug/m2 、10 ug/m2 、15 ug/m2 、20 ug/m2 、30 ug/m2 、40 ug/m2 、50 ug/m2 、60 ug/m2 、70 ug/m2 、80 ug/m2 、90 ug/m2 、100 ug/m2 、150 ug/m2 、200 ug/m2 、250 ug/m2 、300 ug/m2 、350 ug/m2 、400 ug/m2 、450 ug/m2 、500 ug/m2 、550 ug/m2 、600 ug/m2 或650 ug/m2 。在一些實施例中,對受試者投與一治療方案,其包含一或多劑預防性有效量的抗CD3抗體如特普珠單抗,其中該預防性有效量增加1.25倍、1.5倍、2倍、2.25倍、2.5倍或5倍直到達到該CD3抗體如特普珠單抗之每日預防性有效量。In some embodiments, the dose is escalated over the first quarter, first half, or first two-thirds of the treatment regimen (eg, 10, 12, 14, 16, 18, or 20 days of a daily dose regimen). the first 2, 3, 4, 5 or 6 days) until a daily prophylactically effective amount of the CD3 antibody, such as teplizumab, is reached. In some embodiments, the subject is administered a treatment regimen comprising one or more doses of a prophylactically effective amount of an anti-CD3 antibody, such as teplizumab, wherein the prophylactically effective amount increases daily as the regimen progresses, such as 0.01 ug/kg, 0.02 ug/kg, 0.04 ug/kg, 0.05 ug/kg, 0.06 ug/kg, 0.08 ug/kg, 0.1 ug/kg, 0.2 ug/kg, 0.25 ug/kg, 0.5 ug/kg, 0.75 ug/kg, 1 ug/kg, 1.5 ug/kg, 2 ug/kg, 4 ug/kg, 5 ug/kg, 10 ug/kg, 15 ug/kg, 20 ug/kg, 25 ug/kg, 30 ug/kg, 35 ug/kg, 40 ug/kg, 45 ug/kg, 50 ug/kg, 55 ug/kg, 60 ug/kg, 65 ug/kg, 70 ug/kg, 75 ug/kg, 80 ug/kg, 85 ug/kg, 90 ug/kg, 95 ug/kg, 100 ug/kg, or 125 ug/kg; or daily increase such as 1 ug/m 2 , 5 ug/m 2 , 10 ug/ m 2 , 15 ug/m 2 , 20 ug/m 2 , 30 ug/m 2 , 40 ug/m 2 , 50 ug/m 2 , 60 ug/m 2 , 70 ug/m 2 , 80 ug/m 2 , 90 ug/m 2 , 100 ug/m 2 , 150 ug/m 2 , 200 ug/m 2 , 250 ug/m 2 , 300 ug/m 2 , 350 ug/m 2 , 400 ug/m 2 , 450 ug/m 2 , 500 ug/m 2 , 550 ug/m 2 , 600 ug/m 2 or 650 ug/m 2 . In some embodiments, the subject is administered a treatment regimen comprising one or more doses of a prophylactically effective amount of an anti-CD3 antibody such as teplizumab, wherein the prophylactically effective amount is increased 1.25-fold, 1.5-fold, 2-fold, 2.25-fold, 2.5-fold or 5-fold until the daily prophylactically effective amount of the CD3 antibody such as teplizumab is reached.

在一些實施例中,對受試者肌肉內投與一或多劑小於或等於200 ug/kg,較佳地小於或等於175 ug/kg、小於或等於150 ug/kg、小於或等於125 ug/kg、小於或等於100 ug/kg、小於或等於95 ug/kg、小於或等於90 ug/kg、小於或等於85 ug/kg、小於或等於80 ug/kg、小於或等於75 ug/kg、小於或等於70 ug/kg、小於或等於65 ug/kg、小於或等於60 ug/kg、小於或等於55 ug/kg、小於或等於50 ug/kg、小於或等於45 ug/kg、小於或等於40 ug/kg、小於或等於35 ug/kg、小於或等於30 ug/kg、小於或等於25 ug/kg、小於或等於20 ug/kg、小於或等於15 ug/kg、小於或等於10 ug/kg、小於或等於5 ug/kg、小於或等於2.5 ug/kg、小於或等於2 ug/kg、小於或等於1.5 ug/kg、小於或等於1 ug/kg、小於或等於0.5 ug/kg或小於或等於0.2 ug/kg的抗CD3抗體如特普珠單抗、奧替利珠單抗或福拉魯單抗,以預防、治療或改善一或多個T1D症狀。In some embodiments, one or more doses less than or equal to 200 ug/kg, preferably less than or equal to 175 ug/kg, less than or equal to 150 ug/kg, less than or equal to 125 ug/kg are administered intramuscularly to the subject /kg, less than or equal to 100 ug/kg, less than or equal to 95 ug/kg, less than or equal to 90 ug/kg, less than or equal to 85 ug/kg, less than or equal to 80 ug/kg, less than or equal to 75 ug/kg , less than or equal to 70 ug/kg, less than or equal to 65 ug/kg, less than or equal to 60 ug/kg, less than or equal to 55 ug/kg, less than or equal to 50 ug/kg, less than or equal to 45 ug/kg, less than or equal to 40 ug/kg, less than or equal to 35 ug/kg, less than or equal to 30 ug/kg, less than or equal to 25 ug/kg, less than or equal to 20 ug/kg, less than or equal to 15 ug/kg, less than or equal to 10 ug/kg, less than or equal to 5 ug/kg, less than or equal to 2.5 ug/kg, less than or equal to 2 ug/kg, less than or equal to 1.5 ug/kg, less than or equal to 1 ug/kg, less than or equal to 0.5 ug /kg or less than or equal to 0.2 ug/kg of an anti-CD3 antibody such as tepilizumab, octilizumab, or falagulumab to prevent, treat or ameliorate one or more T1D symptoms.

在一些實施例中,對受試者皮下投與一或多劑小於或等於200 ug/kg,較佳地小於或等於175 ug/kg、小於或等於150 ug/kg、小於或等於125 ug/kg、小於或等於100 ug/kg、小於或等於95 ug/kg、小於或等於90 ug/kg、小於或等於85 ug/kg、小於或等於80 ug/kg、小於或等於75 ug/kg、小於或等於70 ug/kg、小於或等於65 ug/kg、小於或等於60 ug/kg、小於或等於55 ug/kg、小於或等於50 ug/kg、小於或等於45 ug/kg、小於或等於40 ug/kg、小於或等於35 ug/kg、小於或等於30 ug/kg、小於或等於25 ug/kg、小於或等於20 ug/kg、小於或等於15 ug/kg、小於或等於10 ug/kg、小於或等於5 ug/kg、小於或等於2.5 ug/kg、小於或等於2 ug/kg、小於或等於1.5 ug/kg、小於或等於1 ug/kg、小於或等於0.5 ug/kg或小於或等於0.2 ug/kg的抗CD3抗體如特普珠單抗、奧替利珠單抗或福拉魯單抗,以預防、治療或改善一或多個T1D症狀。In some embodiments, one or more doses of less than or equal to 200 ug/kg, preferably less than or equal to 175 ug/kg, less than or equal to 150 ug/kg, less than or equal to 125 ug/kg are administered subcutaneously to the subject kg, less than or equal to 100 ug/kg, less than or equal to 95 ug/kg, less than or equal to 90 ug/kg, less than or equal to 85 ug/kg, less than or equal to 80 ug/kg, less than or equal to 75 ug/kg, Less than or equal to 70 ug/kg, less than or equal to 65 ug/kg, less than or equal to 60 ug/kg, less than or equal to 55 ug/kg, less than or equal to 50 ug/kg, less than or equal to 45 ug/kg, less than or equal to 40 ug/kg, less than or equal to 35 ug/kg, less than or equal to 30 ug/kg, less than or equal to 25 ug/kg, less than or equal to 20 ug/kg, less than or equal to 15 ug/kg, less than or equal to 10 ug/kg, less than or equal to 5 ug/kg, less than or equal to 2.5 ug/kg, less than or equal to 2 ug/kg, less than or equal to 1.5 ug/kg, less than or equal to 1 ug/kg, less than or equal to 0.5 ug/kg kg or less than or equal to 0.2 ug/kg of an anti-CD3 antibody such as tepilizumab, octilizumab, or falagumab to prevent, treat, or ameliorate one or more T1D symptoms.

在一些實施例中,對受試者靜脈投與一或多劑小於或等於100 ug/kg,較佳地小於或等於95 ug/kg、小於或等於90 ug/kg、小於或等於85 ug/kg、小於或等於80 ug/kg、小於或等於75 ug/kg、小於或等於70 ug/kg、小於或等於65 ug/kg、小於或等於60 ug/kg、小於或等於55 ug/kg、小於或等於50 ug/kg、小於或等於45 ug/kg、小於或等於40 ug/kg、小於或等於35 ug/kg、小於或等於30 ug/kg、小於或等於25 ug/kg、小於或等於20 ug/kg、小於或等於15 ug/kg、小於或等於10 ug/kg、小於或等於5 ug/kg、小於或等於2.5 ug/kg、小於或等於2 ug/kg、小於或等於1.5 ug/kg、小於或等於1 ug/kg、小於或等於0.5 ug/kg或小於或等於0.2 ug/kg的抗CD3抗體如特普珠單抗、奧替利珠單抗或福拉魯單抗,以預防、治療或改善一或多個T1D症狀。在一些實施例中,靜脈投與劑量小於或等於100 ug/kg、小於或等於95 ug/kg、小於或等於90 ug/kg、小於或等於85 ug/kg、小於或等於80 ug/kg、小於或等於75 ug/kg、小於或等於70 ug/kg、小於或等於65 ug/kg、小於或等於60 ug/kg、小於或等於55 ug/kg、小於或等於50 ug/kg、小於或等於45 ug/kg、小於或等於40 ug/kg、小於或等於35 ug/kg、小於或等於30 ug/kg、小於或等於25 ug/kg、小於或等於20 ug/kg、小於或等於15 ug/kg、小於或等於10 ug/kg、小於或等於5 ug/kg、小於或等於2.5 ug/kg、小於或等於2 ug/kg、小於或等於1.5 ug/kg、小於或等於1 ug/kg、小於或等於0.5 ug/kg或小於或等於0.2 ug/kg的抗CD3抗體如特普珠單抗、奧替利珠單抗或福拉魯單抗,為期約6小時、約4小時、約2小時、約1.5小時、約1小時、約50分鐘、約40分鐘、約30分鐘、約20分鐘、約10分鐘、約5分鐘、約2分鐘、約1分鐘、約30秒或約10秒,以預防、治療或改善一或多個T1D症狀。In some embodiments, one or more doses less than or equal to 100 ug/kg, preferably less than or equal to 95 ug/kg, less than or equal to 90 ug/kg, less than or equal to 85 ug/kg are administered intravenously to the subject kg, less than or equal to 80 ug/kg, less than or equal to 75 ug/kg, less than or equal to 70 ug/kg, less than or equal to 65 ug/kg, less than or equal to 60 ug/kg, less than or equal to 55 ug/kg, Less than or equal to 50 ug/kg, less than or equal to 45 ug/kg, less than or equal to 40 ug/kg, less than or equal to 35 ug/kg, less than or equal to 30 ug/kg, less than or equal to 25 ug/kg, less than or equal to 20 ug/kg, less than or equal to 15 ug/kg, less than or equal to 10 ug/kg, less than or equal to 5 ug/kg, less than or equal to 2.5 ug/kg, less than or equal to 2 ug/kg, less than or equal to 1.5 ug/kg, less than or equal to 1 ug/kg, less than or equal to 0.5 ug/kg, or less than or equal to 0.2 ug/kg of an anti-CD3 antibody such as tepilizumab, octilizumab, or furatumumab , to prevent, treat or improve one or more T1D symptoms. In some embodiments, the intravenously administered dose is less than or equal to 100 ug/kg, less than or equal to 95 ug/kg, less than or equal to 90 ug/kg, less than or equal to 85 ug/kg, less than or equal to 80 ug/kg, Less than or equal to 75 ug/kg, less than or equal to 70 ug/kg, less than or equal to 65 ug/kg, less than or equal to 60 ug/kg, less than or equal to 55 ug/kg, less than or equal to 50 ug/kg, less than or equal to 45 ug/kg, less than or equal to 40 ug/kg, less than or equal to 35 ug/kg, less than or equal to 30 ug/kg, less than or equal to 25 ug/kg, less than or equal to 20 ug/kg, less than or equal to 15 ug/kg, less than or equal to 10 ug/kg, less than or equal to 5 ug/kg, less than or equal to 2.5 ug/kg, less than or equal to 2 ug/kg, less than or equal to 1.5 ug/kg, less than or equal to 1 ug/kg kg, less than or equal to 0.5 ug/kg or less than or equal to 0.2 ug/kg of an anti-CD3 antibody such as teplizumab, octilizumab, or furarumumab for about 6 hours, about 4 hours, About 2 hours, about 1.5 hours, about 1 hour, about 50 minutes, about 40 minutes, about 30 minutes, about 20 minutes, about 10 minutes, about 5 minutes, about 2 minutes, about 1 minute, about 30 seconds, or about 10 seconds to prevent, treat or improve one or more T1D symptoms.

在一些實施例中,對受試者經口投與一或多劑小於或等於100 ug/kg,較佳地小於或等於95 ug/kg、小於或等於90 ug/kg、小於或等於85 ug/kg、小於或等於80 ug/kg、小於或等於75 ug/kg、小於或等於70 ug/kg、小於或等於65 ug/kg、小於或等於60 ug/kg、小於或等於55 ug/kg、小於或等於50 ug/kg、小於或等於45 ug/kg、小於或等於40 ug/kg、小於或等於35 ug/kg、小於或等於30 ug/kg、小於或等於25 ug/kg、小於或等於20 ug/kg、小於或等於15 ug/kg、小於或等於10 ug/kg、小於或等於5 ug/kg、小於或等於2.5 ug/kg、小於或等於2 ug/kg、小於或等於1.5 ug/kg、小於或等於1 ug/kg、小於或等於0.5 ug/kg或小於或等於0.2 ug/kg的抗CD3抗體如特普珠單抗、奧替利珠單抗或福拉魯單抗,以預防、治療或改善一或多個T1D症狀。在一些實施例中,經口投與劑量小於或等於100 ug/kg、小於或等於95 ug/kg、小於或等於90 ug/kg、小於或等於85 ug/kg、小於或等於80 ug/kg、小於或等於75 ug/kg、小於或等於70 ug/kg、小於或等於65 ug/kg、小於或等於60 ug/kg、小於或等於55 ug/kg、小於或等於50 ug/kg、小於或等於45 ug/kg、小於或等於40 ug/kg、小於或等於35 ug/kg、小於或等於30 ug/kg、小於或等於25 ug/kg、小於或等於20 ug/kg、小於或等於15 ug/kg、小於或等於10 ug/kg、小於或等於5 ug/kg、小於或等於2.5 ug/kg、小於或等於2 ug/kg、小於或等於1.5 ug/kg、小於或等於1 ug/kg、小於或等於0.5 ug/kg或小於或等於0.2 ug/kg的抗CD3抗體如特普珠單抗、奧替利珠單抗或福拉魯單抗,為期約6小時、約4小時、約2小時、約1.5小時、約1小時、約50分鐘、約40分鐘、約30分鐘、約20分鐘、約10分鐘、約5分鐘、約2分鐘、約1分鐘、約30秒或約10秒,以預防、治療或改善一或多個T1D症狀。In some embodiments, the subject is orally administered one or more doses less than or equal to 100 ug/kg, preferably less than or equal to 95 ug/kg, less than or equal to 90 ug/kg, less than or equal to 85 ug /kg, less than or equal to 80 ug/kg, less than or equal to 75 ug/kg, less than or equal to 70 ug/kg, less than or equal to 65 ug/kg, less than or equal to 60 ug/kg, less than or equal to 55 ug/kg , less than or equal to 50 ug/kg, less than or equal to 45 ug/kg, less than or equal to 40 ug/kg, less than or equal to 35 ug/kg, less than or equal to 30 ug/kg, less than or equal to 25 ug/kg, less than or equal to 20 ug/kg, less than or equal to 15 ug/kg, less than or equal to 10 ug/kg, less than or equal to 5 ug/kg, less than or equal to 2.5 ug/kg, less than or equal to 2 ug/kg, less than or equal to 1.5 ug/kg, less than or equal to 1 ug/kg, less than or equal to 0.5 ug/kg, or less than or equal to 0.2 ug/kg of an anti-CD3 antibody such as teplizumab, octilizumab, or furaruzumab Antibiotics to prevent, treat or ameliorate one or more T1D symptoms. In some embodiments, the orally administered dose is less than or equal to 100 ug/kg, less than or equal to 95 ug/kg, less than or equal to 90 ug/kg, less than or equal to 85 ug/kg, less than or equal to 80 ug/kg , less than or equal to 75 ug/kg, less than or equal to 70 ug/kg, less than or equal to 65 ug/kg, less than or equal to 60 ug/kg, less than or equal to 55 ug/kg, less than or equal to 50 ug/kg, less than or equal to 45 ug/kg, less than or equal to 40 ug/kg, less than or equal to 35 ug/kg, less than or equal to 30 ug/kg, less than or equal to 25 ug/kg, less than or equal to 20 ug/kg, less than or equal to 15 ug/kg, less than or equal to 10 ug/kg, less than or equal to 5 ug/kg, less than or equal to 2.5 ug/kg, less than or equal to 2 ug/kg, less than or equal to 1.5 ug/kg, less than or equal to 1 ug /kg, less than or equal to 0.5 ug/kg or less than or equal to 0.2 ug/kg of an anti-CD3 antibody such as tepilizumab, octilizumab, or furaruzumab for about 6 hours, about 4 hours , about 2 hours, about 1.5 hours, about 1 hour, about 50 minutes, about 40 minutes, about 30 minutes, about 20 minutes, about 10 minutes, about 5 minutes, about 2 minutes, about 1 minute, about 30 seconds or about 10 seconds to prevent, treat or improve one or more T1D symptoms.

在一些給藥方案之頭幾天逐步增加投與劑量之實施例中,該方案的第1天之劑量為5-100 ug/m2 /天,較佳地51 ug/m2 /天,然後在第3天、第4天、第5天、第6天或第7天之前逐步增加至上述的每日劑量。例如,第1天,對該受試者投與大概51 ug/m2 /天的劑量、第2天大概103 ug/m2 /天、第3天大概207 ug/m2 /天、第4天大概413 ug/m2 /天及在該方案之後續天數(如,第5-14天)為826 ug/m2 /天。在一些實施例中,第1天,對該受試者投與大概227 ug/m2 /天的劑量、第2天大概459 ug/m2 /天、第3天及後續天數大概919 ug/m2 /天。在一些實施例中,第1天,對該受試者投與大概284 ug/m2 /天的劑量,第2天大概574 ug/m2 /天,第3天及後續天數大概1148 ug/m2 /天。In some aspects of the administration of the first few days to gradually increase the dose administered embodiments, the first dose of the day the program is 5-100 ug / m 2 / day, preferably 51 ug / m 2 / day, and Gradually increase to the above daily dose by day 3, day 4, day 5, day 6 or day 7. For example, on day 1, the subject dose is administered approximately 51 ug / m 2 / day, 2 days about 103 ug / m 2 / day, 3 days about 207 ug / m 2 / day, 4 Days were approximately 413 ug/m 2 /day and subsequent days (eg, days 5-14) on the regimen were 826 ug/m 2 /day. In some embodiments, the subject is administered a dose of approximately 227 ug/m 2 /day on day 1, approximately 459 ug/m 2 /day on day 2, and approximately 919 ug/day on day 3 and subsequent days. m 2 / day. In some embodiments, the first day, the subject is administered a dose about 284 ug / m 2 / day, 2 days about 574 ug / m 2 / day, 3 days and days of follow-up about 1148 ug / m 2 / day.

在一些實施例中,該起始劑量是該方案結束時之每日劑量的1/4至1/2、至等於該每日劑量,但以6、8、10或12小時的間隔分批投與。例如,13 ug/kg/天的劑量以6小時之間隔分3-4 ug/kg四劑投與,以降低因抗體投與時所引起的細胞激素釋出位準。在一些實施例中,為降低細胞激素釋出及其它副作用,通過靜脈投與以較緩慢的方式投與該方案之頭1、2、3或4劑或全部的劑。例如,51 ug/m2 /天的劑量投與約5分鐘、約15分鐘、約30分鐘、約45分鐘、約1小時、約2小時、約4小時、約6小時、約8小時、約10小時、約12小時、約14小時、約16小時、約18小時、約20小時及約22小時。在一些實施例中,通過慢慢的輸注在如20至24個小時期間投與該劑量。在一些實施例中,將該劑量注入泵中,較佳地隨輸注進展增加投與抗體的濃度。In some embodiments, the starting dose is 1/4 to 1/2 the daily dose at the end of the regimen, to equal the daily dose, but administered in divided doses at 6, 8, 10, or 12 hour intervals and. For example, a dose of 13 ug/kg/day is administered in four doses of 3-4 ug/kg at 6 hour intervals to reduce the level of cytokine release due to antibody administration. In some embodiments, to reduce cytokine release and other side effects, the first 1, 2, 3, or 4 or all of the doses of the regimen are administered in a slower manner by intravenous administration. For example, 51 ug / m 2 / day dose is administered for about 5 minutes, about 15 minutes, about 30 minutes, about 45 minutes, about 1 hour, about 2 hours, about 4 hours, about 6 hours, about 8 hours, about 10 hours, about 12 hours, about 14 hours, about 16 hours, about 18 hours, about 20 hours and about 22 hours. In some embodiments, the dose is administered by slow infusion over a period of, eg, 20 to 24 hours. In some embodiments, the dose is injected into a pump, preferably increasing the concentration of the administered antibody as the infusion progresses.

在一些實施例中,以逐步增加劑量之方式投與上述51 ug/m2 /天至826 ug/m2 /天的方案之一部分劑量。在一些實施例中,該部分是以上方案之每日劑量的1/10、1/4、1/3、1/2、2/3或3/4。據此,當該部分是1/10時,第1天之每日劑量將為5.1 ug/m2 ,第2天為10.3 ug/m2 ,第3天為20.7 g/m2 ,第4天為41.3 ug/m2 及第5至14天為82.6 ug/m2 。當該部分是1/4時,第1天之劑量將為12.75 ug/m2 ,第2天為25.5 ug/m2 ,第3天為51 ug/m2 ,第4天為103 ug/m2 及第5至14天為207 ug/m2 。當該部分是1/3時,第1天之劑量將為17 ug/m2 ,第2天為34.3 ug/m2 ,第3天為69 ug/m2 ,第4天為137.6 ug/m2 及第5至14天為275.3 ug/m2 。當該部分是1/2時,第1天之劑量將為25.5 ug/m2 ,第2天為51 ug/m2 ,第3天為103 ug/m2 ,第4天為207 ug/m2 及第5至14天為413 ug/m2 。當該部分是2/3時,第1天之劑量將為34 ug/m2 ,第2天為69 ug/m2 ,第3天為137.6 ug/m2 ,第4天為275.3 ug/m2 及第5至14天為550.1 ug/m2 。當該部分是3/4時,第1天之劑量將為38.3 ug/m2 ,第2天為77.3 ug/m2 ,第3天為155.3 ug/m2 ,第4天為309.8 ug/m2 及第5至14天為620 ug/m2 。在一些實施例中,該方案與上述中之一者相同,但僅在第1至4天、第1至5天或第1至6天。例如,在一些實施例中,該劑量第1天將為17 ug/m2 ,第2天為34.3 ug/m2 ,第3天為69 ug/m2 ,第4天為137.6 ug/m2 及第5與6天為275.3 ug/m2In some embodiments, a partial dose of the above-described regimen of 51 ug/m 2 /day to 826 ug/m 2 /day is administered in escalating doses. In some embodiments, the portion is 1/10, 1/4, 1/3, 1/2, 2/3, or 3/4 of the daily dose of the above regimen. Accordingly, when the fraction is 1/10, the daily dose would be 5.1 ug/m 2 on day 1, 10.3 ug/m 2 on day 2, 20.7 g/m 2 on day 3, and 20.7 g/m 2 on day 4 was 41.3 ug/m 2 and 82.6 ug/m 2 on days 5-14. When the fraction is 1/4, the dose will be 12.75 ug/m 2 on day 1, 25.5 ug/m 2 on day 2, 51 ug/m 2 on day 3, and 103 ug/m 2 on day 4 2 and 5-14 days at 207 ug/m 2 . When the fraction is 1/3, the dose will be 17 ug/m 2 on day 1, 34.3 ug/m 2 on day 2, 69 ug/m 2 on day 3, and 137.6 ug/m 2 on day 4 2 and 5 to 14 days was 275.3 ug / m 2. When the fraction is 1/2, the dose will be 25.5 ug/m 2 on day 1, 51 ug/m 2 on day 2, 103 ug/m 2 on day 3, and 207 ug/m 2 on day 4 2 and 5 to 14 days to 413 ug / m 2. When the fraction is 2/3, the dose will be 34 ug/m 2 on day 1, 69 ug/m 2 on day 2, 137.6 ug/m 2 on day 3, and 275.3 ug/m 2 on day 4 2 and 5 to 14 days was 550.1 ug / m 2. When the fraction is 3/4, the dose will be 38.3 ug/m 2 on day 1, 77.3 ug/m 2 on day 2, 155.3 ug/m 2 on day 3, and 309.8 ug/m 2 on day 4 2 and 5 to 14 days to 620 ug / m 2. In some embodiments, the regimen is the same as one of the above, but only on days 1-4, days 1-5, or days 1-6. For example, in some embodiments, the dose will be 17 ug/m 2 on day 1, 34.3 ug/m 2 on day 2, 69 ug/m 2 on day 3, and 137.6 ug/m 2 on day 4 5 and 6 days and the second is 275.3 ug / m 2.

在一些實施例中,該抗CD3抗體如特普珠單抗、奧替利珠單抗或福拉魯單抗不是在幾天內投與每日劑量,而是在4小時、6小時、8小時、10小時、12小時、15小時、18小時、20小時、24小時、30小時或36小時內以不間斷的方式進行輸注。該輸注可為恆定的,或可在例如輸注的頭1、2、3、5、6或8小時從較低劑量開始,然後增加至較高的劑量。在輸注過程中,患者接受與上述5至20天方案中所投與的數量相等的劑量。例如,大概150 ug/m2 、200 ug/m2 、250 ug/m2 、500 ug/m2 、750 ug/m2 、1000 ug/m2 、1500 ug/m2 、2000 ug/m2 、3000 ug/m2 、4000 ug/m2 、5000 ug/m2 、6000 ug/m2 、7000 ug/m2 、8000 ug/m2 或9000 ug/m2 之劑量。具體地,設計輸注速率及持續期間,使投與後該受試者體內的游離抗CD3抗體如特普珠單抗、奧替利珠單抗或福拉魯單抗的位準降至最小。在一些實施例中,游離抗CD3抗體如特普珠單抗之位準應不超過200 ng/ml游離抗體。此外,設計該輸注以達到結合的T細胞受體包覆及調節至少50%、60%、70%、80%、90%、95%或100%。In some embodiments, the anti-CD3 antibody, such as teplizumab, octezolizumab, or fararuzumab, is not administered in daily doses over several days, but at 4 hours, 6 hours, 8 hours The infusion is given on an uninterrupted basis over 10 hours, 10 hours, 12 hours, 15 hours, 18 hours, 20 hours, 24 hours, 30 hours, or 36 hours. The infusion may be constant, or may start with a lower dose, eg, for the first 1, 2, 3, 5, 6, or 8 hours of the infusion, and then increase to a higher dose. During the infusion, patients receive doses equal to the amounts administered in the 5 to 20 day regimen described above. For example, about 150 ug/m 2 , 200 ug/m 2 , 250 ug/m 2 , 500 ug/m 2 , 750 ug/m 2 , 1000 ug/m 2 , 1500 ug/m 2 , 2000 ug/m 2 , 3000 ug/m 2 , 4000 ug/m 2 , 5000 ug/m 2 , 6000 ug/m 2 , 7000 ug/m 2 , 8000 ug/m 2 or 9000 ug/m 2 doses. In particular, the infusion rate and duration are designed to minimize the level of free anti-CD3 antibody, such as teplizumab, octilizumab, or furarumumab, in the subject after administration. In some embodiments, the level of free anti-CD3 antibody, such as teplizumab, should not exceed 200 ng/ml of free antibody. Furthermore, the infusion is designed to achieve at least 50%, 60%, 70%, 80%, 90%, 95% or 100% of bound T cell receptor coating and modulation.

在一些實施例中,長期投與該抗CD3抗體如特普珠單抗、奧替利珠單抗或福拉魯單抗,以便治療、預防或減慢或延遲第1型糖尿病的發病或進展,或改善一或多個第1型糖尿病的症狀。例如,在一些實施例中,以一個月一次、一個月二次、一個月三次、一周一次或甚至更頻繁地投與低劑量的抗CD3抗體如特普珠單抗,作為上述6到14天劑量方案的替代方案,或者是在此方案投與後,以提高或維持其作用。此一低劑量可從1 ug/m2 至100 ug/m2 之任何劑量,如大概5 ug/m2 、10 ug/m2 、15 ug/m2 、20 ug/m2 、25 ug/m2 、30 ug/m2 、35 ug/m2 、40 ug/m2 、45 ug/m2 或50 ug/m2In some embodiments, the anti-CD3 antibody, such as tepilizumab, octisalizumab, or fulacalumab, is administered chronically to treat, prevent or slow or delay the onset or progression of type 1 diabetes , or improve one or more symptoms of type 1 diabetes. For example, in some embodiments, a low dose of an anti-CD3 antibody such as teplizumab is administered once a month, twice a month, three times a month, once a week, or even more frequently, for 6 to 14 days as described above An alternative to the dosage regimen, or after administration of this regimen, to enhance or maintain its effect. This low dose can be anywhere from 1 ug/m 2 to 100 ug/m 2 , such as approximately 5 ug/m 2 , 10 ug/m 2 , 15 ug/m 2 , 20 ug/m 2 , 25 ug/m 2 m 2 , 30 ug/m 2 , 35 ug/m 2 , 40 ug/m 2 , 45 ug/m 2 or 50 ug/m 2 .

在一些實施例中,可以在投與抗CD3抗體如特普珠單抗、奧替利珠單抗或福拉魯單抗投藥方案後的某個時間重新對受試者投藥,例如,根據一個或多個生理參數或當作常規進行。可在一投藥方案投與後2個月、4個月、6個月、8個月、9個月、1年、15個月、18個月、2 年、30個月或3年進行此重新投藥和/或評估此重新投藥之需求,且可包括無限期地每6個月、9個月、1年、15個月、18個月、2年、30個月或3年進行一個療程。範例 範例 1 特普珠單抗在抗體陽性高風險個體中改善及穩定 β 細胞功能 摘要 In some embodiments, the subject can be re-dosed at some point after the administration of an anti-CD3 antibody, such as teprazuzumab, octisalizumab, or fulacalumab, on a dosing regimen, eg, according to a or multiple physiological parameters or as routine. This can be done 2 months, 4 months, 6 months, 8 months, 9 months, 1 year, 15 months, 18 months, 2 years, 30 months, or 3 years after administration of a dosing regimen Re-administration and/or assessment of the need for such re-administration, and may include a course of every 6 months, 9 months, 1 year, 15 months, 18 months, 2 years, 30 months, or 3 years indefinitely . Paradigm Example 1 : Teplizumab Improves and Stabilizes β- Cell Function in Antibody-Positive High-Risk Individuals Summary

吾人在第1型糖尿病(T1D)高風險非糖尿病親屬之隨機控制試驗中,分析單一14天的特普珠單抗治療療程對參與者之代謝功能及免疫細胞的作用。在特普珠單抗治療之先前報告的延長追縱中(923天中間數),特普珠單抗及安慰劑治療參與者之確診中位數時間分別為59.6及24.4個月(HR=0.457,p=0.01)。特普珠單抗治療中有50%,但安慰劑治療僅22%保持無糖尿病。計算葡萄糖耐受性、C肽曲線下面積(AUC)及胰島素分析速率,並分析對T細胞亞群及功能的相關性。平均研究中C肽AUC反映出,特普珠單抗治療改善了β細胞功能(1.96對1.68 pmol/ml;p=0.009)。In a randomized controlled trial of nondiabetic relatives at high risk for type 1 diabetes (T1D), we analyzed the effects of a single 14-day course of teplizumab treatment on participants' metabolic function and immune cells. In the previously reported prolonged follow-up (median of 923 days) with teplizumab treatment, the median time to diagnosis was 59.6 and 24.4 months in teplizumab- and placebo-treated participants, respectively (HR=0.457 , p=0.01). Fifty percent of teplizumab-treated patients, but only 22% of placebo-treated patients remained diabetes-free. Glucose tolerance, area under the C-peptide curve (AUC) and rate of insulin analysis were calculated, and correlations to T cell subsets and function were analyzed. Mean on-study C-peptide AUC reflected that teplizumab treatment improved beta cell function (1.96 vs 1.68 pmol/ml; p=0.009).

藥物治療逆轉了入選前下降的胰島素分泌,接著穩定了在安慰劑處理中可見的C肽下降。特普珠單抗治療中C肽的變化與部分耗竭記憶KLRG1+TIGIT+ CD8+ T 細胞增加(r=0.44;p=0.014)及IFNγ與TNFα分泌減少有關。單一特普珠單抗療程在高風險個體中T1D確診延遲及改善β細胞方面具有持續的作用。CD8+T細胞亞群的變化表示,部分耗竭效應細胞與臨床反應有關。這是第一個顯示出免疫療法成功地調控自體免疫糖尿病之試驗。介紹 Drug treatment reversed the pre-enrollment decline in insulin secretion, followed by stabilization of the C-peptide decline seen in placebo treatment. Changes in C-peptide during teplizumab treatment were associated with an increase in partially depleted memory KLRG1+TIGIT+ CD8+ T cells (r=0.44; p=0.014) and a decrease in IFNγ and TNFα secretion. A single course of teplizumab had a sustained effect in delaying T1D diagnosis and improving beta cells in high-risk individuals. Changes in CD8+ T cell subsets indicated that partial depletion of effector cells was associated with clinical response. This is the first trial to show that immunotherapy successfully modulates autoimmune diabetes. introduce

第1型糖尿病(T1D)是一種自體免疫疾病,特徵為T細胞介導破壞蘭氏小島內的胰島素生成β細胞。超過30年的縱向觀察研究說明了自體免疫疾病的進展,從首次出現自體抗體到β細胞功能嚴重受損及發生臨床確診,通常是酮酸中毒(1-5 )。T1D與需要終身外源性胰島素投藥以維持生存、因立即性(如,低血糖)及長期併發症(如,血管、腎及眼睛疾病)引起的發病率及死亡率以及壽命減少、生活障礙及醫療相關的可觀費用密切相關(6-9 )。因此,在無法挽回的β細胞破壞及胰島素缺乏之前,防止進展成臨床T1D之方法至關重要。Type 1 diabetes (T1D) is an autoimmune disease characterized by T cell-mediated destruction of insulin-producing beta cells within the islets of Langerhans. Longitudinal observational studies over 30 years have illustrated the progression of autoimmune disease, from the first appearance of autoantibodies to severely impaired beta cell function and clinical diagnosis, usually ketoacidosis ( 1-5 ). T1D is associated with the need for lifelong exogenous insulin administration for survival, morbidity and mortality due to immediate (eg, hypoglycemia) and long-term complications (eg, vascular, renal, and ocular disease), as well as reduced life expectancy, disability, and Considerable medical-related costs are closely related ( 6-9 ). Therefore, methods to prevent progression to clinical T1D before irreversible β-cell destruction and insulin deficiency are critical.

β細胞功能的改變先於T1D的臨床確診,且已在自然史定群研究中對基于胰島自體抗體的存在鑑定為疾病高風險的個體進行研究(10-12 )。一些研究表明β細胞功能持續性及間歇性逐步衰退,始於臨床確診前數年,那時葡萄糖耐受性正常。在此期間,有持續性自體免疫的徵象:根據自然史的發現,具有二或多種胰島自體抗體之個體已被分類為T1D之階段,根據代謝異常之程度進一步規範:第1期葡萄糖異常前,第2期口服葡萄糖耐受性試驗(OGTT)期間血糖異常及第3期臨床呈現高血糖(2, 13, 14 )。然而,β細胞功能改變與臨床疾病間之相關性仍定義不清。例如,已知在具有風險之個體體內,通過對口服葡萄糖耐受性試驗(OGTT)之反應定義的葡萄糖耐受性,可能在異常與正常值之間浮動(15, 16 )。此外 ,用於指定臨床診斷之OGTT葡萄糖耐受性分類,與通過C肽對代謝挑戰的反應測得的β細胞功能,可能沒有緊密相關,及在使用OGTT診斷時,許多個體具臨床有意義的C肽反應(15-18 )。Alterations in beta cell function precede the clinical diagnosis of T1D, and individuals identified as high risk for disease based on the presence of islet autoantibodies have been studied in natural history cohort studies ( 10-12 ). Several studies have demonstrated persistent and intermittent progressive decline in beta-cell function that begins years before clinical diagnosis, when glucose tolerance is normal. During this period, there are signs of persistent autoimmunity: based on natural history findings, individuals with two or more islet autoantibodies have been classified as stage T1D, further regulated according to the degree of metabolic abnormalities: stage 1 glucose abnormalities Previously, dysglycemia during Phase 2 Oral Glucose Tolerance Test (OGTT) and Phase 3 clinical presentation of hyperglycemia ( 2, 13, 14 ). However, the relationship between altered β-cell function and clinical disease remains poorly defined. For example, it is known that in at-risk individuals, glucose tolerance, as defined by response to an oral glucose tolerance test (OGTT), may fluctuate between abnormal and normal values ( 15, 16 ). In addition, the OGTT glucose tolerance classification used to assign a clinical diagnosis may not correlate closely with beta cell function as measured by C-peptide response to metabolic challenge, and many individuals have clinically meaningful C when OGTT is used for diagnosis. Peptide reactions ( 15-18 ).

根據特普珠單抗,一種Fc受體非結合性抗CD3ε單株抗體,對第3期T1D患者(即,臨床確診後)之先前研究的成功,其顯示出與安慰劑或對照參與者相比,減少了刺激的C肽反應下降(19-25 ),在TrialNet TN10研究中,吾人在第2期疾病個體中進行特普珠單抗之隨機II期試驗,用以測試是否治療可預防或延遲T1D之臨床確診(26 )。在此事件發生時間(time-to-event)研究中,吾人發現相對於安慰劑,特普珠單抗延遲確診中位數時間為24個月,及糖尿病確診率從每年35.9%減少至14.9% (26 )。此試驗首次呈現免疫療法成功地預防或延遲T1D確診(27-31 )。Based on the success of a previous study of teplizumab, an Fc receptor non-binding anti-CD3ε monoclonal antibody, in patients with stage 3 T1D (ie, after clinical diagnosis), it was shown to be comparable to placebo or control participants. compared to reduced stimulated decline in C-peptide responses ( 19-25 ), in the TrialNet TN10 study, we conducted a randomized phase II trial of teplizumab in individuals with stage 2 disease to test whether the treatment prevented or Delays the clinical diagnosis of T1D ( 26 ). In this time-to-event study, we found that relative to placebo, teplizumab delayed diagnosis by a median of 24 months, and reduced the rate of diabetes diagnosis from 35.9% to 14.9% per year ( 26 ). This trial is the first to show that immunotherapy successfully prevents or delays the diagnosis of T1D ( 27-31 ).

TrialNet TN10 (使用改變臨床疾病之干預措施)成功的結果,使得吾人可在即使疾病的進展於臨床上無症狀時,評估治療法在β細胞功能上之效力及其與免疫修飾之相關性。為測試TN10免疫療法能改善風險個體體內的β細胞功能之假設,吾人分析該試驗中的代謝研究結果及免疫反應。吾人之數據顯示,在T1D臨床表現延遲方面的治療效果持續。吾人證明與安慰劑相比,單一特普珠單抗療程逆轉了研究進入前下降的C肽產量,且改善了治療後β細胞對口服葡萄糖的反應。特普珠單抗亦改善了早期胰島素分泌,表明β細胞功能之質的改善。在治療後最初的3-6個月後,相對於安慰劑,C肽反應是穩定的直到診斷有臨床T1D的患者在診斷前大概6個月反應突然下降。改善的C肽反應與TIGIT+KLRG1+記憶CD8 T細之頻率增加有關,其表現出IFNγ與TNFα(二個與β細胞破壞有關的發炎性細胞激素)之分泌減少(32 )。此等研究表示,即使在臨床確診前,特普珠單抗治療可改善與病理性T細胞特徵之調節有關的代謝功能。結果 The successful results of TrialNet TN10 (using clinical disease-modifying interventions) allowed us to assess the efficacy of treatments on beta cell function and their correlation with immune modification even when disease progression was clinically asymptomatic. To test the hypothesis that TN10 immunotherapy improves beta cell function in at-risk individuals, we analyzed the results of metabolic studies and immune responses in this trial. Our data show that the effect of treatment in delaying clinical manifestations in T1D persists. We demonstrate that a single course of teplizumab reversed the decline in pre-study entry C-peptide production and improved post-treatment β-cell responses to oral glucose compared to placebo. Teplizumab also improved early insulin secretion, indicating qualitative improvement in beta cell function. After the first 3-6 months after treatment, the C-peptide response relative to placebo was stable until a sudden drop in response in patients diagnosed with clinical T1D approximately 6 months before diagnosis. Improved C-peptide responses were associated with increased frequency of TIGIT+KLRG1+ memory CD8 T cells, which exhibited decreased secretion of IFNy and TNFa, two inflammatory cytokines involved in beta cell destruction ( 32 ). These studies suggest that even before clinical diagnosis, teplizumab treatment improves metabolic function associated with the modulation of pathological T-cell signatures. result

在延長追蹤研究期間特普珠單抗治療造成持續的T1D延遲:共76位高風險臨床未診斷有T1D之親屬入選特普珠單抗預防性研究(26 )。年齡中位數為13歲(範圍8-49歲),所有參與者在入選前6個月內之自體抗體試驗為2+。吾人之前報告,在中位數742天(範圍74至2683天)的追蹤後,42位診斷有T1D。之後吾人持續追蹤該研究參與者一段中位數923天的時間(範圍74-3,119天) (圖1A )。在這延長追蹤期間,25/32 (78%)安慰劑治療及22/44 (50%)特普珠單抗治療的參與者診斷有T1D ( 1B ) (分層及年齡調整之Cox模型:HR = 0.457 p = 0.01)。在特普珠單抗及安慰劑治療組中診斷有T1D之中位數時間分別為59.6及24.4個月。13位追蹤超過60個月或5年之受試者中的10位未診斷有T1D。此等個體中,8位是特普珠單抗組,2位是安慰組。Persistent T1D Delay with Teplizumab Treatment During Extended Follow-Up Study: A total of 76 high-risk relatives with clinically undiagnosed T1D were enrolled in the Teplizumab Prevention Study ( 26 ). The median age was 13 years (range 8-49 years), and all participants had a 2+ autoantibody test within 6 months prior to enrollment. We previously reported that after a median follow-up of 742 days (range 74 to 2683 days), 42 were diagnosed with T1D. We then continued to follow the study participants for a median of 923 days (range 74-3,119 days) ( Figure 1A ). During this extended follow-up period, 25/32 (78%) placebo-treated and 22/44 (50%) teprozumab-treated participants had a diagnosis of T1D ( Figure 1B ) (stratified and age-adjusted Cox model: HR = 0.457 p = 0.01). The median time to diagnosis of T1D was 59.6 and 24.4 months in the teplizumab and placebo-treated groups, respectively. Ten of the 13 subjects who were followed for more than 60 months or 5 years were undiagnosed with T1D. Of these individuals, 8 were in the teplizumab group and 2 were in the placebo group.

在研究過程期間,特普珠單抗治療改善了定量OGTT葡萄糖AUC值:為判斷特普珠單抗治療如何影響葡萄糖耐受性,吾人在進入研究時將OGTTs結果分成正常、血糖異常或糖尿病,且在研究的頭36個月及後續期間之每次研究訪視時結算此等結果之頻率(圖3A ;圖2A 、2B )。根據血糖異常的OGTT試驗結果招募研究參與者。隨機分組,且與OGTT結果的已知變異性一致,在那訪視時少數的受試者具有正常(n=3)或糖尿病(n=6)葡萄糖耐受性。T1D的臨床確診(該研究的主要終點)需要二個連續的糖尿病OGTTs,因此,參與者可能以單次糖尿病OGTT持續在研究中。在特普珠單抗或安慰劑投與後3個月訪視時,在二組中,血糖異常OGTTs之頻率均下降且正常OGTTs之頻率均增加(特普珠單抗治療組從6.8%至30.2%,McNemar檢定:p = 0.009;安慰組從15.6%至36.7%,McNemar檢定:p = 0.02)。在此時間點,二組(特別是安慰劑組)之糖尿病OGTTs亦增加。之後,在特普珠單抗組中,正常與血糖異常OGTT之頻率保持相對恆定:在二組中,糖尿病OGTTs之頻率均增加,但在特普珠單抗治療的參與者中增加速率較慢。Teplizumab treatment improved quantitative OGTT glucose AUC values during the course of the study: To determine how teplizumab treatment affected glucose tolerance, we classified OGTTs results as normal, dysglycemic, or diabetic at study entry, And the frequency of settlement of these results at each study visit for the first 36 months of the study and subsequent periods ( Figure 3A ; Figures 2A , 2B ). Study participants were recruited based on the results of the OGTT trial of dysglycemia. By randomization, and consistent with the known variability in OGTT results, a small number of subjects had normal (n=3) or diabetic (n=6) glucose tolerance at that visit. Clinical diagnosis of T1D (the study's primary endpoint) required two consecutive diabetic OGTTs, therefore, participants were likely to remain in the study with a single diabetic OGTT. The frequency of dysglycemic OGTTs decreased and the frequency of normal OGTTs increased in both groups (from 6.8% to 30.2%, McNemar test: p = 0.009; placebo group from 15.6% to 36.7%, McNemar test: p = 0.02). At this time point, diabetic OGTTs also increased in both groups (particularly the placebo group). Thereafter, the frequency of normoglycemic OGTTs remained relatively constant in the teplizumab group: the frequency of diabetic OGTTs increased in both groups, but the rate of increase was slower in teplizumab-treated participants .

OGTT分類的變化可能忽略治療對OGTT葡萄糖反應更微妙的影響。因此吾人計算並比較各個體之平均研究中葡萄糖AUC,其已根據研究時間校正。安慰劑治療組中之平均研究中葡萄糖AUC高於特普珠單抗(平均值(IQR) 175 (159,195) mg/dl對165 (154,180) mg/dl,ANCOVA特普珠單抗作用:92.8%,p=0.03) (圖3B ,表1 )。進入研究時之個別葡萄糖AUC是平均研究中葡萄糖AUC的預測因子,但組之間進入時的值相似(安慰劑與特普珠單抗之未經調整組幾何平均值:安慰劑155.5mg/dl,特普珠單抗 162.2mg/dl,p=0.25)。 表1:葡萄糖研究中AUC平均值之ANOVA模型 共變量 係數 標準誤差 t檢定 p值 (截距) 2.96 0.602 4.91 <0.0001 葡萄糖(基線) 0.44 0.119 3.7 0.0004 年齡 -0.000383 0.00145 -0.264 0.79 特普珠單抗治療 -0.0804* 0.0343 -2.35 0.02 *特普珠單抗組之平均值為安慰劑組的92.8%Changes in the OGTT classification may ignore the more subtle effects of treatment on the OGTT glucose response. We therefore calculated and compared the average on-study glucose AUC for each individual, which was corrected for study time. The mean on-study glucose AUC in the placebo-treated group was higher than that of teplizumab (mean (IQR) 175 (159, 195) mg/dl vs. 165 (154, 180) mg/dl, ANCOVA teplizumab Effect: 92.8%, p=0.03) ( Figure 3B , Table 1 ). Individual glucose AUC at study entry was a predictor of the mean on-study glucose AUC, but values at entry were similar between groups (geometric mean of unadjusted groups for placebo and teplizumab: placebo 155.5 mg/dl , teplizumab 162.2 mg/dl, p=0.25). Table 1: ANOVA model of mean AUC in glucose studies covariate coefficient standard error t test p-value (intercept) 2.96 0.602 4.91 <0.0001 Glucose (baseline) 0.44 0.119 3.7 0.0004 age -0.000383 0.00145 -0.264 0.79 Teplizumab treatment -0.0804* 0.0343 -2.35 0.02 *The mean of the teplizumab group was 92.8% of the placebo group

還計算及分析平均研究中血紅素A1c (HbA1c) AUC。與葡萄糖相反,在安慰劑對特普珠單抗之治療中,平均研究中HbA1c AUC沒有統計上的差異(平均值(IQR) 5.44 % (5.29,5.58)對5.3 % (4.99,5.55),ANCOVA治療:p=0.14) ( 4 )。因為在安慰劑組中糖尿病之頻率較高、HbA1c相似(慢性葡萄糖曝露之量度),所以安慰組中較高的平均研究中葡萄糖AUC位準,最可能是因為葡萄糖位準的變化是急性的,而非慢性的。The mean on-study heme A1c (HbA1c) AUC was also calculated and analyzed. In contrast to glucose, there was no statistical difference in mean on-study HbA1c AUC in placebo versus teplizumab treatment (mean (IQR) 5.44 % (5.29, 5.58) vs 5.3 % (4.99, 5.55), ANCOVA Treatment: p=0.14) ( Figure 4 ). Because of the higher frequency of diabetes and similar HbA1c (a measure of chronic glucose exposure) in the placebo group, the higher mean on-study glucose AUC levels in the placebo group were most likely because the changes in glucose levels were acute, rather than chronic.

特普珠單抗治療增加C肽反應:平均研究中C肽AUC在特普珠單抗治療組中高於安慰劑組(平均值(IQR) 1.96 (1.48,2.61) pmol/ml對1.68 (1.32,2.11) pmol/ml (p=0.009) (圖5 ,表2 )。為評估此終點與糖尿病進展的關係,吾人比較觀察期間,有發展或沒有發展成T1D之參與者間的平均研究中C肽AUC值。對於整個研究群組,與演變成T1D之個體相比,仍然保持無糖尿病之個體中的平均研究中C肽AUC較高(平均值(IQR) 2.18 (1.52,2.79) pmol/ml對1.76 (1.30,2.18) pmol/ml (p=0.016)。然而,在各治療組別中,診斷出及保持無糖尿病之個體中之平均C肽位準沒有明顯差異。在安慰組中,於下及上半部個體中分別地11/17及10/16的個體診斷有T1D,而在特普珠單抗組中,於下及上半部個體中13/22及7/22診斷有T1D (卡方p=0.13) (圖5 )。 表2:A1c研究中AUC平均值之ANOVA模型 共變量 係數 標準誤差 t檢定 p值 (截距) 0.0971 0.0481 2.02 0.05 A1c (基線) 0.866 0.0964 -8.98 <0.0001 年齡 -0.000231 0.000306 -0.775 0.45 特普珠單抗治療 -0.0107 0.00712 -1.5 0.14 Teplizumab Treatment Increases C-Peptide Responses: Mean on-study C-peptide AUC was higher in the teplizumab-treated group than in the placebo group (mean (IQR) 1.96 (1.48, 2.61) pmol/ml vs 1.68 (1.32, 2.11) pmol/ml (p=0.009) ( Figure 5 , Table 2 ). To assess the association of this endpoint with diabetes progression, we compared the mean on-study C-peptide between participants with and without T1D during the observation period AUC values. For the entire study cohort, the mean on-study C-peptide AUC was higher in individuals who remained without diabetes compared to individuals who progressed to T1D (mean (IQR) 2.18 (1.52, 2.79) pmol/ml vs. 1.76 (1.30, 2.18) pmol/ml (p=0.016). However, there were no significant differences in mean C-peptide levels among individuals diagnosed and maintained without diabetes across treatment groups. In the placebo group, the following T1D was diagnosed in 11/17 and 10/16 of individuals in the lower and upper halves, respectively, while in the teplizumab group, T1D was diagnosed in 13/22 and 7/22 of the lower and upper halves ( Chi-squared p=0.13) ( Figure 5 ). Table 2: ANOVA model of mean AUC in the A1c study covariate coefficient standard error t test p-value (intercept) 0.0971 0.0481 2.02 0.05 A1c (baseline) 0.866 0.0964 -8.98 <0.0001 age -0.000231 0.000306 -0.775 0.45 Teplizumab treatment -0.0107 0.00712 -1.5 0.14

基線C肽AUC (p<0.0001)是平均研究中C肽AUC之重要決定因子,但治療組間的基線值相似(安慰劑與特普珠單抗之未調整組平均值為1.95pmol/ml與1.99pmol/ml (p=0.454))。參與者年齡與二個治療組之平均C肽AUC及結果間也存在直接相關性(圖6 ) (ANCOVA,r= 0.44,p=0.0001) ,正如先前在對有風險和新發T1D的個體進行的研究中所指出的那樣(33 )。與時間對臨床確診之相關性相反(26 ),HLA-DR4+、HLA-DR3-或抗ZnT8抗體狀態與平均研究中C肽沒有顯示出顯著的相互影響(使用渥得檢定:HLA-DR3 p=0.71,HLA-DR4 p=0.27,ZnT8 p=0.79)。Baseline C-peptide AUC (p<0.0001) was a significant determinant of mean C-peptide AUC across the study, but baseline values were similar between treatment groups (mean 1.95 pmol/ml vs. 1.99 pmol/ml (p=0.454)). There was also a direct correlation between participant age and mean C-peptide AUC and outcome across the two treatment groups ( Figure 6 ) (ANCOVA, r=0.44, p=0.0001 ) , as was previously done in at-risk and new-onset T1D individuals. as pointed out in the study ( 33 ). In contrast to the correlation of time to clinical diagnosis ( 26 ), HLA-DR4+, HLA-DR3- or anti-ZnT8 antibody status did not show a significant interaction with the mean C-peptide studied (using Wort's test: HLA-DR3 p= 0.71, HLA-DR4 p=0.27, ZnT8 p=0.79).

特普珠單抗治療在治療的前6個月期間逆轉C肽AUC之下降:因為平均研究中C肽AUC可能會掩蓋各個研究時間點時更佳明顯的組間差異,所以吾人分析C肽AUC相對於治療之變化時間點及胰島素分析模式。由於參與者是從TN01自然史研究中招募的,所以吾人能夠分析入選前之C肽對OGTTs的反應,及將這些值與入選此研究後的值相比較。在隨機分組之前中位數2.4個月及之後12個月期間之類幾何群論平均值示於 7 及表3-4中。在二組之研究入選之前,C肽AUC下降(基線前及基線):安慰劑1.94 (1.68,2.23)及1.83 pmol/ml (1.59,2.08),特普珠單抗:2.01 (1.77, 2.28)及1.89 pmol/ml (1.67, 2.12),平均斜率-0.0202 (-0.0471,0.0201) (n=43)。在安慰劑治療的參與者中,入選後頭6個月之C肽以相同速率持續下降(該6個月期間C肽AUC平均值為1.62 pmol/ml (1.35,1.91),治療前與後之斜率無顯著差異,即使在校正年齡及入選時之C肽亦如此。相反的,在特普珠單抗治療的參與者中,入選後6個月之C肽AUC有顯著增加(6個月平均C肽AUC為2.06 pmol/ml (1.85, 2.29),配對t檢定p=0.02)。在校正年齡及治療前斜率後經過ANCOVA,安慰劑與特普珠單抗治療參與者間之治療後斜率具顯著差異(p=0.002)。 表3:C肽研究中AUC平均值之ANOVA模型(In(x+1)轉換) 共變量 係數 標準誤差 t檢定 p值 (截距) -0.503 0.108 -4.64 <0.0001 C肽(基線) 2.67 0.209 12.8 <0.0001 年齡 0.00389 0.00129 3.02 0.003 特普珠單抗治療 0.0756* 0.0283 2.67 0.009 *特普珠單抗及安慰劑組之預測平均值分別為1.93及1.72奈莫耳/L (基線C肽及年齡設定為定群平均值)。 表4:研究中頭6個月之C肽AUC斜率之ANOVA分析 共變量 係數 標準誤差 t檢定 p值 截距 -0.0237 0.00717 -3.3 0.002 前斜率 -0.0801 0.0439 -1.82 0.07 年齡 0.00048 0.000284 1.69 0.10 特普珠單抗治療 0.0212 0.00663 3.2 0.002 Teplizumab treatment reversed the decline in C-peptide AUC during the first 6 months of treatment: We analyzed C-peptide AUC because the mean C-peptide AUC across the study might have masked the more pronounced between-group differences at each study time point. Time points of change relative to treatment and patterns of insulin analysis. Since participants were recruited from the TN01 natural history study, we were able to analyze pre-enrollment C-peptide responses to OGTTs and compare these values to post-enrollment values. Geometric group-theoretic mean values for a median of 2.4 months before randomization and 12 months afterward are shown in Figure 7 and Tables 3-4. Decrease in C-peptide AUC (pre-baseline and baseline) prior to study enrollment in both arms: placebo 1.94 (1.68, 2.23) and 1.83 pmol/ml (1.59, 2.08), teplizumab: 2.01 (1.77, 2.28) and 1.89 pmol/ml (1.67, 2.12), mean slope -0.0202 (-0.0471, 0.0201) (n=43). In placebo-treated participants, C-peptide continued to decline at the same rate for the first 6 months after enrollment (mean C-peptide AUC 1.62 pmol/ml (1.35, 1.91) during the 6-month period, slopes pre- and post-treatment There were no significant differences, even after adjusting for age and C-peptide at enrollment. In contrast, there was a significant increase in C-peptide AUC 6 months post-enrollment among teplizumab-treated participants (6-month mean C Peptide AUC was 2.06 pmol/ml (1.85, 2.29), paired t-test p=0.02). Post-treatment slopes were significant between placebo and teplizumab-treated participants by ANCOVA after adjusting for age and pre-treatment slopes Difference (p=0.002).Table 3: ANOVA model of mean AUC in C-peptide study (In(x+1) transformation) covariate coefficient standard error t test p-value (intercept) -0.503 0.108 -4.64 <0.0001 C-peptide (baseline) 2.67 0.209 12.8 <0.0001 age 0.00389 0.00129 3.02 0.003 Teplizumab treatment 0.0756* 0.0283 2.67 0.009 *The predicted mean values for the teplizumab and placebo groups were 1.93 and 1.72 namol/L, respectively (baseline C-peptide and age were set as cohort means). Table 4: ANOVA analysis of C-peptide AUC slopes for the first 6 months of the study covariate coefficient standard error t test p-value intercept -0.0237 0.00717 -3.3 0.002 front slope -0.0801 0.0439 -1.82 0.07 age 0.00048 0.000284 1.69 0.10 Teplizumab treatment 0.0212 0.00663 3.2 0.002

特普珠單抗治療改善了總及早期二者之胰島素分泌:除了C肽AUC數量上的減少外,吾人之團隊及其它的研究已鑑定出β細胞分泌動力學性質上的異常,早期胰島素分泌喪失反映出T1D發病之前β細胞功能異常(10, 33-36 )。為確定是否C肽AUC數量上的改善與胰島素分泌動力學性質上的變化有關聯,吾人使用二室模式測定OGTTs期間之胰島素分泌速率(ISR),及評估動力學及總胰島素分泌(圖8A-8G ,表5 )。吾人比較相同時間期間OGTT胰島素分泌反應與分泌反應之變化(斜率),其中吾人發現在特普珠單抗治療組中,C肽AUC顯著的改善。經過此分析,吾人能夠區分早期及晚期分泌反應(即,第一與第二小時)。在研究入選前二組中,描述總、第一及第二小時胰島素分泌的變化之斜率相似(p=0.95)。在特普珠單抗治療後,特普珠單抗組測試期間分泌的總胰島素顯著的增加,其顯著地大於安慰劑組(p=0.01,p=0.0004)。在安慰劑組中,第一小時期間分泌的胰島素持續下降,然而其在特普珠單抗組中增加(p=0.007)。在特普珠單抗組中,第二小時的胰島素分泌亦改善(p=0.03),但在安慰劑組中沒有(p=0.38) (表5 )。此等結果表示,在特普珠單抗治療後頭6個月,胰島素分泌有改善(具體地在OGTT之第一個小時),表明改善了β細胞功能,然而在安慰劑治療參與者中,胰島素分泌持續地惡化。 表5:治療後頭6個月內胰島素分泌對口服葡萄糖的分析 組間待比較的測量值 中位數 p 安慰劑 特普珠單抗 第一小時胰島素間隔分泌       治療前斜率 -259.5 -422.7 0.79 治療後斜率 -476.2 371.0 0.0003 組內成對治療前與後之 p * p = 0.86 p = 0.007 --         第二小時胰島素間隔分泌       治療前斜率 -728.2 -383.6 0.78 治療後斜率 -186.8 442.5 0.003 組內成對治療前與後之 p * p = 0.38 p = 0.03 --         胰島素間隔分沁(2 hr)       治療前斜率 -1245.0 -1024.0 0.95 治療後斜率 -1037.4 1085.8 0.0004 組內成對治療前與後之 p * p = 0.80 p = 0.01 -- 其中 diff = (治療後斜率) – (治療前斜率) *p值根據威爾克森符號等級(成對)檢定,比較受試者治療前與後之斜率;評估每個受試者以及每治療組中之這些受試者,這些測量值在治療前與治療後有多少變化。Teplizumab treatment improved both total and early insulin secretion: in addition to a reduction in the number of C-peptide AUCs, our group and other studies have identified abnormalities in the kinetic nature of beta cell secretion, early insulin secretion The loss reflects abnormal beta cell function prior to the onset of T1D ( 10, 33-36 ). To determine whether the quantitative improvement in C-peptide AUC is associated with changes in the kinetic properties of insulin secretion, we used a two-compartment model to measure insulin secretion rate (ISR) during OGTTs, and to assess kinetic and total insulin secretion ( Figure 8A- 8G , Table 5 ). We compared the OGTT insulin secretion response to the change in secretion response (slope) over the same time period, where we found a significant improvement in C-peptide AUC in the teplizumab-treated group. After this analysis, we were able to distinguish between early and late secretory responses (ie, first and second hours). The slopes describing changes in total, first, and second hour insulin secretion were similar in the first two groups of study entry (p=0.95). There was a significant increase in total insulin secreted during the test period in the teplizumab group after teplizumab treatment, which was significantly greater than in the placebo group (p=0.01, p=0.0004). In the placebo group, insulin secreted during the first hour continued to decrease, whereas it increased in the teplizumab group (p=0.007). Insulin secretion at the second hour was also improved in the teplizumab group (p=0.03), but not in the placebo group (p=0.38) ( Table 5 ). These results show that insulin secretion improved (specifically during the first hour of the OGTT) during the first 6 months after teplizumab treatment, indicating improved beta cell function, whereas in placebo-treated participants, insulin secretion Secretion continued to deteriorate. Table 5: Analysis of Oral Glucose by Insulin Secretion During the First 6 Months After Treatment Measurements to be compared between groups median p- value placebo Teplizumab Interval secretion of insulin in the first hour Pre-treatment slope -259.5 -422.7 0.79 Post-treatment slope -476.2 371.0 0.0003 Within-group paired p- values before and after treatment* p = 0.86 p = 0.007 -- Interval secretion of insulin in the second hour Pre-treatment slope -728.2 -383.6 0.78 Post-treatment slope -186.8 442.5 0.003 Within-group paired p- values before and after treatment* p = 0.38 p = 0.03 -- Insulin Interval Fraction (2 hr) Pre-treatment slope -1245.0 -1024.0 0.95 Post-treatment slope -1037.4 1085.8 0.0004 Within-group paired p- values before and after treatment* p = 0.80 p = 0.01 -- where diff = (post-treatment slope) – (pre-treatment slope) *p-value according to Wilkerson's sign rank (pairwise) test, comparing subject's pre- and post-treatment slopes; assessing each subject and each treatment Of these subjects in the group, how much these measurements changed before and after treatment.

C肽之保存維持到臨床確診前最後6個月:為測定此等代謝作用的持續時間,吾人分析整個研究期間或一直到參與者診斷有T1D之前6個月的C肽軌跡(最小平方線) (圖9A 、9B )。在此分析中,安慰劑組的C肽AUC持續下降,中位數斜率顯著地小於0 (中位數,IQR:-0.00382、-0.0107至0.000755,威爾卡森單一樣本檢定:p = 0.04)。安慰組中C肽的流失在倒數第二個與最後一個OGTT間的6個月內甚至更明顯(平均斜率(IQR)為-0.0242 (-0.0469,-0.0041);明顯地非零(威爾卡森單一樣本檢定:p = 0.0001)( 圖9C 、9E) C-peptide preservation until the last 6 months before clinical diagnosis: To determine the duration of these metabolic effects, we analyzed C-peptide trajectories (least squares) throughout the study period or up to 6 months before participants were diagnosed with T1D ( Fig. 9A , 9B ). In this analysis, C-peptide AUC continued to decline in the placebo group, with a median slope significantly less than 0 (median, IQR: -0.00382, -0.0107 to 0.000755, Wilkason 1-sample test: p = 0.04) . Loss of C-peptide in the placebo group was even more pronounced in the 6 months between the penultimate and last OGTT (mean slope (IQR) was -0.0242 (-0.0469, -0.0041); significantly non-zero (Wilka Sen one-sample test: p = 0.0001) ( Figure 9C , 9E) .

相反地,特普珠單抗組中,一直到研究期間結束或直到參與者診斷有T1D前6個月之中位數斜率與0沒有顯著差異(平均(IQR):-0.000294 (-0.00372,0.00304),威爾卡森單一樣本檢定:p = 0.63) (圖9B ),因此與安慰劑治療的參與者相比,較少C肽AUC隨著時間流失(威爾卡森雙樣本檢定:p = 0.04)。在診斷有T1D之特普珠單抗治療參與者中,近確診期之C肽AUC亦有下降,但其比診斷有T1D之安慰劑治療組中的不明顯(平均斜率(IQR):-0.0112,-0.0818,0.0107),威爾卡森單一樣本與0比較:p = 0.09) (圖9D ) (威爾卡森雙樣本比較安慰劑與特普珠單抗斜率:p = 0.06) (圖9E )。在此二種治療組間胰島素敏感性之差異不像是這些發現的可能解釋,因為在T1D確診時,特普珠單抗及安慰劑組中的C肽AUC/葡萄糖AUCs相似(p = 0.23) (圖10A ,10B )。Conversely, in the teplizumab group, the median slope was not significantly different from 0 until the end of the study period or until the first 6 months of participant diagnosis of T1D (mean (IQR): -0.000294 (-0.00372, 0.00304 ), Wil Carson one-sample test: p = 0.63) ( Fig. 9B ), so less C-peptide AUC was lost over time compared to placebo-treated participants (Wilcarson two-sample test: p = 0.04). Among teplizumab-treated participants with a diagnosis of T1D, C-peptide AUC also decreased at the recent diagnosis, but it was not significantly higher than in the placebo-treated group with a diagnosis of T1D (mean slope (IQR): -0.0112 , -0.0818, 0.0107), Wilcarson one-sample vs 0: p = 0.09) ( Fig. 9D ) (Wilcarson two-sample vs placebo vs teprozumab slope: p = 0.06) ( Fig. 9E ). Differences in insulin sensitivity between the two treatment groups are unlikely to be a likely explanation for these findings, as C-peptide AUC/glucose AUCs were similar in the teplizumab and placebo groups at the time of T1D diagnosis (p = 0.23) ( FIGS. 10A , 10B ).

C肽反應與部分耗竭CD8+T細胞增加有關:吾人假定快速改善代謝反應與特普珠單抗對T細胞的作用有關。吾人之前描述過以特普珠單抗治療時記憶CD8+T細胞之頻率增加,吾人提出的是通過TIGIT及KLRG1+之表現而“部分耗竭”的(雙陽性細胞),及通過連接TIGIT而進一步降低轉錄活性/耗竭標記(23, 25, 26, 37, 38 )。因此,吾人檢查其等之頻率在藥物治療期間或之後不久是否與C肽AUC有關,以及是否其等有功能耗竭。吾人觀察到在3、6及18個月時,CD8+KLRG1+TIGIT+ T細胞頻率變化與C肽AUC變化倍數顯著相關(表6 )。T細胞亞群的變化最可能在C肽變化之前,因此吾人亦分析3個月時雙陽性CD8+T細胞之變化倍數以及6個月時C肽的變化倍數。在藥物治療中這二個參數間存在顯著相關,但在安慰劑治療參與者中則沒有。(p=0.014) (圖11A) 。 表6:C肽變化%與CD8+T細胞亞群間之皮爾森相關性   第3個月 第6個月 第18個月 CD8亞群 R p R p r p KLRG-1+TIGIT+ CD8中央記憶型 0.429 0.016 0.433 0.01 0.463 0.011 KLRG-1+TIGIT+ CD8效應記憶型 0.421 0.018 0.460 0.006 0.461 0.012 C-peptide response is associated with increased partial depletion of CD8+ T cells: We hypothesized that the rapid improvement in metabolic response is related to the effect of teplizumab on T cells. We previously described an increase in the frequency of memory CD8+ T cells upon teplizumab treatment, we propose that it is "partially depleted" (double positive cells) by the expression of TIGIT and KLRG1+, and further reduced by ligation of TIGIT Transcriptional activity/depletion markers ( 23, 25, 26, 37, 38 ). Therefore, we examined whether the frequency of them is related to C-peptide AUC during or shortly after drug treatment, and whether they are functionally depleted. We observed a significant correlation between changes in CD8+KLRG1+TIGIT+ T cell frequency and fold change in C-peptide AUC at 3, 6 and 18 months ( Table 6 ). Changes in T cell subsets are most likely before C-peptide changes, so we also analyzed the fold change of double-positive CD8+ T cells at 3 months and the fold change of C-peptide at 6 months. There was a significant correlation between these two parameters in the drug treatment, but not in the placebo-treated participants. (p=0.014) ( Fig. 11A) . Table 6: Pearson correlation between % C-peptide change and CD8+ T cell subsets 3rd month 6th month 18th month CD8 subpopulation R p R p r p KLRG-1+TIGIT+ CD8 central memory type 0.429 0.016 0.433 0.01 0.463 0.011 KLRG-1+TIGIT+ CD8 effect memory type 0.421 0.018 0.460 0.006 0.461 0.012

T細胞耗竭與活化後細胞激素減少有關(39 )。因此吾人測量以抗CD3及抗CD28刺激PBMC後之胞內細胞激素。在雙陽性CD8+T細胞中,生成IFNγ (p<0.0001,p=0.0004)及生成TNFα的細胞(二者之p<0.0001)之頻率,在特普珠單抗治療3個月(圖11B 、11C )及6個月時分別地減少,但安慰劑治療參與者沒有。相反地,雙陽性CD8+T細胞中,生成IFNγ與TNFα的細胞之相對比例,在安慰劑組3個月及6個月追縱中保持穩定。入選與第3個月間雙陽性CD8記憶細胞中IFNγ與TNFα的頻率下降倍數,與入選與第6個月間C肽的改善倍數相關(IFNγ:皮爾森r= -0.29,p=0.164、TNFα:r= -0.39,p=0.056) (未示出)。討論 T cell depletion is associated with a decrease in cytokines after activation ( 39 ). We therefore measured intracellular cytokines following stimulation of PBMCs with anti-CD3 and anti-CD28. In double-positive CD8+ T cells, the frequency of IFNγ-producing (p<0.0001, p=0.0004) and TNFα-producing cells (p<0.0001 for both), after 3 months of teplizumab treatment ( Figure 11B , 11C ) and at 6 months, respectively, but not in placebo-treated participants. In contrast, the relative proportions of IFNγ and TNFα-producing cells in the double-positive CD8+ T cells remained stable during 3- and 6-month follow-up in the placebo group. The fold decrease in the frequency of IFNγ and TNFα in double-positive CD8 memory cells between enrollment and month 3 was correlated with the fold improvement in C-peptide between enrollment and month 6 (IFNγ: Pearson r = -0.29, p = 0.164, TNFα: r = -0.39, p=0.056) (not shown). discuss

自然史定群研究已經說明了風險親屬進展成T1D期間代謝功能的改變。吾人在風險族群中成功的特普珠單抗干預試驗,給予吾人獨特的機會可以直接評估高風險親屬中,免疫細胞變化如何影響代謝功能以及進展成T1D臨床確診。在此延長追蹤中,吾人示出14天單一特普珠單抗療程之作用持續:在確診有糖尿病之中位數時間方面,與安慰組治療參與者約2年相比,特普珠單抗組約為5年,50%特普珠單抗治療參與者與22%安慰劑治療參與者未診斷有T1D。18%特普珠單抗治療參與者及6%安慰劑治療參與者在追蹤超過5年後未診斷有糖尿病。很重要地,這是第一個顯示通過免疫干預,在確診斷有T1D之前成功地調控β細胞衰竭的進展之研究。Natural history cohort studies have demonstrated altered metabolic function during progression to T1D in at-risk relatives. Our successful teplizumab intervention trial in an at-risk population gave us a unique opportunity to directly assess how immune cell changes affect metabolic function and progression to clinical diagnosis of T1D in high-risk relatives. In this extended follow-up, we showed that the effect of a single 14-day course of teplizumab persisted: teplizumab compared to placebo-treated participants for about 2 years in terms of median time to diagnosis of diabetes For approximately 5 years, 50% of teplizumab-treated participants and 22% of placebo-treated participants had no diagnosis of T1D. Eighteen percent of the teplizumab-treated participants and 6 percent of the placebo-treated participants had no diabetes diagnosed after more than 5 years of follow-up. Importantly, this is the first study to show that immune intervention successfully modulates the progression of beta-cell exhaustion prior to the diagnosis of T1D.

雖然入選試驗之參與者末診斷有T1D,但特普珠單抗治療改善了β細胞功能。通過特普珠單抗治療的平均OGTT葡萄糖位準較低且C肽反應較高。在總及早期胰島素分泌速率方面有所改善,其確定胰島素釋出的功能及數量的改善。胰島素之早期分泌(正常β細胞功能的特徵)的變化最大,指出在進展成臨床糖尿病之患者中所描述的“β細胞葡萄糖敏感性”受損獲得改善(34 )。代謝變化與TIGIT+KLRG1+記憶CD8+T細胞頻率增加及細胞激素(TNFα及IFNγ)分泌減少相關,其與T1D的病理學相關,指出T細胞具有功能耗竭(23, 25, 26, 37, 38 )。Although participants enrolled in the trial had no diagnosis of T1D, treatment with teplizumab improved beta-cell function. Mean OGTT glucose levels were lower and C-peptide responses were higher by teprozumab treatment. There were improvements in total and early insulin secretion rates, which define improvements in the function and quantity of insulin released. The earliest changes in insulin secretion, a hallmark of normal beta cell function, were greatest, indicating an improvement in the impaired "beta cell glucose sensitivity" described in patients who progressed to clinical diabetes ( 34 ). Metabolic changes associated with increased frequency of TIGIT+KLRG1+ memory CD8+ T cells and decreased secretion of cytokines (TNFα and IFNγ) are associated with the pathology of T1D, indicating that T cells are functionally exhausted ( 23, 25, 26, 37, 38 ) .

因為臨床試驗設計為事件發生時間計劃,所以各參與者在該研究中之時間變數,對分析研究OGTTs期間之代謝反應造成挑戰。因此,吾人使用平均研究中C肽、葡萄糖及HbA1c AUCs,其包括每個參與者的所有可用數據。Because clinical trials are designed with time-to-event schedules, the variability of the timing of each participant in the study presents a challenge for analyzing metabolic responses during study OGTTs. Therefore, we used mean in-study C-peptide, glucose and HbA1c AUCs, which included all available data for each participant.

儘管在試驗中時間不是決定平均C肽AUC的重要因素,但藥物治療仍具有時間依賴性的代謝作用。參與者在入選TN10試驗時,其等β細胞功能衰退。事實上,在之前的研究中,吾人發現於相似高風險個體中β細胞死亡的程度高,且其它研究已有記錄近確診期β細胞功能異常(35, 40, 41 )。此代謝數據與安慰劑組中診斷有T1D之相對短的中位數時間一同表示,所使用的篩選方法識別出疾病的活躍時間及進展風險很高的個體。與臨床前研究一致,在此活躍疾病期間的作用支持了以下觀點,當有免疫細胞活化時,此干預可能是最有效的(42 )。C肽最大量的增加在特普珠單抗治療後快速發生,接著β細胞功能穩定,然而在安慰劑組中,β細胞功能隨著時間逐漸地衰退。與先前報告一致,在二種治療組中發展成臨床糖尿病之個體中,在T1D發病之前約6個月看到刺激的C肽位準陡峭的下降 (40 )。Although time was not a significant factor in determining the mean C-peptide AUC in the trial, drug treatment still had a time-dependent metabolic effect. When participants were enrolled in the TN10 trial, their beta-cell function declined. In fact, in previous studies we found a high degree of beta cell death in similarly high-risk individuals, and other studies have documented abnormal beta cell function in the recent diagnosis ( 35, 40, 41 ). This metabolic data is presented along with the relatively short median time to diagnosis of T1D in the placebo group, a screening method used to identify individuals with a high risk of disease activity and progression. Consistent with preclinical studies, the role during this active disease supports the idea that this intervention may be most effective when there is immune cell activation ( 42 ). The greatest increase in C-peptide occurred rapidly after teplizumab treatment, followed by stabilization of beta-cell function, whereas in the placebo group, beta-cell function declined gradually over time. Consistent with previous reports, in individuals who developed clinical diabetes in both treatment groups, a steep decline in stimulated C-peptide levels was seen approximately 6 months prior to T1D onset ( 40 ).

意外地,吾人沒有找到平均研究中葡萄糖AUC與C肽AUC之間的相關性。此外,甚至在患有和未患有T1D的個體中OGTT的結果也有所波動。最有可能的是此變異反映出殘留胰島素產生的微弱位準。與此一致,在未診斷有T1D之個體中,OGTTs沒有統一標準化。微量的變化,如在胰島素分泌之動力學或宿主因素方面,可能改變OGTT的結果,其根據血糖水平被歸類與長期微血管併發症相關,而未必是β細胞功能或胰島素分泌(43 )。此等臨床結果與T1D之NOD模型中抗CD3 mAb的作用相似,在糖尿病確診之前,胰島素粒度獲得改善,但β細胞質量沒有恢復至正常水準(44, 45 )。使用代謝鉗夾之進一步研究可能可以改善吾人的代謝功能分析,但是這種研究在這個臨床試驗環境中是不切實際的。此等發現亦表明,將特普珠單抗與通過互補機制改善β細胞功能之藥物結合,可能很有價值。Unexpectedly, we did not find a correlation between glucose AUC and C-peptide AUC in the mean study. Furthermore, OGTT results fluctuated even among individuals with and without T1D. Most likely, this variation reflects a weak level of residual insulin production. Consistent with this, OGTTs were not uniformly standardized among individuals with undiagnosed T1D. Minor changes, such as in the kinetics of insulin secretion or host factors, may alter the outcome of the OGTT, classified according to blood glucose levels and associated with long-term microvascular complications, not necessarily beta cell function or insulin secretion ( 43 ). These clinical results are similar to the effect of anti-CD3 mAbs in the NOD model of T1D, with improved insulin granularity but no return of beta cell mass to normal levels before diabetes diagnosis ( 44, 45 ). Further studies using the metabolic clamp might improve our analysis of metabolic function, but such studies are impractical in this clinical trial setting. These findings also suggest that combining teplizumab with drugs that improve beta-cell function through complementary mechanisms may be valuable.

目前尚不清楚在治療和安慰劑組二者中於臨床T1D確診前6個月內促成疾病的因素。於二種治療組中診斷有T1D之個體的C肽與葡萄間之相似關係表明,胰島素敏感性不是促成確診的因素。有趣的是,即使進展成臨床糖尿病,與安慰劑相比,特普珠單抗之C肽的下降較小,其表明藥物治療對C肽的作用即使在臨床確診期間及可能的之後仍可能持續。我們先前通過追踪CD8記憶雙陽性細胞確定抗CD3抗體對免疫細胞的作用可能減弱了(23 )。在此技術領域中之其它觀察顯示,進展成臨床糖尿病與獲得效應T細胞功能有關,但其可能是在此情況下恢復的效應功能涉及特普珠單抗免疫作用的減弱,或者甚至是在單一藥物療程後新的或再生的病理性T細胞重建免疫圖譜。在TN10研究中治療時的中位數年齡是13.9歲,在年幼的孩子中,T細胞的胸腺輸出可能還在進行中。在特普珠單抗治療患者長期結果的其它研究中,與無反應者及對照組相比,在有反應者中程序性細胞死亡蛋白1 (PD-1)+記憶CD8+ T細胞頻率增加,表明CD8+記憶區室之表型及功能可能會隨時間發生改變(46 )。持續進行追縱TCRs及單一細胞分析之工作,將有助於解決這些假設,並建議可能通過阻斷T效應擴展所需的途徑來延長無糖尿病期的藥物(47 )。Factors contributing to disease within 6 months prior to clinical T1D diagnosis in both the treatment and placebo groups are currently unknown. The similar relationship between C-peptide and grapes in individuals diagnosed with T1D in both treatment groups suggests that insulin sensitivity is not a contributing factor to the diagnosis. Interestingly, even with progression to clinical diabetes, the decrease in C-peptide with teplizumab was smaller compared to placebo, suggesting that the effect of drug therapy on C-peptide may persist even during and possibly beyond clinical diagnosis . We previously determined that the effect of anti-CD3 antibodies on immune cells may be attenuated by tracking CD8 memory double-positive cells ( 23 ). Other observations in this technical field suggest that progression to clinical diabetes is associated with the acquisition of effector T cell function, but it is possible that the effector function restored in this setting involves a reduction in the immune effect of teplizumab, or even in a single New or regenerated pathological T cells reconstitute the immune profile after a drug course. The median age at treatment in the TN10 study was 13.9 years, and in younger children, T-cell thymic export may still be ongoing. In other studies of long-term outcomes in teplizumab-treated patients, the frequency of programmed cell death protein 1 (PD-1)+ memory CD8+ T cells was increased in responders compared with non-responders and controls, suggesting that The phenotype and function of the CD8+ memory compartment may change over time ( 46 ). Continued work to track TCRs and single-cell analyses will help address these hypotheses and suggest drugs that may prolong diabetes-free periods by blocking pathways required for T-effect expansion ( 47 ).

吾人之研究有侷限性。受試者數量相對小,且該研究致力於檢測出糖尿病發病率的差異,而不是C肽AUC、胰島素分泌及免疫功能的變化。此外,原始研究之事件發生時間的設計對此處包括的分析有重要含意。吾人沒有診斷有T1D後之大部分個體的OGTT分析,此限制了吾人比較在相同時間期間,安慰劑與特普珠單抗組中所有的成員間的OGTT數據之能力,特別是針對表現出更快進展成糖尿病之安慰劑組。事件發生時間的設計亦限制了吾人比較代謝終點與T1D進展間之相關性的能力,因為該研究中包括的一些未進展成糖尿病的個體最終可能發展成T1D。此外,先前的研究結果顯示特普珠單抗治療可在最近發病的T1D患者中保留C肽(19-25 ),預期在此研究期間,對C肽的正面影響亦可能會在患有糖尿病的個體中發生。將來自試驗之二個組的參與者選入TrialNet LIFT研究,其在已診斷有T1D之參與者中進行縱向代謝測試(13 )。Our research has limitations. The number of subjects was relatively small, and the study aimed to detect differences in diabetes incidence rather than changes in C-peptide AUC, insulin secretion, and immune function. In addition, the design of the timing of events of the original study has important implications for the analyses included here. We did not have an OGTT analysis of the majority of individuals after a diagnosis of T1D, which limited our ability to compare OGTT data between all members of the placebo and A placebo group that rapidly progressed to diabetes. The time-to-event design also limited our ability to compare the association between metabolic endpoints and T1D progression, as some individuals included in this study who did not progress to diabetes may eventually develop T1D. In addition, previous studies have shown that teplizumab treatment preserves C-peptide in patients with recent onset T1D ( 19-25 ), and it is expected that during this study, the positive effect on C-peptide may also be seen in patients with diabetes mellitus occur in the individual. Participants from two arms of the trial were enrolled in the TrialNet LIFT study, which performed longitudinal metabolic testing in participants diagnosed with T1D ( 13 ).

總結,吾人證明以特普珠單抗治療可長時間延遲高風險受試者進展成T1D。由胰島素分泌之量與質的改善反映出,特普珠單抗治療通過提高β細胞功能而改變疾病的生物過程。此等改變與記憶CD8+T細胞之頻率與功能的調節有關。該藥之明顯的早期功效及隨後β細胞功能的穩定也表明了,在臨床療程中用特普珠單抗重複治療或在關鍵時間點添加其它輔助劑,對於延長延遲或甚至預防T1D確診可能很有價值。最後,吾人之發現因顯示出免疫干預如何在疾病診斷之前就能改變病理生物學並導致臨床上顯著的結果,對其他自身免疫性疾病具有意義。材料及方法 試驗設計 In conclusion, we demonstrated that treatment with teplizumab prolonged the progression to T1D in high-risk subjects. The improvement in the quantity and quality of insulin secretion reflects that teplizumab treatment alters the biological process of the disease by enhancing beta cell function. These changes are related to the regulation of the frequency and function of memory CD8+ T cells. The drug's apparent early efficacy and subsequent stabilization of beta-cell function also suggest that repeated treatment with teplizumab over the course of the clinical course or addition of other adjuvants at critical time points may be very effective in prolonging the delay or even preventing the diagnosis of T1D. valuable. Finally, our findings have implications for other autoimmune diseases by showing how immune interventions can alter the pathobiology and lead to clinically significant outcomes before disease diagnosis. Materials and Methods Experimental Design

此第2階段、隨機、安慰劑對照、雙盲試驗(NCT01030861)之設計之前已有報導(26 )。在每個參與地點都獲得機構審查委員會的批准。在試驗進入前,參與者、他們的父母或二者均提供書面知情同意(consent)或贊同(assent)書。透過TrialNet Pathway to Prevention研究(TN01)確定參與者(14, 48 )。在那研究中,在胰島自體抗體陽性個體(包括抗麩胺酸脫羧基酶65、微胰島素、抗胰島抗原2、抗鋅轉運蛋白8和/或胰島細胞抗體)中以大概6個月的間隔進行OGTTs,然後使用從此等測試獲得的葡萄糖結果來確定符合抗CD3預防試驗(TN10)的資格及用於此數據分析中。胰島自體抗體測試、HLA基因分型及OGTT測試依之前所述的進行(4, 49 )。The design of this phase 2, randomized, placebo-controlled, double-blind trial (NCT01030861) has been reported previously ( 26 ). Institutional Review Board approval was obtained at each participating site. Participants, their parents, or both provided written informed consent or assent prior to trial entry. Participants were identified through the TrialNet Pathway to Prevention study (TN01) ( 14, 48 ). In that study, in islet autoantibody positive individuals (including anti-glutamate decarboxylase 65, microinsulin, anti-islet antigen 2, anti-zinc transporter 8 and/or islet cell antibodies) at approximately 6 months OGTTs were performed at intervals and the glucose results obtained from these tests were then used to determine eligibility for the anti-CD3 prophylaxis test (TN10) and for use in this data analysis. Islet autoantibody testing, HLA genotyping, and OGTT testing were performed as previously described ( 4, 49 ).

簡言之,合格標準包括隨機年齡>=8歲、第1型糖尿病親屬之病史、二或多種胰島自體抗體陽性效價及OGTT的血糖異常(空腹葡萄糖110-125 mg/dL (6.1-6.9 mmol/L),餐後2小時之血漿葡萄糖位準>= 140 mg/dL (7.8 mmol/L)及< 200 mg/dL (11.1 mmol/L)或干預餐後30、60或90分鐘之葡萄糖位準> 200 mg/dL。對於在基線訪視時沒有獲得血紅素A1c之參與者,使用治療前3個月內獲得的值。Briefly, eligibility criteria included age at randomization >=8 years, history of relatives with type 1 diabetes, positive titers of two or more islet autoantibodies, and OGTT dysglycemia (fasting glucose 110-125 mg/dL (6.1-6.9 mmol/L), plasma glucose levels >= 140 mg/dL (7.8 mmol/L) and < 200 mg/dL (11.1 mmol/L) 2 hours postprandial or glucose 30, 60 or 90 minutes postprandial intervention Levels > 200 mg/dL. For participants who did not obtain heme A1c at the baseline visit, the values obtained within the first 3 months of treatment were used.

將參與者隨機分配至特普珠單抗或食鹽水,並在臨床研究中心接受IV輸注為期14天的門診療程。特普珠單抗投與劑量第0天51μg/m2 ,第1天103μg/m2 ,第2天207μg/m2 ,第3天413μg/m2 ,接著第4天至第13天826μg/m2 。輸注後3個月及6個月及之後每6個月進行OGTTs。以3個月間隔評估一次隨機篩選葡萄糖位準,及假如隨機葡萄糖位準>200 mg/dL (11.1 mmol/),則進行OGTT。在OGTT期間使用ADA標準診斷T1D,但僅在糖尿病OGTT依序確認之後。診斷日期確定為2個診斷測試中第1個的時間(50 )。在OGTT監控外有6個參與者臨床診斷有T1D。原始試驗結束日期是2019年5月。將未診斷有T1D之參與者轉移至TrialNet Pathway to Prevention Natural History研究(TN01)用於追蹤OGTT監控。將在2011年7月至2020年3月間追蹤得到的數據包含於此分析中。將沒有發展成T1D之參與者提供於參與TrialNet’ Long Term Investigational Follw-up (LIFT)研究,用於持續的代謝追蹤。代謝分析 Participants were randomly assigned to teplizumab or saline and received a 14-day outpatient course of IV infusion at a clinical research center. Teplizumab administered at 51 μg/m 2 on day 0, 103 μg/m 2 on day 1, 207 μg/m 2 on day 2 , 413 μg/m 2 on day 3, followed by 826 μg/m 2 on days 4-13 m 2 . OGTTs were performed at 3 and 6 months after infusion and every 6 months thereafter. Random screening glucose levels were assessed at 3-month intervals, and if random glucose levels were >200 mg/dL (11.1 mmol/), an OGTT was performed. T1D was diagnosed using ADA criteria during the OGTT, but only after the sequential confirmation of the diabetes OGTT. The date of diagnosis was determined as the time of the 1st of 2 diagnostic tests ( 50 ). Six participants had a clinical diagnosis of T1D outside of OGTT monitoring. The original trial end date was May 2019. Participants without a diagnosis of T1D were transferred to the TrialNet Pathway to Prevention Natural History study (TN01) for follow-up OGTT surveillance. Data tracked between July 2011 and March 2020 were included in this analysis. Participants who did not develop T1D were offered to participate in the TrialNet' Long Term Investigational Follw-up (LIFT) study for ongoing metabolic tracking. Metabolic analysis

OGTT C肽及葡萄糖值是由Northwest Lipids Research Laboratories,分別使用TOSOH及Roche之C肽及葡萄糖免疫分析法測量。OGTT結果分配給最近的研究訪視時間點(正式時間點分配之3個月內)。根據以上用於研究進入之定義,將OGTT結果分成正常、血糖異常或糖尿病。基線OGTT是隨機分組當時或之前的研究。OGTT C-peptide and glucose values were measured by Northwest Lipids Research Laboratories using TOSOH and Roche's C-peptide and glucose immunoassays, respectively. OGTT results were assigned to the most recent study visit time point (within 3 months of the official time point assignment). OGTT results were classified as normal, dysglycemic or diabetic according to the definitions above for study entry. Baseline OGTT was the study at or before randomization.

使用梯形法則計算ISR、C肽及葡萄糖之曲線下面積(AUC)。通過將每一次OGTT訪視之AUC平均值乘以訪視間隔天數(作為梯形底)計算出總研究AUC,然後除以從第一次至最後一次OGTT (假如發展成T1D ,則為確定糖尿病之OGTT)之天數,來計算C肽、葡萄糖及HbA1c之研究中AUC平均值。使用Chronobiological Series Analyzer (CSA)軟體計算胰島素分泌速率(ISRs),其針對荷爾蒙廓清使用2室模型,而針對C肽使用標準動力學參數(51-53 )。ISR之計算係使用參與者OGTT C肽及葡萄糖值以及年齡、性名、身高與體重進行。胰島素分泌分成2小時OGTT期間或測試的第一或第二小時內分泌的量(pmol)。流式細胞分析技術 The area under the curve (AUC) for ISR, C-peptide and glucose was calculated using the trapezoidal rule. The total study AUC was calculated by multiplying the mean AUC at each OGTT visit by the number of days between visits (as the bottom of the trapezoid), then dividing by the first to last OGTT (if T1D developed, the factor for determining diabetes mellitus). OGTT) to calculate the mean AUC in the study for C-peptide, glucose and HbA1c. Insulin secretion rates (ISRs) were calculated using the Chronobiological Series Analyzer (CSA) software using a 2-compartment model for hormonal clearance and standard kinetic parameters for C-peptide ( 51-53 ). ISR calculations were performed using participant OGTT C-peptide and glucose values as well as age, sex name, height and weight. Insulin secretion was divided into the amount (pmol) secreted during the 2-hour OGTT or the first or second hour of the test. flow cytometry

將周邊血液單核細胞(PBMC)進行處理並貯存於NIDDK儲存庫。將PBMC冷凍小瓶送至Benaroya Research Institute的ITN Core實驗室進行流式細胞分析,使用 7 及8 所示的抗體組。在解凍的PBMC上進行T細胞表型分型,並如前述測定TIGIT+KLRG1+CD57-之CD45RO+CD8 T細胞的頻率(54 )。在等莫耳數量的Golgi-stop存在下,利用板結合的抗CD3 (1 μg/ml)及可溶性抗CD28 (10 μg/ml)刺激PBMC 6個小時後,測量胞內細胞激素表現。測定基線及3個月時,會生成IFNγ或TNFα之TIGIT+KLRG1+ CD8+記憶(CD45RA-) T細胞的頻率。

Figure 02_image001
Figure 02_image003
Peripheral blood mononuclear cells (PBMC) were processed and stored in NIDDK repository. PBMC cryovials were sent to the ITN Core laboratory at Benaroya Research Institute for flow cytometric analysis using the antibody panels shown in Tables 7 and 8. T cell phenotyping was performed on thawed PBMC and the frequency of TIGIT+KLRG1+CD57- CD45RO+CD8 T cells was determined as previously described ( 54 ). Intracellular cytokine expression was measured after 6 hours of stimulation of PBMCs with plate-bound anti-CD3 (1 μg/ml) and soluble anti-CD28 (10 μg/ml) in the presence of equimolar amounts of Golgi-stop. The frequency of TIGIT+KLRG1+ CD8+ memory (CD45RA-) T cells producing IFNγ or TNFα was measured at baseline and at 3 months.
Figure 02_image001
Figure 02_image003

使用8峰彩虹校正珠(Spherotech, Lake Forest, IL)進行儀器標準化,調整PMT電壓以獲得一致的第7個峰值平均螢光強度。來自相同受試者之所有的樣本在同一天進行分析,而來自相同受試者之內部控制組每周進行一次。如之前所述,在裝配有FACS Diva軟體之LSR-Fortessa (BD Biosciences)上進行樣本採集,並用FlowJo軟體第9.5版(Tree Star, Ashland, OR)分析(54 )。根據染色對照放置象限。分析排除圈選群<100事件的部分。統計分析 Instrument normalization was performed using 8-peak rainbow calibration beads (Spherotech, Lake Forest, IL), and PMT voltages were adjusted to obtain a consistent 7th peak average fluorescence intensity. All samples from the same subject were analyzed on the same day, while the internal control group from the same subject was analyzed weekly. Sample collection was performed on an LSR-Fortessa (BD Biosciences) equipped with FACS Diva software and analyzed with FlowJo software version 9.5 (Tree Star, Ashland, OR) as previously described ( 54 ). Place quadrants according to staining controls. The analysis excluded the portion of the circled group &lt; 100 events. Statistical Analysis

原始試驗是設計成事件發生時間分析,因此在該研究中不會進一步追蹤診斷有T1D之參與者。使用Cox比例風險模型進行入選後特普珠單抗治療對第1型糖尿病的影響 。針對此分析,整個試驗期間的代謝參數包括緊接研究藥物治療前訪視的OGTT數據及研究藥物治療後所有的OGTT數據(診斷有糖尿病之個體取確認糖尿病OGTT,或保持無糖尿病之個體取最後一次可獲得的OGTT)。使用特定間隔之可得的OGTT訪視數據的線性迴歸分析,計算入選前後葡萄糖及C肽變化之斜率。通過擬合結果至ANCOVA模型確定治療對各終點的衝擊,並將年齡、基線值及治療組作為共變量。使用Wald檢定確定共變量是否顯著地影響該模型。The original trial was designed as a time-to-event analysis, so participants with a diagnosis of T1D would not be further followed in this study. Post-enrolment effect of teplizumab treatment on type 1 diabetes using a Cox proportional hazards model. For this analysis, metabolic parameters for the entire trial period included OGTT data from the visit immediately before study drug treatment and all OGTT data after study drug treatment (diabetic confirmed OGTT for individuals diagnosed with diabetes, or final OGTT for individuals who remained free of diabetes). once available OGTT). The slopes of changes in glucose and C-peptide before and after enrollment were calculated using linear regression analysis of available OGTT visit data at specific intervals. The impact of treatment on each endpoint was determined by fitting the results to an ANCOVA model with age, baseline value, and treatment group as covariates. The Wald test was used to determine whether covariates significantly affected the model.

亦使用線性迴歸模型以及用於重複測度的混合模型,根據治療前(基線前最長6個月之時間點)與治療開始後(基線後最長6個月之時間點)之變化,計算各受試者胰島素分泌速率變化的估算斜率。計算跨OGTTs整個2個小時間隔以及特別是第一小時及第二小時間隔之胰島素分泌速率。使用威爾克森符號等級檢定比較治療組內及跨治療組之治療前與後之斜率差異。也使用廣義線性模型評估治療前與後此等斜率之差異與變化百分比,用以評估治療組的影響。Linear regression models and mixed models for repeated measures were also used to calculate the change for each subject based on the change before treatment (time point up to 6 months before baseline) and after initiation of treatment (time point up to 6 months after baseline) The estimated slope of the change in the rate of insulin secretion. The rate of insulin secretion was calculated across the entire 2-hour interval of the OGTTs and specifically the first and second hour intervals. Differences in pre- and post-treatment slopes within and across treatment groups were compared using Wilkerson's signed rank test. The difference and percent change in these slopes before and after treatment were also estimated using generalized linear models to assess the effect of treatment groups.

將流式細胞分析數據轉換成對數供統計分析。計算皮爾森相關係數以確定C肽AUC變化倍數與TIGIT+KLRG1+CD8+記憶T細胞頻率間之關聯性。利用成對t檢定分析生成IFNγ或TNFα的TIGIT+KLRG1+CD8+記憶T細胞之頻率。範例2 :抗CD3 抗體( 特普珠單抗) ,延遲2 期第1 型糖尿病之第1 型糖尿病的發病 Flow cytometry data were converted to logarithms for statistical analysis. Pearson correlation coefficients were calculated to determine the association between the fold change in C-peptide AUC and the frequency of TIGIT+KLRG1+CD8+ memory T cells. The frequency of TIGIT+KLRG1+CD8+ memory T cells producing IFNγ or TNFα was analyzed using paired t-tests. Example 2 : Anti-CD3 antibody ( teplizumab) , delaying the onset of type 1 diabetes in stage 2 type 1 diabetes

如圖12-21所示,在T1D患者之風險(2期)親屬中,單一特普珠單抗療程(如範例1所述)會增加TIGIT+KLRG1+耗竭CD8+T細胞(其與延遲/預防臨床T1D有關)。出人意料地,在特普珠單抗治療後3個月後,在循環中具有>10%耗竭CD8+T細胞(全部CD3+T細胞中之%,即耗竭T細胞的前四分之一)之受試者中,沒有觀察到轉換成臨床T1D (p=0.005)。在特普珠單抗治療後3個月,具有較多TIGIT+KLRG1+CD8+T細胞之受試者反應最好。As shown in Figures 12-21, in at-risk (stage 2) relatives of T1D patients, a single course of teplizumab (as described in Example 1) increases TIGIT+KLRG1+ depleted CD8+ T cells (which are related to delay/prophylaxis) associated with clinical T1D). Unexpectedly, 3 months after teplizumab treatment, there were >10% depleted CD8+ T cells in the circulation (% of all CD3+ T cells, i.e. the top quarter of depleted T cells). Among subjects, no conversion to clinical T1D was observed (p=0.005). Subjects with more TIGIT+KLRG1+CD8+ T cells responded best 3 months after teplizumab treatment.

此等細胞可能表現其它耗竭標記,如PD1及Eomes。此等細胞可能為部分耗竭的,產生比安慰劑治療的患者低的發炎性細胞激素位準。These cells may express other depletion markers such as PD1 and Eomes. These cells may be partially depleted, producing lower levels of inflammatory cytokines than placebo-treated patients.

TIGIT+KLRG1+CD8T細胞不是同質的,相反地,數目及功能會隨著個體變化。不是一致地耗竭,TIGIT+KLRG1+是較少與較多功能群組之混合物。TIGIT+KLRG1+CD8 T cells are not homogeneous, and instead, vary in number and function from individual to individual. Not uniformly depleted, TIGIT+KLRG1+ is a mixture of less and more functional groups.

吾人亦觀察到與安慰劑相比,表現增生標記Ki67及CD57的CD8+T細胞減少,與效應T細胞減少及耗竭T細胞增加一致。Ki67及CD57減少與臨床反應有關(分別地p=0.003及p=0.006)。CD127+CD8 T細胞與較差的結果有關。We also observed a decrease in CD8+ T cells expressing the proliferative markers Ki67 and CD57 compared to placebo, consistent with a decrease in effector T cells and an increase in exhausted T cells. Decreases in Ki67 and CD57 were associated with clinical response (p=0.003 and p=0.006, respectively). CD127+CD8 T cells were associated with poorer outcomes.

因此,在一些實施例中,可重複地投與特普珠單抗且組合使用,以增加耗竭T細胞的生成/維持及改善反應及結果。Thus, in some embodiments, teplizumab can be repeatedly administered and used in combination to increase the generation/maintenance of exhausted T cells and improve response and outcome.

在一些實施例中,在投藥前或後不久,可通過測定耗竭T細胞來預測特普珠單抗的反應性。範例3 :葡萄糖及C 肽之2D 分析顯示治療後3 個月,特普珠單抗在T1D 風險個體中之作用 In some embodiments, responsiveness to teplizumab can be predicted by assaying depleted T cells before or shortly after administration. Example 3 : 2D analysis of glucose and C- peptide showing the effect of teplizumab in individuals at risk for T1D 3 months after treatment

如圖22-25所示,在T1D患者之風險(2期)親屬中,單一特普珠單抗療程(如範例1所述)會增加C肽AUC/葡萄糖AUC比值歷時至少6個月。在投藥後3個月時,特普珠單抗組(1.5±2.9)增加,安慰劑組減少(0.78±2.7;p=0.001)。此差異在治療後持續6個月(p=0.004)。因此,此比值可用作新的早期終點(如,3個月)供特普珠單抗之進一步研究(單一療法再治療、組合治療)。As shown in Figures 22-25, in at-risk (stage 2) relatives of T1D patients, a single course of teplizumab (as described in Example 1) increased the C-peptide AUC/glucose AUC ratio for at least 6 months. At 3 months post-dose, there was an increase in the teplizumab group (1.5±2.9) and a decrease in the placebo group (0.78±2.7; p=0.001). This difference persisted 6 months after treatment (p=0.004). Therefore, this ratio can be used as a new early endpoint (eg, 3 months) for further studies of teplizumab (monotherapy retreatment, combination therapy).

特普珠單抗還會減少糖尿病預防試驗風險評分(DPTRS) (見Sosenko et al., Diabetes Care. 2012 Jul; 35(7): 1552–1555,在此併入本案以為參考)。此與在C肽及血糖上之好處一致:安慰劑+0.56,特普珠單抗-0.22 (p=0.02)。DPTRS還可用於幫助指導在風險個體中的重新投藥。Teplizumab also reduced the Diabetes Prevention Trial Risk Score (DPTRS) (see Sosenko et al., Diabetes Care. 2012 Jul; 35(7): 1552–1555, which is hereby incorporated by reference). This was consistent with benefits on C-peptide and blood glucose: placebo +0.56, teplizumab -0.22 (p=0.02). DPTRS can also be used to help guide re-dosing in at-risk individuals.

在不逸離本揭示之範疇和精神的情況下,本揭示所描述的方法和組合物的修改和變化對本領域技術人員將是顯而易見的。儘管已結合具體實施例描述本揭示,但是應當理解,不應將所要求保護的本揭示不當地限制於此等具體實施例。實際上,本揭示所屬相關領域的技術人員意圖和理解用於執行本揭示所描述的模式之各種修改,均落在下列所附申請專利範圍所示的本揭示之範疇內。 通過引用併入Modifications and variations of the methods and compositions described in this disclosure will be apparent to those skilled in the art without departing from the scope and spirit of this disclosure. Although the present disclosure has been described in connection with specific embodiments, it should be understood that the disclosure as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications intended and understood by those skilled in the art to which this disclosure pertains for carrying out the modes described in this disclosure are within the scope of this disclosure as set forth in the appended claims below. incorporated by reference

在此說明書中所提及的全部專利及公開案均在此通過引用併入本案,範圍與各獨立的專利及公開案特別及個別指示通過引用併入本案之範圍相當。 參考文獻 1.            A. G. Ziegler, M. Rewers, O. Simell, T. Simell, J. Lempainen, A. Steck, C. Winkler, J. Ilonen, R. Veijola, M. Knip, Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. Jama 309, 2473-2479 (2013). 2.            R. A. Insel, J. L. Dunne, M. A. Atkinson, J. L. Chiang, D. Dabelea, P. A. Gottlieb, C. J. Greenbaum, K. C. Herold, J. P. Krischer, A. Lernmark, R. E. Ratner, M. J. Rewers, D. A. Schatz, J. S. Skyler, J. M. Sosenko, A. G. Ziegler, Staging presymptomatic type 1 diabetes: a scientific statement of JDRF, the Endocrine Society, and the American Diabetes Association.Diabetes Care 38 , 1964-1974 (2015). 3.            J. P. Krischer, K. F. Lynch, A. Lernmark, W. A. Hagopian, M. J. Rewers, J. X. She, J. Toppari, A. G. Ziegler, B. Akolkar, T. S. Group, Genetic and Environmental Interactions Modify the Risk of Diabetes-Related Autoimmunity by 6 Years of Age: The TEDDY Study.Diabetes Care 40 , 1194-1202 (2017). 4.            J. L. Mahon, J. M. Sosenko, L. Rafkin-Mervis, H. Krause-Steinrauf, J. M. Lachin, C. Thompson, P. J. Bingley, E. Bonifacio, J. P. Palmer, G. S. Eisenbarth, J. Wolfsdorf, J. S. Skyler, C. TrialNet Natural History, G. Type 1 Diabetes TrialNet Study, The TrialNet Natural History Study of the Development of Type 1 Diabetes: objectives, design, and initial results.Pediatr Diabetes 10 , 97-104 (2009). 5.            H. T. Siljander, R. Hermann, A. Hekkala, J. Lahde, L. Tanner, P. Keskinen, J. Ilonen, O. Simell, R. Veijola, M. Knip, Insulin secretion and sensitivity in the prediction of type 1 diabetes in children with advanced beta-cell autoimmunity.Eur J Endocrinol 169 , 479- 503 (2013). 6.            N. C. Foster, R. W. Beck, K. M. Miller, M. A. Clements, M. R. Rickels, L. A. DiMeglio, D. M. Maahs, W. V. Tamborlane, R. Bergenstal, E. Smith, B. A. Olson, S. K. Garg, State of Type 1 Diabetes Management and Outcomes from the T1D Exchange in 2016-2018.Diabetes Technol Ther 21 , 66-72 (2019). 7.            A. Rawshani, N. Sattar, S. Franzen, A. Rawshani, A. T. Hattersley, A. M. Svensson, B. Eliasson, S. Gudbjornsdottir, Excess mortality and cardiovascular disease in young adults with type 1 diabetes in relation to age at onset: a nationwide, register-based cohort study.Lancet 392 , 477-486 (2018). 8.            S. J. Livingstone, D. Levin, H. C. Looker, R. S. Lindsay, S. H. Wild, N. Joss, G. Leese, P. Leslie, R. J. McCrimmon, W. Metcalfe, J. A. McKnight, A. D. Morris, D. W. Pearson, J. R. Petrie, S. Philip, N. A. Sattar, J. P. Traynor, H. M. Colhoun, g. Scottish Diabetes Research Network epidemiology, R. Scottish Renal, Estimated life expectancy in a Scottish cohort with type 1 diabetes, 2008-2010.JAMA 313 , 37-44 (2015). 9.            B. Tao, M. Pietropaolo, M. Atkinson, D. Schatz, D. Taylor, Estimating the cost of type 1 diabetes in the U.S.: a propensity score matching method.PLoS One 5 , e11501 (2010). 10.          C. Evans-Molina, E. K. Sims, L. A. DiMeglio, H. M. Ismail, A. K. Steck, J. P. Palmer, J. P. Krischer, S. Geyer, P. Xu, J. M. Sosenko, G. Type 1 Diabetes TrialNet Study, beta Cell dysfunction exists more than 5 years before type 1 diabetes diagnosis.JCI Insight 3 , (2018). 11.           E. K. Sims, L. A. DiMeglio, Cause or effect? A review of clinical data demonstrating beta cell dysfunction prior to the clinical onset of type 1 diabetes.Mol Metab 27S , S129-S138 (2019). 12.          M. K. Koskinen, O. Helminen, J. Matomäki, S. Aspholm, J. Mykkänen, M. Mäkinen, V. Simell, M. Vähä-Mäkilä, T. Simell, J. Ilonen, Reduced β-cell function in early preclinical type 1 diabetes.European Journal of Endocrinology 174 , 251-259 (2016). 13.          P. J. Bingley, D. K. Wherrett, A. Shultz, L. E. Rafkin, M. A. Atkinson, C. J. Greenbaum, Type 1 Diabetes TrialNet: A Multifaceted Approach to Bringing Disease-Modifying Therapy to Clinical Use in Type 1 Diabetes.Diabetes Care 41 , 653-661 (2018). 14.          C. J. Greenbaum, C. Speake, J. Krischer, J. Buckner, P. A. Gottlieb, D. A. Schatz, K. C. Herold, M. A. Atkinson, Strength in Numbers: Opportunities for Enhancing the Development of Effective Treatments for Type 1 Diabetes-The TrialNet Experience.Diabetes 67 , 1216-1225 (2018). 15.          B. M. Nathan, D. Boulware, S. Geyer, M. A. Atkinson, P. Colman, R. Goland, W. Russell, J. M. Wentworth, D. M. Wilson, C. Evans-Molina, D. Wherrett, J. S. Skyler, A. Moran, J. M. Sosenko, T. Type 1 Diabetes, G. Diabetes Prevention Trial-Type 1 Study, Dysglycemia and Index60 as Prediagnostic End Points for Type 1 Diabetes Prevention Trials.Diabetes Care 40 , 1494-1499 (2017). 16.          J. M. Sosenko, J. P. Palmer, L. Rafkin-Mervis, J. P. Krischer, D. Cuthbertson, J. Mahon, C. J. Greenbaum, C. C. Cowie, J. S. Skyler, G. Diabetes Prevention Trial-Type 1 Study, Incident dysglycemia and progression to type 1 diabetes among participants in the Diabetes Prevention Trial-Type 1.Diabetes Care 32 , 1603-1607 (2009). 17.          J. P. Palmer, C-peptide in the natural history of type 1 diabetes.Diabetes Metab Res Rev 25 , 325-328 (2009). 18.          C. J. Greenbaum, A. M. Anderson, L. M. Dolan, E. J. Mayer-Davis, D. Dabelea, G. Imperatore, S. Marcovina, C. Pihoker, S. S. Group, Preservation of beta-cell function in autoantibody-positive youth with diabetes.Diabetes Care 32 , 1839-1844 (2009). 19.          W. Hagopian, R. J. Ferry, Jr., N. Sherry, D. Carlin, E. Bonvini, S. Johnson, K. E. Stein, S. Koenig, A. G. Daifotis, K. C. Herold, J. Ludvigsson, I. Protege Trial, teplizumab preserves C-peptide in recent-onset type 1 diabetes: two-year results from the randomized, placebo-controlled Protege trial.Diabetes 62 , 3901-3908 (2013). 20.          K. C. Herold, S. E. Gitelman, M. R. Ehlers, P. A. Gottlieb, C. J. Greenbaum, W. Hagopian, K. D. Boyle, L. Keyes-Elstein, S. Aggarwal, D. Phippard, P. H. Sayre, J. McNamara, J. A. Bluestone, A. T. E. S. T. Ab, teplizumab (anti-CD3 mAb) treatment preserves C-peptide responses in patients with new-onset type 1 diabetes in a randomized controlled trial: metabolic and immunologic features at baseline identify a subgroup of responders.Diabetes 62 , 3766-3774 (2013). 21.          K. C. Herold, W. Hagopian, J. A. Auger, E. Poumian-Ruiz, L. Taylor, D. Donaldson, S. E. Gitelman, D. M. Harlan, D. Xu, R. A. Zivin, J. A. Bluestone, Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus.N Engl J Med 346 , 1692-1698. (2002). 22.          B. Keymeulen, E. Vandemeulebroucke, A. G. Ziegler, C. Mathieu, L. Kaufman, G. Hale, F. Gorus, M. Goldman, M. Walter, S. Candon, L. Schandene, L. Crenier, C. De Block, J. M. Seigneurin, P. De Pauw, D. Pierard, I. Weets, P. Rebello, P. Bird, E. Berrie, M. Frewin, H. Waldmann, J. F. Bach, D. Pipeleers, L. Chatenoud, Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes.N Engl J Med 352 , 2598-2608 (2005). 23.           S. A. Long, J. Thorpe, H. A. DeBerg, V. Gersuk, J. Eddy, K. M. Harris, M. Ehlers, K. C. Herold, G. T. Nepom, P. S. Linsley, Partial exhaustion of CD8 T cells and clinical response to teplizumab in new-onset type 1 diabetes.Sci Immunol 1 , (2016). 24.          N. Sherry, W. Hagopian, J. Ludvigsson, S. M. Jain, J. Wahlen, R. J. Ferry, Jr., B. Bode, S. Aronoff, C. Holland, D. Carlin, K. L. King, R. L. Wilder, S. Pillemer, E. Bonvini, S. Johnson, K. E. Stein, S. Koenig, K. C. Herold, A. G. Daifotis, I. Protege Trial, teplizumab for treatment of type 1 diabetes (Protege study): 1-year results from a randomised, placebo-controlled trial.Lancet 378 , 487-497 (2011). 25.          J. E. Tooley, N. Vudattu, J. Choi, C. Cotsapas, L. Devine, K. Raddassi, M. R. Ehlers, J. G. McNamara, K. M. Harris, S. Kanaparthi, D. Phippard, K. C. Herold, Changes in T-cell subsets identify responders to FcR-nonbinding anti-CD3 mAb (teplizumab) in patients with type 1 diabetes.Eur J Immunol 46 , 230-241 (2016). 26.          K. C. Herold, B. N. Bundy, S. A. Long, J. A. Bluestone, L. A. DiMeglio, M. J. Dufort, S. E. Gitelman, P. A. Gottlieb, J. P. Krischer, P. S. Linsley, J. B. Marks, W. Moore, A. Moran, H. Rodriguez, W. E. Russell, D. Schatz, J. S. Skyler, E. Tsalikian, D. K. Wherrett, A. G. Ziegler, C. J. Greenbaum, G. Type 1 Diabetes TrialNet Study, An Anti-CD3 Antibody, teplizumab, in Relatives at Risk for Type 1 Diabetes.N Engl J Med 381 , 603-613 (2019). 27.          K. Näntö-Salonen, A. Kupila, S. Simell, H. Siljander, T. Salonsaari, A. Hekkala, S. Korhonen, R. Erkkola, J. I. Sipilä, L. Haavisto, Nasal insulin to prevent type 1 diabetes in children with HLA genotypes and autoantibodies conferring increased risk of disease: a double-blind, randomised controlled trial.The Lancet 372 , 1746-1755 (2008). 28.          G. Diabetes Prevention Trial--Type 1 Diabetes Study, Effects of insulin in relatives of patients with type 1 diabetes mellitus.N Engl J Med 346 , 1685-1691 (2002). 29.          G. Writing Committee for the Type 1 Diabetes TrialNet Oral Insulin Study, J. P. Krischer, D. A. Schatz, B. Bundy, J. S. Skyler, C. J. Greenbaum, Effect of Oral Insulin on Prevention of Diabetes in Relatives of Patients With Type 1 Diabetes: A Randomized Clinical Trial.JAMA 318 , 1891-1902 (2017). 30.          H. Elding Larsson, M. Lundgren, B. Jonsdottir, D. Cuthbertson, J. Krischer, A.-I. T. S. G. Di, Safety and efficacy of autoantigen-specific therapy with 2 doses of alum-formulated glutamate decarboxylase in children with multiple islet autoantibodies and risk for type 1 diabetes: A randomized clinical trial.Pediatr Diabetes 19 , 410-419 (2018). 31.          E. A. Gale, P. J. Bingley, C. L. Emmett, T. Collier, G. European Nicotinamide Diabetes Intervention Trial, European Nicotinamide Diabetes Intervention Trial (ENDIT): a randomised controlled trial of intervention before the onset of type 1 diabetes.Lancet 363 , 925-931 (2004). 32.          D. L. Eizirik, M. L. Colli, F. Ortis, The role of inflammation in insulitis and beta-cell loss in type 1 diabetes.Nat Rev Endocrinol 5 , 219-226 (2009). 33.          E. B. Tsai, N. A. Sherry, J. P. Palmer, K. C. Herold, The rise and fall of insulin secretion in type 1 diabetes mellitus.Diabetologia 49 , 261-270 (2006). 34.          E. Ferrannini, A. Mari, V. Nofrate, J. M. Sosenko, J. S. Skyler, D. P. T. S. Group, Progression to diabetes in relatives of type 1 diabetic patients: mechanisms and mode of onset.Diabetes 59 , 679-685 (2010). 35.          K. C. Herold, S. Usmani-Brown, T. Ghazi, J. Lebastchi, C. A. Beam, M. D. Bellin, M. Ledizet, J. M. Sosenko, J. P. Krischer, J. P. Palmer, G. Type 1 Diabetes TrialNet Study, beta cell death and dysfunction during type 1 diabetes development in at-risk individuals.J Clin Invest 125 , 1163-1173 (2015). 36.           N. A. Sherry, E. B. Tsai, K. C. Herold, Natural history of beta-cell function in type 1 diabetes.Diabetes 54 Suppl 2 , S32-39 (2005). 37. K. C. Herold, W. Hagopian, J. A. Auger, E. Poumian-Ruiz, L. Taylor, D. Donaldson, S.   E. Gitelman, D. M. Harlan, D. Xu, R. A. Zivin, J. A. Bluestone, Anti-CD3 monoclonal   antibody in new-onset type 1 diabetes mellitus.N Engl J Med 346 , 1692-1698 (2002). 38. K. C. Herold, S. E. Gitelman, U. Masharani, W. Hagopian, B. Bisikirska, D. Donaldson,   K. Rother, B. Diamond, D. M. Harlan, J. A. Bluestone, A Single Course of Anti-CD3   Monoclonal Antibody hOKT3{gamma}1(Ala-Ala) Results in Improvement in C-Peptide   Responses and Clinical Parameters for at Least 2 Years after Onset of Type 1 Diabetes.   Diabetes 54 , 1763-1769 (2005). 39. L. M. McLane, M. S. Abdel-Hakeem, E. J. Wherry, CD8 T Cell Exhaustion During   Chronic Viral Infection and Cancer.Annu Rev Immunol 37 , 457-495 (2019). 40. J. M. Sosenko, J. P. Palmer, C. J. Greenbaum, J. Mahon, C. Cowie, J. P. Krischer, H. P.   Chase, N. H. White, B. Buckingham, K. C. Herold, D. Cuthbertson, J. S. Skyler, Patterns   of metabolic progression to type 1 diabetes in the Diabetes Prevention Trial-Type 1.   Diabetes Care 29 , 643-649 (2006). 41. M. M. Bogun, B. N. Bundy, R. S. Goland, C. J. Greenbaum, C-Peptide Levels in Subjects   Followed Longitudinally Before and After Type 1 Diabetes Diagnosis in TrialNet.   Diabetes Care 43 , 1-8 (2020). 42. L. Chatenoud, J. Primo, J. F. Bach, CD3 antibody-induced dominant self tolerance in   overtly diabetic NOD mice.J Immunol 158 , 2947-2954 (1997). 43. M. B. Davidson, A. L. Peters, D. L. Schriger, An alternative approach to the diagnosis of   diabetes with a review of the literature.Diabetes Care 18 , 1065-1071 (1995). 44. E. M. Akirav, M. T. Baquero, L. W. Opare-Addo, M. Akirav, E. Galvan, J. A. Kushner,   D. L. Rimm, K. C. Herold, Glucose and inflammation control islet vascular density and   beta-cell function in NOD mice: control of islet vasculature and vascular endothelial   growth factor by glucose.Diabetes 60 , 876-883 (2011). 45. N. A. Sherry, J. A. Kushner, M. Glandt, T. Kitamura, A. M. Brillantes, K. C. Herold,   Effects of autoimmunity and immune therapy on beta-cell turnover in type 1 diabetes.   Diabetes 55 , 3238-3245 (2006). 46. A. L. Perdigoto, P. Preston-Hurlburt, P. Clark, S. A. Long, P. S. Linsley, K. M. Harris, S.   E. Gitelman, C. J. Greenbaum, P. A. Gottlieb, W. Hagopian, A. Woodwyk, J. Dziura, K.   C. Herold, N. Immune Tolerance, Treatment of type 1 diabetes with teplizumab: clinical   and immunological follow-up after 7 years from diagnosis.Diabetologia 62 , 655-664   (2019). 47. K. C. Herold, S. L. Bucktrout, X. Wang, B. W. Bode, S. E. Gitelman, P. A. Gottlieb, J.   Hughes, T. Joh, J. B. McGill, J. H. Pettus, S. Potluri, D. Schatz, M. Shannon, C. Udata,   G. Wong, M. Levisetti, B. J. Ganguly, P. D. Garzone, R. N. W. Group,   Immunomodulatory activity of humanized anti-IL-7R monoclonal antibody RN168 in   subjects with type 1 diabetes.JCI Insight 4 , (2019). 48. M. Battaglia, M. S. Anderson, J. H. Buckner, S. M. Geyer, P. A. Gottlieb, T. W. H. Kay,   A. Lernmark, S. Muller, A. Pugliese, B. O. Roep, C. J. Greenbaum, M. Peakman,   Understanding and preventing type 1 diabetes through the unique working model of   TrialNet.Diabetologia 60 , 2139-2147 (2017). 49. L. Yu, D. C. Boulware, C. A. Beam, J. C. Hutton, J. M. Wenzlau, C. J. Greenbaum, P. J.   Bingley, J. P. Krischer, J. M. Sosenko, J. S. Skyler, G. S. Eisenbarth, J. L. Mahon, G.   Type 1 Diabetes TrialNet Study, Zinc transporter-8 autoantibodies improve prediction of type 1 diabetes in relatives positive for the standard biochemical autoantibodies.Diabetes Care 35 , 1213-1218 (2012). 50.          A. American Diabetes, 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes 2019.Diabetes Care 42 , S13-S28 (2019). 51.          C. Steele, W. A. Hagopian, S. Gitelman, U. Masharani, M. Cavaghan, K. I. Rother, D. Donaldson, D. M. Harlan, J. Bluestone, K. C. Herold, Insulin Secretion in Type 1 Diabetes.Diabetes 53 , 426-433 (2004). 52.          K. S. Polonsky, J. Licinio-Paixao, B. D. Given, W. Pugh, P. Rue, J. Galloway, T. Karrison, B. Frank, Use of biosynthetic human C-peptide in the measurement of insulin secretion rates in normal volunteers and type I diabetic patients.J Clin Invest 77 , 98-105 (1986). 53.          E. Van Cauter, F. Mestrez, J. Sturis, K. S. Polonsky, Estimation of insulin secretion rates from C-peptide levels. Comparison of individual and standard kinetic parameters for C-peptide clearance.Diabetes 41 , 368-377 (1992). 54.          S. A. Long, J. Thorpe, K. C. Herold, M. Ehlers, S. Sanda, N. Lim, P. S. Linsley, G. T. Nepom, K. M. Harris, Remodeling T cell compartments during anti-CD3 immunotherapy of type 1 diabetes.Cell Immunol 319 , 3-9 (2017)All patents and publications mentioned in this specification are hereby incorporated by reference to the extent that each individual patent and publication is specifically and individually indicated to be incorporated by reference herein. Reference 1. AG Ziegler, M. Rewers, O. Simell, T. Simell, J. Lempainen, A. Steck, C. Winkler, J. Ilonen, R. Veijola, M. Knip, Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. Jama 309, 2473-2479 (2013). 2. RA Insel, JL Dunne, MA Atkinson, JL Chiang, D. Dabelea, PA Gottlieb, CJ Greenbaum, KC Herold, JP Krischer, A. Lernmark , RE Ratner, MJ Rewers, DA Schatz, JS Skyler, JM Sosenko, AG Ziegler, Staging presymptomatic type 1 diabetes: a scientific statement of JDRF, the Endocrine Society, and the American Diabetes Association. Diabetes Care 38 , 1964-1974 (2015 3. JP Krischer, KF Lynch, A. Lernmark, WA Hagopian, MJ Rewers, JX She, J. Toppari, AG Ziegler, B. Akolkar, TS Group, Genetic and Environmental Interactions Modify the Risk of Diabetes-Related Autoimmunity by 6 Years of Age: The TEDDY Study. Diabetes Care 40 , 1194-1202 (2017). 4. JL Mahon, JM Sosenko, L. Rafkin-Mervis, H. Krause-Steinrauf, JM Lachin, C. Thompson, PJ Bingley, E. Bonifacio, JP Palmer, GS Eisenbarth, J. Wolfsdorf, JS Skyler, C. TrialNet Natural History, G. Type 1 Diabetes TrialNet Study, The TrialNet Natural History Study of the Development of Type 1 Diabetes : objectives, design, and initial results. Pediatr Diabetes 10 , 97-104 (2009). 5. HT Siljander, R. Hermann, A. Hekkala, J. Lahde, L. Tanner, P. Keskinen, J. Ilonen, O . Simell, R. Veijola, M. Knip, Insulin secretion and sensitivity in the prediction of type 1 diabetes in children with advanced beta-cell autoimmunity. Eur J Endocrinol 169 , 479-503 (2013). 6. NC Foster, RW Beck , KM Miller, MA Clements, MR Rickels, LA DiMeglio, DM Maahs, WV Tamborlane, R. Bergenstal, E. Smith, BA Olson, SK Garg, State of Type 1 Diabetes Management and Outcomes from the T1D Exchange in 2016-2018. Diabetes Technol Ther 21 , 66-72 (2019). 7. A. Rawshani, N. Sattar, S. Franzen, A. Rawshani, AT Hattersley, AM Svensson, B. Eliasson, S. Gudbjornsdottir, Exces s mortality and cardiovascular disease in young adults with type 1 diabetes in relation to age at onset: a nationwide, register-based cohort study. Lancet 392 , 477-486 (2018). 8. SJ Livingstone, D. Levin, HC Looker, RS Lindsay, SH Wild, N. Joss, G. Leese, P. Leslie, RJ McCrimmon, W. Metcalfe, JA McKnight, AD Morris, DW Pearson, JR Petrie, S. Philip, NA Sattar, JP Traynor, HM Colhoun, g. Scottish Diabetes Research Network epidemiology, R. Scottish Renal, Estimated life expectancy in a Scottish cohort with type 1 diabetes, 2008-2010. JAMA 313 , 37-44 (2015). 9. B. Tao, M. Pietropaolo, M . Atkinson, D. Schatz, D. Taylor, Estimating the cost of type 1 diabetes in the US: a propensity score matching method. PLoS One 5 , e11501 (2010). 10. C. Evans-Molina, EK Sims, LA DiMeglio , HM Ismail, AK Steck, JP Palmer, JP Krischer, S. Geyer, P. Xu, JM Sosenko, G. Type 1 Diabetes TrialNet Study, beta Cell dysfunction exists more than 5 years before type 1 diabetes diagnosis. JCI Insight 3 , (2018). 11. EK Sims, LA DiMeglio, Cause or effect? A review of clinical data demonstrating beta cell dysfunction prior to the clinical onset of type 1 diabetes. Mol Metab 27S , S129-S138 (2019). 12. MK Koskinen, O. Helminen, J. Matomäki, S. Aspholm, J. Mykkänen, M. Mäkinen, V. Simell, M. Vähä-Mäkilä, T. Simell, J. Ilonen, Reduced β-cell function in early preclinical type 1 diabetes. European Journal of Endocrinology 174 , 251-259 (2016). 13. PJ Bingley, DK Wherrett, A. Shultz, LE Rafkin, MA Atkinson, CJ Greenbaum, Type 1 Diabetes TrialNet: A Multifaceted Approach to Bringing Disease -Modifying Therapy to Clinical Use in Type 1 Diabetes. Diabetes Care 41 , 653-661 (2018). 14. CJ Greenbaum, C. Speake, J. Krischer, J. Buckner, PA Gottlieb, DA Schatz, KC Herold, MA Atkinson , Strength in Numbers: Opportunities for Enhancing the Development of Effective Treatments for Type 1 Diabetes-The TrialNet Experience. Diabetes 67 , 1216-1225 (2018). 15. BM Nathan, D. Boulware, S. Geyer, MA Atkinson, P. Colman, R. Goland, W. Russell, JM Wentworth, DM Wilson, C. Evans-Molina, D. Wherrett, JS Skyler, A. Moran, JM Sosenko, T. Type 1 Diabetes, G. Diabetes Prevention Trial-Type 1 Study, Dysglycemia and Index60 as Prediagnostic End Points for Type 1 Diabetes Prevention Trials. Diabetes Care 40 , 1494-1499 (2017). 16. JM Sosenko, JP Palmer , L. Rafkin-Mervis, JP Krischer, D. Cuthbertson, J. Mahon, CJ Greenbaum, CC Cowie, JS Skyler, G. Diabetes Prevention Trial-Type 1 Study, Incident dysglycemia and progression to type 1 diabetes among participants in the Diabetes Prevention Trial-Type 1. Diabetes Care 32 , 1603-1607 (2009). 17. JP Palmer, C-peptide in the natural history of type 1 diabetes. Diabetes Metab Res Rev 25 , 325-328 (2009). 18. CJ Greenbaum, AM Anderson, LM Dolan, EJ Mayer-Davis, D. Dabelea, G. Imperatore, S. Marcovina, C. Pihoker, SS Group, Preservation of beta-cell function in autoantibody-positive youth with diabetes. Diabetes Care 32 , 1839-1844 (2009). 19. W. Hagopian, RJ Ferry, Jr., N. Sherry, D. Carlin, E. Bonvini, S. Johnson, KE Stein, S. Koenig, AG Daifotis, KC Herold, J. Ludvigsson, I. Protege Trial, teplizumab preserves C-peptide in recent-onset type 1 diabetes: two-year results from the randomized, placebo-controlled Protege trial. Diabetes 62 , 3901-3908 (2013 ). 20. KC Herold, SE Gitelman, MR Ehlers, PA Gottlieb, CJ Greenbaum, W. Hagopian, KD Boyle, L. Keyes-Elstein, S. Aggarwal, D. Phippard, PH Sayre, J. McNamara, JA Bluestone, ATEST Ab, teplizumab (anti-CD3 mAb) treatment preserves C-peptide responses in patients with new-onset type 1 diabetes in a randomized controlled trial: metabolic and immunologic features at baseline identify a subgroup of responders. Diabetes 62 , 3766-3774 ( 2013). 21. KC Herold, W. Hagopian, JA Auger, E. Poumian-Ruiz, L. Taylor, D. Donaldson, SE Gitelman, DM Harlan, D. Xu, RA Zivin, JA Bluestone, Anti-CD3 monoclonal an tibody in new-onset type 1 diabetes mellitus. N Engl J Med 346 , 1692-1698. (2002). 22. B. Keymeulen, E. Vandemeulebroucke, AG Ziegler, C. Mathieu, L. Kaufman, G. Hale, F . Gorus, M. Goldman, M. Walter, S. Candon, L. Schandene, L. Crenier, C. De Block, JM Seigneurin, P. De Pauw, D. Pierard, I. Weets, P. Rebello, P. Bird, E. Berrie, M. Frewin, H. Waldmann, JF Bach, D. Pipeleers, L. Chatenoud, Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes. N Engl J Med 352 , 2598-2608 ( 2005). 23. SA Long, J. Thorpe, HA DeBerg, V. Gersuk, J. Eddy, KM Harris, M. Ehlers, KC Herold, GT Nepom, PS Linsley, Partial exhaustion of CD8 T cells and clinical response to teplizumab in new-onset type 1 diabetes. Sci Immunol 1 , (2016). 24. N. Sherry, W. Hagopian, J. Ludvigsson, SM Jain, J. Wahlen, RJ Ferry, Jr., B. Bode, S. Aronoff , C. Holland, D. Carlin, KL King, RL Wilder, S. Pillemer, E. Bonvini, S. Johnson, KE Stein, S. Koenig, KC Herold, AG Daifotis, I. Protege Tria l, teplizumab for treatment of type 1 diabetes (Protege study): 1-year results from a randomised, placebo-controlled trial. Lancet 378 , 487-497 (2011). 25. JE Tooley, N. Vudattu, J. Choi, C. Cotsapas, L. Devine, K. Raddassi, MR Ehlers, JG McNamara, KM Harris, S. Kanaparthi, D. Phippard, KC Herold, Changes in T-cell subsets identify responders to FcR-nonbinding anti-CD3 mAb (teplizumab ) in patients with type 1 diabetes. Eur J Immunol 46 , 230-241 (2016). 26. KC Herold, BN Bundy, SA Long, JA Bluestone, LA DiMeglio, MJ Dufort, SE Gitelman, PA Gottlieb, JP Krischer, PS Linsley, JB Marks, W. Moore, A. Moran, H. Rodriguez, WE Russell, D. Schatz, JS Skyler, E. Tsalikian, DK Wherrett, AG Ziegler, CJ Greenbaum, G. Type 1 Diabetes TrialNet Study, An Anti -CD3 Antibody, teplizumab, in Relatives at Risk for Type 1 Diabetes. N Engl J Med 381 , 603-613 (2019). 27. K. Näntö-Salonen, A. Kupila, S. Simell, H. Siljander, T. Salonsaari, A. Hekkala, S. Korhonen, R. Erkkola, JI Sipi lä, L. Haavisto, Nasal insulin to prevent type 1 diabetes in children with HLA genotypes and autoantibodies conferring increased risk of disease: a double-blind, randomised controlled trial. The Lancet 372 , 1746-1755 (2008). 28. G. Diabetes Prevention Trial--Type 1 Diabetes Study, Effects of insulin in relatives of patients with type 1 diabetes mellitus. N Engl J Med 346 , 1685-1691 (2002). 29. G. Writing Committee for the Type 1 Diabetes TrialNet Oral Insulin Study, JP Krischer, DA Schatz, B. Bundy, JS Skyler, CJ Greenbaum, Effect of Oral Insulin on Prevention of Diabetes in Relatives of Patients With Type 1 Diabetes: A Randomized Clinical Trial. JAMA 318 , 1891-1902 (2017). 30. H. Elding Larsson, M. Lundgren, B. Jonsdottir, D. Cuthbertson, J. Krischer, A.-ITSG Di, Safety and efficacy of autoantigen-specific therapy with 2 doses of alum-formulated glutamate decarboxylase in children with multiple islet autoantibodies and risk for type 1 diabetes: A randomized clinical trial. Pediatr Diabetes 19 , 410-419 (2018). 31. EA Gale, PJ Bingley, CL Emmett, T. Collier, G. European Nicotinamide Diabetes Intervention Trial, European Nicotinamide Diabetes Intervention Trial (ENDIT): a randomised controlled trial of intervention before the onset of type 1 diabetes. Lancet 363 , 925-931 (2004). 32. DL Eizirik, ML Colli, F. Ortis, The role of inflammation in insulitis and beta-cell loss in type 1 diabetes. Nat Rev Endocrinol 5 , 219-226 (2009). 33. EB Tsai, NA Sherry, JP Palmer, KC Herold, The rise and fall of insulin secretion in type 1 diabetes mellitus. Diabetologia 49 , 261-270 (2006). 34. E . Ferrannini, A. Mari, V. Nofrate, JM Sosenko, JS Skyler, DPTS Group, Progression to diabetes in relatives of type 1 diabetic patients: mechanisms and mode of onset. Diabetes 59 , 679-685 (2010). 35. KC Herold, S. Usmani-Brown, T. Ghazi, J. Lebastchi, CA Beam, MD Bellin, M. Ledizet, JM Sosenko, JP Krischer, JP Palmer, G. Type 1 Diabetes TrialNet Study, beta cell death and dysfunction during type 1 diabetes development in at-risk individuals. J Clin Invest 125 , 1163-1173 (2015). 36. NA Sherry, EB Tsai, KC Herold, Natural history of beta-cell function in type 1 diabetes. Diabetes 54 Suppl 2 , S32-39 (2005). 37. KC Herold, W. Hagopian, JA Auger, E. Poumian-Ruiz, L. Taylor, D. Donaldson, S. E. Gitelman, DM Harlan, D. Xu, RA Zivin, JA Bluestone, Anti-CD3 monoclonal Antibody in new-onset type 1 diabetes mellitus. N Engl J Med 346 , 1692-1698 (2002). 38. KC Herold, SE Gitelman, U. Masharani, W. Hagopian, B. Bisikirska, D. Donaldson, K. Rother, B. Diamond, DM Harlan, JA Bluestone, A Single Course of Anti-CD3 Monoclonal Antibody hOKT3{gamma}1(Ala-Ala) Results in Improvement in C-Peptide Responses and Clinical Parameters for at Least 2 Years after Onset of Type 1 Diabetes. Diabetes 54 , 1763-1769 (2005). 39. LM McLane, MS Abdel-Hakeem, EJ Wherry, CD8 T Cell Exhaustion During Chronic Viral Infection and Cancer. Annu Rev Immunol 37 , 457-495 (2019). 40. JM Sosenko, JP Palmer, CJ Greenbaum, J. Mahon, C. Cowie, JP Krischer, HP Chase, NH White, B. Buckingham, KC Herold, D. Cuthbertson, JS Skyler, Patterns of metabolic progression to type 1 diabetes in the Diabetes Prevention Trial-Type 1. Diabetes Care 29 , 643-649 (2006). 41. MM Bogun, BN Bundy, RS Goland, CJ Greenbaum, C-Peptide Levels in Subjects Followed Longitudinally Before and After Type 1 Diabetes Diagnosis in TrialNet. Diabetes Care 43 , 1-8 (2020). 42. L. Chatenoud, J. Primo, JF Bach, CD3 antibody-induced dominant self tolerance in overtly diabetic NOD mice. J Immunol 158 , 2947-2954 (1997). 43. MB Davidson, AL Peters, DL Schriger, An alternative approach to the diagnosis of diabetes with a review of the literature. Diabetes Care 18 , 1065-1071 (1995). 44. EM Akirav, MT Baquero, LW Opare-Addo, M. Akirav, E. Galvan, JA Kushner, DL Rimm, KC Herold, Glucose and inflammation control islet vascular density and beta-cell function in NOD mice: control of islet vasculature and vascular endothelial growth factor by glucose. Diabetes 60 , 876-883 (2011). 45. NA Sherry, JA Kushner, M. Glandt, T. Kitamura, AM Brillantes, KC Herold, Effects of autoimmunity and immune therapy on beta-cell turnover in type 1 diabetes. Diabetes 55 , 3238-3245 (2006). 46. AL Perdigoto, P. Preston-Hurlburt, P. Clark, SA Long, PS Linsley, KM Harris, S. E. Gitelman, CJ Greenbaum, PA Gottlieb, W. Hagopian, A. Woodwyk, J. Dziura, K. C. Herold, N. Immune Tolerance, Treatment of type 1 diabetes with teplizumab: clinical and immunological follow-up after 7 years from diagnosis. Diabetologia 62 , 655-664 (2019). 47. KC Herold, SL Bucktrout, X. Wang, BW Bode, SE Gitelman, PA Gottlieb, J. Hughes, T. Joh, JB McGill, JH Pettus, S. Potluri, D. Schatz, M. Shannon, C. Udata, G. Wong, M. Levisetti, BJ Ganguly, PD Garzone, RNW Group, Immunomodulatory activity of humanized anti-IL-7R monoclonal antibody RN168 in subjects with type 1 diabetes. JCI Insight 4 , (2019). 48. M. Battaglia, MS Anderson, JH Buckner, SM Geyer, PA Gottlieb, TWH Kay, A. Lernmark, S. Muller, A. Pugliese, BO Roep, CJ Greenbaum, M. Peakman, Understanding and preventing type 1 diabetes through the unique working model of TrialNet. Diabetologia 60 , 2139-2147 (2017). 49. L. Yu, DC Boulware, CA Beam, JC Hutton, JM Wenzlau, CJ Greenbaum, PJ Bingley, JP Krischer, JM Sosenko, JS Skyler, GS Eisenbarth, JL Mahon, G. Type 1 Diabetes TrialNet Study, Zinc transporter-8 autoantibodies improve prediction of type 1 diabetes in relatives positive for the standard biochemical autoantibodies. Diabetes Care 35 , 1213-1218 (2012). 50. A. American Diabetes, 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes 2019. Diabetes Care 42 , S13-S28 (2019). 51. C. Steele, WA Hagopian, S. Gitelman, U. Masharani , M. Cavaghan, KI Rother, D. Donaldson, DM Harlan, J. Bluestone, KC Herold, Insulin Secretion in Type 1 Diabetes. Diabetes 53 , 426-433 (2004). 52. KS Polonsky, J. Licinio-Paixao, BD Given, W. Pugh, P. Rue, J. Galloway, T. Karrison, B. Frank, Use of biosynthetic human C-peptide in the measurement of insulin secretion rates in normal volunteers and type I diabetic patients. J Clin Invest 77 , 98-105 (1986). 53. E. Van Cauter, F. Mestrez, J. Sturis, KS Polonsky, Estimation of insulin secretion rates from C-peptide levels. Comparison of individual and standard kinetic parameters for C-peptide clearance. Diabetes 41 , 368-377 (1992). 54. SA Long, J. Thorpe, KC Herold, M. Ehlers, S. Sanda, N. Lim, PS Linsley, GT Nepom, KM Harris, Remodeling T cell comp arts during anti-CD3 immunotherapy of type 1 diabetes. Cell Immunol 319 , 3-9 (2017)

none

圖1A顯示入選至特普珠單抗預防研究中之風險個體的CONSORT圖。Figure 1A shows a CONSORT plot of at-risk individuals enrolled in the Teplizumab prophylaxis study.

圖1B顯示在923天的追蹤中,特普珠單抗治療與在第1型糖尿病進展上的持續作用相關。根據923天(範圍74-3,119天)的追蹤更新Kaplan-Meier曲線。在特普珠單抗治療參與者對安慰劑中,發展成第1型糖尿病的風險比值為0.457;p=0.01。在安慰劑與特普珠單抗組中,發展成糖尿病之中位數時間分別為24.4及59.6個月。在此時間結束時,分別有7位(22%)及22位(50%)未診斷有T1D。Figure IB shows that teplizumab treatment was associated with a sustained effect on type 1 diabetes progression over a 923-day follow-up. Kaplan-Meier curves were updated based on 923 days of follow-up (range 74-3,119 days). In teplizumab-treated participants versus placebo, the hazard ratio for developing type 1 diabetes was 0.457; p=0.01. The median time to development of diabetes was 24.4 and 59.6 months in the placebo and teplizumab groups, respectively. At the end of this time, 7 (22%) and 22 (50%), respectively, had undiagnosed T1D.

圖2A及2B顯示特普珠單抗(圖2A)及安慰劑(圖2B)治療參與者在頭36個月期間的之OGTT測試結果:每一條線代表一位參與者。符號表示OGTT測試時間。結果表示:黑點=糖尿病位準/確診、紅點=血糖異常、藍點=正常。Figures 2A and 2B show the results of the OGTT test for teplizumab (Figure 2A) and placebo (Figure 2B) treated participants during the first 36 months: each line represents one participant. Symbols indicate OGTT test time. The results indicated: black dot = diabetes level/diagnosis, red dot = abnormal blood sugar, blue dot = normal.

圖3A及3B顯示出特普珠單抗治療參與者中血糖的改善與保持血糖異常狀態有相關。圖3A顯示各組之參與者在36個月的追蹤中之OGTT分類。數據顯示至36個月,因為有T1D的臨床確斷而失去安慰劑治療參與者(針對個別的參與者見圖2A-2B)。圖3B係顯示安慰劑與特普珠單抗治療組之參與者的研究中OGTT葡萄糖AUC平均值之中位數及四分位數間距範圍的箱形圖。包含基線值、年齡及治療組之ANCOVA模型顯示出,治療組對降低平均研究中葡萄糖AUC具有顯著的作用(ANCOVA特普珠單抗作用:92.8%,p=0.03)。Figures 3A and 3B show that improvement in blood glucose in teplizumab-treated participants is associated with maintenance of dysglycemia. Figure 3A shows the OGTT classification of participants in each group over a 36-month follow-up. The data show that by 36 months, placebo-treated participants were lost due to clinical confirmation of T1D (see Figures 2A-2B for individual participants). Figure 3B is a box plot showing the median and interquartile range of the mean OGTT glucose AUC in the study for participants in the placebo and teplizumab treatment groups. An ANCOVA model including baseline values, age, and treatment group showed that treatment group had a significant effect on reducing the mean on-study glucose AUC (ANCOVA teprozumab effect: 92.8%, p=0.03).

圖4顯示在表現安慰劑與特普珠單抗治療組之參與者的平均研究中血紅素A1c AUC之中位數及四分位數間距範圍的箱形圖中,治療組的平均研究中血紅素A1c位準。包含基線值、年齡及治療組之ANCOVA模型顯示出,治療組沒有顯著的影響(p=0.14)。Figure 4 shows the mean on-study hemoglobin median and interquartile range of the mean on-study hemoglobin AUC for participants in the placebo and teplizumab-treated groups in boxplot Prime A1c level. An ANCOVA model including baseline values, age and treatment group showed no significant effect of treatment group (p=0.14).

圖5顯示出特普珠單抗治療與平均研究中C肽AUC之增加有關。圖5係顯示安慰劑與特普珠單抗治療組之參與者的平均研究中OGTT C肽AUC平均值之中位數及四分位數間距範圍的箱形圖。包含基線C肽AUC及年齡之ANCOVA模型顯示出,治療與較高的平均研究中C肽AUC有關(p=0.009)。Figure 5 shows that Teplizumab treatment is associated with an increase in mean C-peptide AUC studied. Figure 5 is a box plot showing the median and interquartile range of the mean on-study OGTT C-peptide AUC for participants in the placebo and teplizumab treatment groups. An ANCOVA model including baseline C-peptide AUC and age showed that treatment was associated with higher mean on-study C-peptide AUC (p=0.009).

圖6顯示平均研究中C肽AUC與年齡及平均研究中葡萄糖AUC的相關性。圖6顯示年齡對研究中C肽AUC之散佈圖(r=0.44,p=0.0001)。Figure 6 shows the correlation of mean on-study C-peptide AUC with age and mean on-study glucose AUC. Figure 6 shows a scatter plot of age versus C-peptide AUC in the study (r=0.44, p=0.0001).

圖7顯示在第1年期間二個治療組中隨時間推移的C肽。顯示對數轉換的平均C肽AUC。箭頭表示各時間點後個體因糖尿病發展而從OGTT監控退出。“基線前”時間點的中位數值為24。隨機分組前與“基線”中位數值時間點的月數是隨機分組前0.85個月。在特普珠單抗組中治療6個月的C肽AUC值對基線的比較,以及在特普珠單抗組中6個月的C肽AUC值對安慰劑組中6個月的C肽AUC值的比較之*P<0.05。Figure 7 shows C-peptide over time in the two treatment groups during the first year. Log-transformed mean C-peptide AUC is shown. Arrows indicate individuals withdrew from OGTT monitoring for diabetes development after each time point. The median value for the "pre-baseline" time point was 24. The number of months before randomization and the "baseline" median time point was 0.85 months before randomization. Comparison of C-peptide AUC values at 6 months of treatment in the teplizumab group versus baseline, and C-peptide AUC values at 6 months in the teplizumab group versus 6 months of C-peptide in the placebo group *P<0.05 for comparison of AUC values.

圖8A-8G顯示特普珠單抗或安慰劑治療後之胰島素分泌。估算入選前訪視時及研究藥物治療後頭6個月內,在OGTT的總(圖8A)、第一小時(圖8B)及第二小時(圖8C)期間分泌的胰島素(pmol)之斜率。示出中位數值(及陰影顏色95% CIs)。參考表5之統計分析。圖8D及8E顯示二個未診斷有T1D之特普珠單抗參與者(11與12歲)及(圖8F與圖8G)二個診斷有T1D之安慰劑治療的個體(均13歲) 之連續OGTTs期間的代表性胰島素分泌速率。彩色線條表示與研究藥物投與相關的訪視時間。Figures 8A-8G show insulin secretion following teplizumab or placebo treatment. Slopes of insulin secreted (pmol) during the total (Fig. 8A), first hour (Fig. 8B) and second hour (Fig. 8C) hours of the OGTT at the pre-enrollment visit and within the first 6 months after study drug treatment were estimated. Median values (and shaded color 95% CIs) are shown. Refer to Table 5 for statistical analysis. Figures 8D and 8E show two teplizumab participants without a diagnosis of T1D (11 and 12 years of age) and (Figures 8F and 8G) two placebo-treated individuals with a diagnosis of T1D (both 13 years of age). Representative insulin secretion rates during consecutive OGTTs. Colored lines indicate visit times associated with study drug administration.

圖9A-9E顯示特普珠單抗在研究過程中保存C肽直到確診期間。在所有圖表中,來自特普珠單抗治療參與者的數據顯示為藍色,安慰劑治療參與者的顯示為暗紅色。圖9A與圖9B顯示從基線研究訪視一直到確診之OGTT監控研究期間C肽AUC值的迴歸線(特普珠單抗n=44,安慰組n=32)。圖9C與圖9D顯示糖尿病確診前6個月期間C肽AUC值之迴歸線(安慰劑n=23,特普珠單抗 n=22)。圖9E顯示發展成T1D之參與者於診斷前6個月期間,以及保持無T1D之個體最後6個月研究期間C肽AUC的斜率。Figures 9A-9E show that Teplizumab preserves C-peptide during the study until the time of diagnosis. In all graphs, data from teplizumab-treated participants are shown in blue and placebo-treated participants are shown in dark red. Figures 9A and 9B show regression lines for C-peptide AUC values during the OGTT surveillance study period from the baseline study visit until diagnosis (teplizumab n=44, placebo n=32). Figures 9C and 9D show regression lines for C-peptide AUC values during the 6 months prior to diabetes diagnosis (placebo n=23, teplizumab n=22). Figure 9E shows the slope of C-peptide AUC during the 6 months prior to diagnosis in participants who developed T1D, and during the last 6 months of the study in individuals who remained T1D-free.

圖10A及圖10B顯示出在確診時治療組間之C肽值相似。圖10A顯示T1D臨床確診時之C肽AUC/葡萄糖AUC。圖10B顯示T1D臨床確診時之C肽AUC。值是從與T1D分類一致的兩個連續確診OGTT中的第一個獲得。Figures 10A and 10B show that C-peptide values were similar between treatment groups at diagnosis. Figure 10A shows C-peptide AUC/glucose AUC at clinical diagnosis of T1D. Figure 10B shows C-peptide AUC at clinical diagnosis of T1D. Values were obtained from the first of two consecutive confirmed OGTTs consistent with the T1D classification.

圖11A-11C顯示T細胞之功能變化與代謝功能改善有關。圖11A顯示基線與3個月間TIGIT+KLRG1+CD45RO+CD8+ T細胞的變化,及示出基線與6個月間C肽AUC之變化。在特普珠單抗中,此細胞亞群之變化與C肽間具有顯著相關性(皮爾森r=0.44,p=0.014,n=31),但在安慰劑治療參與者中不具相關性(r=0.28,p=0.25,n=18)。圖11B與圖11C顯示在基線及3個月時,安慰劑治療參與者(紅點,n=16)及藥物治療參與者(藍點,n=24)之生成IFNγ或TNFα的DP CD8+記憶細胞之頻率。在特普珠單抗治療的參與者中,生成IFNγ或TNFα的細胞頻率降低(成對T-檢定,***p<0.0001)。Figures 11A-11C show that functional changes in T cells are associated with improved metabolic function. Figure 11A shows the change in TIGIT+KLRG1+CD45RO+CD8+ T cells between baseline and 3 months, and shows the change in C-peptide AUC between baseline and 6 months. Changes in this cell subset were significantly correlated with C-peptide in teplizumab (Pearson r=0.44, p=0.014, n=31), but not in placebo-treated participants ( r=0.28, p=0.25, n=18). Figures 11B and 11C show IFNγ or TNFα producing DP CD8+ memory cells in placebo-treated participants (red dots, n=16) and drug-treated participants (blue dots, n=24) at baseline and 3 months frequency. The frequency of IFNγ or TNFα producing cells was reduced in teplizumab-treated participants (paired T-test, ***p<0.0001).

圖12顯示具最佳結果之特普珠單抗治療受試者,具有較多的TIGIT+KLRG1+ CD8 T細胞。Figure 12 shows that teplizumab-treated subjects with the best results had more TIGIT+KLRG1+ CD8 T cells.

圖13及圖14顯示全部的TIGIT+KLRG1+CD8 T細胞類似耗竭細胞。Figures 13 and 14 show that all TIGIT+KLRG1+CD8 T cells resemble depleted cells.

圖15及圖16顯示全部的TIGIT+KLRG1+CD8 T細胞是異質的。Figures 15 and 16 show that all TIGIT+KLRG1+CD8 T cells are heterogeneous.

圖17顯示在特普珠單抗TrialNet Stage 2試驗中,TIGIT+KLRG1+ T細胞遍及大部分的記憶CD8圖景。Figure 17 shows that TIGIT+KLRG1+ T cells pervaded most of the memory CD8 landscape in the Teplizumab TrialNet Stage 2 assay.

圖18-21顯示TIGIT+KLRG1+亞群在反應及結果中不同。Figures 18-21 show that the TIGIT+KLRG1+ subpopulation differs in response and outcome.

圖22顯示30至120分鐘葡萄糖及C肽之OGTT模式。Figure 22 shows the OGTT pattern of glucose and C-peptide from 30 to 120 minutes.

圖23顯示平均葡萄糖與C肽值之2D圖,其在DPT-1內的“進展型”與 “非進展型”中鑑定出不同的縱向OGTT模式。Figure 23 shows a 2D plot of mean glucose and C-peptide values identifying distinct longitudinal OGTT patterns in "progressive" versus "nonprogressive" within DPT-1.

圖24顯示30-120分鐘OGTT時間點的平均葡萄糖與C肽值之2D圖,在3個月訪視時顯示出不同的模式。Figure 24 shows a 2D plot of mean glucose versus C-peptide values for the 30-120 min OGTT time points, showing different patterns at the 3 month visit.

圖25顯示C肽/葡萄糖AUC之比值3個月的變化,與其它代謝測量值相比,其顯示出最顯著的差異。Figure 25 shows the 3-month change in the ratio of C-peptide/glucose AUC, which showed the most significant difference compared to other metabolic measures.

 

Claims (14)

一種用於預防或延遲臨床第1型糖尿病(T1D)發病的方法,其包含: 提供有罹患T1D風險之一非糖尿病受試者; 對該非糖尿病受試者投與一預防性有效量的抗CD3抗體;及 在該投與步驟之前或之後,確定該非糖尿病受試者之全部CD3+ T細胞中具有超過約10%的TIGIT+KLRG1+CD8+ T細胞,其表示成功地預防或延遲臨床T1D之發病。A method for preventing or delaying the onset of clinical type 1 diabetes (T1D), comprising: Provide a non-diabetic subject who is at risk of developing T1D; administering to the non-diabetic subject a prophylactically effective amount of an anti-CD3 antibody; and Before or after the administering step, the non-diabetic subject was determined to have greater than about 10% TIGIT+KLRG1+CD8+ T cells of all CD3+ T cells, which is indicative of successful prevention or delay of the onset of clinical T1D. 如請求項1的方法,其中該非糖尿病受試者是患有T1D之患者的親屬。The method of claim 1, wherein the non-diabetic subject is a relative of a patient with T1D. 如請求項1的方法,其進一步包含確定該非糖尿病受試者(1)實質上無抗鋅轉運蛋白8 (ZnT8)之抗體,(2)是HLA-DR4+和/或(3)不是HLA-DR3+。The method of claim 1, further comprising determining that the non-diabetic subject is (1) substantially free of antibodies against zinc transporter 8 (ZnT8), (2) is HLA-DR4+ and/or (3) is not HLA-DR3+ . 如請求項3的方法,其中該非糖尿病受試者具有2或多種選自下列之糖尿病相關自體抗體:胰島細胞抗體(ICA)、胰島素自體抗體(IAA)及針對麩胺酸脫羧基酶(GAD)、酪胺酸磷酸酶(IA-2/ICA512)或ZnT8之抗體。The method of claim 3, wherein the non-diabetic subject has 2 or more diabetes-associated autoantibodies selected from the group consisting of islet cell antibody (ICA), insulin autoantibody (IAA) and directed against glutamate decarboxylase ( GAD), tyrosine phosphatase (IA-2/ICA512) or antibodies to ZnT8. 如請求項1的方法,其中該非糖尿病受試者在口服葡萄糖耐受性試驗(OGTT)中具有異常的葡萄糖耐受性。The method of claim 1, wherein the non-diabetic subject has abnormal glucose tolerance in an oral glucose tolerance test (OGTT). 如請求項5的方法,其中該OGTT中異常的葡萄糖耐受性,是空腹葡萄糖位準為110-125mg/dL,或2小時血漿≥ 140及< 200 mg/dL,或OGTT之30、60或90分鐘的干預葡萄糖值> 200 mg/dL。The method of claim 5, wherein the abnormal glucose tolerance in the OGTT is a fasting glucose level of 110-125 mg/dL, or a 2-hour plasma ≥ 140 and < 200 mg/dL, or 30, 60 or 30 mg/dL of the OGTT Intervention glucose value > 200 mg/dL at 90 minutes. 如請求項3的方法,其中該非糖尿病受試者沒有抗ZnT8抗體。The method of claim 3, wherein the non-diabetic subject has no anti-ZnT8 antibodies. 如請求項3的方法,其中該非糖尿病受試者是HLA-DR4+且不是HLA-DR3+。The method of claim 3, wherein the non-diabetic subject is HLA-DR4+ and not HLA-DR3+. 如請求項1的方法,其中該抗CD3抗體是選自特普珠單抗(teplizumab)、奧替利珠單抗(otelixizumab)或福拉魯單抗(foralumab)。The method of claim 1, wherein the anti-CD3 antibody is selected from teplizumab, otelixizumab or foralumab. 如請求項9的方法,其中該預防性有效量包含以10-1000微克/平方米(μg/m2 )皮下(SC)注射或靜脈(IV)輸注或經口投與該抗CD3抗體10至14天的療程,較佳地在第0-3天分別以51μg/m2 、103μg/m2 、207μg/m2 及413μg/m2 及在第4–13天每一天一劑826μg/m2 IV輸注14天的療程。The method of claim 9, wherein the prophylactically effective amount comprises subcutaneous (SC) injection or intravenous (IV) infusion or oral administration of the anti-CD3 antibody at 10-1000 micrograms per square meter (μg/m 2 ) 10 to treatment 14 days, preferably 0-3 days, respectively, at 51μg / m 2, 103μg / m 2, 207μg / m 2 and 413μg / m 2 and each of the 4-13 days sky agent 826μg / m 2 IV infusion over a 14-day course. 如請求項9的方法,其中該預防性有效量將臨床確診T1D的中位數時間延遲至少50%、至少80%或至少90%,或至少12個月、至少18個月、至少24個月、至少36個月、至少48個月或至少60個月。The method of claim 9, wherein the prophylactically effective amount delays the median time to clinical diagnosis of T1D by at least 50%, at least 80%, or at least 90%, or at least 12 months, at least 18 months, at least 24 months , at least 36 months, at least 48 months, or at least 60 months. 如請求項1-11項中任一項的方法,其中TIGIT+KLRG1+CD8+ T細胞之測定,是通過流式細胞分析技術。The method of any one of claims 1-11, wherein the determination of TIGIT+KLRG1+CD8+ T cells is by flow cytometry. 如請求項1-11項中任一項的方法,其進一步包含確定表現增生標記Ki67和/或CD57之CD8+ T細胞的百分比減少。The method of any of claims 1-11, further comprising determining the percentage reduction in CD8+ T cells expressing the proliferation markers Ki67 and/or CD57. 一種預知抗CD3抗體在預防或延遲第1型糖尿病(T1D)發病之反應性的方法,其包含: 提供有罹患T1D風險之一非糖尿病受試者; 對該非糖尿病受試者投與一預防性有效量的抗CD3抗體;及 測定C肽之曲線下方面積(AUC):葡萄糖AUC之比值,其中該比值增加表示對抗CD3抗體具反應性和/或不進展成臨床T1D。A method for predicting the responsiveness of anti-CD3 antibodies in preventing or delaying the onset of type 1 diabetes (T1D), comprising: Provide a non-diabetic subject who is at risk of developing T1D; administering to the non-diabetic subject a prophylactically effective amount of an anti-CD3 antibody; and The area under the curve (AUC) for C-peptide: glucose AUC ratio was determined, where an increase in the ratio indicates anti-CD3 antibody responsiveness and/or no progression to clinical T1D.
TW110102871A 2020-06-11 2021-01-26 Methods and compositions for preventing type 1 diabetes TW202146450A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
KR1020237001157A KR20230092863A (en) 2020-06-11 2021-06-11 Methods and compositions for preventing type 1 diabetes
BR112022025381A BR112022025381A2 (en) 2020-06-11 2021-06-11 METHODS AND COMPOSITIONS TO PREVENT TYPE 1 DIABETES
PCT/US2021/037039 WO2021252917A2 (en) 2020-06-11 2021-06-11 Methods and compositions for preventing type 1 diabetes
AU2021287998A AU2021287998A1 (en) 2020-06-11 2021-06-11 Methods and compositions for preventing type 1 diabetes
CA3182445A CA3182445A1 (en) 2020-06-11 2021-06-11 Methods and compositions for preventing type 1 diabetes
MX2022015872A MX2022015872A (en) 2020-06-11 2021-06-11 Methods and compositions for preventing type 1 diabetes.
EP21821720.6A EP4164689A2 (en) 2020-06-11 2021-06-11 Methods and compositions for preventing type 1 diabetes
JP2022576539A JP2023530109A (en) 2020-06-11 2021-06-11 Methods and compositions for preventing type 1 diabetes
IL298999A IL298999A (en) 2020-06-11 2021-06-11 Methods and compositions for preventing type 1 diabetes
US17/345,495 US12006366B2 (en) 2021-01-26 2021-06-11 Methods and compositions for preventing type 1 diabetes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063037968P 2020-06-11 2020-06-11
US63/037,968 2020-06-11

Publications (1)

Publication Number Publication Date
TW202146450A true TW202146450A (en) 2021-12-16

Family

ID=80783984

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110102871A TW202146450A (en) 2020-06-11 2021-01-26 Methods and compositions for preventing type 1 diabetes

Country Status (1)

Country Link
TW (1) TW202146450A (en)

Similar Documents

Publication Publication Date Title
JP7137696B2 (en) Methods and compositions for preventing type 1 diabetes
Herold et al. Teplizumab (anti-CD3 mAb) treatment preserves C-peptide responses in patients with new-onset type 1 diabetes in a randomized controlled trial: metabolic and immunologic features at baseline identify a subgroup of responders
JP2022106983A (en) Reducing systemic regulatory t cell levels or activity for treatment of disease and injury of cns
US9783600B2 (en) Apolipoprotein C3 (ApoCIII) antagonists and methods of their use to remove ApoCIII inhibition of lipoprotein lipase (LPL)
KR20150022878A (en) Diabetes biomarkers
Van Belle et al. Pre-existing autoimmunity determines type 1 diabetes outcome after Flt3-ligand treatment
KR102416144B1 (en) Methods of Predicting Therapeutic Benefit of Anti-CD19 Therapy in Patients
JP2023530109A (en) Methods and compositions for preventing type 1 diabetes
TW202146450A (en) Methods and compositions for preventing type 1 diabetes
US12006366B2 (en) Methods and compositions for preventing type 1 diabetes
CN112512578A (en) Administration of bispecific antibodies that bind to CD123 and CD3
EP4164689A2 (en) Methods and compositions for preventing type 1 diabetes
CN116916951A (en) Methods and compositions for preventing type 1 diabetes
Grönholm et al. Novel diagnostic and therapeutic approaches for autoimmune diabetes—a prime time to treat insulitis as a disease
EP3873601A1 (en) Methods and compositions for preventing type 1 diabetes
TW202411250A (en) Methods and compositions for preventing or delaying type 1 diabetes
US20230382993A1 (en) Methods and compositions for preventing or delaying type 1 diabetes
KR20240083177A (en) Methods and compositions comprising an anti-CD3 antibody and a DYRK1A inhibitor for treating diabetes
WO2023044495A2 (en) Methods for prognosing type 1 diabetes treatments
Michels et al. APR-246 increases tumor antigenicity independent of p53
Quinn et al. What does the licensing of teplizumab mean for diabetes care?
JP2024521164A (en) Methods for Treating Post-Infectious Autoimmune Diabetes Mellitus - Patent application
McCormick Alexandra Martin1, 4, Gail J. Mick, Heather M. Choat, Alison A. Lunsford, Hubert M. Tse 2, Gerald G. McGwin Jr. 3 &
CN117940162A (en) Methods and compositions comprising anti-CD 3 antibodies and DYRK1A inhibitors for the treatment of diabetes
JP2024520444A (en) Methods for Treating Type 1 Diabetes