TW202143663A - 超小型毫米波5g波束形成器架構 - Google Patents

超小型毫米波5g波束形成器架構 Download PDF

Info

Publication number
TW202143663A
TW202143663A TW110115885A TW110115885A TW202143663A TW 202143663 A TW202143663 A TW 202143663A TW 110115885 A TW110115885 A TW 110115885A TW 110115885 A TW110115885 A TW 110115885A TW 202143663 A TW202143663 A TW 202143663A
Authority
TW
Taiwan
Prior art keywords
terminal
circuit
input
output
switch
Prior art date
Application number
TW110115885A
Other languages
English (en)
Inventor
奧列克桑德爾 戈爾巴喬夫
Original Assignee
美商莫比克斯實驗公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商莫比克斯實驗公司 filed Critical 美商莫比克斯實驗公司
Publication of TW202143663A publication Critical patent/TW202143663A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/28Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the amplitude
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3036Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers
    • H03G3/3042Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers in modulators, frequency-changers, transmitters or power amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G2201/00Indexing scheme relating to subclass H03G
    • H03G2201/10Gain control characterised by the type of controlled element
    • H03G2201/103Gain control characterised by the type of controlled element being an amplifying element
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G2201/00Indexing scheme relating to subclass H03G
    • H03G2201/30Gain control characterized by the type of controlled signal
    • H03G2201/307Gain control characterized by the type of controlled signal being radio frequency signal

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一種可連接至一陣列的天線元件之射頻積體電路具有一RF輸入/輸出埠、以及分別連接至所述陣列的個別的天線元件的天線埠。具有一放大器輸入以及一放大器輸出的一發送-接收放大器電路會在一發送模式以及一接收模式期間都被啟動。一RF開關選擇性地在一發送模式中將所述放大器輸入連接至所述RF輸入/輸出埠以及將所述放大器輸出連接至所述天線埠中之一者,並且在一接收模式中將所述放大器輸入連接至所述天線埠中之所述一者以及將所述放大器輸出連接至所述RF輸入/輸出埠。

Description

超小型毫米波5G波束形成器架構
本揭露內容大致上關於射頻(RF)通訊裝置,並且更具體而言是有關超小尺寸的5G毫米波波束形成器架構。 相關申請案之交互參照
此申請案是有關且主張2020年5月6日申請且名稱為“超小型毫米波5G波束形成器架構”的第63/020,707號美國臨時申請案的權益,所述美國臨時申請案的揭露內容在此以其整體全部被納入作為參考。
無線通訊系統應用於許多涉及在類似的長短距離上的資訊傳輸的情境中,並且已經開發出針對於每一個需求所調適的廣範圍的模式。在這些系統中有關普及與佈署上的最主要的是行動或蜂巢式行動電話。一般而言,無線通訊利用經調變以代表資料的一射頻載波信號,並且所述信號的調變、發送、接收、以及解調符合一組用於其協調的標準。許多不同的行動通訊技術或空氣介面是存在的,其包含GSM(全球行動通訊系統)、EDGE(GSM增強數據率演進)、以及UMTS(全球行動通訊系統)。
這些技術的各種世代是存在的,而且分階段佈署,最新的是5G寬頻蜂巢式網路系統。5G的特徵是在於產生自較大的頻寬的資料傳輸速度上的顯著的改善,此是可行的,因為具有相較於4G及更早的標準的更高的操作頻率。用於5G網路的空氣介面是由兩個頻帶所構成,頻率範圍1(FR1),其操作頻率是低於6GHz,具有100MHz的最大通道頻寬、以及頻率範圍2(FR2),其操作頻率是高於24GHz,具有一介於50MHz到400MHz之間的通道頻寬。後者通常是被稱為毫米波(mmWave)頻率範圍。儘管有所述較高的操作頻帶,而且毫米波/FR2尤其是提供最高的資料傳輸速度,但是此種信號的發送距離可能是有限的。再者,在此頻率範圍的信號可能無法貫穿固體的障礙物。為了克服這些限制,同時容置更多連接的裝置,各種在行動通信基地台以及行動裝置架構上的改善已經被開發。
一個此種改善是在發送及接收端使用多個天線,其亦被稱為MIMO(多輸入、多輸出),其被理解為增加容量密度及處理量。一系列的天線可被配置成單一或多維的陣列,並且再者,其可被採用於波束成形,其中射頻信號被成形以指向接收裝置的一指定的方向。一發送器電路是饋送所述信號至所述天線的每一個,其中所述信號當從所述天線的每一個輻射時的相位是在所述陣列的跨度上變化。至所述個別的天線的集體的信號可以具有一較窄的波束寬度,並且發送的波束的方向可以根據從每一個天線產生自所述相移的建設性及破壞性的干涉來加以調整。波束成形可被用在發送及接收兩者,並且空間的接收靈敏度同樣可加以調整。
更詳細的說,一典型的5G毫米波波束形成器架構是包含單一RF信號輸入埠以及多個天線。在所界定的載波頻率的發送信號是被施加至所述RF信號輸入埠。所述輸入信號是利用一分離器電路而分開成為多個鏈路,其可以是威爾金森(Wilkinson)類型的分離器。所述RF輸入信號的分開的部分是被傳遞至個別的發送鏈路,其分別可以包括一相移器、一可變增益放大器(VGA)、以及一功率放大器(PA),其輸出是連接至單一天線元件。
在所述單一RF信號輸入埠以及所述天線陣列之間的此介面電路是被配置以亦用於接收操作,並且包含個別的接收鏈路,其分別可包含一低雜訊放大器(LNA)、一可變增益放大器、以及與用於所述發送鏈路者分開的一相移器,其中所述低雜訊放大器的輸入是連接至所述天線。有一中間的RF開關,其通常具有單極雙投類型,其中極端子是連接至所述天線,第一投端子是連接至所述發送鏈路(例如,所述功率放大器的輸出),並且所述第二投端子是連接至所述接收鏈路(例如,所述低雜訊放大器的輸入)。所述接收鏈路相移器的輸出是連接至一第二RF開關,其類似地具有單極雙投類型,其中極端子是連接至所述組合器的輸入,所述第一投端子是連接至所述發送鏈路(例如,所述發送鏈路相移器的輸入),並且所述第二投端子是連接至所述接收鏈路(例如,所述接收鏈路相移器的輸出)。傳統上,所述組合器電路也是一威爾金森類型。所述分離器以及所述組合器可被實施為單一模組化構件,其被稱為一分離器-組合器。
除了所述共用的中間的RF開關以及所述分離器-組合器之外,所述發送鏈路以及所述接收鏈路可以是由個別且獨立的構件所構成。然而,在某些情形中,所述發送及接收鏈路共用某些構件(例如,所述相移器)也是可能的。在此種實施方式中,所述相移器的一埠是連接至所述分離器-組合器,而另一埠是連接至所述第二RF開關的極端子。
目前5G毫米波相位陣列天線的解決方案可以利用高達數百個個別的發送及接收鏈路,因為總數是對應於所述陣列中的天線元件的數目,其可以是數百個。每一個發送鏈路及接收鏈路是導致在所述波束形成器積體電路的半導體晶粒面積上的一對應的增加。再者,每一個鏈路都貢獻到在來自所述偏壓供應的DC電流汲極上的非所要的增加、在所述發送及接收鏈路之間的切換速度上的增加、以及在控制線及相關的串列週邊介面(SPI)暫存器的數目上的增加,以控制所述電路的每一個。
於是,在此項技術中對於一種用於多通道的5G毫米波應用的改善的相位陣列天線波束形成器架構是有所需求。對於所述RF積體電路,尤其是在其之發送及接收鏈路上具有較少的整體電路構件是有所需求。在單一晶粒RF積體電路中專用於所述波束形成器電路的整體晶粒面積上的縮減亦將會是所期望的。
本揭露內容係思及在相位陣列天線波束形成器射頻(RF)積體電路上的改善,其中電路構件的總數顯著地被降低。所述積體電路的實施例可被利用在5G毫米波系統中,儘管本揭露內容可以應用於陣列天線RFIC的任何其它適當的應用。在一實施例中,在專用於所述發送鏈路以及接收鏈路電路構件的RFIC中的晶粒面積可以顯著地被降低,並且較佳的是幾乎減半。
根據本揭露內容的一實施例,一種相位陣列波束形成器電路可以是可連接至一陣列的天線元件。所述電路可包含一RF輸入-輸出埠、以及一或多個天線埠,其分別可以是可連接至所述天線元件的一個別的天線元件。亦可以有一分離器-組合器,其包含連接至所述RF輸入-輸出埠的一組合埠、以及一或多個分離埠。所述電路可包含一或多個可變增益放大器電路,其分別具有一輸入以及一輸出、以及一或多個功率放大器電路,其每一個同樣可以具有一輸入以及一輸出。所述電路可包含一或多個RF開關。所述RF開關的每一個可以具有一第一極端子,其連接至和所述分離器-組合器的所述分離埠中的一對應的分離埠電性連通的一分離側的接面。所述RF開關亦可具有一第二極端子,其連接至和所述天線埠中的一對應的天線埠電性連通的一天線側的接面。再者,所述RF開關可包含一第一組的投端子以及一第二組的投端子,其分別可以交替地連接所述第一極端子至所述可變增益放大器電路中的一給定者的所述輸入以及所述功率放大器電路中的連接至其的一對應者的輸出,連接所述第二極端子至所述功率放大器電路中的一給定者的輸出以及所述可變增益放大器電路中的連接至其的一對應者的輸入。
本揭露內容的另一實施例可以是一種相位陣列波束形成器電路,其可連接至一陣列的天線元件。所述電路可包含一RF輸入-輸出埠、以及一或多個天線埠,其分別可以是可連接至所述天線元件的一個別的天線元件。所述電路亦可包含一分離器-組合器,其具有連接至所述RF輸入-輸出埠的一組合埠以及一或多個分離埠。此外,所述電路可包含一或多個第一放大器電路,其分別可以具有一輸入以及一輸出。所述電路可包含一或多個第一RF開關,其分別具有與所述分離器-組合器的所述分離埠中的一對應的分離埠電性連通的一第一極端子、一第二極端子、以及一第一組的投端子和一第二組的投端子,其分別交替地連接所述第一放大器電路中的一給定者的輸入和輸出至所述第一極端子以及所述第二極端子。所述電路可以進一步包含一或多個第二放大器電路,其分別具有一輸入以及一輸出。所述電路亦可包含一或多個第二RF開關,其每一個可以具有一第一極端子,其連接至所述第一RF開關中的一對應者的所述第二極端子、一第二極端子,其和所述天線埠中的一對應的天線埠電性連通、以及一第一組的投端子以及一第二組的投端子,其分別交替地連接所述第二放大器電路中的一給定者的所述第二放大器的輸入以及輸出至所述第一極端子以及所述第二極端子。
在本揭露內容的又一實施例中,可以有一種射頻積體電路,其可連接至一陣列的天線元件。所述積體電路可包含一RF輸入/輸出埠、以及天線埠,其分別可以連接至所述陣列的個別的天線元件。所述積體電路亦可包含一發送-接收放大器電路,其具有一放大器輸入以及一放大器輸出。所述發送-接收放大器電路可以在一發送模式以及一接收模式期間被啟動。可以有一RF開關,其選擇性地在一發送模式中將所述放大器輸入連接至所述RF輸入/輸出埠以及將所述放大器輸出連接至所述天線埠中之一者,並且在一接收模式中將所述放大器輸入連接至所述天線埠中之所述一者以及將所述放大器輸出連接至所述RF輸入/輸出埠。
本揭露內容在伴隨參考以下的詳細說明而結合圖式閱讀時將會最佳的理解。
本揭露內容包含用於超小尺寸的5G毫米波相位天線陣列波束形成器架構的一射頻(RF)積體電路的各種實施例。根據這些實施例,用於實施發送及接收鏈路的電路構件(包含放大器、控制線及偏壓供應)的數目可被降低,其伴隨有在晶粒面積上的縮減。在發送模式操作以及接收模式操作之間的切換時間亦可被降低,其導致在利用此種RF積體電路的通訊節點之間的降低的延遲。
在以下相關所附圖式闡述的詳細說明是欲作為數個目前思及的RF積體電路的實施例的說明,而且並不欲代表所揭露的發明可被開發或利用於其中的唯一形式。所述說明是闡述與舉例說明的實施例有關的功能及特點。然而,將理解的是相同或等同的功能可以藉由不同的實施例來加以達成,所述不同的實施例亦打算內含在本揭露內容的範疇之內。進一步理解的是,例如第一及第二與類似者的關係的術語的使用只是被使用來區別一實體與另一實體,而不一定需要或是暗指在此種實體之間的任何實際的此種關係或順序。
圖1的電路圖描繪一RF積體電路10a的一第一實施例,並且明確地說是描繪其之一特點為一相位陣列天線波束成形器。儘管本揭露內容可以可交換地參照所述波束形成器以及所述RF積體電路10,但是所述波束形成器可以是一包含發送器、接收器、基頻模組、等等的較廣義的RF電路的一部分。此種構件已經從本揭露內容的電路圖省略,但可以是單一積體電路封裝、或甚至是單一半導體晶粒的部分。然而,亦可以有某些實施例是其中所述波束形成器被實施在一離散的晶粒中,並且是在無額外的構件下獨立封裝的。用任何適合用於一給定應用的方式來實施所述RF積體電路10被認為是在具有此項技術中的普通技能者的範圍內。
所舉例說明的RF積體電路10可被利用作為一5G毫米波相位陣列天線架構的部分。如同所理解的,所述5G行動網路標準是由FR1及FR2頻率範圍所構成的,其中FR2通常被稱為毫米波或是mmWave,因為操作頻率是高於24GHz至50GHz。存在有定義的頻寬的離散的頻帶,並且可被稱為低頻帶或高頻帶,例如是24-30GHz稱為低頻帶,而37-44GHz稱為高頻帶。
為了簡化之目的,本揭露內容的實施例是關於一具有四個天線元件14的相位天線陣列12來描述的,其包含一第一天線元件14a、一第二天線元件14b、一第三天線元件14c、以及一第四天線元件14d。將會體認到的是,典型的5G毫米波架構是操作於具有額外的天線元件的顯著更大的天線陣列。
在一相位陣列天線架構中,一個別的發送信號是被饋入所述陣列12中的天線元件14的每一個,其中某些相對於彼此而被相移的信號造成建設性及破壞性的干涉,此使得波束通過空氣的方向性是可行的。就此點而言,單一RF發送信號是分開於所述個別的天線元件14。同樣地,接收到的RF信號是藉由所述個別的天線元件14的每一個換能,並且產生多個RF接收信號,其中的某些個可以是相對於其它相移的。所述相移接著被逆轉,並且組合成為單一RF輸出信號。
所述RF積體電路10是包含一RF輸入-輸出埠16,來自一發送器的一組合的RF信號是被施加至其,並且至一接收器的一組合的RF信號是從其被輸出。根據相位天線架構,一分離器-組合器18是分開在所述RF輸入-輸出埠16上的組合的RF信號成為多個預定給所述天線元件14的每一個的RF信號,並且組合從所述天線元件14的每一個接收到的個別的RF信號。所述分離器-組合器18具有單一組合埠20、以及一或多個分離埠22。在所述舉例說明的例子中,所述分離器-組合器18具有四個分離埠22:一第一分離埠22a、一第二分離埠22b、一第三分離埠22c、以及一第四分離埠22d,其分別對應於所述天線元件14a、14b、14c及14d。所述分離器-組合器18被理解為一威爾金森類型的分離器及組合器電路,儘管任何其它此項技術中已知或是之後開發的適當的分離器/組合器電路都可被利用,而不脫離本揭露內容的範疇。
本揭露內容的實施例是思及一或多個發送-接收電路24,其是和所述天線元件14介接。像是所述分離器-組合器18具有對應於所述天線元件14a-14d的每一個的分離埠22a-22d,其存在有用於其的對應的發送-接收電路24。在所述RF積體電路10a的此第一實施例中,所述發送-接收電路的一第一變化24-1被思及。明確地說,有一第一發送-接收電路24a-1是連接至所述第一分離埠22a以及所述第一天線元件14a,一第二發送-接收電路24b-1是連接至所述第二分離埠22b以及所述第二天線元件14b,一第三發送-接收電路24c-1是連接至所述第三分離埠22c以及所述第三天線元件14c,以及一第四發送-接收電路24d-1是連接至所述第四分離埠22d以及所述第四天線元件14d。
更詳細的說,所述發送-接收電路24-1的第一實施例是包含一相移器28、一RF開關30、一可變增益放大器32、以及一功率放大器34。所述相移器28(其被理解為雙向的)具有連接至所述分離器-組合器18的分離埠22的一第一埠、以及連接至所述RF開關30的一第二埠。
根據所舉例說明的實施例,所述RF開關30是一雙極雙投(DPDT)開關,其具有一第一極端子36、一第二極端子38、一第一組的投端子40、以及一第二組的投端子42。所了解的是,一DPDT開關通常是被實施成具有兩個極以及四個投端子,但是為了本揭露內容的電路圖之目的,每一對投端子都按照慣例而被描繪為一端子或埠。一DPDT可被配置為兩個單極雙投(SPDT)開關,其中第一SPDT開關的極是對應於所述第一極端子36,並且所述第二SPDT開關的極是對應於所述第二極端子38。在所述第一SPDT開關的極之間的連接是被切換在其之兩個投之間,而在所述第二SPDT開關的極之間的連接是被切換在其之兩個投之間。因此,當參考所述組的投端子時,所理解的是指所述第一SPDT開關的一投、以及所述第二SPDT開關的一投。換言之,所述第一組的投端子包含所述第一SPDT開關的第一投以及所述第二SPDT開關的第一投,並且所述第二組的投端子包含所述第一SPDT開關的第二投以及所述第二SPDT開關的第二投。互連所述投端子的適當的跳線連接可被實施。所述DPDT開關/RF開關30的先前的說明只是範例而已,並且任何其它適當的配置都可以取代,而不脫離本揭露內容。以此種方式,任何其它對於所述RF開關30的參照,不論是否在圖式中展示為一DPDT開關,都被理解為涵蓋其之任意及所有的實施方式。
所述第一極端子36是連接至一分離側的接面44,其是和所述分離器-組合器18的分離埠22電性連通。所述分離側的接面44是連接至所述相移器28的第二埠,並且最終連接至所述分離埠22。
所述第二極端子38是連接至一天線側的接面46,其是和所述天線元件14電性連通。所述發送-接收電路24-1的第一實施例可包含所述天線元件14連接到的一天線埠45,儘管其可以僅構成分開所述天線元件14與被廣義定義為所述發送-接收電路24者的邏輯接面。就此點而言,所述天線埠45可以是一連續的導電線路,其並沒有其中一結構連接至另一結構的一埠或是其它物理介面的可辨別的物理實施例。按照如此方式,在可以意指在一構件或是另一構件之間的一物理介面的埠及其它結構的特點是在本揭露內容中被參照的範圍內,在特點區塊及/或構件之間的類似的邏輯介面是打算如此的。
如上所指出的,所述發送-接收電路24-1的第一實施例包含所述可變增益放大器32以及所述功率放大器34。這兩個放大器電路可以整體被稱為一發送-接收放大器電路26,其中所述舉例說明的第一實施例是認定為發送-接收放大器電路26-1。額外的變化將會在以下加以描述,但是所述發送-接收放大器電路26-1的第一實施例是思及所述可變增益放大器32是與所述功率放大器34串聯連接。換言之,所述可變增益放大器32的輸出被饋入所述功率放大器的輸入,其中所述可變增益放大器32的輸入是對應於所述發送-接收放大器電路26-1的輸入,而所述功率放大器34的輸出是對應於所述發送-接收放大器電路26-1的輸出。所述可變增益放大器32可以是由多個級所構成,儘管在所述電路圖中只有單一級被描繪。再者,所述可變增益放大器32被理解為針對於一低雜訊指數而被調諧,而所述功率放大器34是針對於高功率及線性而被調諧。
在所述第一極端子36以及所述第二極端子38之間的隔離被理解為所述可變增益放大器32以及所述功率放大器34的組合的增益的一函數。在一較佳實施例中,此隔離可以是至少5dB,而且高達10dB的高於所述發送-接收放大器電路26的總增益。
所述RF開關30的第一組的投端子40是連接至所述發送-接收放大器電路26-1的輸入,並且所述RF開關30的第二組的投端子42是連接至所述發送-接收放大器電路26-1的輸出。所述RF開關30是***作以交替地連接所述第一極端子36至所述發送-接收放大器電路26-1的輸入,例如是所述可變增益放大器32的輸入、以及所述發送-接收放大器電路26-1的輸出,例如是所述功率放大器34的輸出。所述RF開關30亦***作以交替地連接所述第二極端子38至所述發送-接收放大器電路26-1的輸出,例如是所述功率放大器34的輸出、以及所述發送-接收放大器電路26-1的輸入,例如是所述可變增益放大器32的輸入。這些開關連接的每一個的細節將會在以下更詳細地描述。
所述發送-接收電路24-1的第一實施例的配置被理解為複製於所述第一發送-接收電路24a-1、所述第二發送-接收電路24b-1、所述第三發送-接收電路24c-1、以及所述第四發送-接收電路24d-1的每一個。於是為了簡潔的緣故,其之相關所述第二、第三及第四發送-接收電路的細節將不會重複。
圖1B描繪在發送模式操作期間,在所述RF開關30中建立的連接。明確地說,所述RF開關30的第一極端子36是透過一第一極連接48a來連接至所述第一組的投端子40,其於是連接至發送-接收放大器電路26-1的輸入,對應於所述可變增益放大器32的輸入。所述RF開關的第二極端子38是透過一第二極連接50a來連接至所述第二組的投端子42,其於是連接至所述發送-接收放大器電路26-1的輸出,對應於所述功率放大器34的輸出。
一發送信號是施加至所述RF輸入-輸出埠16,並且分開至所述分離埠22a-22d。在尤其是來自所述分離埠22a的信號輸出下,其是被傳遞至所述相移器28,其中一對應的相移是被施加至其,接著傳遞至所述RF開關30的第一極端子36。所述分開且經相移的RF信號是從所述第一極端子36,透過所述第一極連接48而傳遞至所述第一組的投端子40,並且接著藉由所述可變增益放大器32而被放大。所述功率放大器34進一步放大此信號,並且被傳遞至所述第二組的投端子42。接著,所述信號透過所述第二極連接50a而被傳遞至所述第二極端子38,並且輸出至所述天線元件14a。
圖1C描繪在接收模式操作期間,在所述RF開關30中建立的連接。所述RF開關30的第二極端子38是透過一第二極連接50b來連接至所述第一組的投端子40。同樣地,所述第一組的投端子40是連接至所述發送-接收放大器電路26-1的輸入,其對應於所述可變增益放大器的輸入。所述功率放大器34的輸出(其對應於所述發送-接收放大器電路26-1的輸出)仍然連接至所述第二組的投端子42。然而,透過一第一極連接48b,所述第二組的投端子42現在是連接至所述第一極端子36。
在所述天線元件14a上接收到的一進入的RF信號是透過所述第二極連接50b並且透過所述第一組的投端子40,而被傳遞至所述第二極端子38以及所述發送-接收放大器電路26-1的輸入。所述接收到的信號是首先藉由所述可變增益放大器32,接著是藉由所述功率放大器34的另一放大級而被放大。所述經放大的接收信號接著被傳遞至所述RF開關的第二組的投端子42,並且透過所述第一極連接48b而傳遞至所述第一極端子36。在所述第一極端子36連接至所述相移器28之下,所述經放大的接收信號被相移,並且被傳遞至所述分離器-組合器18的分離埠22a。在所述第二天線元件14b、第三天線元件14c、以及第四天線元件14d上接收到的其它信號是類似地藉由連接至其的個別的發送-接收電路24b-1、24c-1及24d-1而被放大,接著被傳遞至所述個別的分離埠22b、22c及22d。這些信號的每一個是藉由所述分離器-組合器18來組合,並且從所述組合埠20而透過所述RF輸入-輸出埠16輸出為單一RF接收信號。
如同從前述將會理解的,所述發送-接收放大器電路26-1在所述發送模式操作以及所述接收模式操作期間都保持導通的。所述RF開關30分別在所述分離器-組合器18以及所述天線元件14之間切換輸入至所述發送-接收放大器電路26,並且同樣地在所述天線元件14以及所述分離器-組合器之間切換來自所述發送-接收放大器電路26的輸出。實際上,所述發送-接收放大器電路26是被利用於發送及接收操作兩者。所述發送-接收放大器電路26的操作特徵可以根據是否在所述發送模式或是所述接收模式而被調整。明確地說,用於所述可變增益放大器32以及所述功率放大器34的DC偏壓電流設定可以針對於每一個模式而被不同地設定。
所述RF積體電路10的前述的配置是顯著地降低主動放大器級、偏壓區塊、以及相關的數位控制電路及串列週邊介面暫存器的數目。在一較佳實施例中,電路構件的數目可以是幾乎減半的。儘管習知的相位陣列天線的RF積體電路是獨立地切換發送放大器以及接收放大器的通斷以節省DC電流,但是此導致介於所述控制信號的施加以及設定用於那些電路所需的參數之間的顯著的時間延遲。在根據本揭露內容的實施例的發送-接收放大器電路26是持續導通的,在發送及接收模式操作之間不再需要此種切換。而傳統上,所述延遲可能是長達數百奈秒至數微秒,但本揭露內容是預想發送-接收的切換不超過幾奈秒。此被理解為導致在主動節點之間的通訊上的縮減的延遲。
圖2描繪所述RF積體電路10b的一第二實施例,其具有所述發送-接收電路的一替代的第二變化24-2。如同所述第一實施例10a,所述RF積體電路10b的第二實施例是一波束形成器,其可被利用作為一5G毫米波相位陣列天線架構的部分。為此目的,有所述RF輸入-輸出埠16、具有所述單一組合埠20以及所述一或多個分離埠22的分離器-組合器18。一第一發送-接收電路24a-2是連接至所述第一分離埠22a以及所述第一天線元件14a,一第二發送-接收電路24b-2是連接至所述第二分離埠22b以及所述第二天線元件14b,一第三發送-接收電路24c-2是連接至所述第三分離埠22c以及所述第三天線元件14c,並且一第四發送-接收電路24d-2是連接至所述第四分離埠22d以及所述第四天線元件14d。
所述發送-接收電路24-2的第二變化亦納入所述相移器28、所述RF開關30、以及具有所述可變增益放大器32與所述功率放大器34的發送-接收放大器電路26,但是其被配置以進一步減輕RF開關隔離要求。更詳細的說,所述分離側的接面44是直接連接至所述第一極端子36,而不是如同在所述發送-接收電路的第一變化24-1中的相移器28。所述第一組的投端子40是連接至所述相移器28的一埠,其中其之第二埠是連接至所述發送-接收放大器電路26的輸入。在此實施例中,所述相移器28可以是單向或雙向的。明確思及的是,相同的所述發送-接收放大器電路26-1的第一實施例在此被利用,其中所述可變增益放大器32與所述功率放大器34串聯連接。所述功率放大器34的輸出是對應於所述發送-接收放大器電路26的輸出,並且連接至所述第二組的投端子42。所述第二極端子38於是連接至所述天線側的接面46以及所述天線元件14。所了解的是,習知的相移器28是有損耗的,並且所述發送-接收電路24-2的第二實施例的配置是被思及以降低在所述第一極端子36以及所述第二極端子38之間的隔離需求。前述的配置是橫跨複製於所述發送-接收電路24b-3、24c-3及24d-4的每一個,因而為了簡潔的緣故將不會重複。
圖3描繪所述RF積體電路10c的一第三實施例,其具有所述發送-接收電路的一替代的第三變化24-3。如同所述第一實施例10a以及所述第二實施例10b,所述RF積體電路10c的第三實施例是一波束形成器,其可被利用作為一5G毫米波相位陣列天線架構的部分。同樣地,存在有所述RF輸入-輸出埠16、具有所述單一組合埠20以及所述一或多個分離埠22的所述分離器-組合器18。一第一發送-接收電路24a-3是連接至所述第一分離埠22a以及至所述第一天線元件14a,一第二發送-接收電路24b-3是連接至所述第二分離埠22b以及所述第二天線元件14b,一第三發送-接收電路24c-3是連接至所述第三分離埠22c以及所述第三天線元件14c,並且一第四發送-接收電路24d-3是連接至所述第四分離埠22d以及所述第四天線元件14d。
一般而言,所述發送-接收電路24-3的第三實施例是利用和其它實施例相同的基礎的構件,其包含所述相移器28、所述RF開關30、所述可變增益放大器32、以及所述功率放大器34,儘管是被不同地配置。同樣地,連接至所述分離器-組合器18的分離埠22的分離側的接面44是連結至所述第一極端子36,並且所述第二極端子38是連結至所述天線側的接面46,其連接至所述天線元件14。所述發送-接收器電路24-3是利用所述發送-接收放大器電路26-2的一替代配置的第二實施例。所述第一組的投端子40仍然是連接至所述發送-接收放大器電路26的輸入,並且所述第二組的投端子42是連接至所述發送-接收放大器電路26的輸出。所述可變增益放大器32的輸入是對應於所述整體發送-接收放大器電路26-2的此種輸入,並且所述功率放大器34的輸出是對應於所述整體發送-接收放大器電路26-2的輸出。所述可變增益放大器32的輸出是連接至所述相移器28的第一埠,並且其第二埠是連接至所述功率放大器34的輸入。
如同在所述RF積體電路10b的第二實施例中,將所述相移器28連接在所述發送-接收放大器電路26-1的輸入之前可能會牽涉到利用一具有低損失以及低雜訊指數操作特徵的相移器28,因而在所述接收模式操作中的靈敏度並不劣化。為了減輕此種在靈敏度上的損失,所述發送-接收放大器電路26-2的第二實施例是將所述可變增益放大器32設置在所述相移器28之前/前面。所述可變增益放大器32可以針對於一低雜訊指數而被調諧,其被理解為最大化在接收模式操作期間的靈敏度。再者,此實施例是被思及以降低針對於提供信號至所述RF輸入-輸出埠16的發送器電路的雜訊貢獻限制。所述發送-接收電路24a-3的第三實施例的前述的配置被理解為橫跨複製於其它的發送-接收電路24b-3、24c-3及24d-3的每一個,因而其之細節將不會重複。
所述RF積體電路10a-10c的第一、第二及第三實施例可能需要發送-接收放大器電路具有橫跨整個發送鏈路/接收鏈路的高增益。就此而論,達成用於所述RF開關30的極端子之間的隔離的臨界值以便確保正確的操作可能會呈現進一步的挑戰。圖4的電路圖描繪所述RF積體電路10d的一第四實施例,其具有一發送-接收電路的一第四變化24-4。此實施例亦納入所述RF輸入-輸出埠16、以及具有所述組合埠20以及所述一或多個分離埠22的分離器-組合器18。所述發送-接收電路24-4是連接至所述第一分離埠22a以及所述第一天線元件14a。儘管圖4並不展示其它的天線元件14或是發送-接收電路24,但是它們被理解為被納入完整的實施例中;在圖4中已經為了簡單的緣故而移除其之繪圖。
所述發送-接收電路的第四變化24-4是思及藉由將所述電路分割成為多個級的共同的元件來平衡增益以及RF開關隔離參數。所述發送-接收電路24-4是藉由一第一級52a以及一第二級52b所界定。更詳細的說,所述第一級52a包含一第一級RF開關30a,其具有一第一極端子36a以及一第二極端子38a。此外,所述第一級RF開關30a包含一第一組的投端子40a以及一第二組的投端子42a。所述第一極端子36a是透過所述分離側的接面44來和所述分離埠22電性連通,而所述第二極端子38a是連接至一級間的接面54。
所述第一級52a包含一可變增益放大器電路62-1的一第一變化,其包含一第一可變增益放大器32a-1,其之輸入是對應於所述可變增益放大器電路62-1的整體輸入。所述第一可變增益放大器32a-1的輸出是連接至所述相移器28’的第一埠,其中其之第二埠是連接至一第二可變增益放大器32a-2的輸入。所述第二可變增益放大器32a-2的輸出(其大致對應於所述可變增益放大器電路62-1的整體輸出)是連接至所述第一級RF開關30a的第二組的投端子42a。
所述第二級52b是包含一第二級RF開關30b,其類似地具有一第一極端子36b以及一第二極端子38b。所述第一極端子36b是連接至所述級間的接面54,因而所述第一級RF開關30a的第二極端子38a是連接至所述第二級RF開關30b的第一極端子36a。所述第二極端子38b是連接至所述天線側的接面46,其於是連接至所述天線元件14。
所述第二級52b是利用所述發送-接收放大器電路26-2的第二實施例,其包含具有一大致對應於其之整體輸入的輸入的可變增益放大器32b。所述可變增益放大器32b的輸出是連接至所述相移器28’’的第一埠,其第二埠是連接至所述功率放大器34b的輸入。所述功率放大器34b的輸出(其大致對應於所述發送-接收放大器電路26-2的整體輸出)是連接至所述第二級RF開關30b的第二組的投端子42b。在所述第二級RF開關30b的第一極端子36b以及第二極端子38b之間的隔離是被思及為和在所述第一級RF開關30a的第一極端子36a以及第二極端子38a之間相同或實質相同的,例如是高於所述個別的放大器電路的增益5到10dB。
前述的配置是思及將所述可變增益放大器32以及所述相移器28分布成橫跨多個級,例如是所述第一級52a以及所述第二級52b。具有在此項技術中的普通技能者將會體認到其中此種分布可被達成的其它可能的配置,其包含具有額外的RF開關30的配置。
參考圖5A-5C的電路圖,在RF積體電路10e上的進一步的變化是納入一發送-接收電路的一第五變化24-5。同樣地,此實施例具有所述RF輸入-輸出埠16、以及具有所述組合埠20以及所述一或多個分離埠22的分離器-組合器18。所述發送-接收電路24-5是連接至所述第一分離埠22a以及連接至所述第一天線元件14a。儘管圖5A-5C並不展示其它天線元件14或是發送-接收電路24,但是它們被理解為被納入所述完整的實施例內;在圖5A-5C中已經為了簡單的緣故而移除其之繪圖。
超出以上論述的發送-接收電路的第四變化24-4的所思及的優點,所述第五變化24-5是思及在發送模式操作期間的***損失的縮減。於是,所述發送-接收電路24的增益可被增大,同時降低DC電流消耗。所述發送-接收電路24-5是藉由所述第一級52a以及一第二級52b所界定。所述第一級52a包含一第一級RF開關30a,其具有所述第一極端子36a以及所述第二極端子38a。此外,所述第一級RF開關30a包含所述第一組的投端子40a以及所述第二組的投端子42a。所述第一極端子36a是透過所述分離側的接面44來和所述分離埠22電性連通,而所述第二極端子38a是連接至所述級間的接面54。
所述第一級52a包含一可變增益放大器電路62-1的第一變化,其輸入是連接至所述第一組的投端子40a,並且其輸出是連接至所述第二組的投端子40b。所述第二級52b同樣地包含所述第二級RF開關30b,其中所述第一極端子36b是連接至所述級間的接面54。此外,所述第二級RF開關30b的第二極端子38b是連接至所述天線側的接面46,其於是連接至所述天線元件14。所述第二級52b是利用所述發送-接收放大器電路26-2的第二實施例,其亦在以上被詳細地論述。
所述發送-接收電路的第五變化24-5進一步納入一級間的開關56,其中一端子58a(例如,所述投端子)是連接至所述可變增益放大器電路62-1的輸出,並且另一開關端子58b(例如,所述極端子)是連接至所述發送-接收放大器電路26-2的輸入。在一實施方式中,所述級間的開關56是單極單投開關,其是在所述發送模式期間將所述可變增益放大器電路62-1的輸出以及所述發送-接收放大器電路26-2的輸入連接在一起。在所述接收模式中,所述級間的開關56被解開,以分開所述放大器電路62-1及26-2的個別的輸出及輸入。
圖5B的電路圖描繪在發送模式操作期間所做的開關連接。所述發送信號是被施加至所述RF輸入-輸出埠16,並且被傳遞至所述分離器-組合器18的組合埠20以被分開到多個發送鏈路。所述分開的信號中之一是從所述第一分離埠22a輸出,並且被傳遞至所述第一級RF開關30a,明確地說是傳遞至其之第一極端子36a。透過一第一極連接64a,所述第一極端子36a是連接至所述第一組的投端子40a,並且所述發送信號因此被傳遞至所述可變增益放大器電路62-1的輸入。在一第一步中藉由所述可變增益放大器32a-1被放大、通過所述相移器28’、以及在一第二步中藉由所述可變增益放大器32a-2再次被放大之後,所述信號是透過在所述開關端子58a及58b之間的一開關連接60而被短路橫跨所述級間的開關56。由於所述DPDT第一級RF開關30a的操作,一第二極連接66a是橫跨所述第二組的投端子42a以及所述第二極端子38a而被建立。於是,所述第一級RF開關30a的第二極端子38a是如上所論述地連接至所述第二級RF開關30b的第一極端子36b。在所述第二級RF開關30b中,所述第一極端子36b是透過一第一極連接68a來連接至所述第二組的投端子40b。
來自所述第一級52a的輸出發送信號是被傳遞至所述第二級52b,並且明確地說是傳遞至所述發送-接收放大器電路26-2的輸入。所述信號進一步藉由所述可變增益放大器32b而被放大,另一相移是藉由所述相移器28’’而被施加,接著藉由所述功率放大器34b而被放大。所述發送-接收放大器電路26-2的輸出被傳遞至所述第二組的投端子,並且透過一第二極連接70a來連接至所述第二極端子38b。從該處,所述信號是被傳遞至所述天線元件14a。
圖5C的電路圖描繪在接收模式操作期間所做的開關連接。所述接收信號是由所述天線元件14a提供的,並且被傳遞至所述第二級52b,明確地說是傳遞至所述第二級RF開關30b的第二極端子38b。透過在所述第二極端子38b以及所述第一組的投端子40b之間的開關連接70b,所述接收到的信號是被傳遞至所述發送-接收放大器電路26-2(亦即,所述可變增益放大器32b),其接著在相位上被移位一指定的量,接著藉由所述功率放大器34b而被放大。所述功率放大器34b的輸出/所述發送-接收放大器電路26-2的輸出是連接至所述第二RF開關的第二組的投端子42b,並且所述經放大的接收信號是透過所述第一極連接68b而被傳遞至所述第一極端子36b。在所述接收模式操作中,所述級間的開關56是斷連的,因而所述發送-接收放大器電路26的輸入並未連接至所述可變增益放大器電路62-1的輸出。
在所述第二級RF開關30b的第一極端子36b是連接至所述第一級RF開關30a的第二極端子38a之下,所述被部分放大且相移的接收信號是從所述第二級52b被傳遞至所述第一級52a。透過一第二極連接66b,所述接收信號是被傳遞至所述第一組的投端子40a,接著傳遞至所述可變增益放大器電路62-1的輸入、以及尤其是所述第一可變增益放大器32a-1。在此放大器級之後,所述接收信號的相位是透過所述相移器28’再次被移位,並且藉由所述第二可變增益放大器32a-2再次被放大。所述經放大的接收信號是被傳遞至所述第一級RF開關30a的第二組的投端子42a,並且透過所述第一極連接64b而被傳遞至所述第一極端子36a。從所述第一極端子36a,所述被完全放大且經相移的接收信號是被傳遞至所述分離器-組合器18的分離埠22a,其中其是和來自其它接收鏈路的其它接收信號組合,並且從所述RF輸入-輸出埠16輸出為單一接收信號。
圖6A-6D的電路圖描繪在RF積體電路10e上的又一變化,其納入一發送-接收電路的一第六變化24-6。如同所有先前敘述的實施例,此實施例具有所述RF輸入-輸出埠16、以及具有所述組合埠20以及所述一或多個分離埠22的分離器-組合器18。所述發送-接收電路24-6是連接至所述第一分離埠22a以及所述第一天線元件14a。儘管圖6A-6D並不展示其它的天線元件14或是發送-接收電路24,但是它們被理解為被納入所述完整的實施例內;在圖6A-6D中已經為了簡單的緣故而移除其之繪圖。
所述發送-接收電路24-6是藉由所述第一級72a以及一第二級72b所界定。所述第一級72a包含一第一級RF開關30a,其具有所述第一極端子36a以及所述第二極端子38a。此外,所述第一級RF開關30a包含所述第一組的投端子40a以及所述第二組的投端子42a。所述第一極端子36a是透過所述分離側的接面44來和所述分離埠22電性連通,而所述第二極端子38a是連接至所述級間的接面54。
所述第一級52a是包含一可變增益放大器電路62-2的一第二變化,其輸入是連接至所述第一組的投端子40a,並且其輸出是連接至所述第二組的投端子40b。所述可變增益放大器電路62-2包含一第一可變增益放大器32a-1,其之輸入是對應於所述可變增益放大器電路62-2的整體輸入。所述第一可變增益放大器32a-1的輸出是連接至所述第一相移器28a的第一埠,其中其之第二埠是連接至一第二可變增益放大器32a-2的輸入。所述第二可變增益放大器32a-2的輸出是連接至所述第二相移器28b的第一埠。所述第二相移器28b的第二埠是大致對應於所述可變增益放大器電路62-2的整體輸出,並且連接至所述第一級RF開關30a的第二組的投端子42a。
所述第二級72b同樣地包含所述第二級RF開關30b,其中所述第一極端子36b是連接至所述級間的接面54。所述第二級RF開關30b的第二極端子38b是連接至所述天線側的接面46,其於是連接至所述天線元件14。所述第二級72b利用如同以上詳細論述的發送-接收放大器電路26-1的第一實施例,其具有所述可變增益放大器32b以及所述功率放大器34b。換言之,相較於上述的發送-接收電路24-5的第五實施例,所述第二級72b除去所述相移器28’’
所述發送-接收電路的第六變化24-6亦進一步利用所述級間的開關56,其中一端子58a(例如,所述投端子)是連接至所述可變增益放大器電路62-2的輸出,並且另一開關端子58b(例如,所述極端子)是連接至所述發送-接收放大器電路26-1的輸入。所述級間的開關56可以是單極單投開關,其在所述發送模式期間,將所述可變增益放大器電路62-2的輸出以及所述發送-接收放大器電路26-1的輸入連接在一起。在所述接收模式中,所述級間的開關56被解開,以分開所述放大器電路62-2及26-1的個別的輸出及輸入。如同在以下將會更詳細描述的,兩個利用所述發送-接收電路的第六變化24-6的不同的接收模式也是可能的。一個接收模式是其中所述發送-接收放大器電路26-1被導通的高靈敏度模式,而另一個接收模式是一低電流模式,其中所述發送-接收放大器電路26-1被關斷以降低所述接收鏈路的整體增益,並且伴隨地降低DC電流消耗。此模式可被使用在所述天線元件14a接收到一大的信號位準時,其可能是一可用的信號、或是一阻擋信號。
圖6B的電路圖描繪在所述發送模式操作期間所做的開關連接。所述發送信號是被施加至所述RF輸入-輸出埠16,並且被傳遞至所述分離器-組合器18的組合埠20以被分開到多個發送鏈路。所述分開的信號中之一是從所述第一分離埠22a輸出,並且被傳遞至所述發送-接收電路24-6的第一級72a,以及尤其是第一級RF開關30a的第一極端子36a。透過一第一極連接64a,所述第一極端子36a是連接至所述第一組的投端子40a,並且所述發送信號是被傳遞至所述可變增益放大器電路62-2的輸入。在一第一步中藉由所述可變增益放大器32a-1被放大,通過所述第一相移器28a,在一第二步中藉由所述可變增益放大器32a-2再次被放大,接著被傳遞通過所述第二相移器28b之後,所述信號是透過在所述開關端子58a及58b之間的一開關連接60而短路橫跨所述級間的開關56。因為所述DPDT第一級RF開關30a的操作,一第二極連接66a是橫跨所述第二組的投端子42a以及所述第二極端子38a而被建立。如上所論述,所述第一級RF開關30a的第二極端子38a是透過所述級間的接面54來連接至所述第二級RF開關30b的第一極端子36b。在所述第二級RF開關30b中,所述第一極端子36b是透過一第一極連接68a來連接至所述第二組的投端子40b。
來自所述第一級52a的輸出發送信號是被傳遞至所述第二級52b,並且明確地說是傳遞至所述發送-接收放大器電路26-1的輸入。所述信號是進一步藉由所述可變增益放大器32b而被放大,接著藉由所述功率放大器34b而被放大。所述發送-接收放大器電路26-1的輸出是被傳遞至所述第二組的投端子,並且透過一第二極連接70a來連接至所述第二極端子38b。所述信號接著被傳遞至所述天線元件14a。
圖6C的電路圖描繪在所述高靈敏度接收模式操作期間所做的開關連接。所述接收信號是由所述天線元件14a提供的,並且被傳遞至所述第二級52b,明確地說是傳遞至所述第二級RF開關30b的第二極端子38b。透過在所述第二極端子38b以及所述第一組的投端子40b之間的開關連接70b,所述接收到的信號是被傳遞至所述發送-接收放大器電路26-1,其是所述可變增益放大器32b以及所述功率放大器34b。所述功率放大器34b的輸出/所述發送-接收放大器電路26-1的輸出是連接至所述第二RF開關的第二組的投端子42b,並且所述經放大的接收信號是透過所述第一極連接68b而被傳遞至所述第一極端子36b。在所述高靈敏度接收模式操作中,所述級間的開關56是斷連的,因而所述發送-接收放大器電路26的輸入並未連接至所述可變增益放大器電路62-2的輸出。
在所述第二級RF開關30b的第一極端子36b是連接至所述第一級RF開關30a的第二極端子38a之下,所述部分被放大且相移的接收信號是從所述第二級52b傳遞至所述第一級52a。透過一第二極連接66b,所述接收信號是被傳遞至所述第一組的投端子40a,接著傳遞至所述可變增益放大器電路62-2的輸入、以及尤其是所述第一可變增益放大器32a-1。在此放大器級之後,所述接收信號的相位是透過所述第一相移器28a而被移位,並且藉由所述第二可變增益放大器32a-2而再次被放大。接在此放大級之後的是另一相移,即如同藉由所述第二相移器28b施加的。所述經放大且相移的接收信號是被傳遞至所述第一級RF開關30a的第二組的投端子42a,並且透過所述第一極連接64b而被傳遞至所述第一極端子36a。從所述第一極端子36a,所述完全被放大且經相移的接收信號是被傳遞至所述分離器-組合器18的分離埠22a,其中是和來自其它接收鏈路的其它接收信號組合,並且從所述RF輸入-輸出埠16輸出為單一接收信號。
圖6D的電路圖描繪在所述低電流接收模式操作期間所做的開關連接。所述接收信號由提供所述天線元件14a,並且被傳遞至所述第二級52b,明確地說是傳遞至所述第二級RF開關30b的第二極端子38b。所述天線元件14a被理解為在所述低電流模式作用時,接收一大的信號位準。所述發送-接收放大器電路26-1被關斷,並且所述第二級RF開關30b的第二極端子38b是透過所述第二極連接70a來連接至所述第二組的投端子42b。類似地,所述第二級RF開關30b的第一極端子36a是透過所述第一極連接68a來連接至所述第一組的投端子40b。
在所述低電流接收模式操作中,所述級間的開關56是斷連的。
然而,所述第一級52a的開關連接是被理解為與所述高靈敏度接收模式操作的那些開關連接相同的。在未被放大之下,所述接收到的信號是被傳遞至所述第一級RF開關30a的第二極端子38a。透過所述第二極連接66b,所述接收信號是被傳遞至所述第一組的投端子40a,接著傳遞至所述可變增益放大器電路62-2的輸入,並且明確地說是傳遞至在其中的第一可變增益放大器32a-1的輸入。在此放大器級之後,所述接收信號的相位是透過所述第一相移器28a而被移位,並且藉由所述第二可變增益放大器32a-2再次被放大。接在此放大級之後的是如同藉由所述第二相移器28b施加的另一相移。所述經放大且相移的接收信號是被傳遞至所述第一級RF開關30a的第二組的投端子42a,並且透過所述第一極連接64b而被傳遞至所述第一極端子36a。從所述第一極端子36a,所述完全被放大且經相移的接收信號是被傳遞至所述分離器-組合器18的分離埠22a,其中其是和來自其它接收鏈路的其它接收信號組合,並且從所述RF輸入-輸出埠16被輸出為單一接收信號。
在此展示的細節只是舉例而且為了本揭露內容的實施例舉例說明的討論之目的而已,並且為了提供據信是所述原理及概念上的特點的最有用且容易理解的說明而被呈現。就此點而言,並無意圖展示超出必要的更特定的細節,利用所述圖式所做的說明是使得本揭露內容的數個形式實際如何可被體現對於熟習此項技術者而言為明顯的。
10、10a、10b、10c、10d、10e:RF積體電路 12:相位天線陣列 14:天線元件 14a:第一天線元件 14b:第二天線元件 14c:第三天線元件 14d:第四天線元件 16:RF輸入-輸出埠 18:分離器-組合器 20:組合埠 22:分離埠 22a:第一分離埠 22b:第二分離埠 22c:第三分離埠 22d:第四分離埠 24:發送-接收電路 24-1:第一變化 24-2:第二變化 24-3:第三變化 24-4:第四變化 24-5:第五變化 24-6:第六變化 24a-1、24a-2、24a-3:第一發送-接收電路 24b-1、24b-2、24b-3:第二發送-接收電路 24c-1、24c-2、24c-3:第三發送-接收電路 24d-1、24d-2、24d-3:第四發送-接收電路 26、26-1:發送-接收放大器電路 28、28’、28’’:相移器 28a:第一相移器 28b:第二相移器 30:RF開關 30a:第一級RF開關 30b:第二級RF開關 32:可變增益放大器 32a-1:第一可變增益放大器 32a-2:第二可變增益放大器 32b:可變增益放大器 34、34b:功率放大器 36、36a、36b:第一極端子 38、38a、38b:第二極端子 40、40a:第一組的投端子 40b:第二組的投端子 42、42a、42b:第二組的投端子 44:分離側的接面 45:天線埠 46:天線側的接面 48a:第一極連接 48b:第一極連接 50a:第二極連接 50b:第二極連接 52a:第一級 52b:第二級 54:級間的接面 56:級間的開關 58a:端子 58b:端子 60:開關連接 62-1、62-2:可變增益放大器電路 64a:第一極連接 66a:第二極連接 68a:第一極連接 70a:第二極連接 70b:開關連接 72a:第一級 72b:第二級
在此揭露的各種實施例的這些及其它特點及優點相關以下的說明及圖式將會更佳的理解,其中相同的元件符號是指整篇的相似的部件,並且其中:
[圖1A]是一種相位陣列波束形成器電路的一第一實施例的電路圖,其中一雙極雙投開關是針對於發送及接收模式操作來互連一功率放大器以及一可變增益放大器;
[圖1B]是所述相位陣列波束形成器電路的第一實施例的電路圖,其展示在一發送模式中的主動開關連接;
[圖1C]是所述相位陣列波束形成器電路的第一實施例的電路圖,其展示在一接收模式中的主動開關連接;
[圖2]是所述相位陣列波束形成器電路的一第二實施例的電路圖,其中一相移器是與某些開關端子隔離;
[圖3]是所述相位陣列波束形成器電路的一第三實施例的電路圖,其中所述相移器是連接在所述可變增益放大器以及所述功率放大器之間;
[圖4]是所述相位陣列波束形成器電路的一第四實施例的電路圖,其具有一配置以符合增益需求,同時維持在所述開關的極端子與投端子之間的適當隔離;
[圖5A]是所述相位陣列波束形成器電路的一第五實施例的電路圖,其包含一額外的RF開關以降低在一發送模式操作中的***損失;
[圖5B]是所述相位陣列波束形成器電路的第五實施例的電路圖,其具有在所述發送模式中的其之主動切換連接;
[圖5C]是所述相位陣列波束形成器電路的第五實施例的電路圖,其具有在所述接收模式中的其之主動切換連接;
[圖6A]是所述相位陣列波束形成器電路的一第六實施例的電路圖,其包含一功率放大器-低雜訊放大器區塊,而無相移器級;
[圖6B]是所述相位陣列波束形成器電路的第六實施例的電路圖,其具有在所述發送模式中的其之主動切換連接;
[圖6C]是所述相位陣列波束形成器電路的第六實施例電路圖,其具有在一高靈敏度接收模式中的其之主動切換連接;以及
[圖6D]是所述相位陣列波束形成器電路的第六實施例電路圖,其具有在一低電流接收模式中的其之主動切換連接。
10、10a:RF積體電路
12:相位天線陣列
14a:第一天線元件
14b:第二天線元件
14c:第三天線元件
14d:第四天線元件
16:RF輸入-輸出埠
18:分離器-組合器
20:組合埠
22a:第一分離埠
22b:第二分離埠
22c:第三分離埠
22d:第四分離埠
24:發送-接收電路
24a-1:第一發送-接收電路
24b-1:第二發送-接收電路
24c-1:第三發送-接收電路
24d-1:第四發送-接收電路
26、26-1:發送-接收放大器電路
28:相移器
30:RF開關
32:可變增益放大器
34:功率放大器
36:第一極端子
38:第二極端子
40:第一組的投端子
42:第二組的投端子
44:分離側的接面
45:天線埠
46:天線側的接面

Claims (20)

  1. 一種可連接至一陣列的天線元件的相位陣列波束形成器電路,所述相位陣列波束形成器電路包括: 射頻(RF)輸入-輸出埠; 一或多個天線埠,其分別可連接至所述天線元件的個別天線元件; 分離器-組合器,其包含連接至所述RF輸入-輸出埠的一組合埠以及一或多個分離埠; 一或多個可變增益放大器電路,其分別具有輸入及輸出; 一或多個功率放大器電路,其分別具有輸入及輸出;以及 一或多個RF開關,其分別具有第一極端子,其連接至與所述分離器-組合器的所述分離埠中的一對應的分離埠電性連通的一分離側的接面、第二極端子,其連接至與所述天線埠中的一對應的天線埠電性連通的一天線側的接面、第一組的投端子以及第二組的投端子,其分別交替地將所述第一極端子連接至所述可變增益放大器電路中的一給定者的輸入以及所述功率放大器電路中所連接的一對應者的輸出,並且將所述第二極端子連接至所述功率放大器電路中的一給定者的輸出以及所述可變增益放大器電路中所連接的一對應者的輸入。
  2. 如請求項1之相位陣列波束形成器電路,其進一步包括: 一或多個相移器,其分別連接至所述分離器-組合器的所述分離埠的一個別者、以及所述RF開關的所述第一極端子中的一對應者所連接到的所述分離側的接面的一個別分離側的接面。
  3. 如請求項2之相位陣列波束形成器電路,其中所述相移器是雙向的。
  4. 如請求項1之相位陣列波束形成器電路,其進一步包括:  一或多個相移器,其分別連接至所述可變增益放大器電路的個別輸入,所述相移器是單向或雙向的。
  5. 如請求項1之相位陣列波束形成器電路,其進一步包括: 一或多個相移器,其分別連接至所述可變增益放大器電路的輸出、以及所述功率放大器電路中所連接的一對應者的輸入。
  6. 如請求項1之相位陣列波束形成器電路,其中所述RF開關的每一者定義一組對應於一發送模式以及一接收模式的開關連接。
  7. 如請求項6之相位陣列波束形成器電路,其中在所述發送模式中,所述組的開關連接包含所述RF開關的一給定者的第一極端子連接至所述可變增益放大器電路的對應者的輸入、以及所述RF開關的所述給定者的第二極端子連接至所述功率放大器電路的對應者的輸出。
  8. 如請求項6之相位陣列波束形成器電路,其中在所述接收模式中,所述組的開關連接包含所述RF開關的一給定者的第一極端子連接至所述功率放大器電路的對應者的輸出、以及所述RF開關的所述給定者的第二極端子連接至所述可變增益放大器電路的對應者的輸入。
  9. 如請求項1之相位陣列波束形成器電路,其中在所述RF開關的一給定者的所述第一極端子以及所述第二極端子之間的隔離係高於所述可變增益放大器電路以及所述功率放大器電路的總組合的增益至少5dB。
  10. 如請求項1之相位陣列波束形成器電路,其中所述可變增益放大器電路分別包含複數個放大器級。
  11. 一種可連接至一陣列的天線元件之相位陣列波束形成器電路,所述相位陣列波束形成器電路包括:  射頻(RF)輸入-輸出埠; 一或多個天線埠,其分別可連接至所述天線元件的個別天線元件; 分離器-組合器,其包含連接至所述RF輸入-輸出埠的一組合埠以及一或多個分離埠; 一或多個第一放大器電路,其分別具有輸入及輸出; 一或多個第一RF開關,其分別具有與所述分離器-組合器的所述分離埠中的一對應的分離埠電性連通的第一極端子、第二極端子、以及第一組的投端子和第二組的投端子,其分別交替地連接所述第一放大器電路中的一給定者的輸入和輸出至所述第一極端子以及所述第二極端子; 一或多個第二放大器電路,其分別具有輸入及輸出;以及 一或多個第二RF開關,其分別具有第一極端子,其連接至所述第一RF開關中的一對應者的所述第二極端子、第二極端子,其和所述天線埠中的一對應的天線埠電性連通、以及第一組的投端子和第二組的投端子,其分別交替地將所述第二放大器電路中的一給定者的所述第二放大器的輸入和輸出連接至所述第一極端子以及所述第二極端子。
  12. 如請求項11之相位陣列波束形成器電路,其中所述第一放大器電路分別包含一輸入側的可變增益放大器、一輸出側的可變增益放大器、以及互連在所述輸入側以及所述輸出側的所述可變增益放大器之間的一相移器。
  13. 如請求項11之相位陣列波束形成器電路,其中所述第二放大器電路分別包含一可變增益放大器、一功率放大器、以及互連在所述可變增益放大器以及所述功率放大器之間的一相移器。
  14. 如請求項11之相位陣列波束形成器電路,其進一步包括:  一或多個互連開關,其分別選擇性地將所述第一放大器電路的一給定者的輸出連接至所述第二放大器電路的一對應者的輸入。
  15. 如請求項14之相位陣列波束形成器電路,其中: 在發送模式中,所述組的開關連接包含所述第一RF開關的一給定者的第一極端子以及第二極端子連接至所述第一放大器電路的對應者的個別輸入以及輸出、所述第二RF開關的一給定者的第一極端子以及第二極端子連接至所述第二放大器電路的對應者的個別輸入以及輸出、以及所述互連開關的端子是連接的;以及 在接收模式中,所述組的開關連接包含所述第一RF開關的所述給定者的所述第一極端子以及所述第二極端子連接至所述第一放大器電路的所述對應者的個別輸出以及輸入、所述第二RF開關的所述給定者的所述第一極端子以及所述第二極端子連接至所述第二放大器電路的所述對應者的個別輸出以及輸入、以及所述互連開關的所述端子是斷連的。
  16. 如請求項11之相位陣列波束形成器電路,其中:  所述第一放大器電路分別包含一輸入側的可變增益放大器、一輸出側的可變增益放大器、互連在所述輸入側以及所述輸出側的所述可變增益放大器之間的一中間的相移器、以及連接至所述輸出側的所述可變增益放大器的一輸出側的相移器; 所述第二放大器電路分別包含一可變增益放大器以及所連接的一功率放大器。
  17. 如請求項16之相位陣列波束形成器電路,其進一步包括:  一或多個互連開關,其分別選擇性地將所述第一放大器電路的一給定者的輸出連接至所述第二放大器電路的一對應者的輸入。
  18. 如請求項17之相位陣列波束形成器電路,其中: 在發送模式中,所述組的開關連接包含所述第一RF開關的一給定者的第一極端子以及第二極端子連接至所述第一放大器電路的對應者的個別輸入以及輸出、所述第二RF開關的一給定者的第一極端子以及第二極端子連接至所述第二放大器電路的對應者的個別輸入以及輸出、以及所述互連開關的端子是連接的; 在高靈敏度接收模式中,所述組的開關連接包含所述第一RF開關的所述給定者的所述第一極端子以及所述第二極端子連接至所述第一放大器電路的所述對應者的個別輸出以及輸入、所述第二RF開關的所述給定者的所述第一極端子以及所述第二極端子連接至所述第二放大器電路的所述對應者的個別輸出以及輸入、以及所述互連開關的所述端子是斷連的;以及 在低電流接收模式中,所述組的開關連接包含所述第一RF開關的所述給定者的所述第一極端子以及所述第二極端子連接至所述第一放大器電路的所述對應者的個別輸出以及輸入、所述第二RF開關的所述給定者的所述第一極端子以及所述第二極端子連接至所述第二放大器電路的所述對應者的個別輸入以及輸出、以及所述互連開關的所述端子是斷連的。
  19. 一種可連接至一陣列的天線元件之射頻積體電路,所述射頻積體電路包括:  RF輸入/輸出埠; 天線埠,其分別連接至所述陣列的個別天線元件; 發送-接收放大器電路,其具有放大器輸入以及放大器輸出,所述發送-接收放大器電路在發送模式以及接收模式期間都被啟動;以及 RF開關,其選擇性地在發送模式中將所述放大器輸入連接至所述RF輸入/輸出埠以及將所述放大器輸出連接至所述天線埠中之一者,並且在接收模式中將所述放大器輸入連接至所述天線埠中之所述一者以及將所述放大器輸出連接至所述RF輸入/輸出埠。
  20. 如請求項19之射頻積體電路,其中在所述發送模式以及所述接收模式之間的切換是在十奈秒內完成的。
TW110115885A 2020-05-06 2021-05-03 超小型毫米波5g波束形成器架構 TW202143663A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202063020707P 2020-05-06 2020-05-06
US63/020,707 2020-05-06
US17/229,359 2021-04-13
US17/229,359 US20210351506A1 (en) 2020-05-06 2021-04-13 Ultra-small millimeter wave 5g beam former architecture

Publications (1)

Publication Number Publication Date
TW202143663A true TW202143663A (zh) 2021-11-16

Family

ID=78413175

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110115885A TW202143663A (zh) 2020-05-06 2021-05-03 超小型毫米波5g波束形成器架構

Country Status (3)

Country Link
US (1) US20210351506A1 (zh)
TW (1) TW202143663A (zh)
WO (1) WO2021226086A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11967773B2 (en) * 2021-03-29 2024-04-23 Renesas Electronics America Inc. Dynamic amplifier supply in a phased antenna array
CN118057746A (zh) * 2022-11-21 2024-05-21 上海华为技术有限公司 一种通信装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0838037B1 (en) * 1995-07-07 2006-06-07 QinetiQ Limited Circuit module for a phased array radar
US6650200B2 (en) * 2001-04-20 2003-11-18 Anaren Microwave, Inc. Dynamic combiner/splitter for RF signal systems
US20090253384A1 (en) * 2008-04-04 2009-10-08 Stmicroelectronics, Ltd. Dual Mode Radio Frequency Front End Circuit
US8838036B2 (en) * 2011-09-19 2014-09-16 Broadcom Corporation Switch for transmit/receive mode selection and antenna polarization diversity
US11476809B2 (en) * 2017-08-11 2022-10-18 Nokia Solutions And Networks Oy Polyphase digital signal predistortion in radio transmitter
US11057011B2 (en) * 2019-04-05 2021-07-06 Semiconductor Components Industries, Llc Amplifiers suitable for mm-wave signal splitting and combining
US10608678B1 (en) * 2019-05-31 2020-03-31 Qualcomm Incorporated Bidirectional repeaters for time division duplexed millimeter wave systems
US20230261392A1 (en) * 2022-02-11 2023-08-17 Analog Devices International Unlimited Company Dual wideband orthogonally polarized antenna

Also Published As

Publication number Publication date
WO2021226086A1 (en) 2021-11-11
US20210351506A1 (en) 2021-11-11

Similar Documents

Publication Publication Date Title
US10879623B2 (en) Method to improve power amplifier output return loss and back-off performance with RC feedback network
US11652524B2 (en) Antenna system for a multi-beam beamforming front-end wireless transceiver
WO2022017404A1 (zh) 一种射频前端架构、天线装置及通信终端
US20040204037A1 (en) RF front-end for dual-band wireless transceiver module
US20210351507A1 (en) 5g mm-wave phased array antenna module architectures with embedded test-calibration circuits
EP2741422B1 (en) A concurrent multiband transceiver
US11239873B2 (en) Front-end circuit and communication device
CN111525933B (zh) 一种射频电路及电子设备
US20090318092A1 (en) Multi-antenna system for differential wireless communication devices
TW202143663A (zh) 超小型毫米波5g波束形成器架構
US8331388B2 (en) Circuit arrangement and method of operating a circuit arrangement
CN111697992B (zh) 一种收发一体的开关放大网络组件
CN114846744A (zh) 一种功分器、功分装置及无线通信装置
US11581641B2 (en) Adjustable unequal power combiner and switch
CN111541431A (zh) 毫米波与太赫兹波的射频前端电路、射频前端装置及***
JP5335963B2 (ja) Rfアンテナスイッチ回路、高周波アンテナ部品及び移動通信機器
CN111201717A (zh) Rf信号聚合器及实现其的天线***
US20210359714A1 (en) Multi-path and jamming resistant 5g mm-wave beamformer architectures
CN109039291B (zh) 功率放大器***的频带选择开关设备
WO2023065863A1 (zh) 一种接收器件、射频***及通信设备
US20220109220A1 (en) Power splitter-combiner circuits in 5g mm-wave beamformer architectures
CN113904646A (zh) 一种低功耗宽带无源移相器及相控阵装置
CN112311465B (zh) 一种微波收发前端电路
US11750253B2 (en) Multi-band transmitter
CN114793121B (zh) 射频***和通信设备