TW202140821A - 執行雷射消熔的方法及設備與沉積有機發光分子的方法 - Google Patents

執行雷射消熔的方法及設備與沉積有機發光分子的方法 Download PDF

Info

Publication number
TW202140821A
TW202140821A TW110113383A TW110113383A TW202140821A TW 202140821 A TW202140821 A TW 202140821A TW 110113383 A TW110113383 A TW 110113383A TW 110113383 A TW110113383 A TW 110113383A TW 202140821 A TW202140821 A TW 202140821A
Authority
TW
Taiwan
Prior art keywords
mask
layer
pattern
laser beam
holes
Prior art date
Application number
TW110113383A
Other languages
English (en)
Inventor
亞當 諾斯 布魯頓
Original Assignee
英商萬佳雷射有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英商萬佳雷射有限公司 filed Critical 英商萬佳雷射有限公司
Publication of TW202140821A publication Critical patent/TW202140821A/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/60Preliminary treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

揭露一種用於執行雷射消熔的方法及設備。在一個布置中,紫外線雷射束被引導通過遮罩,以將由遮罩界定的消熔圖案的部分成像至材料的層上。在遮罩上用雷射束掃描,以將消熔圖案的不同部分依序地成像至層的不同的各別區域上。對應於消熔圖案的結構從而被消熔至層中。雷射束包括具有小於20皮秒的脈衝長度的超快脈衝雷射束。

Description

執行雷射消熔的方法及設備與沉積有機發光分子的方法
本發明係有關於用於執行雷射消熔(laser ablation)的方法及設備,特別係有關於用於形成一細金屬網(fine metal mesh)。
細金屬網(FMMs)被使用於有機發光二極體(organic light emitting diode,OLED)顯示器的製造。具體來說,在顯示器的製造中細金屬網被用作有機發光二極體的蒸鍍遮罩。細金屬網界定有機發光二極體分子沉積在顯示器上的位置,且因此最終決定了有機發光二極體顯示器的解析度。
目前用於細金屬網的生產的技術包括光微影製程及電鑄製程。然而,如此的製程的成本高且使用如此的技術製造的細金屬網的有機發光二極體顯示器的解析度通常小於每英吋600像素(pixels per inch,ppi)。現代的應用(例如,行動電話及虛擬實境磁頭組(virtual reality headset))要求更高的解析度,例如每英吋1000像素或更高。由光微影製程及電鑄製程製造的細金屬網難以達到如此高的解析度。
其他用於細金屬網的生產的習知技術包含將單一雷射束***為多個雷射束,且將這些雷射束掃描橫跨基材的表面,以藉由消熔形成細金屬網。如此的技術通常使用飛秒脈衝紅外線雷射(femtosecond pulsed infrared laser)。然而,為了獲得多個雷射束,如此的技術需要複雜的投影光學元件。甚至難以將技術的規模放大至上千雷射束,因此以此方式生產細金屬網的速度受限。如此的系統有能力生產具有10微米的臨界尺寸的孔,且解析度為每英吋數百個點(dots per inch ,dpi) 的細金屬網。
本揭露的實施例目的在於至少部分地解決上述討論的一個或多個問題和/或其他問題。
根據本發明的型態,提供一種執行雷射消熔的方法,方法包括:引導紫外線雷射束通過遮罩,以將由遮罩界定的消熔圖案的部分成像至材料的層上;以及掃描雷射束,以在遮罩上將消熔圖案的不同部分依序地成像至層的不同的各別區域上,從而將對應於消熔圖案的結構消熔至層中,其中雷射束包括具有小於20皮秒的脈衝長度的超快脈衝雷射束。
因此,提供一種形成遮罩界定的消熔圖案的方法。藉由遮罩中的複數個透明區域可界定消熔圖案。當與上述習知技術比較時,可使用單一雷射束同時地照明遮罩中的多個透明區域,且從而有助於在材料的層中消熔對應的多種特徵的消熔。不需要繁複的分光器(beam splitting)及平衡光學元件就可達到,且可被縮放以達到同時處理非常大量的特徵。因為雷射功率可被散佈至消熔圖案的許多不同特徵上,可使用高雷射功率。使用高功率雷射促進高生產量。紫外線輻射的使用允許以合理的運作成本(operating cost)達到高空間解析度。用遮罩界定消熔圖案(而非直接地經由來自雷射的個別的束光點),允許以高精密度界定消熔圖案,而放寬對使用以照明遮罩的雷射束的需求。雷射可用相對地較低的解析度在遮罩上簡單地「沖洗(washed)」。
在一實施例中,對應於消熔圖案的結構包括孔的規律陣列。孔可全部具有實質上相同的尺寸及形狀。因此,可使用消熔圖案以形成細金屬網。
在一實施例中,消熔圖案的成像部分有助於在層中形成複數孔。對應於每個成像部分的複數孔可包括至少100個孔。因此,雷射脈衝能量散佈在至少100個孔上,但不需要繁複的分光器及平衡器。此外,在一實施例中,消熔圖案的不同部分的依序成像可有助於在層中形成至少100000個孔。因此,光是藉由在遮罩上用雷射束掃描,其可能大大地增加形成的孔的數量。使用單一遮罩,此作法可將規模放大至處理多於500000個孔、多於750000個孔或甚至多於1百萬個孔。
在一實施例中,孔的每一個為推拔,故而孔的每一個具有在雷射束的下游方向中減少的橫剖面面積。接著,引導步驟及掃描步驟可被重複的用於複數遮罩圖案,每個遮罩圖案界定於不同的深度的推拔孔的橫剖面面積。此作法允許有效地且有高精密度的控制推拔孔的輪廓。最佳化在細金屬網中的孔的推拔,在有機發光二極體分子的圖案的沉積期間,藉由最小化圖案邊緣的模糊的細金屬網的使用,可改善有機發光二極體的製造製程的效能。典型地,細金屬網的推拔孔被布置以面向(例如,朝向外開放)有機發光二極體分子沉積於其上的基材。控制推拔的角度允許在提供高解析度及空間精密的細金屬網之間達到最佳的平衡(可能限制允許的最大的推拔量),且由於與細金屬網中的孔的橫向壁的不必要的交互作用(碰撞),最小化有機發光二極體分子軌跡(trajectories)的改向(大致上可藉由增加推拔量來改善)。
如上所述,層可包括金屬層(例如,以形成細金屬網)。取決於細金屬網的用途,金屬層可具有多樣的成分。例如,金屬層可從具有非常低的熱膨脹係數的材料形成,例如銦鋼(invar)。也可使用其他材料,包括非金屬材料。例如,層可包括介電材料和/或聚合物。
在一實施例中,結構包括在基於有機發光二極體分子的顯示器的製造期間,用於沉積有機發光二極體分子的蒸鍍遮罩的部分。因此,可提供沉積有機發光二極體分子的方法,其中使用本揭露的執行雷射消熔的方法形成蒸鍍遮罩,且使用所得之蒸鍍遮罩以在由蒸鍍遮罩界定的圖案中沉積有機發光分子。
根據本發明的另一型態,提供一種用於執行雷射消熔的設備,設備包括:紫外線雷射器、遮罩、光學系統、以及掃描布置,紫外線雷射器被配置以產生具有小於20皮秒的脈衝長度的超快脈衝雷射束;遮罩界定消熔圖案;光學系統被配置以引導雷射束通過遮罩,以將消熔圖案的部分成像至材料的層;且掃描布置被配置以用雷射束在遮罩上掃描,以依序地將消熔圖案的不同部分成像至層上,從而將對應於消熔圖案的結構消熔至層中。
第1圖描繪用於執行雷射消熔的範例設備2。設備2使用配置以提供超快脈衝雷射束8的紫外線雷射器6。超快脈衝雷射束8具有小於20皮秒、可選擇地小於15皮秒、可選擇地小於10皮秒、可選擇地小於8皮秒、可選擇地小於6皮秒、可選擇地小於5皮秒的脈衝長度。提供界定消熔圖案18的遮罩10 (在第2圖中示出)。在支撐件12(例如,基材)上提供將被處理的材料的層4。支撐件12可被提供在用以將支撐件12步進(stepping)至雷射束8下方的不同位置的可移動台(未示出)上。提供引導雷射束8通過遮罩10且至層4上的光學系統13。光學系統13將消熔圖案18的部分成像至層4上。
掃描布置14掃描雷射束8,以在遮罩10上將由遮罩10界定的消熔圖案18的不同部分依序地成像至層4的不同的各別區域上。對應於消熔圖案18的結構從而被消熔至層4中。雷射束8通常將在遮罩10上掃描,而沒有雷射器6或遮罩10的任何對應的移動(例如,藉由適合的掃描光學元件)。
紫外線波長的使用允許在層4中以高解析度形成結構,不需要繁複的和/或高價的光學元件。通常可形成高達每英吋1000個點的解析度,例如包括具有約3微米或更少的臨界尺寸的特徵,例如凹痕或孔。
設備2可更包括用於控制設備2的整體操作的控制器15。控制器15可控制雷射器6的操作(例如,控制雷射何時開啟及關閉和/或變化雷射的參數,如每脈衝的能量或脈衝重複率(pulse repetition rate))、掃描布置14的操作以及光學系統13的操作(例如,控制焦點高度),也控制支撐件12相對於雷射器6的移動(例如,經由可移動台及關連的電動機)。
在一實施例中,設備2更包括遮罩10的下游的光學元件16(例如,包括鏡片)。光學元件16可將來自遮罩10的雷射輻射8聚集至層4上。在一實施例中,光學元件16在遮罩10及層4之間提供縮小率(demagnification)。因此,藉由消熔形成在層4上的特徵比遮罩10中對應的特徵小。這種作法允許在層4中形成高解析度圖案,而將雷射能量分配於遮罩10的較大的面積上。因此,遮罩10的雷射能量密度(通量) 比其他情況下的遮罩10將有的雷射能量密度低。這允許使用較高的雷射脈衝能量及更高的雷射功率以改善產出量,而沒有損壞遮罩10的風險。此外,可以比層4中所需的圖案更低的解析度製造遮罩10,以促進遮罩10的製造。
在一些實施例中,對應於遮罩10中的消熔圖案的層4中的消熔產生的結構(ablation-produced structure) 包括層4中的孔的規律陣列。層4中的陣列的間距可做的非常小,例如10微米或更小。孔的至少一子集的全部可具有實質上相同的尺寸及形狀,和/或在其他情況下配置以適合用於形成用於製造基於有機發光二極體顯示器的細金屬網的全部或部分的方式。第2圖為用於形成如此的消熔圖案的範例遮罩10的上視圖。在此範例中的遮罩10包括透明區域20的規律陣列。每個透明區域20對應於在層4中形成的各別的孔。由於縮小率,在遮罩10上的透明區域20的間距通常大於在層4中的對應的孔的間距。為了易於顯示,第2圖的遮罩10僅包含相對地少量的透明區域20。實務上,每遮罩可提供更多的透明區域20(例如,100000個或更多,如下描述)。
在一些實施例中,在遮罩10中的消熔圖案18的每一個成像部分有助於在層4中形成複數孔。複數孔較佳地包括至少100個孔。例如,可藉由引導雷射輻射通過在遮罩10上的對應的透明區域20以在層4中形成每個孔,且可藉由同時地照射遮罩10上的多個如此的透明區域20(例如,100個或更多)以形成消熔圖案18的成像部分。藉由此方式同時地照明許多透明區域20,可有助於在層4中同時形成許多孔。此方式允許充分利用可用的雷射脈衝能量,且改善產出量。當與掃描步驟結合時,可快速地形成非常大量的孔。例如,消熔圖案的不同部分的循序成像可經由消熔圖案的1000個或更多的部分,每個部份有助於形成至少100個孔,而有助於在層中形成至少100000個孔。
在第2圖中概略地示出的範例中,藉由遮罩10界定的消熔圖案18包括正方形透明區域20的陣列。在其他實施例中,透明區域20可具有其他形狀,且從而在層4中形成不同形狀的特徵或孔。例如,透明區域20可為矩形、圓形或橢圓形。
第3圖描繪在掃描步驟期間,遮罩10上的雷射束光點9的範例掃描路徑22 (從雷射器6觀察)。雷射束光點9為在任何給定的時間藉由雷射束8照明的遮罩10的部分,且界定這時被成像至層4上的消熔圖案的對應部分(成像部分)。掃描路徑22可被描述為光柵掃描(raster scan)。可使用其他掃描路徑。掃描路徑22可被適於避開在層4中不需要結構的區域。掃描路徑22可附加地或替代地考慮其他因素,如使用的雷射器6的特性 (例如,於遮罩10的功率和/或光點9尺寸)、遮罩10中的消熔圖案18和/或層4的性質。
第4圖為將對應於由遮罩10界定的消熔圖案18(例如,孔的正方形陣列)的結構24消熔至層4中之後的層4的上視圖。藉由遮罩10上的單一掃描或藉由遮罩上的多個掃描可形成結構24。例如,在遮罩10上的第一掃描中,結構的特徵的至少一子集可被消熔通過層4,至結構指定的深度的僅一部分,從而提供部分地形成的特徵。重複掃描製程允許每個部份地形成的特徵被多次的照射,直到每個部份地形成的特徵變為完全地形成(例如,使孔延伸一直到通過層4)。此作法可方便地允許熱在逐次的消熔製程之間消散,從而幫助防止用於消熔的目標區域之外的區域的不必要損壞。在一實施例中,雷射束光點9沿以上參考第3圖所討論的掃描路徑22掃描數次。在製程期間,可執行多個掃描,而沒有在遮罩10及層4之間提供任何相對的移動。
如第4圖中描繪,對應於消熔圖案18的結構24由一個遮罩10提供,僅可覆蓋將被處理的層4的一小部分。因此,方法可被重複以處理層4的其他需要的部分。在一實施例中,使用步進及掃描製程藉以形成結構24,層4設於相對於遮罩10的第一位置。接著在層4及遮罩10之間提供相對的運動(通常是藉由移動層4且將遮罩10及光學元件16固定保留在定位),以將層4帶至相對於遮罩10的第二位置,且重複掃描製程以形成與之前形成的示例相鄰的結構24的其他示例。接著可重複製程以處理整個層4。因此,上述的引導步驟及掃描步驟可被重複用於相對於遮罩10的層4的複數不同部分,以將對應於消熔圖案的結構消熔至層4上的多個不同地點,且從而在層4中建立的結構比不步進層4時建立的結構更大。
在一實施例中,如第5圖至第7圖中所描繪,藉由消熔形成的結構24的孔25的每一個為推拔,具有在雷射束8的下游方向中減少的橫剖面面積。在一實施例中,藉由重複的引導雷射束8通過遮罩10且至層4上,且在遮罩10上用雷射束8對複數不同遮罩圖案進行掃描來控制推拔,每個遮罩圖案界定在不同深度的推拔孔25的橫剖面面積。例如,第一遮罩圖案可設有對應於層4中形成的各別的複數個孔25的第一複數個透明區域20,第二遮罩圖案可設有對應於相同的各別的複數個孔25的第二複數個透明區域20,且第三遮罩圖案可設有對應於相同的各別的複數個孔25的第三複數個透明區域20,第一遮罩圖案的透明區域20大於第二遮罩圖案的透明區域20,第二遮罩圖案的透明區域20大於第三遮罩圖案的透明區域20。第5圖中概略地示出使用第一遮罩圖案的製程的例示性結果,形成具有直徑26的淺凹痕。第6圖中概略地示出使用第二遮罩圖案的製程的例示性結果,凹痕已被加深且具有較窄的直徑28。第7圖中概略地示出使用第三遮罩圖案的製程的例示性結果,消熔已貫穿通過層4且在凹痕25的最深的點形成有直徑30的推拔孔25。在第一遮罩圖案、第二遮罩圖案及第三遮罩圖案中的透明區域的尺寸的變化影響沿推拔在不同點的直徑26、28及30,因此允許以高精密度控制推拔的輪廓。
對界定不同的各別消熔圖案的複數遮罩圖案重複引導步驟及掃描步驟的作法,不限於形成的結構為孔的規律陣列的情況,且不限於不同的消熔圖案對應於孔的不同的深度的情況。作法可施加於不同或更繁雜的結構。只要是對依據凹痕或孔的深度以控制層4中的凹痕或孔的形狀有好處的狀況,此作法為有用的。為了達到依據深度的形狀的控制,通常期望重複引導步驟及掃描步驟,導致將不同的雷射消熔圖案施加至層4的相同或重疊的區域。通常此將涉及重複引導及掃描,遮罩10及層4之間的相對位置沒有任何改變,例如每次處理層4的相同部分。如第8圖中概略地描繪,複數遮罩圖案可被提供在分離的遮罩101、102及103上,或如第9圖中概略地描繪,不同的區域10A、10B、10C在相同遮罩10上。
控制推拔的其他作法可與上述作法結合使用或作為替代。例如,在一個類別的實施例中,藉由控制到遮罩10上的雷射束8的通量(脈衝能量密度:雷射脈衝的能量除以被雷射脈衝照射的面積),以至少部分地控制推拔。例如,雷射束8可在遮罩10上掃描數次,至少兩次的掃描以不同的通量執行。入射在層4上的雷射束8的通量影響層中的消熔的穴(pocket)的壁的推拔角度。較高的通量造成較小(更直立)的推拔角度。較小的通量造成較高(較不直立)的推拔角度。提供依據層4中的深度以變化通量的能力,以提供用於調整形成在層4中的結構的內部形狀(例如,推拔輪廓)的有用的額外的自由度(degree of freedom)。
基於以上所述,在一個類別的實施例中,在孔的形成期間,對於一個或多個孔的每一個,於遮罩10的雷射束8的通量是變化的。於遮罩10的變化的通量致使於層4的通量的對應變化。變化使得在層4中的不同深度的孔的部分的形成期間,於遮罩(且因此於層4)的通量是不同的,從而依據層4中的深度控制孔的推拔角度的變化。
在一個範例過程中,有雷射束8提供第一通量至遮罩10,以執行遮罩10上的第一掃描。例如,掃描可遵循以上描述並參考第3圖的掃描路徑22。雷射束8的通量可使得在遮罩10上的此第一掃描之後,在層4中形成僅部分延伸通過層4(與第5圖中的情況相似)的結構。接著,有雷射束8提供低於第一通量的第二通量,於遮罩10上執行第二掃描。此掃描的結果是加深在第一掃描中形成的結構。然而,在第二掃描期間,由於雷射束8的較低的通量,推拔角度也增加。接著,有雷射束8提供低於第二通量的第三通量,在遮罩10上執行第三掃描。此掃描的結果是加深在第二掃描中形成的結構,直到消熔突破通過至層4的其他側。在第三掃描期間,雷射束8的低通量表示在新到達的深度的推拔角度進一步增加。第10圖示出藉由如此的方法創造的孔的輪廓。因此,此作法提供額外地或附加地方式,以控制孔中的推拔的形狀。儘管已參考由三個掃描示範的此實施例,可使用任何數量的掃描。此外,不必要地需要以上述得方式來調整通量,相反的可以任何適合的方式改變通量。如果在逐次的掃描中的通量為漸進地增加,將創造第11圖中示出的類型的孔輪廓。此外,在每次掃描中的雷射束8的通量不必不同,只要在至少兩次的掃描中有不同。在不同的掃描之間可增加或減少通量。
2:設備 4:層 6:紫外線雷射器 8:超快脈衝雷射束/雷射束/雷射輻射 9:雷射束光點 10,101,102,103:遮罩 10A,10B,10C:區域 12:支撐件 13:光學系統 14:掃描布置 15:控制器 16:光學元件 18:消熔圖案 20:透明區域 22:掃描路徑 24:結構 25:孔 26,28,30:直徑
現將描述本發明的實施例,僅透過範例且參考附圖,其中: 第1圖為用於執行雷射消熔的設備的概略的側視圖; 第2圖為可被應用於第1圖中示出的設備的遮罩的上視圖; 第3圖為遮罩的上視圖,顯示雷射束可如何在遮罩上掃描; 第4圖為有消熔圖案被消熔在層中的第1圖中示出的層的上視圖; 第5圖至第7圖為示出推拔孔的消熔的不同階段的側剖面圖; 第8圖描繪在層的相同區域上的用於不同掃描的複數遮罩圖案,其中在分離的遮罩上提供遮罩圖案; 第9圖中描繪在層的相同區域上的用於不同掃描的複數遮罩圖案,在相同遮罩的不同區域上提供遮罩圖案;以及 第10圖及第11圖示出藉由減少或增加雷射能量密度(通量)形成的不同的孔推拔輪廓的側剖面圖。
2:設備
4:層
6:紫外線雷射器
8:超快脈衝雷射束
10:遮罩
12:支撐件
13:光學系統
14:掃描裝置
15:控制器
16:光學元件

Claims (19)

  1. 一種執行雷射消熔的方法,該方法包括: 引導一紫外線雷射束通過一遮罩,使由該遮罩界定的一消熔圖案的一部分成像至材料的一層上;以及 掃描該雷射束,以在該遮罩上將該消熔圖案的多個不同部分依序地成像至該層的多個不同的各別區域上,從而將對應於該消熔圖案的一結構消熔至該層中, 其中該雷射束包括一超快脈衝雷射束,具有小於20皮秒的一脈衝長度。
  2. 如請求項1之方法,其中對應於該消熔圖案的該結構包括多個孔的一規律陣列。
  3. 如請求項2之方法,其中該等孔的至少一子集的全部具有實質上相同的尺寸及形狀。
  4. 如請求項2或請求項3之方法,其中該等孔的每一個為推拔,以至於該等孔的每一個具有在該雷射束的一下游方向中減少的一橫剖面面積。
  5. 如請求項4之方法,其中對於該等孔的一個或多個的每一個,在該孔的形成期間於該遮罩的該雷射束的一通量會變化,在該孔的多個部分的形成期間,該變化使得在材料的該層中的多個不同深度的該通量為不同的,從而依據材料的該層中的深度控制該孔的一推拔角度的一變化。
  6. 如請求項4或請求項5之方法,其中該引導步驟及該掃描步驟被重複以用於複數遮罩圖案,每個遮罩圖案界定於一不同的深度的該等推拔孔的一橫剖面面積。
  7. 如請求項2至請求項6中任一項之方法,其中該消熔圖案的每一個成像部分有助於在該層中形成複數孔。
  8. 如請求項7之方法,其中對應於每個成像部分的該等複數孔包括至少100個孔。
  9. 如請求項8之方法,其中該消熔圖案的多個不同部分的該依序成像有助於在該層中形成至少100000個孔。
  10. 如請求項2至請求項9中任一項之方法,其中該陣列的一間距小於10微米。
  11. 如前述請求項中任一項之方法,其中該引導步驟及該掃描步驟被重複用於界定多個不同各別的消熔圖案的複數遮罩圖案。
  12. 如請求項11之方法,其中重複該引導步驟及該掃描步驟,將該等不同的雷射消熔圖案施加於該層的該等相同或重疊區域。
  13. 如請求項11或12之方法,其中在多個分離的遮罩上提供該等複數遮罩圖案。
  14. 如請求項11或12之方法,其中在該相同遮罩的多個不同區域上提供該等複數遮罩圖案。
  15. 如前述請求項中任一項之方法,其中該層包括一金屬層。
  16. 如前述請求項中任一項之方法,其中該引導步驟及該掃描步驟被重複以用於相對於該遮罩的該層的複數不同部分,從而將對應於該消熔圖案的該結構消熔至該層上的多種不同位置。
  17. 如前述請求項中任一項之方法,其中該結構包括一蒸鍍遮罩的一部分,用以在一基於有機發光分子的顯示器的製造期間,沉積多個有機發光分子。
  18. 一種沉積有機發光分子的方法,包括: 藉由執行請求項16的該方法,形成一蒸鍍遮罩;以及 使用該蒸鍍遮罩以在由該蒸鍍遮罩界定的一圖案中沉積多個有機發光分子。
  19. 一種執行雷射消熔之設備,該設備包括: 一紫外線雷射器,配置以生產具有小於20皮秒的一脈衝長度的一超快脈衝雷射束; 一遮罩,界定一消熔圖案; 一光學系統,配置以引導該雷射束通過該遮罩,以將該消熔圖案的一部分成像至材料的一層上;以及 一掃描布置,配置以用該雷射束在該遮罩上掃描,以依序地將該消熔圖案的多個不同部分成像至該層上,從而將對應於該消熔圖案的一結構消熔至該層中。
TW110113383A 2020-04-16 2021-04-14 執行雷射消熔的方法及設備與沉積有機發光分子的方法 TW202140821A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB2005541.4 2020-04-16
GBGB2005541.4A GB202005541D0 (en) 2020-04-16 2020-04-16 Method and apparatus for performing laser ablation

Publications (1)

Publication Number Publication Date
TW202140821A true TW202140821A (zh) 2021-11-01

Family

ID=70860194

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110113383A TW202140821A (zh) 2020-04-16 2021-04-14 執行雷射消熔的方法及設備與沉積有機發光分子的方法

Country Status (3)

Country Link
CN (1) CN113523579A (zh)
GB (1) GB202005541D0 (zh)
TW (1) TW202140821A (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117066709B (zh) * 2023-06-26 2024-05-28 西南石油大学 一种无辅助吹气激光切割中厚及以上钢材的工艺方法

Also Published As

Publication number Publication date
CN113523579A (zh) 2021-10-22
GB202005541D0 (en) 2020-06-03

Similar Documents

Publication Publication Date Title
TWI580095B (zh) 使用雷射之立體圖案成形方法
KR101809783B1 (ko) 반도체 기판을 방사상으로 그루빙하는 방법
KR20050047103A (ko) 다양한 조사 패턴을 포함하는 원 샷 반도체 가공 시스템 및방법
TW201642987A (zh) 用於大區域修改之雷射系統及方法
KR102480090B1 (ko) 증착 마스크의 제조방법
KR20120101087A (ko) 비주기적인 펄스 순차 측면 고상화를 위한 시스템 및 방법
TW202140821A (zh) 執行雷射消熔的方法及設備與沉積有機發光分子的方法
US20100272959A1 (en) Method and unit for micro-structuring a moving substrate
JP2008279472A (ja) レーザマーキング装置
TWI765905B (zh) 用於半導體材料層退火之裝置,半導體材料層退火之方法,及平面顯示器
TW202135965A (zh) 雷射加工裝置和雷射加工工件的方法
WO2019146110A1 (ja) レーザ加工方法
TWI724138B (zh) 脆性材料基板之雷射加工方法及雷射加工裝置
US20130003030A1 (en) Laser ablation tooling via distributed patterned masks
JP4925101B2 (ja) ビーム照射方法、及び、ビーム照射装置
JP2023039239A (ja) レーザアブレーションを実施するための方法および装置
KR20230041286A (ko) 레이저 어블레이션을 수행하는 방법 및 장치
CN116323071A (zh) 用于在工作平面上产生激光线的设备
KR20180013678A (ko) 취성재료 기판의 레이저 가공방법 및 레이저 가공장치
JP2004319581A (ja) パターン描画装置及びパターン描画方法
JP2020121921A (ja) 脆性材料基板のレーザー加工装置
JP3524855B2 (ja) レーザ照射装置及びレーザ加工方法
KR102495826B1 (ko) 멀티 레이어 레이저 조사 기반의 마스크 제조 방법
JP2019072763A (ja) レーザー加工方法
WO2024106313A1 (ja) レーザ加工方法、基板の製造方法、レーザ加工装置、基板、及び半導体パッケージ基板