TW202132816A - 成像系統的操作方法 - Google Patents

成像系統的操作方法 Download PDF

Info

Publication number
TW202132816A
TW202132816A TW110105216A TW110105216A TW202132816A TW 202132816 A TW202132816 A TW 202132816A TW 110105216 A TW110105216 A TW 110105216A TW 110105216 A TW110105216 A TW 110105216A TW 202132816 A TW202132816 A TW 202132816A
Authority
TW
Taiwan
Prior art keywords
pixel
radiation
temperature
imaging system
operating method
Prior art date
Application number
TW110105216A
Other languages
English (en)
Other versions
TWI819273B (zh
Inventor
曹培炎
Original Assignee
大陸商深圳幀觀德芯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商深圳幀觀德芯科技有限公司 filed Critical 大陸商深圳幀觀德芯科技有限公司
Publication of TW202132816A publication Critical patent/TW202132816A/zh
Application granted granted Critical
Publication of TWI819273B publication Critical patent/TWI819273B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/68Noise processing, e.g. detecting, correcting, reducing or removing noise applied to defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/02Means for indicating or recording specially adapted for thermometers
    • G01K1/026Means for indicating or recording specially adapted for thermometers arrangements for monitoring a plurality of temperatures, e.g. by multiplexing

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Measurement Of Radiation (AREA)
  • Studio Devices (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

本發明公開了一種方法,其包括:對於i = 1,…,N,將同一輻射檢測器的像素(i)暴露於輻射(i),從而在所述像素(i)中引起表觀信號(i),其中在所述像素(i)暴露於所述輻射(i)時,所述像素(i)處於溫度(i);對於i = 1,…,N,確定所述像素(i)的所述溫度(i);並且對於i = 1,…,N,根據所述表觀信號(i)和所述溫度(i)確定所述輻射(i)的相同輻射特性的實際值(i),其中N為正整數。所述輻射特性可以是輻射強度、輻射相位或輻射極化。

Description

成像系統的操作方法
本發明的公開涉及輻射檢測器。
輻射檢測器是一種測量輻射的特性的裝置。所述特性的示例可包括輻射的強度、相位和偏振的空間分佈。所述輻射可以是與物體相互作用的輻射。例如,由輻射檢測器測量的輻射可以是已經從物體穿透或從物體反射的輻射。所述輻射可以是電磁輻射,比如紅外光、可見光、紫外光、X射線或γ射線。所述輻射可以是其他類型,比如α射線和β射線。輻射可包括輻射粒子,例如光子(電磁波)和亞原子粒子。
本發明公開一種方法,其包括:對於i = 1,…,N,將同一輻射檢測器的像素(i)暴露於輻射(1,i),從而在所述像素(i)中引起表觀信號(1,i),其中在所述像素(i)暴露於所述輻射(1,i)時,所述像素(i)處於溫度(1,i);對於i = 1,…,N,確定所述像素(i)的所述溫度(1,i);並且對於i = 1,…,N,根據所述表觀信號(1,i)和所述溫度(1,i)確定所述輻射(1,i)的實際強度(1,i),其中N為正整數。
根據實施例,N大於1。
根據實施例,所述方法進一步包括:對於i = 1,…,N,將所述像素(i)暴露於輻射(2,i),從而在所述像素(i)中引起表觀信號(2,i),其中當所述像素(i)暴露於所述輻射(2,i)時,所述像素(i)處於溫度(2,i);對於i = 1,…,N,確定所述像素(i)的所述溫度(2,i);並且對於i = 1,…,N,根據所述表觀信號(2,i)和所述溫度(2,i)確定所述輻射(2,i)的實際強度(2,i)。
根據實施例,所述的確定所述溫度(1,i),i = 1,…,N,包括使用遍佈所述輻射檢測器的Q個溫度計測量所述溫度(1,i),i = 1,…,N,並且Q是正整數。
根據實施例,Q = N,並且所述Q個溫度計被一對一放置在所述像素(i),i = 1,…,N,處。
根據實施例,Q <N,並且所述的確定所述溫度(1,i),i = 1,…,N,涉及插值。
根據實施例,所述方法進一步包括,對於i = 1,…,N,確定(A)入射在所述像素(i)上的輻射(i)的實際強度(i),(B)由所述像素(i)中的所述輻射(i)引起的表觀信號(i),和(C)所述輻射(i)入射到所述像素(i)時所述像素(i)的溫度(i)之間的關係式(i),其中對於i = 1,…,N,所述的確定所述實際強度(1,i)是使用所述關係式(i)執行的。
根據實施例,所述的確定所述關係式(i),i = 1,…,N,包括:對於i = 1,…,N,用所述表觀信號(i)和所述溫度(i)表示所述實際強度(i)的通用公式(i),每個所述通用公式(i),i = 1,…,N,具有M個係數,因此得到MxN個係數,其中M為正整數;對於i = 1,…,N,獲取所述實際強度(i)、所述表觀信號(i)和所述溫度(i)的實驗數據;將所述實驗數據代入所述通用公式(i),i = 1,…,N,因此得到MxN個係數的MxN個方程式;求解所述MxN個係數的MxN個方程式;並且將所述MxN個係數的值代入到所述通用公式(i),i = 1,…,N,中,得到分別以所述表觀信號(i),i = 1,…,N,和所述溫度(i),i = 1,…,N,表示的所述實際強度(i),i = 1,...,N,的特定公式(i),i = 1,...,N,並且其中對於i = 1,…,N,所述的使用所述關係式(i)包括使用特定公式(i)。
根據實施例,所述的確定所述關係式(i),i = 1,…,N,包括通過將所述像素(i),i = 1,…,N,暴露在M個已知強度的輻射中,從而獲取對於i = 1,…,N,的所述實際強度(i)、所述表觀信號(i)和所述溫度(i)的實驗數據。
根據實施例,所述M個輻射中的每個輻射在整個所述像素(i),i = 1,…,N,中具有均勻的強度。
根據實施例,所述M個輻射中的輻射在整個所述像素(i),i = 1,…,N,上具有零強度。
根據實施例,所述的確定所述溫度(1,i),i = 1,…,N,包括:對於i = 1,...,N,將所述像素(i)暴露在已知實際強度(3,i)的輻射(3,i)下,從而在所述像素(i)中產生表觀信號(3,i);對於i = 1,…,N,利用所述關係式(i),確定根據所述實際強度(3,i)和所述表觀信號(3,i)的所述像素(i)的溫度(3,i);並且對於i = 1,…,N,使用所述溫度(3,i)作為所述溫度(1,i)的值。
根據實施例,所述的將所述像素(i)暴露於所述輻射(3,i)基本上在將所述像素(i)暴露於所述輻射(1,i)的之前或之後進行。
本發明公開一種方法,其包括:對於i = 1,…,N,將同一輻射檢測器的像素(i)暴露於輻射(1,i),從而在所述像素(i)中引起表觀信號(1,i),其中在所述像素(i)暴露於所述輻射(1,i)時,所述像素(i)處於溫度(1,i);對於i = 1,…,N,確定所述像素(i)的所述溫度(1,i);並且對於i = 1,…,N,根據所述表觀信號(1,i)和所述溫度(1,i)確定所述輻射(1,i)的相同輻射特性的實際值(1,i),其中N為正整數。
根據實施例,所述輻射特性是輻射強度、輻射相位或輻射極化。
根據實施例,N大於1。
根據實施例,所述方法進一步包括:對於i = 1,…,N,將所述像素(i)暴露於輻射(2,i),從而在所述像素(i)中引起表觀信號(2,i),其中當所述像素(i)暴露於所述輻射(2,i)時,所述像素(i)處於溫度(2,i);對於i = 1,…,N,確定所述像素(i)的所述溫度(2,i);並且對於i = 1,…,N,根據所述表觀信號(2,i)和所述溫度(2,i)確定所述輻射(2,i)的所述輻射特性的實際值(2,i)。
根據實施例,所述的確定所述溫度(1,i),i = 1,…,N,包括使用遍佈所述輻射檢測器的Q個溫度計測量所述溫度(1,i),i = 1,…,N,並且Q是正整數。
根據實施例,Q = N,並且其中所述Q個溫度計被一對一放置在所述像素(i),i = 1,…,N,處。
根據實施例,Q <N,並且其中所述的確定溫度(1,i),i = 1,…,N,涉及插值。
根據實施例,所述方法進一步包括,對於i = 1,…,N,確定(A)入射在所述像素(i)上的輻射(i)的所述輻射特性的實際值(i),(B)由所述像素(i)中的所述輻射(i)引起的表觀信號(i),和(C)所述輻射(i)入射到所述像素(i)時所述像素(i)的溫度(i)之間的關係式(i),其中對於i = 1,…,N,所述的確定所述實際值(1,i)是使用所述關係式(i)執行的。
根據實施例,所述的確定所述關係式(i),i = 1,…,N,包括:對於i = 1,…,N,用所述表觀信號(i)和所述溫度(i)表示所述實際值(i)的通用公式(i),每個所述通用公式(i),i = 1,…,N,具有M個係數,因此得到MxN個係數,其中M為正整數;對於i = 1,…,N,獲取所述實際值(i)、所述表觀信號(i)和所述溫度(i)的實驗數據;將所述實驗數據代入所述通用公式(i),i = 1,…,N,因此得到MxN個係數的MxN個方程式;求解所述MxN個係數的MxN個方程式;並且將所述MxN個係數的值代入到所述通用公式(i),i = 1,…,N,中,得到分別以所述表觀信號(i),i = 1,…,N,和所述溫度(i),i = 1,…,N,表示的所述實際值(i),i = 1,...,N,的特定公式(i),i = 1,...,N,並且其中對於i = 1,…,N,所述的使用所述關係式(i)包括使用特定公式(i)。
根據實施例,所述的確定所述關係式(i),i = 1,…,N,包括:通過將所述像素(i),i = 1,…,N,暴露在M個已知所述輻射特性的值的輻射中,從而獲取對於i = 1,…,N,的所述實際值(i)、所述表觀信號(i)和所述溫度(i)的實驗數據。
根據實施例,所述M個輻射中的每個輻射在整個所述像素(i),i = 1,…,N,中具有所述輻射特性的均勻的強度。
根據實施例,所述M個輻射中的輻射在整個所述像素(i),i = 1,…,N,上具有所述輻射特性的零值。
根據實施例,所述的確定所述溫度(1,i),i = 1,…,N,包括:對於i = 1,...,N,將所述像素(i)暴露在已知所述輻射特性的實際值(3,i)的輻射(3,i)下,從而在所述像素(i)中產生表觀信號(3,i);對於i = 1,…,N,利用所述關係式(i),確定根據所述實際值(3,i)和所述表觀信號(3,i)的所述像素(i)的溫度(3,i);並且對於i = 1,…,N,使用所述溫度(3,i)作為所述溫度(1,i)的值。
根據實施例,所述的將所述像素(i)暴露於所述輻射(3,i)基本上在將所述像素(i)暴露於所述輻射(1,i)的之前或之後進行。
圖1示意示出作為示例的輻射檢測器100。所述輻射檢測器100可以包括像素150的陣列。該陣列可以是矩形陣列(如圖1所示)、蜂窩陣列、六邊形陣列或任何其他合適的陣列。在圖1的所述示例中,所述像素150的陣列具有4行7列。然而,通常所述像素150的陣列可以具有任意數量的行和任意數量的列。
每個像素150可以被配置為檢測來自輻射源的入射在其上的輻射,並且可以被配置為測量所述輻射的特性(例如,輻射粒子的能量、波長、輻射通量和頻率)。例如,每個像素150可以被配置為在一段時間內對入射在其上的其能量落入多個能量箱中的輻射粒子的數量進行計數。所有所述像素150均可以被配置為對在相同時間段內的多個能量箱內入射在其上的輻射粒子的數量進行計數。當所述入射輻射粒子具有相似的能量時,所述像素150可以被簡單地配置為對一段時間內入射在其上的輻射粒子的數量進行計數,而無需測量各個輻射粒子的能量。
每個像素150可以具有其自己的模數轉換器(ADC),該模數轉換器被配置為將表示入射輻射粒子能量的類比信號數位化為數位信號,或者將表示多個入射輻射粒子總能量的類比信號數位化為數位信號。所述像素150可以被配置為並行操作。例如,當一個像素150測量入射的輻射粒子時,另一個像素150可能正在等待輻射粒子到達。所述像素150可以不必是單獨可尋址的。
在此描述的輻射檢測器100可以具有諸如X射線望遠鏡、乳腺X射線照相、工業X射線缺陷檢測、X射線顯微鏡或顯微照相、X射線鑄件檢驗,X射線無損試驗、X射線焊接檢驗、X射線數位減影血管造影等應用。也可以將所述輻射檢測器100用於代替照相底片、照相膠片、光激發磷光板、X射線影像增強器、閃爍體或X射線探測器。所述輻射檢測器100還可以用作檢測包含物體或場景影像的可見光光子的影像感測器。
圖2A示意示出根據實施例的圖1中沿2A-2A線的輻射檢測器100的簡化橫截面圖。更具體地講,所述檢測器100可包括輻射吸收層110和電子元件層120(例如,專用集成電路),其用於處理或分析在所述輻射吸收層110中產生的入射輻射的電信號。所述檢測器100可包括也可不包括閃爍體(圖中未顯示)。所述輻射吸收層110可包括半導體材料,諸如矽、鍺、砷化鎵、碲化鎘、鎘鋅碲或其組合。所述半導體材料對於感興趣的輻射可具有高的質量衰減係數。
圖2B示意示出作為示例的圖1中沿2A-2A線的輻射檢測器100的詳細橫截面圖。更具體地講,所述輻射吸收層110可包括由第一摻雜區111、第二摻雜區113的一個或多個離散區114 組成的一個或多個二極體(例如,p-i-n或p-n)。所述第二摻雜區113可通過可選的本徵區112而與所述第一摻雜區111分離。所述離散區114通過所述第一摻雜區111或所述本徵區112而彼此分離。所述第一摻雜區111和所述第二摻雜區113具有相反類型的摻雜(例如,區域111是p型並且區域113是n型,或者區域111是n型並且區域113是p型)。在圖2B中的示例中,所述第二摻雜區113的每個離散區114與所述第一摻雜區111和所述可選的本徵區112一起組成一個二極體。即,在圖2B的示例中,所述輻射吸收層110包括多個二極體(更具體地講,7個二極體對應於圖1的所述陣列中的一行的7個像素150)。所述多個二極體具有電觸點119A作為共享(共用)電極。所述第一摻雜區111還可具有離散部分。
所述電子元件層120可包括電子系統121,其適用於處理或解釋由入射在所述輻射吸收層110上的輻射所產生的信號。所述電子系統121可包括類比電路比如濾波器網絡、放大器、積分器、比較器,或數位電路比如微處理器和內存。所述電子系統121可包括一個或多個類比數位轉換器。所述電子系統121可包括由所述像素150共用的組件或專用於單個像素150的組件。例如,所述電子系統121可包括專用於每個像素150的放大器和在所有像素150間共用的微處理器。所述電子系統121可通過通孔131電連接到所述像素150。所述通孔之間的空間可用填充材料130填充,其可增加所述電子元件層120到所述輻射吸收層110連接的機械穩定性。其他鍵合技術有可能在不使用所述通孔131的情況下將所述電子系統121連接到所述像素150。
當來自所述輻射源(圖中未顯示)的輻射撞擊包括二極體的所述輻射吸收層110時,所述輻射粒子可被吸收並通過若干機制產生一個或多個載流子(例如,電子,空穴)。所述載流子可在電場下向其中一個所述二極體的電極漂移。所述電場可以是外部電場。所述電觸點119B可包括離散部分,其中的每個離散部分與所述離散區114電接觸。術語“電接觸”可與詞語“電極”互換使用。在實施例中,所述載流子可向不同方向漂移,使得由單個輻射粒子產生的所述載流子大致未被兩個不同的離散區114共用(“大致未被共用”在這裡意指這些載流子中的不到2%、不到0.5%、不到0.1%、或不到0.01%流向與餘下載流子不同的一個所述離散區114)。由入射在所述離散區114之一的足跡周圍的輻射粒子所產生的載流子大致未被另一所述離散區114共用。與一個離散區114相關聯的一個像素150可以是所述離散區114周圍的區,由入射在其中的一個輻射粒子所產生的載流子大致全部(超過98%、超過99.5%、超過99.9%或超過99.99%)流向其中。即,所述載流子中的不到2%、不到1%、不到0.1%、或不到0.01%流到所述像素150之外。
圖2C示意示出根據實施例的圖1沿2A-2A線的所述輻射檢測器100的替代詳細橫截面圖。更具體地講,所述輻射吸收層110可包括半導體材料,比如矽、鍺、砷化鎵、碲化鎘、鎘鋅碲或其組合,的電阻器,但不包括二極體。所述半導體材料對於感興趣的輻射可具有高的質量衰減係數。在實施例中,圖2C中的所述電子元件層120在結構和功能方面類似於圖2B中的所述電子元件層120。
當所述輻射撞擊包括所述電阻器但不包括二極體的所述輻射吸收層110時,該輻射可被吸收並通過若干機制產生一個或多個載流子。一個輻射粒子可產生10到100000個載流子。所述載流子可在電場下向電觸點119A和電觸點119B漂移。所述電場可以是外部電場。所述電觸點119B包括離散部分。在實施例中,所述載流子可向不同方向漂移,使得由單個輻射粒子產生的所述載流子大致未被所述電觸點119B兩個不同的離散部分共用(“大致未被共用”在這裡意指這些載流子中不到2%、不到0.5%、不到0.1%或不到0.01%流向與餘下載流子不同組的離散部分)。由入射在所述電觸點119B離散部分之一的足跡周圍的輻射粒子所產生的載流子大致未被另一所述電觸點119B離散部分共用。與所述電觸點119B離散部分之一相關聯的一個像素150可以是所述離散部分周圍的區,由入射在其中的輻射粒子所產生的載流子大致全部(超過98%、超過99.5%、超過99.9%或超過99.99%)流向其中。即,所述載流子中的不到2%、不到0.5%、不到0.1%、或不到0.01%流到與所述電觸點119B離散部分之一相關聯的所述像素之外。
圖3示意示出根據實施例的成像系統300。在實施例中,所述成像系統300可以包括所述輻射檢測器100和與所述輻射檢測器100電連接的電腦310。
在實施例中,所述成像系統300的公式確定過程可以執行如下。第一步可以是指定利用所述成像系統300測量的輻射特性(例如,強度、相位或偏振等)。例如,假定將放射強度指定為利用所述成像系統300測量的放射特性。
接下來,在實施例中,可以為所述28個像素150中的每一個指定實際強度的通用公式。具體地講,對於i = 1,…,28,所述像素(i)的實際強度的通用公式可以為 {Ri = (1 + ai x Ti) x Si + bi x Ti} (稱為公式Fi_abST),其中,Ri是入射在所述像素(i)上的輻射(i)的實際強度。Si是由所述像素(i)中的所述輻射(i)引起的表觀信號;Ti是所述像素(i)暴露於所述輻射(i)時所述像素(i)的溫度;並且ai和bi是兩個常數。可以說,Fi_abST 是用Si和Ti表示的Ri公式。
更具體地講,所述像素(1)實際強度的所述通用公式可以是{R1 = (1+a1xT1)xS1 + b1xT1} (稱為公式 F1_abST),所述像素(2)實際強度的所述通用公式可以是{R2 = (1+a2xT2)xS2 + b2xT2} (稱為公式 F2_abST),以此類推…,並且所述像素(28)實際強度的所述通用公式可以是 {R28 = (1+a28xT28)xS28 + b28xT28}(稱為公式 F28_abST)。
接下來,在實施例中,為了確定所述28個通用公式 Fi_abST,i=1,…,28,中的56個係數ai和bi,i = 1,…,28,的值,所述輻射檢測器100( 包括所述28個像素150)可以被設置為某個溫度,例如,T1 = T2 = ... = T28 = 25。本描述中使用的特定值(例如,溫度為25)僅用於說明,並不意味著是現實的(因此未示出單位)。
接下來,在實施例中,所述28個像素150處於該溫度(即,T1 = T2 =…= T28 = 25),所述28個像素150可以被暴露於每個像素150已知實際強度的第一輻射,例如,R1 = R2 = ... = R28 = 20,從而在像素(1)、像素(2)、...和像素(28)中分別產生28個表觀信號S1、S2、...和S28。這28個表觀信號S1、S2、…和S28的28個值可以被所述輻射檢測器100的電子元件層120讀取,並且然後可以被傳送到所述電腦310以進行後續處理。
假設如上所述,在T1 = T2 =…= T28 = 25時R1 = R2 =…= R28 = 20導致S1 = 51,S2 = 52,…和S28 = 53(為了簡化描述,僅3個特定值51、52和53,分別被提供給像素(1)、像素(2)和像素(28))。R、S和T的這28個實驗數據點可以代入上述28個通用公式F1_abST、F2_abST、…和F28_abST中,從而得出56個係數ai和bi,i = 1,…,28,的28個方程式,即: {20 =(1 + 25a1)x51 + 25b1} (稱為方程式E1A)、 {20 =(1 + 25a2)x52 + 25b2} (稱為方程式E2A)、…和 {20 =(1 + 25a28) x53 + 25b28} (稱為方程式E28A)。
接下來,在實施例中,所述28個像素150仍處於該溫度下(即,T1 = T2 =…= T28 = 25)時,所述28個像素150可以被暴露於每個像素150已知實際強度的第二輻射下,例如,R1 = R2 = ... = R28 = 0(即,所述第二輻射是總暗度,對於所述28個像素150中的每一個都沒有入射輻射),從而在像素(1)、像素(2)、…和像素(28)中分別產生28個表觀信號S1、S2、...和S28。這28個表觀信號S1、S2、…和S28的28個值可以被所述輻射檢測器100的所述電子元件層120讀取,然後可以被傳送到所述電腦310以進行後續處理。
假設如上所述,在T1 = T2 =…= T28 = 25時R1 = R2 =…= R28 = 0導致S1 = 41,S2 = 43,…和S28 = 45(為了簡化描述,僅3個特定值41、43和45,分別被提供給像素(1)、像素(2)和像素(28))。R、S和T的這28個實驗數據點可以代入上述28個通用公式F1_abST、F2_abST、…和F28_abST中,從而得出56個係數ai和bi,i = 1,…,28,的28個方程式,即: {0 =(1 + 25a1)x41 + 25b1} (稱為方程式E1B)、 {0 =(1 + 25a2)x43 + 25b2} (稱為方程式E2B)、…和 {0 =(1 + 25a28) x45 + 25b28} (稱為方程式E28B)。
接下來,在實施例中,上述兩個未知數a1和b1的2個線性方程式E1A和E1B的系統(即,{20 =(1 + 25a1)x51 + 25b1}和{0 =(1 + 25a1 )x41 + 25b1})對於a1和b1可以求解,得到a1 = 0.04,並且b1 = -3.28。可以將這些特定的a1和b1值代入上述像素(1)的所述通用公式F1_abST中,從而得出像素(1)實際強度 {R1 =(1 + 0.04xT1)xS1 -3.28xT1} 的特定公式(稱為公式F1_ST)。
類似地,在實施例中,上述兩個未知數a2和b2的2個線性方程式E2A和E2B的系統(即,{20 =(1 + 25a1)x52 + 25b1}和{0 =(1 + 25a1 )x43 + 25b1})對於a2和b2可以求解,得到a2 = 0.05,並且b2 = -3.82。可以將這些特定的a2和b2值代入上述像素(2)的所述通用公式F2_abST中,從而得到像素(2)實際強度 {R2 =(1 + 0.05xT2)xS2- 3.82xT2} 的特定公式(稱為的公式F2_ST)。
類似地,在實施例中,上述兩個未知數a28和b28的2個線性方程式E28A和E28B的系統(即,{20 =(1 + 25a28)x53 + 25b28}和{0 =(1 + 25a28 )x45 + 25b28})對於a28和b28可以求解,得到a28 = 0.06,並且b28 = -4.5。可以將這些特定的a28和b28值代入上述像素(28)的所述通用公式F28_abST中,從而得到像素(28)實際強度 {R28 =(1 + 0.06xT28)xS2- 4.5xT28} 的特定公式(稱為的公式F28_ST)。
可以用類似的方式確定其餘25個像素150(即,像素(3)、像素(4)、…和像素(27))的25個實際強度的特定公式。作為上述公式確定過程的結果,為所述輻射檢測器100的所述28個像素150確定了實際強度Fi_ST,i = 1,…,28,的所述28個特定公式。
接下來,在實施例中,在如上所述的所述成像系統300的公式確定過程執行之後,所述成像系統300的成像處理可以被執行如下。首先,在實施例中,所述輻射檢測器100的所述28個像素150可以被暴露於來自物體或場景的輻射(即,所述輻射檢測器100被用於捕獲物體/場景的表觀影像),從而產生所述28個像素150中的28個表觀信號S1,S2,…和S28。在所述28個像素150中的這28個表觀信號S1,S2,…和S28構成所述物體/場景的表觀影像。所述28個表觀信號S1,S2,…和S28的28個值可以被獲取,以後續用於所述28個特定公式Fi_ST,i = 1,…,28。
接下來,在實施例中,可以通過使用28個溫度計(未示出)來測量Ti,i = 1,…,28來獲取Ti,i = 1,…,28,的28個值。在實施例中,可以將所述28個溫度計一對一地定位在所述28個像素150處。接下來,在實施例中,可以將如上所述獲取的56個Si和Ti,i = 1,…,28,的特定值代入所述28個特定公式F1_ST,F2_ST,…和F28_ST,以確定28個像素150的所述28個實際強度Ri,i = 1,…,28。
應當注意的是,Ri,i = 1,…,28,的28個值構成所述物體/場景的實際影像,而Si,i = 1,2,3,的28個值構成了所述物體/場景的表觀影像。在上面的示例中,可以說所述物體/場景的實際影像是根據所述物體/場景的所述表觀影像和捕捉所述表觀影像時所述28個像素150的溫度,使用實際強度F1_ST,F2_ST,…和F28_ST的28個特定公式來確定的。
圖4根據實施例示出總結所述成像系統300(圖3)的所述公式確定過程和所述成像過程的流程圖400。具體地講,在所述公式確定過程的步驟A1中,在實施例中,可以指定輻射特性。在上面的示例中,指定了輻射強度。
接下來,在所述公式確定過程的步驟A2中,在實施例中,可以指定每個像素150的實際強度的通用公式。在上面的示例中,對於i = 1,…,28,像素(i)的實際強度的通用公式為 {Ri =(1 + aixTi)xSi + bixTi} (即,Fi_abST)。
接下來,在所述公式確定過程的步驟A3中,在實施例中,可以獲取實驗數據,使得對於i = 1,…,28,獲取的像素(i)的Ri、Si和Ti的實驗數據點的數量等於實際強度Ri的通用公式中的係數的數量M。在上面的示例中,由於 {Ri =(1 + aixTi)xSi + bixTi} 具有2個係數ai和bi(即,M = 2),因此獲取所述像素(i)的Ri、Si和Ti的兩個實驗數據點。總共獲取R,S和T的MxN個實驗數據點(其中,M = 2,N =像素數= 28)。
接下來,在所述公式確定過程的步驟A4中,在實施例中,可以為每個所述像素150確定輻射強度的特定公式。具體地講,在步驟A3中所獲取的所述實驗數據(MxN個實驗數據點) 可以被代入到所述N個像素150的實際強度的N個通用公式(即,Fi_abST,i = 1,…,N),得到具有MxN個係數ai和bi,i = 1,…,N,的MxN個方程式。這些MxN個方程式可以求解出所述MxN個係數的值(其中,在上面的示例中,M = 2,N = 28)。所述 MxN個係數ai和bi,i = 1,…,N,的這些MxN個值可以代入到所述N個通用公式Fi_abST,i = 1,…,N,中,從而得到所述N個像素150的實際強度的N個特定公式Fi_ST,i = 1,…,N ,(其中,在上面的示例中,M = 2,N = 28)。
在上面的示例中,對於i = 1,…,28,將2個所獲取的所述像素(i)的Ri、Si和Ti實驗數據點***到所述通用公式Fi_abST中,得出ai和bi的2個方程式,然後求解ai和bi的值。然後將得出的ai和bi的結果值***到所述通用公式Fi_abST中,從而得出像素(i)的特定公式Fi_ST。例如,如上所述,像素(1)的F1_ST是R1 =(1 + 0.04xT1)xS1-3.28xT1}。
接下來,在實施例中,在所述成像過程的步驟B1中,在實施例中,可以使用所述輻射檢測器100捕獲物體/場景的表觀影像。所述的所述物體/場景的所述被捕獲的表觀影像提供了所述28個表觀信號Si,i = 1,…,28,的28個值。
接下來,在所述成像過程的步驟B2中,在實施例中,可以獲取所述28個像素150的28個溫度Ti,i = 1,…,28。在上面的示例中,通過使用在所述28個像素150處的所述28個溫度計獲得所述28個像素150的所述28個Ti,i = 1,…,28,的值。
接下來,在所述成像過程的步驟B3中,在實施例中,可以根據所述物體/場景的所述被捕獲的表觀影像和所述28個像素150的所述溫度來確定所述物體/場景的實際影像。在上面的示例中,分別使用所述28個特定公式Fi_ST,i = 1,...,28,確定Ri,i = 1,…,28,的28個值。所述28個像素150的Ri,i = 1,…,28,的28個值構成所述物體/場景的實際影像。
圖5示出了總結和概括根據實施例的所述成像系統300(圖3)的成像過程的流程圖500。在步驟510中,對於i = 1,…,N(N是正整數),所述輻射檢測器100的像素(i)可以暴露於輻射(i),從而在所述像素(i)中引起表觀信號(i),其中所述像素(i)處於在所述像素(i)暴露於所述輻射(i)時的溫度(i)。在步驟520中,對於i = 1,…,N,可以確定所述像素(i)的所述溫度(i)。在實施例中,所述溫度(i),i = 1,…,N,可以通過使用被一對一放置在所述像素(i),i = 1,…,N,處的N個溫度計來確定。在步驟530中,對於i = 1,…,N,可以根據所述表觀信號(i)和所述溫度(i)來確定所述輻射(i)的實際強度(i)。所述N個實際強度(i),i = 1,…,N,構成所述物體/場景的實際影像。
在上述實施例中,針對所述輻射檢測器100具有28個像素150的情況描述了所述公式確定過程和所述成像過程。通常,上述公式確定過程和成像過程可以用於所述輻射檢測器100具有任意數量的像素150的情況。
在上述實施例中,輻射強度是人們感興趣的輻射特性。通常,可以將任何輻射特性(例如強度、相位或偏振等)指定為感興趣的輻射特性。
在上述實施例中,對於像素(i),使用實際強度Fi_ST的特定公式來表示Ri、Si和Ti之間的關係(例如,對於像素(1),{R1 =(1 + 0.04xT1)xS1 -3.28xT1}。通常,可以使用任何關係形式(例如,公式、查找表、圖形、曲線等)來表示所述像素(i)Ri、Si和Ti之間的關係。
在上述實施例中,像素150的實際輻射強度的通用公式具有{I =(1 + aT)S + bT}的公式形式。通常,像素150的實際輻射強度的通用公式可以具有以S和T以及一些常數係數表示R的任何公式形式。利用在公式確定過程(圖4的步驟A3)中獲得的足夠的R、S和T的實驗數據點,可以確定這些常數係數,因此可以為所述28個像素150中的每一個像素150(圖4的步驟A4)確定一個特定公式,該特定公式用以確定以表觀信號S和溫度T表示的實際輻射強度R。
在上述實施例中,在步驟A3(圖4)中,兩個選定的已知輻射在所述28個像素150中具有均勻的強度(即,對於第一選定的已知輻射,R1 = R2 =…= R28 = 20 ,並且對於第二選定的已知輻射,R2 =…= R28 = 0)。通常,選定的已知輻射的Ri,i = 1,…,28,的28個值不必相同。
在上述實施例中,在步驟B2(圖4)中,位於28個像素150的每個像素處的溫度計用於確定在所述表觀影像被捕獲時所述像素的所述溫度。在替代實施例中,可以在所述輻射檢測器100上稀疏地放置更少的溫度計(即,溫度計的數量小於像素150的數量),並且可以通過內插來推斷每個像素150的溫度。
在另一個替代實施例中,可以在沒有溫度計的情況下確定在所述表觀影像被捕獲時每個像素150的溫度如下。在實施例中,基本上緊接在所述輻射檢測器100之後或之前(注意:“基本上緊接”是指緊接或幾乎緊接)用於捕獲上述物體/場景的表觀影像,所述輻射檢測器100的28個像素150可以暴露於已知實際強度的輻射(例如,具有已知實際強度的R1 = R2 =…= R28 = 0的完全黑暗),並且可以獲取所得到的28個Si,i = 1,…,28,的28個值。接下來,可以將Ri和Si,i = 1,…,28,的56個值輸入步驟A4(圖4)中確定的28個特定公式Fi_ST,從而得出28個未知的Ti,i = 1,…,28,的溫度方程式。這28個Ti,i = 1,…,28,的溫度方程式可以對在所述28個像素150暴露於所述已知輻射(例如,在此示例中的完全黑暗)時所述28個像素150的溫度Ti,i = 1,…,28,的28個值求解。然而,因為實際上所述28個像素150暴露於所述已知輻射的時間接近所述物體/場景的表觀影像被捕獲的時間,所以通過求解上述28個溫度方程式而獲取的28個溫度值可以用作在所述物體/場景的所述表觀影像被捕獲時所述28個像素150中的28個溫度。
在上述實施例中,參考圖4,在步驟B1之後執行步驟B2。通常,如果如上所述使用所述溫度計確定Ti,i = 1,…,28,則步驟B2可以基本上在步驟B1時執行(即與步驟B1同時執行,或基本上在步驟B1之前或基本上在步驟B1之後)。如果如上所述使用所述替代方法(即,沒有溫度計)來確定Ti,i = 1,…,28,則可以在足夠接近步驟B1的時間(即,基本上緊接在步驟B1之前或之後)執行步驟B2 。
在上述實施例中,圖4中的步驟B1-B3被執行一次。通常,可以多次執行圖4中的步驟B1-B3,以便可以確定相同物體/場景或不同物體/場景的多個實際影像。
在上述實施例中,參考圖4,以A1、A2、A3、A4、B1、B2和B3的順序執行步驟。在替代實施例中,步驟可以以A1、B1、B2、A2、A3、A4和B3的順序執行,其中步驟B2可以使用溫度計執行。其他順序也是可能的。
在上述實施例中,所述輻射檢測器100包括以7行和4列的陣列佈置的28個像素150。通常,所述輻射檢測器100可以包括以任何方式佈置的N個像素150,其中N是正整數。
儘管本發明已經公開了各個方面和實施例,但是其他方面和實施例對於本領域技術人員而言將是顯而易見的。本發明公開的各個方面和實施例是為了說明的目的而不是限制性的,其真正的範圍和精神應該以本發明中的申請專利範圍為准。
100:輻射檢測器 110:輻射吸收層 111:第一摻雜區 113:第二摻雜區 114:離散區 119A、119B:電觸點 120:電子元件層 121:電子系統 130:填充材料 131:通孔 150:像素 300:成像系統 310:電腦 400、500:流程圖 A1、A2、A3、A4、B1、B2、B3、510、520、530:步驟
圖1示意示出根據實施例的一種輻射檢測器。 圖2A示意示出根據實施例的所述輻射檢測器的簡化橫截面圖。 圖2B示意示出根據實施例的所述輻射檢測器的詳細橫截面圖。 圖2C示意示出根據實施例的所述輻射檢測器的替代詳細橫截面圖。 圖3示意示出根據實施例的一種成像系統。 圖4示出根據實施例的概述所述成像系統的操作的流程圖。 圖5示出根據實施例的總結和概括所述成像系統的操作的另一流程圖。
400:流程圖
A1、A2、A3、A4、B1、B2、B3:步驟

Claims (27)

  1. 一種成像系統的操作方法,包括: 對於i = 1,…,N,將同一輻射檢測器的像素(i)暴露於輻射(1,i),從而在所述像素(i)中引起表觀信號(1,i),其中在所述像素(i)暴露於所述輻射(1,i)時,所述像素(i)處於溫度(1,i); 對於i = 1,…,N,確定所述像素(i)的所述溫度(1,i);並且 對於i = 1,…,N,根據所述表觀信號(1,i)和所述溫度(1,i)確定所述輻射(1,i)的實際強度(1,i), 其中N為正整數。
  2. 如請求項1所述的成像系統的操作方法,其中N大於1。
  3. 如請求項1所述的成像系統的操作方法,更包括: 對於i = 1,…,N,將所述像素(i)暴露於輻射(2,i),從而在所述像素(i)中引起表觀信號(2,i),其中在所述像素(i)暴露於所述輻射(2,i)時,所述像素(i)處於溫度(2,i); 對於i = 1,…,N,確定所述像素(i)的所述溫度(2,i);並且 對於i = 1,…,N,根據所述表觀信號(2,i)和所述溫度(2,i)確定所述輻射(2,i)的實際強度(2,i)。
  4. 如請求項1所述的成像系統的操作方法,其中所述的確定所述溫度(1,i),i = 1,…,N,包括使用遍佈所述輻射檢測器的Q個溫度計測量所述溫度(1,i),i = 1,…,N,並且 其中Q是正整數。
  5. 如請求項4所述的成像系統的操作方法,其中Q = N,並且 其中所述Q個溫度計被一對一放置在所述像素(i),i = 1,…,N,處。
  6. 如請求項4所述的成像系統的操作方法,其中Q <N,並且 其中所述的確定所述溫度(1,i),i = 1,…,N,涉及插值。
  7. 如請求項1所述的成像系統的操作方法,更包括,對於i = 1,…,N,確定(A)入射在所述像素(i)上的輻射(i)的實際強度(i),(B)由所述像素(i)中的所述輻射(i)引起的表觀信號(i),和(C)在所述輻射(i)入射到所述像素(i)時所述像素(i)的溫度(i)之間的關係式(i), 其中對於i = 1,…,N,所述的確定所述實際強度(1,i)是使用所述關係式(i)執行的。
  8. 如請求項7所述的成像系統的操作方法,其中所述的確定所述關係式(i),i = 1,…,N,包括: 對於i = 1,…,N,用所述表觀信號(i)和所述溫度(i)表示的所述實際強度(i)的通用公式(i),每個所述通用公式(i),i = 1,…,N,有M個係數,因此得到MxN個係數,其中M為正整數; 對於i = 1,…,N,獲取所述實際強度(i)、所述表觀信號(i)和所述溫度(i)的實驗數據; 將所述實驗數據代入所述公式(i),i = 1,…,N,因此得到MxN個係數的MxN個方程式; 求解所述MxN個係數的MxN個方程式;並且 將所述MxN個係數的值代入到所述公式(i),i = 1,…,N,中,得到分別以所述表觀信號(i),i = 1,…,N,和所述溫度(i),i = 1,…,N,表示的所述實際強度(i),i = 1,...,N,的特定公式(i),i = 1,...,N,並且 其中對於i = 1,…,N,所述的使用所述關係式(i)包括使用特定公式(i)。
  9. 如請求項7所述的成像系統的操作方法,其中所述的確定所述關係式(i),i = 1,…,N,包括通過將所述像素(i),i = 1,…,N,暴露在M個已知強度的輻射中,從而獲取對於i = 1,…,N,的所述實際強度(i)、所述表觀信號(i)和所述溫度(i)的實驗數據。
  10. 如請求項9所述的成像系統的操作方法,其中所述M個輻射中的每個輻射在整個所述像素(i),i = 1,…,N,中具有均勻的強度。
  11. 如請求項10所述的成像系統的操作方法,其中所述M個輻射中的一個輻射在整個所述像素(i),i = 1,…,N,上具有零強度。
  12. 如請求項7所述的成像系統的操作方法,其中所述的確定所述溫度(1,i),i = 1,…,N,包括: 對於i = 1,...,N,將所述像素(i)暴露在已知實際強度(3,i)的輻射(3,i)下,從而在所述像素(i)中產生表觀信號(3,i); 對於i = 1,…,N,利用所述關係式(i),確定根據所述實際強度(3,i)和所述表觀信號(3,i)的所述像素(i)的溫度(3,i);並且 對於i = 1,…,N,使用所述溫度(3,i)作為所述溫度(1,i)的值。
  13. 如請求項12所述的成像系統的操作方法,其中所述的將所述像素(i)暴露於所述輻射(3,i)基本上在將所述像素(i)暴露於所述輻射(1,i)的之前或之後進行。
  14. 一種成像系統的操作方法,包括: 對於i = 1,…,N,將同一輻射檢測器的像素(i)暴露於輻射(1,i),從而在所述像素(i)中引起表觀信號(1,i),其中在所述像素(i)暴露於所述輻射(1,i)時,所述像素(i)處於溫度(1,i); 對於i = 1,…,N,確定所述像素(i)的所述溫度(1,i);並且 對於i = 1,…,N,根據所述表觀信號(1,i)和所述溫度(1,i)確定所述輻射(1,i)的相同輻射特性的實際值(1,i), 其中N為正整數。
  15. 如請求項14所述的成像系統的操作方法,其中所述輻射特性是輻射強度、輻射相位或輻射極化。
  16. 如請求項14所述的成像系統的操作方法,其中N大於1。
  17. 如請求項14所述的成像系統的操作方法,其進一步包括: 對於i = 1,…,N,將所述像素(i)暴露於輻射(2,i),從而在所述像素(i)中引起表觀信號(2,i),其中在所述像素(i)暴露於所述輻射(2,i)時,所述像素(i)處於溫度(2,i); 對於i = 1,…,N,確定所述像素(i)的所述溫度(2,i);並且 對於i = 1,…,N,根據所述表觀信號(2,i)和所述溫度(2,i)確定所述輻射(2,i)的所述輻射特性的實際值(2,i)。
  18. 如請求項14所述的成像系統的操作方法,其中所述的確定所述溫度(1,i),i = 1,…,N,包括使用遍佈所述輻射檢測器的Q個溫度計測量所述溫度(1,i),i = 1,…,N,並且 其中Q是正整數。
  19. 如請求項18所述的成像系統的操作方法,其中Q = N,並且 其中所述Q個溫度計被一對一放置在所述像素(i),i = 1,…,N,處。
  20. 如請求項18所述的成像系統的操作方法,其中Q <N,並且 其中所述的确定所述温度(1,i),i = 1,…,N,涉及插值。
  21. 如請求項14所述的成像系統的操作方法,其進一步包括,對於i = 1,…,N,確定(A)入射在所述像素(i)上的輻射(i)的所述輻射特性的實際值(i),(B)由所述像素(i)中的所述輻射(i)引起的表觀信號(i),和(C)在所述輻射(i)入射到所述像素(i)時所述像素(i)的溫度(i)之間的關係式(i), 其中對於i = 1,…,N,所述的確定所述實際值(1,i)是使用所述關係式(i)執行的。
  22. 如請求項21所述的成像系統的操作方法,其中所述的確定所述關係式(i),i = 1,…,N,包括: 對於i = 1,…,N,用所述表觀信號(i)和所述溫度(i)表示所述實際值(i)的公式(i),每個所述公式(i),i = 1,…,N,具有M個係數,因此得到MxN個係數,其中M為正整數; 對於i = 1,…,N,獲取所述實際值(i)、所述表觀信號(i)和所述溫度(i)的實驗數據; 將所述實驗數據代入所述公式(i),i = 1,…,N,因此得到MxN個係數的MxN個方程式; 求解所述MxN個係數的MxN個方程式;並且 將所述MxN個係數的值代入到所述公式(i),i = 1,…,N,中,得到分別以所述表觀信號(i),i = 1,…,N,和所述溫度(i),i = 1,…,N,表示的所述實際值(i),i = 1,...,N,的特定公式(i),i = 1,...,N,並且 其中對於i = 1,…,N,所述的使用所述關係式(i)包括使用特定公式(i)。
  23. 如請求項21所述的成像系統的操作方法,其中所述的確定所述關係式(i),i = 1,…,N,包括通過將所述像素(i),i = 1,…,N,暴露在M個已知所述輻射特性的值的輻射中,從而獲取對於i = 1,…,N,的所述實際值(i)、所述表觀信號(i)和所述溫度(i)的實驗數據。
  24. 如請求項23所述的成像系統的操作方法,其中所述M個輻射中的每個輻射在整個所述像素(i),i = 1,…,N,中具有所述輻射特性的均勻的強度。
  25. 如請求項24所述的成像系統的操作方法,其中所述M個輻射中的輻射在整個所述像素(i),i = 1,…,N,上具有所述輻射特性的零值。
  26. 如請求項21所述的成像系統的操作方法,其中所述的確定所述溫度(1,i),i = 1,…,N,包括: 對於i = 1,...,N,將所述像素(i)暴露在已知所述輻射特性的實際值(3,i)的輻射(3,i)下,從而在所述像素(i)中產生表觀信號(3,i) ; 對於i = 1,…,N,利用所述關係式(i),確定根據所述實際值(3,i)和所述表觀信號(3,i)的所述像素(i)的溫度(3,i);並且 對於i = 1,…,N,使用所述溫度(3,i)作為所述溫度(1,i)的值。
  27. 如請求項26所述的成像系統的操作方法,其中所述的將所述像素(i)暴露於所述輻射(3,i)基本上在將所述像素(i)暴露於所述輻射(1,i)的之前或之後進行。
TW110105216A 2020-02-26 2021-02-17 成像系統的操作方法 TWI819273B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/076784 WO2021168689A1 (en) 2020-02-26 2020-02-26 Imaging systems and methods of operating the same
WOPCT/CN2020/076784 2020-02-26

Publications (2)

Publication Number Publication Date
TW202132816A true TW202132816A (zh) 2021-09-01
TWI819273B TWI819273B (zh) 2023-10-21

Family

ID=77490569

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110105216A TWI819273B (zh) 2020-02-26 2021-02-17 成像系統的操作方法

Country Status (5)

Country Link
US (1) US20220365231A1 (zh)
EP (1) EP4111681A4 (zh)
CN (1) CN114902651A (zh)
TW (1) TWI819273B (zh)
WO (1) WO2021168689A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024031595A1 (en) * 2022-08-12 2024-02-15 Shenzhen Xpectvision Technology Co., Ltd. Radiation detecting systems with measurement results adjusted according to radiation source intensities

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5047861A (en) * 1990-07-31 1991-09-10 Eastman Kodak Company Method and apparatus for pixel non-uniformity correction
DE102006003612B3 (de) * 2006-01-25 2007-06-28 Siemens Ag Verfahren, Korrekturverfahren und Röntgensystem
US8023013B1 (en) * 2007-03-28 2011-09-20 Ambarella, Inc. Fixed pattern noise correction with compressed gain and offset
WO2011018816A1 (ja) * 2009-08-10 2011-02-17 株式会社島津製作所 光または放射線撮像装置
DE102010015422B4 (de) * 2010-04-19 2013-04-18 Siemens Aktiengesellschaft Röntgendetektor mit einer direkt konvertierenden Halbleiterschicht und Kalibrierverfahren für einen solchen Röntgendetektor
US10542193B1 (en) * 2014-11-05 2020-01-21 Drs Network & Imaging Systems, Llc Error smoothing through global source non-uniformity correction
JP2016133305A (ja) * 2015-01-15 2016-07-25 富士通株式会社 赤外線検知装置
CN108139493B (zh) * 2015-10-14 2020-10-30 深圳帧观德芯科技有限公司 一种使用x射线检测器测量x射线的强度分布的方法
JP2019136314A (ja) * 2018-02-09 2019-08-22 キヤノン株式会社 放射線撮影装置、放射線撮影システム、放射線撮影方法、及びプログラム
DE102018116116B3 (de) * 2018-07-04 2019-10-10 Sick Ag Kompensieren von Fixed-Pattern Noise eines Bildsensors
CN110536085B (zh) * 2019-08-20 2022-03-11 北京安酷智芯科技有限公司 一种读出电路及图像校正方法
CN110703309B (zh) * 2019-09-29 2021-09-17 上海奕瑞光电子科技股份有限公司 线阵探测器图像拼接实时校正方法、装置、设备和介质

Also Published As

Publication number Publication date
CN114902651A (zh) 2022-08-12
US20220365231A1 (en) 2022-11-17
EP4111681A1 (en) 2023-01-04
TWI819273B (zh) 2023-10-21
WO2021168689A1 (en) 2021-09-02
EP4111681A4 (en) 2023-12-13

Similar Documents

Publication Publication Date Title
TWI825160B (zh) 成像方法
US20220365231A1 (en) Imaging systems and methods of operating the same
US20230410250A1 (en) Imaging methods using radiation detectors
TWI816995B (zh) 半導體x射線檢測器、檢查系統、貨物掃描或非侵入式檢查系統、全身掃描器系統、x射線電腦斷層掃描系統及電子顯微鏡
TWI811466B (zh) 一種輻射檢測器系統及其使用方法
US20230402486A1 (en) Imaging methods using radiation detectors
WO2023077367A1 (en) Imaging methods with reduction of effects of features in an imaging system
TWI842206B (zh) 具有成像期間進行側面輻射入射的圖像感測器的成像系統及使用其的方法
WO2024031301A1 (en) Imaging systems and corresponding operation methods
WO2024031595A1 (en) Radiation detecting systems with measurement results adjusted according to radiation source intensities
WO2024044925A1 (en) Side incidence image sensors with protruding integrated circuit chips
WO2023123301A1 (en) Imaging systems with rotating image sensors
TWI831514B (zh) 使用雙向計數器的成像方法
TWI762195B (zh) 影像感測器的使用方法
WO2023130197A1 (en) Flow speed measurements using imaging systems
WO2023173387A1 (en) Radiation detectors including perovskite
WO2023123161A1 (en) Imaging systems with image sensors for side radiation incidence during imaging
WO2023039701A1 (en) 3d (3-dimensional) printing with void filling
WO2023087123A1 (en) Image sensors with shielded electronics layers
WO2024007285A1 (en) Scanning of objects with radiation detectors
WO2022198468A1 (en) Imaging systems with image sensors having multiple radiation detectors
WO2022147812A1 (en) Imaging methods using multiple radiation beams
TW202331301A (zh) 用於執行繞射測量的方法和系統
Tumer et al. New two-dimensional solid state pixel detectors with dedicated front-end integrated circuits for x-ray and gamma-ray imaging