TW202118724A - Microfluidic device and manufacturing method thereof - Google Patents

Microfluidic device and manufacturing method thereof Download PDF

Info

Publication number
TW202118724A
TW202118724A TW109120049A TW109120049A TW202118724A TW 202118724 A TW202118724 A TW 202118724A TW 109120049 A TW109120049 A TW 109120049A TW 109120049 A TW109120049 A TW 109120049A TW 202118724 A TW202118724 A TW 202118724A
Authority
TW
Taiwan
Prior art keywords
fluid
outlet
substrate
inlet
groove
Prior art date
Application number
TW109120049A
Other languages
Chinese (zh)
Inventor
顧瑜
Original Assignee
大陸商蘇州天健雲康信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商蘇州天健雲康信息科技有限公司 filed Critical 大陸商蘇州天健雲康信息科技有限公司
Publication of TW202118724A publication Critical patent/TW202118724A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/14Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with multiple outlet openings; with strainers in or outside the outlet opening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00119Arrangement of basic structures like cavities or channels, e.g. suitable for microfluidic systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/26Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with means for mechanically breaking-up or deflecting the jet after discharge, e.g. with fixed deflectors; Breaking-up the discharged liquid or other fluent material by impinging jets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • A61M11/001Particle size control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • A61M11/006Sprayers or atomisers specially adapted for therapeutic purposes operated by applying mechanical pressure to the liquid to be sprayed or atomised
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B1/00Devices without movable or flexible elements, e.g. microcapillary devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B1/00Devices without movable or flexible elements, e.g. microcapillary devices
    • B81B1/002Holes characterised by their shape, in either longitudinal or sectional plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00055Grooves
    • B81C1/00071Channels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/02Inhalators with activated or ionised fluids, e.g. electrohydrodynamic [EHD] or electrostatic devices; Ozone-inhalators with radioactive tagged particles
    • A61M15/025Bubble jet droplet ejection devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/05Microfluidics
    • B81B2201/057Micropipets, dropformers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/03Static structures
    • B81B2203/0323Grooves
    • B81B2203/0338Channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0128Processes for removing material
    • B81C2201/0143Focussed beam, i.e. laser, ion or e-beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/03Bonding two components
    • B81C2203/031Anodic bondings

Abstract

The invention discloses a microfluidic device. The microfluidic device comprises a first base plate and a second base plate, wherein the first base plate is provided with a first mounting side; the second base plate is provided with a second mounting side, and the second mounting side can be connected with the first mounting side to arranged the first base plate and the second base plate together; at least one of the first mounting side and the second mounting side is provided with fluid chamber grooves, and after the first base plate and the second base plate are arranged together, the fluid chamber grooves form fluid chambers with fluid inlets and fluid outlets; and the first mounting side and/or the second mounting side with the fluid chamber grooves are/is provided with outlet expansion grooves adjacent to the fluid outlets, the outlet expansion grooves extend downstream from the fluid outlets, and at the fluid outlets, the peripheral contours of the outlet expansion grooves are located outside the peripheral contours of the fluid outlets.

Description

微流體元件及其製造方法Microfluidic element and its manufacturing method

本發明關於微流體技術領域,更具體而言,關於一種微流體元件及其製造方法。The present invention relates to the field of microfluidic technology, and more specifically, to a microfluidic element and a manufacturing method thereof.

微流控技術是一種用於精確控制和操控微小體積流體的技術。在實際應用中,實現微流控的微流體元件中流體通道的尺度非常小,約為100納米至500微米,甚至更小。Microfluidic technology is a technology used to precisely control and manipulate small volumes of fluids. In practical applications, the size of the fluid channel in the microfluidic element that realizes microfluidic control is very small, about 100 nanometers to 500 microns, or even smaller.

隨著相關研究的持續發展,微流控技術在諸多領域開始得到應用。噴墨打印頭就是微流控技術最成功的商業應用之一。此外,一些液體霧化器,特別是體積控制要求較高的醫用霧化器,也逐漸開始使用微流體元件作為其霧化噴嘴。霧化噴嘴受到高壓作用,將液體霧化成非常微小的液滴,以提高肺部對液滴的吸收率。With the continuous development of related research, microfluidic technology has begun to be applied in many fields. Inkjet print heads are one of the most successful commercial applications of microfluidic technology. In addition, some liquid atomizers, especially medical atomizers with high volume control requirements, have gradually begun to use microfluidic elements as their atomizing nozzles. The atomizing nozzle is subjected to high pressure to atomize the liquid into very tiny droplets to improve the absorption rate of the droplets by the lungs.

然而,現有的微流體元件對流體體積或流量的控制精度有限,因此需要一種改進的微流體元件。However, the existing microfluidic element has limited control accuracy of the fluid volume or flow rate, so an improved microfluidic element is needed.

本發明的目的在於提供一種微流體元件,以提高流體體積和流量的控制精度。The purpose of the present invention is to provide a microfluidic element to improve the control accuracy of fluid volume and flow.

本發明提供了一種微流體元件,包括:一第一基板,具有一第一安裝側;一第二基板,具有一第二安裝側,所述第二安裝側能夠與所述第一安裝側相互連接以將所述第一基板與所述第二基板安裝在一起;其中,所述第一安裝側和所述第二安裝側中的至少一個具有一流體腔室槽,在所述第一基板與所述第二基板安裝在一起後,所述流體腔室槽形成具有流體入口和流體出口的流體腔室;以及其中,具有所述流體腔室槽的所述第一安裝側和/或所述第二安裝側具有與所述流體出口相鄰的出口擴充槽,所述出口擴充槽從所述流體出口向下游延伸,並且其中在所述流體出口處,所述出口擴充槽的外圓周輪廓位於所述流體出口的外圓周輪廓之外。The present invention provides a microfluidic element, including: a first substrate having a first mounting side; a second substrate having a second mounting side, the second mounting side being able to interact with the first mounting side Connected to mount the first substrate and the second substrate together; wherein at least one of the first mounting side and the second mounting side has a fluid chamber groove, and the first substrate and the second substrate After the second substrates are installed together, the fluid chamber groove forms a fluid chamber with a fluid inlet and a fluid outlet; and wherein, the first installation side with the fluid chamber groove and/or the The second installation side has an outlet expansion groove adjacent to the fluid outlet, the outlet expansion groove extends downstream from the fluid outlet, and wherein at the fluid outlet, the outer circumferential contour of the outlet expansion groove is located at Outside the outer circumferential contour of the fluid outlet.

另外,本發明提供了一種微流體元件的製造方法,包括:提供一第一基板,具有一第一安裝側;提供一第二基板,具有一第二安裝側;在所述第一安裝側上形成多個流體腔室槽,每個所述流體腔室槽具有流體入口與流體出口;在所述第一安裝側上形成與每個所述流體出口相鄰的出口擴充槽,所述出口擴充槽從所述流體出口向下游延伸,並且其中在所述流體出口處,所述出口擴充槽的外圓周輪廓位於所述流體出口的外圓周輪廓之外;將所述第一基板的第一安裝側與所述第二基板的第二安裝側相互連接以將所述第一基板與所述第二基板安裝在一起,從而所述流體腔室槽形成流體腔室;以及在每個所述出口擴充槽處切割所述第一基板和所述第二基板,以分離所述多個流體腔室。In addition, the present invention provides a method for manufacturing a microfluidic element, including: providing a first substrate with a first mounting side; providing a second substrate with a second mounting side; on the first mounting side A plurality of fluid chamber grooves are formed, each of the fluid chamber grooves has a fluid inlet and a fluid outlet; an outlet expansion groove adjacent to each of the fluid outlets is formed on the first installation side, and the outlet expands The groove extends downstream from the fluid outlet, and wherein at the fluid outlet, the outer circumferential contour of the outlet expansion groove is outside the outer circumferential contour of the fluid outlet; the first mounting of the first substrate The side and the second mounting side of the second substrate are connected to each other to install the first substrate and the second substrate together, so that the fluid chamber groove forms a fluid chamber; and at each of the outlets The first substrate and the second substrate are cut at the expansion groove to separate the plurality of fluid chambers.

以上為本發明的概述,可能有簡化、概括和省略細節的情況,因此本領域的技術人員應該認識到,該部分僅是示例說明性的,而不旨在以任何方式限定本發明範圍。本概述部分既非旨在確定所要求保護主題的關鍵特徵或必要特徵,也非旨在用作為確定所要求保護主題的範圍的輔助手段。The above is an overview of the present invention, and there may be some simplifications, generalizations and omissions in details. Therefore, those skilled in the art should realize that this part is only illustrative and is not intended to limit the scope of the present invention in any way. This summary is neither intended to determine the key features or essential features of the claimed subject matter, nor is it intended to be used as an auxiliary means to determine the scope of the claimed subject matter.

在下面的詳細描述中,參考了構成其一部分的附圖。在附圖中,類似的符號通常表示類似的組成部分,除非上下文另有說明。詳細描述、附圖和請求項中描述的說明性實施方式並非旨在限定。在不偏離本發明的主題的精神或範圍的情況下,可以採用其他實施方式,並且可以做出其他變化。可以理解,可以對本發明中一般性描述的、在附圖中圖解說明的本發明內容的各個方面進行多種不同構成的配置、替換、組合,設計,而所有這些都明確地構成本發明內容的一部分。In the following detailed description, reference is made to the drawings constituting a part thereof. In the drawings, similar symbols usually indicate similar components, unless the context dictates otherwise. The illustrative embodiments described in the detailed description, drawings, and claims are not intended to be limiting. Without departing from the spirit or scope of the subject matter of the present invention, other embodiments may be adopted, and other changes may be made. It can be understood that various aspects of the content of the present invention generally described in the present invention and illustrated in the accompanying drawings can be configured, replaced, combined, and designed with various different configurations, and all of these clearly constitute a part of the content of the present invention .

圖1顯示出了一種用作為霧化噴嘴的微流體元件在其液體出口處的局部示意圖。Figure 1 shows a partial schematic diagram of a microfluidic element used as an atomizing nozzle at its liquid outlet.

如圖1所示,該微流體元件在液體出口處具有兩個流體通道102和104,這兩個液體通道102和104分別形成射流106和108。兩股射流106和108會交匯在微流體元件外部的交匯點110處,從而通過相互撞擊而被霧化為微小液滴。理想狀態下,流體通道102具有入口直徑D1、出口直徑d1以及通道長度L1,而流體通道104具有入口直徑D2、出口直徑d2以及通道長度L2等結構參數。這些結構參數會顯著影響微流體元件所形成的噴霧的霧化壓力、霧化流量、霧化錐角以及霧化粒徑,因此需要採用具有極高加工精度的製造製程來製造這種微流體元件。As shown in FIG. 1, the microfluidic element has two fluid channels 102 and 104 at the liquid outlet, and the two fluid channels 102 and 104 form jets 106 and 108, respectively. The two jets 106 and 108 will meet at the junction 110 outside the microfluidic element, and are thus atomized into tiny droplets by colliding with each other. In an ideal state, the fluid channel 102 has an inlet diameter D1, an outlet diameter d1, and a channel length L1, and the fluid channel 104 has structural parameters such as an inlet diameter D2, an outlet diameter d2, and a channel length L2. These structural parameters will significantly affect the atomization pressure, atomization flow rate, atomization cone angle, and atomization particle size of the spray formed by the microfluidic device. Therefore, a manufacturing process with extremely high processing accuracy is required to manufacture this microfluidic device. .

在實際生產過程中,圖1所示的微流體元件通可以採用微加工製程來進行規模化生產。例如,可以在矽片、玻璃片或其他材料的晶圓上通過微加工製程來形成陣列排布的多個重複的微流體元件的單元結構,並且之後通過劃片製程來切割晶圓,從而分離各個微流體元件的單元結構。本發明的發明人發現,對於通過微加工製程製造的微流體元件,雖然其內部結構參數可以通過光刻、刻蝕等製程精確控制,但是實際生產完成的元件性能仍存在顯著差異,同一批生產的元件中的很多不符合設計標準和要求。這導致量產的微流體元件的良率較低。In the actual production process, the microfluidic device shown in FIG. 1 can be mass-produced through a micromachining process. For example, the unit structure of multiple repeated microfluidic elements arranged in an array can be formed by a micromachining process on a wafer of silicon, glass or other materials, and then the wafer can be cut by a dicing process to separate The unit structure of each microfluidic element. The inventors of the present invention found that, for microfluidic devices manufactured through micromachining processes, although their internal structural parameters can be precisely controlled by processes such as photolithography and etching, there are still significant differences in the performance of the devices actually produced. Many of the components do not meet the design standards and requirements. This leads to low yields of mass-produced microfluidic devices.

經進一步研究,發明人發現,上述微流體元件實際性能的差異主要是由於劃片製程所產生的。具體地,晶圓切割通常採用機械式金剛石刀切割劃片製程,其採用高硬度的金剛石刀高速切割晶圓的劃片槽,劃出一道道刀痕。同時,承載著晶圓的工作臺以一定的速度沿刀片與晶圓接觸點的切線方向直線運動,從而晶圓沿刀痕裂開成一個個獨立的微流體元件。但是,金剛石刀切割硬脆屬性的矽片或玻璃片易產生機械應力,切割道越窄,其鄰近區域承受的應力就越大,極易導致元件邊緣產生崩缺、微裂紋、分層等缺陷,而缺陷會直接影響元件的各項性能。After further research, the inventor found that the difference in the actual performance of the above-mentioned microfluidic device is mainly caused by the dicing process. Specifically, wafer cutting usually uses a mechanical diamond knife cutting dicing process, which uses a high-hardness diamond knife to cut the dicing groove of the wafer at a high speed to create a knife mark. At the same time, the worktable carrying the wafer moves linearly along the tangential direction of the contact point between the blade and the wafer at a certain speed, so that the wafer is split into individual microfluidic elements along the knife mark. However, the cutting of hard and brittle silicon or glass with a diamond knife is prone to mechanical stress. The narrower the cutting path, the greater the stress on the adjacent area, which can easily lead to chipping, micro-cracking, delamination and other defects on the edge of the component. , And defects will directly affect the performance of components.

圖2a顯示出了金剛石刀切割後的劃片槽附近的晶圓表面。如圖2a所示,使用刀片切割後,晶圓的切割面毛刺多且不平整。對於如圖1所示的微流體元件,因為流體通道的出入口均位於切割線邊緣,因此輕微的缺陷都會導致產品品質缺陷。此外,多數的刀片切割中,切口損失和刀片寬度相當,在劃片處理時還會產生大量固體顆粒或碎屑。當流體通道的出、入口位於切割線邊緣時,劃片後出入口將與外界連通,因而劃片處理過程產生的顆粒或碎屑將會通過開放的出入口而進入到流體通道中,這容易造成流體通道堵塞。Figure 2a shows the wafer surface near the dicing slot after the diamond knife is cut. As shown in Figure 2a, after cutting with a blade, the cutting surface of the wafer has many burrs and unevenness. For the microfluidic element shown in FIG. 1, because the inlet and outlet of the fluid channel are located at the edge of the cutting line, minor defects will lead to product quality defects. In addition, in most blade cutting, the cut loss is equivalent to the blade width, and a large amount of solid particles or debris will be generated during dicing. When the inlet and outlet of the fluid channel are located at the edge of the cutting line, the inlet and outlet after scribing will be connected to the outside, so the particles or debris generated during the dicing process will enter the fluid channel through the open inlet and outlet, which will easily cause fluid The channel is blocked.

另一種常用的晶圓切割技術是鐳射切割劃片製程。相比於機械切割劃片製程,鐳射切割可以顯著減少晶圓切割後的切口損失和碎屑,參見圖2b所示。然而,鐳射光源能量有限,有時需要進行多次切割才能完成元件分離。此外,對於厚度較大的複合晶圓,需要從複合晶圓上下表面分別開始向中間結合面進行切割。多次切割和二次對準不可避免地引入對準精度誤差,因此,當微流體通道的出入口位於切割線附近時,對準精度誤差有可能直接改變微流體流道出入口通道的長度和出入口的截面尺寸。此外,鐳射切割劃片在切割後必須施加外力來裂片,這也可能會在介面處產生輕微損傷,而通道出入口附近輕微的崩裂毛刺都會影響噴嘴截面的完整性。因此,鐳射切割劃片製程對微流體元件良率的提高有限。Another commonly used wafer dicing technology is the laser dicing process. Compared with the mechanical dicing process, laser dicing can significantly reduce the kerf loss and debris after wafer dicing, as shown in Figure 2b. However, the energy of the laser light source is limited, and sometimes multiple cuttings are required to complete the component separation. In addition, for composite wafers with a large thickness, it is necessary to start cutting from the upper and lower surfaces of the composite wafer to the middle bonding surface. Multiple cutting and secondary alignment inevitably introduce alignment accuracy errors. Therefore, when the entrance and exit of the microfluidic channel are located near the cutting line, the alignment accuracy error may directly change the length of the entrance and exit of the microfluidic channel and the length of the entrance and exit of the microfluidic channel. Section size. In addition, the laser cutting dicing must apply external force to split the chip after cutting, which may also cause slight damage to the interface, and slight chipping burrs near the entrance and exit of the channel will affect the integrity of the nozzle section. Therefore, the improvement of the yield of the microfluidic device by the laser cutting and dicing process is limited.

圖3a至圖3c顯示出了幾種因劃片缺陷引起流體出口的邊緣不平整的示意圖。圖3d顯示出了存在圖3a所示的劃片缺陷時微流體元件射出的噴霧形狀偏斜的模擬示意圖。Figures 3a to 3c show several schematic diagrams of uneven edges of the fluid outlet caused by dicing defects. Fig. 3d shows a simulation schematic diagram of the spray shape of the microfluidic element being skewed when the dicing defect shown in Fig. 3a exists.

為了解決上述劃片引起的元件品質缺陷,經大量實驗和製程驗證,本發明的發明人發明了一種新型的微流體元件,其在流體通道的出口和/或入口附近具有擴充槽,該擴充槽能夠避免切割面與出口和/或入口相鄰並直接接觸到出口和/或入口,因而劃片處理不會影響流體通道的出口或入口處的形狀。因此,劃片後得到的微流體元件的流體通道大體具有與設計參數精確符合的理想形狀,能夠極大地降低量產元件的品質缺陷。In order to solve the above-mentioned component quality defects caused by dicing, after a large number of experiments and process verifications, the inventor of the present invention invented a new type of microfluidic device, which has an expansion groove near the outlet and/or inlet of the fluid channel. It can avoid that the cutting surface is adjacent to the outlet and/or inlet and directly contacts the outlet and/or inlet, so the dicing process will not affect the shape of the outlet or inlet of the fluid channel. Therefore, the fluid channel of the microfluidic device obtained after dicing generally has an ideal shape that exactly matches the design parameters, which can greatly reduce the quality defects of mass-produced devices.

圖4a至4c顯示出了根據本發明一個實施例的微流體元件400的示意圖。其中,圖4a是微流體元件400的分解示意圖,而圖4b是微流體元件400在流體出口處的截面示意圖。4a to 4c show schematic diagrams of a microfluidic element 400 according to an embodiment of the present invention. 4a is an exploded schematic view of the microfluidic element 400, and FIG. 4b is a schematic cross-sectional view of the microfluidic element 400 at the fluid outlet.

如圖4a所示,該微流體元件400包括第一基板402與第二基板404。其中,第一基板402和第二基板404各有一個安裝側402a與404a,其能夠相互連接以將第一基板402與第二基板404安裝在一起。在一些實施例中,基板402和404可以是矽晶圓、玻璃晶圓或者其他材料的晶圓。例如,第一基板402可以是矽晶圓,而第二基板404可以是玻璃晶圓,這兩個基板402和404可以採用靜電鍵合相互連接。再例如,第一基板402和第二基板404均可以是矽晶圓,其可以採用矽-矽直接鍵合或粘合劑鍵合等方式相互連接。As shown in FIG. 4a, the microfluidic element 400 includes a first substrate 402 and a second substrate 404. Wherein, the first substrate 402 and the second substrate 404 each have a mounting side 402a and 404a, which can be connected to each other to mount the first substrate 402 and the second substrate 404 together. In some embodiments, the substrates 402 and 404 may be silicon wafers, glass wafers, or wafers of other materials. For example, the first substrate 402 may be a silicon wafer, and the second substrate 404 may be a glass wafer, and the two substrates 402 and 404 may be connected to each other by electrostatic bonding. For another example, both the first substrate 402 and the second substrate 404 may be silicon wafers, which may be connected to each other by silicon-silicon direct bonding or adhesive bonding.

第一基板402在其安裝側402a上具有流體腔室槽406。流體腔室槽406從安裝側402a的表面向下凹陷一定深度。在一些實施例中,流體腔室槽406的深度小於第一基板402的厚度。在另一些實施例中,流體腔室槽的深度可以等於第一基板的深度,也即流體腔室槽貫穿第一基板;在此情況下,微流體元件還可以包括第三基板,第二基板和第三基板分別從第一基板的兩側封閉流體腔室槽。在一些實施例中,流體腔室槽406可以通過等離子體刻蝕製程或其他類似製程形成。The first base plate 402 has a fluid chamber groove 406 on its mounting side 402a. The fluid chamber groove 406 is recessed to a certain depth from the surface of the mounting side 402a. In some embodiments, the depth of the fluid chamber groove 406 is less than the thickness of the first substrate 402. In other embodiments, the depth of the fluid chamber groove may be equal to the depth of the first substrate, that is, the fluid chamber groove penetrates the first substrate; in this case, the microfluidic element may further include a third substrate, and a second substrate. And the third substrate respectively close the fluid chamber grooves from both sides of the first substrate. In some embodiments, the fluid chamber groove 406 may be formed by a plasma etching process or other similar processes.

仍參考圖4a所示,當第一基板402與第二基板404相互連接後,第二基板404大體從流體腔室槽406的上方封閉流體腔室槽406,從而形成具有流體入口408和流體出口410的流體腔室。當微流體元件400工作時,液體從流體入口408流入流體腔室,並且經由流體出口410流出流體腔室。在圖4a所示的實施例中,微流體元件400被用作為液體霧化器,相應地,流體腔室包括多個流體入口408,每個流體入口408通過其間的分隔柱412相互隔開。分隔柱412使得流入流體腔室的流體形成多束束流,這有利於在液體霧化前減小液滴的大小。在一些實施例中,在分隔柱412的下游,流體腔室中還可以設置有一級或多級篩檢程式結構(圖中未示出)。篩檢程式結構一方面有助於減少流體中的固體顆粒進一步流向流體出口410而堵塞流體出口410,另一方面也有助於進一步分割流體腔室中的束流。Still referring to FIG. 4a, when the first substrate 402 and the second substrate 404 are connected to each other, the second substrate 404 generally closes the fluid chamber groove 406 from above the fluid chamber groove 406, thereby forming a fluid inlet 408 and a fluid outlet. 410 fluid chamber. When the microfluidic element 400 is working, liquid flows into the fluid chamber from the fluid inlet 408 and out of the fluid chamber via the fluid outlet 410. In the embodiment shown in FIG. 4a, the microfluidic element 400 is used as a liquid atomizer. Accordingly, the fluid chamber includes a plurality of fluid inlets 408, and each fluid inlet 408 is separated from each other by a separating column 412 therebetween. The separating column 412 allows the fluid flowing into the fluid chamber to form multiple beams, which is beneficial to reduce the size of the liquid droplets before the liquid is atomized. In some embodiments, downstream of the separating column 412, a one-stage or multi-stage screening program structure (not shown in the figure) may also be provided in the fluid chamber. On the one hand, the screening program structure helps to reduce the solid particles in the fluid from flowing to the fluid outlet 410 and block the fluid outlet 410, and on the other hand, it also helps to further divide the beam in the fluid chamber.

在流經整個流體腔室後,液體會經由流體出口410流出。在實際應用中,取決於施加在流體上的壓力,流體會以一定的射速經由流體出口410噴射出去。圖4c是圖4a所示的微流體元件400在LL’方向(經過流體出口)的截面示意圖。如圖4c所示,流體腔室中的兩股射流分別經由這兩個流體出口410射出流體腔室,並且彙聚在交匯點416處。兩股射流在交匯點416相互撞擊,從而利用射流的動能實現液柱的破碎。流體出口410的直徑和截面決定單股射流的流量,兩股射流之間的夾角決定流體射出的阻力,角度越大,流動阻力越大。此外,流體出口410相連的流體通道的長徑比(長度與直徑之比)也會影響流動阻力和流量。因此,在實際應用中,需要精確設計流體通道的長度和直徑、流體出口的直徑、以及兩個流體出口之間的間距等參數,才能夠準確地確定兩股射流的交匯點的位置,以及射流碰撞後的液滴大小以及噴霧形態。After flowing through the entire fluid chamber, the liquid will flow out through the fluid outlet 410. In practical applications, depending on the pressure exerted on the fluid, the fluid will be ejected through the fluid outlet 410 at a certain rate of fire. Fig. 4c is a schematic cross-sectional view of the microfluidic element 400 shown in Fig. 4a in the LL' direction (through the fluid outlet). As shown in FIG. 4c, the two jets in the fluid chamber respectively exit the fluid chamber through the two fluid outlets 410, and converge at the junction 416. The two jets collide with each other at the intersection 416, so that the kinetic energy of the jets is used to break the liquid column. The diameter and cross-section of the fluid outlet 410 determine the flow rate of a single jet, and the angle between the two jets determines the resistance of the fluid ejection. The larger the angle, the greater the flow resistance. In addition, the length-to-diameter ratio (the ratio of length to diameter) of the fluid channel connected to the fluid outlet 410 will also affect the flow resistance and flow rate. Therefore, in practical applications, it is necessary to accurately design the length and diameter of the fluid channel, the diameter of the fluid outlet, and the distance between the two fluid outlets to accurately determine the location of the intersection of the two jets and the jet The droplet size and spray pattern after collision.

仍參考圖4c所示,第二基板404在其安裝側404a具有與流體出口410相鄰的出口擴充槽418。該出口擴充槽418從流體出口410向下游延伸,也即大體朝向液體流出的方向延伸。可以看出,在流體出口處410處,出口擴充槽418的外圓周輪廓位於流體出口410的外圓周輪廓之外。例如,在圖4a所示的具有兩個流體出口410的實施例中,兩個流體出口410均位於出口擴充槽418的外圓周輪廓內,因而出口擴充槽418的壁大體不會影響從流體出口410射出的液流。Still referring to FIG. 4c, the second base plate 404 has an outlet expansion slot 418 adjacent to the fluid outlet 410 on the mounting side 404a thereof. The outlet expansion groove 418 extends downstream from the fluid outlet 410, that is, generally extends in the direction of the liquid outflow. It can be seen that at the fluid outlet 410, the outer circumferential contour of the outlet expansion groove 418 is located outside the outer circumferential contour of the fluid outlet 410. For example, in the embodiment shown in FIG. 4a with two fluid outlets 410, both of the two fluid outlets 410 are located within the outer circumferential contour of the outlet expansion groove 418, so the wall of the outlet expansion groove 418 does not substantially affect the fluid outlet. 410 ejected liquid stream.

圖4a所示的微流體元件400中的流體腔室具有兩個流體出口,並且分別經由其流程的射流相互交匯地碰撞。在另一些實施例中,流體腔室可以具有一個或多個相互獨立的流體出口,這種情況下,每個流體出口可以分別具有一個對應的出口擴充槽。例如,流體出口410和出口擴充槽418均具有大體矩形的外圓周輪廓,而出口擴充槽418的外圓周輪廓的長度和寬度均分別比流體出口410的外圓周輪廓的長度和寬度要大,或者長度或寬度中的至少一個要更大(另一個相等)。再例如,流體出口410和出口擴充槽418可以均具有圓形的外圓周輪廓,而出口擴充槽418的外圓周輪廓的直徑比流體出口410的外圓周輪廓的直徑要大。可選地,多個相互獨立的流體出口也可以共同地對應一個出口擴充槽;這種情況下,在每個流體出口處,出口擴充槽的外圓周輪廓均位於該流體出口的外圓周輪廓之外。The fluid chamber in the microfluidic element 400 shown in FIG. 4a has two fluid outlets, and the jets passing through the flow of the fluid respectively collide with each other. In other embodiments, the fluid chamber may have one or more independent fluid outlets. In this case, each fluid outlet may have a corresponding outlet expansion slot. For example, both the fluid outlet 410 and the outlet expansion groove 418 have a substantially rectangular outer circumferential contour, and the length and width of the outer circumferential contour of the outlet expansion groove 418 are larger than the length and width of the outer circumferential contour of the fluid outlet 410, or At least one of the length or width must be larger (the other is equal). For another example, the fluid outlet 410 and the outlet expansion groove 418 may both have a circular outer circumferential contour, and the diameter of the outer circumferential contour of the outlet expansion groove 418 is larger than the diameter of the outer circumferential contour of the fluid outlet 410. Optionally, multiple independent fluid outlets can also collectively correspond to an outlet expansion groove; in this case, at each fluid outlet, the outer circumferential contour of the outlet expansion groove is located on the outer circumferential contour of the fluid outlet. outer.

另外需要說明的是,在圖4c所示的實施例中,出口擴充槽418大體呈立方體的形狀,其在流體出口處410的外圓周輪廓和截面形狀與在更下游處的外圓周輪廓和截面形狀相同。在一些其他的實施例中,出口擴充槽418在流體出口處410的外圓周輪廓和截面形狀與在更下游處的外圓周輪廓和截面形狀也可以不同。例如,出口擴充槽418可以具有外擴的喇叭狀結構,或者其他類似結構。In addition, it should be noted that, in the embodiment shown in FIG. 4c, the outlet expansion groove 418 is generally in the shape of a cuboid, and its outer circumferential profile and cross-sectional shape at the fluid outlet 410 and the outer circumferential profile and cross-sectional shape further downstream The shape is the same. In some other embodiments, the outer circumferential contour and cross-sectional shape of the outlet expansion groove 418 at the fluid outlet 410 may also be different from the outer circumferential contour and cross-sectional shape at a further downstream position. For example, the outlet expansion slot 418 may have an outwardly-expanded trumpet-shaped structure, or other similar structures.

可以看出,設置在流體出口下游的出口擴充槽使得決定射流狀態(形狀、流量、流速)的流體出口與微流體元件的邊緣間隔開來,從而有效地保護了流體出口不受劃片缺陷的影響,這在量產加工微流體元件時能夠有效地提高元件良率。It can be seen that the outlet expansion groove arranged downstream of the fluid outlet makes the fluid outlet that determines the jet state (shape, flow, flow rate) spaced from the edge of the microfluidic element, thereby effectively protecting the fluid outlet from dicing defects. Influence, this can effectively improve the yield of the device during mass production and processing of microfluidic devices.

仍參考圖4c所示,流體腔室的兩股射流分別經由兩個流體出口410射出流體腔室,並且彙聚在交匯點416處。交匯點416可以位於出口擴充槽418的外部,例如距離出口擴充槽418的末端數微米至數百微米,甚至數毫米。這種設計可以保證射流交匯形成的噴霧基本不會(至少盡可能少地)接觸出口擴充槽418的壁,從而避免出口擴充槽418限制或影響噴霧中霧化液滴的粒徑。Still referring to FIG. 4c, the two jets of the fluid chamber respectively exit the fluid chamber through the two fluid outlets 410, and converge at the junction 416. The junction 416 may be located outside the outlet expansion slot 418, for example, a few microns to hundreds of microns, or even a few millimeters from the end of the outlet expansion slot 418. This design can ensure that the spray formed by the confluence of jets will not (at least as little as possible) contact the wall of the outlet expansion groove 418, thereby avoiding the outlet expansion groove 418 from restricting or affecting the particle size of the atomized droplets in the spray.

圖5A顯示出了包括多個如圖4a所示的微流體元件的晶圓未被分割時第一基板和第二基板的結構圖。圖5b則顯示出了第二基板的安裝側的結構圖。圖5c示意性地顯示出了第一基板於第二基板上的結構相互重疊的情況。FIG. 5A shows a structure diagram of the first substrate and the second substrate when a wafer including a plurality of microfluidic elements as shown in FIG. 4a is not divided. Figure 5b shows a structural diagram of the mounting side of the second substrate. Fig. 5c schematically shows a situation where the structures of the first substrate and the second substrate overlap each other.

如圖5a和5c所示,多個微流體元件陣列地排布在第一基板502上,並且通過多個長條狀的劃片區域516相互分離。該多個劃片區域516包括位於微流體元件的流體入口與出口之間的第一劃片區域516a,以及與第一劃片區域516a相垂直的第二劃片區域516b。其中,每個劃片區域均具有中軸線517a或517b。第二基板504在其安裝側504a上形成有多個出口擴充槽區域518,這些出口擴充槽區域518相互平行,並且大體與第一基板502上的第一劃片區域516a對準。在一些實施例中,出口擴充槽區域518可以具有與第一劃片區域516a不同長度,但是其至少在流體出口處相互對準。As shown in FIGS. 5a and 5c, a plurality of microfluidic elements are arranged in an array on the first substrate 502, and are separated from each other by a plurality of elongated dicing regions 516. The plurality of scribing areas 516 includes a first scribing area 516a located between the fluid inlet and outlet of the microfluidic element, and a second scribing area 516b perpendicular to the first scribing area 516a. Wherein, each dicing area has a central axis 517a or 517b. The second substrate 504 has a plurality of outlet expansion groove regions 518 formed on the mounting side 504 a thereof, and these outlet expansion groove regions 518 are parallel to each other and are generally aligned with the first dicing region 516 a on the first substrate 502. In some embodiments, the outlet expansion groove area 518 may have a different length than the first dicing area 516a, but they are aligned with each other at least at the fluid outlet.

繼續參見圖5c,在製作微流體元件時,出口擴充槽區域518與第一劃片區域516a相互對準後第一基板502與第二基板504相互連接,這樣,出口擴充槽區域518即與流體出口510相鄰,並且從流體出口510向其下游延伸。在切割相互連接的第一基板502和第二基板504時,出口擴充槽區域518與第一劃片區域516a被切割,從而在流體出口的相鄰下游形成出口擴充槽。Continuing to refer to FIG. 5c, when the microfluidic device is made, the outlet expansion groove area 518 and the first scribing area 516a are aligned with each other, and the first substrate 502 and the second substrate 504 are connected to each other, so that the outlet expansion groove area 518 is connected to the fluid The outlet 510 is adjacent and extends downstream from the fluid outlet 510. When cutting the first substrate 502 and the second substrate 504 connected to each other, the outlet expansion groove area 518 and the first scribing area 516a are cut, thereby forming an outlet expansion groove adjacent downstream of the fluid outlet.

在一些實施例中,第一劃片區域516a與出口擴充槽區域518可以具有大體相同的寬度,從而使得這兩個區域基本相互重疊。例如,第一劃片區域516a的寬度可以為30 um,也即一個微流體元件的流體出口與相鄰微流體元件的流體入口之間的間距為30 um。出口擴充槽區域518的寬度同樣為30 um,因此一個出口擴充槽區域518的中軸線與相鄰的流體入口及流體出口的距離均為15 um。如果採用刀刃厚度為10 um的金剛石刀對準劃片區域的中軸線來切割基板,那麼切割後的流體入口與流體出口距離切割道邊緣分別有10 um的間距。即使假設存在5 um的對準誤差,在切割後,出口擴充槽區域518限定的流體入口與流體出口距離切割道邊緣也至少有5 um的間距。換言之,出口擴充槽的末端(位於切割道邊緣)距離流體出口的距離至少有5um,該距離對應於出口擴充槽的外延長度。可以看出,由於出口擴充槽具有一定的外延長度,因此流體出口的形狀實質上是由第一基板上的出口擴充槽的內側(遠離切割道邊緣)以及第二基板上的流體腔室槽共同限定的,而非由切割道邊緣與流體腔室槽共同限定的。因此,流體出口的形狀不會受到切割應力或顆粒引起的缺陷影響,而是能夠與元件設計時的參數值一致。In some embodiments, the first dicing area 516a and the outlet expansion groove area 518 may have substantially the same width, so that the two areas substantially overlap each other. For example, the width of the first dicing area 516a may be 30 um, that is, the distance between the fluid outlet of one microfluidic element and the fluid inlet of an adjacent microfluidic element is 30 um. The width of the outlet expansion groove area 518 is also 30 um, so the distance between the central axis of one outlet expansion groove area 518 and the adjacent fluid inlet and fluid outlet is 15 um. If a diamond knife with a blade thickness of 10 um is used to align the center axis of the dicing area to cut the substrate, the fluid inlet and the fluid outlet after cutting are separated by 10 um from the edge of the cutting channel. Even if there is an alignment error of 5 um, after cutting, the fluid inlet and the fluid outlet defined by the outlet expansion groove area 518 are at least 5 um apart from the edge of the cutting track. In other words, the distance between the end of the outlet expansion groove (located at the edge of the cutting path) and the fluid outlet is at least 5um, and this distance corresponds to the extension of the outlet expansion groove. It can be seen that because the outlet expansion groove has a certain degree of outer extension, the shape of the fluid outlet is essentially from the inner side of the outlet expansion groove on the first substrate (away from the edge of the cutting path) and the fluid chamber groove on the second substrate. Commonly defined, rather than jointly defined by the edge of the cutting channel and the fluid chamber groove. Therefore, the shape of the fluid outlet will not be affected by cutting stress or defects caused by particles, but can be consistent with the parameter values during component design.

圖5c是第一劃片區域516a和出口擴充槽區域518通過一次劃片切割而分離的示意圖。在另一些實施例中,第一劃片區域和出口擴充槽區域可以通過多次劃片切割而分離。例如,第一劃片區域516a和出口擴充槽區域518可以均具有例如200um的寬度,假設出口擴充槽的外延長度設計值為10um,那麼可以在距離流體出口15 um以及距離流體入口15um的位置以金剛石刀切割第一劃片區域516a和出口擴充槽區域518。可以看出,在第一劃片區域較寬而需要多次劃片切割晶圓的情況下,出口擴充槽從流體出口外延出來的外延長度主要取決於最靠近流體出口的一次切割的位置。FIG. 5c is a schematic diagram of the first dicing area 516a and the outlet expansion groove area 518 being separated by one dicing cutting. In other embodiments, the first scribing area and the exit expansion groove area can be separated by multiple scribing cuts. For example, the first scribing area 516a and the outlet expansion groove area 518 may each have a width of, for example, 200 um. Assuming that the design value of the outer extension of the outlet expansion groove is 10 um, it can be at a position 15 um from the fluid outlet and 15 um from the fluid inlet. The first dicing area 516a and the exit expansion groove area 518 are cut with a diamond knife. It can be seen that in the case where the first dicing area is relatively wide and multiple dicing and cutting of the wafer are required, the extension of the outlet expansion groove from the fluid outlet mainly depends on the position of the first cut closest to the fluid outlet.

基於類似的構想,除了在流體出口處設置出口擴充槽之外,也可以在流體入口處設置入口擴充槽,該入口擴充槽也可以使得流體入口相對遠離切割道。Based on a similar concept, in addition to providing an outlet expansion groove at the fluid outlet, an inlet expansion groove may also be provided at the fluid inlet, and the inlet expansion groove can also make the fluid inlet relatively far away from the cutting channel.

圖6a至6c顯示出了根據本發明另一實施例的微流體元件600的示意圖。6a to 6c show schematic diagrams of a microfluidic element 600 according to another embodiment of the present invention.

如圖6a至6c所示,不同於圖4a所示的實施例,微流體元件600在第二基板604的安裝側604a同時具有出口擴充槽618和入口擴充槽630。在未劃片時,出口擴充槽618與入口擴充槽630均位於劃片區域616中。在第二基板604與具有流體腔室槽606的第一基板602相互對準地連接後,出口擴充槽618與流體出口610相鄰,而入口擴充槽630與流體入口608相鄰,並且入口擴充槽630從流體入口608向上游延伸。在流體入口608處,入口擴充槽630的外圓周輪廓位於流體入口608的外圓周輪廓之外。與出口擴充槽618的功能類似,入口擴充槽630使得流體入口608遠離切割道,從而避免切割應力或顆粒引起的缺陷影響流體入口的形狀。As shown in FIGS. 6a to 6c, different from the embodiment shown in FIG. 4a, the microfluidic element 600 has an outlet expansion groove 618 and an inlet expansion groove 630 on the mounting side 604a of the second substrate 604 at the same time. When not dicing, both the outlet expansion slot 618 and the inlet expansion slot 630 are located in the dicing area 616. After the second substrate 604 and the first substrate 602 with the fluid chamber groove 606 are connected in alignment with each other, the outlet expansion groove 618 is adjacent to the fluid outlet 610, and the inlet expansion groove 630 is adjacent to the fluid inlet 608, and the inlet expands The groove 630 extends upstream from the fluid inlet 608. At the fluid inlet 608, the outer circumferential contour of the inlet expansion groove 630 is located outside the outer circumferential contour of the fluid inlet 608. Similar to the function of the outlet expansion groove 618, the inlet expansion groove 630 keeps the fluid inlet 608 away from the cutting channel, thereby preventing defects caused by cutting stress or particles from affecting the shape of the fluid inlet.

如圖6b所示,在第二基板604的安裝側604a上,入口擴充槽630大體橫跨第二基板604,出口擴充槽618具有相對較窄的寬度,這是因為流體入口整體寬度較大,而流體出口的寬度較窄。可以理解,在實際應用中,出口擴充槽618的外圓周輪廓只要在流體出口處位於流體出口的外圓周輪廓之外即可,其具體的長度和寬度可以根據需要進行設計和調整。As shown in FIG. 6b, on the installation side 604a of the second base plate 604, the inlet expansion groove 630 generally spans the second base plate 604, and the outlet expansion groove 618 has a relatively narrow width, because the overall width of the fluid inlet is relatively large. The width of the fluid outlet is relatively narrow. It can be understood that in practical applications, the outer circumferential contour of the outlet expansion groove 618 only needs to be outside the outer circumferential contour of the fluid outlet at the fluid outlet, and its specific length and width can be designed and adjusted as required.

圖7顯示出了根據本發明另一實施例的微流體元件700的示意圖。FIG. 7 shows a schematic diagram of a microfluidic element 700 according to another embodiment of the present invention.

如圖7所示,該微流體元件700的流體腔室槽706被形成在第一基板702的安裝側702a上。此外,在安裝側702a還設置有與流體入口708相鄰的入口擴充槽730,以及與流體出口710相鄰的出口擴充槽718。從安裝側702a看,入口擴充槽730和出口擴充槽718均呈袋狀結構。其中,入口擴充槽730具有大於流體入口708的寬度,並且其從流體入口708向上游延伸;出口擴充槽718具有大於流體出口710的寬度,並且其從流體出口710向下游延伸。As shown in FIG. 7, the fluid chamber groove 706 of the microfluidic element 700 is formed on the mounting side 702 a of the first substrate 702. In addition, an inlet expansion groove 730 adjacent to the fluid inlet 708 and an outlet expansion groove 718 adjacent to the fluid outlet 710 are also provided on the installation side 702a. Viewed from the installation side 702a, both the inlet expansion slot 730 and the outlet expansion slot 718 have a bag-like structure. The inlet expansion groove 730 has a width greater than the fluid inlet 708 and extends upstream from the fluid inlet 708; the outlet expansion groove 718 has a width greater than the fluid outlet 710, and it extends downstream from the fluid outlet 710.

在一些實施例中,入口擴充槽730與出口擴充槽718的深度應大於流體腔室槽706的深度,以避免其壁阻擋流入或流出流體腔室槽706的液體流動。在實際加工過程中,可以通過例如等離子體刻蝕製程選擇性地刻蝕形成不同深度的流體腔室槽和入口擴充槽和/或出口擴充槽。In some embodiments, the depth of the inlet expansion groove 730 and the outlet expansion groove 718 should be greater than the depth of the fluid chamber groove 706 to prevent the walls from blocking the flow of liquid into or out of the fluid chamber groove 706. In the actual processing process, for example, a plasma etching process can be selectively etched to form fluid chamber grooves and inlet expansion grooves and/or outlet expansion grooves of different depths.

類似地,入口擴充槽730與出口擴充槽718的延伸長度取決於切割線732的位置,在此不再贅述。Similarly, the extension lengths of the inlet expansion slot 730 and the outlet expansion slot 718 depend on the position of the cutting line 732, which will not be repeated here.

雖然圖4a至4c與圖7所示的實施例分別在第一基板的安裝側和第二基板的安裝側中的一個形成了出口擴充槽和/或入口擴充槽,但是在實際應用中,可以根據需要在兩個基板的安裝側同時形成出口擴充槽和/或入口擴充槽。在兩個安裝側上的出口擴充槽可以均與流體出口相鄰,並且至少在流體出口處相互對準;類似地,在兩個安裝側上的入口擴充槽可以均與流體入口相鄰,並且至少在流體入口處相互對準。Although the embodiments shown in FIGS. 4a to 4c and FIG. 7 respectively form an outlet expansion slot and/or an entrance expansion slot on one of the mounting side of the first substrate and the mounting side of the second substrate, in practical applications, The outlet expansion groove and/or the inlet expansion groove are formed on the installation side of the two substrates at the same time as required. The outlet expansion grooves on the two installation sides may both be adjacent to the fluid outlet and be aligned with each other at least at the fluid outlet; similarly, the inlet expansion grooves on the two installation sides may both be adjacent to the fluid inlet, and Align with each other at least at the fluid inlet.

圖8顯示出了根據本發明另一實施例的微流體元件800的示意圖。FIG. 8 shows a schematic diagram of a microfluidic element 800 according to another embodiment of the present invention.

如圖8所示,微流體元件800由第一基板802、第二基板804以及第三基板805共同形成。其中,第一基板802在其兩側分別形成有流體腔室槽806(圖中僅顯示出了第一側802a上的流體腔室槽)。此外,在第一側802a上還形成有入口擴充槽830與出口擴充槽818,而在第二基板804的安裝側804a上沒有形成入口擴充槽與出口擴充槽。與之相反,在第二側802b沒有形成入口擴充槽與出口擴充槽,而是在第三基板805的安裝側805a上形成入口擴充槽830’與出口擴充槽818’。這樣,在三個基板相互連接後,第一側802a與第二側802b上的流體腔室槽的上下游均具有擴充槽,從而避免了流體入口與流體出口與切割道直接相鄰。出口擴充槽與入口擴充槽的延伸長度可以通過切割線832的位置進行調整。As shown in FIG. 8, the microfluidic element 800 is formed by a first substrate 802, a second substrate 804, and a third substrate 805. Wherein, the first substrate 802 is respectively formed with fluid chamber grooves 806 on both sides thereof (only the fluid chamber grooves on the first side 802a are shown in the figure). In addition, an inlet expansion slot 830 and an outlet expansion slot 818 are also formed on the first side 802a, while an inlet expansion slot and an outlet expansion slot are not formed on the installation side 804a of the second base plate 804. In contrast, the inlet expansion groove and the outlet expansion groove are not formed on the second side 802b, but the inlet expansion groove 830' and the outlet expansion groove 818' are formed on the installation side 805a of the third base plate 805. In this way, after the three substrates are connected to each other, the upstream and downstream of the fluid chamber grooves on the first side 802a and the second side 802b are provided with expansion grooves, thereby avoiding the fluid inlet and the fluid outlet being directly adjacent to the cutting channel. The extension lengths of the outlet expansion slot and the inlet expansion slot can be adjusted by the position of the cutting line 832.

圖9示顯出了根據本發明一個實施例的微流體元件的製造方法的步驟圖。Fig. 9 shows a step diagram of a method of manufacturing a microfluidic element according to an embodiment of the present invention.

如圖9所示,所述製造方法包括:在步驟S902中,提供第一基板,所述第一基板具有第一安裝側;在步驟S904中,提供第二基板,所述第二基板具有第二安裝側;在步驟S906中,在所述第一安裝側上形成多個流體腔室槽,每個所述流體腔室槽具有流體入口與流體出口;在步驟S908中,在所述第一安裝側上形成與每個所述流體出口相鄰的出口擴充槽,所述出口擴充槽從所述流體出口向下游延伸,並且其中在所述流體出口處,所述出口擴充槽的外圓周輪廓位於所述流體出口的外圓周輪廓之外;在步驟S910中,將所述第一基板的第一安裝側與所述第二基板的第二安裝側相互連接以將所述第一基板與所述第二基板安裝在一起,從而所述流體腔室槽形成流體腔室;以及在步驟S912中,在每個所述出口擴充槽處切割所述第一基板和所述第二基板,以分離所述多個流體腔室。As shown in FIG. 9, the manufacturing method includes: in step S902, providing a first substrate, the first substrate having a first mounting side; in step S904, providing a second substrate, the second substrate having a first mounting side Two installation side; in step S906, a plurality of fluid chamber grooves are formed on the first installation side, each of the fluid chamber grooves has a fluid inlet and a fluid outlet; in step S908, in the first An outlet expansion groove adjacent to each of the fluid outlets is formed on the installation side, and the outlet expansion groove extends downstream from the fluid outlet, and wherein at the fluid outlet, the outer circumferential contour of the outlet expansion groove Located outside the outer circumferential contour of the fluid outlet; in step S910, the first mounting side of the first substrate and the second mounting side of the second substrate are connected to each other to connect the first substrate and the The second substrates are installed together, so that the fluid chamber grooves form a fluid chamber; and in step S912, the first substrate and the second substrate are cut at each of the outlet expansion grooves to separate The plurality of fluid chambers.

在一些實施例中,每個所述流體腔室具有多個流體出口,在所述多個流體出口中的每個流體出口處,所述出口擴充槽的外圓周輪廓均位於所述流體出口的外圓周輪廓之外。In some embodiments, each of the fluid chambers has a plurality of fluid outlets, and at each fluid outlet of the plurality of fluid outlets, the outer circumferential contour of the outlet expansion groove is located at the center of the fluid outlet. Outside the outer circumference contour.

在一些實施例中,所述多個流體出口具有各自的流體出射方向,並且所述流體出射方向交匯在一起。In some embodiments, the plurality of fluid outlets have respective fluid exit directions, and the fluid exit directions converge.

在一些實施例中,所述多個流體出口的流體出射方向的交匯點位於所述出口擴充槽的外部。In some embodiments, the intersection of the fluid exit directions of the plurality of fluid outlets is located outside the outlet expansion groove.

在一些實施例中,位於同一基板上的所述出口擴充槽的深度大於所述流體腔室槽的深度。In some embodiments, the depth of the outlet expansion groove on the same substrate is greater than the depth of the fluid chamber groove.

在一些實施例中,位於同一基板上的所述出口擴充槽的寬度大於所述流體腔室槽的寬度。In some embodiments, the width of the outlet expansion groove on the same substrate is greater than the width of the fluid chamber groove.

在一些實施例中,還包括:在所述第二安裝側形成另一出口擴充槽,其與所述第一安裝側上的出口擴充槽至少在所述流體出口處相互對準。In some embodiments, the method further includes: forming another outlet expansion groove on the second installation side, which is aligned with the outlet expansion groove on the first installation side at least at the fluid outlet.

在一些實施例中,還包括:在所述第一安裝側上形成與所述流體入口相鄰的入口擴充槽,所述入口擴充槽從所述流體入口向上游延伸,並且其中在所述流體入口處,所述入口擴充槽的外圓周輪廓位於所述流體入口的外圓周輪廓之外。In some embodiments, the method further includes: forming an inlet expansion groove adjacent to the fluid inlet on the first installation side, the inlet expansion groove extending upstream from the fluid inlet, and wherein the fluid At the inlet, the outer circumferential contour of the inlet expansion groove is located outside the outer circumferential contour of the fluid inlet.

在一些實施例中,所述流體腔室具有多個流體入口,在所述多個流體入口中的每個流體入口處,所述入口擴充槽的外圓周輪廓位於所述多個流體入口的外圓周輪廓之外。In some embodiments, the fluid chamber has a plurality of fluid inlets, and at each fluid inlet of the plurality of fluid inlets, the outer circumferential contour of the inlet expansion groove is located outside the plurality of fluid inlets. Outside the circumferential contour.

關於本發明的微流體元件的製造方法的具體細節,可以參考本發明的微流體元件的細節,在此不再贅述。Regarding the specific details of the manufacturing method of the microfluidic element of the present invention, reference may be made to the details of the microfluidic element of the present invention, which will not be repeated here.

本發明的微流體元件可以應用於各種需要精確流體控制的場合,特別是液體霧化器。The microfluidic element of the present invention can be applied to various occasions that require precise fluid control, especially liquid atomizers.

應當注意,儘管在上文詳細描述中提及了微流體元件的若干模組或子模組,但是這種劃分僅僅是示例性的而非強制性的。實際上,根據本發明的實施例,上文描述的兩個或更多模組的特徵和功能可以在一個模組中具體化。反之,上文描述的一個模組的特徵和功能可以進一步劃分為由多個模組來具體化。It should be noted that although several modules or sub-modules of the microfluidic element are mentioned in the above detailed description, this division is only exemplary and not mandatory. In fact, according to the embodiments of the present invention, the features and functions of two or more modules described above can be embodied in one module. Conversely, the features and functions of a module described above can be further divided into multiple modules to be embodied.

那些本技術領域的一般技術人員可以通過研究說明書、公開的內容及附圖和所附的請求項,理解和實施對披露的實施方式的其他改變。在請求項中,措詞“包括”不排除其他的元素和步驟,並且措辭“一”、“一個”不排除複數。在本發明的實際應用中,一個零件可能執行請求項中所引用的多個技術特徵的功能。請求項中的任何附圖標記不應理解為對範圍的限制。Those skilled in the art can understand and implement other changes to the disclosed embodiments by studying the description, the disclosed content, the drawings and the appended claims. In the claims, the wording "include" does not exclude other elements and steps, and the wording "one" and "one" do not exclude plurals. In the actual application of the present invention, one part may perform the functions of multiple technical features cited in the request item. Any reference signs in the claims should not be construed as limiting the scope.

102、104:流體通道 106、108:射流 110:交匯點 400:微流體元件 402:第一基板 404:第二基板 402a、404a:安裝側 406:流體腔室槽 408:流體入口 410:流體出口 412:分隔柱 416:交匯點 418:出口擴充槽 502:第一基板 504:第二基板 516:劃片區域 516a:第一劃片區域 516b:第二劃片區域 517a、517b:中軸線 518:出口擴充槽區域 600:微流體元件 602:第一基板 604:第二基板 604a:安裝側 606:流體腔室槽 616:劃片區域 618:出口擴充槽 630:入口擴充槽 700:微流體元件 702:第一基板 702a:安裝側 706:流體腔室槽 708:流體入口 710:流體出口 718:出口擴充槽 730:入口擴充槽 800:微流體元件 802:第一基板 802a:第一側 802b:第二側 804:第二基板 804a:安裝側 805:第三基板 806:流體腔室槽 818、818’:出口擴充槽 830、830’:入口擴充槽102, 104: fluid channel 106, 108: Jet 110: Meeting Point 400: Microfluidic element 402: first substrate 404: second substrate 402a, 404a: installation side 406: Fluid Chamber Groove 408: fluid inlet 410: fluid outlet 412: Separating column 416: Meeting Point 418: Export Expansion Slot 502: first substrate 504: second substrate 516: Dicing Area 516a: first scribing area 516b: second dicing area 517a, 517b: central axis 518: Export expansion slot area 600: Microfluidic element 602: first substrate 604: second substrate 604a: Mounting side 606: Fluid Chamber Groove 616: Dicing Area 618: export expansion slot 630: Entrance Expansion Slot 700: Microfluidic element 702: first substrate 702a: Mounting side 706: Fluid Chamber Groove 708: fluid inlet 710: fluid outlet 718: export expansion slot 730: entrance expansion slot 800: microfluidic element 802: first substrate 802a: first side 802b: second side 804: second substrate 804a: mounting side 805: third substrate 806: Fluid Chamber Groove 818, 818’: Export expansion slot 830, 830’: Entrance expansion slot

通過下面說明書和所附的請求項並與附圖結合,將會更加充分地清楚理解本發明內容的上述和其他特徵。可以理解,這些附圖僅描繪了本發明內容的各種實施方式,因此不應認為是對本發明內容範圍的限定。通過附圖,本發明內容將會得到更加明確和詳細地說明。The above and other features of the content of the present invention will be more fully understood through the following description and the appended claims in combination with the accompanying drawings. It can be understood that these drawings only depict various embodiments of the content of the present invention, and therefore should not be considered as limiting the scope of the content of the present invention. Through the accompanying drawings, the content of the present invention will be explained more clearly and in detail.

圖1顯示出了一種用作為霧化噴嘴的微流體元件在其液體出口處的局部示意圖。Figure 1 shows a partial schematic diagram of a microfluidic element used as an atomizing nozzle at its liquid outlet.

圖2a顯示出了金剛石刀切割後的劃片槽附近的晶圓表面。Figure 2a shows the wafer surface near the dicing slot after the diamond knife is cut.

圖2b顯示出了鐳射切割後的劃片槽附近的晶圓表面。Figure 2b shows the surface of the wafer near the dicing slot after laser cutting.

圖3a至圖3c顯示出了幾種因劃片缺陷引起流體出口的邊緣不平整的示意圖;圖3d顯示出了存在圖3a所示的劃片缺陷時微流體元件射出的噴霧形狀偏斜的模擬示意圖。Figures 3a to 3c show several schematic diagrams of uneven edges of the fluid outlet caused by dicing defects; Figure 3d shows the simulation of the skewed spray shape of the microfluidic element when the dicing defect shown in Figure 3a exists Schematic.

圖4a和4c顯示出了根據本發明一個實施例的微流體元件400的示意圖。4a and 4c show schematic diagrams of a microfluidic element 400 according to an embodiment of the present invention.

圖5a顯示出了包括多個如圖4a所示的微流體元件的晶圓未被分割時第一基板和第二基板的結構圖;圖5b顯示出了第二基板的安裝側的結構圖;圖5c顯示出了第一基板於第二基板上的結構相互重疊的情況。Fig. 5a shows the structure diagram of the first substrate and the second substrate when the wafer including a plurality of microfluidic elements as shown in Fig. 4a is not divided; Fig. 5b shows the structure diagram of the mounting side of the second substrate; Figure 5c shows a situation where the structures of the first substrate and the second substrate overlap each other.

圖6a至6c顯示出了根據本發明另一實施例的微流體元件600的示意圖。6a to 6c show schematic diagrams of a microfluidic element 600 according to another embodiment of the present invention.

圖7顯示出了根據本發明另一實施例的微流體元件700的示意圖。FIG. 7 shows a schematic diagram of a microfluidic element 700 according to another embodiment of the present invention.

圖8顯示出了根據本發明另一實施例的微流體元件800的示意圖。FIG. 8 shows a schematic diagram of a microfluidic element 800 according to another embodiment of the present invention.

圖9顯示出了根據本發明又一實施例的微流體元件的製造方法900的步驟圖。FIG. 9 shows a step diagram of a manufacturing method 900 of a microfluidic device according to another embodiment of the present invention.

400:微流體元件 400: Microfluidic element

402:第一基板 402: first substrate

404:第二基板 404: second substrate

402a、404a:安裝側 402a, 404a: installation side

406:流體腔室槽 406: Fluid Chamber Groove

408:流體入口 408: fluid inlet

410:流體出口 410: fluid outlet

412:分隔柱 412: Separating column

418:出口擴充槽 418: Export Expansion Slot

Claims (20)

一種微流體元件,包括: 一第一基板,具有一第一安裝側; 一第二基板,具有一第二安裝側,所述第二安裝側能夠與所述第一安裝側相互連接以將所述第一基板與所述第二基板安裝在一起; 其中,所述第一安裝側和所述第二安裝側中的至少一個具有一流體腔室槽,在所述第一基板與所述第二基板安裝在一起後,所述流體腔室槽形成具有流體入口和流體出口的流體腔室;以及 其中,具有所述流體腔室槽的所述第一安裝側和/或所述第二安裝側具有與所述流體出口相鄰的一出口擴充槽,所述出口擴充槽從所述流體出口向下游延伸,並且其中在所述流體出口處,所述出口擴充槽的外圓周輪廓位於所述流體出口的外圓周輪廓之外。A microfluidic element includes: A first substrate having a first mounting side; A second substrate having a second mounting side, and the second mounting side can be connected to the first mounting side to mount the first substrate and the second substrate together; Wherein, at least one of the first mounting side and the second mounting side has a fluid chamber groove, and after the first substrate and the second substrate are installed together, the fluid chamber groove is formed with Fluid chambers for fluid inlet and fluid outlet; and Wherein, the first installation side and/or the second installation side with the fluid chamber groove has an outlet expansion groove adjacent to the fluid outlet, and the outlet expansion groove extends from the fluid outlet to the Extends downstream, and wherein at the fluid outlet, the outer circumferential contour of the outlet expansion groove is outside the outer circumferential contour of the fluid outlet. 根據請求項1所述的微流體元件,其中所述流體腔室具有多個流體出口,在所述多個流體出口中的每個流體出口處,所述出口擴充槽的外圓周輪廓均位於所述流體出口的外圓周輪廓之外。The microfluidic element according to claim 1, wherein the fluid chamber has a plurality of fluid outlets, and at each fluid outlet of the plurality of fluid outlets, the outer circumferential contour of the outlet expansion groove is located at all Outside the outer circumferential contour of the fluid outlet. 根據請求項2所述的微流體元件,其中所述多個流體出口具有各自的流體出射方向,並且所述流體出射方向交匯在一起。The microfluidic element according to claim 2, wherein the plurality of fluid outlets have respective fluid exit directions, and the fluid exit directions converge. 根據請求項3所述的微流體元件,其中所述多個流體出口的流體出射方向的交匯點位於所述出口擴充槽的外部。The microfluidic element according to claim 3, wherein the intersection of the fluid exit directions of the plurality of fluid outlets is located outside the outlet expansion groove. 根據請求項1所述的微流體元件,其中位於同一基板上的所述出口擴充槽的深度大於所述流體腔室槽的深度。The microfluidic element according to claim 1, wherein the depth of the outlet expansion groove on the same substrate is greater than the depth of the fluid chamber groove. 根據請求項1所述的微流體元件,其中位於同一基板上的所述出口擴充槽的寬度大於所述流體腔室槽的寬度。The microfluidic element according to claim 1, wherein the width of the outlet expansion groove on the same substrate is greater than the width of the fluid chamber groove. 根據請求項1所述的微流體元件,其中所述流體腔室內具有篩檢程式結構。The microfluidic element according to claim 1, wherein the fluid chamber has a screening program structure. 根據請求項1所述的微流體元件,其中所述第一安裝側和所述第二安裝側均具有出口擴充槽,所述出口擴充槽至少在所述流體出口處相互對準。The microfluidic element according to claim 1, wherein both the first mounting side and the second mounting side have outlet expansion grooves, and the outlet expansion grooves are aligned with each other at least at the fluid outlet. 根據請求項1所述的微流體元件,其中具有所述流體腔室槽的所述第一安裝側和/或所述第二安裝側具有與所述流體入口相鄰的入口擴充槽,所述入口擴充槽從所述流體入口向上游延伸,並且其中在所述流體入口處,所述入口擴充槽的外圓周輪廓位於所述流體入口的外圓周輪廓之外。The microfluidic element according to claim 1, wherein the first mounting side and/or the second mounting side having the fluid chamber groove have an inlet expansion groove adjacent to the fluid inlet, the The inlet expansion groove extends upstream from the fluid inlet, and wherein at the fluid inlet, the outer circumferential contour of the inlet expansion groove is located outside the outer circumferential contour of the fluid inlet. 根據請求項9所述的微流體元件,其中所述流體腔室具有多個流體入口,在所述多個流體入口中的每個流體入口處,所述入口擴充槽的外圓周輪廓位於所述多個流體入口的外圓周輪廓之外。The microfluidic element according to claim 9, wherein the fluid chamber has a plurality of fluid inlets, and at each fluid inlet of the plurality of fluid inlets, the outer circumferential contour of the inlet expansion groove is located in the Outside the outer circumferential contour of the multiple fluid inlets. 一種液體霧化器,其特徵在於,包括根據前述請求項1至10中任一項所述的微流體元件。A liquid atomizer, characterized by comprising the microfluidic element according to any one of claims 1 to 10 above. 一種微流體元件的製造方法,其特徵在於,包括: 提供一第一基板,具有一第一安裝側; 提供一第二基板,具有一第二安裝側; 在所述第一安裝側上形成多個流體腔室槽,每個所述流體腔室槽具有流體入口與流體出口; 在所述第一安裝側上形成與每個所述流體出口相鄰的出口擴充槽,所述出口擴充槽從所述流體出口向下游延伸,並且其中在所述流體出口處,所述出口擴充槽的外圓周輪廓位於所述流體出口的外圓周輪廓之外; 將所述第一基板的第一安裝側與所述第二基板的第二安裝側相互連接以將所述第一基板與所述第二基板安裝在一起,從而所述流體腔室槽形成流體腔室;以及 在每個所述出口擴充槽處切割所述第一基板和所述第二基板,以分離所述多個流體腔室。A method for manufacturing a microfluidic element, which is characterized in that it comprises: Providing a first substrate with a first mounting side; Providing a second substrate with a second mounting side; Forming a plurality of fluid chamber grooves on the first installation side, each of the fluid chamber grooves having a fluid inlet and a fluid outlet; An outlet expansion groove adjacent to each of the fluid outlets is formed on the first installation side, the outlet expansion groove extends downstream from the fluid outlet, and wherein at the fluid outlet, the outlet expands The outer circumferential contour of the groove is located outside the outer circumferential contour of the fluid outlet; The first mounting side of the first substrate and the second mounting side of the second substrate are connected to each other to mount the first substrate and the second substrate together, so that the fluid chamber groove forms a fluid Chamber; and The first substrate and the second substrate are cut at each of the outlet expansion grooves to separate the plurality of fluid chambers. 根據請求項12所述的製造方法,其中每個所述流體腔室具有多個流體出口,在所述多個流體出口中的每個流體出口處,所述出口擴充槽的外圓周輪廓均位於所述流體出口的外圓周輪廓之外。The manufacturing method according to claim 12, wherein each of the fluid chambers has a plurality of fluid outlets, and at each of the plurality of fluid outlets, the outer circumferential contour of the outlet expansion groove is located Outside the outer circumferential contour of the fluid outlet. 根據請求項13所述的製造方法,其中所述多個流體出口具有各自的流體出射方向,並且所述流體出射方向交匯在一起。The manufacturing method according to claim 13, wherein the plurality of fluid outlets have respective fluid exit directions, and the fluid exit directions converge. 根據請求項14所述的製造方法,其中所述多個流體出口的流體出射方向的交匯點位於所述出口擴充槽的外部。The manufacturing method according to claim 14, wherein the intersection of the fluid exit directions of the plurality of fluid outlets is located outside the outlet expansion tank. 根據請求項12所述的製造方法,其中位於同一基板上的所述出口擴充槽的深度大於所述流體腔室槽的深度。The manufacturing method according to claim 12, wherein the depth of the outlet expansion groove on the same substrate is greater than the depth of the fluid chamber groove. 根據請求項12所述的製造方法,其中位於同一基板上的所述出口擴充槽的寬度大於所述流體腔室槽的寬度。The manufacturing method according to claim 12, wherein the width of the outlet expansion groove on the same substrate is greater than the width of the fluid chamber groove. 根據請求項12所述的製造方法,其中還包括: 在所述第二安裝側形成另一出口擴充槽,其與所述第一安裝側上的出口擴充槽至少在所述流體出口處相互對準。The manufacturing method according to claim 12, which further includes: Another outlet expansion groove is formed on the second installation side, which is aligned with the outlet expansion groove on the first installation side at least at the fluid outlet. 根據請求項12所述的製造方法,其中還包括: 在所述第一安裝側上形成與所述流體入口相鄰的入口擴充槽,所述入口擴充槽從所述流體入口向上游延伸,並且其中在所述流體入口處,所述入口擴充槽的外圓周輪廓位於所述流體入口的外圓周輪廓之外。The manufacturing method according to claim 12, which further includes: An inlet expansion groove adjacent to the fluid inlet is formed on the first installation side, the inlet expansion groove extends upstream from the fluid inlet, and wherein at the fluid inlet, the inlet expansion groove The outer circumferential contour is located outside the outer circumferential contour of the fluid inlet. 根據請求項19所述的製造方法,其中所述流體腔室具有多個流體入口,在所述多個流體入口中的每個流體入口處,所述入口擴充槽的外圓周輪廓位於所述多個流體入口的外圓周輪廓之外。The manufacturing method according to claim 19, wherein the fluid chamber has a plurality of fluid inlets, and at each fluid inlet of the plurality of fluid inlets, the outer circumferential contour of the inlet expansion groove is located in the plurality of fluid inlets. Outside the outer circumferential contour of each fluid inlet.
TW109120049A 2019-06-17 2020-06-15 Microfluidic device and manufacturing method thereof TW202118724A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910521085.0 2019-06-17
CN201910521085.0A CN112090603B (en) 2019-06-17 2019-06-17 Microfluidic device and method for manufacturing the same

Publications (1)

Publication Number Publication Date
TW202118724A true TW202118724A (en) 2021-05-16

Family

ID=73748476

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109120049A TW202118724A (en) 2019-06-17 2020-06-15 Microfluidic device and manufacturing method thereof

Country Status (10)

Country Link
US (1) US20220258185A1 (en)
EP (1) EP3983333A4 (en)
JP (1) JP2022538393A (en)
KR (1) KR20220020283A (en)
CN (1) CN112090603B (en)
AU (1) AU2020294566A1 (en)
BR (1) BR112021025592A2 (en)
CA (1) CA3142643A1 (en)
TW (1) TW202118724A (en)
WO (1) WO2020253647A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11717839B2 (en) * 2020-11-25 2023-08-08 Kidde Technologies, Inc. Nozzle configurations to create a vortex of fire suppression agent

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5726026A (en) * 1992-05-01 1998-03-10 Trustees Of The University Of Pennsylvania Mesoscale sample preparation device and systems for determination and processing of analytes
DE4236037A1 (en) * 1992-10-24 1994-04-28 Boehringer Ingelheim Int Atomising nozzle with filter e.g. for medicament inhalation spray generating unit
IL107120A (en) * 1992-09-29 1997-09-30 Boehringer Ingelheim Int Atomising nozzle and filter and spray generating device
EP0636413B1 (en) * 1993-07-28 2001-11-14 PE Corporation (NY) Nucleic acid amplification reaction apparatus and method
JP3599390B2 (en) * 1994-11-04 2004-12-08 日本メクトロン株式会社 Perfluorounsaturated nitrile compound and method for producing the same
US5585069A (en) * 1994-11-10 1996-12-17 David Sarnoff Research Center, Inc. Partitioned microelectronic and fluidic device array for clinical diagnostics and chemical synthesis
US5872010A (en) * 1995-07-21 1999-02-16 Northeastern University Microscale fluid handling system
US5795976A (en) * 1995-08-08 1998-08-18 The Board Of Trustees Of The Leland Stanford Junior University Detection of nucleic acid heteroduplex molecules by denaturing high-performance liquid chromatography and methods for comparative sequencing
US5736314A (en) * 1995-11-16 1998-04-07 Microfab Technologies, Inc. Inline thermo-cycler
DE19742439C1 (en) * 1997-09-26 1998-10-22 Boehringer Ingelheim Int Fluid micro-filter
EP1273355B1 (en) * 2001-02-23 2010-03-31 Microflow Engineering SA Method of manufacturing a liquid droplet spray device and such spray device
CN100435970C (en) * 2003-07-16 2008-11-26 泊灵格英格尔海姆药品两合公司 A process for producing microfluidic arrangements from a plate-shaped composite structure
JP4372115B2 (en) * 2006-05-12 2009-11-25 パナソニック株式会社 Semiconductor device manufacturing method and semiconductor module manufacturing method
US8042916B2 (en) * 2007-03-31 2011-10-25 Micropoint Biosciences, Inc. Micromachined fluid ejector array
NL2000726C2 (en) * 2007-06-28 2008-12-30 Medspray Xmems Bv Injector device, injector body and method of manufacturing thereof.
GB0800709D0 (en) * 2008-01-16 2008-02-20 Dunne Stephen T Double jet impinging nozzle
CN101875481A (en) * 2010-06-29 2010-11-03 北京大学 Low temperature co-fired ceramic-based micro-electromechanical system (MEMS) packaging method
TWI672157B (en) * 2016-11-06 2019-09-21 微邦科技股份有限公司 Apparatus for pressurized liquid transfusion
CN106531646B (en) * 2016-12-26 2019-05-21 中国科学院长春光学精密机械与物理研究所 A kind of packaging method of micro-fluidic chip
KR20180137755A (en) * 2017-06-19 2018-12-28 한양대학교 에리카산학협력단 Micro fluidic fuel cell and method to manufacture thereof
WO2019180022A1 (en) * 2018-03-21 2019-09-26 Softhale Nv Spray nozzle for an inhalation device
CN109107623B (en) * 2018-08-28 2021-04-30 中国科学院深圳先进技术研究院 Micro-fluidic chip and preparation method thereof

Also Published As

Publication number Publication date
CA3142643A1 (en) 2020-12-24
WO2020253647A1 (en) 2020-12-24
EP3983333A4 (en) 2023-07-12
BR112021025592A2 (en) 2022-02-01
US20220258185A1 (en) 2022-08-18
EP3983333A1 (en) 2022-04-20
CN112090603B (en) 2022-11-08
KR20220020283A (en) 2022-02-18
CN112090603A (en) 2020-12-18
JP2022538393A (en) 2022-09-02
AU2020294566A1 (en) 2022-01-06

Similar Documents

Publication Publication Date Title
CA2145758C (en) Atomising nozzle and filter and spray generating device
US6503362B1 (en) Atomizing nozzle an filter and spray generating device
US6189214B1 (en) Gas-assisted atomizing devices and methods of making gas-assisted atomizing devices
EP0970751B1 (en) Spray nozzle and method of manufacturing same
US5730368A (en) Nozzle plate, particularly for injection valves and processes for manufacturing a nozzle plate
JPH0283051A (en) Silicon composite nozzle
JP2012214043A (en) Method for forming curvature-shaped part using shadow mask
WO1998001228A2 (en) Rayleigh-breakup atomizing devices and methods of making rayleigh-breakup atomizing devices
US20210093802A1 (en) Spray nozzle for an inhalation device
TW202118724A (en) Microfluidic device and manufacturing method thereof
JP2020521633A (en) Nozzle device and manufacturing method thereof
RU2804459C2 (en) Microfluidic device and method for making the device
RU2786489C2 (en) Improved nozzle
GB2271301A (en) Atomising nozzle and filter
JPH0777136A (en) Fluid injection nozzle and manufacture thereof