TW202117864A - Vertical-cavity surface-emitting laser using dichroic reflectors - Google Patents

Vertical-cavity surface-emitting laser using dichroic reflectors Download PDF

Info

Publication number
TW202117864A
TW202117864A TW109118533A TW109118533A TW202117864A TW 202117864 A TW202117864 A TW 202117864A TW 109118533 A TW109118533 A TW 109118533A TW 109118533 A TW109118533 A TW 109118533A TW 202117864 A TW202117864 A TW 202117864A
Authority
TW
Taiwan
Prior art keywords
type semiconductor
multilayer dielectric
layer
dielectric reflector
semiconductor layer
Prior art date
Application number
TW109118533A
Other languages
Chinese (zh)
Inventor
肯尼斯 李
張永朋
鄭木海
劉浚年
裴靜偉
張世欣
陳信安
孫建文
Original Assignee
美商光電自動科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商光電自動科技有限公司 filed Critical 美商光電自動科技有限公司
Publication of TW202117864A publication Critical patent/TW202117864A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • H01S5/18369Structure of the reflectors, e.g. hybrid mirrors based on dielectric materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04254Electrodes, e.g. characterised by the structure characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18305Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] with emission through the substrate, i.e. bottom emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • H01S5/18311Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement using selective oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • H01S5/18322Position of the structure
    • H01S5/1833Position of the structure with more than one structure
    • H01S5/18333Position of the structure with more than one structure only above the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18386Details of the emission surface for influencing the near- or far-field, e.g. a grating on the surface
    • H01S5/18388Lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18386Details of the emission surface for influencing the near- or far-field, e.g. a grating on the surface
    • H01S5/18394Apertures, e.g. defined by the shape of the upper electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2059Methods of obtaining the confinement by means of particular conductivity zones, e.g. obtained by particle bombardment or diffusion
    • H01S5/2063Methods of obtaining the confinement by means of particular conductivity zones, e.g. obtained by particle bombardment or diffusion obtained by particle bombardment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/305Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
    • H01S5/3095Tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34306Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000nm, e.g. InP based 1300 and 1500nm lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers
    • H01S5/423Arrays of surface emitting lasers having a vertical cavity

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

VCSEL apparatus including a first semiconductor vertical-cavity surface-emitting laser (VCSEL) structure that generates a laser beam having a characteristic wavelength and that includes: a first multi-layer dielectric reflector; a second multi-layer dielectric reflector; and a semiconductor structure located between and in contact with the first multi-layer dielectric reflector and the second multi-layer dielectric reflector, wherein the semiconductor structure includes: a first n-type semiconductor layer, a p-type semiconductor layer, and an active layer located between and in contact with the n-type semiconductor layer and the p-type semiconductor layer, wherein at least one of the first multi-layer dielectric reflector and the second multi-layer dielectric reflector is a focusing reflector, wherein the first multi-layer dielectric reflector and the second multi-layer dielectric reflector form a lasing cavity, and wherein the active layer provides optical gain to the lasing cavity. In some embodiments, the characteristic wavelength is about 1550 nanometers.

Description

使用二向分色反射鏡的垂直腔表面發射雷射 Use a dichroic mirror to emit a laser on the vertical cavity surface 【交互參照相關申請】[Cross-reference related applications]

本申請案主張Kenneth Li等人於2019年6月3日所申請之標題為「使用二向分色反射鏡的垂直腔表面發射雷射」(Vertical Cavity Surface Emitting Laser Using Dichroic Reflectors)的美國臨時專利申請號No.62/856,518之優先權益(在美國專利法35 U.S.C.§ 119(e)規定下包括),將其完整併入文中作為參考。 This application claims a U.S. provisional patent entitled ``Vertical Cavity Surface Emitting Laser Using Dichroic Reflectors'' filed by Kenneth Li et al. on June 3, 2019 The priority rights of application No. 62/856,518 (included under the provisions of 35 USC§ 119(e) of the United States Patent Law), which are fully incorporated into the text for reference.

本申請案係關於: This application case is about:

Y.P.Chang等人於2020年5月24日所申請之標題為「與智慧車燈成一體的雷射雷達以及方法」(LiDAR Integrated with Smart Headlight and Method)的P.C.T.專利申請號No.PCT/US2020/034447; YPChang et al. applied for PCT patent application No.PCT/US2020/ titled ``LiDAR Integrated with Smart Headlight and Method'' on May 24, 2020. 034447;

Y.P.Chang等人於2019年5月28日所申請之標題為「使用單一數位微鏡裝置與智慧車燈成一體的LiDAR」(LiDAR Integrated with Smart Headlight Using a Single DMD)的美國臨時專利申請號No.62/853,538; On May 28, 2019, YPChang et al. filed a U.S. Provisional Patent Application No. entitled ``LiDAR Integrated with Smart Headlight Using a Single DMD'' (LiDAR Integrated with Smart Headlight Using a Single DMD) .62/853,538;

Chun-Nien Liu等人於2019年6月5日所申請之標題為「用於自動駕駛的LiDAR嵌入式智慧雷射車燈之架構」(Scheme of LiDAR-embedded Smart Laser Headlight for Autonomous Driving)的美國臨時專利申請號No.62/857,662;以及 Chun-Nien Liu and others applied for the title ``Scheme of LiDAR-embedded Smart Laser Headlight for Autonomous Driving'' on June 5, 2019. Provisional Patent Application No. 62/857,662; and

Kenneth Li於2019年12月18日所申請之標題為「使用單一MEMS反射鏡的一體LiDAR和智慧車燈」(Integrated LiDAR and Smart Headlight Using a Single MEMS Mirror)的美國臨時專利申請號No.62/950,080; U.S. Provisional Patent Application No. 62/ entitled ``Integrated LiDAR and Smart Headlight Using a Single MEMS Mirror'' filed by Kenneth Li on December 18, 2019 950,080;

Y.P.Chang等人於2019年6月14日所申請之標題為「具有高強度輸出機制的照明系統及其操作方法」(Illumination System with High Intensity Output Mechanism and Method of Operation Thereof)的PCT專利申請PCT/US2019/037231(於2020年1月16日公開發表為WO 2020/013952); YPChang et al. applied for a PCT patent application titled ``Illumination System with High Intensity Output Mechanism and Method of Operation Thereof'' on June 14, 2019. PCT/ US2019/037231 (published as WO 2020/013952 on January 16, 2020);

Y.P.Chang等人於2019年7月11日所申請之標題為「具有晶體磷光機制的照明系統及其操作方法」(Illumination System with Crystal Phosphor Mechanism and Method of Operation Thereof)的美國專利申請16/509,085(於2020年1月23日公開發表為US 2020/0026169); YPChang et al. filed on July 11, 2019, U.S. Patent Application 16/509,085 entitled Illumination System with Crystal Phosphor Mechanism and Method of Operation Thereof (Illumination System with Crystal Phosphor Mechanism and Method of Operation Thereof). Published on January 23, 2020 as US 2020/0026169);

Y.P.Chang等人於2019年7月11日所申請之標題為「具有高強度投影機制的照明系統及其操作方法」(Illumination System with High Intensity Projection Mechanism and Method of Operation Thereof)的美國專利申請16/509,196(於2020年1月23日公開發表為US 2020/0026170); YPChang et al. filed on July 11, 2019, a U.S. patent application titled ``Illumination System with High Intensity Projection Mechanism and Method of Operation Thereof'' (Illumination System with High Intensity Projection Mechanism and Method of Operation Thereof) 16/ 509,196 (published as US 2020/0026170 on January 23, 2020);

Kenneth Li等人於2019年4月22日所申請之標題為「雷射激發晶體磷光球面光源」(Laser Excited Crystal Phosphor Sphere Light Source)的美國臨時專利申請62/837,077; Kenneth Li et al. filed on April 22, 2019, a US provisional patent application 62/837,077 entitled "Laser Excited Crystal Phosphor Sphere Light Source" (Laser Excited Crystal Phosphor Sphere Light Source);

Y.P.Chang等人於2019年5月28日所申請之標題為「使用單一數位微鏡裝置與智慧車燈成一體的LiDAR」(LiDAR Integrated with Smart Headlight Using a Single DMD)的美國臨時專利申請62/853,538。 On May 28, 2019, YPChang et al. filed a U.S. provisional patent application entitled ``LiDAR Integrated with Smart Headlight Using a Single DMD'' (LiDAR Integrated with Smart Headlight Using a Single DMD) 62/ 853,538.

Kenneth Li等人於2019年7月8日所申請之標題為「使用二向分色反射鏡的垂直腔表面發射雷射」(Vertical Cavity Surface Emitting Laser Using Dichroic Reflectors)的美國臨時專利申請62/856,518; U.S. Provisional Patent Application No. 62/856,518 filed by Kenneth Li et al. on July 8, 2019, entitled ``Vertical Cavity Surface Emitting Laser Using Dichroic Reflectors'' (Vertical Cavity Surface Emitting Laser Using Dichroic Reflectors) ;

Kenneth Li於2019年7月8日所申請之標題為「雷射激發磷光光源及具有光回收的方法」(Laser-excited Phosphor Light Source and Method with Light Recycling)的美國臨時專利申請62/871,498; Kenneth Li filed a US provisional patent application 62/871,498 entitled "Laser-excited Phosphor Light Source and Method with Light Recycling" on July 8, 2019;

Chun-Nien Liu等人於2019年6月5日所申請之標題為「用於自動駕駛的LiDAR嵌入式智慧雷射車燈之架構」(Scheme of LiDAR-embedded Smart Laser Headlight for Autonomous Driving)的美國臨時專利申請62/857,662; Chun-Nien Liu and others applied for the title ``Scheme of LiDAR-embedded Smart Laser Headlight for Autonomous Driving'' on June 5, 2019. Provisional patent application 62/857,662;

Kenneth Li於2019年7月11日所申請之標題為「使用活動鏡和回復性反射體減少斑點」(Speckle Reduction Using Moving Mirrors and Retro-reflectors)的美國臨時專利申請62/873,171; Kenneth Li filed on July 11, 2019, a U.S. Provisional Patent Application 62/873,171 entitled "Speckle Reduction Using Moving Mirrors and Retro-reflectors" (Speckle Reduction Using Moving Mirrors and Retro-reflectors);

Kenneth Li於2019年6月17日所申請之標題為「使用雷射激發提升LED強度分佈」(Enhancement of LED Intensity Profile Using Laser Excitation) 的美國臨時專利申請62/862,549; The title of Kenneth Li's application on June 17, 2019 is "Enhancement of LED Intensity Profile Using Laser Excitation" (Enhancement of LED Intensity Profile Using Laser Excitation) US provisional patent application 62/862,549;

Kenneth Li於2019年7月16日所申請之標題為「使用雷射激發提升LED強度分佈」(Enhancement of LED Intensity Profile Using Laser Excitation)的美國臨時專利申請62/874,943; Kenneth Li filed on July 16, 2019, a US provisional patent application 62/874,943 entitled "Enhancement of LED Intensity Profile Using Laser Excitation" (Enhancement of LED Intensity Profile Using Laser Excitation);

Kenneth Li於2019年8月1日所申請之標題為「採用聚焦回收提高漫射光亮度的系統和方法」(System and Method to Increase Brightness of Diffused Light with Focused Recycling)的美國臨時專利申請62/881,927; Kenneth Li filed a US provisional patent application 62/881,927 entitled "System and Method to Increase Brightness of Diffused Light with Focused Recycling" on August 1, 2019;

Kenneth Li於2019年9月3日所申請之標題為「採用聚焦回收提高漫射光亮度」(Increased Brightness of Diffused Light with Focused Recycling)的美國臨時專利申請62/895,367;以及 Kenneth Li filed on September 3, 2019, a US provisional patent application 62/895,367 entitled "Increased Brightness of Diffused Light with Focused Recycling" (Increased Brightness of Diffused Light with Focused Recycling); and

Lion Wang等人於2019年9月20日所申請之標題為「用於投影顯示器的RGB雷射光源」(RGB Laser Light Source for Projection Displays)的美國臨時專利申請62/903,620;將其每個皆完整併入文中作為參考。 Lion Wang et al. filed on September 20, 2019, a US provisional patent application 62/903,620 entitled "RGB Laser Light Source for Projection Displays" (RGB Laser Light Source for Projection Displays); each of them is It is fully incorporated into the text for reference.

本發明係關於固態照明之領域,更具體而言係關於垂直腔表面發射雷射(Vertical-cavity surface-emitting laser,VCSEL)以及用於製造和使用VCSEL的系統和方法,每個VCSEL皆包括一個或多個分佈式布拉格反射鏡(Distributed Bragg reflector,DBR)和/或二向分色多層介電反射體,其中至少一者視需要塑形(如藉由形成凹內表面、或繞射或全像(holographic)表面、或其他聚焦結構)以將其各自雷射束聚焦在該VCSEL(係其一部分)之該對應各自雷射作用腔內。在一些具體實施例中,這樣的VCSEL之二維陣列配置成從可組合以形成高功率組合雷射束的發射表面發射平行細束(beamlets)。 The present invention relates to the field of solid-state lighting, and more specifically relates to vertical-cavity surface-emitting laser (VCSEL) and systems and methods for manufacturing and using VCSELs. Each VCSEL includes one Or multiple distributed Bragg reflectors (Distributed Bragg reflector, DBR) and/or dichroic multilayer dielectric reflectors, at least one of which is shaped as necessary (for example, by forming a concave inner surface, or diffracted or full Holographic surface, or other focusing structure) to focus their respective laser beams in the corresponding respective laser cavity of the VCSEL (part of it). In some embodiments, such a two-dimensional array of VCSELs is configured to emit parallel beamlets from an emitting surface that can be combined to form a high-power combined laser beam.

併入作為參考的(申請案PCT/US2019/037231之)PCT專利申請公開發表文件WO 2020/013952說明一種照明系統,其包括一波導,其具有配置成接收一雷射光的一第一端、配置成從該雷射光產生一發光(luminescent)光的一發光部位、相對該第一端的一第二端,配置成通過該發光光;一輸入裝置,其與該第一端相鄰,配置成收集該雷射光以傳播到該 第一端;一輸出裝置,其與該第二端相鄰,配置成將該雷射光之至少一些反射回到該發光部位中並穿越一輸出表面將該發光光導向離開該第二端。在一個具體實施例中,該輸入裝置包括一光均質器(homogenizer),其配置成接收該雷射光並向該波導之該第一端提供該雷射光之一空間上均勻強度分佈。在另一個具體實施例中,散熱片(heat dissipater)與該波導相鄰提供,並配置成散逸該波導內該發光光之該產生所產生的熱。 The PCT Patent Application Publication WO 2020/013952, which is incorporated by reference (application PCT/US2019/037231), describes a lighting system that includes a waveguide having a first end configured to receive a laser light, a configuration A light-emitting part that generates a luminescent light from the laser light, and a second end opposite to the first end is configured to pass the luminescent light; an input device, which is adjacent to the first end, is configured to Collect the laser light to propagate to the The first end; an output device, which is adjacent to the second end, is configured to reflect at least some of the laser light back into the light-emitting part and guide the light-emitting light away from the second end through an output surface. In a specific embodiment, the input device includes a homogenizer configured to receive the laser light and provide a spatially uniform intensity distribution of the laser light to the first end of the waveguide. In another embodiment, a heat dissipater is provided adjacent to the waveguide and is configured to dissipate the heat generated by the generation of the luminous light in the waveguide.

併入作為參考的(美國申請案16/509,085之)美國專利申請公開案2020/0026169說明一種照明系統,其包括:一雷射陣列組件包括:一雷射,其配置成產生一雷射光;一晶體磷光波導,其與該雷射相鄰且在該雷射光中,配置成:基於接收該雷射光產生一發光光,並將該發光光導向離開一基端(base end);以及一複合拋物面聚光器(Compound parabolic concentrator,CPC),其耦合到相對該基端的該晶體磷光波導,配置成:收集來自該晶體磷光波導的該發光光,將該發光光提取(extract)離開該晶體磷光波導。 U.S. Patent Application Publication 2020/0026169 (of U.S. Application 16/509,085) incorporated by reference describes a lighting system including: a laser array assembly including: a laser configured to generate a laser light; A crystal phosphorescent waveguide, which is adjacent to the laser and in the laser light, is configured to: generate a luminous light based on receiving the laser light, and guide the luminous light away from a base end; and a compound paraboloid A compound parabolic concentrator (CPC), which is coupled to the crystal phosphorescent waveguide opposite to the base end, is configured to collect the luminescent light from the crystal phosphorescent waveguide, and extract the luminescent light away from the crystal phosphorescent waveguide .

併入作為參考的(美國申請案16/509,196之)美國專利申請公開案2020/0026170說明一種照明系統,其包括一輸入裝置,其配置成產生一第一發光光束;一泵浦組件,其光學耦合到該輸入裝置,配置成將一泵浦光束投影到該輸入裝置中;一聚焦透鏡,其與該第一發光光束對位,以將藉由該泵浦光束提升的該第一發光光束聚焦為一輸出束;以及一輸出裝置,其光學耦合到該聚焦透鏡,配置成:接收來自該聚焦透鏡的該輸出束,並從一投影裝置投影以該輸出束形成的一應用輸出。 The US Patent Application Publication 2020/0026170, incorporated by reference (US application 16/509,196), describes an illumination system that includes an input device configured to generate a first luminous beam; a pump assembly with optical Coupled to the input device and configured to project a pump beam into the input device; a focusing lens aligned with the first luminous beam to focus the first luminous beam lifted by the pump beam Is an output beam; and an output device optically coupled to the focusing lens, configured to receive the output beam from the focusing lens, and project an application output formed by the output beam from a projection device.

於2014年9月30日核發給Zhang等人的美國專利8,846,518以「多層構造」(Multilayer Construction)為標題,且併入文中作為參考。專利8,846,518說明一種多層構造,其包括一II-VI族半導體層;以及一Si3N4層,其直接布置在該II-VI族半導體層上。為改良該Si3N4層之黏著性,去除該II-VI族半導體層上的原生氧化物。 US Patent 8,846,518 issued to Zhang et al. on September 30, 2014 is titled "Multilayer Construction" and is incorporated herein as a reference. Patent 8,846,518 describes a multilayer structure, which includes a II-VI group semiconductor layer; and a Si 3 N 4 layer, which is directly arranged on the II-VI group semiconductor layer. In order to improve the adhesion of the Si 3 N 4 layer, the native oxide on the II-VI group semiconductor layer is removed.

於1998年3月10日核發給Hed的美國專利5,727,108以「高效複合拋物面聚光器和光纖供電點光源」(High Efficiency Compound Parabolic Concentrators and Optical Fiber Powered Spot Luminaire)為標題,且 併入作為參考。專利5,727,108說明一種複合拋物面聚光器(CPC),其可用作光學連接器,或在類似管理系統中僅僅用作聚光器或甚至用作聚光燈。該CPC具有以輸入孔徑和輸出孔徑,以及將該輸入孔徑與該輸出孔徑連接並從該等孔徑之較小截面積發散到較大截面積的壁面形成的中空體。該壁面由透明介電材料之相連細長稜鏡組成,以使從該入口孔徑到該出口孔徑的單次反射在該等稜鏡內發生,因此完全反射性反射體之該等損耗可避免。 U.S. Patent 5,727,108 issued to Hed on March 10, 1998 is entitled "High Efficiency Compound Parabolic Concentrators and Optical Fiber Powered Spot Luminaire", and Incorporated as a reference. Patent 5,727,108 describes a compound parabolic concentrator (CPC) that can be used as an optical connector, or just as a concentrator or even as a spotlight in similar management systems. The CPC has a hollow body formed by an input aperture and an output aperture, and a wall surface that connects the input aperture and the output aperture and diverges from the smaller cross-sectional area of the apertures to the larger cross-sectional area. The wall is composed of connected slender ridges of transparent dielectric material, so that a single reflection from the entrance aperture to the exit aperture occurs in the ridges, so the loss of the totally reflective reflector can be avoided.

於2009年1月20日核發給Feezell等人的美國專利7,480,322以「電泵浦(Ga,In,Al)N垂直腔表面發射雷射」(Electrically-pumped(Ga,In,Al)N Vertical-cavity Surface-emitting Laser)為標題,且併入文中作為參考。專利7,480,322說明一種垂直腔表面發射雷射(VCSEL),其包括一低損耗薄金屬接點和電流擴散層,其在該光學腔內,提供用於經改良的歐姆接點和側向電流分佈;一基板包括一平凹光學腔、一(Ga,In,Al)N多重量子井(Multiple quantum well,MQW)活性區域,其內含在該光學腔內,當藉由一電流注入時產生光;以及一一體微鏡,其製造到該基板上,提供用於藉由該活性區域產生的該光之光學模式控制。使用相對較簡單製程製造該VCSEL。 U.S. Patent 7,480,322 issued to Feezell et al. on January 20, 2009 for "Electrically-pumped (Ga, In, Al) N Vertical- cavity Surface-emitting Laser) is the title and is incorporated into the text as a reference. Patent 7,480,322 describes a vertical cavity surface emitting laser (VCSEL), which includes a low-loss thin metal contact and a current spreading layer, which provides an improved ohmic contact and lateral current distribution in the optical cavity; A substrate includes a plano-concave optical cavity and a (Ga, In, Al)N multiple quantum well (MQW) active region, which is contained in the optical cavity and generates light when injected by an electric current; and An integrated micromirror, which is fabricated on the substrate, provides optical mode control for the light generated by the active area. The VCSEL is manufactured using a relatively simple process.

於2001年1月2日核發給Chirovsky等人的美國專利6,169,756以「具有光學引導和電流孔徑的垂直腔表面發射雷射」(Vertical Cavity Surface-emitting Laser with Optical Guide and Current Aperture)為標題,且併入文中作為參考。專利6,169,756說明一種具有分開的電流與光學引導(其分別提供獨特形式之驅動電流和橫向模式限制)的VCSEL。在一個具體實施例中,該光學引導包括一腔內高折射率台面,其橫向於該腔共振器軸布置;以及一多層介電(即非磊晶)反射鏡,其覆蓋該台面。在另一個具體實施例中,該電流引導包括一環形第一電極,其側向圍繞該台面,但具有一內徑大於一離子植入所界定出的電流孔徑。該電流引導使得電流沿著基本上垂直於該共振器軸的第一路徑段從該第一電極側向流動,然後沿著基本上平行於該軸的第二路徑段從該第一段垂直流動,且最終流過該電流孔徑和該活性區域到第二電極。該介電反射鏡只會在形成該等引導之後沉積, 以便有助於其製造。 U.S. Patent 6,169,756 issued to Chirovsky et al. on January 2, 2001 is entitled "Vertical Cavity Surface-emitting Laser with Optical Guide and Current Aperture", and Incorporated into the text as a reference. Patent 6,169,756 describes a VCSEL with separate current and optical guidance (which provide unique forms of drive current and lateral mode limitation, respectively). In a specific embodiment, the optical guide includes an intracavity high refractive index mesa, which is arranged transverse to the cavity resonator axis; and a multilayer dielectric (ie, non-epitaxial) mirror, which covers the mesa. In another embodiment, the current guide includes a ring-shaped first electrode that laterally surrounds the mesa but has an inner diameter larger than a current aperture defined by an ion implantation. The current guide causes the current to flow laterally from the first electrode along a first path section that is substantially perpendicular to the axis of the resonator, and then flows vertically from the first section along a second path section that is substantially parallel to the axis , And finally flow through the current aperture and the active area to the second electrode. The dielectric mirror is only deposited after the guides are formed, In order to help its manufacturing.

於2019年3月5日核發給Raring等人的美國專利10,222,474以「具含鎵氮雷射光源的雷射雷達系統」(LiDAR Systems Including a Gallium and Nitrogen Containing Laser Light Source)為標題,且併入文中作為參考。專利10,222,474說明一種移動機器,包括一基於雷射二極體的光照系統,其具有容納至少一含鎵氮雷射二極體和一波長轉換構件的一一體封裝。該含鎵氮雷射二極體配置成發射具有第一峰值波長的第一雷射束。該波長轉換構件配置成至少部分接收具有該第一峰值波長的第一雷射束,以激發具有較該第一峰值波長更長的第二峰值波長的發射,並產生與該第二峰值波長和該第一峰值波長混合的白光。該移動機器更包括一雷射雷達(Light detection and ranging,LiDAR)系統,其配置成產生一第二雷射束,並操縱該第二雷射束在一遠端距離內感測目標物件之一空間地圖。 U.S. Patent 10,222,474 issued to Raring et al. on March 5, 2019 is entitled "LiDAR Systems Including a Gallium and Nitrogen Containing Laser Light Source" (LiDAR Systems Including a Gallium and Nitrogen Containing Laser Light Source) and is incorporated The text serves as a reference. Patent No. 10,222,474 describes a mobile machine including a laser diode-based lighting system with an integrated package containing at least one gallium-nitrogen-containing laser diode and a wavelength conversion member. The gallium-nitrogen-containing laser diode is configured to emit a first laser beam having a first peak wavelength. The wavelength conversion member is configured to at least partially receive a first laser beam having the first peak wavelength, to excite emission having a second peak wavelength longer than the first peak wavelength, and generate a sum of the second peak wavelength and the second peak wavelength. The first peak wavelength is mixed with white light. The mobile machine further includes a light detection and ranging (LiDAR) system, which is configured to generate a second laser beam and manipulate the second laser beam to sense one of the target objects within a remote distance Space map.

Nazmi Sellami和Tapas K.Mallick標題為〈太陽光電交錯複合拋物面聚光器之光學效率研究〉(Optical Efficiency Study of PV Crossed Compound Parabolic Concentrator)的期刊文章(《應用能源》(Applied Energy),2013年2月第102冊868至876頁)(將其併入文中作為參考)說明靜態太陽能聚光器,其呈現對藉由減少太陽能電池之面積降低建物一體太陽光電(Building Integrated Photovoltaic,BIPV)之成本之挑戰的解決方案。在這項研究中,3-D射線追蹤碼使用MATLAB開發出,以便針對光線之不同入射角決定3-D交錯複合拋物面聚光器(Crossed Compound Parabolic Concentrator,CCPC)之太陽光電電池處的理論光學效率和光學通量分佈。 Nazmi Sellami and Tapas K. Mallick’s journal article entitled "Optical Efficiency Study of PV Crossed Compound Parabolic Concentrator" ("Applied Energy" (Applied Energy), 2013 2 Vol. 102, pp. 868 to 876) (incorporated into the text as a reference) describes static solar concentrators, which are useful for reducing the cost of Building Integrated Photovoltaic (BIPV) by reducing the area of solar cells. The solution to the challenge. In this research, the 3-D ray tracing code was developed using MATLAB to determine the theoretical optics at the photovoltaic cell of the 3-D crossed compound parabolic concentrator (CCPC) for different incident angles of light. Efficiency and optical flux distribution.

Gerhard Boehm等人標題為〈涵蓋1.3至2.0μm波長範圍之基於InP的VCSEL技術〉(InP-based VCSEL Technology Covering the Wavelength Range from 1.3 to 2.0μm)的期刊文章(《晶體成長期刊》(Journal of Crystal Growth),2003年4月第1至4期第251冊748至753頁(doi.org/10.1016/S0022-0248(02)02193-0))(將其併入文中作為參考)說明作為1.3至2.0μm波長範圍內光源的嵌埋隧道接面垂直腔表面發射雷射(Buried tunnel junction vertical-cavity surface-emitting laser,BTJ-VCSEL)。在室溫下的連續波操作可能針對該整個波長範圍達成。這不僅強調該精密裝 置設計,而且強調該材料系統AlGaInAs/InP之極佳合適性。在1.55μm下採用單一模式VCSEL的傳輸實驗,顯示在高達10Gbit/s調變頻率下的無誤資料傳輸。在1.68和1.80μm下,分別偵測甲烷和水的氣體感測實驗可能成功進行。 Gerhard Boehm et al. titled "InP-based VCSEL Technology Covering the Wavelength Range from 1.3 to 2.0μm" journal article (Journal of Crystal Growth Journal) Growth), Volume 251, Issue 1 to 4, April 2003, pages 748 to 753 (doi.org/10.1016/S0022-0248(02)02193-0)) (incorporate it into the text for reference) The description is as 1.3 to Buried tunnel junction vertical-cavity surface-emitting laser (BTJ-VCSEL) is emitted from the buried tunnel junction vertical-cavity surface-emitting laser (BTJ-VCSEL) of the light source in the 2.0μm wavelength range. Continuous wave operation at room temperature may be achieved for this entire wavelength range. This not only emphasizes the precision equipment It also emphasizes the excellent suitability of the material system AlGaInAs/InP. The transmission experiment using a single-mode VCSEL at 1.55μm shows error-free data transmission at a modulation frequency of up to 10Gbit/s. At 1.68 and 1.80μm, gas sensing experiments for detecting methane and water, respectively, may be successful.

本領域亟需經改良的固態雷射。 An improved solid-state laser is urgently needed in this field.

在一些具體實施例中,本發明提供一種第一設備,其包括:一第一半導體垂直腔表面發射雷射(VCSEL)結構,其產生具有一特性波長的一雷射束且其包括:一第一多層介電反射體;一第二多層介電反射體;以及一半導體結構,其位於該第一多層介電反射體與該第二多層介電反射體之間並與其接觸,其中該半導體結構包括:一第一n型半導體層;一p型半導體層;以及一活性層,其位於該n型半導體層與該p型半導體層之間並與其接觸,其中該第一多層介電反射體和該第二多層介電反射體中至少一者係一聚焦反射體,其中該第一多層介電反射體和該第二多層介電反射體形成一雷射作用腔,且其中該活性層向該等第一與第二反射體之間的該雷射作用腔提供光學增益。在一些具體實施例中,每個多層介電反射體皆包括複數對交替折射率介電層(即對於該特性波長可穿透的低折射率和高折射率介電材料之交替層)。在一些具體實施例中,複數對交替折射率介電層之該等各自厚度設計成在該特性波長下調諧。在一些具體實施例中,由於人類眼睛組織對於這些波長並非很可穿透,因此該VCSEL之該特性波長約為1.55μm(其在視為「對眼睛安全」(eye-safe)的波長範圍內)。在一些具體實施例中,該半導體結構包括磷化銦(Indium phosphide,InP)。 In some embodiments, the present invention provides a first device including: a first semiconductor vertical cavity surface emitting laser (VCSEL) structure, which generates a laser beam with a characteristic wavelength and includes: a first semiconductor vertical cavity surface emitting laser (VCSEL) structure A multilayer dielectric reflector; a second multilayer dielectric reflector; and a semiconductor structure located between and in contact with the first multilayer dielectric reflector and the second multilayer dielectric reflector, The semiconductor structure includes: a first n-type semiconductor layer; a p-type semiconductor layer; and an active layer located between and in contact with the n-type semiconductor layer and the p-type semiconductor layer, wherein the first multilayer At least one of the dielectric reflector and the second multilayer dielectric reflector is a focusing reflector, wherein the first multilayer dielectric reflector and the second multilayer dielectric reflector form a laser action cavity And wherein the active layer provides optical gain to the laser action cavity between the first and second reflectors. In some embodiments, each multilayer dielectric reflector includes a plurality of pairs of alternating refractive index dielectric layers (ie, alternating layers of low refractive index and high refractive index dielectric materials that are transparent to the characteristic wavelength). In some embodiments, the respective thicknesses of the plurality of pairs of alternating refractive index dielectric layers are designed to be tuned at the characteristic wavelength. In some specific embodiments, since human eye tissue is not very transparent to these wavelengths, the characteristic wavelength of the VCSEL is about 1.55 μm (which is within the wavelength range considered "eye-safe" ). In some embodiments, the semiconductor structure includes indium phosphide (InP).

在一些具體實施例中,本發明提供一種方法,其包括:得到形成一第一n型半導體層的一n型半導體基板;在該第一n型半導體層上沉積一p型半導體層,以在該第一n型半導體層與該p型半導體層之間形成一活性層;在該p型半導體層上形成一穿隧層,且一第二n型半導體層面向該穿隧層並與其接觸;在該第二n型半導體層上沉積一高度反射性多層介電反射體;在該高度反射性多層介電反射體上沉積一第一金屬電接點,其中至少一個電接點到該第二n型半導體層;在相對於該第二n型半導體 層上的該高度反射性多層介電反射體的該基板之一第一面上形成一聚焦部分反射性多層介電反射體表面;以及在該基板之該第一面上沉積一第二金屬電接點,其中至少一個電接點到該第一n型半導體層。在該方法之一些具體實施例中,該基板之該第一面之該聚焦部分反射性多層介電反射體表面之該形成包括將一彎曲表面蝕刻到該基板中。在該方法之一些具體實施例中,該基板之該第一面之該聚焦部分反射性多層介電反射體表面之該形成包括使用光微影(photolithography)在該基板上形成一繞射反射體。在該方法之一些具體實施例中,該基板之該第一面之該聚焦部分反射性多層介電反射體表面之該形成包括在該基板上形成一全像反射體。 In some embodiments, the present invention provides a method, which includes: obtaining an n-type semiconductor substrate on which a first n-type semiconductor layer is formed; and depositing a p-type semiconductor layer on the first n-type semiconductor layer to An active layer is formed between the first n-type semiconductor layer and the p-type semiconductor layer; a tunneling layer is formed on the p-type semiconductor layer, and a second n-type semiconductor layer faces and contacts the tunneling layer; Depositing a highly reflective multilayer dielectric reflector on the second n-type semiconductor layer; depositing a first metal electrical contact on the highly reflective multilayer dielectric reflector, wherein at least one electrical contact is connected to the second n-type semiconductor layer; relative to the second n-type semiconductor On a first surface of the substrate of the highly reflective multilayer dielectric reflector on the layer, a focused partially reflective multilayer dielectric reflector surface is formed; and a second metal layer is deposited on the first surface of the substrate Contacts, wherein at least one electrical contact is to the first n-type semiconductor layer. In some embodiments of the method, the forming of the focused partially reflective multilayer dielectric reflector surface of the first side of the substrate includes etching a curved surface into the substrate. In some embodiments of the method, the forming of the surface of the focused partially reflective multilayer dielectric reflector on the first surface of the substrate includes forming a diffractive reflector on the substrate using photolithography . In some embodiments of the method, the forming of the focused partially reflective multilayer dielectric reflector surface of the first surface of the substrate includes forming a holographic reflector on the substrate.

101:慣用VCSEL;慣用VCSEL結構;VCSEL結構;VCSEL 101: Conventional VCSEL; Conventional VCSEL structure; VCSEL structure; VCSEL

102、103:慣用VCSEL;慣用VCSEL結構;VCSEL結構 102, 103: conventional VCSEL; conventional VCSEL structure; VCSEL structure

110、111、410、510:底側金屬層 110, 111, 410, 510: bottom metal layer

112、194:電接點 112, 194: electrical contacts

120:半導體基板 120: Semiconductor substrate

130:底側DBR 130: Bottom side DBR

140:n型半導體層;n型層 140: n-type semiconductor layer; n-type layer

150:pn接面活性層;光學增益層;光學增益或活性層;活性區域 150: pn junction active layer; optical gain layer; optical gain or active layer; active area

156:中心區域;區域;中心活性區域;中心部位 156: central area; area; central active area; central part

160:p型半導體層;p型層;層 160: p-type semiconductor layer; p-type layer; layer

162、171:電流限制氧化物結構;氧化物結構;氧化物層 162, 171: Current limiting oxide structure; oxide structure; oxide layer

170、370、470:電流限制結構;質子所轟擊區域 170, 370, 470: current confinement structure; area bombarded by protons

172:中心區域;中心部位 172: central area; central part

175、176:中心區域;孔徑 175, 176: central area; aperture

180:頂側DBR 180 180: Top side DBR 180

189:頂部電流限制結構 189: Top current limiting structure

190、390、490、590:頂側金屬層 190, 390, 490, 590: top side metal layer

192、596:散熱器;散熱件 192, 596: radiator; heat sink

195、308、408、508:出口開口;開口 195, 308, 408, 508: outlet opening; opening

199、299、399、499、599:雷射束;輸出雷射束 199, 299, 399, 499, 599: laser beam; output laser beam

201:VCSEL;VCSEL結構;基板側輸出VCSEL結構 201: VCSEL; VCSEL structure; substrate side output VCSEL structure

205:抗反射塗佈底面;抗反射(AR)塗佈 205: Anti-reflective coating bottom surface; Anti-reflective (AR) coating

208:出口開口;開口;光輸出開口 208: Exit opening; opening; light output opening

210:底側金屬層;底側金屬接點 210: bottom metal layer; bottom metal contact

220:基板;半導體基板 220: substrate; semiconductor substrate

230:磊晶成長分佈式布拉格反射鏡底側DBR;磊晶成長分佈式布拉格反射鏡DBR;DBR;底側DBR;多層磊晶DBR;底部多層磊晶DBR 230: epitaxial growth distributed Bragg reflector bottom side DBR; epitaxial growth distributed Bragg reflector DBR; DBR; bottom side DBR; multilayer epitaxial DBR; bottom multilayer epitaxial DBR

240:n型半導體層;n型層;n-InP層;n型InP層 240: n-type semiconductor layer; n-type layer; n-InP layer; n-type InP layer

250、450:pn接面;活性層;pn接面活性層 250, 450: pn junction; active layer; pn junction active layer

260、360、460、560:p型半導體層;p型層;層;p-InP層 260, 360, 460, 560: p-type semiconductor layer; p-type layer; layer; p-InP layer

261、361、461、561:穿隧層 261, 361, 461, 561: tunnel layer

270:電流限制結構;質子所轟擊區域;質子所轟擊/所植入區域 270: Current confinement structure; area bombarded by protons; area bombarded/implanted by protons

271:n型層;n-InP層 271: n-type layer; n-InP layer

280:磊晶成長分佈式布拉格反射鏡頂側DBR;磊晶成長分佈式布拉格反射鏡DBR;DBR;頂側DBR;頂側多層DBR 280: epitaxial growth distributed Bragg reflector top side DBR; epitaxial growth distributed Bragg reflector DBR; DBR; top side DBR; top side multi-layer DBR

282:中心區域;中心區域 282: central area; central area

290:頂側金屬層;頂側金屬接觸層 290: top-side metal layer; top-side metal contact layer

298:光學腔;光學(雷射作用)腔;雷射作用腔 298: optical cavity; optical (laser action) cavity; laser action cavity

301、401:VCSEL;VCSEL結構 301, 401: VCSEL; VCSEL structure

306:平坦底側二向分色多層介電反射體;底側多層介電反射體;平坦多層介電反射體;多層介電反射體;部分反射性多層介電反射體;反射體 306: Flat bottom side dichroic multilayer dielectric reflector; bottom side multilayer dielectric reflector; flat multilayer dielectric reflector; multilayer dielectric reflector; partially reflective multilayer dielectric reflector; reflector

310:底側金屬層;基板 310: bottom metal layer; substrate

340:半導體基板;n型層/基板 340: Semiconductor substrate; n-type layer/substrate

350:pn接面活性層;pn接面層;活性層 350: pn junction active layer; pn junction layer; active layer

371、471:n-InP層 371, 471: n-InP layer

380:單一磊晶成長頂側DBR;單一磊晶成長DBR;DBR;頂側DBR;頂部磊晶DBR;反射體 380: single epitaxial growth top side DBR; single epitaxial growth DBR; DBR; top side DBR; top epitaxial DBR; reflector

382、482:中心區域;中心電流傳導區域;中心區域 382, 482: central area; central current conducting area; central area

398:光學腔;雷射作用腔;雷射腔 398: optical cavity; laser action cavity; laser cavity

407:彎曲底側二向分色多層介電反射體;聚焦底側多層介電反射體;多層介電塗佈;凸多層介電塗佈;彎曲底側介電反射體;底側介電反射體 407: Curved bottom side dichroic multilayer dielectric reflector; focused bottom side multilayer dielectric reflector; multilayer dielectric coating; convex multilayer dielectric coating; curved bottom side dielectric reflector; bottom side dielectric reflection body

440、540:半導體基板;n型層/基板;基板 440, 540: semiconductor substrate; n-type layer/substrate; substrate

480:單一磊晶成長頂側DBR;DBR;頂側DBR;平坦磊晶DBR;頂部DBR 480: single epitaxial growth top side DBR; DBR; top side DBR; flat epitaxial DBR; top DBR

498:光學腔;雷射作用腔;腔室;雷射腔 498: optical cavity; laser action cavity; cavity; laser cavity

501:VCSEL結構;VCSEL;系統 501: VCSEL structure; VCSEL; system

502、503、504、505:VCSEL結構 502, 503, 504, 505: VCSEL structure

506:多VCSEL陣列 506: Multiple VCSEL array

507:彎曲底側二向分色多層介電反射體;聚焦底側多層介電反射體; 彎曲底側介電反射體;聚焦多層介電反射體 507: Curved bottom side dichroic multilayer dielectric reflector; focus bottom side multilayer dielectric reflector; Curved bottom dielectric reflector; focused multilayer dielectric reflector

542:聚焦表面;彎曲表面或繞射元件;形狀 542: focusing surface; curved surface or diffractive element; shape

544:聚焦元件;透鏡或繞射元件 544: focusing element; lens or diffractive element

550:活性層;pn接面 550: active layer; pn junction

562:氧化物電流限制區域 562: Oxide current limit area

563:第二氧化物電流限制區域 563: Second oxide current limit area

570:電流限制結構;質子所轟擊區域;電阻性區域 570: Current confinement structure; area bombarded by protons; resistive area

571:電流限制區域;n-InP層;層;n型層 571: Current confinement area; n-InP layer; layer; n-type layer

580:頂側二向分色多層介電反射體;二向分色多層介電反射體;高度反射性頂側多層介電反射體;平坦多層介電反射體;聚焦多層介電反射體 580: Top-side dichroic multilayer dielectric reflector; Dichroic multilayer dielectric reflector; Highly reflective top-side multilayer dielectric reflector; Flat multilayer dielectric reflector; Focused multilayer dielectric reflector

581:頂側聚焦二向分色多層介電反射體;頂側聚焦部分反射性二向分色多層介電反射體;反射體 581: Top-side focusing dichroic multilayer dielectric reflector; top-side focusing partially reflective dichroic multilayer dielectric reflector; reflector

582:平坦底側二向分色多層介電反射體;中心電流傳導區域;中心電流傳導區域;中心區域;平坦底側高度反射性二向分色多層介電反射體 582: Flat bottom side dichroic multilayer dielectric reflector; central current conducting area; central current conducting area; central area; flat bottom side highly reflective dichroic multilayer dielectric reflector

583:頂側平坦二向分色多層介電反射體 583: Flat dichroic multilayer dielectric reflector on top side

584:彎曲聚焦底側二向分色多層介電反射體;彎曲且/或聚焦底側二向分色多層介電反射體;二向分色多層介電反射體;聚焦多層介電反射體 584: Curved and focused bottom side dichroic multilayer dielectric reflector; curved and/or focused bottom side dichroic multilayer dielectric reflector; dichroic multilayer dielectric reflector; focused multilayer dielectric reflector

592、593:金屬環 592, 593: metal ring

597:複數 597: Plural

598:光學腔;光學雷射作用腔;雷射作用腔 598: optical cavity; optical laser action cavity; laser action cavity

601:十六VCSEL矩形陣列 601: Sixteen VCSEL rectangular array

602:十九VCSEL六邊形陣列 602: Nineteen VCSEL Hexagonal Array

603:四百VCSEL矩形陣列 603: Four hundred VCSEL rectangular arrays

第一A圖係慣用VCSEL 101之剖面側視圖。 The first A is a cross-sectional side view of the conventional VCSEL 101.

第一B圖係慣用VCSEL 102之剖面側視圖。 The first Figure B is a cross-sectional side view of the conventional VCSEL 102.

第一C圖係慣用VCSEL 103之剖面側視圖。 The first Fig. C is a cross-sectional side view of the conventional VCSEL 103.

第二圖係VCSEL 201之剖面側視圖,VCSEL 201使用兩個磊晶成長分佈式布拉格反射鏡底側DBR 230和頂側DBR 280界定出光學腔298,並穿越基板220之抗反射塗佈底面205發射其輸出雷射束299。 The second figure is a cross-sectional side view of the VCSEL 201. The VCSEL 201 uses two epitaxially grown distributed Bragg mirrors, the bottom side DBR 230 and the top side DBR 280, to define the optical cavity 298 and pass through the anti-reflective coating bottom surface 205 of the substrate 220 Launch its output laser beam 299.

第三圖係VCSEL 301之剖面側視圖,VCSEL 301使用單一磊晶成長頂側DBR 380和平坦底側二向分色多層介電反射體306界定出光學腔398,並穿越該基板之底面發射其輸出雷射束399。 The third figure is a cross-sectional side view of the VCSEL 301. The VCSEL 301 uses a single epitaxial growth top side DBR 380 and a flat bottom side dichroic multilayer dielectric reflector 306 to define an optical cavity 398, and emits it through the bottom surface of the substrate Output laser beam 399.

第四圖係依據本發明之一些具體實施例之VCSEL 401之剖面側視圖,VCSEL 401使用單一磊晶成長頂側DBR 480和彎曲底側二向分色多層介電反射體407界定出光學腔498,並穿越該基板之底面上的發射面發射其輸出雷射束499。 The fourth figure is a cross-sectional side view of a VCSEL 401 according to some embodiments of the present invention. The VCSEL 401 uses a single epitaxial growth top side DBR 480 and a curved bottom side dichroic multilayer dielectric reflector 407 to define an optical cavity 498 , And transmit its output laser beam 499 through the emitting surface on the bottom surface of the substrate.

第五A圖係依據本發明之一些具體實施例之VCSEL結構501之剖面側視圖,VCSEL結構501使用頂側二向分色多層介電反射體580及沉積在聚焦表面542(如藉由蝕刻製程或其類似物形成到基板540之該底部中的彎曲表面或繞射元件542)上的彎曲底側二向分色多層介電反射體507界定出光學腔598、其使用離子轟擊形成電流限制區域571,並穿越該基板之底面上的發射面發射其輸出雷射束599。 Figure 5A is a cross-sectional side view of a VCSEL structure 501 according to some specific embodiments of the present invention. The VCSEL structure 501 uses a top-side dichroic multilayer dielectric reflector 580 and is deposited on the focusing surface 542 (such as by an etching process). The curved bottom side dichroic multilayer dielectric reflector 507 formed on the curved surface or the diffractive element 542) in the bottom of the substrate 540 or the like defines an optical cavity 598, which uses ion bombardment to form a current confined area 571, and transmit its output laser beam 599 through the emitting surface on the bottom surface of the substrate.

第五B圖係依據本發明之一些具體實施例之VCSEL結構502之剖面側視圖,VCSEL結構502使用頂側二向分色多層介電反射體580和彎曲底側二向分色多層介電反射體507界定出光學腔598、其使用氧化物電流限制區域562,並穿越該基板之底面上的發射面發射其輸出雷射束599。 Figure 5B is a cross-sectional side view of a VCSEL structure 502 according to some embodiments of the present invention. The VCSEL structure 502 uses a top side dichroic multilayer dielectric reflector 580 and a curved bottom side dichroic multilayer dielectric reflector. The body 507 defines an optical cavity 598, which uses an oxide current confinement area 562, and emits its output laser beam 599 through the emitting surface on the bottom surface of the substrate.

第五C圖係依據本發明之一些具體實施例之VCSEL結構503之剖面側視圖,VCSEL結構503使用頂側聚焦二向分色多層介電反射體581和平坦底側二向分色多層介電反射體582界定出光學腔598、其使用氧化物電流限制區域562及視需要第二氧化物電流限制區域563,並穿越該VCSEL結構之頂面上的發射面發射其輸出雷射束599。 Figure 5C is a cross-sectional side view of a VCSEL structure 503 according to some specific embodiments of the present invention. The VCSEL structure 503 uses a top-side focusing dichroic multilayer dielectric reflector 581 and a flat bottom side dichroic multilayer dielectric The reflector 582 defines an optical cavity 598, an oxide current confinement area 562, and a second oxide current confinement area 563 as needed, and emits its output laser beam 599 through the emitting surface on the top surface of the VCSEL structure.

第五D圖係依據本發明之一些具體實施例之VCSEL結構504之剖面側視圖,VCSEL結構504使用頂側平坦二向分色多層介電反射體583和彎曲聚焦底側二向分色多層介電反射體584界定出光學腔598、其使用氧化物電流限制區域562及視需要第二氧化物電流限制區域563,並穿越該VCSEL結構之頂面上的發射面發射其輸出雷射束599。 Fig. 5D is a cross-sectional side view of a VCSEL structure 504 according to some embodiments of the present invention. The VCSEL structure 504 uses a flat dichroic multilayer dielectric reflector 583 on the top side and a dichroic dichroic multilayer dielectric on the bottom side with a curved focus. The electrical reflector 584 defines an optical cavity 598, an oxide current confinement area 562 and a second oxide current confinement area 563 as needed, and emits its output laser beam 599 through the emitting surface on the top surface of the VCSEL structure.

第五E圖係依據本發明之一些具體實施例之VCSEL結構505之剖面側視圖,VCSEL結構505使用頂側二向分色多層介電反射體580及沉積在聚焦元件544(如形成在基板540之該底部上的透鏡或繞射元件544)上的彎曲底側二向分色多層介電反射體507界定出光學腔598、其使用離子轟擊形成電流限制區域571,並穿越該基板之底面上的發射面發射其輸出雷射束599。 Figure E is a cross-sectional side view of a VCSEL structure 505 according to some embodiments of the present invention. The VCSEL structure 505 uses a top-side dichroic multilayer dielectric reflector 580 and is deposited on a focusing element 544 (such as formed on a substrate 540). The curved bottom dichroic multilayer dielectric reflector 507 on the bottom side of the lens or diffractive element 544) on the bottom defines an optical cavity 598, which uses ion bombardment to form a current confinement area 571, and passes through the bottom surface of the substrate The emitting surface emits its output laser beam 599.

第五F圖係依據本發明之一些具體實施例之具有複數VCSEL 501的多VCSEL陣列506之剖面側視圖,並穿越該基板之底面上的發射面發射複數597輸出雷射束599。 Figure F is a cross-sectional side view of a multi-VCSEL array 506 with a plurality of VCSELs 501 according to some embodiments of the present invention, and a complex 597 output laser beam 599 is emitted through the emitting surface of the bottom surface of the substrate.

第六A圖係依據本發明之一些具體實施例之具有複數VCSEL 501的十六VCSEL矩形陣列601之該雷射束發射面之平面圖,並穿越該基板之底面發射複數597輸出雷射束599。 Fig. 6A is a plan view of the laser beam emitting surface of a sixteen VCSEL rectangular array 601 with plural VCSELs 501 according to some specific embodiments of the present invention, and a plural 597 output laser beam 599 is emitted through the bottom surface of the substrate.

第六B圖係依據本發明之一些具體實施例之具有複數VCSEL 501的十九VCSEL六邊形陣列602之該雷射束發射面之平面圖,並 穿越該基板之底面發射複數597輸出雷射束599。 Figure 6B is a plan view of the laser beam emitting surface of a nineteen VCSEL hexagonal array 602 with plural VCSELs 501 according to some specific embodiments of the present invention, and A complex number 597 output laser beam 599 is emitted through the bottom surface of the substrate.

第六C圖係依據本發明之一些具體實施例之具有複數VCSEL 501的四百VCSEL矩形陣列603之該雷射束發射面之平面圖,並穿越該基板之底面發射複數597輸出雷射束599。 Fig. 6C is a plan view of the laser beam emitting surface of the four-hundred VCSEL rectangular array 603 with plural VCSELs 501 according to some specific embodiments of the present invention, and the plural 597 output laser beams 599 are emitted through the bottom surface of the substrate.

儘管下列實施方式內含為了例示目的之許多具體情況,但此領域一般技術者將可瞭解,對下列詳細資訊的許多變化例和變更例皆在本發明之範疇內。使用具體範例例示特定具體實施例;然而,諸申請專利範圍中所說明的本發明不欲僅限於這些範例,而是包括所附諸申請專利範圍之全部範疇。據此,在對所主張本發明不失任何一般性且對其未加諸限制的情況下,闡述下列本發明之較佳具體實施例。又,在下列該等較佳具體實施例之實施方式中,參照形成其一部分的所附圖式,且其中藉由例示顯示其中可能實作本發明的具體實施例。應可理解,可能利用其他具體實施例並可能進行結構性變更,而不悖離本發明之範疇。該等圖示中所示且在此所說明的該等具體實施例,可能包括未包括在所有具體實施例中的特徵。特定具體實施例可能僅包括所說明的所有該等特徵之一子集,或特定具體實施例可能包括所說明的所有該等特徵。 Although the following embodiments contain many specific situations for illustrative purposes, those skilled in the art will understand that many variations and modifications to the following detailed information are within the scope of the present invention. Specific examples are used to illustrate specific specific embodiments; however, the invention described in the scope of the patent applications is not intended to be limited to these examples, but includes the entire scope of the scope of the appended patent applications. Accordingly, without losing any generality and imposing no limitation on the claimed invention, the following preferred specific embodiments of the invention are described. In addition, in the following implementations of the preferred specific embodiments, reference is made to the accompanying drawings forming a part thereof, and specific embodiments in which the present invention may be implemented are shown by exemplification. It should be understood that other specific embodiments may be used and structural changes may be made without departing from the scope of the present invention. The specific embodiments shown in the drawings and described herein may include features that are not included in all specific embodiments. A specific embodiment may only include a subset of all the features described, or a specific embodiment may include all the features described.

呈現在該等圖示中的參考號碼之該(等)前導數字一般來說對應於其中該部件為首次引入的圖號,使得相同參考號碼貫穿全文用於指稱呈現在多張圖示中的等同部件。信號和連接可能藉由相同參考號碼或標籤指稱,且該實際意義將從其在該說明之上下文中的使用顯而易見。 The leading digit(s) of the reference number presented in the drawings generally corresponds to the drawing number in which the part was first introduced, so that the same reference number is used throughout the text to refer to the equivalents presented in multiple drawings part. Signals and connections may be referred to by the same reference number or label, and the actual meaning will be apparent from their use in the context of this description.

文中所引用的某些標記可能係與申請人或受讓人有關係或無關係的第三方之普通法或註冊商標。使用這些標記係為了藉由範例提供賦能(enabling)揭示內容,不應理解成將所主張標的之範疇限制成與這樣的標記相關聯的素材。 Certain marks quoted in the text may be common law or registered trademarks of third parties that are related or not related to the applicant or assignee. The use of these marks is to provide enabling disclosure through examples, and should not be understood as limiting the scope of the claimed subject matter to materials associated with such marks.

半導體雷射二極體一般來說分成兩大類:線性腔雷射和垂直腔表面發射雷射(VCSEL)。線性腔雷射最常見,因為其與傳統塊材型雷射非常相似,其中有長度相對較長之增益區域,兩個外部反射體在該增益區域之該等兩端處以形成共振光學腔。該塊材型雷射增益區域提供該光之放大, 且最後當該增益大於該損耗時,雷射作用動作開始生成雷射束。該線性腔雷射二極體在增益區域之長度方面以類似方式作用,但該等兩端處的該等兩個反射體通常並非外部反射體;而是,其由該半導體晶體基板之該等劈開刻面(cleaved facets)形成,其中該等反射體之光學品質取決於該等劈開刻面之晶體平面。該增益區域由p-n接面形成,其中電流注入生成用於光之放大的增益。在一定電流下(稱為該閾值電流),該腔室中的該增益克服該損耗,且雷射作用動作開始,從而生成雷射束。儘管該線性腔雷射二極體易於製作,但該組裝更加困難,因為該雷射束之輸出方向垂直於該雷射二極體之安裝平面。此外,當使用陣列結構要求高功率時,通常只能製造一維陣列,這會限制該輸出功率和該波束品質。 Semiconductor laser diodes are generally divided into two categories: linear cavity lasers and vertical cavity surface emitting lasers (VCSEL). Linear cavity lasers are the most common because they are very similar to traditional bulk lasers. They have a relatively long gain region, and two external reflectors are placed at the two ends of the gain region to form a resonant optical cavity. The bulk laser gain area provides amplification of the light, And finally when the gain is greater than the loss, the laser action starts to generate a laser beam. The linear cavity laser diode acts in a similar manner in terms of the length of the gain region, but the two reflectors at the two ends are usually not external reflectors; instead, they are formed by the semiconductor crystal substrates. Cleaved facets are formed, wherein the optical quality of the reflectors depends on the crystal plane of the cleaved facets. The gain region is formed by a p-n junction, where current injection generates gain for light amplification. At a certain current (called the threshold current), the gain in the chamber overcomes the loss, and the laser action starts, thereby generating a laser beam. Although the linear cavity laser diode is easy to manufacture, the assembly is more difficult because the output direction of the laser beam is perpendicular to the installation plane of the laser diode. In addition, when using an array structure that requires high power, usually only a one-dimensional array can be manufactured, which limits the output power and the beam quality.

開發出克服該線性腔雷射之一些缺點的垂直腔表面發射雷射(VCSEL)。針對一般慣用VSCEL的一項要求係使用多個磊晶成長半導體晶體層製造反射體,使得這些層作用有如多層反射體。對大多數雷射波長而言,這樣的層數很少並可以低成本製作。對某些波長(如約1.55μm(1.55微米)的紅外線波長區域)而言,所要求的層數更多許多,從而使得該結構更加難以製造並提高系統成本。 Developed a vertical cavity surface emitting laser (VCSEL) that overcomes some of the shortcomings of the linear cavity laser. A requirement for the commonly used VSCEL is to use multiple epitaxial growth semiconductor crystal layers to manufacture reflectors, so that these layers function as multilayer reflectors. For most laser wavelengths, such layers are small and can be manufactured at low cost. For certain wavelengths (such as the infrared wavelength region of about 1.55 μm (1.55 μm)), the number of layers required is much greater, making the structure more difficult to manufacture and increasing the system cost.

在一些具體實施例中,本發明提供一種以使用標準介電反射體(有時文中指稱為二向分色介電反射體;在一些這樣的具體實施例中,具有其各自厚度選擇(「調諧」(tuned))成優先反射所選擇波長或顏色而非其他波長或顏色之光的複數對介電層(具有不同折射率))而非該等磊晶成長半導體DBR反射體的方式設計的VCSEL結構。使用二向分色介電反射體減少所要求的磊晶成長量、減少系統成本,並提供經改良的性能。在一些具體實施例中,該等二向分色介電反射體中至少一者塑形亦或配置(如形成彎曲表面(如拋物面反射性表面)或繞射或全像結構或其類似物),使得該雷射作用腔內的雷射作用束朝向該雷射作用腔之中心部位聚焦。在一些具體實施例中,本發明之VCSEL之特性波長約為1.55μm,以便具有「對眼睛安全」的雷射束。發射波長大於約1.4μm的雷射通常稱為「對眼睛安全」,因為該波長範圍內的光會被眼角膜和水晶體強效吸收,因此無法到達明顯更加敏感的視網膜(來源:www.rp-photonics.com/eye_safe_lasers.html)。 In some specific embodiments, the present invention provides a way to use standard dielectric reflectors (sometimes referred to as dichroic dielectric reflectors in the text; in some such specific embodiments, they have their respective thickness options ("tuning"). ``(tuned)) is a VCSEL designed in a way that preferentially reflects the selected wavelength or color instead of light of other wavelengths or colors (with different refractive index) instead of the epitaxial growth semiconductor DBR reflector. structure. The use of dichroic dielectric reflectors reduces the amount of epitaxial growth required, reduces system costs, and provides improved performance. In some embodiments, at least one of the dichroic dielectric reflectors is shaped or configured (such as forming a curved surface (such as a parabolic reflective surface) or a diffractive or holographic structure or the like) , So that the laser action beam in the laser action cavity is focused toward the center of the laser action cavity. In some embodiments, the characteristic wavelength of the VCSEL of the present invention is about 1.55 μm, so as to have an "eye-safe" laser beam. Lasers that emit wavelengths greater than about 1.4μm are often called "eye-safe" because light in this wavelength range is strongly absorbed by the cornea and lens, and therefore cannot reach the significantly more sensitive retina (source: www.rp- photonics.com/eye_safe_lasers.html).

第一A圖、第一B圖、及第一C圖顯示市場上VCSEL之幾種慣用結構。在以下所有該等說明中,該等方向性參考(如頂側和底側)一般來說皆參照所附圖式,未必參照製造或使用期間的定向。 The first A diagram, the first B diagram, and the first C diagram show several conventional structures of VCSELs on the market. In all the descriptions below, the directional references (such as the top side and the bottom side) generally refer to the accompanying drawings, and not necessarily refer to the orientation during manufacture or use.

第一A圖係慣用VCSEL結構101之剖面側視圖。在一些具體實施例中,VCSEL結構101包括一底側金屬層110、一半導體基板120、一底側DBR 130、一n型半導體層140、及一p型半導體層160,其中一pn接面(或「活性」(active)層或「光學增益」(optical gain)層)150形成在n型層140與p型層160之間;一電流限制結構170,其圍繞頂側DBR 180之一中心區域172;一頂側金屬層190,其具有穿越其間的一出口開口195,使得當形成在底側DBR 130與頂側DBR 180之間的該雷射作用腔中發生雷射作用時,雷射束199穿越開口195發射。到光學增益或活性層150的電流經由所製作到頂側金屬層190和底側金屬層110的電接點供給。在一些具體實施例中,電流限制結構170藉由對圍繞頂側DBR 180之中心區域172的各區(以及有時層160之一部位)的質子轟擊形成,這會提高電流限制結構170相對於頂側DBR 180之中心區域172之電阻率,因此將該電流集中到鄰近活性層150之中心區域,這會減少VCSEL 101之雷射作用閾值。因此,VCSEL結構101使用質子所轟擊區域170進行用於將該電流集中在活性層150之中心區域156中的電流限制。該等質子所轟擊區域170變得更具電阻性(絕緣),且只有接近活性層150之中心區域156的頂側DBR 180之剩餘中心部位172傳導電流。活性層150之區域156中的這樣的電流限制提高中心活性區域156處的電流密度,這進而會提高此區域處的增益,從而降低該雷射作用閾值並因此允許該雷射作用動作發生。 The first A is a cross-sectional side view of the conventional VCSEL structure 101. In some embodiments, the VCSEL structure 101 includes a bottom metal layer 110, a semiconductor substrate 120, a bottom DBR 130, an n-type semiconductor layer 140, and a p-type semiconductor layer 160, wherein a pn junction ( Or an "active" layer or an "optical gain" layer 150 is formed between the n-type layer 140 and the p-type layer 160; a current confinement structure 170, which surrounds a central area of the top side DBR 180 172; a top side metal layer 190, which has an exit opening 195 passing therethrough, so that when a laser action occurs in the laser action cavity formed between the bottom side DBR 130 and the top side DBR 180, the laser beam 199 fired through opening 195. The current to the optical gain or active layer 150 is supplied via the electrical contacts made to the top side metal layer 190 and the bottom side metal layer 110. In some embodiments, the current confinement structure 170 is formed by proton bombardment of the regions surrounding the central region 172 of the top side DBR 180 (and sometimes a part of the layer 160), which improves the current confinement structure 170 relative to the top The resistivity of the central area 172 of the side DBR 180, therefore, concentrates the current to the central area adjacent to the active layer 150, which reduces the laser action threshold of the VCSEL 101. Therefore, the VCSEL structure 101 uses the area 170 bombarded by protons to perform current limiting for concentrating the current in the central area 156 of the active layer 150. The area 170 bombarded by the protons becomes more resistive (insulating), and only the remaining central portion 172 of the top side DBR 180 close to the central area 156 of the active layer 150 conducts current. Such current limitation in the area 156 of the active layer 150 increases the current density at the central active area 156, which in turn increases the gain at this area, thereby lowering the laser action threshold and thus allowing the laser action action to occur.

第一B圖係慣用VCSEL結構102之剖面側視圖。在一些具體實施例中,VCSEL結構102包括一底側金屬層110、一半導體基板120、一底側DBR 130、一n型半導體層140、及一p型半導體層160,其中一pn接面150形成在n型層140與p型層160之間;一電流限制氧化物結構171,其圍繞p型層160和/或頂側DBR 180之一中心區域175;一頂側金屬層190,其具有穿越其間的出口開口195,使得當形成在底側DBR 130與頂側DBR 180之間的該雷射作用腔中發生雷射作用時,雷射束199穿越開口195發射。 在一些具體實施例中,頂側DBR 180在形成氧化物結構171之後磊晶成長。到活性層150的電流經由所製作到頂側金屬層190和底側金屬層110的電接點供給。VCSEL結構102使用具有孔徑175的氧化物層171進行電流限制。氧化物層171絕緣且該電流流過氧化物層171之孔徑175,從而提高活性層150接近此孔徑175之中心部位156處的電流密度,這進而會再次提高此區域處的增益,從而降低該雷射作用閾值並因此允許該雷射作用動作發生。 The first Figure B is a cross-sectional side view of the conventional VCSEL structure 102. In some embodiments, the VCSEL structure 102 includes a bottom metal layer 110, a semiconductor substrate 120, a bottom DBR 130, an n-type semiconductor layer 140, and a p-type semiconductor layer 160, wherein a pn junction 150 Formed between the n-type layer 140 and the p-type layer 160; a current confinement oxide structure 171, which surrounds the p-type layer 160 and/or a central region 175 of the top-side DBR 180; a top-side metal layer 190, which has Passing through the exit opening 195 therebetween, when laser action occurs in the laser action cavity formed between the bottom side DBR 130 and the top side DBR 180, the laser beam 199 is emitted through the opening 195. In some embodiments, the top-side DBR 180 is epitaxially grown after the oxide structure 171 is formed. The current to the active layer 150 is supplied via the electrical contacts made to the top side metal layer 190 and the bottom side metal layer 110. The VCSEL structure 102 uses an oxide layer 171 with an aperture 175 for current confinement. The oxide layer 171 is insulated and the current flows through the aperture 175 of the oxide layer 171, thereby increasing the current density at the center 156 of the active layer 150 close to the aperture 175, which in turn increases the gain in this region again, thereby reducing the The laser action threshold and therefore allow the laser action action to take place.

第一C圖係慣用VCSEL結構103之剖面側視圖。在VCSEL結構103之情況下,輸出雷射束199從活性層150之該雷射二極體之該基板側發射,從而由於活性區域150更靠近散熱器192所附接到頂側金屬層190之頂面,因此改良該系統之散熱能力。在一些具體實施例中,VCSEL結構103包括一底側金屬層111,其具有輸出雷射束199出射所穿越的一開口195;一半導體基板120、一底側DBR 130、一n型半導體層140、及一p型半導體層160,其中一pn接面(或「活性層」)150形成在n型層140與p型層160之間;一電流限制氧化物結構162,其圍繞頂側DBR 180和/或p型層160之中心區域176;一散熱件或散熱器192,其連接到具有穿越頂部電流限制結構189中的一開口到頂側DBR 180的一電接點的一頂側金屬層190之該頂部,使得當形成在底側DBR 130與頂側DBR 180之間的該雷射作用腔中發生雷射作用時,雷射束199穿越開口195發射。在一些具體實施例中,頂側DBR 180在形成氧化物結構162之後磊晶成長。到活性層150的電流分別經由所製作到頂側金屬層190和底側金屬層111的電接點194和112供給。VCSEL結構103使用具有孔徑176的氧化物層162進行電流限制。氧化物層162電絕緣且該電流流過氧化物層162之孔徑176,從而提高活性層150接近此孔徑176之中心部位156處的電流密度,這進而會再次提高此區域處的增益,從而降低該雷射作用閾值並因此允許該雷射作用動作發生。 The first Fig. C is a cross-sectional side view of the conventional VCSEL structure 103. In the case of the VCSEL structure 103, the output laser beam 199 is emitted from the substrate side of the laser diode of the active layer 150, so that the active area 150 is attached to the top of the top side metal layer 190 because the active area 150 is closer to the heat sink 192 Therefore, the heat dissipation capacity of the system is improved. In some embodiments, the VCSEL structure 103 includes a bottom metal layer 111, which has an opening 195 through which the output laser beam 199 exits; a semiconductor substrate 120, a bottom DBR 130, and an n-type semiconductor layer 140 , And a p-type semiconductor layer 160, in which a pn junction (or "active layer") 150 is formed between the n-type layer 140 and the p-type layer 160; a current confinement oxide structure 162, which surrounds the top side DBR 180 And/or the central area 176 of the p-type layer 160; a heat sink or heat sink 192 connected to a top-side metal layer 190 having an electrical contact passing through an opening in the top current limiting structure 189 to the top-side DBR 180 The top part enables the laser beam 199 to be emitted through the opening 195 when laser action occurs in the laser action cavity formed between the bottom side DBR 130 and the top side DBR 180. In some embodiments, the top-side DBR 180 is epitaxially grown after the oxide structure 162 is formed. The current to the active layer 150 is supplied via electrical contacts 194 and 112 made to the top side metal layer 190 and the bottom side metal layer 111, respectively. The VCSEL structure 103 uses an oxide layer 162 with an aperture 176 for current confinement. The oxide layer 162 is electrically insulated and the current flows through the aperture 176 of the oxide layer 162, thereby increasing the current density of the active layer 150 near the center 156 of the aperture 176, which in turn increases the gain in this region again, thereby reducing The laser action threshold and therefore allow the laser action action to occur.

第二圖係使用兩個磊晶成長分佈式布拉格反射鏡DBR 230和DBR 280的VCSEL結構201之剖面側視圖。每個DBR皆以多層設計,每層皆具有適當厚度和折射率,使得該反射透過該等各種層之透射光與反 射光之間的干涉發生。每個DBR之反射率皆可藉由該等層之層數、厚度、及反射率調整。DBR 230和DBR 280界定出光學(雷射作用)腔298(一般來說以點劃線顯示,但其特性長度依DBR 230和DBR 280之該等層之特性而定,而非該等內表面處的反射,如在此示意性所示),其穿越該基板之底面發射其輸出雷射束299。在一些具體實施例中,VCSEL結構201包括一底側金屬層210,其具有穿越其間的一出口開口208;一半導體基板220、一底側DBR 230、一n型半導體層240、及一p型半導體層260,其中一pn接面(或其他「活性層」,如一多重量子井(MQW)結構或其類似物)250形成在n型層240與p型層260之間;一電流限制結構270,其圍繞頂側DBR 280之一中心區域282(用於該所限制電流,一般來說以一點線指示);一頂側金屬層290,使得當形成在底側DBR 230與頂側DBR 280之間的雷射作用腔298中發生雷射作用時,雷射束299穿越開口208發射。在一些具體實施例中,圍繞該甜甜圈狀區域(圍繞頂側DBR 280、n型層271、穿隧層261之該等中心部位)並/或部分進入p型層260以虛線指示的電流限制結構270藉由離子轟擊(如一些具體實施例中的質子轟擊)形成到頂側DBR 280、n型層271、穿隧層261中並/或穿越、且/或部分進入p型層260,其具有較高電阻率且其因此促使電流主要穿越這些層之該等中心部位,然後穿越活性層250之中心部位。到活性層250的電流經由所製作到頂側金屬層290和底側金屬層210的電接點供給。在一些具體實施例中,電流限制結構270藉由對圍繞頂側DBR 280之中心區域282的各區(以及有時層260之一部位)的質子轟擊形成,這會破壞那些區之磊晶晶體結構,從而提高電流限制結構270相對於頂側DBR 280之中心區域282之電阻率,因此將該電流集中到活性層250之中心區域,這會減少VCSEL 201之雷射作用閾值。(附註:在第二圖中位於頂側DBR 280之中心部位左側和右側(及其他圖示之類似各區)的電流限制結構270之該等不同紋理區係已受到穿越該頂面的質子轟擊的那些區,從而導致導電性降低。)因此,一些具體實施例(如VCSEL結構201)使用質子所轟擊區域270提高圍繞進行電流限制的該中心區域的各區中的電阻率,以便將該電流集中在活性層250之中心區域中。 The second figure is a cross-sectional side view of the VCSEL structure 201 using two epitaxial growth distributed Bragg mirrors DBR 230 and DBR 280. Each DBR has a multi-layer design, and each layer has an appropriate thickness and refractive index, so that the reflection of the transmitted light through the various layers and the reflection Interference between the incident light occurs. The reflectivity of each DBR can be adjusted by the number, thickness, and reflectivity of the layers. DBR 230 and DBR 280 define an optical (laser action) cavity 298 (generally shown by a dashed line, but its characteristic length depends on the characteristics of the layers of DBR 230 and DBR 280, not the inner surfaces The reflection at, as shown schematically here), which transmits its output laser beam 299 through the bottom surface of the substrate. In some embodiments, the VCSEL structure 201 includes a bottom metal layer 210 with an exit opening 208 passing therethrough; a semiconductor substrate 220, a bottom DBR 230, an n-type semiconductor layer 240, and a p-type The semiconductor layer 260, in which a pn junction (or other "active layer", such as a multiple quantum well (MQW) structure or the like) 250 is formed between the n-type layer 240 and the p-type layer 260; a current confinement structure 270 , Which surrounds a central area 282 of the top side DBR 280 (used for the limited current, generally indicated by a dotted line); a top side metal layer 290, so that when formed between the bottom side DBR 230 and the top side DBR 280 When laser action occurs in the intermediate laser action cavity 298, the laser beam 299 is emitted through the opening 208. In some embodiments, the current that surrounds the donut-shaped region (around the central parts of the top-side DBR 280, the n-type layer 271, and the tunnel layer 261) and/or partially enters the p-type layer 260 as indicated by the dotted line The confinement structure 270 is formed into the top DBR 280, the n-type layer 271, and the tunnel layer 261 by ion bombardment (such as proton bombardment in some embodiments) and/or penetrates through, and/or partially enters the p-type layer 260, which It has a higher resistivity and it therefore causes the current to pass mainly through the central parts of these layers and then through the central part of the active layer 250. The current to the active layer 250 is supplied via the electrical contacts made to the top side metal layer 290 and the bottom side metal layer 210. In some embodiments, the current confinement structure 270 is formed by proton bombardment of the regions surrounding the central region 282 of the top side DBR 280 (and sometimes a part of the layer 260), which will destroy the epitaxial crystal structure in those regions. Therefore, the resistivity of the current confinement structure 270 relative to the central area 282 of the top side DBR 280 is increased, so that the current is concentrated to the central area of the active layer 250, which reduces the laser action threshold of the VCSEL 201. (Note: In the second figure, the different texture regions of the current confinement structure 270 located on the left and right sides of the center of the top DBR 280 (and similar regions in other figures) have been bombarded by protons passing through the top surface Therefore, some specific embodiments (such as the VCSEL structure 201) use the proton bombarded region 270 to increase the resistivity in the regions surrounding the central region for current confinement in order to reduce the current Concentrated in the central area of the active layer 250.

承上,第二圖係基板側輸出VCSEL結構201(穿越該基板發 射該輸出雷射束的結構)之詳細圖。在一些具體實施例中,基板側輸出VCSEL結構201使用質子所轟擊/所植入區域270進行電流限制。在這種情況下,反射體使用一般來說稱為分佈式布拉格反射鏡(DBR)的多個磊晶成長層製造。 Continuing, the second figure is the output VCSEL structure 201 on the substrate side (transmitting through the substrate A detailed diagram of the structure of the output laser beam. In some embodiments, the substrate-side output VCSEL structure 201 uses the area 270 bombarded/implanted by protons for current limiting. In this case, the reflector is manufactured using multiple epitaxial growth layers generally called distributed Bragg reflectors (DBR).

在一些具體實施例中,在文中所說明該等具體實施例之每個中所使用的該半導體係(或包括)摻雜為n型(n-InP)或p型(p-InP)的磷化銦,且在一些這樣的具體實施例中,該雷射束之特性雷射作用波長大致為1550nm(=1.55μm,或其他合適紅外線波長,如在約1300nm至約2000nm之範圍內(含端值))。在一些具體實施例中,在約1400nm至約2000nm之範圍內(含端值)的紅外光視為「對眼睛安全」的波長。在一些具體實施例中,使用包括AlGaInAs/InP的半導體組合。在其他具體實施例中,該半導體係摻雜為n型(如n-GaN)或p型(如p-GaN)的III-V族氮化合物,例如氮化鎵(Gallium nitride,GaN)、氮化銦(Indium nitride,InN)、氮化鋁(Aluminum nitride,AlN)、或其混合物(文中指稱為(Ga,In,Al)N),且在一些這樣的具體實施例中,該雷射束之特性波長大致為440至480nm(藍色雷射束)或其他合適泵浦(如紫外線、藍、青、或綠)或可見波長,其例如作為用於激發一般來說發黃光磷光體以便產生用於車輛車燈、彩色投影機波束、視訊投影機照明或其類似物的白光的泵浦雷射束有用。在一些具體實施例中,該等所得到的VCSEL或VCSEL陣列在本說明書中以上所說明該等專利和專利申請案中所說明的具體實施例中用作泵浦雷射並與其組合。在又其他具體實施例中,該半導體係或包括可用於產生具有大致922nm之一特性波長或用於距離測量目的之其他合適波長的一紅外線LiDAR雷射束的任何合適半導體(如砷化鎵(GaAs)、砷化鋁(AlAs)、及/或其類似物),其中該所得到的VCSEL或VCSEL陣列在為了LiDAR目的之本說明書中以上所說明該等專利和專利申請案中所說明的具體實施例中使用並與其組合。在一些具體實施例中,以下該等說明之該VCSEL或VCSEL陣列在本說明書中以上所說明該等專利和專利申請案中所說明的具體實施例中使用並與其組合。 In some specific embodiments, the semiconductor system (or including) used in each of the specific embodiments described in the text is doped with n-type (n-InP) or p-type (p-InP) phosphorus Indium, and in some such specific embodiments, the characteristic laser action wavelength of the laser beam is approximately 1550nm (=1.55μm, or other suitable infrared wavelengths, such as in the range of about 1300nm to about 2000nm (including end value)). In some specific embodiments, infrared light in the range of about 1400 nm to about 2000 nm (inclusive) is regarded as a wavelength "safe for the eyes". In some specific embodiments, a semiconductor combination including AlGaInAs/InP is used. In other specific embodiments, the semiconductor system is doped with n-type (such as n-GaN) or p-type (such as p-GaN) III-V nitrogen compounds, such as gallium nitride (GaN), nitrogen Indium nitride (InN), aluminum nitride (AlN), or a mixture thereof (referred to as (Ga,In,Al)N in the text), and in some such specific embodiments, the laser beam The characteristic wavelength is approximately 440 to 480nm (blue laser beam) or other suitable pumps (such as ultraviolet, blue, cyan, or green) or visible wavelengths, which, for example, are used to excite generally yellow-emitting phosphors in order to A pump laser beam that generates white light for vehicle lights, color projector beams, video projector lighting, or the like is useful. In some specific embodiments, the obtained VCSEL or VCSEL array is used as a pump laser and combined with the specific embodiments described in the patents and patent applications described above in this specification. In still other specific embodiments, the semiconductor system may include any suitable semiconductor (such as gallium arsenide ( GaAs), aluminum arsenide (AlAs), and/or the like), wherein the obtained VCSEL or VCSEL array is specified in the patents and patent applications described above in this specification for LiDAR purposes. Used in the embodiment and combined with it. In some specific embodiments, the VCSEL or VCSEL array described below is used and combined with the specific embodiments described in the patents and patent applications described above in this specification.

在一些具體實施例中,基板220係n-InP,多層磊晶DBR 230在基板220上成長,n-InP層240和p-InP層260在DBR 230上成長,使得 pn接面活性層250形成在n型InP層240與p-InP層260之間。在一些具體實施例中,穿隧層261形成在p-InP層260上且n-InP層271形成在穿隧層261上,頂側DBR 280磊晶成長在n-InP層271上,且遮罩質子轟擊製程進行(以使用遮罩形成電流限制結構270)到頂側DBR 280、n-InP層271、及穿隧層261中並穿越,且部分進入p-InP層260,其中該遮罩保護限制該電流所透過的中心區域282。然後,頂側多層DBR 280沉積(如在一些具體實施例中磊晶成長)在n-InP層271上,且頂側金屬接觸層290沉積在頂側多層DBR 280上,且底側金屬接點210沉積在基板220之該所暴露出底部上。在一些具體實施例中,抗反射(Anti-reflection,AR)塗佈205穿越底側金屬接點210中的光輸出開口208跨越基板220之該底部施加。 In some embodiments, the substrate 220 is n-InP, the multilayer epitaxial DBR 230 is grown on the substrate 220, and the n-InP layer 240 and the p-InP layer 260 are grown on the DBR 230, so that The pn junction active layer 250 is formed between the n-type InP layer 240 and the p-InP layer 260. In some embodiments, the tunneling layer 261 is formed on the p-InP layer 260 and the n-InP layer 271 is formed on the tunneling layer 261, and the top-side DBR 280 is epitaxially grown on the n-InP layer 271 and shielding The mask proton bombardment process is performed (to form the current confinement structure 270 using a mask) into the top side DBR 280, the n-InP layer 271, and the tunneling layer 261 and pass through, and partially enter the p-InP layer 260, where the mask protects The central area 282 through which the current passes is limited. Then, the top-side multilayer DBR 280 is deposited (e.g., epitaxially grown in some embodiments) on the n-InP layer 271, and the top-side metal contact layer 290 is deposited on the top-side multilayer DBR 280, and the bottom-side metal contact 210 is deposited on the exposed bottom of the substrate 220. In some embodiments, the anti-reflection (AR) coating 205 is applied across the bottom of the substrate 220 through the light output opening 208 in the bottom metal contact 210.

第三圖係VCSEL 301之剖面側視圖,VCSEL 301使用單一磊晶成長DBR 380和平坦底側二向分色多層介電反射體306界定出光學腔398,並穿越該基板之底面發射其輸出雷射束399。如同以上所說明DBR 280的情況,DBR 380以多層設計,每層皆具有適當厚度和折射率,使得該反射透過該等各種層之透射光與反射光之間的干涉發生。DBR 380之反射率可藉由該等層之層數、厚度、及反射率調整。雷射作用腔398(一般來說以點劃線顯示,但其特性長度依DBR 380之該等層之特性而定,而非該等內表面處的反射,如在此示意性所示)。 The third figure is a cross-sectional side view of the VCSEL 301. The VCSEL 301 uses a single epitaxial growth DBR 380 and a flat bottom side dichroic multilayer dielectric reflector 306 to define an optical cavity 398, and emits its output lightning through the bottom surface of the substrate Beam 399. As in the case of the DBR 280 described above, the DBR 380 is designed in multiple layers, and each layer has an appropriate thickness and refractive index, so that the interference between the transmitted light and the reflected light that is reflected through the various layers occurs. The reflectivity of DBR 380 can be adjusted by the number, thickness, and reflectivity of these layers. Laser action cavity 398 (generally shown as a dashed line, but its characteristic length depends on the characteristics of the layers of the DBR 380, not the reflection at the inner surfaces, as shown schematically here).

在一些具體實施例中,VCSEL結構301包括一底側金屬層310,其具有穿越其間的一出口開口308;一半導體基板340(在一些具體實施例中,形成用於pn接面活性層350的該n型半導體的一n型InP基板);以及一p型半導體層360,其中一pn接面(或其他「活性層」,如一量子井或多重量子井(MQW)結構或其類似物)層350形成在n型層/基板340與p型層360之間。在一些具體實施例中,穿隧層361形成在p-InP層360上且n-InP層371形成在穿隧層361上,且頂側DBR 380磊晶成長在n-InP層371上。在一些具體實施例中,遮罩質子轟擊製程(以形成電流限制結構370)進行(使用遮罩)到頂側DBR 380、n-InP層371、及穿隧層361中並穿越,且部分進入p-InP層360,其中該遮罩保護限制該電流所透過的中心區域382(一般來說以點線指示)。在一些具體實施例中,電流限制結構370圍繞頂側 DBR 380之中心電流傳導區域382。在一些具體實施例中,頂側金屬層390形成在頂側DBR 380上。當形成在底側多層介電反射體306與頂側DBR 380之間的雷射作用腔398中發生雷射作用時,雷射束399穿越開口308發射。到活性層350的電流經由所製作到頂側金屬層390和底側金屬層310的電接點供給。在一些具體實施例中,電流限制結構370藉由對圍繞頂側DBR 380之中心區域382的各區(以及有時層360之一部位)的質子轟擊形成,這會提高電流限制結構370相對於頂側DBR 380之中心區域382之電阻率,因此將該電流集中到活性層350之中心區域,這會減少VCSEL 301之雷射作用閾值。因此,VCSEL結構301使用質子所轟擊區域370進行電流限制,以將該電流集中在活性層350之中心區域中。 In some embodiments, the VCSEL structure 301 includes a bottom metal layer 310 with an exit opening 308 passing therethrough; a semiconductor substrate 340 (in some embodiments, the active layer for the pn junction 350 is formed) An n-type InP substrate of the n-type semiconductor); and a p-type semiconductor layer 360, in which a pn junction (or other "active layer", such as a quantum well or multiple quantum well (MQW) structure or the like) layer 350 is formed between the n-type layer/substrate 340 and the p-type layer 360. In some embodiments, the tunneling layer 361 is formed on the p-InP layer 360 and the n-InP layer 371 is formed on the tunneling layer 361, and the top side DBR 380 is epitaxially grown on the n-InP layer 371. In some embodiments, the mask proton bombardment process (to form the current confinement structure 370) is carried out (using the mask) into the top side DBR 380, the n-InP layer 371, and the tunneling layer 361 and passes through, and partially enters the p -InP layer 360, where the mask protects the central area 382 through which the current passes (generally indicated by a dotted line). In some embodiments, the current limiting structure 370 surrounds the top side The central current conducting area 382 of the DBR 380. In some specific embodiments, the top-side metal layer 390 is formed on the top-side DBR 380. When laser action occurs in the laser action cavity 398 formed between the bottom side multilayer dielectric reflector 306 and the top side DBR 380, the laser beam 399 is emitted through the opening 308. The current to the active layer 350 is supplied via the electrical contacts made to the top side metal layer 390 and the bottom side metal layer 310. In some embodiments, the current confinement structure 370 is formed by proton bombardment of the regions around the central region 382 of the top side DBR 380 (and sometimes a part of the layer 360), which will increase the current confinement structure 370 relative to the top The resistivity of the central area 382 of the side DBR 380, therefore, concentrates the current to the central area of the active layer 350, which reduces the laser action threshold of the VCSEL 301. Therefore, the VCSEL structure 301 uses the area 370 bombarded by the protons for current limitation, so as to concentrate the current in the central area of the active layer 350.

在一些具體實施例中,第三圖之VCSEL結構301係第二圖之VCSEL結構201之改良,其中第二圖之底部多層磊晶DBR 230置換為塗佈在基板310之該底部處的平坦多層介電反射體306。在一些具體實施例中,多層介電反射體306使用調諧成在該所需波長下部分反射性而在其他波長下較少反射性的複數介電層形成,因此調諧該雷射作用波長。該部分反射性多層介電反射體306允許雷射束399在雷射作用發生時出射。與頂部磊晶DBR 380一起,多層介電反射體306形成用於雷射作用動作的雷射腔398。此結構之一項缺點在於,在一些具體實施例中,該等兩個反射體306與380之間的距離過大,且該所產生的損耗可能對使用合理電流密度的雷射作用而言過高。此外,這樣的構造通常係不穩定的雷射作用腔,其中雷射作用動作可能無法可靠或穩定發生。 In some embodiments, the VCSEL structure 301 in the third figure is an improvement of the VCSEL structure 201 in the second figure, and the bottom multilayer epitaxial DBR 230 in the second figure is replaced with a flat multilayer coated on the bottom of the substrate 310 Dielectric reflector 306. In some embodiments, the multilayer dielectric reflector 306 is formed using a plurality of dielectric layers that are tuned to be partially reflective at the desired wavelength and less reflective at other wavelengths, thereby tuning the laser wavelength. The partially reflective multilayer dielectric reflector 306 allows the laser beam 399 to exit when the laser action occurs. Together with the top epitaxial DBR 380, the multilayer dielectric reflector 306 forms a laser cavity 398 for laser action. One disadvantage of this structure is that, in some specific embodiments, the distance between the two reflectors 306 and 380 is too large, and the resulting loss may be too high for the effect of a laser with a reasonable current density. . In addition, such a structure is usually an unstable laser action cavity, in which the laser action action may not occur reliably or stably.

第四圖係依據本發明之一些具體實施例之VCSEL結構401之剖面側視圖,VCSEL結構401使用單一磊晶成長頂側DBR 480和彎曲底側二向分色多層介電反射體407界定出光學腔498,並穿越該基板之底面上的發射面發射其輸出雷射束499。如同DBR 280的情況,DBR 480以多層設計,每層皆具有適當厚度和折射率,使得該反射透過該等各種層之透射光與反射光之間的干涉發生。DBR 480之反射率可藉由該等層之層數、厚度、及反射率調整。雷射作用腔498(一般來說以點劃線顯示,但其特性長度依DBR 480之該等層之特性而定,而非該等內表面處的反射,如在此示 意性所示)。在一些具體實施例中,VCSEL結構401包括一底側金屬層410,其具有穿越其間的一出口開口408;一半導體基板440(在一些具體實施例中,形成用於pn接面活性層450的該n型半導體的一n型InP基板);以及一p型半導體層460,其中一pn接面(或其他「活性層」,如一多重量子井(MQW)結構或其類似物)450形成在n型層/基板440與p型層460之間。在一些具體實施例中,穿隧層461形成在p-InP層460上且n-InP層471形成在穿隧層461上,且頂側DBR 480磊晶成長在n-InP層471上,且遮罩質子轟擊製程(以形成電流限制結構470)進行(使用遮罩)到頂側DBR 480、n-InP層471、及穿隧層461中並穿越,且部分進入p-InP層460,其中該遮罩保護限制該電流所透過的中心區域482(一般來說以點線指示)。在一些具體實施例中,電流限制結構470圍繞頂側DBR 480之中心電流傳導區域482。在一些具體實施例中,頂側金屬層490形成在頂側DBR 480上。當形成在聚焦底側多層介電反射體407與頂側DBR 480之間的雷射作用腔498中發生雷射作用時,雷射束499穿越開口408發射。到活性層450的電流經由所製作到頂側金屬層490和底側金屬層410的電接點供給。在一些具體實施例中,電流限制結構470藉由對圍繞頂側DBR 480之中心區域482的各區(以及有時層460之一部位)的質子轟擊形成,這會提高電流限制結構470相對於頂側DBR 480之中心區域482之電阻率,因此將該電流集中到活性層450之中心區域,這會減少VCSEL401之雷射作用閾值。因此,VCSEL結構401使用質子所轟擊區域470進行用於將該電流集中在活性層450之中心區域中的電流限制。 The fourth figure is a cross-sectional side view of a VCSEL structure 401 according to some embodiments of the present invention. The VCSEL structure 401 uses a single epitaxial growth top side DBR 480 and a curved bottom side dichroic multilayer dielectric reflector 407 to define the optical Cavity 498, and emits its output laser beam 499 through the emitting surface on the bottom surface of the substrate. As in the case of the DBR 280, the DBR 480 is designed with multiple layers, and each layer has an appropriate thickness and refractive index, so that the interference between the transmitted light and the reflected light that is reflected through the various layers occurs. The reflectivity of DBR 480 can be adjusted by the number, thickness, and reflectivity of these layers. Laser action cavity 498 (usually shown by a dashed line, but its characteristic length depends on the characteristics of the layers of DBR 480, not the reflection at the inner surface, as shown here Shown intentionally). In some embodiments, the VCSEL structure 401 includes a bottom metal layer 410 with an exit opening 408 passing therethrough; a semiconductor substrate 440 (in some embodiments, the active layer 450 for the pn junction is formed) An n-type InP substrate of the n-type semiconductor); and a p-type semiconductor layer 460, in which a pn junction (or other "active layer", such as a multiple quantum well (MQW) structure or the like) 450 is formed on the n Between the type layer/substrate 440 and the p-type layer 460. In some embodiments, the tunneling layer 461 is formed on the p-InP layer 460, the n-InP layer 471 is formed on the tunneling layer 461, and the top side DBR 480 is epitaxially grown on the n-InP layer 471, and The mask proton bombardment process (to form the current confinement structure 470) is carried out (using the mask) into the top side DBR 480, the n-InP layer 471, and the tunnel layer 461 and passes through, and partially enters the p-InP layer 460, where the The mask protects the central area 482 through which the current passes (generally indicated by a dotted line). In some embodiments, the current confinement structure 470 surrounds the central current conducting region 482 of the top side DBR 480. In some embodiments, the top-side metal layer 490 is formed on the top-side DBR 480. When laser action occurs in the laser action cavity 498 formed between the focusing bottom-side multilayer dielectric reflector 407 and the top-side DBR 480, the laser beam 499 is emitted through the opening 408. The current to the active layer 450 is supplied via the electrical contacts made to the top side metal layer 490 and the bottom side metal layer 410. In some embodiments, the current confinement structure 470 is formed by proton bombardment of the regions surrounding the central region 482 of the top side DBR 480 (and sometimes a part of the layer 460), which improves the current confinement structure 470 relative to the top The resistivity of the central area 482 of the side DBR 480, therefore, concentrates the current to the central area of the active layer 450, which reduces the laser action threshold of the VCSEL 401. Therefore, the VCSEL structure 401 uses the area 470 bombarded by protons to perform current limiting for concentrating the current in the central area of the active layer 450.

為提供將該雷射光限制在腔室498內的穩定腔室,VCSEL結構401(依據本發明之一些具體實施例)提供VCSEL 401之該輸出表面作為凸表面,其中多層介電塗佈407形成在基板440(其形成與活性層450接觸的該n型層)之該底部上,其中凸多層介電塗佈407之該內面形成如雷射作用腔498中的光「所看到」(seen)的凹面鏡。與平坦磊晶DBR 480一起,雷射腔498形成。在一些具體實施例中,使用在雷射作用腔498中具有該所需雷射作用波長的光之軟體模擬設計用於彎曲底側介電反射體407的適當曲率,以及頂部DBR 480與底側介電反射體407之適當曲率半徑之間的 適當距離,以便形成損耗低的穩定雷射腔498。然後,雷射作用動作可以低驅動電流啟動。 In order to provide a stable chamber that confines the laser light in the chamber 498, the VCSEL structure 401 (according to some specific embodiments of the present invention) provides the output surface of the VCSEL 401 as a convex surface, in which a multilayer dielectric coating 407 is formed on On the bottom of the substrate 440 (which forms the n-type layer in contact with the active layer 450), the inner surface of the convex multi-layer dielectric coating 407 is formed as "seen" by the light in the laser cavity 498 (seen ) Concave mirror. Together with the flat epitaxial DBR 480, a laser cavity 498 is formed. In some embodiments, a software simulation design of light having the required laser wavelength in the laser action cavity 498 is designed to bend the appropriate curvature of the bottom side dielectric reflector 407, and the top DBR 480 and the bottom side Between the appropriate radius of curvature of the dielectric reflector 407 The distance is appropriate to form a stable laser cavity 498 with low loss. Then, the laser action can be started with a low drive current.

第五A圖係依據本發明之一些具體實施例之VCSEL 501之剖面側視圖,VCSEL 501使用頂側二向分色多層介電反射體580和彎曲底側二向分色多層介電反射體507界定出光學雷射作用腔598,並穿越該基板之底面上的發射面發射其輸出雷射束599。在一些具體實施例中,VCSEL結構501包括一底側金屬層510,其具有穿越其間的一出口開口508;一半導體基板540(在一些具體實施例中,形成用於活性層550的該n型半導體的一n型InP基板);以及一p型半導體層560,其中一pn接面550(或其他「活性層」550,如一多重量子井(MQW)結構或其類似物,例如在核發給Feezell等人的美國專利7,480,322中所說明)形成在n型層/基板540與p型層560之間。在一些具體實施例中,穿隧層561形成在p-InP層560上且n-InP層571形成在穿隧層561上,頂側二向分色多層介電反射體580沉積在n-InP層571上,且遮罩質子轟擊製程(以質子轟擊層571之中心區域外部的各區、破壞那些區之磊晶晶體結構,並使其更具電阻性且導電性降低,以形成電流限制結構570)進行(使用遮罩)到n-InP層571和穿隧層561中並穿越,且部分進入p-InP層560,其中該遮罩保護限制該電流所透過的中心電流傳導區域582(一般來說以點線指示)。在一些具體實施例中,金屬環592圍繞二向分色多層介電反射體580之周邊,以將中心電流傳導區域582電連接到頂側金屬層590。在一些具體實施例中,頂側金屬層590形成在頂側二向分色多層介電反射體580上。當形成在聚焦底側多層介電反射體507與頂側二向分色多層介電反射體580之間的雷射作用腔598中發生雷射作用時,雷射束599穿越開口508發射。在一些具體實施例中,到活性層550的電流(該活性層之電泵浦以達成光學雷射作用)經由所製作到頂側金屬層590和底側金屬層510的電接點供給。在一些具體實施例中,電流限制結構570藉由對圍繞頂側二向分色多層介電反射體580之中心區域582的各區(以及有時層560之一部位)的質子轟擊形成,這會提高電流限制結構570相對於頂側二向分色多層介電反射體580之中心區域582之電阻率,因此將該電流集中到活性層550之中心區域,這會減少VCSEL 501之雷射作用閾 值。因此,VCSEL結構501使用質子所轟擊區域570進行用於將該電流集中在活性層550之中心區域中的電流限制。在一些其他具體實施例中,形成在基板540之該底面上的形狀542藉由光微影和/或蝕刻製程(如深反應性離子蝕刻(Deep reactive-ion etching,DRIE),其係用於在通常具有高深寬比的晶圓基板中創建深穿透、陡峭側面凹槽、及溝槽的電漿蝕刻製程)或其類似物塑形(如塑形為平凸彎曲透鏡、或繞射或菲涅耳透鏡、或全像表面或其類似物),使得數百或數千個這樣的聚焦元件同時形成,這對製作例如以下所說明以及在第五F圖、第六A圖、第六B圖、及第六C圖中所示VCSEL之陣列而言有用。 Figure 5A is a cross-sectional side view of a VCSEL 501 according to some specific embodiments of the present invention. The VCSEL 501 uses a top side dichroic multilayer dielectric reflector 580 and a curved bottom side dichroic multilayer dielectric reflector 507 An optical laser action cavity 598 is defined, and the output laser beam 599 is emitted through the emission surface on the bottom surface of the substrate. In some embodiments, the VCSEL structure 501 includes a bottom metal layer 510 with an exit opening 508 passing therethrough; a semiconductor substrate 540 (in some embodiments, the n-type layer for the active layer 550 is formed). An n-type InP substrate of a semiconductor); and a p-type semiconductor layer 560, in which a pn junction 550 (or other "active layer" 550, such as a multiple quantum well (MQW) structure or the like), for example, sent to Feezell in the core U.S. Patent No. 7,480,322 to et al.) is formed between the n-type layer/substrate 540 and the p-type layer 560. In some embodiments, the tunneling layer 561 is formed on the p-InP layer 560 and the n-InP layer 571 is formed on the tunneling layer 561, and the top-side dichroic multilayer dielectric reflector 580 is deposited on the n-InP On the layer 571, and mask the proton bombardment process (bombardment of the regions outside the central region of the layer 571 with protons, destroy the epitaxial crystal structure of those regions, and make them more resistive and conductive, to form a current confinement structure 570) proceed (using a mask) into the n-InP layer 571 and the tunneling layer 561 and pass through, and partly enter the p-InP layer 560, wherein the mask protects the central current conducting region 582 (generally (Indicated by dotted lines). In some embodiments, the metal ring 592 surrounds the periphery of the dichroic multilayer dielectric reflector 580 to electrically connect the central current conducting region 582 to the top metal layer 590. In some embodiments, the top-side metal layer 590 is formed on the top-side dichroic multi-layer dielectric reflector 580. When laser action occurs in the laser action cavity 598 formed between the focused bottom side multilayer dielectric reflector 507 and the top side dichroic multilayer dielectric reflector 580, the laser beam 599 is emitted through the opening 508. In some embodiments, the current to the active layer 550 (electrically pumped by the active layer to achieve the optical laser effect) is supplied through the electrical contacts made to the top metal layer 590 and the bottom metal layer 510. In some embodiments, the current confinement structure 570 is formed by proton bombardment of the regions (and sometimes a part of the layer 560) surrounding the central region 582 of the top-side dichroic multilayer dielectric reflector 580, which will Increase the resistivity of the current confinement structure 570 relative to the central area 582 of the top side dichroic multilayer dielectric reflector 580, so that the current is concentrated to the central area of the active layer 550, which reduces the laser threshold of the VCSEL 501 value. Therefore, the VCSEL structure 501 uses the area 570 bombarded by protons to perform current limiting for concentrating the current in the central area of the active layer 550. In some other specific embodiments, the shape 542 formed on the bottom surface of the substrate 540 is formed by photolithography and/or etching processes (such as deep reactive ion etching (DRIE), which is used for A plasma etching process that creates deep penetration, steep side grooves, and trenches in wafer substrates that usually have high aspect ratios) or similar shaping (such as shaping into a plano-convex curved lens, or diffraction or Fresnel lens, or holographic surface or the like), so that hundreds or thousands of such focusing elements are formed at the same time. The VCSEL arrays shown in Figure B and Figure 6C are useful.

為再進一步降低該複雜性和成本,本發明之一個較佳具體實施例係第五A圖中所示VCSEL結構501,其與第四圖之VCSEL結構401相似,不同之處在於頂部DBR 480置換為高度反射性頂側多層介電反射體580。這藉由避免該磊晶頂部DBR(如該等先前圖示之DBR 280、DBR 380、及DBR 480)進一步簡化針對該磊晶成長的該等要求。如第五A圖中所示,在一些具體實施例中,使用藉由圍繞n型層571、穿隧層561、及視需要接近活性層550之該中心活性區的p型層560之一部位之該等中心區域的各區之質子轟擊形成的電阻性區域570,將該電流限制在活性層550之該中心部位內。結果,該電流流過該等較低電阻性中心區到活性層550之該中心區,從而對系統501生成經改良的光學增益。除了這樣的電流限制架構以外,在其他具體實施例中,使用電流限制技術之其他已習知方法,包括台面結構、氧化物限制、及/或此領域已習知、且如先前圖示中所示、並經合適修改以施加於此VCSEL結構的其他製程。 To further reduce the complexity and cost, a preferred embodiment of the present invention is the VCSEL structure 501 shown in Figure 5A, which is similar to the VCSEL structure 401 in Figure 4, except that the top DBR 480 is replaced It is a highly reflective top-side multilayer dielectric reflector 580. This further simplifies the requirements for the epitaxial growth by avoiding the epitaxial top DBR (such as the DBR 280, DBR 380, and DBR 480 shown in the previous figures). As shown in FIG. 5A, in some specific embodiments, a portion of the p-type layer 560 that surrounds the n-type layer 571, the tunneling layer 561, and if necessary is close to the central active region of the active layer 550 is used. The resistive region 570 formed by the bombardment of protons in each of the central regions limits the current to the central portion of the active layer 550. As a result, the current flows through the lower resistive central regions to the central region of the active layer 550, thereby generating an improved optical gain for the system 501. In addition to this current limiting architecture, in other specific embodiments, other known methods of using current limiting technology include mesa structures, oxide limiting, and/or known in this field, and as shown in the previous illustration. It is shown and modified appropriately to apply to other manufacturing processes of this VCSEL structure.

在一些具體實施例中,使用在雷射作用腔598中具有該所需雷射作用波長的光之軟體模擬設計用於彎曲底側介電反射體507的適當曲率,以及平坦多層介電反射體580與彎曲底側介電反射體507之間的適當距離,以便形成損耗低的穩定雷射作用腔598。在一些具體實施例中,VCSEL 501之特性波長約為1.55μm,雷射作用腔598之長度約為100μm,彎曲底側介電反射體507之曲率半徑約為140μm,且該半導體結構為InP。在其他具體實施例中,該特性波長在約1.3至約2.0μm之波長範圍內(含端值), 如在Gerhard Boehm等人的期刊文章〈涵蓋1.3至2.0μm波長範圍之基於InP的VCSEL技術〉(InP-based VCSEL Technology Covering the Wavelength Range from 1.3 to 2.0μm)中所說明,《晶體成長期刊》(Journal of Crystal Growth),2003年4月第1至4期第251冊748至753頁(doi.org/10.1016/S0022-0248(02)02193-0)。 In some embodiments, a software simulation design of light having the required laser wavelength in the laser action cavity 598 is designed to bend the appropriate curvature of the bottom dielectric reflector 507, and a flat multilayer dielectric reflector The proper distance between 580 and the curved bottom dielectric reflector 507 is to form a stable laser cavity 598 with low loss. In some embodiments, the characteristic wavelength of the VCSEL 501 is about 1.55 μm, the length of the laser cavity 598 is about 100 μm, the radius of curvature of the curved bottom dielectric reflector 507 is about 140 μm, and the semiconductor structure is InP. In other specific embodiments, the characteristic wavelength is within the wavelength range of about 1.3 to about 2.0 μm (inclusive), As explained in the journal article "InP-based VCSEL Technology Covering the Wavelength Range from 1.3 to 2.0μm" by Gerhard Boehm et al., "Journal of Crystal Growth" ( Journal of Crystal Growth), Volume 251, Pages 748 to 753, Issues 1 to 4, April 2003 (doi.org/10.1016/S0022-0248(02)02193-0).

第五B圖係依據本發明之一些具體實施例之VCSEL結構502之剖面側視圖,VCSEL結構502使用頂側二向分色多層介電反射體580和彎曲底側二向分色多層介電反射體507界定出光學腔598(其使用氧化物電流限制區域562),並穿越該基板之底面上的發射面發射其輸出雷射束599。在一些具體實施例中,VCSEL結構502與VCSEL結構501相同,不同之處在於使用氧化物電流限制區域562將該電流限制在VCSEL結構502中,而非如同VCSEL結構501的情況藉由質子轟擊形成的電阻性區域570。 Figure 5B is a cross-sectional side view of a VCSEL structure 502 according to some embodiments of the present invention. The VCSEL structure 502 uses a top side dichroic multilayer dielectric reflector 580 and a curved bottom side dichroic multilayer dielectric reflector. The body 507 defines an optical cavity 598 (which uses an oxide current confinement area 562), and emits its output laser beam 599 through the emitting surface on the bottom surface of the substrate. In some embodiments, the VCSEL structure 502 is the same as the VCSEL structure 501, except that the oxide current confinement region 562 is used to confine the current in the VCSEL structure 502 instead of being formed by proton bombardment as in the case of the VCSEL structure 501 The resistive area 570.

第五C圖係依據本發明之一些具體實施例之VCSEL結構503之剖面側視圖,VCSEL結構503使用頂側聚焦部分反射性二向分色多層介電反射體581和平坦底側高度反射性二向分色多層介電反射體582界定出光學腔598(其使用氧化物電流限制區域562及視需要第二氧化物電流限制區域563),並穿越該VCSEL結構之頂面上的發射面發射其輸出雷射束599。VCSEL結構503之其他態樣實質上與VCSEL結構502相同。 Figure 5C is a cross-sectional side view of a VCSEL structure 503 according to some specific embodiments of the present invention. The VCSEL structure 503 uses a top-side focusing partially reflective dichroic multilayer dielectric reflector 581 and a flat bottom side highly reflective two The dichroic multilayer dielectric reflector 582 defines an optical cavity 598 (which uses an oxide current confinement area 562 and, if necessary, a second oxide current confinement area 563), and emits it through the emission surface on the top surface of the VCSEL structure Output laser beam 599. The other aspects of the VCSEL structure 503 are substantially the same as the VCSEL structure 502.

第五D圖係依據本發明之一些具體實施例之VCSEL結構504之剖面側視圖,VCSEL結構504使用頂側平坦二向分色多層介電反射體583和彎曲且/或聚焦底側二向分色多層介電反射體584界定出光學腔598(其使用氧化物電流限制區域562及視需要第二氧化物電流限制區域563),並穿越該VCSEL結構之頂面上的發射面發射其輸出雷射束599。在一些具體實施例中,金屬環593圍繞二向分色多層介電反射體584之周邊,以將n型層/基板540電連接到底側金屬層510。VCSEL結構504之其他態樣實質上與VCSEL結構502相同。 Fig. 5 D is a cross-sectional side view of a VCSEL structure 504 according to some embodiments of the present invention. The VCSEL structure 504 uses a flat dichroic multilayer dielectric reflector 583 on the top side and a curved and/or focused bottom dichroic The colored multilayer dielectric reflector 584 defines an optical cavity 598 (which uses an oxide current confinement area 562 and a second oxide current confinement area 563 if necessary), and emits its output lightning through the emitting surface on the top surface of the VCSEL structure Beam 599. In some embodiments, the metal ring 593 surrounds the periphery of the dichroic multilayer dielectric reflector 584 to electrically connect the n-type layer/substrate 540 to the bottom metal layer 510. The other aspects of the VCSEL structure 504 are substantially the same as the VCSEL structure 502.

第五E圖係依據本發明之一些具體實施例之VCSEL結構505之剖面側視圖,VCSEL結構505使用頂側二向分色多層介電反射體580及沉積在聚焦元件544(如形成或沉積在基板540之該底部上的透鏡或繞射 元件544)上的彎曲底側二向分色多層介電反射體507界定出光學腔598(其使用離子轟擊形成電流限制區域571),並穿越該基板之底面上的發射面發射其輸出雷射束599。在一些具體實施例中,聚焦元件544包括一熱塑性聚合物,其沉積在基板540之該底部上,然後藉由壓印製程或其類似物塑形(如塑形為平凸彎曲透鏡、或繞射或菲涅耳透鏡、或全像表面或其類似物),使得數百或數千個這樣的聚焦元件同時形成。在一些其他具體實施例中,聚焦元件544包括一光敏聚合物,其沉積在基板540之該底部上,然後藉由光微影製程或其類似物塑形(如塑形為平凸彎曲透鏡、或繞射或菲涅耳透鏡、或全像表面或其類似物),使得數百或數千個這樣的聚焦元件同時形成。VCSEL結構505之其他態樣實質上與VCSEL結構501相同。 Figure E is a cross-sectional side view of a VCSEL structure 505 according to some embodiments of the present invention. The VCSEL structure 505 uses a top-side dichroic multilayer dielectric reflector 580 and is deposited on a focusing element 544 (such as formed or deposited on The lens or diffraction on the bottom of the substrate 540 The curved bottom side dichroic multilayer dielectric reflector 507 on the element 544) defines an optical cavity 598 (which uses ion bombardment to form a current confinement area 571), and emits its output laser through the emission surface on the bottom surface of the substrate Bunch of 599. In some embodiments, the focusing element 544 includes a thermoplastic polymer, which is deposited on the bottom of the substrate 540, and then shaped by an imprinting process or the like (for example, shaped into a plano-convex curved lens, or wrapped around it). Ray or Fresnel lens, or holographic surface or the like), so that hundreds or thousands of such focusing elements are formed at the same time. In some other specific embodiments, the focusing element 544 includes a photosensitive polymer deposited on the bottom of the substrate 540, and then is shaped by a photolithography process or the like (for example, shaped into a plano-convex curved lens, Or diffraction or Fresnel lens, or holographic surface or the like), so that hundreds or thousands of such focusing elements are formed at the same time. The other aspects of the VCSEL structure 505 are substantially the same as the VCSEL structure 501.

第五F圖係依據本發明之一些具體實施例之具有複數VCSEL結構501的多VCSEL陣列506之剖面側視圖,並穿越該基板之底面上的發射面發射複數597輸出雷射束599。在其他具體實施例中,多VCSEL陣列506具有複數VCSEL結構502、503、504、或505,如第五B圖、第五C圖、第五D圖、及第五E圖中所示。在所有這些之一些具體實施例中,散熱器或散熱件596附接到頂側金屬層590。 Figure F is a cross-sectional side view of a multi-VCSEL array 506 with a plurality of VCSEL structures 501 according to some embodiments of the present invention, and a complex 597 output laser beam 599 is emitted through the emitting surface of the bottom surface of the substrate. In other specific embodiments, the multi-VCSEL array 506 has a plurality of VCSEL structures 502, 503, 504, or 505, as shown in the fifth diagram B, the fifth diagram C, the fifth diagram D, and the fifth diagram E. In some specific embodiments of all of these, a heat sink or heat sink 596 is attached to the top side metal layer 590.

第六A圖係依據本發明之一些具體實施例之具有複數十六個VCSEL 501的十六VCSEL矩形陣列601之該雷射束發射面之平面圖,並穿越該基板之底面發射複數597輸出雷射束599。 Figure 6A is a plan view of the laser beam emitting surface of a sixteen VCSEL rectangular array 601 with dozens of six VCSELs 501 according to some specific embodiments of the present invention, and a complex number of 597 output mines are emitted through the bottom surface of the substrate. Beam 599.

第六B圖係依據本發明之一些具體實施例之具有複數十九個VCSEL 501的十九VCSEL六邊形陣列602之該雷射束發射面之平面圖,並穿越該基板之底面發射複數597輸出雷射束599。在一些具體實施例中,使用六邊形陣列有助於該組合光輸出,以為了該等組合細束而更加準確近似圓形輸出。 Figure 6B is a plan view of the laser beam emitting surface of a nineteen VCSEL hexagonal array 602 with nineteen VCSELs 501 according to some specific embodiments of the present invention, and a complex number 597 is emitted through the bottom surface of the substrate. Output laser beam 599. In some embodiments, the use of a hexagonal array facilitates the combined light output to more accurately approximate the circular output for the combined beams.

第六C圖係依據本發明之一些具體實施例之具有複數四百個VCSEL 501的四百VCSEL六邊形陣列603之該雷射束發射面之平面圖,並穿越該基板之底面發射複數597輸出雷射束599。 Figure 6C is a plan view of the laser beam emitting surface of a four-hundred VCSEL hexagonal array 603 with a plurality of four hundred VCSELs 501 according to some specific embodiments of the present invention, and a complex number 597 is emitted through the bottom surface of the substrate. Output laser beam 599.

針對這樣的平面結構,在一些具體實施例中,本發明提供VCSEL之二維陣列,其中多個VCSEL依該波束形狀及該系統之功率要求 而定,形成為如第六A圖中所示正方形柵格或如第六B圖中所示六邊形柵格。在其他具體實施例中,使用VCSEL之其他幾何形狀設置。在一些具體實施例中,VCSEL之二維陣列(如第六A圖、第六B圖、及第六C圖中所示)生成複數雷射細束,其形成波束品質良好且發散性近似單一VCSEL的單一組合束。在一些具體實施例中,所使用的VCSEL之數量基於所需總功率選擇。舉例來說,若每個VCSEL皆發射200mW之輸出,則一百個VCSEL之陣列發射20W,且例如第六C圖中所示四百個VCSEL之20×20陣列發射80W。在一些具體實施例中,所有這些VCSEL皆在晶片內製造,其側面上的該等最終陣列尺寸數量級為1mm至2mm。在一些具體實施例中,1.55μm VCSEL生成約1至2mW。採用10,000個這樣的VCSEL之陣列(如100×100個VCSEL之陣列),該組合輸出將約為10至20W。在一些具體實施例中,每個VCSEL皆具有20μm之直徑,且該陣列之整體尺寸具有2mm×2mm之寬度和長度。 For such a planar structure, in some specific embodiments, the present invention provides a two-dimensional array of VCSELs, where multiple VCSELs are based on the beam shape and the power requirements of the system. It may be formed into a square grid as shown in Figure 6A or a hexagonal grid as shown in Figure 6B. In other specific embodiments, other geometric configurations of the VCSEL are used. In some specific embodiments, the two-dimensional array of VCSELs (as shown in Figures 6A, 6B, and 6C) generates complex laser beams, which have good beam quality and approximately single divergence. Single combined beam of VCSEL. In some embodiments, the number of VCSELs used is selected based on the total power required. For example, if each VCSEL emits an output of 200mW, an array of one hundred VCSELs emits 20W, and for example, a 20×20 array of four hundred VCSELs shown in Figure 6C emits 80W. In some specific embodiments, all of these VCSELs are manufactured in a wafer, and the final array dimensions on the sides thereof are on the order of 1 mm to 2 mm. In some specific embodiments, a 1.55 μm VCSEL generates about 1 to 2 mW. Using an array of 10,000 such VCSELs (such as an array of 100×100 VCSELs), the combined output will be about 10 to 20W. In some embodiments, each VCSEL has a diameter of 20 μm, and the overall size of the array has a width and length of 2 mm×2 mm.

在一些具體實施例中,該基板底側處的聚焦多層介電反射體507(如第五A圖或第五B圖中所示)或584(如第五D圖中所示)或該基板頂面處的反射體581(如第五C圖中所示)包括一彎曲表面(如一拋物面反射性表面),其如此領域已習知使用多個蝕刻步驟形成,或使用該等各自半導體表面之電漿或乾式蝕刻形成。在其他具體實施例中,聚焦多層介電反射體580包括繞射或全像結構或其類似物,其藉由如壓印沉積在該半導體表面上的一薄聚合物層,或藉由攝影(photographically)處理一光阻、或其他合適製程然後沉積該多層介電體以形成調諧成該所需雷射束之所需特性波長的二向分色反射鏡形成,使得雷射作用腔598內的該雷射作用束朝向雷射作用腔598之中心部位聚焦。 In some embodiments, the focusing multilayer dielectric reflector 507 (as shown in Figure 5A or Figure B) or 584 (as shown in Figure 5D) at the bottom side of the substrate or the substrate The reflector 581 at the top surface (as shown in Figure 5C) includes a curved surface (e.g., a parabolic reflective surface), which is known in the art to use multiple etching steps, or use one of these respective semiconductor surfaces Plasma or dry etching is formed. In other embodiments, the focusing multilayer dielectric reflector 580 includes a diffractive or holographic structure or the like by a thin polymer layer deposited on the surface of the semiconductor by, for example, imprinting, or by photography ( photographically) processing a photoresist, or other suitable processes, and then depositing the multilayer dielectric to form a dichroic mirror tuned to the required characteristic wavelength of the required laser beam, so that the laser action in the cavity 598 The laser action beam is focused toward the center of the laser action cavity 598.

在一些具體實施例中,本發明提供一種第一設備,其包括:一第一半導體垂直腔表面發射雷射(VCSEL)結構,其產生具有一特性波長的一雷射束且其包括:一第一多層介電反射體;一第二多層介電反射體;以及一半導體結構,其位於第一多層介電反射體與該第二多層介電反射體之間並與其接觸,其中該半導體結構包括:一第一n型半導體層;一p型半導體層;以及一活性層,其位於該n型半導體層與該p型半導體層之間並 與其接觸,其中該第一多層介電反射體和該第二多層介電反射體中至少一者係一聚焦反射體,其中該第一多層介電反射體和該第二多層介電反射體形成一雷射作用腔,且其中該活性層向該雷射作用腔提供光學增益。 In some embodiments, the present invention provides a first device including: a first semiconductor vertical cavity surface emitting laser (VCSEL) structure, which generates a laser beam with a characteristic wavelength and includes: a first semiconductor vertical cavity surface emitting laser (VCSEL) structure A multilayer dielectric reflector; a second multilayer dielectric reflector; and a semiconductor structure located between and in contact with the first multilayer dielectric reflector and the second multilayer dielectric reflector, wherein The semiconductor structure includes: a first n-type semiconductor layer; a p-type semiconductor layer; and an active layer located between the n-type semiconductor layer and the p-type semiconductor layer and In contact with it, at least one of the first multilayer dielectric reflector and the second multilayer dielectric reflector is a focusing reflector, wherein the first multilayer dielectric reflector and the second multilayer dielectric reflector The electric reflector forms a laser action cavity, and the active layer provides optical gain to the laser action cavity.

在該第一設備之一些具體實施例中,該半導體結構更包括:一穿隧層,其面向該p型半導體層並與其接觸;以及一第二n型半導體層,其面向該穿隧層並與其接觸。 In some specific embodiments of the first device, the semiconductor structure further includes: a tunneling layer facing and in contact with the p-type semiconductor layer; and a second n-type semiconductor layer facing the tunneling layer and Contact with it.

在該第一設備之一些具體實施例中,該半導體結構更包括:一電流限制結構,其配置成限制穿越該活性層之一中心部位的電流。 In some specific embodiments of the first device, the semiconductor structure further includes: a current limiting structure configured to limit current passing through a central portion of the active layer.

在該第一設備之一些具體實施例中,該第一n型半導體層從一晶圓基板形成。 In some embodiments of the first device, the first n-type semiconductor layer is formed from a wafer substrate.

在該第一設備之一些具體實施例中,該活性層係該第一n型半導體層與該p型半導體層之間的一pn接面。 In some embodiments of the first device, the active layer is a pn junction between the first n-type semiconductor layer and the p-type semiconductor layer.

在該第一設備之一些具體實施例中,該活性層係一多重量子井(MQW)結構。 In some embodiments of the first device, the active layer is a multiple quantum well (MQW) structure.

在該第一設備之一些具體實施例中,該第一多層介電反射體在該特性波長下為部分反射性,且其中該第二多層介電反射體在該特性波長下為高度反射性。 In some embodiments of the first device, the first multilayer dielectric reflector is partially reflective at the characteristic wavelength, and wherein the second multilayer dielectric reflector is highly reflective at the characteristic wavelength Sex.

在該第一設備之一些具體實施例中,該第一多層介電反射體在該特性波長下聚焦並為部分反射性,且其中該第二多層介電反射體在該特性波長下平坦並為高度反射性。 In some embodiments of the first device, the first multilayer dielectric reflector is focused and partially reflective at the characteristic wavelength, and wherein the second multilayer dielectric reflector is flat at the characteristic wavelength It is highly reflective.

在該第一設備之一些具體實施例中,該第一多層介電反射體彎曲成具有面向該第二多層介電反射體的一凹面,並在該特性波長下為部分反射性,且其中該第二多層介電反射體在該特性波長下平坦並為高度反射性。 In some specific embodiments of the first device, the first multilayer dielectric reflector is curved to have a concave surface facing the second multilayer dielectric reflector, and is partially reflective at the characteristic wavelength, and The second multilayer dielectric reflector is flat and highly reflective at the characteristic wavelength.

在該第一設備之一些具體實施例中,該半導體結構更包括:一穿隧層,其面向該p型半導體層並與其接觸;一第二n型半導體層,其面向該穿隧層並與其接觸;以及一電流限制結構,其配置成限制穿越該活性層之一中心部位的電流,其中該第一n型半導體層從一晶圓基板形成,其中該第一多層介電反射體彎曲成具有面向該第二多層介電反射體的一凹 面、在該特性波長下為部分反射性,並形成在該第一n型半導體層之一外表面上,其中該第二多層介電反射體在該特性波長下平坦並為高度反射性,並形成在該第二n型半導體層之一外表面上,且其中該半導體結構更包括一電流限制結構,其配置成限制穿越該活性層之一中心部位的電流。 In some specific embodiments of the first device, the semiconductor structure further includes: a tunneling layer facing and in contact with the p-type semiconductor layer; and a second n-type semiconductor layer facing and in contact with the tunneling layer Contact; and a current limiting structure configured to limit the current passing through a central part of the active layer, wherein the first n-type semiconductor layer is formed from a wafer substrate, wherein the first multilayer dielectric reflector is bent into Having a recess facing the second multilayer dielectric reflector The surface is partially reflective at the characteristic wavelength and is formed on an outer surface of the first n-type semiconductor layer, wherein the second multilayer dielectric reflector is flat and highly reflective at the characteristic wavelength, And formed on an outer surface of the second n-type semiconductor layer, and wherein the semiconductor structure further includes a current limiting structure configured to limit current passing through a central part of the active layer.

在該第一設備之一些具體實施例中,該第一n型半導體層係n型InP,且其中該p型半導體層係p型InP。 In some embodiments of the first device, the first n-type semiconductor layer is n-type InP, and wherein the p-type semiconductor layer is p-type InP.

該第一設備之一些具體實施例更包括複數附加VCSEL結構,其每個皆等同於該第一VCSEL結構,其中該等複數附加VCSEL結構和該第一VCSEL結構以一二維陣列設置。 Some specific embodiments of the first device further include a plurality of additional VCSEL structures, each of which is equivalent to the first VCSEL structure, wherein the plurality of additional VCSEL structures and the first VCSEL structure are arranged in a two-dimensional array.

該第一設備之一些具體實施例更包括複數附加VCSEL結構,其每個皆等同於該第一VCSEL結構,其中該等複數附加VCSEL結構和該第一VCSEL結構以一矩形陣列設置。 Some specific embodiments of the first device further include a plurality of additional VCSEL structures, each of which is equivalent to the first VCSEL structure, wherein the plurality of additional VCSEL structures and the first VCSEL structure are arranged in a rectangular array.

該第一設備之一些具體實施例更包括複數附加VCSEL結構,其每個皆等同於該第一VCSEL結構,其中該等複數附加VCSEL結構和該第一VCSEL結構以一六邊形陣列設置。 Some specific embodiments of the first device further include a plurality of additional VCSEL structures, each of which is equivalent to the first VCSEL structure, wherein the plurality of additional VCSEL structures and the first VCSEL structure are arranged in a hexagonal array.

在該第一設備之一些具體實施例中,該特性波長約為1.55μm。 In some specific embodiments of the first device, the characteristic wavelength is about 1.55 μm.

在該第一設備之一些具體實施例中,該特性波長介於430nm至490nm之間(含端值)。 In some specific embodiments of the first device, the characteristic wavelength is between 430 nm and 490 nm (inclusive).

在該第一設備之一些具體實施例中,該半導體結構包括磷化銦。 In some embodiments of the first device, the semiconductor structure includes indium phosphide.

在該第一設備之一些具體實施例中,該半導體結構包括氮化鎵。 In some embodiments of the first device, the semiconductor structure includes gallium nitride.

該第一設備之一些具體實施例更包括複數附加VCSEL結構,其每個皆等同於該第一VCSEL結構,其中該等複數附加VCSEL結構和該第一VCSEL結構以一一維陣列設置(在一些具體實施例中,1×N個VCSEL之一線性陣列)。 Some specific embodiments of the first device further include a plurality of additional VCSEL structures, each of which is equivalent to the first VCSEL structure, wherein the plurality of additional VCSEL structures and the first VCSEL structure are arranged in a one-dimensional array (in some In a specific embodiment, a linear array of 1×N VCSELs).

該第一設備之一些具體實施例更包括複數附加VCSEL結構,其每個皆等同於該第一VCSEL結構,其中該等複數附加VCSEL結構和該 第一VCSEL結構配置成獨立選擇性啟用(activated)。在一些這樣的具體實施例中,複數該等VCSEL之每個各自一者皆包括獨立可選擇「佈線」(wiring)到該頂側或底側金屬電連接,其到該各自VCSEL。 Some specific embodiments of the first device further include a plurality of additional VCSEL structures, each of which is equivalent to the first VCSEL structure, wherein the plurality of additional VCSEL structures and the The first VCSEL structure is configured to be independently selectively activated. In some such embodiments, each of the plurality of VCSELs includes independently selectable "wiring" to the top or bottom metal electrical connection to the respective VCSEL.

在一些具體實施例中,本發明提供一種第二設備,其包括:一第一半導體垂直腔表面發射雷射(VCSEL)結構,其包括:一部分反射性多層介電反射體;一高度反射性多層介電反射體;以及一半導體結構,其位於該部分反射性多層介電反射體與該高度反射性多層介電反射體之間並與其接觸,其中該半導體結構包括:一第一n型半導體基板層;一p型半導體層;以及一活性層,其位於該n型半導體層與該p型半導體層之間並與其接觸,其中該部分反射性多層介電反射體與該高度反射性多層介電反射體中至少一者係一彎曲聚焦反射體。 In some embodiments, the present invention provides a second device, which includes: a first semiconductor vertical cavity surface emitting laser (VCSEL) structure, which includes: a part of a reflective multilayer dielectric reflector; a highly reflective multilayer A dielectric reflector; and a semiconductor structure located between and in contact with the partially reflective multilayer dielectric reflector and the highly reflective multilayer dielectric reflector, wherein the semiconductor structure includes: a first n-type semiconductor substrate Layer; a p-type semiconductor layer; and an active layer located between and in contact with the n-type semiconductor layer and the p-type semiconductor layer, wherein the partially reflective multilayer dielectric reflector and the highly reflective multilayer dielectric At least one of the reflectors is a curved focusing reflector.

在該第二設備之一些具體實施例中,其中該半導體結構更包括:一穿隧層,其面向該p型半導體層並與其接觸;一第二n型半導體層,其面向該穿隧層並與其接觸;以及一電流限制結構,其配置成限制穿越該活性層之一中心部位的電流,其中該第一n型半導體層從一晶圓基板形成,其中該第一多層介電反射體彎曲成具有面向該第二多層介電反射體的一凹面、在該特性波長下為部分反射性,並形成在該第一n型半導體層之一外表面上,其中該第二多層介電反射體在該特性波長下平坦並為高度反射性,並形成在該第二n型半導體層之一外表面上,其中該半導體結構更包括一電流限制結構,其配置成限制穿越該活性層之一中心部位的電流。 In some specific embodiments of the second device, the semiconductor structure further includes: a tunneling layer facing and in contact with the p-type semiconductor layer; a second n-type semiconductor layer facing the tunneling layer and In contact therewith; and a current limiting structure configured to limit current passing through a central part of the active layer, wherein the first n-type semiconductor layer is formed from a wafer substrate, and wherein the first multilayer dielectric reflector is curved It has a concave surface facing the second multilayer dielectric reflector, is partially reflective at the characteristic wavelength, and is formed on an outer surface of the first n-type semiconductor layer, wherein the second multilayer dielectric The reflector is flat and highly reflective at the characteristic wavelength, and is formed on an outer surface of the second n-type semiconductor layer, wherein the semiconductor structure further includes a current confinement structure configured to limit the passage through the active layer A current in the center.

該第二設備之一些具體實施例更包括複數附加VCSEL結構,其每個皆等同於該第一VCSEL結構,其中該等複數附加VCSEL結構和該第一VCSEL結構以一陣列設置。 Some specific embodiments of the second device further include a plurality of additional VCSEL structures, each of which is equivalent to the first VCSEL structure, wherein the plurality of additional VCSEL structures and the first VCSEL structure are arranged in an array.

在一些具體實施例中,本發明提供一種方法,其包括:得到形成一第一n型半導體層的一n型半導體基板;在該第一n型半導體層上沉積一p型半導體層,以在該第一n型半導體層與該p型半導體層之間形成一活性層;在該p型半導體層上形成一穿隧層,且一第二n型半導體層面向該穿隧層並與其接觸;在該第二n型半導體層上沉積一高度反射性多層介電反射體;在該高度反射性多層介電反射體上沉積一第一金屬電接點, 其中至少一個電接點到該第二n型半導體層;在相對於該第二n型半導體層上的該高度反射性多層介電反射體的該基板之一第一面上形成一聚焦部分反射性多層介電反射體表面;以及在該基板之該第一面上沉積一第二金屬電接點,其中至少一個電接點到該第一n型半導體層。 In some embodiments, the present invention provides a method, which includes: obtaining an n-type semiconductor substrate on which a first n-type semiconductor layer is formed; and depositing a p-type semiconductor layer on the first n-type semiconductor layer to An active layer is formed between the first n-type semiconductor layer and the p-type semiconductor layer; a tunneling layer is formed on the p-type semiconductor layer, and a second n-type semiconductor layer faces and contacts the tunneling layer; Depositing a highly reflective multilayer dielectric reflector on the second n-type semiconductor layer; depositing a first metal electrical contact on the highly reflective multilayer dielectric reflector, Wherein at least one electrical contact is to the second n-type semiconductor layer; a focused partial reflection is formed on a first surface of the substrate relative to the highly reflective multilayer dielectric reflector on the second n-type semiconductor layer And a second metal electrical contact is deposited on the first surface of the substrate, wherein at least one electrical contact is connected to the first n-type semiconductor layer.

在該方法之一些具體實施例中,該基板之該第一面之該聚焦部分反射性多層介電反射體表面之該形成包括將一彎曲表面蝕刻到該基板中。 In some embodiments of the method, the forming of the focused partially reflective multilayer dielectric reflector surface of the first side of the substrate includes etching a curved surface into the substrate.

在該方法之一些具體實施例中,該基板之該第一面之該聚焦部分反射性多層介電反射體表面之該形成包括使用光微影在該基板上形成一繞射反射體。 In some embodiments of the method, the forming of the focused partially reflective multilayer dielectric reflector surface of the first surface of the substrate includes forming a diffractive reflector on the substrate using photolithography.

在該方法之一些具體實施例中,該基板之該第一面之該聚焦部分反射性多層介電反射體表面之該形成包括在該基板上形成一全像反射體。 In some embodiments of the method, the forming of the focused partially reflective multilayer dielectric reflector surface of the first surface of the substrate includes forming a holographic reflector on the substrate.

應可理解,該上述說明係欲為例示性,而非限制性。儘管如文中所說明的各種具體實施例之眾多特性和優勢已在前述說明中闡述,連同各種具體實施例之結構和功能之詳細資訊,但許多其他具體實施例及對各細節的變更對熟習此領域技術者而言,將在檢閱該上述說明後立即顯而易見。因此,本發明之範疇應參照所附諸申請專利範圍(伴隨賦予這樣的諸申請專利範圍的各相等物之全部範疇)決定。在所附諸申請專利範圍中,該等用語「包括」(including)和「其中」(in which)分別用作該等各自用語「包含」(comprising)和「其中」(wherein)之該等簡明英文相等物。而且,該等用語「第一」(first)、「第二」(second)、及「第三」(third)等僅用作標籤,並不欲對其物件加諸數值要求。 It should be understood that the above description is intended to be illustrative rather than restrictive. Although the numerous features and advantages of various specific embodiments as described in the text have been described in the foregoing description, together with detailed information on the structure and functions of various specific embodiments, many other specific embodiments and changes to various details are familiar to you. For those skilled in the art, it will be immediately obvious after reviewing the above description. Therefore, the scope of the present invention should be determined with reference to the scope of the attached patent applications (with the full scope of the equivalents assigned to the scope of such patent applications). In the scope of the attached patent applications, the terms "including" and "in which" are used as the concise terms of the respective terms "comprising" and "wherein" respectively. English equivalent. Moreover, the terms "first", "second", and "third" are only used as labels and do not intend to impose numerical requirements on their objects.

501:VCSEL結構;VCSEL;系統 501: VCSEL structure; VCSEL; system

507:彎曲底側二向分色多層介電反射體;聚焦底側多層介電反射體;彎曲底側介電反射體;聚焦多層介電反射體 507: curved bottom side dichroic multilayer dielectric reflector; focused bottom side multilayer dielectric reflector; curved bottom side dielectric reflector; focused bottom side dielectric reflector

508:出口開口;開口 508: Outlet opening; opening

510:底側金屬層 510: bottom metal layer

540:半導體基板;n型層/基板;基板 540: Semiconductor substrate; n-type layer/substrate; substrate

542:聚焦表面;彎曲表面或繞射元件;形狀 542: focusing surface; curved surface or diffractive element; shape

550:活性層;pn接面 550: active layer; pn junction

560:p型半導體層;p型層;層;p-InP層 560: p-type semiconductor layer; p-type layer; layer; p-InP layer

561:穿隧層 561: tunnel layer

570:電流限制結構;質子所轟擊區域;電阻性區域 570: Current confinement structure; area bombarded by protons; resistive area

571:電流限制區域;n-InP層;層;n型層 571: Current confinement area; n-InP layer; layer; n-type layer

580:頂側二向分色多層介電反射體;二向分色多層介電反射體;高度反射性頂側多層介電反射體;平坦多層介電反射體;聚焦多層介電反射體 580: Top-side dichroic multilayer dielectric reflector; Dichroic multilayer dielectric reflector; Highly reflective top-side multilayer dielectric reflector; Flat multilayer dielectric reflector; Focused multilayer dielectric reflector

582:平坦底側二向分色多層介電反射體;中心電流傳導區域;中心電流傳導區域;中心區域;平坦底側高度反射性二向分色多層介電反射體 582: Flat bottom side dichroic multilayer dielectric reflector; central current conducting area; central current conducting area; central area; flat bottom side highly reflective dichroic multilayer dielectric reflector

590:頂側金屬層 590: Top side metal layer

592:金屬環 592: metal ring

598:光學腔;光學雷射作用腔;雷射作用腔 598: optical cavity; optical laser action cavity; laser action cavity

599:雷射束;輸出雷射束 599: Laser beam; output laser beam

Claims (26)

一種設備包含: A device contains: 一第一半導體垂直腔表面發射雷射(Vertical-cavity surface-emitting laser,VCSEL)結構,其產生具有一特性波長的一雷射束且其包括: A first semiconductor vertical-cavity surface-emitting laser (VCSEL) structure that generates a laser beam with a characteristic wavelength and includes: 一第一多層介電反射體; A first multilayer dielectric reflector; 一第二多層介電反射體;以及 A second multilayer dielectric reflector; and 一半導體結構,其位於該第一多層介電反射體與該第二多層介電反射體之間並與其接觸, A semiconductor structure located between and in contact with the first multilayer dielectric reflector and the second multilayer dielectric reflector, 其中該半導體結構包括: The semiconductor structure includes: 一第一n型半導體層; A first n-type semiconductor layer; 一p型半導體層;以及 A p-type semiconductor layer; and 一活性層,其位於該n型半導體層與該p型半導體層之間並與其接觸,且 An active layer located between and in contact with the n-type semiconductor layer and the p-type semiconductor layer, and 其中該第一多層介電反射體和該第二多層介電反射體中至少一者係一非平面反射體,且 Wherein at least one of the first multilayer dielectric reflector and the second multilayer dielectric reflector is a non-planar reflector, and 其中該第一多層介電反射體和該第二多層介電反射體形成一雷射作用腔,且 The first multilayer dielectric reflector and the second multilayer dielectric reflector form a laser cavity, and 其中該活性層向該雷射作用腔提供光學增益。 The active layer provides optical gain to the laser action cavity. 如申請專利範圍第1項之設備,其中該半導體結構更包括: For example, the device of item 1 of the scope of patent application, the semiconductor structure further includes: 一穿隧層,其面向該p型半導體層並與其接觸;以及 A tunneling layer facing and in contact with the p-type semiconductor layer; and 一第二n型半導體層,其面向該穿隧層並與其接觸。 A second n-type semiconductor layer faces and contacts the tunneling layer. 如申請專利範圍第1項之設備,其中該半導體結構更包括: For example, the device of item 1 of the scope of patent application, the semiconductor structure further includes: 一電流限制結構,其配置成限制穿越該活性層之一中心部位的電流。 A current limiting structure configured to limit current passing through a central part of the active layer. 如申請專利範圍第1項之設備,其中該第一n型半導體層從一晶圓基板形成。 Such as the device of the first item in the scope of patent application, wherein the first n-type semiconductor layer is formed from a wafer substrate. 如申請專利範圍第1項之設備,其中該活性層係該第一n型半導體層 與該p型半導體層之間的一pn接面。 Such as the device of item 1 of the scope of patent application, wherein the active layer is the first n-type semiconductor layer A pn junction with the p-type semiconductor layer. 如申請專利範圍第1項之設備,其中該活性層係一多重量子井(Multiple quantum well,MQW)結構。 For example, the device of the first item in the scope of patent application, wherein the active layer is a multiple quantum well (MQW) structure. 如申請專利範圍第1項之設備,其中該第一多層介電反射體在該特性波長下為部分反射性,且其中該第二多層介電反射體在該特性波長下為高度反射性。 Such as the device of item 1 of the scope of patent application, wherein the first multilayer dielectric reflector is partially reflective at the characteristic wavelength, and wherein the second multilayer dielectric reflector is highly reflective at the characteristic wavelength . 如申請專利範圍第1項之設備,其中該第一多層介電反射體在該特性波長下聚焦並為部分反射性,且其中該第二多層介電反射體在該特性波長下平坦並為高度反射性。 For example, the device of item 1 in the scope of the patent application, wherein the first multilayer dielectric reflector is focused and partially reflective at the characteristic wavelength, and wherein the second multilayer dielectric reflector is flat and at the characteristic wavelength It is highly reflective. 如申請專利範圍第1項之設備,其中該第一多層介電反射體彎曲成具有面向該第二多層介電反射體的一凹面,並在該特性波長下為部分反射性,且其中該第二多層介電反射體在該特性波長下平坦並為高度反射性。 Such as the device of item 1 of the scope of patent application, wherein the first multilayer dielectric reflector is curved to have a concave surface facing the second multilayer dielectric reflector, and is partially reflective at the characteristic wavelength, and wherein The second multilayer dielectric reflector is flat and highly reflective at the characteristic wavelength. 如申請專利範圍第1項之設備, Such as the equipment of item 1 in the scope of patent application, 其中該半導體結構更包括: The semiconductor structure further includes: 一穿隧層,其面向該p型半導體層並與其接觸; A tunneling layer facing and in contact with the p-type semiconductor layer; 一第二n型半導體層,其面向該穿隧層並與其接觸;以及 A second n-type semiconductor layer facing and in contact with the tunneling layer; and 一電流限制結構,其配置成限制穿越該活性層之一中心部位的電流, A current limiting structure configured to limit the current passing through a central part of the active layer, 其中該第一n型半導體層從一晶圓基板形成, Wherein the first n-type semiconductor layer is formed from a wafer substrate, 其中該第一多層介電反射體彎曲成具有面向該第二多層介電反射體的一凹面、在該特性波長下為部分反射性,並形成在該第一n型半導體層之一外表面上,且 The first multilayer dielectric reflector is bent to have a concave surface facing the second multilayer dielectric reflector, is partially reflective at the characteristic wavelength, and is formed outside one of the first n-type semiconductor layers On the surface, and 其中該第二多層介電反射體在該特性波長下平坦並為高度反射性,並形成在該第二n型半導體層之一外表面上,且 The second multilayer dielectric reflector is flat and highly reflective at the characteristic wavelength, and is formed on an outer surface of the second n-type semiconductor layer, and 其中該半導體結構更包括一電流限制結構,其配置成限制穿越該活性層之一中心部位的電流。 The semiconductor structure further includes a current limiting structure configured to limit the current passing through a central part of the active layer. 如申請專利範圍第1項之設備,其中該第一n型半導體層係n型磷化銦(InP),且其中該p型半導體層係p型InP。 Such as the device of the first item in the scope of patent application, wherein the first n-type semiconductor layer is n-type indium phosphide (InP), and wherein the p-type semiconductor layer is p-type InP. 如申請專利範圍第1項之設備,更包含複數附加VCSEL結構,其每個皆等同於該第一VCSEL結構,其中該等複數附加VCSEL結構和該第一VCSEL結構以一二維陣列設置。 For example, the device of item 1 of the scope of patent application further includes a plurality of additional VCSEL structures, each of which is equivalent to the first VCSEL structure, wherein the plurality of additional VCSEL structures and the first VCSEL structure are arranged in a two-dimensional array. 如申請專利範圍第1項之設備,更包含複數附加VCSEL結構,其每個皆等同於該第一VCSEL結構,其中該等複數附加VCSEL結構和該第一VCSEL結構以一矩形陣列設置。 For example, the device of item 1 of the scope of the patent application further includes plural additional VCSEL structures, each of which is equivalent to the first VCSEL structure, wherein the plural additional VCSEL structures and the first VCSEL structure are arranged in a rectangular array. 如申請專利範圍第1項之設備,更包含複數附加VCSEL結構,其每個皆等同於該第一VCSEL結構,其中該等複數附加VCSEL結構和該第一VCSEL結構以一六邊形陣列設置。 For example, the device of the first item in the scope of patent application further includes a plurality of additional VCSEL structures, each of which is equivalent to the first VCSEL structure, wherein the plurality of additional VCSEL structures and the first VCSEL structure are arranged in a hexagonal array. 如申請專利範圍第1項之設備,其中該特性波長約為1550nm。 For example, the device of item 1 in the scope of patent application, where the characteristic wavelength is about 1550nm. 如申請專利範圍第1項之設備,其中該特性波長介於430nm至490nm之間(含端值)。 For example, the device of item 1 of the scope of patent application, wherein the characteristic wavelength is between 430nm and 490nm (inclusive). 如申請專利範圍第1項之設備,其中該半導體結構包括磷化銦。 Such as the device of the first item in the scope of patent application, wherein the semiconductor structure includes indium phosphide. 如申請專利範圍第1項之設備,其中該半導體結構包括氮化鎵(gallium nitride)。 Such as the device of the first item in the scope of patent application, wherein the semiconductor structure includes gallium nitride. 如申請專利範圍第1項之設備,更包含複數附加VCSEL結構,其每個皆等同於該第一VCSEL結構,其中該等複數附加VCSEL結構和該第一VCSEL結構以一一維陣列設置。 For example, the device of the first item in the scope of the patent application further includes a plurality of additional VCSEL structures, each of which is equivalent to the first VCSEL structure, wherein the plurality of additional VCSEL structures and the first VCSEL structure are arranged in a one-dimensional array. 如申請專利範圍第1項之設備,更包含複數附加VCSEL結構,其每個皆等同於該第一VCSEL結構,其中該等複數附加VCSEL結構和該第一VCSEL結構配置成獨立選擇性啟用(activated)。 For example, the device of item 1 of the scope of patent application further includes a plurality of additional VCSEL structures, each of which is equivalent to the first VCSEL structure, wherein the plurality of additional VCSEL structures and the first VCSEL structure are configured to be independently and selectively activated (activated). ). 一種設備包含: A device contains: 一半導體垂直腔表面發射雷射(VCSEL)結構,其包括: A semiconductor vertical cavity surface emitting laser (VCSEL) structure, which includes: 一部分反射性多層介電反射體; Part of reflective multilayer dielectric reflector; 一高度反射性多層介電反射體;以及 A highly reflective multilayer dielectric reflector; and 一半導體結構,其位於該部分反射性多層介電反射體與該高度反射性多層介電反射體之間並與其接觸,其中該半導體結構包括: A semiconductor structure located between and in contact with the partially reflective multilayer dielectric reflector and the highly reflective multilayer dielectric reflector, wherein the semiconductor structure includes: 一第一n型半導體層; A first n-type semiconductor layer; 一p型半導體層;以及 A p-type semiconductor layer; and 一活性層,其位於該n型半導體層與該p型半導體層之間並與其接觸, An active layer located between and in contact with the n-type semiconductor layer and the p-type semiconductor layer, 其中該部分反射性多層介電反射體和該高度反射性多層介電反射體中至少一者係一彎曲聚焦反射體。 At least one of the partially reflective multilayer dielectric reflector and the highly reflective multilayer dielectric reflector is a curved focusing reflector. 如申請專利範圍第21項之設備, Such as the equipment of item 21 of the scope of patent application, 其中該半導體結構更包括: The semiconductor structure further includes: 一穿隧層,其面向該p型半導體層並與其接觸; A tunneling layer facing and in contact with the p-type semiconductor layer; 一第二n型半導體層,其面向該穿隧層並與其接觸;以及 A second n-type semiconductor layer facing and in contact with the tunneling layer; and 一電流限制結構,其配置成限制穿越該活性層之一中心部位的電流, A current limiting structure configured to limit the current passing through a central part of the active layer, 其中該第一n型半導體層從一晶圓基板形成, Wherein the first n-type semiconductor layer is formed from a wafer substrate, 其中該第一多層介電反射體彎曲成具有面向該第二多層介電反射體的一凹面、在該特性波長下為部分反射性,並形成在該第一n型半導體層之一外表面上,且 The first multilayer dielectric reflector is bent to have a concave surface facing the second multilayer dielectric reflector, is partially reflective at the characteristic wavelength, and is formed outside one of the first n-type semiconductor layers On the surface, and 其中該第二多層介電反射體在該特性波長下平坦並為高度反射性,並形成在該第二n型半導體層之一外表面上,且 The second multilayer dielectric reflector is flat and highly reflective at the characteristic wavelength, and is formed on an outer surface of the second n-type semiconductor layer, and 其中該半導體結構更包括一電流限制結構,其配置成限制穿越該活性層之一中心部位的電流。 The semiconductor structure further includes a current limiting structure configured to limit the current passing through a central part of the active layer. 一種方法包含: One method involves: 得到形成一第一n型半導體層的一n型半導體基板; Obtaining an n-type semiconductor substrate forming a first n-type semiconductor layer; 在該第一n型半導體層上沉積一p型半導體層,以在該第一n型半導體層與該p型半導體層之間形成一活性層; Depositing a p-type semiconductor layer on the first n-type semiconductor layer to form an active layer between the first n-type semiconductor layer and the p-type semiconductor layer; 在該p型半導體層上形成一穿隧層,且一第二n型半導體層面向該穿隧層並與其接觸; Forming a tunnel layer on the p-type semiconductor layer, and a second n-type semiconductor layer faces and contacts the tunnel layer; 在該第二n型半導體層上沉積一高度反射性多層介電反射體; Depositing a highly reflective multilayer dielectric reflector on the second n-type semiconductor layer; 在該高度反射性多層介電反射體上沉積一第一金屬電接點,其中至少一個電接點到該第二n型半導體層; Depositing a first metal electrical contact on the highly reflective multilayer dielectric reflector, wherein at least one electrical contact is connected to the second n-type semiconductor layer; 在相對於該第二n型半導體層上的該高度反射性多層介電反射體 的該基板之一第一面上形成一聚焦部分反射性多層介電反射體表面;以及 The highly reflective multilayer dielectric reflector on the second n-type semiconductor layer A surface of a focused partially reflective multilayer dielectric reflector is formed on a first surface of the substrate; and 在該基板之該第一面上沉積一第二金屬電接點,其中至少一個電接點到該第一n型半導體層。 A second metal electrical contact is deposited on the first surface of the substrate, and at least one electrical contact is connected to the first n-type semiconductor layer. 如申請專利範圍第23項之方法,其中該基板之該第一面之該聚焦部分反射性多層介電反射體表面之該形成包括將一彎曲表面蝕刻到該基板中。 Such as the method of claim 23, wherein the forming of the focusing partly reflective multilayer dielectric reflector surface of the first surface of the substrate includes etching a curved surface into the substrate. 如申請專利範圍第23項之方法,其中該基板之該第一面之該聚焦部分反射性多層介電反射體表面之該形成包括使用光微影(photolithography)在該基板上形成一繞射反射體。 Such as the method of claim 23, wherein the forming of the surface of the focused partially reflective multilayer dielectric reflector on the first surface of the substrate includes forming a diffraction reflection on the substrate using photolithography body. 如申請專利範圍第23項之方法,其中該基板之該第一面之該聚焦部分反射性多層介電反射體表面之該形成包括在該基板上形成一全像(holographic)反射體。 Such as the method of claim 23, wherein the forming of the surface of the focused partially reflective multilayer dielectric reflector on the first surface of the substrate includes forming a holographic reflector on the substrate.
TW109118533A 2019-06-03 2020-06-02 Vertical-cavity surface-emitting laser using dichroic reflectors TW202117864A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201962856518P 2019-06-03 2019-06-03
US62/856,518 2019-06-03
PCT/US2020/035492 WO2020247291A1 (en) 2019-06-03 2020-06-01 Vertical-cavity surface-emitting laser using dichroic reflectors
USPCT/US20/35492 2020-06-01

Publications (1)

Publication Number Publication Date
TW202117864A true TW202117864A (en) 2021-05-01

Family

ID=73652233

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109118533A TW202117864A (en) 2019-06-03 2020-06-02 Vertical-cavity surface-emitting laser using dichroic reflectors

Country Status (2)

Country Link
TW (1) TW202117864A (en)
WO (1) WO2020247291A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI826049B (en) * 2022-10-19 2023-12-11 華立捷科技股份有限公司 Surface emitting laser apparatus and method of manufacturing the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3633807B1 (en) * 2017-05-31 2021-12-29 Sony Group Corporation Light-emitting element and light-emitting element manufacturing method
CN110892597B (en) * 2017-07-18 2022-11-04 索尼公司 Light emitting device and light emitting device array
DE102021116861A1 (en) * 2021-06-30 2023-01-05 Trumpf Photonic Components Gmbh Process for manufacturing a semiconductor device and such a semiconductor device
DE102021128135A1 (en) * 2021-10-28 2023-05-04 Robert Bosch Gesellschaft mit beschränkter Haftung Laser device, scanning device and a method for manufacturing a laser device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5974066A (en) * 1997-05-09 1999-10-26 Motorola, Inc. Low cost, efficient vertical cavity surface emitting laser package, method, bar code scanner and optical storage unit
US7480322B2 (en) * 2006-05-15 2009-01-20 The Regents Of The University Of California Electrically-pumped (Ga,In,Al)N vertical-cavity surface-emitting laser
US10244181B2 (en) * 2009-02-17 2019-03-26 Trilumina Corp. Compact multi-zone infrared laser illuminator
JP2010251649A (en) * 2009-04-20 2010-11-04 Hitachi Ltd Surface emitting laser module and surface light receiving module
WO2014088502A1 (en) * 2012-12-05 2014-06-12 Hammar Mattias Vertical-cavity surface-emitting transistor laser, t-vcsel and method for producing the same
JP6576092B2 (en) * 2015-04-30 2019-09-18 キヤノン株式会社 Surface emitting laser, information acquisition device, and imaging device
WO2017151846A1 (en) * 2016-03-04 2017-09-08 Princeton Optronics, Inc. High-speed vcsel device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI826049B (en) * 2022-10-19 2023-12-11 華立捷科技股份有限公司 Surface emitting laser apparatus and method of manufacturing the same

Also Published As

Publication number Publication date
WO2020247291A1 (en) 2020-12-10

Similar Documents

Publication Publication Date Title
TW202117864A (en) Vertical-cavity surface-emitting laser using dichroic reflectors
RU2142661C1 (en) Injection non-coherent light source
US6661031B2 (en) Resonant-cavity light-emitting diode and optical transmission module using the light-emitting diode
JP4819290B2 (en) Laser apparatus and manufacturing method
US8926100B2 (en) Illumination device having improved illumination light symmetricalness and projector having the illumination device
US20050259700A1 (en) Optically pumpable surface-emitting semiconductor laser device
CN110311296A (en) Diode laser packaging part with expanding laser oscillator waveguide
JP2004503118A (en) VCSEL and VCSEL array with integrated microlenses for use in semiconductor laser pumped solid-state laser systems
US6097041A (en) Light-emitting diode with anti-reflector
WO2010023094A2 (en) Optoelectronic systems providing high-power high-brightness laser light based on field coupled arrays, bars and stacks of semiconductor diode lasers
US7136408B2 (en) InGaN diode-laser pumped II-VI semiconductor lasers
JP2012190907A (en) Light emitting device and projector
JPWO2018190030A1 (en) Light emitting element and light emitting device
US10656510B2 (en) Superluminescent light emitting diode (SLED) device
WO2019133655A1 (en) Structured light projection system including narrow beam divergence semiconductor sources
JP2023029501A (en) Wavelength conversion device and light emitting device
KR20160078259A (en) Light emitting device and projector
CN111313233A (en) Laser device and manufacturing method and application thereof
KR100413708B1 (en) Microcavity LED photon recycling
TWI289220B (en) Apparatus for and method of frequency conversion
US9735544B2 (en) Surface emitting laser element
CN114552380A (en) Resonant cavity, laser unit, chip, laser, forming method and laser radar
CN113258443B (en) Vertical cavity surface emitting laser and manufacturing method and application thereof
Hamaguchi et al. 49‐2: Invited Paper: Blue and Green VCSEL for Full‐Color Display
JP5936017B2 (en) Light emitting device and projector