TW202106427A - Methods of cutting glass-metal laminates using a laser - Google Patents

Methods of cutting glass-metal laminates using a laser Download PDF

Info

Publication number
TW202106427A
TW202106427A TW109118575A TW109118575A TW202106427A TW 202106427 A TW202106427 A TW 202106427A TW 109118575 A TW109118575 A TW 109118575A TW 109118575 A TW109118575 A TW 109118575A TW 202106427 A TW202106427 A TW 202106427A
Authority
TW
Taiwan
Prior art keywords
layer
metal layer
glass
metal
glass layer
Prior art date
Application number
TW109118575A
Other languages
Chinese (zh)
Inventor
金珠錫
李宇鎭
朴喆熙
麥克威廉 普萊斯
申東根
唐玉銀
Original Assignee
美商康寧公司
韓商康寧精密素材股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商康寧公司, 韓商康寧精密素材股份有限公司 filed Critical 美商康寧公司
Publication of TW202106427A publication Critical patent/TW202106427A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/57Working by transmitting the laser beam through or within the workpiece the laser beam entering a face of the workpiece from which it is transmitted through the workpiece material to work on a different workpiece face, e.g. for effecting removal, fusion splicing, modifying or reforming
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/07Cutting armoured, multi-layered, coated or laminated, glass products
    • C03B33/074Glass products comprising an outer layer or surface coating of non-glass material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/09Severing cooled glass by thermal shock
    • C03B33/091Severing cooled glass by thermal shock using at least one focussed radiation beam, e.g. laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/16Composite materials, e.g. fibre reinforced
    • B23K2103/166Multilayered materials
    • B23K2103/172Multilayered materials wherein at least one of the layers is non-metallic

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Laser Beam Processing (AREA)
  • Laminated Bodies (AREA)

Abstract

Methods of cutting a glass-metal laminate include directing a moving laser beam through the glass layer to the metal layer, forming a hot spot in the metal layer. The hot spot forms a metal-layer cut line. The method includes locally heating the glass layer with heat from the metal layer hot spot to form in the glass layer a moving heated region. With rapid cooling, the moving heated region forms a glass-layer fracture line that follows the metal-layer cut line, defining a laminated-structure cut line. The methods provide a cut glass-metal laminate product or article.

Description

使用雷射來切割玻璃-金屬層合板的方法Method of using laser to cut glass-metal laminate

此申請案依據專利法主張於2019年6月3日所提出的第62/856,444號的美國臨時專利申請案的優先權權益,該申請案的整體內容於本文中以引用方式併入本文中。This application claims the priority rights of US provisional patent application No. 62/856,444 filed on June 3, 2019 in accordance with the patent law, and the entire content of the application is incorporated herein by reference.

本揭示內容與切割玻璃-金屬層合板相關,且特別是與使用雷射的此類方法相關。The present disclosure is related to cutting glass-metal laminates, and in particular to such methods using lasers.

玻璃層合板是包括至少一個玻璃層的多層結構。玻璃-金屬層合板具有至少一個玻璃層及至少一個金屬層,且在本文中所考慮的示例中具有「頂部」玻璃層及「底部」金屬層。玻璃層合板具有許多應用,且已經證實作為電子產品的保護蓋及框架、以及對於壁面板、門、標記板、傢俱、及建築產品而言是特別有用的。The glass laminate is a multilayer structure including at least one glass layer. The glass-metal laminate has at least one glass layer and at least one metal layer, and in the example considered herein has a "top" glass layer and a "bottom" metal layer. Glass laminates have many applications and have proven to be particularly useful as protective covers and frames for electronic products, as well as for wall panels, doors, sign boards, furniture, and building products.

一般將玻璃層合板形成成大的片材,然後切割成一定尺寸以針對給定的應用界定特定的玻璃層合製品或產品。不同的切割方法包括刳刨機、水流、金剛石刀鋸、台式鋸、及雷射(例如CO2雷射)。這些方法涉及直接切割或加熱玻璃層合板以進行切割,且通常造成成形不良的邊緣,因此需要後處理。此外,機械方法造成了工具磨損。Generally, glass laminates are formed into large sheets and then cut to a certain size to define a specific glass laminate or product for a given application. Different cutting methods include routers, water jets, diamond blade saws, table saws, and lasers (such as CO2 lasers). These methods involve directly cutting or heating the glass laminate for cutting, and often result in poorly formed edges, thus requiring post-processing. In addition, mechanical methods cause tool wear.

本揭示內容的實施例涉及一種切割由附接到金屬層的玻璃層所界定的玻璃-金屬層合結構(玻璃-金屬層合板)的方法。該方法包括以下步驟:a)在選定方向上將具有一定波長的移動的雷射束引導通過該玻璃層到該金屬層,以使得該移動的雷射束實質上被該金屬層吸收且加熱該金屬層以在該金屬層中形成熱點,其中該熱點由於局部熔化該金屬層而形成金屬層切割線;b)用來自形成於該金屬層中的該熱點的熱局部加熱該玻璃層以在該玻璃層中形成具有強的熱梯度的移動的加熱區域;及c)快速冷卻該移動的加熱區域以形成跟隨該金屬層切割線的玻璃層斷裂線,其中該玻璃層切割線及該金屬層切割線界定層合結構切割線。An embodiment of the present disclosure relates to a method of cutting a glass-metal laminate structure (glass-metal laminate) defined by a glass layer attached to a metal layer. The method includes the following steps: a) In a selected direction, a moving laser beam having a certain wavelength is guided through the glass layer to the metal layer, so that the moving laser beam is substantially absorbed by the metal layer and heats the metal layer. The metal layer forms a hot spot in the metal layer, wherein the hot spot forms a metal layer cutting line due to the partial melting of the metal layer; b) locally heating the glass layer with heat from the hot spot formed in the metal layer to A moving heating area with a strong thermal gradient is formed in the glass layer; and c) the moving heating area is rapidly cooled to form a glass layer breaking line following the metal layer cutting line, wherein the glass layer cutting line and the metal layer cutting The line defines the cutting line of the laminate structure.

本揭示內容的另一個實施例涉及一種切割由附接到金屬層的玻璃層所界定的層合結構的方法。該方法包括以下步驟:將移動的雷射束在選定方向上引導且引導通過該玻璃層到該金屬層,以在該金屬層中形成在該選定方向上行進的移動的熱點,其中該玻璃層實質上不被該雷射束加熱;使用從該移動的熱點吸收的熱來選擇性地加熱及熔化該金屬層,以藉由局部地熔化該金屬層來在該金屬層中形成在該選定方向上行進的切口;使用來自該移動的熱點的熱來局部地加熱該玻璃層,以在該玻璃層內形成移動的加熱區域;及冷卻該移動的加熱區域以在該玻璃層中產生足以在該玻璃層中形成斷裂的應力,該斷裂在該選定方向上行進且與該金屬層中的該切口重合。Another embodiment of the present disclosure relates to a method of cutting a laminated structure defined by a glass layer attached to a metal layer. The method includes the steps of guiding a moving laser beam in a selected direction and through the glass layer to the metal layer to form a moving hot spot in the metal layer that travels in the selected direction, wherein the glass layer Substantially not heated by the laser beam; using heat absorbed from the moving hot spot to selectively heat and melt the metal layer to form in the metal layer in the selected direction by locally melting the metal layer Moving incision; using heat from the moving hot spot to locally heat the glass layer to form a moving heating area within the glass layer; and cooling the moving heating area to generate sufficient heat in the glass layer The stress that forms a fracture in the glass layer, the fracture travels in the selected direction and coincides with the cut in the metal layer.

本揭示內容的另一個實施例涉及一種由工序所形成的切割的玻璃-金屬層合產品(或製品),該工序包括以下步驟:a)將玻璃層附接到金屬層以形成玻璃-金屬層合板;b)在選定方向上將具有一定波長的移動的雷射束引導通過該玻璃層到該玻璃-金屬層合板的該金屬層,以使得該移動的雷射束實質上被該金屬層吸收且加熱該金屬層以在該金屬層中形成熱點,其中該熱點由於局部熔化該金屬層而形成金屬層切割線;c)用來自形成於該金屬層中的該熱點的熱局部加熱該玻璃層以在該玻璃層中形成具有強的熱梯度的移動的加熱區域;及d)快速冷卻該移動的加熱區域以形成跟隨該金屬層切割線的玻璃層斷裂線,其中該玻璃層切割線及該金屬層切割線界定層合結構切割線。Another embodiment of the present disclosure relates to a cut glass-metal laminated product (or article) formed by a process including the following steps: a) attaching a glass layer to a metal layer to form a glass-metal layer Plywood; b) guiding a moving laser beam with a certain wavelength in a selected direction through the glass layer to the metal layer of the glass-metal laminate, so that the moving laser beam is substantially absorbed by the metal layer And heating the metal layer to form a hot spot in the metal layer, wherein the hot spot forms a metal layer cutting line due to the partial melting of the metal layer; c) locally heating the glass layer with heat from the hot spot formed in the metal layer To form a moving heating area with a strong thermal gradient in the glass layer; and d) rapidly cooling the moving heating area to form a glass layer breaking line following the metal layer cutting line, wherein the glass layer cutting line and the glass layer The metal layer cutting line defines the laminate structure cutting line.

本揭示內容的另一個實施例涉及一種由工序所形成的切割的玻璃-金屬層合產品(或製品),該工序包括以下步驟:將玻璃層附接到金屬層以形成玻璃-金屬層合板;將移動的雷射束在選定方向上引導且引導通過該玻璃層到該玻璃-金屬層合板的該金屬層,以在該金屬層中形成在該選定方向上行進的移動的熱點,其中該玻璃層實質上不被該雷射束加熱;使用從該移動的熱點吸收的熱來選擇性地加熱及熔化該金屬層,以藉由局部地熔化該金屬層來在該金屬層中形成在該選定方向上行進的切口;使用來自該移動的熱點的熱來局部地加熱該玻璃層,以在該玻璃層內形成移動的加熱區域;及冷卻該移動的加熱區域以在該玻璃層中產生足以在該玻璃層中形成斷裂的應力,該斷裂在該選定方向上行進且與該金屬層中的該切口重合。Another embodiment of the present disclosure relates to a cut glass-metal laminate product (or article) formed by a process including the following steps: attaching a glass layer to a metal layer to form a glass-metal laminate; The moving laser beam is guided in a selected direction and guided through the glass layer to the metal layer of the glass-metal laminate to form a moving hot spot in the metal layer that travels in the selected direction, wherein the glass The layer is not substantially heated by the laser beam; the heat absorbed from the moving hot spot is used to selectively heat and melt the metal layer to form in the metal layer in the selected metal layer by locally melting the metal layer. Cutting in the direction of travel; using heat from the moving hot spot to locally heat the glass layer to form a moving heating area within the glass layer; and cooling the moving heating area to produce sufficient heat in the glass layer A stress for fracture is formed in the glass layer, the fracture travels in the selected direction and coincides with the cut in the metal layer.

在一個態樣中,提供了一種切割層合結構的方法,該層合結構由附接到金屬層的玻璃層所界定,該方法包括以下步驟:a)在選定方向上將具有一定波長的移動的雷射束引導通過該玻璃層到該金屬層,以使得該移動的雷射束實質上被該金屬層吸收且加熱該金屬層以在該金屬層中形成熱點,其中該熱點由於局部熔化該金屬層而形成金屬層切割線;b)用來自形成於該金屬層中的該熱點的熱局部加熱該玻璃層以在該玻璃層中形成具有強的熱梯度的移動的加熱區域;及c)快速冷卻該移動的加熱區域以形成跟隨該金屬層切割線的玻璃層斷裂線,其中該玻璃層切割線及該金屬層切割線界定層合結構切割線。In one aspect, a method of cutting a laminate structure is provided, the laminate structure being defined by a glass layer attached to a metal layer, the method comprising the following steps: a) moving a certain wavelength in a selected direction The laser beam is guided through the glass layer to the metal layer, so that the moving laser beam is substantially absorbed by the metal layer and heats the metal layer to form a hot spot in the metal layer, wherein the hot spot is caused by locally melting the A metal layer to form a metal layer cutting line; b) locally heating the glass layer with heat from the hot spot formed in the metal layer to form a moving heating area with a strong thermal gradient in the glass layer; and c) The moving heating area is rapidly cooled to form a glass layer breaking line following the metal layer cutting line, wherein the glass layer cutting line and the metal layer cutting line define a laminate structure cutting line.

在一或更多個實施例中,層合結構切割線將層合結構分離成兩個單獨的部分。In one or more embodiments, the laminate structure cutting line separates the laminate structure into two separate parts.

在一或更多個實施例中,該兩個單獨部分中的每一者具有由該層合結構切割線所界定的邊緣,其中每個邊緣具有大於60 MPa的平均邊緣強度。In one or more embodiments, each of the two separate parts has an edge defined by the laminate structure cutting line, wherein each edge has an average edge strength greater than 60 MPa.

在一或更多個實施例中,該玻璃層藉由固定層附接到該金屬層,且其中該固定層的一部分被該雷射束燒蝕。In one or more embodiments, the glass layer is attached to the metal layer by a fixed layer, and a part of the fixed layer is ablated by the laser beam.

在一或更多個實施例中,該固定層包括光學無色的黏著劑。In one or more embodiments, the fixing layer includes an optically colorless adhesive.

在一或更多個實施例中,該雷射束的該波長是在從0.8微米到1.1微米的範圍中。In one or more embodiments, the wavelength of the laser beam is in the range from 0.8 microns to 1.1 microns.

在一或更多個實施例中,該雷射束由Nd:YAG雷射及基於二極體的光纖雷射中的任一者所產生。In one or more embodiments, the laser beam is generated by any one of a Nd:YAG laser and a diode-based fiber laser.

在一或更多個實施例中,該玻璃層具有從0.1 mm到5 mm的範圍中的厚度。In one or more embodiments, the glass layer has a thickness in the range from 0.1 mm to 5 mm.

在一或更多個實施例中,該金屬層具有從0.1 mm到20 mm的範圍中的厚度。In one or more embodiments, the metal layer has a thickness in the range from 0.1 mm to 20 mm.

在一或更多個實施例中,該金屬層包括選自包括以下項目的金屬群組及它們的合金的金屬:鋁、鈷、銅、鐵、錳、鎳、錫、及貴金屬。In one or more embodiments, the metal layer includes a metal selected from the group of metals including the following items and their alloys: aluminum, cobalt, copper, iron, manganese, nickel, tin, and noble metals.

在一或更多個實施例中,該加熱區域界定該玻璃層的加熱表面部分,且其中快速冷卻該加熱區域的該行動包括以下步驟:在該加熱表面部分處引導氣體流。In one or more embodiments, the heating area defines a heating surface portion of the glass layer, and wherein the action of rapidly cooling the heating area includes the step of directing a gas flow at the heating surface portion.

在一或更多個實施例中,來自該氣體流的氣體流動通過該玻璃層斷裂線且通過該金屬層切割線,且在熔化的金屬可以固化之前從該局部地熔化的金屬層移除該熔化的金屬。In one or more embodiments, the gas from the gas stream flows through the glass layer breaking line and through the metal layer cutting line, and the locally molten metal layer is removed from the locally molten metal layer before the molten metal can solidify Molten metal.

在一或更多個實施例中,該氣體流包括惰性氣體。In one or more embodiments, the gas stream includes an inert gas.

在一或更多個實施例中,該氣體流包括反應氣體。In one or more embodiments, the gas stream includes a reactive gas.

在一或更多個實施例中,該氣體流包括空氣、氮氧、或氧氣。In one or more embodiments, the gas stream includes air, nitrogen oxide, or oxygen.

在一或更多個實施例中,該玻璃層具有第一熱膨脹係數(CTE),該金屬層具有第二CTE,該第二CTE實質大於該第一CTE以界定CTE差,且其中形成應力區域的步驟包括以下步驟:由於該CTE差將應力添加該應力區域。In one or more embodiments, the glass layer has a first coefficient of thermal expansion (CTE), the metal layer has a second CTE, the second CTE is substantially greater than the first CTE to define a CTE difference, and a stress region is formed therein The steps include the following steps: adding stress to the stress area due to the CTE difference.

在一或更多個實施例中,該層合切割線包括直線。In one or more embodiments, the laminate cutting line includes a straight line.

在一或更多個實施例中,該層合切割線包括曲線。In one or more embodiments, the laminate cutting line includes a curved line.

在一或更多個實施例中,該玻璃層在該雷射束的該波長下具有大於80%的光學透射率。In one or more embodiments, the glass layer has an optical transmittance greater than 80% at the wavelength of the laser beam.

在一或更多個實施例中,該玻璃層在該雷射束的該波長下具有大於90%的光學透射率。In one or more embodiments, the glass layer has an optical transmittance greater than 90% at the wavelength of the laser beam.

在一或更多個實施例中,該玻璃層包括強化玻璃。In one or more embodiments, the glass layer includes strengthened glass.

在一個態樣中,提供了一種切割層合結構的方法,該層合結構由附接到金屬層的玻璃層所界定,該方法包括以下步驟:將移動的雷射束在選定方向上引導且引導通過該玻璃層到該金屬層,以在該金屬層中形成在該選定方向上行進的移動的熱點,其中該玻璃層實質上不被該雷射束加熱;使用從該移動的熱點吸收的熱來選擇性地加熱及熔化該金屬層,以藉由局部地熔化該金屬層來在該金屬層中形成在該選定方向上行進的切口;使用來自該移動的熱點的熱來局部地加熱該玻璃層,以在該玻璃層內形成移動的加熱區域;及冷卻該移動的加熱區域以在該玻璃層中產生足以在該玻璃層中形成斷裂的應力,該斷裂在該選定方向上行進且與該金屬層中的該切口重合。In one aspect, there is provided a method of cutting a laminated structure defined by a glass layer attached to a metal layer, the method including the steps of: directing a moving laser beam in a selected direction and Guide through the glass layer to the metal layer to form a moving hot spot in the metal layer that travels in the selected direction, wherein the glass layer is not substantially heated by the laser beam; using the hot spot absorbed from the moving hot spot Heat selectively heats and melts the metal layer to form cuts in the metal layer that travel in the selected direction by locally melting the metal layer; heat from the moving hot spot is used to locally heat the metal layer A glass layer to form a moving heating area within the glass layer; and cooling the moving heating area to generate a stress in the glass layer sufficient to form a fracture in the glass layer, the fracture traveling in the selected direction and interacting with The cuts in the metal layer coincide.

在一或更多個實施例中,該玻璃層中的該斷裂及該金屬層中的該切口界定層合結構切割線,該層合結構切割線將該層合結構分離成兩個單獨的部分。In one or more embodiments, the break in the glass layer and the cut in the metal layer define a laminate structure cutting line that separates the laminate structure into two separate parts .

在一或更多個實施例中,該兩個單獨部分中的每一者具有由該層合結構切割線所界定的邊緣,其中每個邊緣具有大於60 MPa的平均邊緣強度。In one or more embodiments, each of the two separate parts has an edge defined by the laminate structure cutting line, wherein each edge has an average edge strength greater than 60 MPa.

在一或更多個實施例中,該層合結構切割線包括直線。In one or more embodiments, the laminate structure cutting line includes a straight line.

在一或更多個實施例中,該層合結構切割線包括曲線。In one or more embodiments, the laminate structure cutting line includes a curved line.

在一或更多個實施例中,該玻璃層藉由固定層附接到該金屬層,且其中該固定層的一部分被該雷射束燒蝕。In one or more embodiments, the glass layer is attached to the metal layer by a fixed layer, and a part of the fixed layer is ablated by the laser beam.

在一或更多個實施例中,該固定層包括光學無色的黏著劑。In one or more embodiments, the fixing layer includes an optically colorless adhesive.

在一或更多個實施例中,該雷射束具有從0.8微米到1.1微米的範圍中的波長。In one or more embodiments, the laser beam has a wavelength in the range from 0.8 microns to 1.1 microns.

在一或更多個實施例中,該雷射束由Nd:YAG雷射及基於二極體的光纖雷射中的任一者所產生。In one or more embodiments, the laser beam is generated by any one of a Nd:YAG laser and a diode-based fiber laser.

在一或更多個實施例中,該玻璃層具有從0.10 mm到5 mm的範圍中的厚度。In one or more embodiments, the glass layer has a thickness in the range from 0.10 mm to 5 mm.

在一或更多個實施例中,該金屬層具有從0.10 mm到20 mm的範圍中的厚度。In one or more embodiments, the metal layer has a thickness in the range from 0.10 mm to 20 mm.

在一或更多個實施例中,該金屬層包括選自包括以下項目的金屬群組及它們的合金的金屬:鋁、鈷、銅、鐵、錳、鎳、錫、及貴金屬。In one or more embodiments, the metal layer includes a metal selected from the group of metals including the following items and their alloys: aluminum, cobalt, copper, iron, manganese, nickel, tin, and noble metals.

在一或更多個實施例中,該移動的加熱區域界定該玻璃層的移動的加熱表面部分,且其中快速冷卻該加熱區域的該行動包括以下步驟:在該移動的加熱表面部分處引導氣體流。In one or more embodiments, the moving heating area defines a moving heating surface portion of the glass layer, and wherein the action of rapidly cooling the heating area includes the step of: directing gas at the moving heating surface portion flow.

在一或更多個實施例中,該氣體流的一部分流動通過該玻璃層中的該斷裂及該金屬層中的該切口,且在熔化的金屬可以固化之前從該局部地熔化的金屬層移除該熔化的金屬。In one or more embodiments, a portion of the gas stream flows through the fracture in the glass layer and the cut in the metal layer, and moves from the locally molten metal layer before the molten metal can solidify. Remove the molten metal.

在一或更多個實施例中,該氣體流包括以下項目中的至少一者:反應氣體、惰性氣體、氮氧、氧氣、及空氣。In one or more embodiments, the gas stream includes at least one of the following items: reactive gas, inert gas, nitrogen oxide, oxygen, and air.

在一或更多個實施例中,該玻璃層具有第一熱膨脹係數(CTE),該金屬層具有第二CTE,該第二CTE實質大於該第一CTE以界定CTE差,且其中形成應力區域的步驟包括以下步驟:由於該CTE差將應力添加該應力區域。In one or more embodiments, the glass layer has a first coefficient of thermal expansion (CTE), the metal layer has a second CTE, the second CTE is substantially greater than the first CTE to define a CTE difference, and a stress region is formed therein The steps include the following steps: adding stress to the stress area due to the CTE difference.

在一或更多個實施例中,該玻璃層在該雷射束的該波長下具有大於80%的光學透射率。In one or more embodiments, the glass layer has an optical transmittance greater than 80% at the wavelength of the laser beam.

在一或更多個實施例中,該玻璃層在該雷射束的該波長下具有大於90%的光學透射率。In one or more embodiments, the glass layer has an optical transmittance greater than 90% at the wavelength of the laser beam.

在一或更多個實施例中,該玻璃層包括強化玻璃。In one or more embodiments, the glass layer includes strengthened glass.

在一個態樣中,提供了一種由工序所形成的切割的玻璃-金屬層合產品,該工序包括以下步驟:a)將玻璃層附接到金屬層以形成玻璃-金屬層合板;b)在選定方向上將具有一定波長的移動的雷射束引導通過該玻璃層到該玻璃-金屬層合板的該金屬層,以使得該移動的雷射束實質上被該金屬層吸收且加熱該金屬層以在該金屬層中形成熱點,其中該熱點由於局部熔化該金屬層而形成金屬層切割線;c)用來自形成於該金屬層中的該熱點的熱局部加熱該玻璃層以在該玻璃層中形成具有強的熱梯度的移動的加熱區域;及d)快速冷卻該移動的加熱區域以形成跟隨該金屬層切割線的玻璃層斷裂線,其中該玻璃層切割線及該金屬層切割線界定層合結構切割線。In one aspect, there is provided a cut glass-metal laminate product formed by a process including the following steps: a) attaching a glass layer to a metal layer to form a glass-metal laminate; b) Guide a moving laser beam with a certain wavelength in a selected direction through the glass layer to the metal layer of the glass-metal laminate, so that the moving laser beam is substantially absorbed by the metal layer and heats the metal layer To form a hot spot in the metal layer, wherein the hot spot forms a metal layer cutting line due to the partial melting of the metal layer; c) locally heating the glass layer with heat from the hot spot formed in the metal layer to form a cut line in the glass layer Forming a moving heating area with a strong thermal gradient; and d) rapidly cooling the moving heating area to form a glass layer breaking line following the metal layer cutting line, wherein the glass layer cutting line and the metal layer cutting line define Laminated structure cutting line.

在一或更多個實施例中,該切割的玻璃-金屬層合產品包括由該層合結構切割線所界定的邊緣,其中該邊緣具有大於60 MPa的平均邊緣強度。In one or more embodiments, the cut glass-metal laminate product includes an edge defined by a cutting line of the laminate structure, wherein the edge has an average edge strength greater than 60 MPa.

在一個態樣中,提供了一種由工序所形成的切割的玻璃-金屬層合產品,該工序包括以下步驟:將玻璃層附接到金屬層以形成玻璃-金屬層合板;將移動的雷射束在選定方向上引導且引導通過該玻璃層到該玻璃-金屬層合板的該金屬層,以在該金屬層中形成在該選定方向上行進的移動的熱點,其中該玻璃層實質上不被該雷射束加熱;使用從該移動的熱點吸收的熱來選擇性地加熱及熔化該金屬層,以藉由局部地熔化該金屬層來在該金屬層中形成在該選定方向上行進的切口;使用來自該移動的熱點的熱來局部地加熱該玻璃層,以在該玻璃層內形成移動的加熱區域;及冷卻該移動的加熱區域以在該玻璃層中產生足以在該玻璃層中形成斷裂的應力,該斷裂在該選定方向上行進且與該金屬層中的該切口重合。In one aspect, there is provided a cut glass-metal laminate product formed by a process including the following steps: attaching a glass layer to a metal layer to form a glass-metal laminate; placing a moving laser The beam is guided in a selected direction and guided through the glass layer to the metal layer of the glass-metal laminate to form a hot spot of movement in the metal layer that travels in the selected direction, wherein the glass layer is not substantially affected by The laser beam is heated; using heat absorbed from the moving hot spot to selectively heat and melt the metal layer to form a cut in the metal layer that travels in the selected direction by locally melting the metal layer ; Use the heat from the moving hot spot to locally heat the glass layer to form a moving heating area in the glass layer; and cool the moving heating area to generate enough in the glass layer to form in the glass layer The stress of the fracture that travels in the selected direction and coincides with the cut in the metal layer.

在一或更多個實施例中,該切割的玻璃-金屬層合產品包括由該層合結構切割線所界定的邊緣,其中該邊緣具有大於60 MPa的平均邊緣強度。In one or more embodiments, the cut glass-metal laminate product includes an edge defined by a cutting line of the laminate structure, wherein the edge has an average edge strength greater than 60 MPa.

額外的特徵及優點被闡述在以下的「實施方式」中,且本領域中的技術人員將容易藉由本說明書以及附圖來理解該等特徵及優點的一部分,或藉由實行如本文的書面說明及請求項以及附圖中所描述的實施例來認識該等特徵及優點的一部分。要了解到,以上的概括說明及以下的「實施方式」兩者都僅是示例性的,且要用來提供概觀或架構以了解請求項的本質及特質。Additional features and advantages are described in the following "implementations", and those skilled in the art will easily understand a part of these features and advantages through this specification and drawings, or by implementing written descriptions as described herein And the claims and the embodiments described in the drawings to realize a part of these features and advantages. It should be understood that both the above general description and the following "implementation mode" are only exemplary, and are used to provide an overview or structure to understand the nature and characteristics of the request item.

現在詳細參照本揭示內容的各種實施例,該等實施例的示例被繪示在附圖中。盡可能在所有附圖使用了相同或類似的參考標號及符號來指稱相同的或類似的部件。繪圖不一定是按照比例的,且本領域中的技術人員將辨識繪圖的何處已被簡化以繪示本揭示內容的關鍵態樣。Reference is now made in detail to various embodiments of the present disclosure, examples of which are illustrated in the accompanying drawings. Wherever possible, the same or similar reference numerals and symbols are used in all drawings to refer to the same or similar components. The drawing is not necessarily to scale, and those skilled in the art will recognize where the drawing has been simplified to illustrate the key aspect of the present disclosure.

如下文所闡述的請求項被合併到此「實施方式」中且構成此「實施方式」的一部分。The claims as set forth below are incorporated into this "implementation mode" and constitute a part of this "implementation mode".

為了參考而在圖式中的一些中示出了笛卡爾坐標,且該等笛卡爾坐標不是要用作對方向或定向的限制。Cartesian coordinates are shown in some of the drawings for reference, and these Cartesian coordinates are not intended to be used as restrictions on direction or orientation.

例如「頂部」及「底部」以及「垂直」及「水平」的相對用語及類似的用語是為了方便及易於論述及解釋起見而使用的,且不旨在限制方向或定向。Relative terms such as "top" and "bottom" and "vertical" and "horizontal" and similar terms are used for convenience and ease of discussion and explanation, and are not intended to limit the direction or orientation.

玻璃glass -- 金屬層合結構Metal laminate structure

圖1A是示例玻璃-金屬層合結構(「玻璃-金屬層合板」)10的高架視圖。圖1B是圖1A的玻璃-金屬層合板的一部分的特寫x-y橫截面圖。玻璃-金屬層合板10藉由使用固定層40將頂部玻璃層20附接到底部金屬層30來形成,該固定層被該玻璃層及該金屬層夾在中間。玻璃層20具有主體21、頂面22、及底面24,該主體具有厚度THG。金屬層30具有主體31、頂面32、及底面34,該主體具有厚度THM。固定層40具有厚度THS。玻璃-金屬層合板10具有整體厚度THL,且在一個示例中呈例如圖1A中所示的實質平坦的片材的形式。玻璃層20具有熱膨脹係數CTE-G,而金屬層具有熱膨脹係數CTE-M,其中CTE-M >> CTE-G(例如CTE-M介於CTE-G的2倍與15倍之間)。FIG. 1A is an elevated view of an example glass-metal laminate structure (“glass-metal laminate”) 10. Figure 1B is a close-up x-y cross-sectional view of a portion of the glass-metal laminate of Figure 1A. The glass-metal laminate 10 is formed by attaching the top glass layer 20 to the bottom metal layer 30 using a fixing layer 40, which is sandwiched by the glass layer and the metal layer. The glass layer 20 has a main body 21, a top surface 22, and a bottom surface 24, and the main body has a thickness THG. The metal layer 30 has a main body 31, a top surface 32, and a bottom surface 34, and the main body has a thickness THM. The fixed layer 40 has a thickness THS. The glass-metal laminate 10 has an overall thickness THL, and in one example is in the form of a substantially flat sheet such as that shown in FIG. 1A. The glass layer 20 has a thermal expansion coefficient CTE-G, and the metal layer has a thermal expansion coefficient CTE-M, where CTE-M >> CTE-G (for example, CTE-M is between 2 times and 15 times of CTE-G).

玻璃層20可以包括本領域中習知的用於形成玻璃-金屬層合板的任何玻璃,包括強化玻璃。強化玻璃的示例包括熱強化玻璃(例如退火玻璃)或化學強化玻璃(例如離子交換玻璃)。玻璃層20的厚度THG的示例範圍包括:a)介於0.1 mm與5 mm之間;b)介於0.2與4 mm之間;c)介於0.3與4 mm之間;d)介於0.5 mm與3 mm之間;e)介於0.7 mm與3 mm之間;及f)介於1 mm與3 mm之間。The glass layer 20 may include any glass known in the art for forming glass-metal laminates, including strengthened glass. Examples of strengthened glass include thermally strengthened glass (for example, annealed glass) or chemically strengthened glass (for example, ion exchange glass). Example ranges for the thickness THG of the glass layer 20 include: a) between 0.1 mm and 5 mm; b) between 0.2 and 4 mm; c) between 0.3 and 4 mm; d) between 0.5 between mm and 3 mm; e) between 0.7 mm and 3 mm; and f) between 1 mm and 3 mm.

金屬層30可以包括本領域中習知的用於形成玻璃-金屬層合板的任何金屬。示例金屬包括鋁、鈷、銅、鎳、鐵、錳、錫、貴金屬(例如金、銀、鉑、鈦)、及這些金屬與其他金屬的各種已知合金(例如不銹鋼、碳鋼等等)等等。金屬層30的厚度THM的示例範圍包括:a)介於0.10 mm與20 mm之間;b)介於0.2 mm與15 mm之間;c)介於0.3 mm與10 mm之間;d)介於0.7 mm與10 mm之間;及e)介於1 mm與10 mm之間。玻璃-金屬層合板的整體厚度THL的示例範圍包括:a)介於約0.20 mm與25 mm之間;b)介於0.3 mm與20 mm之間;c)介於0.7 mm與15 mm之間;及d)介於1 mm與10 mm之間。The metal layer 30 may include any metal known in the art for forming a glass-metal laminate. Example metals include aluminum, cobalt, copper, nickel, iron, manganese, tin, precious metals (such as gold, silver, platinum, titanium), and various known alloys of these metals and other metals (such as stainless steel, carbon steel, etc.), etc. Wait. Example ranges for the thickness THM of the metal layer 30 include: a) between 0.10 mm and 20 mm; b) between 0.2 mm and 15 mm; c) between 0.3 mm and 10 mm; d) medium Between 0.7 mm and 10 mm; and e) between 1 mm and 10 mm. Example ranges for the overall thickness THL of the glass-metal laminate include: a) between approximately 0.20 mm and 25 mm; b) between 0.3 mm and 20 mm; c) between 0.7 mm and 15 mm ; And d) between 1 mm and 10 mm.

固定層40可以包括黏著劑,例如玻璃-金屬層合板的領域中已知及使用的類型的光學無色黏著劑。The fixing layer 40 may include an adhesive, such as an optically colorless adhesive of the type known and used in the field of glass-metal laminates.

雷射切割系統Laser cutting system

圖2A是用來實現本文中所揭露及下文所述的基於雷射的切割方法的示例雷射切割系統(「系統」)100的示意圖。系統100包括系統軸線AS,雷射源110、光學系統120、及氣體流系統130沿著該系統軸線佈置。系統軸線AS被示為與y方向對準,然而在一個示例中,該系統軸線可以與y方向成角度。氣體流系統130經由氣體線路136氣動地連接到氣體供應器134。氣體供應器134儲存氣體138。在一個示例中,氣體138可以包括空氣或氧氣或氮氧或惰性氣體。在一個示例中,氣體138可以包括反應氣體或由反應氣體組成、或包括非反應氣體或由非反應氣體組成。雷射源110及光學系統120構成射束遞送系統125。射束遞送系統125及氣體流系統130可以由第一支撐台150A所支撐。在一個示例中,第一支撐台150A可動(例如可以在x、y、及z方向上移動),如部分地由移動箭頭AR所示。2A is a schematic diagram of an example laser cutting system ("system") 100 used to implement the laser-based cutting method disclosed herein and described below. The system 100 includes a system axis AS along which a laser source 110, an optical system 120, and a gas flow system 130 are arranged. The system axis AS is shown as aligned with the y direction, however in one example, the system axis may be angled to the y direction. The gas flow system 130 is pneumatically connected to the gas supply 134 via a gas line 136. The gas supplier 134 stores gas 138. In one example, the gas 138 may include air or oxygen or nitrogen oxide or an inert gas. In one example, the gas 138 may include or consist of a reactive gas, or include or consist of a non-reactive gas. The laser source 110 and the optical system 120 constitute a beam delivery system 125. The beam delivery system 125 and the gas flow system 130 may be supported by the first support table 150A. In one example, the first support platform 150A is movable (for example, movable in the x, y, and z directions), as shown in part by the moving arrow AR.

系統100也包括第二支撐台150B,該第二支撐台具有頂面152B,該頂面支撐玻璃-金屬層合板10,使得該玻璃-金屬層合板位在x-z平面上。在一個示例中,第二支撐台150B可動(即可以在x、y、及z方向上移動)。在一個示例中,第一支撐台150A及第二支撐台150B各自包括精確平移台。The system 100 also includes a second support table 150B having a top surface 152B that supports the glass-metal laminate 10 such that the glass-metal laminate is positioned on the x-z plane. In one example, the second support platform 150B is movable (that is, it can move in the x, y, and z directions). In one example, the first support platform 150A and the second support platform 150B each include a precision translation platform.

系統100也包括控制器180,該控制器可以可操作地連接到射束遞送系統125、氣體流系統130、氣體源134、第一支撐台150A、及第二支撐台150B中的一或更多者。控制器180被配置為控制系統100的操作以實現本文中所揭露的雷射切割方法。在一個示例中,控制器180包括實施在非暫態電腦可讀取媒體中的指令(例如軟體)以實現本文中所揭露的雷射切割方法。在一個示例中,控制器180包括電腦、微控制器、或本領域中用來控制基於雷射的切割系統的操作及移動的類似設備。The system 100 also includes a controller 180 that can be operably connected to one or more of the beam delivery system 125, the gas flow system 130, the gas source 134, the first support table 150A, and the second support table 150B By. The controller 180 is configured to control the operation of the system 100 to implement the laser cutting method disclosed herein. In one example, the controller 180 includes instructions (such as software) implemented in a non-transitory computer readable medium to implement the laser cutting method disclosed herein. In one example, the controller 180 includes a computer, a microcontroller, or similar devices used in the art to control the operation and movement of a laser-based cutting system.

在系統100的一般操作中,雷射源110在-y方向上沿著系統軸線AS產生波長λ的雷射束112。在一個示例中,雷射束波長λ是近紅外線(NIR)波長,其不容易被典型的用作玻璃層20的玻璃吸收。示例NIR波長範圍包括從0.75微米到2微米或從0.8微米與1.1微米。可以用來產生此類雷射束112的示例雷射源110包括Nd:YAG雷射及基於二極體的光纖雷射。在一個示例中,雷射束112包括一系列的光脈波112P,如特寫插圖I1中所示。In the general operation of the system 100, the laser source 110 generates a laser beam 112 of wavelength λ along the system axis AS in the -y direction. In one example, the laser beam wavelength λ is a near infrared (NIR) wavelength, which is not easily absorbed by the glass typically used as the glass layer 20. Example NIR wavelength ranges include from 0.75 microns to 2 microns or from 0.8 microns to 1.1 microns. Example laser sources 110 that can be used to generate such laser beam 112 include Nd:YAG lasers and diode-based fiber lasers. In one example, the laser beam 112 includes a series of light pulse waves 112P, as shown in the close-up illustration I1.

光學系統120依需要接收及處理雷射束112(例如擴張、聚焦、濾波等等),使得雷射束112行進通過玻璃層20且在金屬層30的頂面32處形成選定尺寸的雷射點114,如特寫插圖I2中所示。在一個示例中,雷射點114是實質圓形的,且可以具有在從0.15 mm到2.0 mm或從0.2 mm到1.5 mm或從0.5 mm到1 mm的範圍中的直徑DS。在一個示例中,雷射點114由光學系統120所形成,該光學系統具有在從20 mm到100 mm或從30 mm到80 mm或從40 mm到60 mm的範圍中的焦距。The optical system 120 receives and processes the laser beam 112 as needed (such as expanding, focusing, filtering, etc.), so that the laser beam 112 travels through the glass layer 20 and forms a laser spot of a selected size on the top surface 32 of the metal layer 30 114, as shown in close-up illustration I2. In one example, the laser spot 114 is substantially circular, and may have a diameter DS in the range from 0.15 mm to 2.0 mm or from 0.2 mm to 1.5 mm or from 0.5 mm to 1 mm. In one example, the laser spot 114 is formed by an optical system 120 having a focal length in the range from 20 mm to 100 mm or from 30 mm to 80 mm or from 40 mm to 60 mm.

同時,第一支撐台150A及第二支撐台150B中的至少一者在選定方向上移動,使得雷射束112也移動,藉此在該選定方向上用雷射點速率SL在金屬層30的頂面32上掃描雷射點114。同時,氣體流系統130在雷射束112入射於玻璃層的頂面的位置處或緊鄰該位置向玻璃層20的頂面22引導氣體138的氣體流132。在一個示例中,氣體流系統130被配置為使得氣體流132是實質環形的且環繞雷射束112。在另一個示例中,在雷射束112相對於玻璃-金屬層合板10移動時,氣體流緊密地跟隨該雷射束(即恰好位在該雷射束後方)。在一個示例中,雷射點速率SL是在從2 mm/s到350 mm/s或從10 mm/s到200 mm/s或從50 mm/s到100 mm/s的範圍中。At the same time, at least one of the first support platform 150A and the second support platform 150B moves in a selected direction, so that the laser beam 112 also moves, thereby using the laser spot rate SL on the metal layer 30 in the selected direction. The laser spot 114 is scanned on the top surface 32. At the same time, the gas flow system 130 directs the gas flow 132 of the gas 138 to the top surface 22 of the glass layer 20 at or close to the position where the laser beam 112 is incident on the top surface of the glass layer. In one example, the gas flow system 130 is configured such that the gas flow 132 is substantially annular and surrounds the laser beam 112. In another example, when the laser beam 112 moves relative to the glass-metal laminate 10, the gas flow closely follows the laser beam (ie, is located just behind the laser beam). In one example, the laser spot rate SL is in the range from 2 mm/s to 350 mm/s or from 10 mm/s to 200 mm/s or from 50 mm/s to 100 mm/s.

圖2B是與圖1A的玻璃-金屬層合板類似的玻璃-金屬層合板10的示例的高架視圖,且繪示雷射束112在其在x方向上相對於玻璃-金屬層合板移動時的示例路徑,如由移動箭頭AR所繪示。為了容易說明起見,未在圖2B中示出固定層40。雷射束112被示為法向地入射於玻璃層20的頂面22上。實際上,雷射束112可以相對於法向入射具有微小的角度以避免反射回雷射源110。法向或近法向入射的雷射束112一般有益於避免反射損耗。2B is an elevated view of an example of a glass-metal laminate 10 similar to the glass-metal laminate of FIG. 1A, and illustrates an example when the laser beam 112 moves in the x direction relative to the glass-metal laminate The path, as shown by the moving arrow AR. For ease of description, the fixed layer 40 is not shown in FIG. 2B. The laser beam 112 is shown to be incident on the top surface 22 of the glass layer 20 normally. In fact, the laser beam 112 may have a slight angle with respect to the normal incidence to avoid reflection back to the laser source 110. Normally or near-normally incident laser beam 112 is generally beneficial to avoid reflection loss.

在一個示例中,玻璃層20在雷射束波長λ下具有至少80%的光透射率,而在另一個示例中,光透射率在雷射束波長λ下至少為90%。因此,雷射束112實質上不由於雷射束被玻璃層20吸收而加熱玻璃層。這允許進入玻璃層20的主體21的雷射束112中實質上的所有能量到達金屬層30的頂面32且在該頂面上形成雷射點114(在已經如下文所述地局部地燒蝕或汽化固定層40之後)。In one example, the glass layer 20 has a light transmittance of at least 80% at the laser beam wavelength λ, and in another example, the light transmittance is at least 90% at the laser beam wavelength λ. Therefore, the laser beam 112 does not substantially heat the glass layer because the laser beam is absorbed by the glass layer 20. This allows substantially all of the energy in the laser beam 112 that enters the main body 21 of the glass layer 20 to reach the top surface 32 of the metal layer 30 and form a laser spot 114 on the top surface (which has been locally burned as described below) After etching or vaporizing the fixed layer 40).

移動的雷射點114加熱金屬層30的頂面32以形成移動的熱點116。移動的熱點116用與雷射點114實質相同的速率SL移動。圖2C是由雷射點114所形成的熱點116的溫度分佈的示意俯視圖,其中熱點的運動方向由移動箭頭AR所示。如下文所解釋的,由於金屬的高熱傳導,熱點116快速地加熱金屬層30。圖2C中所示的熱點116包括示例溫度等值線以繪示由熱擴散效應引起的沿著運動方向的細長的溫度分佈。對於0.025 mm的示例雷射點尺寸(直徑)DS而言及對於2.0米/分鐘的雷射點速率SL而言,由200℃等值線所界定的熱點116的長度HL約為0.15 mm且寬度HW約為0.05 mm。注意,熱點的最熱部分(即圖2C中的深色卵形)的1500℃的示例溫度超過給定金屬層30的熔化溫度。The moving laser spot 114 heats the top surface 32 of the metal layer 30 to form a moving hot spot 116. The moving hot spot 116 moves at substantially the same speed SL as the laser spot 114. 2C is a schematic top view of the temperature distribution of the hot spot 116 formed by the laser spot 114, in which the moving direction of the hot spot is shown by the moving arrow AR. As explained below, the hot spot 116 rapidly heats the metal layer 30 due to the high thermal conductivity of the metal. The hot spot 116 shown in FIG. 2C includes example temperature contours to illustrate the elongated temperature distribution along the movement direction caused by the thermal diffusion effect. For an example laser spot size (diameter) DS of 0.025 mm and for a laser spot velocity SL of 2.0 m/min, the length HL of the hot spot 116 defined by the 200°C contour is approximately 0.15 mm and the width HW Approximately 0.05 mm. Note that the example temperature of 1500° C. for the hottest part of the hot spot (ie, the dark oval in FIG. 2C) exceeds the melting temperature of a given metal layer 30.

系統100的示例操作參數(例如每道光脈波112P的能量的量、光脈波的頻率、及雷射點114的速率SL)基於用來形成被切割的玻璃-金屬層合板10的特定材料。在實驗中,示例玻璃-金屬層合板10使用具有0.25 mm的厚度THG的化學強化玻璃層20、具有約0.5 mm的厚度的鋁金屬層30、及作為固定層40的光學無色的黏著劑來形成。在系統100中有效地採用了具有操作1.06微米的波長λ的Nd:YAG光纖雷射源110、約2千瓦的光脈波能量、450 Hz的光脈波頻率(重複速率)、及2米/分鐘的雷射點速率SL。氣體流系統130利用空氣作為氣體流132的氣體138。基於空氣的氣體流132是環形的,且環繞雷射束112,且引導到玻璃層20的頂面22。環形氣體流132使用環形氣體噴嘴來形成。測得生成的切割的玻璃-金屬層合板10P(參照下文所介紹及論述的圖4A、4B)的邊緣強度為71.2 MPa。在示例實施例中,在不對生成的切割的玻璃-金屬層合板(即切割的玻璃-金屬產品或製品)進行額外的邊緣加工的情況下,本文中所揭露的雷射切割方法可以提供大於60 MPa的平均邊緣強度。Example operating parameters of the system 100 (such as the amount of energy per light pulse 112P, the frequency of the light pulse, and the velocity SL of the laser spot 114) are based on the particular material used to form the glass-metal laminate 10 being cut. In the experiment, the example glass-metal laminate 10 is formed using a chemically strengthened glass layer 20 having a thickness of 0.25 mm THG, an aluminum metal layer 30 having a thickness of about 0.5 mm, and an optically colorless adhesive as a fixing layer 40 . In the system 100, an Nd:YAG fiber laser source 110 with an operating wavelength λ of 1.06 microns, an optical pulse energy of about 2 kilowatts, an optical pulse frequency (repetition rate) of 450 Hz, and 2 m/ The laser point rate SL in minutes. The gas flow system 130 utilizes air as the gas 138 of the gas flow 132. The air-based gas flow 132 is annular and surrounds the laser beam 112 and is directed to the top surface 22 of the glass layer 20. The annular gas flow 132 is formed using an annular gas nozzle. The edge strength of the resulting cut glass-metal laminate 10P (refer to Figures 4A and 4B introduced and discussed below) was measured to be 71.2 MPa. In an exemplary embodiment, the laser cutting method disclosed herein can provide more than 60% of the cut glass-metal laminate (ie, cut glass-metal product or product) without additional edge processing. Average edge strength in MPa.

在玻璃In glass -- 金屬層合板中形成切割線Cutting lines are formed in metal laminates

圖3A到3F為與圖2A類似的特寫y-z橫截面示意圖,其示出使用圖2A的系統100的不同步驟處的雷射切割方法。在這些圖式中,雷射束112的運動是在+x方向上進行,該方向從頁面向外。並且,在這些圖式中,如下文所論述的,因為實際的事件時序發生得非常快,所以已經調整各種事件的時序。3A to 3F are close-up y-z cross-sectional schematic diagrams similar to FIG. 2A, which illustrate a laser cutting method at different steps using the system 100 of FIG. 2A. In these figures, the movement of the laser beam 112 is in the +x direction, which is outward from the page. And, in these diagrams, as discussed below, because the actual event timing occurs very quickly, the timing of various events has been adjusted.

參照圖3A,雷射束112在實質上不被吸收的情況下行進通過玻璃層20且入射於固定層40上。固定層40的照射部分非常快速地燒蝕,使得(移動的)雷射點114照射金屬層30的頂部32以形成(移動的)熱點116。來自移動的熱點116的熱局部地將金屬層30的主體31的位於熱點116下方的部分加熱到熔點,且開始形成金屬切割線202,該金屬切割線朝向金屬層的底面34向下延伸且最終到達底面。3A, the laser beam 112 travels through the glass layer 20 and is incident on the fixed layer 40 without being substantially absorbed. The irradiated portion of the fixed layer 40 is ablated very quickly, so that the (moving) laser spot 114 irradiates the top 32 of the metal layer 30 to form a (moving) hot spot 116. The heat from the moving hot spot 116 locally heats the part of the main body 31 of the metal layer 30 below the hot spot 116 to a melting point, and begins to form a metal cutting line 202, which extends downward toward the bottom surface 34 of the metal layer and finally Reach the bottom.

同時,參照圖3B,由吸收雷射點114處的雷射束112所造成的來自金屬層30的熱藉由熱傳導傳輸到玻璃層20且在玻璃層的主體21內形成局部加熱區域21H。加熱區域21H由強的熱梯度210所界定,該熱梯度由虛線溫度等值線CL所繪示。加熱區域21H界定玻璃層20的頂面22的加熱表面部分22H。在一個示例中,玻璃層主體21的加熱區域21H內的尖峰玻璃溫度接近玻璃軟化點但未達到玻璃熔點。圖3B也示出了通過金屬層30的完成的金屬切割線202。注意,隨著雷射束112相對玻璃-金屬層合板10移動,加熱表面部分22H與移動的加熱區域21H一起移動。本申請案中所使用的局部加熱可以意指小於或等於1000 um的區域。Meanwhile, referring to FIG. 3B, the heat from the metal layer 30 caused by absorbing the laser beam 112 at the laser point 114 is transferred to the glass layer 20 by thermal conduction and forms a local heating area 21H in the main body 21 of the glass layer. The heating area 21H is defined by a strong thermal gradient 210, which is depicted by the dashed temperature contour CL. The heating area 21H defines the heating surface portion 22H of the top surface 22 of the glass layer 20. In one example, the peak glass temperature in the heating region 21H of the glass layer main body 21 is close to the glass softening point but does not reach the glass melting point. FIG. 3B also shows the completed metal cutting line 202 through the metal layer 30. Note that as the laser beam 112 moves relative to the glass-metal laminate 10, the heating surface portion 22H moves together with the moving heating area 21H. The local heating used in this application may mean an area less than or equal to 1000 um.

圖3C示出將氣體流132施用於與玻璃層的加熱區域21H相關聯的玻璃層20的加熱鋪面部分22H。氣體流132用來快速冷卻玻璃層20的加熱區域21H。在圖3C到3F中,因為在所考慮的示例中,雷射束112已經繼續前進照射金屬層30的下個部分,所以未示出該雷射束。Figure 3C shows the application of a gas flow 132 to the heated surfacing portion 22H of the glass layer 20 associated with the heated area 21H of the glass layer. The gas flow 132 is used to rapidly cool the heating area 21H of the glass layer 20. In FIGS. 3C to 3F, because in the considered example, the laser beam 112 has continued to irradiate the next part of the metal layer 30, the laser beam is not shown.

圖3D示出在玻璃層20的加熱區域21H已經被氣體流132快速冷卻時的方法。此快速冷卻在玻璃主體21中產生大量的應力S,且將加熱區域21H轉換成應力區域21S。應力區域21S包括垂直中心線CS,在該垂直中心線處形成了斷裂線204,如圖3E中所示。因為金屬層具有實質上大於玻璃層的熱膨脹係數CTE-G的熱膨脹係數CTE-M,所以玻璃層20的熱膨脹EG與金屬層20的熱膨脹EM的差分有助於在應力區域21S中累積應力S,且注意,這兩個層藉由固定層40的其餘部分保持彼此固定。響應於在應力區域21S中快速累積應力S,斷裂線204快速形成。在應力區域21S中累積應力S是為了超過玻璃應付應力形成的量及速率的能力以強制形成斷裂線204而執行。FIG. 3D shows the method when the heating area 21H of the glass layer 20 has been rapidly cooled by the gas flow 132. This rapid cooling generates a large amount of stress S in the glass body 21 and converts the heating area 21H into a stress area 21S. The stress area 21S includes a vertical centerline CS at which a fracture line 204 is formed, as shown in FIG. 3E. Because the metal layer has a thermal expansion coefficient CTE-M that is substantially greater than the thermal expansion coefficient CTE-G of the glass layer, the difference between the thermal expansion EG of the glass layer 20 and the thermal expansion EM of the metal layer 20 helps to accumulate the stress S in the stress region 21S, And note that these two layers are kept fixed to each other by the rest of the fixing layer 40. In response to the rapid accumulation of the stress S in the stress region 21S, the fracture line 204 is rapidly formed. The cumulative stress S in the stress region 21S is performed in order to exceed the ability of the glass to cope with the amount and rate of stress formation to force the formation of the fracture line 204.

圖3F示出斷裂線204如何界定間隙,氣體流132的一部分行進通過該間隙。氣體流132的此部分用來從金屬層30的底部34帶走來自金屬層30的熔化部分(渣滓)33。在一個示例中,可以將第二支撐台150B配置為適應雷射處理期間的金屬層30的熔化部分33的帶走。Figure 3F shows how the fracture line 204 defines a gap through which a portion of the gas flow 132 travels. This part of the gas stream 132 is used to take away the molten part (dross) 33 from the metal layer 30 from the bottom 34 of the metal layer 30. In one example, the second support table 150B may be configured to accommodate the removal of the melted portion 33 of the metal layer 30 during laser processing.

如上所述,方法的上述步驟快速發生,例如全部在幾分之一秒內發生,且在一個示例中是用毫秒的數量級發生。對於10英尺/分鐘(或約50 mm/s)的雷射點速率SL及1 mm的雷射點尺寸DS而言,雷射點在金屬層30的掃描的頂面32上的給定點上的停留時間TD 為TD = (DS)/(SL) = (1 mm)/(50 mm/s) = 0.02秒或20毫秒。金屬的高導熱率造成金屬層30在停留時間TD 內達到其熔化溫度且界定金屬切割線202。藉由來自金屬層30的熱傳導來在玻璃層20的主體21中形成加熱區域21H及響應於此而隨後藉由氣體流132快速冷卻及形成應力區域21S的步驟在雷射點114恰好移離金屬層30上被加熱的點之前發生。基本上立即在形成應力區域21S之後(例如幾微秒內),斷裂線204就在玻璃層主體21中形成。因此,在雷射點114移離照射位置達等於雷射點直徑DS的距離(這要需要另外20毫秒)之前,斷裂線204已經形成。金屬切割線202及斷裂線204的長度成長,從而緊密跟隨移動的雷射點114的後跟。圖2B也示出線性斷裂線204的示例(圖2B中未示出金屬切割線202)。As described above, the above steps of the method occur quickly, for example, all occur within a fraction of a second, and in one example, occur in the order of milliseconds. For a laser spot rate SL of 10 feet/minute (or about 50 mm/s) and a laser spot size DS of 1 mm, the laser spot is at a given point on the top surface 32 of the scan of the metal layer 30 The residence time T D is T D = (DS)/(SL) = (1 mm)/(50 mm/s) = 0.02 seconds or 20 milliseconds. The high thermal conductivity of the metal causes the metal layer 30 to reach its melting temperature within the residence time T D and defines the metal cutting line 202. The heating area 21H is formed in the main body 21 of the glass layer 20 by heat conduction from the metal layer 30, and in response to this, the step of rapid cooling by the gas flow 132 and forming the stress area 21S is exactly moved away from the metal at the laser point 114 Occurs before the heated point on layer 30. Substantially immediately after the formation of the stress region 21S (for example, within a few microseconds), the breaking line 204 is formed in the glass layer main body 21. Therefore, before the laser spot 114 moves away from the irradiation position by a distance equal to the laser spot diameter DS (which requires another 20 milliseconds), the break line 204 has been formed. The lengths of the metal cutting line 202 and the breaking line 204 are increased to closely follow the heel of the moving laser spot 114. FIG. 2B also shows an example of a linear breaking line 204 (the metal cutting line 202 is not shown in FIG. 2B).

在雷射點114繼續移動之後,玻璃層20及金屬層30的其餘的加熱部分快速冷卻,且任何熔融的金屬均重新固化。在此情況下,金屬層30的重新固化的邊緣部分可以在玻璃層20的對應的邊緣部分上施加壓縮應力,藉此增強玻璃層的邊緣強度。After the laser spot 114 continues to move, the remaining heated parts of the glass layer 20 and the metal layer 30 are rapidly cooled, and any molten metal is solidified again. In this case, the re-solidified edge portion of the metal layer 30 may apply a compressive stress on the corresponding edge portion of the glass layer 20, thereby enhancing the edge strength of the glass layer.

圖3F示出,金屬層30中的金屬切割線202與玻璃層20中的斷裂線204的組合界定了層合切割線206,該層合切割線在一個示例中界定了玻璃-金屬層合板10的第一分離區段10A及第二分離區段10B。生成的切割的玻璃-金屬層合板10也構成切割的玻璃-金屬層合產品或製品10P。FIG. 3F shows that the combination of the metal cutting line 202 in the metal layer 30 and the breaking line 204 in the glass layer 20 defines the laminate cutting line 206, which in one example defines the glass-metal laminate 10 The first separation section 10A and the second separation section 10B. The resulting cut glass-metal laminate 10 also constitutes a cut glass-metal laminate product or article 10P.

圖4A是示例玻璃-金屬層合板10的高架視圖,其中層合切割線206是直線。此線性層合切割線206將玻璃-金屬層合板分離成具有筆直的切割邊緣12A及12B的分離的第一區段10A及第二區段10B。圖4B與圖4A類似,且示出層合切割線206彎曲,使得第一區段10A及第二區段10B的切割邊緣12A及12B也彎曲的示例。系統100的協調操作(例如藉由控制器180來進行)可以用來形成具有任何合理形狀(包括相對複雜的形狀)的切割線206。在控制器180的操作下使用精確的第一支撐台150A及第二支撐台150B可以用來產生具有各種彎曲或線性(例如矩形曲折的)形狀的切割線208以形成各種切割的玻璃-金屬層合產品(製品)10P。Figure 4A is an elevated view of an example glass-metal laminate 10, where the laminate cut line 206 is a straight line. This linear laminate cutting line 206 separates the glass-metal laminate into separate first section 10A and second section 10B with straight cutting edges 12A and 12B. FIG. 4B is similar to FIG. 4A and shows an example in which the lamination cutting line 206 is bent, so that the cutting edges 12A and 12B of the first section 10A and the second section 10B are also bent. The coordinated operation of the system 100 (for example, performed by the controller 180) can be used to form the cutting line 206 having any reasonable shape (including relatively complex shapes). Using the precise first support table 150A and the second support table 150B under the operation of the controller 180 can be used to generate cutting lines 208 with various curved or linear (for example, rectangular tortuous) shapes to form various cut glass-metal layers Combined product (product) 10P.

本文中所揭露的系統及方法可以在形成可接受的切割邊緣12A及12B(例如玻璃邊緣碎片尺寸小於0.4 mm)的同時提供大於5米每分鐘的切割速率。The system and method disclosed herein can provide acceptable cutting edges 12A and 12B (for example, glass edge fragment size less than 0.4 mm) while providing a cutting rate of greater than 5 meters per minute.

切割的玻璃Cut glass -- 金屬層合產品Metal laminate products

如上所述,本揭示內容的實施例涉及使用如本文中所述的工序(方法)來形成的切割的玻璃-金屬層合產品(或製品)10P(參照圖4A、4B)。切割的玻璃-金屬層合產品10P的第一實施例由包括以下步驟的工序所形成:a)將玻璃層20附接到金屬層30以形成玻璃-金屬層合板10;b)在選定方向上將具有一定波長的移動雷射束112引導通過玻璃層20到玻璃-金屬層合板10的金屬層30,以使得移動的雷射束實質上被金屬層吸收且加熱金屬層以在金屬層中形成熱點116,其中熱點由於局部熔化金屬層而形成金屬層切割線202;c)用來自形成於金屬層30中的熱點116的熱局部加熱玻璃層20以在玻璃層中形成具有強的熱梯度的移動的加熱區域21H;及d)快速冷卻移動的加熱區域21H以形成跟隨金屬層切割線202的玻璃層斷裂線204,其中玻璃層切割線及金屬層切割線界定層合結構切割線206。As described above, the embodiment of the present disclosure relates to a cut glass-metal laminated product (or article) 10P (refer to FIGS. 4A and 4B) formed using the process (method) as described herein. The first embodiment of the cut glass-metal laminate product 10P is formed by a process including the following steps: a) attaching the glass layer 20 to the metal layer 30 to form the glass-metal laminate 10; b) in the selected direction The moving laser beam 112 having a certain wavelength is guided through the glass layer 20 to the metal layer 30 of the glass-metal laminate 10, so that the moving laser beam is substantially absorbed by the metal layer and the metal layer is heated to form in the metal layer Hot spot 116, where the hot spot forms a metal layer cutting line 202 due to the partial melting of the metal layer; c) The glass layer 20 is locally heated with heat from the hot spot 116 formed in the metal layer 30 to form a strong thermal gradient in the glass layer The moving heating area 21H; and d) the moving heating area 21H is rapidly cooled to form a glass layer breaking line 204 following the metal layer cutting line 202, wherein the glass layer cutting line and the metal layer cutting line define the laminated structure cutting line 206.

切割的玻璃-金屬層合產品(製品)10P的第二實施例由包括以下步驟的工序所形成:將玻璃層20附接到金屬層30以形成玻璃-金屬層合板10;將移動的雷射束112在選定方向上引導且引導通過玻璃層20到玻璃-金屬層合板的金屬層30,以在金屬層中形成在選定方向上行進的移動的熱點116,其中玻璃層實質上不被雷射束加熱;使用從移動的熱點116吸收的熱來選擇性地加熱及熔化金屬層30,以藉由局部地熔化金屬層來在金屬層中形成在選定方向上行進的切割線202;使用來自移動的熱點116的熱來局部地加熱玻璃層20,以在玻璃層內形成移動的加熱區域21H;及冷卻移動的加熱區域21H(例如使用氣體流132來冷卻)以在玻璃層20中產生足以在玻璃層20中形成斷裂204的應力S,該斷裂在選定方向上行進且與金屬層30中的切口202重合。The second embodiment of the cut glass-metal laminate product (article) 10P is formed by a process including the following steps: attaching the glass layer 20 to the metal layer 30 to form the glass-metal laminate 10; placing the moving laser The beam 112 is guided in a selected direction and guided through the glass layer 20 to the metal layer 30 of the glass-metal laminate to form a moving hot spot 116 in the metal layer that travels in the selected direction, where the glass layer is substantially not lasered Beam heating; using heat absorbed from the moving hot spot 116 to selectively heat and melt the metal layer 30 to form a cutting line 202 in the metal layer that travels in a selected direction by locally melting the metal layer; The heat of the hot spot 116 locally heats the glass layer 20 to form a moving heating area 21H in the glass layer; and cools the moving heating area 21H (for example, using a gas flow 132 for cooling) to generate sufficient heat in the glass layer 20 The stress S forming a fracture 204 in the glass layer 20, the fracture travels in a selected direction and coincides with the cut 202 in the metal layer 30.

在示例中,切割的玻璃-金屬層合產品10P可以包括分離區段10A及10B中的一或兩者,例如圖4A及4B中所示。In an example, the cut glass-metal laminate product 10P may include one or both of the separation sections 10A and 10B, such as shown in FIGS. 4A and 4B.

本領域中的技術人員將理解到,可以在不脫離如隨附請求項中所界定的本揭示內容的精神或範圍的情況下對如本文中所述的揭示內容的優選實施例作出各種更改。因此,若更改及變化落在隨附請求項及其等效物的範圍之內,則本揭示內容涵蓋該等更改及變化。Those skilled in the art will understand that various changes can be made to the preferred embodiments of the disclosure as described herein without departing from the spirit or scope of the disclosure as defined in the appended claims. Therefore, if the changes and changes fall within the scope of the attached claims and their equivalents, this disclosure covers such changes and changes.

10:玻璃-金屬層合板 20:玻璃層 21:主體 22:頂面 24:底面 30:金屬層 31:主體 32:頂面 33:熔化部分 34:底面 40:固定層 100:系統 110:雷射源 112:雷射束 114:雷射點 116:熱點 120:光學系統 125:射束遞送系統 130:氣體流系統 132:氣體流 134:氣體供應器 136:氣體線路 138:氣體 180:控制器 202:金屬切割線 204:斷裂線 206:層合切割線 210:熱梯度 10A:第一分離區段 10B:第二分離區段 10P:切割的玻璃-金屬層合產品或製品 112P:光脈波 12A:切割邊緣 12B:切割邊緣 150A:第一支撐台 150B:第二支撐台 152B:頂面 21H:加熱區域 21S:應力區域 22H:加熱表面部分 AR:箭頭 AS:系統軸線 CL:溫度等值線 CS:中心線 DS:雷射點尺寸 EG:熱膨脹 EM:熱膨脹 HL:長度 HW:寬度 I1:特寫插圖 I2:特寫插圖 S:應力 THG:厚度 THL:厚度 THM:厚度 THS:厚度10: Glass-metal laminate 20: glass layer 21: main body 22: top surface 24: bottom surface 30: Metal layer 31: main body 32: top surface 33: melting part 34: Bottom 40: fixed layer 100: System 110: Laser source 112: Laser beam 114: Laser Point 116: Hotspot 120: optical system 125: beam delivery system 130: Gas flow system 132: Gas Flow 134: Gas Supply 136: Gas line 138: Gas 180: Controller 202: Metal cutting line 204: Break Line 206: Laminated cutting line 210: Thermal gradient 10A: The first separation section 10B: Second separation section 10P: Cut glass-metal laminated products or products 112P: Light pulse wave 12A: Cutting edge 12B: Cutting edge 150A: The first support platform 150B: second support table 152B: Top surface 21H: heating area 21S: Stress area 22H: Heating surface part AR: Arrow AS: system axis CL: temperature contour CS: Centerline DS: laser spot size EG: thermal expansion EM: Thermal expansion HL: length HW: width I1: Close-up illustrations I2: Close-up illustrations S: stress THG: Thickness THL: Thickness THM: Thickness THS: thickness

包括了附圖以提供進一步的了解,且該等附圖被併入及構成此說明書的一部分。該等繪圖繪示一或更多個實施例,且與「實施方式」一起解釋各種實施例的原理及操作。如此,藉由以下的「實施方式」連同附圖,將變得更完全了解本揭示內容,在該等附圖中:The drawings are included to provide further understanding, and these drawings are incorporated and constitute a part of this description. The drawings illustrate one or more embodiments, and explain the principles and operations of the various embodiments together with the "implementations." In this way, through the following "implementations" together with the accompanying drawings, you will become more fully aware of the content of this disclosure, in the accompanying drawings:

圖1A是依據本揭示內容的一或更多個實施例的示例玻璃-金屬層合結構(玻璃-金屬層合板)的高架視圖,該玻璃-金屬層合結構藉由使用固定層將頂部玻璃層附接到底部金屬層來形成,該固定層被該頂部玻璃層及該底部金屬層夾在中間。FIG. 1A is an elevated view of an example glass-metal laminate structure (glass-metal laminate) according to one or more embodiments of the present disclosure, the glass-metal laminate structure uses a fixed layer to connect the top glass layer It is formed by attaching to the bottom metal layer, and the fixing layer is sandwiched between the top glass layer and the bottom metal layer.

圖1B是依據本揭示內容的一或更多個實施例的圖1A的玻璃-金屬層合結構的一部分的特寫x-y橫截面圖。FIG. 1B is a close-up x-y cross-sectional view of a portion of the glass-metal laminate structure of FIG. 1A according to one or more embodiments of the present disclosure.

圖2A是用來實現本文中所揭露的基於雷射的切割方法的示例雷射切割系統的示意圖。2A is a schematic diagram of an example laser cutting system used to implement the laser-based cutting method disclosed herein.

圖2B是依據本揭示內容的一或更多個實施例的示例玻璃-金屬層合板的高架視圖,該高架視圖繪示來自圖2A的雷射切割系統的雷射束在該雷射束相對於玻璃-金屬層合結構移動時的路徑,及示出將雷射束傳輸通過玻璃層及在金屬表面處形成移動熱點(為了容易說明起見省略了固定層)。2B is an elevated view of an example glass-metal laminate according to one or more embodiments of the present disclosure, the elevated view depicting the laser beam from the laser cutting system of FIG. 2A in relation to the laser beam The path of the glass-metal laminate structure when it moves, and shows the transmission of the laser beam through the glass layer and the formation of a moving hot spot on the metal surface (the fixed layer is omitted for ease of description).

圖2C是依據本揭示內容的一或更多個實施例的金屬層中由雷射束所形成的熱點的溫度分佈的示意俯視圖,其中熱點的運動方向由白色箭頭(AR)示出。2C is a schematic top view of the temperature distribution of a hot spot formed by a laser beam in a metal layer according to one or more embodiments of the present disclosure, wherein the moving direction of the hot spot is shown by a white arrow (AR).

圖3A到3F是依據本揭示內容的一或更多個實施例的與圖2A類似的特寫橫截面示意圖,該特寫橫截面示意圖示出方法的不同步驟處的雷射切割工序。3A to 3F are close-up cross-sectional schematic diagrams similar to FIG. 2A according to one or more embodiments of the present disclosure, the close-up cross-sectional schematic diagrams showing the laser cutting process at different steps of the method.

圖4A是依據本揭示內容的一或更多個實施例的生成的玻璃層合結構及切割的玻璃層合產品(或製品)的高架視圖,該切割的玻璃層合產品使用筆直切割來切割成兩個區段。Figure 4A is an elevated view of the generated glass laminate structure and the cut glass laminate product (or article) according to one or more embodiments of the present disclosure, the cut glass laminate product being cut into pieces using straight cutting Two sections.

圖4B是依據本揭示內容的一或更多個實施例的生成的玻璃層合結構及切割的玻璃層合產品(或製品)的高架視圖,該切割的玻璃層合產品使用彎曲切割來切割成兩個區段。4B is an elevated view of the generated glass laminate structure and the cut glass laminate product (or article) according to one or more embodiments of the present disclosure, the cut glass laminate product using bending cutting to cut into Two sections.

國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無Domestic deposit information (please note in the order of deposit institution, date and number) no Foreign hosting information (please note in the order of hosting country, institution, date, and number) no

10:玻璃-金屬層合板 10: Glass-metal laminate

20:玻璃層 20: glass layer

22:頂面 22: top surface

30:金屬層 30: Metal layer

40:固定層 40: fixed layer

Claims (30)

一種切割一層合結構的方法,該層合結構由附接到一金屬層的一玻璃層所界定,該方法包括以下步驟: 在一選定方向上將具有一波長的一移動的雷射束引導通過該玻璃層到該金屬層,以使得該移動的雷射束實質上被該金屬層吸收且加熱該金屬層以在該金屬層中形成一熱點,其中該熱點由於局部熔化該金屬層而形成一金屬層切割線; 用來自形成於該金屬層中的該熱點的熱局部加熱該玻璃層以在該玻璃層中形成具有一強的熱梯度的一移動的加熱區域;及 快速冷卻該移動的加熱區域以形成跟隨該金屬層切割線的一玻璃層斷裂線,其中該玻璃層切割線及該金屬層切割線界定一層合結構切割線。A method of cutting a laminated structure defined by a glass layer attached to a metal layer, the method comprising the following steps: A moving laser beam having a wavelength is guided through the glass layer to the metal layer in a selected direction, so that the moving laser beam is substantially absorbed by the metal layer and the metal layer is heated to be on the metal layer. A hot spot is formed in the layer, where the hot spot forms a metal layer cutting line due to partial melting of the metal layer; Locally heating the glass layer with heat from the hot spot formed in the metal layer to form a moving heating zone with a strong thermal gradient in the glass layer; and The moving heating area is rapidly cooled to form a glass layer breaking line following the metal layer cutting line, wherein the glass layer cutting line and the metal layer cutting line define a laminated structure cutting line. 如請求項1所述之方法,其中該層合結構切割線將該層合結構分離成兩個單獨的部分。The method of claim 1, wherein the laminate structure cutting line separates the laminate structure into two separate parts. 如請求項1所述之方法,其中該兩個單獨部分中的每一者具有由該層合結構切割線所界定的一邊緣,其中每個邊緣具有大於60 MPa的平均邊緣強度。The method of claim 1, wherein each of the two separate parts has an edge defined by the cut line of the laminate structure, wherein each edge has an average edge strength greater than 60 MPa. 如請求項1所述之方法,其中該玻璃層藉由一固定層附接到該金屬層,且其中該固定層的一部分被該雷射束燒蝕。The method of claim 1, wherein the glass layer is attached to the metal layer by a fixed layer, and wherein a part of the fixed layer is ablated by the laser beam. 如請求項4所述之方法,其中該固定層包括一光學無色的黏著劑。The method according to claim 4, wherein the fixing layer includes an optically colorless adhesive. 如請求項1所述之方法,其中該雷射束的該波長是在從0.8微米到1.1微米的範圍中。The method according to claim 1, wherein the wavelength of the laser beam is in a range from 0.8 microns to 1.1 microns. 如請求項6所述之方法,其中該雷射束由Nd:YAG雷射及一基於二極體的光纖雷射中的任一者所產生。The method according to claim 6, wherein the laser beam is generated by any one of a Nd:YAG laser and a diode-based fiber laser. 如請求項1所述之方法,其中該玻璃層具有從0.1 mm到5 mm的範圍中的一厚度。The method according to claim 1, wherein the glass layer has a thickness in the range from 0.1 mm to 5 mm. 如請求項8所述之方法,其中該金屬層具有從0.1 mm到20 mm的範圍中的一厚度。The method according to claim 8, wherein the metal layer has a thickness in a range from 0.1 mm to 20 mm. 如請求項1所述之方法,其中該金屬層包括選自包括以下項目的金屬群組及它們的合金的一金屬:鋁、鈷、銅、鐵、錳、鎳、錫、及一貴金屬。The method according to claim 1, wherein the metal layer includes a metal selected from the group of metals including the following items and their alloys: aluminum, cobalt, copper, iron, manganese, nickel, tin, and a precious metal. 如請求項1所述之方法,其中該加熱區域界定該玻璃層的一加熱表面部分,且其中快速冷卻該加熱區域的該行動包括以下步驟:在該加熱表面部分處引導一氣體流。The method of claim 1, wherein the heating area defines a heating surface portion of the glass layer, and wherein the action of rapidly cooling the heating area includes the step of directing a gas flow at the heating surface portion. 如請求項11所述之方法,其中來自該氣體流的氣體流動通過該玻璃層斷裂線且通過該金屬層切割線,且在熔化的金屬可以固化之前從該局部地熔化的金屬層移除該熔化的金屬。The method of claim 11, wherein the gas from the gas stream flows through the glass layer breaking line and through the metal layer cutting line, and the locally molten metal layer is removed from the locally molten metal layer before the molten metal can solidify Molten metal. 如請求項11所述之方法,其中該氣體流包括一惰性氣體。The method of claim 11, wherein the gas stream includes an inert gas. 如請求項11所述之方法,其中該氣體流包括一反應氣體。The method of claim 11, wherein the gas stream includes a reactive gas. 如請求項11所述之方法,其中該氣體流包括空氣、氮氧、或氧氣。The method of claim 11, wherein the gas stream includes air, nitrogen oxide, or oxygen. 如請求項1所述之方法,其中該玻璃層具有一第一熱膨脹係數(CTE),該金屬層具有一第二CTE,該第二CTE實質大於該第一CTE以界定一CTE差,且其中形成應力區域的步驟包括以下步驟:由於該CTE差將應力添加該應力區域。The method of claim 1, wherein the glass layer has a first coefficient of thermal expansion (CTE), the metal layer has a second CTE, and the second CTE is substantially greater than the first CTE to define a CTE difference, and wherein The step of forming a stress area includes the following steps: adding stress to the stress area due to the CTE difference. 如請求項1所述之方法,其中該層合切割線包括一直線。The method according to claim 1, wherein the lamination cutting line includes a straight line. 如請求項1所述之方法,其中該層合切割線包括一曲線。The method according to claim 1, wherein the lamination cutting line includes a curve. 如請求項1所述之方法,其中該玻璃層在該雷射束的該波長下具有大於80%的一光學透射率。The method according to claim 1, wherein the glass layer has an optical transmittance greater than 80% at the wavelength of the laser beam. 如請求項1所述之方法,其中該玻璃層在該雷射束的該波長下具有大於90%的一光學透射率。The method of claim 1, wherein the glass layer has an optical transmittance greater than 90% at the wavelength of the laser beam. 如請求項1所述之方法,其中該玻璃層包括一強化玻璃。The method according to claim 1, wherein the glass layer includes a strengthened glass. 一種切割一層合結構的方法,該層合結構由附接到一金屬層的一玻璃層所界定,該方法包括以下步驟: 將一移動的雷射束在一選定方向上引導且引導通過該玻璃層到該金屬層,以在該金屬層中形成在該選定方向上行進的一移動的熱點,其中該玻璃層實質上不被該雷射束加熱; 使用從該移動的熱點吸收的熱來選擇性地加熱及熔化該金屬層,以藉由局部地熔化該金屬層來在該金屬層中形成在該選定方向上行進的一切口; 使用來自該移動的熱點的熱來局部地加熱該玻璃層,以在該玻璃層內形成一移動的加熱區域;及 冷卻該移動的加熱區域以在該玻璃層中產生足以在該玻璃層中形成一斷裂的應力,該斷裂在該選定方向上行進且與該金屬層中的該切口重合。A method of cutting a laminated structure defined by a glass layer attached to a metal layer, the method comprising the following steps: Guide a moving laser beam in a selected direction and through the glass layer to the metal layer to form a moving hot spot in the metal layer traveling in the selected direction, wherein the glass layer is not substantially Heated by the laser beam; Using heat absorbed from the moving hot spot to selectively heat and melt the metal layer to form a cut in the metal layer that travels in the selected direction by locally melting the metal layer; Using heat from the moving hot spot to locally heat the glass layer to form a moving heating zone within the glass layer; and The moving heating zone is cooled to create a stress in the glass layer sufficient to form a fracture in the glass layer that travels in the selected direction and coincides with the cut in the metal layer. 如請求項22所述之方法,其中該玻璃層中的該斷裂及該金屬層中的該切口界定一層合結構切割線,該層合結構切割線將該層合結構分離成兩個單獨的部分。The method of claim 22, wherein the break in the glass layer and the cut in the metal layer define a laminated structure cutting line, and the laminated structure cutting line separates the laminated structure into two separate parts . 如請求項23所述之方法,其中該兩個單獨部分中的每一者具有由該層合結構切割線所界定的一邊緣,其中每個邊緣具有大於60 MPa的平均邊緣強度。The method of claim 23, wherein each of the two separate parts has an edge defined by the cut line of the laminate structure, wherein each edge has an average edge strength greater than 60 MPa. 如請求項23所述之方法,其中該層合結構切割線包括一直線。The method according to claim 23, wherein the cutting line of the laminated structure includes a straight line. 如請求項23所述之方法,其中該層合結構切割線包括一曲線。The method according to claim 23, wherein the cutting line of the laminated structure includes a curve. 如請求項22所述之方法,其中該玻璃層藉由一固定層附接到該金屬層,且其中該固定層的一部分被該雷射束燒蝕。The method of claim 22, wherein the glass layer is attached to the metal layer by a fixed layer, and wherein a part of the fixed layer is ablated by the laser beam. 如請求項27所述之方法,其中該固定層包括一光學無色的黏著劑。The method of claim 27, wherein the fixing layer includes an optically colorless adhesive. 如請求項22所述之方法,其中該雷射束具有從0.8微米到1.1微米的範圍中的一波長。The method of claim 22, wherein the laser beam has a wavelength in a range from 0.8 micrometers to 1.1 micrometers. 如請求項29所述之方法,其中該雷射束由Nd:YAG雷射及一基於二極體的光纖雷射中的任一者所產生。The method according to claim 29, wherein the laser beam is generated by any one of a Nd:YAG laser and a diode-based fiber laser.
TW109118575A 2019-06-03 2020-06-03 Methods of cutting glass-metal laminates using a laser TW202106427A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962856444P 2019-06-03 2019-06-03
US62/856,444 2019-06-03

Publications (1)

Publication Number Publication Date
TW202106427A true TW202106427A (en) 2021-02-16

Family

ID=71787180

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109118575A TW202106427A (en) 2019-06-03 2020-06-03 Methods of cutting glass-metal laminates using a laser

Country Status (2)

Country Link
TW (1) TW202106427A (en)
WO (1) WO2020247362A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220090297A (en) * 2020-12-22 2022-06-29 코닝 인코포레이티드 Composite substrate cutting apparatus and method of cutting composite substrate
CN114406500A (en) * 2022-03-03 2022-04-29 广东华中科技大学工业技术研究院 Laser cutting method for ferrite composite material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001064029A (en) * 1999-08-27 2001-03-13 Toyo Commun Equip Co Ltd Multilayered glass substrate and its cutting method
DE102010012265B4 (en) * 2010-03-22 2012-09-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for separating individual slices from a composite glass sheet and use of a device therefor
JP6888809B2 (en) * 2017-03-30 2021-06-16 三星ダイヤモンド工業株式会社 Brittle material substrate with metal film Dividing method and dividing device

Also Published As

Publication number Publication date
WO2020247362A1 (en) 2020-12-10

Similar Documents

Publication Publication Date Title
CN110121396B (en) Method for laser processing a stack of laminated workpieces
JP4175636B2 (en) Glass cutting method
JP2020079196A (en) Laser cutting of glass composition for display
US6800831B1 (en) Method and device for rapid cutting of a workpiece from a brittle material
KR102230762B1 (en) Method of and device for the laser-based machining of sheet-like substrates using a laser beam focal line
US8720228B2 (en) Methods of separating strengthened glass substrates
US8943855B2 (en) Methods for laser cutting articles from ion exchanged glass substrates
US7982162B2 (en) Method and apparatus for scoring and separating a brittle material with a single beam of radiation
JP2712723B2 (en) Laser cutting method
JP5965239B2 (en) Bonded substrate processing method and processing apparatus
JP5879106B2 (en) Method for scribing a brittle material substrate
KR101223490B1 (en) Method for dividing brittle material substrate
US20110127242A1 (en) Methods for laser scribing and separating glass substrates
TW201601900A (en) Laser cut composite glass article and method of cutting
JP2009066851A (en) Method of chamfering brittle substrate
JP5562254B2 (en) Brittle material splitting apparatus and splitting method
JP2009084089A (en) Method and apparatus for cutting glass
TW202106427A (en) Methods of cutting glass-metal laminates using a laser
JP4256840B2 (en) Laser cutting method and apparatus
US20210276128A1 (en) Butt welding with ultrashort pulse laser beams, and optical elements joined together from individual parts
WO2013073386A1 (en) Method for cutting glass plate and device for cutting glass plate
JP5560096B2 (en) Laser processing method
JP2008062547A (en) Method and device for splitting rigid brittle plate by laser irradiation
RU2371397C2 (en) Method for cutting of brittle nonmetal materials
US20220161369A1 (en) Apparatus for processing glass laminate substrate and processing and cutting methods using the same