TW202101792A - 壓電薄膜 - Google Patents

壓電薄膜 Download PDF

Info

Publication number
TW202101792A
TW202101792A TW109118227A TW109118227A TW202101792A TW 202101792 A TW202101792 A TW 202101792A TW 109118227 A TW109118227 A TW 109118227A TW 109118227 A TW109118227 A TW 109118227A TW 202101792 A TW202101792 A TW 202101792A
Authority
TW
Taiwan
Prior art keywords
piezoelectric
piezoelectric film
film
layer
electrode
Prior art date
Application number
TW109118227A
Other languages
English (en)
Other versions
TWI828913B (zh
Inventor
藤方進吾
Original Assignee
日商富士軟片股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商富士軟片股份有限公司 filed Critical 日商富士軟片股份有限公司
Publication of TW202101792A publication Critical patent/TW202101792A/zh
Application granted granted Critical
Publication of TWI828913B publication Critical patent/TWI828913B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • H04R17/005Piezoelectric transducers; Electrostrictive transducers using a piezoelectric polymer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/852Composite materials, e.g. having 1-3 or 2-2 type connectivity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2047Membrane type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/704Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/88Mounts; Supports; Enclosures; Casings
    • H10N30/883Additional insulation means preventing electrical, physical or chemical damage, e.g. protective coatings

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)
  • Laminated Bodies (AREA)

Abstract

本發明的課題為提供一種可獲得壓電揚聲器之壓電薄膜,該壓電揚聲器可獲得高聲壓,且在寬頻帶下可獲得足夠的聲壓特性,並且能夠抑制尤其在低音時的顫音。前述壓電薄膜具有在包含高分子材料之基質中包含壓電體粒子之高分子複合壓電體及積層於高分子複合壓電體的兩面之電極層,並且作為具有高分子複合壓電體及電極層之積層體的破壞力的面方向的變異係數為0.25以下,藉此解決課題。

Description

壓電薄膜
本發明係關於一種用於電聲轉換薄膜等之壓電薄膜。
應對液晶顯示器和有機EL(Electro Luminescence:電場發光)顯示器等、顯示器的薄型化、輕量化,對用於該等薄型顯示器之揚聲器亦要求輕量化・薄型化。又,應對使用塑膠等撓性基板之柔性顯示器的開發,對用於柔性顯示器之揚聲器亦要求撓性。
習知之揚聲器的形狀通常為漏斗狀的所謂的錐形、球面狀的圓頂型等。然而,若欲將該種揚聲器內置於上述薄型顯示器中,則無法充分地薄型化,又,可能會損害輕量性和撓性。又,當外部安裝揚聲器時,攜帶等方面麻煩。
因此,作為薄型且不損害輕量性和撓性便能夠與薄型的顯示器和柔性顯示器一體化之揚聲器,提出了使用片狀且具有撓性並且具有響應於施加電壓而伸縮之性質之壓電薄膜。
例如,本案申請人作為片狀且具有撓性並且能夠穩定地播放高音質的聲音之壓電薄膜,提出了專利文獻1中所揭示之壓電薄膜(電聲轉換薄膜)。 專利文獻1中所揭示之壓電薄膜係具有將壓電體粒子分散於由在常溫下具有黏彈性之高分子材料組成之黏彈性基質中而成之高分子複合壓電體(壓電體層)、形成於高分子複合壓電體的兩面之薄膜電極、及形成於薄膜電極的表面之保護層者。又,專利文獻1中所揭示之壓電薄膜具有如下特徵:當藉由X射線衍射法評價高分子複合壓電體時的、源自壓電體粒子之(002)面峰值強度與(200)面峰值強度的強度比率α1=(002)面峰值強度/((002)面峰值強度+(200)面峰值強度)為0.6以上且小於1。
[專利文獻1]國際公開第2017/018313號
當將該種壓電薄膜例如用作壓電揚聲器(電聲轉換薄膜)時,要求各種特性。 作為一例,對壓電揚聲器要求如下等特性:相對於輸入動作電壓可獲得足夠的聲壓(音量);及在寬頻帶下可獲得足夠的聲壓特性,尤其在低頻區域中不會產生所謂的顫音。
然而,近年來對壓電揚聲器的特性之要求變得更加嚴格,期望出現能夠實現能夠更加適當地滿足該等特性之壓電揚聲器等之壓電薄膜。
本發明的目的為解決該種以往技術的問題點,並提供一種壓電薄膜,例如在作為電聲轉換薄膜用於壓電揚聲器時,能夠實現相對於輸入動作電壓可獲得足夠的聲壓,在寬頻帶下可獲得足夠的聲壓特性,並且尤其在低頻區域中能夠抑制產生所謂的顫音之壓電揚聲器。
為了解決該課題,本發明具有以下結構。
[1]一種壓電薄膜,其特徵為,係具有:高分子複合壓電體,係在包含高分子材料之基質中包含壓電體粒子;及電極層,係積層於高分子複合壓電體的兩面, 作為具有高分子複合壓電體及電極層之積層體的破壞力的面方向的變異係數為0.25以下。 [2]如[1]所述之壓電薄膜,其中 積層體的破壞力的平均值為3N以上。 [3]如[1]或[2]所述之壓電薄膜,其係具有積層於至少一個電極層的表面之保護層。 [4]如[3]所述之壓電薄膜,其中 在兩個電極層的表面積層保護層。 [5]如[1]至[4]之任一項所述之壓電薄膜,其中 高分子材料具有氰乙基。 [6]如[5]所述之壓電薄膜,其中 高分子材料為氰乙基化聚乙烯醇。 [7]如[1]至[6]之任一項所述之壓電薄膜,其中 壓電體粒子係由具有鈣鈦礦型或纖鋅礦型的結晶結構之陶瓷粒子組成者。 [發明效果]
依該種本發明,可獲得一種壓電薄膜,例如在作為電聲轉換薄膜用於壓電揚聲器時,能夠實現相對於輸入動作電壓可獲得足夠的聲壓(音量),並且,在寬頻帶下可獲得足夠的聲壓特性,能夠抑制尤其在低頻區域中產生所謂的顫音之壓電揚聲器。
以下,依據圖式所示之較佳實施態樣,對本發明的壓電薄膜進行詳細說明。 以下所記載之構成必要條件的說明有時係基於本發明的代表性實施態樣而進行,但本發明並不限於該種實施態樣。 另外,本說明書中,使用“~”表示之數值範圍是指包含記載於“~”的前後之數值作為下限值及上限值之範圍。
本發明的壓電薄膜係在高分子複合壓電體的兩面具有電極層者。高分子複合壓電體係在包含高分子材料之基質中包含壓電體粒子者。又,本發明的壓電薄膜作為較佳態樣還具有積層於電極層上之保護層。 該種本發明的壓電薄膜中,作為包含高分子複合壓電體及電極層之積層體的破壞力的面方向的變異係數為0.25以下。
本發明的壓電薄膜作為一例係用作電聲轉換薄膜者。具體而言,本發明的壓電薄膜用作壓電揚聲器、麥克風及聲音感測器等電聲轉換器的振動板。 電聲轉換器中,藉由對壓電薄膜施加電壓,壓電薄膜在面內方向上伸長時,為了吸收該伸長量,壓電薄膜向上方(聲音的放射方向)移動。相反,藉由對壓電薄膜施加電壓,壓電薄膜在面內方向上收縮時,為了吸收該收縮量,壓電薄膜向下方移動。 電聲轉換器係藉由因該壓電薄膜的伸縮的反覆引起之振動來轉換振動(聲音)和電信號者。該種電聲轉換器用於藉由向壓電薄膜輸入電訊號而產生之與電訊號相對應之振動所引起之聲音的播放、及藉由接收聲波而將壓電薄膜的振動轉換為電訊號等。又,壓電薄膜亦能夠用於藉由振動賦予觸感及藉由振動輸送物體等。 具體而言,作為壓電薄膜的用途,可列舉全頻揚聲器、高音揚聲器、中音揚聲器、低音揚聲器等揚聲器、頭戴式耳機用揚聲器、噪音消除器、麥克風及用於吉他等樂器之拾音器(樂器用感測器)等各種音響設備。又,由於本發明的壓電薄膜為非磁性體,因此在噪音消除器中能夠適合用作MRI用噪音消除器。 又,由於使用本發明的壓電薄膜之電聲轉換器薄、輕且彎曲,因此適合用於具有作為帽子、圍巾及衣服之類的穿戴式產品、電視及數位標牌等薄型顯示器、以及音響機器等的功能之建築物、汽車的天花板、窗簾、雨傘、壁紙、窗戶及床等。
圖1中以剖面圖概念性地示出本發明的壓電薄膜的一例。 圖1所示之壓電薄膜10具有壓電體層12、積層於壓電體層12的一個面之下部薄膜電極14、積層於下部薄膜電極14之下部保護層18、積層於壓電體層12的另一面之上部薄膜電極16及積層於上部薄膜電極16之上部保護層20。
在壓電薄膜10中,如圖1中概念性地所示,壓電體層12係在包含高分子材料之高分子基質24中包含壓電體粒子26者。亦即,壓電體層12為本發明的壓電薄膜中的高分子複合壓電體。
在此,高分子複合壓電體(壓電體層12)係具備以下必要條件者為較佳。另外,在本發明中,常溫為0~50℃。 (i)撓性 例如,當以攜帶用途,如報紙或雜誌等文檔那樣以輕輕彎曲之狀態把持時,不斷地從外部受到數Hz以下的比較緩慢且較大的彎曲變形。此時,若高分子複合壓電體硬,則產生相應的大的彎曲應力,在高分子基質與壓電體粒子的界面產生龜裂,結果可能會導致破壞。因此,要求高分子複合壓電體具有適當的柔軟性。又,若能夠將應變能作為熱量向外部擴散,則能夠鬆弛應力。因此,要求高分子複合壓電體的損耗正切適當大。 (ii)音質 揚聲器中,使壓電體粒子以20Hz~20kHz的音頻頻帶的頻率振動,藉由其振動能,整個振動板(高分子複合壓電體)成為一體而進行振動,藉此播放聲音。因此,為了提高振動能的傳遞效率,要求高分子複合壓電體具有適當的硬度。又,若揚聲器的頻率特性平滑,則最低共振頻率f0 隨著曲率的變化而變化時的音質的變化量亦變小。因此,要求高分子複合壓電體的損耗正切適當大。
眾所周知,揚聲器用振動板的最低共振頻率f0 由下述式給出。在此,s為振動系統的剛性,m為質量。 [數式1]
Figure 02_image001
此時,壓電薄膜的彎曲程度亦即彎曲部的曲率半徑越大,機械剛性s越減小,因此最低共振頻率f0 減小。亦即,揚聲器的音質(音量、頻率特性)依據壓電薄膜的曲率半徑而變化。
綜上所述,要求高分子複合壓電體相對於20Hz~20kHz的振動展現硬性,而相對於數Hz以下的振動展現柔軟性。又,要求高分子複合壓電體的損耗正切相對於20kHz以下的所有頻率的振動適當的大。
通常,高分子固體具有黏彈性鬆弛機構,伴隨溫度上升或頻率下降,大規模的分子運動被觀測為儲存彈性係數(楊氏模量)的下降(鬆弛)或損失彈性係數的極大(吸收)。其中,藉由非晶區的分子鏈的微布朗運動引起之鬆弛稱為主分散,出現非常大的鬆弛現象。引起該主分散之溫度為玻璃轉移點(Tg),黏彈性鬆弛機構最顯著。 作為高分子複合壓電體(壓電體層12)的基質使用玻璃轉移點處於常溫之高分子材料、換言之在常溫下具有黏彈性之高分子材料,從而實現相對於20Hz~20kHz的振動展現硬性,而相對於數Hz以下的緩慢的振動展現柔軟性之高分子複合壓電體。尤其,在適當地顯現該行為等的觀點上,將在頻率1Hz下的玻璃轉移溫度處於常溫之高分子材料用於高分子複合壓電體的基質為較佳。
高分子材料在常溫下藉由動態黏彈性試驗而得之頻率1Hz下的損耗正切Tanδ的極大值為0.5以上為較佳。 藉此,在高分子複合壓電體藉由外力而緩慢地彎曲時,最大彎曲力矩部中的高分子基質/壓電體粒子界面的應力集中得到鬆弛,能夠期待高的撓性。
又,高分子材料藉由動態黏彈性測定而得之頻率1Hz下的儲存彈性係數(E’)在0℃下為100MPa以上,在50℃下為10MPa以下為較佳。 藉此,能夠減小在高分子複合壓電體藉由外力緩慢地彎曲時產生之彎曲力矩,同時能夠相對於20Hz~20kHz的音響振動展現硬性。
又,高分子材料在25℃下相對介電常數為10以上為更佳。藉此,向高分子複合壓電體施加電壓時,對高分子基質中的壓電體粒子施加更高的電場,因此能夠期待大的變形量。 然而,另一方面,若考慮良好的耐濕性的確保等,則高分子材料在25℃下相對介電常數為10以下亦為較佳。
作為滿足該種條件之高分子材料,可適當地例示氰乙基化聚乙烯醇(氰乙基化PVA)、聚乙酸乙烯酯、聚偏二氯乙烯共聚丙烯腈、聚苯乙烯-聚異戊二烯嵌段共聚物、聚乙烯基甲基酮及聚甲基丙烯酸丁酯等。 又,作為該等高分子材料,亦能夠適當地使用HYBRAR5127(KURARAY CO.,LTD製)等市售品。
作為構成高分子基質24之高分子材料,使用具有氰乙基之高分子材料為較佳,使用氰乙基化PVA為特佳。亦即,在本發明的壓電薄膜10中,壓電體層12作為高分子基質24使用具有氰乙基之高分子材料為較佳,使用氰乙基化PVA為特佳。 在以下說明中,將以氰乙基化PVA為代表之上述高分子材料亦統稱為“常溫下具有黏彈性之高分子材料”。
另外,該等在常溫下具有黏彈性之高分子材料可以僅使用1種,亦可以併用(混合使用)複數種。
在本發明的壓電薄膜10中,壓電體層12的高分子基質24中視需要可以併用複數種高分子材料。 亦即,構成高分子複合壓電體之高分子基質24中,以調節介電特性和機械特性等為目的,除了上述在常溫下具有黏彈性之高分子材料,視需要,還可以添加其他介電性高分子材料。
作為可添加的介電性高分子材料,作為一例,可例示聚偏二氟乙烯、偏二氟乙烯-四氟乙烯共聚物、偏二氟乙烯-三氟乙烯共聚物、聚偏二氟乙烯-三氟乙烯共聚物及聚偏二氟乙烯-四氟乙烯共聚物等氟類高分子、亞乙烯基二氰-乙酸乙烯酯共聚物、氰乙基纖維素、氰乙基羥基蔗糖、氰乙基羥基纖維素、氰乙基羥基支鏈澱粉、甲基丙烯酸氰乙酯、丙烯酸氰乙酯、氰乙基羥乙基纖維素、氰乙基直鏈澱粉、氰乙基羥丙基纖維素、氰乙基二羥丙基纖維素、氰乙基羥丙基直鏈澱粉、氰乙基聚丙烯醯胺、氰乙基聚丙烯酸酯、氰乙基支鏈澱粉、氰乙基聚羥基亞甲基、氰乙基縮水甘油支鏈澱粉、氰乙基蔗糖及氰乙基山梨糖醇等具有氰基或氰乙基之聚合物、以及丁腈橡膠及氯丁二烯橡膠等合成橡膠等。 其中,較佳使用具有氰乙基之高分子材料。 又,在壓電體層12的高分子基質24中,該等介電性高分子材料不限於1種,亦可以添加複數種。
又,除了介電性高分子材料以外,以調節高分子基質24的玻璃轉移點Tg為目的,可以添加氯乙烯樹脂、聚乙烯、聚苯乙烯、甲基丙烯酸樹脂、聚丁烯及異丁烯等熱塑性性樹脂、以及酚醛樹脂、脲樹脂、三聚氰胺樹脂、醇酸樹脂及雲母等熱硬化性樹脂等。 此外,以提高黏著性為目的,可以添加鬆香酯、鬆香、萜烯、萜烯酚及石油樹脂等增黏劑。
在壓電體層12的高分子基質24中,對添加除了在常溫下具有黏彈性之高分子材料以外的高分子材料時的添加量並無限制,但以高分子基質24中所佔之比例設為30質量%以下為較佳。 藉此,不損害高分子基質24中的黏彈性鬆弛機構就能夠顯現所添加之高分子材料的特性,因此在高介電率化、耐熱性的提高、壓電體粒子26或電極層的密接性提高等方面能夠獲得較佳的結果。
壓電體層12(高分子複合壓電體)係在該種高分子基質24中包含壓電體粒子26者。 壓電體粒子26較佳為由具有鈣鈦礦型或纖鋅礦型的結晶結構之陶瓷粒子組成者。 作為構成壓電體粒子26之陶瓷粒子,例如可例示鋯鈦酸鉛(PZT)、鋯鈦酸鑭鉛(PLZT)、鈦酸鋇(BaTiO3 )、氧化鋅(ZnO)及鈦酸鋇與鐵酸鉍(BiFe3 )的固溶體(BFBT)等。
壓電體粒子26的粒徑依據壓電薄膜10的尺寸或用途來適當地選擇即可。壓電體粒子26的粒徑為1~10μm為較佳。 藉由將壓電體粒子26的粒徑設在上述範圍,在能夠兼顧高壓電特性和可撓性等方面能夠獲得較佳的結果。
另外,在圖1中,壓電體層12中的壓電體粒子26均勻且有規則地分散於高分子基質24中,但本發明並不限於此。 亦即,壓電體層12中的壓電體粒子26較佳為均勻地分散即可,亦可以不規則地分散於高分子基質24中。
在壓電薄膜10中,壓電體層12中的高分子基質24與壓電體粒子26的量比依據壓電薄膜10的面方向的大小或厚度、壓電薄膜10的用途、壓電薄膜10所要求之特性等來適當地設定即可。 壓電體層12中的壓電體粒子26的體積分率為30~80%為較佳,尤其,50%以上為較佳,因此,設為50~80%為更佳。 藉由將高分子基質24與壓電體粒子26的量比設在上述範圍,在能夠兼顧高壓電特性和可撓性等方面能夠獲得較佳的結果。
又,在壓電薄膜10中,壓電體層12的厚度並無限制,依據壓電薄膜10的尺寸、壓電薄膜10的用途、壓電薄膜10所要求之特性等來適當地設定即可。 壓電體層12的厚度為8~300μm為較佳,8~200μm為更佳,10~150μm為進一步較佳,15~100μm為特佳。 藉由將壓電體層12的厚度設在上述範圍,在兼顧剛性的確保和適當的柔軟性等方面能夠獲得較佳的結果。
壓電體層12在厚度方向上被極化處理(Poling)為較佳。關於極化處理,將在後面進行詳細敘述。
圖1所示之壓電薄膜10具有如下結構:在該種壓電體層12的一面具有下部薄膜電極14,在下部薄膜電極14上作為較佳態樣具有下部保護層18,在壓電體層12的另一面具有上部薄膜電極16,在上部薄膜電極16上作為較佳態樣具有上部保護層20。在壓電薄膜10中,上部薄膜電極16和下部薄膜電極14形成電極對。 換言之,本發明的壓電薄膜10具有如下結構:藉由電極對亦即上部薄膜電極16及下部薄膜電極14夾持壓電體層12的兩面,較佳為,進一步藉由上部保護層20及下部保護層18夾持。 被壓電體層12的上部薄膜電極16及下部薄膜電極14夾持之區域依據所施加之電壓而驅動。
另外,壓電薄膜10除了該等層以外,例如還可以具有用於貼附薄膜電極和壓電體層12之貼附層及用於貼附薄膜電極和保護層之貼附層。貼附層只要能夠滿足後述破壞力的條件而貼附貼附對象彼此,則能夠利用公知的貼附劑。貼附劑可以為接著劑,亦可以為黏著劑。又,貼附劑亦能夠較佳地使用從壓電體層12去除壓電體粒子26之高分子材料亦即與高分子基質24相同的材料。另外,貼附層可以設置於上部薄膜電極16側及下部薄膜電極14側這兩者,亦可以僅設置於上部薄膜電極16側及下部薄膜電極14側中的一者。
此外,壓電薄膜10除了該等層以外,還可以具有從上部薄膜電極16及下部薄膜電極14引出電極之電極引出部、以及覆蓋壓電體層12露出之區域而防止短路等之絕緣層等。 作為電極引出部,可以設置薄膜電極及保護層向壓電體層的面方向外部以凸狀突出之部位,或者亦可以去除保護層的一部分而形成孔部,並向該孔部中***銀漿料等導電材料而使導電材料與薄膜電極電導通以製成電極引出部。 另外,在各薄膜電極中,電極引出部並不限於1個,亦可以具有2個以上的電極引出部。尤其,在去除保護層的一部分並向孔部***導電材料以製成電極引出部之結構的情況下,為了更可靠地確保通電,具有3個以上的電極引出部為較佳。
在壓電薄膜10中,上部保護層20及下部保護層18包覆上部薄膜電極16及下部薄膜電極14,並且起到對壓電體層12賦予適當的剛性和機械強度之作用。亦即,在本發明的壓電薄膜10中,包含高分子基質24和壓電體粒子26之壓電體層12相對於緩慢的彎曲變形顯示非常優異的撓性,另一方面,依據用途存在剛性或機械強度不足之情況。壓電薄膜10為了彌補該不足而設置上部保護層20及下部保護層18。 下部保護層18及上部保護層20僅僅是配置位置不同,而結構相同。因此,在以下說明中,在無需區分下部保護層18及上部保護層20之情況下,將兩個構件亦統稱為保護層。
另外,圖示例的壓電薄膜10作為更佳態樣積層於兩個薄膜電極並具有下部保護層18及上部保護層20。然而,本發明並不限於此,亦可以為僅具有下部保護層18及上部保護層20中的一個之結構。
保護層並無限制,能夠使用各種片狀物,作為一例,適當地例示各種樹脂薄膜。其中,藉由具有優異的機械特性及耐熱性等原因,可較佳利用由聚對酞酸乙二酯(PET)、聚丙烯(PP)、聚苯乙烯(PS)、聚碳酸酯(PC)、聚苯硫醚(PPS)、聚甲基丙烯酸甲酯(PMMA)、聚醚醯亞胺(PEI)、聚醯亞胺(PI)、聚醯胺(PA)、聚萘二甲酸乙二酯(PEN)、三乙醯纖維素(TAC)及環狀烯烴系樹脂等組成之樹脂薄膜。
保護層的厚度亦無限制。又,上部保護層20及下部保護層18的厚度基本相同,但亦可以不同。 若保護層的剛性過高,則不僅限制壓電體層12的伸縮,撓性亦受損。因此,除了要求機械強度或作為片狀物的良好的操作性之情況以外,保護層越薄越有利。
依據本發明人等的研究,若上部保護層20及下部保護層18的厚度分別為壓電體層12的厚度的2倍以下,則在兼顧剛性的確保和適當的柔軟性等方面能夠獲得較佳的結果。 例如,當壓電體層12的厚度為50μm且下部保護層18及上部保護層20由PET組成時,下部保護層18及上部保護層20的厚度分別為100μm以下為較佳,50μm以下為更佳,25μm以下為進一步較佳。
在壓電薄膜10中,在壓電體層12與上部保護層20之間形成有上部薄膜電極16,在壓電體層12與下部保護層18之間形成有下部薄膜電極14。在以下說明中,將上部薄膜電極16亦稱為上部電極16,將下部薄膜電極14亦稱為下部電極14。 上部電極16及下部電極14係為了對壓電薄膜10(壓電體層12)施加電場而設置。 另外,下部電極14及上部電極16基本上相同。因此,在以下說明中,在無需區分下部電極14及上部電極16之情況下,將兩個構件亦統稱為薄膜電極。
在本發明的壓電薄膜中,薄膜電極的形成材料並無限制,能夠使用各種導電體。具體而言,可例示碳、鈀、鐵、錫、鋁、鎳、鉑、金、銀、銅、鉻、鉬、該等的合金、氧化銦錫及PEDOT/PPS(聚乙烯二氧噻吩-聚苯乙烯磺酸)等導電性高分子等。 其中,較佳地例示銅、鋁、金、銀、鉑及氧化銦錫。其中,從導電性、成本及撓性等的觀點考慮,銅為更佳。
又,薄膜電極的形成方法亦無限制,能夠利用基於真空蒸鍍及濺射等氣相沉積法(真空成膜法)之成膜、基於鍍覆之成膜、貼附由上述材料形成之箔之方法及塗佈方法等公知的方法。
其中,尤其出於能夠確保壓電薄膜10的撓性等原因,藉由真空蒸鍍成膜之銅或鋁的薄膜可較佳用作薄膜電極。其中,尤其可較佳地利用藉由真空蒸鍍形成之銅的薄膜。
上部電極16及下部電極14的厚度並無限制。又,上部電極16及下部電極14的厚度基本相同,但亦可以不同。 在此,與上述保護層相同地,若薄膜電極的剛性過高,則不僅限制壓電體層12的伸縮,撓性亦受損。因此,只要在電阻不會變得過高的範圍內,薄膜電極越薄越有利。
在本發明的壓電薄膜10中,若薄膜電極的厚度與楊氏模量之乘積低於保護層的厚度與楊氏模量之乘積,則撓性不會嚴重受損,因此較佳。 例如,在保護層由PET(楊氏模量:約6.2GPa)組成且薄膜電極由銅(楊氏模量:約130GPa)組成之組合的情況下,若保護層的厚度為25μm,則薄膜電極的厚度為1.2μm以下為較佳,0.3μm以下為更佳,其中,0.1μm以下為較佳。
如上所述,壓電薄膜10具有如下結構:藉由上部電極16及下部電極14夾持包含高分子材料之高分子基質24中包含壓電體粒子26之壓電體層12,進一步夾持上部保護層20及下部保護層18。 該種壓電薄膜10在常溫下存在藉由動態黏彈性測定而得之頻率1Hz下的損耗正切(Tanδ)成為0.1以上之極大值為較佳。 藉此,即使壓電薄膜10從外部受到數Hz以下的比較緩慢的較大的彎曲變形,亦能夠有效地將應變能作為熱量向外部擴散,因此能夠防止在高分子基質與壓電體粒子的界面產生龜裂。
壓電薄膜10藉由動態黏彈性測定而得之頻率1Hz下的儲存彈性係數(E’)在0℃下為10~30GPa,在50℃下為1~10GPa為較佳。 藉此,在常溫下壓電薄膜10在儲存彈性係數(E’)中能夠具有較大的頻率分散。亦即,能夠相對於20Hz~20kHz的振動展現硬性,相對於數Hz以下的振動展現柔軟性。
又,壓電薄膜10的厚度與藉由動態黏彈性測定而得之頻率1Hz下的儲存彈性係數(E’)的乘積在0℃下為1.0×106 ~2.0×106 N/m,在50℃下為1.0×105 ~1.0×106 N/m為較佳。 藉此,壓電薄膜10在不損害撓性及音響特性之範圍內能夠具備適當的剛性和機械強度。
此外,壓電薄膜10在由動態黏彈性測定獲得之主曲線中,在25℃、頻率1kHz下的損耗正切(Tanδ)為0.05以上為較佳。 藉此,使用壓電薄膜10之揚聲器的頻率特性變得平滑,亦能夠減小最低共振頻率f0 隨著揚聲器(壓電薄膜10)的曲率的變化而變化時的音質的變化量。
如上所述,本發明的壓電薄膜中,作為包含高分子複合壓電體及電極層之積層體的破壞力的面方向的變異係數為0.25以下。又,本發明的壓電薄膜中,較佳為,包含高分子複合壓電體及電極層之積層體的破壞力的平均值為3N以上。 因此,在圖示例中,作為在壓電體層12的一個面(一個主表面)具有下部電極14且在壓電體層12的另一面(另一主表面)具有上部電極16,此外,在下部電極14的表面具有下部保護層18且在上部電極16的表面具有上部保護層20之積層體之壓電薄膜10的破壞力的面方向的變異係數為0.25以下,較佳為破壞力的平均值為3N以上。 另外,主表面為片狀物的最大面。因此,積層體的主表面通常為厚度方向的表面,亦即,為構成積層體之各層的積層方向的表面。
本發明的壓電薄膜中,作為包含高分子複合壓電體及電極層之積層體的破壞力的面方向的變異係數為0.25以下。在以下說明中,將破壞力的面方向的變異係數亦簡稱為“破壞力的變異係數”。 因此,在本發明中,例如,在壓電薄膜係僅由壓電體層及設置於壓電體層的兩面之薄膜電極組成者之情況下,作為由壓電體層及薄膜電極組成之積層體之壓電薄膜的破壞力的變異係數為0.25以下,較佳為破壞力的平均值為3N以上。 又,例如,當壓電薄膜除了壓電體層、薄膜電極及保護層以外還具有貼附薄膜電極和壓電體層之貼附層和/或貼附薄膜電極和保護層之貼附層時,具有壓電體層及薄膜電極之、由壓電體層、薄膜電極、保護層及貼附層組成之積層體即壓電薄膜的破壞力的變異係數為0.25以下,較佳為破壞力的平均值為3N以上。 此外,例如,當壓電薄膜除了壓電體層、薄膜電極及保護層以外還具有其他層時,具有壓電體層及薄膜電極之、由壓電體層、薄膜電極、保護層及其他層組成之積層體即壓電薄膜的破壞力的變異係數為0.25以下,較佳為破壞力的平均值為3N以上。作為壓電薄膜所具有之其他層,可例示阻氣層、裝飾層、隔板及絕緣層等。
在本發明中,積層體(壓電薄膜)的破壞不是指面方向的破壞(破裂),而是指厚度方向的破壞。 具體而言,在本發明中,積層體的破壞是指,積層體的層間剝離即各層的界面處的剝離及構成積層體之層在層內的厚度方向的破壞即層內的厚度方向的凝聚破壞(凝聚剝離)這兩者。在本發明中,當產生層間剝離及凝集破壞中的至少一種時,視為積層體已經破壞。 亦即,在本發明中,積層體的破壞力係在厚度方向上破壞積層體所需之力。更具體而言,積層體的破壞力係,在固定積層體的一個主表面之狀態下,從另一主表面側向剝離各層之方向拉伸時的、積層體的厚度方向的破壞所需之力。本發明的壓電薄膜10中,該破壞力的面方向的變異係數為0.25以下。
參閱圖2的概念圖,對本發明中的作為積層體的壓電薄膜的破壞力的測定方法、以及破壞力的平均值及變異係數的計算方法進行說明。 從成為破壞力的測定對象之壓電薄膜10切出20×200mm的測定用樣品S。 將該樣品S的一個主表面的長度方向的整個面利用雙面膠帶70固定於樣品台72。 接著,在固定於樣品台72之樣品S的長度方向的整個面貼附黏著帶74。黏著帶74比樣品S的長度方向的2倍還長。如圖2所示,黏著帶74將長度方向的一個端部側貼附於樣品S的長度方向的整個面上,進而在樣品S的長度方向的一個端部側折回。黏著帶74例如使用市售的透明膠帶即可。
此時,雙面膠帶70及黏著帶74在寬度方向上無需一定貼附於樣品S的整個面。亦即,雙面膠帶70及黏著帶74的寬度(短邊方向的長度)可以與樣品S的寬度相同,亦可以更短。較佳為,雙面膠帶70及黏著帶74將整個面貼附於樣品S,並且為了充分發揮規定的黏著力,雙面膠帶70及黏著帶74的寬度比樣品S的寬度稍短。又,雙面膠帶70及黏著帶74為了充分發揮規定的黏著力,使雙面膠帶70及黏著帶74在寬度方向上不從樣品S突出為較佳。 但是,在任何情況下,樣品S與雙面膠帶70及黏著帶74的貼附力相對於樣品S即壓電薄膜10的破壞強度需要足夠強。又,黏著帶74的強度相對於樣品S即壓電薄膜10的破壞強度需要足夠強。
在折疊之黏著帶74的折疊側的端部附近、亦即未貼附於黏著帶74的樣品S之側的端部附近固定牽引用金屬零件76。 此外,將應力測定器的測定端部78卡合於金屬零件76。應力測定器使用市售的測力計(推拉力計、推拉力器)即可。
從該狀態,使應力測定器向沿樣品台72上的樣品S的貼附面之方向(箭頭Z方向)移動。藉此,以從將黏著帶74折疊之側以拉伸方向180°沿樣品台72剝離之方式拉出樣品S。樣品S的拉伸速度設為100mm/分。應力測定器的移動亦即拉伸裝置例如使用與應力測定機對應之市售的裝置(測力計支架)進行即可。 如此,以拉伸方向180°拉伸樣品S時測定與應力測定器相關之應力[N],設為樣品S亦即壓電薄膜的破壞力[N]。
在拉伸樣品S的同時以10點/秒的間隔在300點上進行該種樣品S的破壞強度的測定。
圖3中示出壓電薄膜的破壞力的測定結果的一例。另外,該破壞力的測定結果為後述本發明的實施例1中的測定結果。 如圖3所示,樣品S即壓電薄膜的破壞力在測定開始當初較低,在某一點急劇上升,然後,呈與壓電薄膜10的破壞力對應之狀態。因此,進行了測定之300點中,使用除最初的100點以外的200點的測定結果,計算壓電薄膜的破壞力的平均值、壓電薄膜的破壞力的標準偏差及壓電薄膜的破壞力的變異係數。 首先,計算壓電薄膜的破壞力的平均值(AVE)。接著,計算壓電薄膜的破壞力的標準偏差(σ)。然後,將壓電薄膜的破壞力的標準偏差除以壓電薄膜的破壞力的平均值,從而計算壓電薄膜的破壞力的面方向的變異係數。亦即,“變異係數=σ/AVE”。
本發明的壓電薄膜10中,如此測定之破壞力的變異係數為0.25以下,較佳為壓電薄膜10的破壞力的平均值為3N以上。
如上所述,例如對使用壓電薄膜之壓電揚聲器(電聲轉換薄膜)要求如下等特性:相對於輸入動作電壓可獲得足夠的聲壓(音量);及在寬頻帶下可獲得足夠的聲壓特性,尤其在低頻區域(低音區域)中不會產生所謂的顫音。 本發明人對在壓電薄膜中可獲得滿足該種特性之壓電揚聲器之壓電薄膜進行了深入研究。 其結果,發現了在高分子基質24中在包含壓電體粒子26之壓電體層12(高分子複合壓電體)的兩面具有薄膜電極,較佳為,在進一步由保護層夾持而成之壓電薄膜10中,為了滿足上述特性,層間及層內的密接性是重要的。
關於積層體之壓電薄膜,黏彈性不同之層沿厚度方向積層有複數層。壓電薄膜藉由依據電訊號,該等層成為一體而振動來將電訊號轉換為空氣振動(聲音)。 此時,若各層在層間均勻地密接且各層在層內沒有均勻地密接,則由電訊號引起之壓電體層的變化不會有效地傳遞到壓電體層內及其他層。亦即,若壓電薄膜在包括層間及層內之內部沒有均勻且一體地結合,則由電訊號引起的變化在壓電薄膜內不會有效地進行傳遞,結果電聲的轉換效率降低。 其結果,壓電薄膜的密接力不均勻時,產生層內及層間的振動能量的傳遞損失變大,聲壓的降低及輸出的頻率特性劣化等問題。尤其在需要大能量之低頻區域中,音響特性明顯降低,發生產生所謂的顫音等問題。
相對於此,本發明的壓電薄膜10中,作為積層體的破壞力的變異係數為0.25以下。亦即,本發明的壓電薄膜10在積層體的層間及層內中,在整個面上以均勻的密接力密接,薄膜內部一體結合。 其結果,本發明的壓電薄膜10顯示如下等優異的特性:例如用作壓電揚聲器(電聲轉換薄膜)時,相對於輸入動作電壓可獲得足夠的聲壓(音量),在寬頻帶下可獲得足夠的聲壓特性,尤其在低頻區域中能夠充分抑制顫音。 尤其,本發明的壓電薄膜10藉由將破壞力的平均值設為3N以上,能夠實現更顯著地表現上述優異的特性,而獲得高的聲壓,並且抑制了低頻區域中的顫音之、高性能的壓電揚聲器。
在本發明的壓電薄膜10中,若破壞力的變異係數超過0.25,則產生相對於輸入動作電壓無法獲得足夠的聲壓,並且在低頻區域中較多地產生顫音等不良情況。 破壞力的變異係數為0.22以下為較佳,0.18以下為更佳。 變異係數的下限並無限制,基本上較低為較佳,但是若考慮製造的容易性等,則為0.02以上。
在本發明的壓電薄膜10中,如上所述,破壞力的平均值為3N以上為較佳。就更佳地獲得上述優異的特性之方面,破壞力的平均值為3.9N以上為更佳,5N以上為進一步較佳。 破壞力的平均值的上限並無限制,基本上較高為較佳,但考慮到可使用的材料等,則為40N以下。
圖4~圖6中概念性地示出壓電薄膜10的製造方法的一例。
首先,如圖4所示,準備在下部保護層18上形成有下部電極14之片狀物即下部電極積層體11a。 此外,準備圖6所示之將上部薄膜電極16和上部保護層20積層而成之片狀物即上部電極積層體11c。
下部電極積層體11a藉由利用真空蒸鍍、濺射、鍍覆等在下部保護層18的表面形成銅薄膜等作為下部薄膜電極14來製作即可。同樣地,上部電極積層體11c藉由利用真空蒸鍍、濺射、鍍覆等在上部保護層20的表面形成銅薄膜等作為上部薄膜電極16來製作即可。 或者,可以將在保護層上形成有銅薄膜等之市售品的片狀物用作下部電極積層體11a和/或上部電極積層體11c。 下部電極積層體11a及上部電極積層體11c可以完全相同,亦可以不同。
另外,當保護層非常薄而操作性差等時,視需要可以使用帶有隔板(臨時支撐體)的保護層。另外,作為隔板,能夠使用厚度25~100μm的PET等。在薄膜電極及保護層的熱壓接之後去除隔板即可。
接著,如圖5所示,在下部電極積層體11a的下部電極14上塗佈成為壓電體層12之塗料(塗佈組成物)之後,進行硬化而形成壓電體層12,從而製作將下部電極積層體11a和壓電體層12積層而成之積層體11b。
首先,在有機溶劑中溶解上述高分子材料,進而添加PZT粒子等壓電體粒子26,進行攪拌而製備塗料。 有機溶劑並無限制,能夠利用二甲基甲醯胺(DMF)、甲基乙基酮及環己酮等各種有機溶劑。 準備下部電極積層體11a,且製備塗料之後,將該塗料流延(塗佈)到下部電極積層體11a,並使有機溶劑蒸發而進行乾燥。藉此,如圖5所示,製作在下部保護層18上具有下部電極14且在下部電極14上積層壓電體層12而成之積層體11b。
該塗料的流延方法並無限制,棒塗機、滑動式塗佈機及刮刀等公知的方法(塗佈裝置)全部都能夠利用。 或者,若高分子材料為能夠加熱熔融之物質,則將高分子材料加熱熔融,製備向其中添加壓電體粒子26而成之熔融物,藉由擠出成型等,在圖4所示之下部電極積層體11a上擠出成片狀,並進行冷卻,藉此可以製作如圖5所示之積層體11b。
另外,如上所述,在壓電薄膜10中,高分子基質24中除了在常溫下具有黏彈性之高分子材料以外,還可以添加PVDF等高分子壓電材料。 向高分子基質24中添加該等高分子壓電材料時,溶解添加到上述塗料中的高分子壓電材料即可。或者,向加熱熔融之在常溫下具有黏彈性之高分子材料中添加要添加之高分子壓電材料並進行加熱熔融即可。
接著,對在下部保護層18上具有下部電極14且在下部電極14上形成壓電體層12而成之積層體11b的壓電體層12進行極化處理(poling)。 壓電體層12的極化處理的方法並無限制,能夠利用公知的方法。作為一例,可例示對壓電體層12直接施加直流電場之電場極化。另外,當進行電場極化時,可以在極化處理之前,形成上部電極14,並利用上部電極14及下部電極16進行電場極化處理。 又,當製造本發明的壓電薄膜10時,極化處理在厚度方向上進行極化,而不是在壓電體層12(高分子複合壓電體)的面方向上進行極化。 另外,在該極化處理之前,可以實施利用加熱輥等使壓電體層12的表面變得平滑之壓延處理。藉由實施該壓延處理,能夠順暢地進行後述熱壓接製程。
接著,如圖6所示,在進行極化處理之積層體11b的壓電體層12側將預先準備之上部電極積層體11c以使上部電極16朝向壓電體層12積層之方式進行積層。 此外,以夾持下部保護層18及上部保護層20之方式使用熱壓機裝置及加熱輥等將該積層體進行熱壓接,並貼合積層體11b和上部電極積層體11c,製作如圖1所示之本發明的壓電薄膜10。 或者,使用接著劑貼合積層體11b和上部電極積層體11c,較佳為,可以進一步進行壓接而製作本發明的壓電薄膜10。
如此製作之本發明的壓電薄膜10在厚度方向上被極化,而不是在面方向上被極化,並且,即使在極化處理後不進行拉伸處理亦可獲得較大的壓電特性。因此,本發明的壓電薄膜10在壓電特性上沒有面內各向異性,若施加驅動電壓,則在面內方向上向所有方向各向同性地伸縮。
在該種壓電薄膜10的製造方法中,藉由進行用於形成壓電體層12的塗料的脫泡處理、使塗佈的塗料逐漸乾燥之低速乾燥及將積層體進行熱壓接或使用接著劑進行壓接時的脫氣泡處理中的2種處理,能夠較佳地製造破壞力的變異係數為0.25以下,較佳為破壞力的平均值為3N以上之本發明的壓電薄膜10。 較佳為,藉由全部進行脫泡處理、低速乾燥及脫氣泡處理,能夠更較佳地製造破壞力的變異係數為0.25以下,較佳為破壞力的平均值為3N以上之本發明的壓電薄膜10。
作為積層體的壓電薄膜10的破壞力即密接力的變動(不均勻)係由存在於壓電體層12的內部之氣泡引起。因此,在製備用於形成壓電體層12的塗料之後,塗佈於下部電極14(塗佈面)時,進行脫泡處理,從而能夠減小壓電薄膜10的破壞力的變動,又,能夠增加壓電薄膜10的破壞力的平均值。 塗料的脫泡處理並無限制,能夠利用各種公知的從液體的脫泡處理法。作為一例,可例示真空脫泡、攪拌脫泡及靜置脫泡。關於該等脫泡處理的條件,依據所實施之脫泡處理及塗料的狀態等適當地設定進行足夠的脫泡之條件即可。 另外,在藉由貼附層進行壓電體層12與薄膜電極的貼附和/或薄膜電極與保護層的貼附之情況下,在貼附前對貼附劑進行該種脫泡處理亦為有效。
作為積層體的壓電薄膜10的破壞力即密接力的變動亦受到壓電體層12的表面性狀的影響。壓電體層12的表面性狀受到將成為壓電體層12之塗料塗佈於薄膜電極之後的乾燥的影響。亦即,若進行藉由利用加熱器等之加熱促進溶劑的蒸發之乾燥方法及藉由送風在塗料表面產生溶劑濃度(蒸汽壓)差而促進乾燥之乾燥方法等急速乾燥,則呈從塗料蒸發之溶劑在表面破裂之狀態,又,乾燥前的塗料的表面因送風而打亂,在壓電體層12的表面產生粗糙。 相對於此,在塗佈成為壓電體層12之塗料之後,進行使塗料逐漸乾燥之低速乾燥,從而壓電體層12的表面性狀變得良好,並且能夠減小壓電薄膜10的破壞力的變動,又,能夠增加壓電薄膜10的破壞力的平均值。 作為低速乾燥方法,可例示首先塗佈塗料之後,在溫度為20~30℃之靜置區域中進行自然乾燥之方法。又,作為低速乾燥的另一方法,可例示最初在常溫的氣氛下從塗料的支撐體側(圖示例中為下部保護層側)的面吹送乾燥風,使氣氛溫度逐漸上升並進行乾燥之方法。在後者方法中,乾燥風的風力及氣氛溫度依據塗料的狀態等適當地設定成為足夠的低速乾燥之條件即可。
作為積層體的壓電薄膜10的破壞力即密接力的變動亦由存在於壓電體層12與薄膜電極之間及薄膜電極與保護層之間之氣泡引起。因此,在進行用於製造壓電薄膜10的、使用各層的熱壓接和/或接著劑的壓接時,藉由進行脫氣泡處理,能夠減小壓電薄膜10的破壞力的變動,又,能夠增加壓電薄膜10的破壞力的平均值。例如,在上述圖4~圖6所示之壓電薄膜的製造方法中,在積層體11b與上部電極積層體11c的熱壓接或使用貼附劑的壓接時,進行脫氣泡處理。 作為壓接時的脫氣泡處理的方法,可例示作為壓接輥使用W型螺旋輥之方法。又,作為壓接時的脫泡處理的另一方法,可例示作為壓接輥使用冠輥(徑向冠輥)之方法。此時,在用夾輥夾持輸送積層體之同時進行壓接之情況下,W螺旋輥及冠輥可以僅為積層而壓接之層側的輥,或者,兩個輥都可以為W螺旋輥等。
該種本發明的壓電薄膜10的製造可以使用切割片狀的下部電極積層體11a及上部電極積層體11c等,較佳為,利用卷對卷(Roll to Roll)。在以下說明中,將卷對卷亦稱為“RtoR”。 眾所周知,RtoR係從將長形的原材料捲繞而成之輥中拉出原材料,一邊沿長度方向進行輸送一邊進行成膜或表面處理等各種處理,將處理結束的原材料再次捲繞成捲狀之製造方法。
當藉由RtoR並利用上述製造方法製造壓電薄膜10時,使用將長形的下部電極積層體11a捲繞而成的第1輥及將長形的上部電極積層體11c捲繞而成之第2輥。 第1輥及第2輥可以相同。
從該第1輥中拉出下部電極積層體11a,一邊沿長度方向進行輸送,一邊在下部電極積層體11a的下部電極14上塗佈含有高分子材料及壓電體粒子26之塗料,並藉由加熱等進行乾燥,從而製作在下部電極14上形成壓電體層12,並積層下部電極積層體11a和壓電體層12而成之積層體11b。 接著,進行壓電體層12的極化處理。在此,當藉由RtoR製造壓電薄膜10時,藉由一邊輸送積層體11b一邊沿與積層體11b的輸送方向正交之方向延伸而配置之棒狀電極進行壓電體層12的極化處理。另外,如上所述,可以在該極化處理之前進行壓延處理。又,沿壓電體層12的厚度方向進行極化處理。 接著,從第2輥拉出上部電極積層體11c,一邊輸送上部電極積層體11c及積層體11b,一邊藉由使用貼合輥等之公知的方法使上部薄膜電極16朝向壓電體層12而在積層體11b上積層上部電極積層體11c。 然後,藉由以加熱輥對夾持積層體11b及上部電極積層體11c並進行輸送來進行熱壓接,從而完成本發明的壓電薄膜10,將該壓電薄膜10捲繞成輥狀。
在藉由該種RtoR製造壓電薄膜10時,亦進行脫泡處理、使所塗佈之塗料逐漸乾燥之低速乾燥及壓接時的脫氣泡處理中的2個處理、較佳為3個處理,從而能夠製造破壞力的變異係數為0.25以下,較佳為破壞力的平均值為3N以上之本發明的壓電薄膜10。
另外,以上例中,藉由RtoR沿長度方向僅輸送1次片狀物(積層體),從而製作本發明的壓電薄膜10,但並不限於此。 例如,在形成前述積層體並進行極化處理之後,製造將該積層體11b捲繞成輥狀一次而成之積層體輥。接著,從該積層體輥中拉出積層體11b,一邊沿長度方向輸送一邊如前述進行上部電極積層體11c的積層及熱壓接,從而製作壓電薄膜10,可以將該壓電薄膜10捲繞成輥狀。
圖7中示出利用本發明的壓電薄膜10之平板型的壓電揚聲器的一例的概念圖。 該壓電揚聲器40為將本發明的壓電薄膜10用作將電信號轉換為振動能之振動板之平板型的壓電揚聲器。另外,壓電揚聲器40亦能夠用作麥克風及感測器等。
壓電揚聲器40具有壓電薄膜10、外殼42、按壓蓋48而構成。 外殼42為由塑膠等形成之、一面開放之圓筒狀的框體。在外殼42的側面設置***到外殼42之管42a。 又,按壓蓋48為具有大致L字形的截面之框體,在外殼42的開放面側***並嵌合。
壓電揚聲器40用壓電薄膜10覆蓋外殼42以封閉開放面,並從壓電薄膜10的上方將按壓蓋48嵌合於外殼42,從而藉由壓電薄膜10氣密地封閉外殼42的開放面。另外,視需要,可以在外殼42的側壁上面與壓電薄膜10之間設置用於保持氣密之O型圈等。 在該狀態下,藉由從管42a中排出外殼42內的空氣,如圖7所示,將壓電薄膜10保持在凹狀態。相反,亦可以藉由從管42a向外殼42內導入空氣來將壓電薄膜10保持在凸狀態。
壓電揚聲器40藉由向下部電極14及上部電極16施加驅動電壓使壓電薄膜10沿面內方向伸長時,為了吸收該伸長量,使因減壓而成為凹狀之壓電薄膜10向下方移動。 相反,藉由對下部電極14及上部電極16施加驅動電壓而使壓電薄膜10在面內方向上收縮時,為了吸收該收縮量,凹狀的壓電薄膜10向上方移動。 壓電揚聲器40藉由該壓電薄膜10的振動而產生聲音。
另外,在本發明的壓電薄膜10中,藉由保持為使壓電薄膜10彎曲之狀態亦能夠實現從伸縮運動向振動的轉換。 因此,本發明的壓電薄膜10不是作為具有如圖7所示之剛性之平板狀的壓電揚聲器40發揮作用,而是簡單地保持在彎曲狀態亦能夠作為具有撓性之壓電揚聲器發揮作用。
利用該種本發明的壓電薄膜10之壓電揚聲器能夠具有良好的撓性,例如藉由捲起或折疊而收容到包等中。因此,依本發明的壓電薄膜10,即使為一定程度的大小,亦能夠實現可容易攜帶之壓電揚聲器。 又,如上所述,本發明的壓電薄膜10的柔軟性及撓性優異,並且在面內不具有壓電特性的各向異性。因此,本發明的壓電薄膜10無論向哪個方向彎曲,音質的變化都小,並且,對曲率的變化的音質變化亦小。因此,利用本發明的壓電薄膜10之壓電揚聲器的設置位置的自由度高,又,如上所述,能夠安裝於各種物品。例如,藉由將本發明的壓電薄膜10以彎曲狀態安裝於西服等服裝品及包等攜帶品等,能夠實現所謂的佩戴式揚聲器。
此外,如上所述,藉由將本發明的壓電薄膜貼附於具有撓性之有機EL顯示設備及具有撓性之液晶顯示設備等具有撓性之顯示設備,亦能夠用作顯示設備的揚聲器。
如上所述,本發明的壓電薄膜10藉由施加電壓而沿面方向伸縮,並且藉由該面方向的伸縮而在厚度方向上較佳地振動。因此,將本發明的壓電薄膜10用於例如壓電揚聲器等時,顯現出減小低頻區域中的顫音且能夠輸出高的聲壓的聲音之良好的音響特性。 藉由積層複數張顯現該種良好的音響特性亦即由壓電引起之高的伸縮性能之本發明的壓電薄膜10,作為使振動板等被振動體振動之壓電振動元件亦良好地發揮作用。 另外,在積層壓電薄膜10時,如果沒有短路(short)的可能性,則壓電薄膜可以不具有上部保護層20和/或下部保護層18。或者,可以經由絕緣膜積層不具有上部保護層20和/或下部保護層18之壓電薄膜。
作為一例,可以將壓電薄膜10的積層體貼附於振動板,從而作為藉由壓電薄膜10的積層體使振動板振動而輸出聲音之揚聲器。亦即,在此情況下,將壓電薄膜10的積層體用作藉由使振動板振動來輸出聲音之、所謂的激發器。 藉由對積層之壓電薄膜10施加驅動電壓,各個壓電薄膜10沿面方向伸縮,藉由各壓電薄膜10的伸縮,壓電薄膜10的積層體整體沿面方向伸縮。藉由壓電薄膜10的積層體的面方向的伸縮,貼附有積層體之振動板撓曲,其結果,振動板沿厚度方向振動。藉由該厚度方向的振動,振動板產生聲音。振動板依據施加到壓電薄膜10之驅動電壓的大小來振動,並產生與施加到壓電薄膜10之驅動電壓相應之聲音。 因此,此時,壓電薄膜10本身不輸出聲音。
即使每1張壓電薄膜10的剛性低、伸縮力小,藉由積層壓電薄膜10,剛性亦提高,作為積層體整體,伸縮力亦增大。其結果,壓電薄膜10的積層體中,即使振動板具有一定程度的剛性,亦能夠以較大的力使振動板充分撓曲,並使振動板沿厚度方向充分振動,從而在振動板上產生聲音。
在壓電薄膜10的積層體中,壓電薄膜10的積層張數並無限制,例如依據振動之振動板的剛性等適當地設定獲得充分的振動量之張數即可。 另外,只要具有充分的伸縮力,則亦能夠將1張本發明的壓電薄膜10同樣地用作激發器(壓電振動元件)。
由本發明的壓電薄膜10的積層體振動之振動板亦無限制,能夠利用各種片狀物(板狀物、薄膜)。 作為一例,可例示由聚對酞酸乙二酯(PET)等組成之樹脂薄膜、由發泡聚苯乙烯等組成之發泡塑膠、瓦楞紙板等紙質材料、玻璃板及木材等。此外,只要能夠充分撓曲,則作為振動板,亦可以使用顯示設備等機器。
壓電薄膜10的積層體藉由貼附層(貼附劑)貼附相鄰之壓電薄膜彼此為較佳。又,壓電薄膜10的積層體和振動板亦藉由貼附層貼附為較佳。 貼附層並無限制,可利用各種能夠貼附成為貼附對象之物品彼此者。因此,貼附層可以由黏著劑組成,亦可以由接著劑組成。較佳為,使用貼附後可獲得固體且硬的貼附層之、由接著劑組成之接著劑層。 關於以上方面,將後述長形的壓電薄膜10折疊而成之積層體亦相同。
在壓電薄膜10的積層體中,對積層之各壓電薄膜10的極化方向並無限制。另外,如上所述,本發明的壓電薄膜10的極化方向為厚度方向的極化方向。 因此,在壓電薄膜10的積層體中,極化方向在所有壓電薄膜10中可以為相同方向,亦可以存在極化方向不同之壓電薄膜。
在此,在壓電薄膜10的積層體中,以相鄰之壓電薄膜10彼此的極化方向彼此相反之方式積層壓電薄膜10為較佳。 在壓電薄膜10中,施加於壓電體層12之電壓的極性成為與極化方向相對應者。因此,無論在極化方向從上部電極16朝向下部電極14之情況下,還是在從下部電極14朝向上部電極16之情況下,在積層之所有壓電薄膜10中,將上部電極16的極性及下部電極14的極性設為相同極性。 因此,藉由使相鄰之壓電薄膜10彼此的極化方向彼此相反,即使相鄰之壓電薄膜10的薄膜電極彼此接觸,接觸之薄膜電極為相同極性,因此不用擔心發生短路(短路)。
壓電薄膜10的積層體亦可以設為藉由將長形的壓電薄膜10折疊1次以上、較佳為複數次來積層複數個壓電薄膜10之結構。 將長形壓電薄膜10折疊而積層之結構具有如下優點。 亦即,在將切割片狀的壓電薄膜10積層複數張的而成之積層體中,需要對每1張壓電薄膜,將上部電極16及下部電極14連接於驅動電源。相對於此,在將長形的壓電薄膜10折疊而積層之結構中,能夠僅由一張長形的壓電薄膜10構成積層體。又,在將長形的壓電薄膜10折疊而積層之結構中,用於施加驅動電壓之電源為1個即可,此外,亦可以在一個位置從壓電薄膜10拉出電極。 此外,在將長形的壓電薄膜10折疊而積層之結構中,必需使相鄰之壓電薄膜10彼此的極化方向彼此相反。
以上,對本發明的壓電薄膜進行了詳細說明,但本發明並不限於上述例子,在不脫離本發明的宗旨之範圍內,當然可以進行各種改良和變更。 [實施例]
以下,列舉本發明的具體的實施例,對本發明進行更詳細的說明。另外,本發明不限於該實施例,以下的實施例所示之材料、使用量、比例、處理內容、處理步驟等只要不脫離本發明的宗旨,則能夠適當地進行變更。
[壓電薄膜的製造方法] 藉由圖4~圖6所示之方法製作了圖1所示之層結構的壓電薄膜。 另外,以下所示之壓電薄膜的製造方法為本發明的實施例及比較例中的基本的壓電薄膜的製造方法,關於<製液製程>、<塗佈・乾燥製程>及<貼合製程>,在實施例及比較例的各例中示出具體的操作及條件。
<製液製程> 以下述組成比,將氰乙基化PVA(Shin-Etsu Chemical Co., Ltd.製 CR-V)溶解於甲基乙基酮(MEK)。然後,向該溶液中以下述組成比添加PZT粒子,並使用螺旋漿混合器(轉速2000rpm)進行攪拌,從而製備了用於形成壓電體層之塗料。 ・PZT粒子・・・・・・・・・・・300質量份 ・氰乙基化PVA・・・・・・・15質量份 ・MEK・・・・・・・・・・・・・・85質量份 另外,PZT粒子使用了將市售的PZT原料粉在1000~1200℃下燒結之後,將其以平均粒徑成為5μm之方式進行了破碎及分級處理者。
<塗佈・乾燥製程> 準備了在厚度4μm的PET薄膜上真空蒸鍍厚度0.1μm的銅薄膜而成之片狀物(下部電極積層體)。亦即,在本例中,下部電極為厚度0.1μm的銅蒸鍍薄膜,下部保護層為厚度4μm的PET薄膜。 使用滑動式塗佈機在該片狀物的銅薄膜上塗佈了預先製備之用於形成壓電體層之塗料。另外,以乾燥後的塗膜的膜厚成為40μm之方式塗佈了塗料。藉由乾燥該塗料而形成了壓電體層。 藉此,製作了在PET製的保護層上具有銅製的薄膜電極且在其上具有厚度為40μm的壓電體層之積層體。
<極化處理製程> 對該積層體的壓電體層進行了極化處理。
<貼合製程> 準備了與先前同樣的在厚度4μm的PET薄膜上真空蒸鍍厚度0.1μm的銅薄膜而成之片狀物(上部電極積層體)。亦即,在本例中,上部電極亦為厚度0.1μm的銅蒸鍍薄膜,上部保護層亦為厚度4μm的PET薄膜。 使銅薄膜與經極化處理之壓電體層相對,並積層了積層體和準備之片狀物。 接著,使用層壓裝置,將積層體與片狀物的積層體在120℃下熱壓接,從而貼合壓電體層和上部電極而製作了圖1所示之層結構的壓電薄膜。另外,該層壓裝置係使用壓接輥進行壓接者。按壓力設為1.5MPa。
基於該製造方法,在<製液製程>、<塗佈・乾燥製程>及<貼合製程>中,進行以下所示之操作,從而製作了壓電薄膜。
[實施例1] 在製液製程中,在製備用於形成壓電體層之塗料之後,進行了5分鐘的30kPa的真空脫泡。 在塗佈・乾燥製程中,藉由在20~30℃的靜置區域中進行自然乾燥而進行了所塗佈之塗料的乾燥。 在貼合製程中,作為壓接輥使用W螺旋輥(WH輥)來進行了熱壓接。
[實施例2] 在製液製程中,在製備用於形成壓電體層之塗料之後,進行了5分鐘的30kPa的真空脫泡。 在塗佈・乾燥製程中,藉由在20~30℃的靜置區域中進行自然乾燥而進行了所塗佈之塗料的乾燥。 在貼合製程中,作為壓接輥使用徑向冠輥(RC輥)進行了熱壓接。
[實施例3] 在製液製程中,在製備用於形成壓電體層之塗料之後,進行了5分鐘的30kPa的真空脫泡。 在塗佈・乾燥製程中,首先在20~30℃的氣氛中從片狀物側(下部電極側)吹送5分鐘的風速5m/秒的乾燥風,接著,在40℃的氣氛中從片狀物側吹送5分鐘的風速5m/秒的乾燥風,進而,在50℃的氣氛中從片狀物側吹送5分鐘的風速5m/秒的乾燥風,從而進行了所塗佈之塗料的乾燥(階段乾燥)。 在貼合製程中,作為壓接輥使用W螺旋輥(WH輥)來進行了熱壓接。
[實施例4] 在製液製程中,在製備用於形成壓電體層之塗料之後,進行了以公轉離心力施加7分鐘的300G之攪拌脫泡。 在塗佈・乾燥製程中,藉由在20~30℃的靜置區域中進行自然乾燥而進行了所塗佈之塗料的乾燥。 在貼合製程中,作為壓接輥使用W螺旋輥(WH輥)來進行了熱壓接。
[實施例5] 在製液製程中,在製備用於形成壓電體層之塗料之後,進行了在密閉容器內以靜止狀態放置2小時之靜止脫泡。 在塗佈・乾燥製程中,藉由在20~30℃的靜置區域中進行自然乾燥而進行了所塗佈之塗料的乾燥。 在貼合製程中,作為壓接輥使用W螺旋輥(WH輥)來進行了熱壓接。
[實施例6] 在製液製程中,在製備用於形成壓電體層之塗料之後,不進行任何處理(無脫泡)。 在塗佈・乾燥製程中,藉由在20~30℃的靜置區域中進行自然乾燥而進行了所塗佈之塗料的乾燥。 在貼合製程中,作為壓接輥使用W螺旋輥(WH輥)來進行了熱壓接。
[實施例7] 在製液製程中,在製備用於形成壓電體層之塗料之後,不進行任何處理(無脫泡)。 在塗佈・乾燥製程中,藉由在20~30℃的靜置區域中進行自然乾燥而進行了所塗佈之塗料的乾燥。 在貼合製程中,作為壓接輥使用徑向冠輥(RC輥)進行了熱壓接。
[比較例1] 在製液製程中,在製備用於形成壓電體層之塗料之後,不進行任何處理(無脫泡)。 在塗佈・乾燥製程中,藉由在20~30℃的靜置區域中進行自然乾燥而進行了所塗佈之塗料的乾燥。 在貼合製程中,作為壓接輥使用通常的平面壓輥,不進行脫氣泡處理而進行了熱壓接(無脫氣泡)。
[比較例2] 在製液製程中,在製備用於形成壓電體層之塗料之後,進行了5分鐘的30kPa的真空脫泡。 在塗佈・乾燥製程中,藉由將塗料加熱至100℃來進行了所塗佈之塗料的乾燥(通常乾燥)。 在貼合製程中,作為壓接輥使用通常的平面壓輥,不進行脫氣泡處理而進行了熱壓接(無脫氣泡)。
[比較例3] 在製液製程中,在製備用於形成壓電體層之塗料之後,不進行任何處理(無脫泡)。 在塗佈・乾燥製程中,藉由將塗料加熱至100℃來進行了所塗佈之塗料的乾燥(通常乾燥)。 在貼合製程中,作為壓接輥使用通常的平面壓輥,不進行脫氣泡處理而進行了熱壓接(無脫氣泡)。
[破壞力的平均值及變異係數的測定] 關於所製作之壓電薄膜,以圖2所示之方法測定了破壞力。 樣品台設為V形塊。作為將樣品(壓電薄膜)貼附於樣品台之雙面膠帶,使用了3M製的scotch(R)655-3-18mm。 又,作為用於貼附於樣品上,折疊並向180°方向拉伸之黏著帶,使用了NICHIBAN CO.,LTD.製的植物系No.405(18mm)。 另外,樣品與雙面膠帶及黏著帶的貼附力、以及黏著帶的強度相對於假設的壓電薄膜的破壞力而言足夠強。因此,在該測定中,在壓電薄膜的破壞力的測定中,雙面膠帶及黏著帶沒有從樣品剝離,並且黏著帶沒有破裂。 壓力測定器使用了NIDEC-SHIMPO CORPORATION製的FGP-5(50.0N用)。 又,應力測定器的移動機構(拉伸裝置)使用了NIDEC-SHIMPO CORPORATION製的FGS-50E-L(低速規格)。
如此,如上所述,以100mm/分的速度移動應力測定器以沿180°的方向拉伸黏著帶,以10點/秒的間隔在300點測定了施加到應力測定器之應力、亦即壓電薄膜的破壞力[N]。如上所述,圖3為實施例1的壓電薄膜的破壞力的測定結果。 依據從所測定之壓電薄膜的破壞力,如上所述,使用從測定開始除最初的100點以外的200點,計算破壞力的平均值及破壞力的標準偏差,進而計算了破壞力的變異係數。 將結果示於下述表。又,圖8中示出變異係數與破壞力平均值之間的關係。
[評價] <聲壓的測定> (壓電揚聲器的製作) 從所製作之轉換薄膜切出φ70mm的圓形試驗片,製作了如圖7所示之壓電揚聲器。 外殼為一面開放之圓筒狀的容器,並且使用了開口部的大小φ60mm、深度10mm的塑膠製的圓筒狀容器。 以覆蓋外殼的開口部之方式配置壓電薄膜,藉由按壓蓋固定周邊部之後,從管在外殼內排出空氣,將外殼內的壓力維持在0.09MPa,使壓電薄膜彎曲成凹狀,從而製作了壓電揚聲器。
(聲壓的測定) 如圖9中概念性地表示,在朝向壓電揚聲器的壓電薄膜的中央在距離0.5m之位置(距離L=0.5m)配置麥克風P,並在壓電薄膜的上部電極與下部電極之間輸入3kHz、1W的正弦波,從而測定了聲壓[dB/W・m]。
<顫音的評價> 藉由所製作之壓電揚聲器,將1W的正弦波從50Hz到100Hz進行10秒鐘的掃描,並藉由官能評價評價了低頻區域中的顫音的產生。 將完全沒有聽到顫音之情況評價為A、 將在掃描中以50Hz產生顫音並在中途消失之情況評價為B、 將在掃描中直至100Hz為止連續產生顫音之情況評價為C。 將結果示於下述表。
[表1]
各製程中的處理 破壞力的測定結果 評價
製液 塗佈・乾燥 貼合 平均值 [N] 標準偏差 變異係數 聲壓 [dB/W・m] 顫音
實施例1 真空脫泡 自然乾燥 WH輥 19.715 1.774 0.090 89.1 A
實施例2 真空脫泡 自然乾燥 RC輥 25.132 0.270 0.011 89.1 A
實施例3 真空脫泡 階段乾燥 WH輥 22.344 3.620 0.162 85.1 A
實施例4 攪拌脫泡 自然乾燥 WH輥 3.932 0.082 0.021 88.9 A
實施例5 靜止脫泡 自然乾燥 WH輥 1.588 0.070 0.044 82.2 A
實施例6 無脫泡 自然乾燥 WH輥 1.000 0.220 0.220 81.8 A
實施例7 無脫泡 自然乾燥 RC輥 0.764 0.140 0.183 80.5 A
比較例1 無脫泡 自然乾燥 無脫氣泡 10.369 3.359 0.324 79.1 B
比較例2 真空脫泡 通常乾燥 無脫氣泡 5.210 1.818 0.349 78.5 B
比較例3 無脫泡 通常乾燥 無脫氣泡 0.970 0.310 0.320 63.2 C
如上述表所示,在圖8所示之曲線圖中比一點虛線更靠下方之、作為積層體的破壞力的變異係數為0.25以下之本發明的壓電薄膜作為壓電揚聲器時的聲壓高,並且亦能夠抑制低頻區域的顫音。尤其,使用在圖8所示之曲線圖中比一點虛線更靠下方且比二點虛線更靠右方之、破壞變異係數為0.25以下,且破壞力的平均值為3N以上之壓電薄膜之壓電揚聲器可獲得更高的聲壓。 相對於此,在圖8所示之曲線圖中比一點虛線更靠上方之、作為積層體的破壞力的變異係數超過0.25之比較例的壓電薄膜與本發明的壓電薄膜相比,聲壓低,還產生顫音。 由以上結果可明確本發明的效果。
10:壓電薄膜 11a:下部電極積層體 11b:積層體 11c:上部電極積層體 12:壓電體層 14:下部(薄膜)電極 16:上部(薄膜)電極 18:下部保護層 20:上部保護層 24:高分子基質 26:壓電體粒子 40:壓電揚聲器 42:外殼 42a:管 48:按壓蓋 70:雙面膠帶 72:樣品台 74:黏著帶 76:金屬零件 78:測定端部 L:距離 P:麥克風 S:樣品 Z:箭頭
圖1係概念性地表示本發明的壓電薄膜的一例之剖面圖。 圖2係用於說明壓電薄膜的破壞力的測定方法之概念圖。 圖3係表示壓電薄膜的破壞力的測定結果的一例之曲線圖。 圖4係用於說明圖1所示之壓電薄膜的製作方法的概念圖。 圖5係用於說明圖1所示之壓電薄膜的製作方法的概念圖。 圖6係用於說明圖1所示之壓電薄膜的製作方法的概念圖。 圖7係概念性地表示使用圖1所示之壓電薄膜之壓電揚聲器的一例之圖。 圖8係表示實施例中所測定之破壞力的平均值與變異係數的關係之曲線圖。 圖9係用於說明聲壓的測定方法之概念圖。
10:壓電薄膜
12:壓電體層
14:上部(薄膜)電極
16:下部(薄膜)電極
18:上部保護層
20:下部保護層
24:高分子基質
26:壓電體粒子

Claims (7)

  1. 一種壓電薄膜,其特徵為,係具有:高分子複合壓電體,係在包含高分子材料之基質中包含壓電體粒子;及電極層,係積層於前述高分子複合壓電體的兩面, 作為具有前述高分子複合壓電體及前述電極層之積層體的破壞力的面方向的變異係數為0.25以下。
  2. 如請求項1所述之壓電薄膜,其中 前述積層體的破壞力的平均值為3N以上。
  3. 如請求項1或請求項2所述之壓電薄膜,其係具有積層於至少一個前述電極層的表面之保護層。
  4. 如請求項3所述之壓電薄膜,其中 在兩個前述電極層的表面積層前述保護層。
  5. 如請求項1或請求項2所述之壓電薄膜,其中 前述高分子材料具有氰乙基。
  6. 如請求項5所述之壓電薄膜,其中 前述高分子材料為氰乙基化聚乙烯醇。
  7. 如請求項1或請求項2所述之壓電薄膜,其中 前述壓電體粒子係由具有鈣鈦礦型或纖鋅礦型的結晶結構之陶瓷粒子組成者。
TW109118227A 2019-06-28 2020-06-01 壓電薄膜 TWI828913B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019121704 2019-06-28
JP2019-121704 2019-06-28

Publications (2)

Publication Number Publication Date
TW202101792A true TW202101792A (zh) 2021-01-01
TWI828913B TWI828913B (zh) 2024-01-11

Family

ID=74061673

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109118227A TWI828913B (zh) 2019-06-28 2020-06-01 壓電薄膜

Country Status (6)

Country Link
US (1) US11910719B2 (zh)
JP (1) JP7217807B2 (zh)
KR (1) KR20220007126A (zh)
CN (1) CN114009062A (zh)
TW (1) TWI828913B (zh)
WO (1) WO2020261837A1 (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4240445B2 (ja) * 2002-05-31 2009-03-18 独立行政法人産業技術総合研究所 超高配向窒化アルミニウム薄膜を用いた圧電素子とその製造方法
JP6071932B2 (ja) * 2013-04-01 2017-02-01 富士フイルム株式会社 電気音響変換フィルム
JP6261820B2 (ja) * 2015-05-11 2018-01-17 富士フイルム株式会社 電気音響変換フィルム原反、電気音響変換フィルム、および、その製造方法
DE112016000917B4 (de) * 2015-07-16 2020-12-31 Sumitomo Riko Company Limited Piezoelektrischer Sensor
WO2017018313A1 (ja) 2015-07-27 2017-02-02 富士フイルム株式会社 電気音響変換フィルムおよびその製造方法、ならびに、電気音響変換器、フレキシブルディスプレイ、声帯マイクロフォンおよび楽器用センサー

Also Published As

Publication number Publication date
US20220109098A1 (en) 2022-04-07
KR20220007126A (ko) 2022-01-18
WO2020261837A1 (ja) 2020-12-30
JP7217807B2 (ja) 2023-02-03
TWI828913B (zh) 2024-01-11
JPWO2020261837A1 (zh) 2020-12-30
US11910719B2 (en) 2024-02-20
CN114009062A (zh) 2022-02-01

Similar Documents

Publication Publication Date Title
JP6071932B2 (ja) 電気音響変換フィルム
JP6196400B2 (ja) 電気音響変換フィルム
WO2016143469A1 (ja) 高分子複合圧電体、電気音響変換フィルムおよび電気音響変換器
WO2020196850A1 (ja) 圧電フィルム、積層圧電素子および電気音響変換器
JPWO2017018313A1 (ja) 電気音響変換フィルムおよびその製造方法、ならびに、電気音響変換器、フレキシブルディスプレイ、声帯マイクロフォンおよび楽器用センサー
JP7355819B2 (ja) 圧電フィルム
JP7390390B2 (ja) 圧電フィルムおよび圧電フィルムの製造方法
TWI827851B (zh) 高分子複合壓電體及壓電薄膜
JP6505845B2 (ja) 電気音響変換フィルム
WO2020196807A1 (ja) 圧電フィルム、積層圧電素子および電気音響変換器
US20220384706A1 (en) Piezoelectric film
TW202100618A (zh) 高分子複合壓電體、壓電薄膜、壓電揚聲器、可撓式顯示器
WO2016136522A1 (ja) 構造体および電気音響変換器
TWI828913B (zh) 壓電薄膜
TW202101791A (zh) 壓電薄膜
TW202100574A (zh) 高分子複合壓電體、壓電薄膜、壓電揚聲器、可撓式顯示器
TWI836088B (zh) 壓電薄膜
JP6297223B2 (ja) 電気音響変換フィルムおよび電気音響変換器
JP7394873B2 (ja) 圧電フィルム
TW202310463A (zh) 壓電膜及壓電元件