TW202045684A - Small molecule passivation of quantum dots for increased quantum yield - Google Patents

Small molecule passivation of quantum dots for increased quantum yield Download PDF

Info

Publication number
TW202045684A
TW202045684A TW109102164A TW109102164A TW202045684A TW 202045684 A TW202045684 A TW 202045684A TW 109102164 A TW109102164 A TW 109102164A TW 109102164 A TW109102164 A TW 109102164A TW 202045684 A TW202045684 A TW 202045684A
Authority
TW
Taiwan
Prior art keywords
nanostructure
nanostructures
zinc
nanostructured
shell
Prior art date
Application number
TW109102164A
Other languages
Chinese (zh)
Inventor
拉 普朗泰 伊蘭 珍
怡華 周
約翰 J 柯瑞
文卓 郭
鎮梆 徐
春明 王
Original Assignee
美商納諾西斯有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商納諾西斯有限公司 filed Critical 美商納諾西斯有限公司
Publication of TW202045684A publication Critical patent/TW202045684A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0083Processes for devices with an active region comprising only II-VI compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Abstract

This disclosure pertains to the field of nanotechnology. The disclosure provides nanostructure compositions comprising (a) at least one population of nanostructures; (b) at least one metal halide bound to the surface of the nanostructures; and (c) at least one metal carboxylate bound to the surface of the nanostructures. The nanostructure compositions have high quantum yield, narrow emission peak width, tunable emission wavelength, and colloidal stability. Also provided are methods of preparing the nanostructure compositions. And, nanostructure films and molded articles comprising the nanostructure compositions are also provided.

Description

用於提升量子產率之量子點的小分子鈍化作用Small molecule passivation of quantum dots used to improve quantum yield

本發明係關於奈米技術之領域。本發明提供奈米結構組合物,其包含(a)至少一種奈米結構群體;(b)至少一種金屬鹵化物,其黏合至該等奈米結構之表面;以及(c)至少一種金屬羧酸鹽,其黏合至該等奈米結構之表面。該等奈米結構組合物具有高量子產率、窄發射峰寬、可調諧發射波長及膠態穩定性。亦提供製備該等奈米結構組合物之方法。且亦提供奈米結構膜及模製品,其包含該等奈米結構組合物。The present invention relates to the field of nanotechnology. The present invention provides a nanostructure composition comprising (a) at least one group of nanostructures; (b) at least one metal halide bonded to the surface of the nanostructures; and (c) at least one metal carboxylic acid Salt, which adheres to the surface of these nanostructures. These nanostructured compositions have high quantum yield, narrow emission peak width, tunable emission wavelength and colloidal stability. It also provides methods for preparing these nanostructured compositions. It also provides nanostructured films and molded products, which include these nanostructured compositions.

半導體奈米結構可併入各種電子及光學裝置中。此等奈米結構之電性及光學特性不同,例如視其組合物、形狀及大小而定。舉例而言,半導體奈米粒子之大小可調諧特性對於諸如發光二極體(LED)及液晶顯示器(LCD)之應用極其重要。高度發光之奈米結構特別需要此等應用。Semiconductor nanostructures can be incorporated into various electronic and optical devices. The electrical and optical properties of these nanostructures are different, depending on their composition, shape and size, for example. For example, the tunable size of semiconductor nanoparticles is extremely important for applications such as light emitting diodes (LED) and liquid crystal displays (LCD). Highly luminous nanostructures are especially needed for these applications.

為了利用諸如LED及LCD之應用中的奈米結構之全部潛能,奈米結構需要同時符合五個準則:窄及對稱的發射光譜、高光致發光量子產率(PLQY)、高光學穩定性、環境友好材料以及用於大批量生產之低成本方法。大部分對高度發射及色彩可調的量子點之先前研究集中於含有鎘、汞或鉛之材料。Wang, A.等人,Nanoscale 7 :2951-2959 (2015)。但愈來愈擔心諸如鎘、汞或鉛之毒性材料將對人類健康及環境造成嚴重威脅,且歐盟的有害物質限制令(European Union's Restriction of Hazardous Substances rules)禁止含有超過痕量之此等材料的任何消費型電子裝置。因此,需要生產不含鎘、汞及鉛之材料以用於生產LED及LCD。In order to utilize the full potential of nanostructures in applications such as LEDs and LCDs, nanostructures need to meet five criteria at the same time: narrow and symmetrical emission spectrum, high photoluminescence quantum yield (PLQY), high optical stability, and environmental Friendly materials and low-cost methods for mass production. Most of the previous research on quantum dots with high emission and adjustable color focused on materials containing cadmium, mercury or lead. Wang, A. et al., Nanoscale 7 :2951-2959 (2015). However, there is growing concern that toxic materials such as cadmium, mercury or lead will pose a serious threat to human health and the environment, and the European Union's Restriction of Hazardous Substances rules prohibits those containing more than trace amounts of these materials. Any consumer electronic device. Therefore, it is necessary to produce materials that do not contain cadmium, mercury and lead for the production of LEDs and LCDs.

基於磷化銦之無鎘量子點本身不如原型硒化鎘量子點穩定。較高的價帶及導帶能使得InP量子點更容易藉由電子自激發量子點轉移至氧而進行光氧化,以及更容易藉由諸如胺或硫醇之供電子試劑而進行光致發光淬滅,其中自量子點激發態所捕獲之電洞可抑制激子之輻射複合。參見例如Chibli, H.等人, 「Cytotoxicity of InP/ZnS quantum dots related to reactive oxygen species generation」,Nanoscale 3 :2552-2559 (2011);Blackburn, J.L.等人, 「Electron and Hole Transfer from Indium Phosphide Quantum Dots」,J. Phys. Chem .B 109 :2625-2631 (2005);及Selmarten, D.等人, 「Quenching of Semiconductor Quantum Dot Photoluminescence by a π-Conjugated Polymer」,J. Phys. Chem .B 109 :15927-15933 (2005)。The cadmium-free quantum dots based on indium phosphide are not as stable as the prototype cadmium selenide quantum dots. The higher valence and conduction band energies make InP quantum dots easier to undergo photooxidation by transferring electrons from excited quantum dots to oxygen, and easier to perform photoluminescence quenching by electron donating reagents such as amines or thiols. Annihilation, in which the holes captured from the excited states of the quantum dots can inhibit the radiation recombination of excitons. See, for example, Chibli, H. et al., "Cytotoxicity of InP/ZnS quantum dots related to reactive oxygen species generation", Nanoscale 3 : 2552-2559 (2011); Blackburn, JL et al., "Electron and Hole Transfer from Indium Phosphide Quantum Dots", J. Phys. Chem. B 109 :2625-2631 (2005); and Selmarten, D. et al., "Quenching of Semiconductor Quantum Dot Photoluminescence by a π-Conjugated Polymer", J. Phys. Chem. B 109 :15927-15933 (2005).

在發光量子點中實現高光致發光量子產率(PLQY)對於其在包括量子點增強膜、玻璃上之量子點及量子點光阻劑之發光顯示器應用中的效能為至關重要的。提升量子產率之現有方法依賴於藉由改變核大小或材料或改變殼層組合物及厚度來更改量子點組合物。此等更改直接影響量子點之其他特性,包括發射波長(PWL)及大小。Achieving high photoluminescence quantum yield (PLQY) in light-emitting quantum dots is critical to its performance in light-emitting display applications including quantum dot enhancement films, quantum dots on glass, and quantum dot photoresists. Existing methods for improving quantum yield rely on changing the composition of quantum dots by changing the core size or material or changing the shell composition and thickness. These changes directly affect other characteristics of quantum dots, including emission wavelength (PWL) and size.

需要生產具有高量子產率、窄發射峰寬、可調諧發射波長及膠態穩定性之奈米結構。It is necessary to produce nanostructures with high quantum yield, narrow emission peak width, tunable emission wavelength and colloidal stability.

本發明描述一種奈米結構組合物,其包含: (a)至少一種奈米結構群體,該等奈米結構包含奈米晶核及至少一種殼; (b)至少一種金屬鹵化物,其黏合至該等奈米結構之表面;以及 (c)至少一種金屬羧酸鹽,其黏合至該等奈米結構之表面。The present invention describes a nanostructure composition, which comprises: (a) At least one group of nanostructures, the nanostructures comprising a nanocrystal core and at least one shell; (b) At least one metal halide, which is bonded to the surface of the nanostructures; and (c) At least one metal carboxylate, which is bonded to the surface of the nanostructures.

在一些實施例中,該等奈米結構之該奈米晶核選自由以下組成之群:Si、Ge、Sn、Se、Te、B、C、P、BN、BP、BAs、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb、ZnO、ZnS、ZnSe、ZnTe、CdS、CdSe、CdSeZn、CdTe、HgS、HgSe、HgTe、BeS、BeSe、BeTe、MgS、MgSe、GeS、GeSe、GeTe、SnS、SnSe、SnTe、PbO、PbS、PbSe、PbTe、CuF、CuCl、CuBr、CuI、Si3 N4 、Ge3 N4 、Al2 O3 、Al2 CO及其組合。In some embodiments, the nanocrystal nuclei of the nanostructures are selected from the group consisting of Si, Ge, Sn, Se, Te, B, C, P, BN, BP, BAs, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, ZnO, ZnS, ZnSe, ZnTe, CdS, CdSe, CdSeZn, CdTe, HgS, HgSe, HgTe, BeS, BeSe, BeTe, MgS, MgSe, GeS, GeSe, GeTe, SnS, SnSe, SnTe, PbO, PbS, PbSe, PbTe, CuF, CuCl, CuBr, CuI, Si 3 N 4 , Ge 3 N 4 , Al 2 O 3 , Al 2 CO and others combination.

在一些實施例中,該等奈米結構之該奈米晶核包含InP。In some embodiments, the nanocrystal cores of the nanostructures include InP.

在一些實施例中,該奈米結構組合物中之該等奈米結構包含至少兩種殼。在一些實施例中,該奈米結構組合物中之該等奈米結構包含兩種殼。In some embodiments, the nanostructures in the nanostructure composition include at least two shells. In some embodiments, the nanostructures in the nanostructure composition include two kinds of shells.

在一些實施例中,該奈米結構組合物中之該等奈米結構之至少一種殼選自由以下組成之群:CdS、CdSe、CdO、CdTe、ZnS、ZnO、ZnSe、ZnTe、MgTe、GaAs、GaSb、GaN、HgO、HgS、HgSe、HgTe、InAs、InSb、InN、AlAs、AlN、AlSb、AlS、PbS、PbO、PbSe、PbTe、MgO、MgS、MgSe、MgTe、CuCl、Ge、Si及其合金。In some embodiments, at least one shell of the nanostructures in the nanostructure composition is selected from the group consisting of CdS, CdSe, CdO, CdTe, ZnS, ZnO, ZnSe, ZnTe, MgTe, GaAs, GaSb, GaN, HgO, HgS, HgSe, HgTe, InAs, InSb, InN, AlAs, AlN, AlSb, AlS, PbS, PbO, PbSe, PbTe, MgO, MgS, MgSe, MgTe, CuCl, Ge, Si and their alloys .

在一些實施例中,該奈米結構組合物中之該等奈米結構之至少一種殼包含ZnSe。In some embodiments, at least one shell of the nanostructures in the nanostructure composition comprises ZnSe.

在一些實施例中,該奈米結構組合物中之該等奈米結構之至少一種殼包含ZnS。In some embodiments, at least one shell of the nanostructures in the nanostructure composition comprises ZnS.

在一些實施例中,至少一種殼包含ZnSe且至少一種殼包含該奈米結構組合物中之該等奈米結構之ZnS。In some embodiments, at least one shell includes ZnSe and at least one shell includes the nanostructured ZnS in the nanostructure composition.

在一些實施例中,黏合至該奈米結構組合物中之該等奈米結構的該至少一種金屬鹵化物選自由以下組成之群:LiF、NaF、KF、BeF2 、MgF2 、CaF2 、SrF2 、CuF、AgF、AuF、ZnF2 、HgF2 、AlF3 、GaF3 、InF3 、SnF2 、PbF2 、LiCl、NaCl、KCl、BeCl2 、MgCl2 、CaCl2 、SrCl2 、CuCl、AgCl、ZnCl2 、HgCl2 、AlCl3 、GaCl3 、InCl3 、SnCl2 、PBCl2 、LiBr、NaBr、KBr、BeBr2 、MgBr2 、CaBr2 、SrBr2 、CuBr、AgBr、AuBr、ZnBr2 、HgBr2 、AlBr3 、GaBr3 、InBr3 、SnBr2 、PbBr2 、LiI、NaI、KI、BeI2 、MgI2 、CaI2 、SrI2 、CuI、AgI、AuI、ZnI2 、HgI2 、AlI3 、GaI3 、InI3 、SnI2 及PbI2 。在一些實施例中,黏合至該奈米結構組合物中之該等奈米結構的該至少一種金屬鹵化物選自由以下組成之群:ZnF2 、ZnCl2 、ZnBr2 及ZnI2 。在一些實施例中,黏合至該奈米結構組合物中之該等奈米結構的該至少一種金屬鹵化物為ZnCl2In some embodiments, the at least one metal halide bonded to the nanostructures in the nanostructure composition is selected from the group consisting of LiF, NaF, KF, BeF 2 , MgF 2 , CaF 2 , SrF 2 , CuF, AgF, AuF, ZnF 2 , HgF 2 , AlF 3 , GaF 3 , InF 3 , SnF 2 , PbF 2 , LiCl, NaCl, KCl, BeCl 2 , MgCl 2 , CaCl 2 , SrCl 2 , CuCl, AgCl, ZnCl 2 , HgCl 2 , AlCl 3 , GaCl 3 , InCl 3 , SnCl 2 , PBCl 2 , LiBr, NaBr, KBr, BeBr 2 , MgBr 2 , CaBr 2 , SrBr 2 , CuBr, AgBr, AuBr, ZnBr 2 , HgBr 2, AlBr 3, GaBr 3 , InBr 3, SnBr 2, PbBr 2, LiI, NaI, KI, BeI 2, MgI 2, CaI 2, SrI 2, CuI, AgI, AuI, ZnI 2, HgI 2, AlI 3 , GaI 3 , InI 3 , SnI 2 and PbI 2 . In some embodiments, the at least one metal halide bonded to the nanostructures in the nanostructure composition is selected from the group consisting of ZnF 2 , ZnCl 2 , ZnBr 2 and ZnI 2 . In some embodiments, the at least one metal halide bonded to the nanostructures in the nanostructure composition is ZnCl 2 .

在一些實施例中,黏合至該奈米結構組合物中之該等奈米結構的該至少一種金屬羧酸鹽選自由以下組成之群:油酸鋅、己酸鋅、月桂酸鋅、肉豆蔻酸鋅、棕櫚酸鋅、硬脂酸鋅及PEG羧酸鋅。在一些實施例中,黏合至該奈米結構組合物中之該等奈米結構的該至少一種金屬羧酸鹽選自由以下組成之群:油酸鋅、月桂酸鋅及PEG羧酸鋅。In some embodiments, the at least one metal carboxylate bonded to the nanostructures in the nanostructure composition is selected from the group consisting of: zinc oleate, zinc caproate, zinc laurate, and nutmeg Zinc acid, zinc palmitate, zinc stearate and zinc PEG carboxylate. In some embodiments, the at least one metal carboxylate bonded to the nanostructures in the nanostructure composition is selected from the group consisting of zinc oleate, zinc laurate, and zinc PEG carboxylate.

在一些實施例中,該至少一種金屬羧酸鹽之濃度在約0.01 mM與約40 mM之間。In some embodiments, the concentration of the at least one metal carboxylate is between about 0.01 mM and about 40 mM.

在一些實施例中,該至少一種金屬鹵化物與該至少一種金屬羧酸鹽之莫耳比在約1:1與約1:8之間。在一些實施例中,該奈米結構組合物中該至少一種金屬鹵化物與該至少一種金屬羧酸鹽之莫耳比在約1:1與約1:3之間。In some embodiments, the molar ratio of the at least one metal halide to the at least one metal carboxylate is between about 1:1 and about 1:8. In some embodiments, the molar ratio of the at least one metal halide to the at least one metal carboxylate in the nanostructure composition is between about 1:1 and about 1:3.

在一些實施例中,該奈米結構組合物進一步包含溶劑。在一些實施例中,該奈米結構組合物進一步包含選自由以下組成之群的溶劑:己烷、庚烷、甲苯及氯仿。In some embodiments, the nanostructure composition further includes a solvent. In some embodiments, the nanostructure composition further includes a solvent selected from the group consisting of hexane, heptane, toluene, and chloroform.

在一些實施例中,該奈米結構組合物可在約10℃與約90℃之間的溫度下穩定地儲存約3個月與3年之間。在一些實施例中,該奈米結構組合物可在約30℃與約90℃之間的溫度下穩定地儲存約3個月與3年之間。In some embodiments, the nanostructured composition can be stably stored between about 3 months and 3 years at a temperature between about 10°C and about 90°C. In some embodiments, the nanostructured composition can be stably stored between about 3 months and 3 years at a temperature between about 30°C and about 90°C.

在一些實施例中,該奈米結構組合物展現約80%與約100%之間的光致發光量子產率。在一些實施例中,該奈米結構組合物展現約95%與約100%之間的光致發光量子產率。In some embodiments, the nanostructured composition exhibits a photoluminescence quantum yield between about 80% and about 100%. In some embodiments, the nanostructured composition exhibits a photoluminescence quantum yield between about 95% and about 100%.

在一些實施例中,該奈米結構組合物展現約10 nm與約60 nm之間的半高全寬。在一些實施例中,該奈米結構組合物展現約30 nm與約45 nm之間的半高全寬。In some embodiments, the nanostructured composition exhibits a full width at half maximum between about 10 nm and about 60 nm. In some embodiments, the nanostructured composition exhibits a full width at half maximum between about 30 nm and about 45 nm.

在一些實施例中,該奈米結構組合物之該等奈米結構包含:奈米晶核,其包含InP;至少一種殼,其包含ZnSe;至少一種殼,其包含ZnS;及至少一種金屬鹵化物,其包含ZnCl2In some embodiments, the nanostructures of the nanostructure composition include: a nanocrystal core, which includes InP; at least one shell, which includes ZnSe; at least one shell, which includes ZnS; and at least one metal halide It contains ZnCl 2 .

在一些實施例中,該奈米結構組合物之該等奈米結構為量子點。In some embodiments, the nanostructures of the nanostructure composition are quantum dots.

本發明描述一種製備奈米結構組合物之方法,該方法包含: (a)提供至少一種奈米結構群體,其中該等奈米結構包含奈米晶核及至少一種殼; (b)將至少一種金屬羧酸鹽與(a)之該等奈米結構混合; (c)將至少一種金屬鹵化物與(b)之該等奈米結構混合; 以產生奈米結構組合物。The present invention describes a method for preparing a nanostructured composition, the method comprising: (a) providing at least one group of nanostructures, wherein the nanostructures include a nanocrystalline core and at least one shell; (b) Mixing at least one metal carboxylate with the nanostructures of (a); (c) Mixing at least one metal halide with the nanostructures of (b); To produce nanostructured compositions.

在一些實施例中,製備奈米結構組合物之方法中所提供之該奈米晶核選自由以下組成之群:Si、Ge、Sn、Se、Te、B、C、P、BN、BP、BAs、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb、ZnO、ZnS、ZnSe、ZnTe、CdS、CdSe、CdSeZn、CdTe、HgS、HgSe、HgTe、BeS、BeSe、BeTe、MgS、MgSe、GeS、GeSe、GeTe、SnS、SnSe、SnTe、PbO、PbS、PbSe、PbTe、CuF、CuCl、CuBr、CuI、Si3 N4 、Ge3 N4 、Al2 O3 、Al2 CO及其組合。在一些實施例中,製備奈米結構組合物之方法中所提供之該奈米晶核包含InP。In some embodiments, the nanocrystalline nucleus provided in the method for preparing the nanostructure composition is selected from the group consisting of Si, Ge, Sn, Se, Te, B, C, P, BN, BP, BAs, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, ZnO, ZnS, ZnSe, ZnTe, CdS, CdSe, CdSeZn, CdTe, HgS, HgSe, HgTe, BeS, BeSe, BeTe, MgS, MgSe, GeS, GeSe, GeTe, SnS, SnSe, SnTe, PbO, PbS, PbSe, PbTe, CuF, CuCl, CuBr, CuI, Si 3 N 4 , Ge 3 N 4 , Al 2 O 3 , Al 2 CO and its combination. In some embodiments, the nanocrystalline core provided in the method for preparing the nanostructure composition includes InP.

在一些實施例中,製備奈米結構組合物之方法中所提供之該等奈米結構包含至少兩種殼。In some embodiments, the nanostructures provided in the method for preparing the nanostructure composition include at least two shells.

在一些實施例中,製備奈米結構組合物之方法中所提供之該等奈米結構包含兩種殼。In some embodiments, the nanostructures provided in the method of preparing the nanostructure composition include two kinds of shells.

在一些實施例中,製備奈米結構組合物之方法中所提供之該等奈米結構之至少一種殼選自由以下組成之群:CdS、CdSe、CdO、CdTe、ZnS、ZnO、ZnSe、ZnTe、MgTe、GaAs、GaSb、GaN、HgO、HgS、HgSe、HgTe、InAs、InSb、InN、AlAs、AlN、AlSb、AlS、PbS、PbO、PbSe、PbTe、MgO、MgS、MgSe、MgTe、CuCl、Ge、Si及其合金。在一些實施例中,製備奈米結構組合物之方法中所提供之至少一種殼包含ZnSe。In some embodiments, the at least one shell of the nanostructures provided in the method for preparing the nanostructure composition is selected from the group consisting of CdS, CdSe, CdO, CdTe, ZnS, ZnO, ZnSe, ZnTe, MgTe, GaAs, GaSb, GaN, HgO, HgS, HgSe, HgTe, InAs, InSb, InN, AlAs, AlN, AlSb, AlS, PbS, PbO, PbSe, PbTe, MgO, MgS, MgSe, MgTe, CuCl, Ge, Si and its alloys. In some embodiments, at least one of the shells provided in the method of preparing the nanostructure composition includes ZnSe.

在一些實施例中,製備奈米結構組合物之方法中所提供之至少一種殼包含ZnS。In some embodiments, at least one of the shells provided in the method of preparing the nanostructure composition includes ZnS.

在一些實施例中,製備奈米結構組合物之方法中所提供之至少一種殼包含ZnSe且至少一種殼包含ZnS。In some embodiments, the at least one shell provided in the method of preparing the nanostructure composition includes ZnSe and the at least one shell includes ZnS.

在一些實施例中,在製備奈米結構組合物之方法中,在(c)中混合之至少一種金屬鹵化物選自由以下組成之群:LiF、NaF、KF、BeF2 、MgF2 、CaF2 、SrF2 、CuF、AgF、AuF、ZnF2 、HgF2 、AlF3 、GaF3 、InF3 、SnF2 、PbF2 、LiCl、NaCl、KCl、BeCl2 、MgCl2 、CaCl2 、SrCl2 、CuCl、AgCl、ZnCl2 、HgCl2 、AlCl3 、GaCl3 、InCl3 、SnCl2 、PBCl2 、LiBr、NaBr、KBr、BeBr2 、MgBr2 、CaBr2 、SrBr2 、CuBr、AgBr、AuBr、ZnBr2 、HgBr2 、AlBr3 、GaBr3 、InBr3 、SnBr2 、PbBr2 、LiI、NaI、KI、BeI2 、MgI2 、CaI2 、SrI2 、CuI、AgI、AuI、ZnI2 、HgI2 、AlI3 、GaI3 、InI3 、SnI2 及PbI2 。在一些實施例中,在製備奈米結構組合物之方法中在(c)中混合之至少一種金屬鹵化物選自由以下組成之群:ZnF2 、ZnCl2 、ZnBr2 及ZnI2 。在一些實施例中,在製備奈米結構組合物之方法中在(c)中混合之至少一種金屬鹵化物為ZnCl2In some embodiments, in the method of preparing the nanostructured composition, the at least one metal halide mixed in (c) is selected from the group consisting of: LiF, NaF, KF, BeF 2 , MgF 2 , CaF 2 , SrF 2 , CuF, AgF, AuF, ZnF 2 , HgF 2 , AlF 3 , GaF 3 , InF 3 , SnF 2 , PbF 2 , LiCl, NaCl, KCl, BeCl 2 , MgCl 2 , CaCl 2 , SrCl 2 , CuCl , AgCl, ZnCl 2 , HgCl 2 , AlCl 3 , GaCl 3 , InCl 3 , SnCl 2 , PBCl 2 , LiBr, NaBr, KBr, BeBr 2 , MgBr 2 , CaBr 2 , SrBr 2 , CuBr, AgBr, AuBr, ZnBr 2 , HgBr 2, AlBr 3, GaBr 3, InBr 3, SnBr 2, PbBr 2, LiI, NaI, KI, BeI 2, MgI 2, CaI 2, SrI 2, CuI, AgI, AuI, ZnI 2, HgI 2, AlI 3. GaI 3 , InI 3 , SnI 2 and PbI 2 . In some embodiments, the at least one metal halide mixed in (c) in the method of preparing the nanostructured composition is selected from the group consisting of ZnF 2 , ZnCl 2 , ZnBr 2 and ZnI 2 . In some embodiments, the at least one metal halide mixed in (c) in the method of preparing the nanostructured composition is ZnCl 2 .

在一些實施例中,在製備奈米結構組合物之方法中在(b)中混合之至少一種金屬羧酸鹽選自由以下組成之群:油酸鋅、己酸鋅、月桂酸鋅、肉豆蔻酸鋅、棕櫚酸鋅、硬脂酸鋅及PEG羧酸鋅。在一些實施例中,在製備奈米結構組合物之方法中在(b)中混合之至少一種金屬羧酸鹽選自由以下組成之群:油酸鋅、月桂酸鋅及PEG羧酸鋅。In some embodiments, the at least one metal carboxylate mixed in (b) in the method for preparing the nanostructured composition is selected from the group consisting of: zinc oleate, zinc caproate, zinc laurate, and nutmeg Zinc acid, zinc palmitate, zinc stearate and zinc PEG carboxylate. In some embodiments, the at least one metal carboxylate mixed in (b) in the method of preparing the nanostructured composition is selected from the group consisting of zinc oleate, zinc laurate, and zinc PEG carboxylate.

在一些實施例中,將OD450 = 1的每毫升奈米結構群體約0.0001 mmol與約1 mmol之間的至少一種金屬羧酸鹽與製備奈米結構組合物之方法中的(a)之該等奈米結構混合。In some embodiments, the at least one metal carboxylate between about 0.0001 mmol and about 1 mmol per milliliter of nanostructure population with OD 450 = 1 is combined with the method of (a) in the method for preparing nanostructure composition Wait for the nanostructure to mix.

在一些實施例中,將OD450 = 1的每毫升奈米結構群體約0.0001 mmol與約1 mmol之間的至少一種金屬鹵化物與製備奈米結構組合物之方法中的(b)之該等奈米結構混合。In some embodiments, the at least one metal halide between about 0.0001 mmol and about 1 mmol per milliliter of nanostructure population with OD 450 = 1 is combined with those of (b) in the method for preparing the nanostructure composition Nano structure hybrid.

在一些實施例中,在製備奈米結構組合物之方法中,該至少一種金屬鹵化物與該至少一種金屬羧酸鹽之莫耳比在約1:1與約1:8之間。在一些實施例中,在製備奈米結構組合物之方法中,該至少一種金屬鹵化物與該至少一種金屬羧酸鹽的莫耳比在約1:1與約1:3之間。In some embodiments, in the method of preparing the nanostructured composition, the molar ratio of the at least one metal halide to the at least one metal carboxylate is between about 1:1 and about 1:8. In some embodiments, in the method for preparing the nanostructured composition, the molar ratio of the at least one metal halide to the at least one metal carboxylate is between about 1:1 and about 1:3.

在一些實施例中,在製備奈米結構組合物之方法中,(a)中之該至少一種奈米結構群體進一步包含溶劑。在一些實施例中,在製備奈米結構組合物之方法中,(a)中之該至少一種奈米結構群體進一步包含選自由以下組成之群的溶劑:己烷、庚烷、甲苯及氯仿。In some embodiments, in the method of preparing a nanostructure composition, the at least one nanostructure population in (a) further comprises a solvent. In some embodiments, in the method of preparing a nanostructure composition, the at least one nanostructure population in (a) further comprises a solvent selected from the group consisting of hexane, heptane, toluene, and chloroform.

在一些實施例中,在製備奈米結構組合物之方法中,(b)中之該混合係在約10℃與約100℃之間的溫度下進行。In some embodiments, in the method of preparing the nanostructured composition, the mixing in (b) is performed at a temperature between about 10°C and about 100°C.

在一些實施例中,在製備奈米結構組合物之方法中,(c)中之該混合係在約10℃與約100℃之間的溫度下進行。In some embodiments, in the method for preparing the nanostructured composition, the mixing in (c) is performed at a temperature between about 10°C and about 100°C.

在一些實施例中,藉由本文中所描述之方法製備的該奈米結構組合物展現比由未混合至少一種金屬鹵化物所製備之奈米結構組合物所展現之光致發光量子產率大約0.1%與約5.0%之間的該光致發光量子產率。In some embodiments, the nanostructured composition prepared by the method described herein exhibits a photoluminescence quantum yield that is approximately higher than that exhibited by a nanostructured composition prepared without mixing at least one metal halide The photoluminescence quantum yield is between 0.1% and about 5.0%.

在一些實施例中,藉由本文中所描述之方法製備的該奈米結構組合物展現比由未混合至少一種金屬鹵化物所製備之奈米結構組合物所展現之半高全寬低約0.1 nm與約2.0 nm之間的該半高全寬。In some embodiments, the nanostructured composition prepared by the method described herein exhibits a full width at half maximum that is about 0.1 nm lower than that exhibited by a nanostructured composition prepared without mixing at least one metal halide. The full width at half maximum between about 2.0 nm.

本發明描述一種奈米結構膜,其包含至少一種奈米結構群體,其中該等奈米結構包含: (a)奈米晶核及至少一種殼; (b)至少一種金屬鹵化物,其黏合至該等奈米結構之表面;以及 (c)至少一種金屬羧酸鹽,其黏合至該等奈米結構之表面。The present invention describes a nanostructured membrane comprising at least one nanostructure population, wherein the nanostructures include: (a) Nano crystal core and at least one kind of shell; (b) At least one metal halide, which is bonded to the surface of the nanostructures; and (c) At least one metal carboxylate, which is bonded to the surface of the nanostructures.

在一些實施例中,該奈米結構膜進一步包含有機樹脂。In some embodiments, the nanostructured film further includes an organic resin.

在一些實施例中,該奈米結構膜包含一個與五個之間的奈米結構群體。在一些實施例中,該奈米結構膜包含一種奈米結構群體。In some embodiments, the nanostructured membrane includes between one and five nanostructure populations. In some embodiments, the nanostructured membrane comprises a population of nanostructures.

在一些實施例中,該奈米結構膜中之該至少一種奈米結構群體包含核心,其選自由以下組成之群:Si、Ge、Sn、Se、Te、B、C、P、BN、BP、BAs、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb、ZnO、ZnS、ZnSe、ZnTe、CdS、CdSe、CdSeZn、CdTe、HgS、HgSe、HgTe、BeS、BeSe、BeTe、MgS、MgSe、GeS、GeSe、GeTe、SnS、SnSe、SnTe、PbO、PbS、PbSe、PbTe、CuF、CuCl、CuBr、CuI、Si3 N4 、Ge3 N4 、Al2 O3 、Al2 CO及其組合。在一些實施例中,該奈米結構膜中之該等奈米結構包含InP之奈米晶核。In some embodiments, the at least one nanostructure population in the nanostructure film includes a core selected from the group consisting of Si, Ge, Sn, Se, Te, B, C, P, BN, BP , BAs, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, ZnO, ZnS, ZnSe, ZnTe, CdS, CdSe, CdSeZn, CdTe, HgS, HgSe, HgTe, BeS , BeSe, BeTe, MgS, MgSe, GeS, GeSe, GeTe, SnS, SnSe, SnTe, PbO, PbS, PbSe, PbTe, CuF, CuCl, CuBr, CuI, Si 3 N 4 , Ge 3 N 4 , Al 2 O 3. Al 2 CO and its combination. In some embodiments, the nanostructures in the nanostructured film include nanocrystal nuclei of InP.

在一些實施例中,該奈米結構膜中之該等奈米結構包含至少兩種殼。在一些實施例中,該奈米結構膜中之該等奈米結構包含兩種殼。In some embodiments, the nanostructures in the nanostructured film include at least two shells. In some embodiments, the nanostructures in the nanostructure film include two kinds of shells.

在一些實施例中,該奈米結構膜之該等奈米結構中之至少一種殼選自由以下組成之群:CdS、CdSe、CdO、CdTe、ZnS、ZnO、ZnSe、ZnTe、MgTe、GaAs、GaSb、GaN、HgO、HgS、HgSe、HgTe、InAs、InSb、InN、AlAs、AlN、AlSb、AlS、PbS、PbO、PbSe、PbTe、MgO、MgS、MgSe、MgTe、CuCl、Ge、Si及其合金。在一些實施例中,該奈米結構膜之該等奈米結構中之至少一種殼包含ZnSe。在一些實施例中,該奈米結構膜之該等奈米結構中之至少一種殼包含ZnS。In some embodiments, at least one shell of the nanostructures of the nanostructure film is selected from the group consisting of CdS, CdSe, CdO, CdTe, ZnS, ZnO, ZnSe, ZnTe, MgTe, GaAs, GaSb , GaN, HgO, HgS, HgSe, HgTe, InAs, InSb, InN, AlAs, AlN, AlSb, AlS, PbS, PbO, PbSe, PbTe, MgO, MgS, MgSe, MgTe, CuCl, Ge, Si and alloys thereof. In some embodiments, at least one of the shells of the nanostructures of the nanostructure film includes ZnSe. In some embodiments, at least one shell of the nanostructures of the nanostructure film includes ZnS.

在一些實施例中,在該奈米結構膜之該等奈米結構中,至少一種殼包含ZnSe且至少一種殼包含ZnS。In some embodiments, in the nanostructures of the nanostructure film, at least one shell includes ZnSe and at least one shell includes ZnS.

在一些實施例中,黏合至該奈米結構膜中之該等奈米結構的至少一種金屬鹵化物選自由以下組成之群:LiF、NaF、KF、BeF2 、MgF2 、CaF2 、SrF2 、CuF、AgF、AuF、ZnF2 、HgF2 、AlF3 、GaF3 、InF3 、SnF2 、PbF2 、LiCl、NaCl、KCl、BeCl2 、MgCl2 、CaCl2 、SrCl2 、CuCl、AgCl、ZnCl2 、HgCl2 、AlCl3 、GaCl3 、InCl3 、SnCl2 、PBCl2 、LiBr、NaBr、KBr、BeBr2 、MgBr2 、CaBr2 、SrBr2 、CuBr、AgBr、AuBr、ZnBr2 、HgBr2 、AlBr3 、GaBr3 、InBr3 、SnBr2 、PbBr2 、LiI、NaI、KI、BeI2 、MgI2 、CaI2 、SrI2 、CuI、AgI、AuI、ZnI2 、HgI2 、AlI3 、GaI3 、InI3 、SnI2 及PbI2 。在一些實施例中,黏合至該奈米結構膜中之該等奈米結構的至少一種金屬鹵化物選自由以下組成之群:ZnF2 、ZnCl2 、ZnBr2 及ZnI2 。在一些實施例中,黏合至該奈米結構膜中之該等奈米結構的至少一種金屬鹵化物為ZnCl2In some embodiments, at least one metal halide bonded to the nanostructures in the nanostructure film is selected from the group consisting of LiF, NaF, KF, BeF 2 , MgF 2 , CaF 2 , SrF 2 , CuF, AgF, AuF, ZnF 2 , HgF 2 , AlF 3 , GaF 3 , InF 3 , SnF 2 , PbF 2 , LiCl, NaCl, KCl, BeCl 2 , MgCl 2 , CaCl 2 , SrCl 2 , CuCl, AgCl, ZnCl 2 , HgCl 2 , AlCl 3 , GaCl 3 , InCl 3 , SnCl 2 , PBCl 2 , LiBr, NaBr, KBr, BeBr 2 , MgBr 2 , CaBr 2 , SrBr 2 , CuBr, AgBr, AuBr, ZnBr 2 , HgBr 2 , AlBr 3, GaBr 3, InBr 3, SnBr 2, PbBr 2, LiI, NaI, KI, BeI 2, MgI 2, CaI 2, SrI 2, CuI, AgI, AuI, ZnI 2, HgI 2, AlI 3, GaI 3. InI 3 , SnI 2 and PbI 2 . In some embodiments, the at least one metal halide bonded to the nanostructures in the nanostructure film is selected from the group consisting of ZnF 2 , ZnCl 2 , ZnBr 2 and ZnI 2 . In some embodiments, the at least one metal halide bonded to the nanostructures in the nanostructure film is ZnCl 2 .

在一些實施例中,黏合至該奈米結構膜中之該等奈米結構的至少一種金屬羧酸鹽選自由以下組成之群:油酸鋅、己酸鋅、月桂酸鋅、肉豆蔻酸鋅、棕櫚酸鋅、硬脂酸鋅、二硫胺基甲酸鋅及PEG羧酸鋅。在一些實施例中,黏合至該奈米結構膜之該等奈米結構的至少一種金屬羧酸鹽選自由以下組成之群:油酸鋅、月桂酸鋅及PEG羧酸鋅。In some embodiments, the at least one metal carboxylate bonded to the nanostructures in the nanostructure film is selected from the group consisting of zinc oleate, zinc caproate, zinc laurate, zinc myristate , Zinc palmitate, zinc stearate, zinc dithiocarbamate and zinc PEG carboxylate. In some embodiments, the at least one metal carboxylate bonded to the nanostructures of the nanostructure film is selected from the group consisting of zinc oleate, zinc laurate, and zinc PEG carboxylate.

在一些實施例中,該奈米結構膜中該至少一種金屬羧酸鹽之濃度在約0.01 mM與約40 mM之間。In some embodiments, the concentration of the at least one metal carboxylate in the nanostructured membrane is between about 0.01 mM and about 40 mM.

在一些實施例中,該奈米結構膜中該至少一種金屬鹵化物與該至少一種金屬羧酸鹽之莫耳比在約1:1與約1:8之間。在一些實施例中,該奈米結構膜中該至少一種金屬鹵化物與該至少一種金屬羧酸鹽之莫耳比在約1:1與約1:3之間。In some embodiments, the molar ratio of the at least one metal halide to the at least one metal carboxylate in the nanostructured film is between about 1:1 and about 1:8. In some embodiments, the molar ratio of the at least one metal halide to the at least one metal carboxylate in the nanostructured film is between about 1:1 and about 1:3.

在一些實施例中,該奈米結構膜中之該等奈米結構為量子點。In some embodiments, the nanostructures in the nanostructure film are quantum dots.

在一些實施例中,該奈米結構膜包含一種與五種之間的有機樹脂。在一些實施例中,該奈米結構膜進一步包含一種有機樹脂。In some embodiments, the nanostructured film contains between one and five organic resins. In some embodiments, the nanostructured film further includes an organic resin.

在一些實施例中,該奈米結構膜包含至少一種有機樹脂,其中該樹脂為熱固性樹脂或UV可固化樹脂。In some embodiments, the nanostructured film includes at least one organic resin, wherein the resin is a thermosetting resin or a UV curable resin.

在一些實施例中,該奈米結構膜包含至少一種有機樹脂,其中該樹脂為UV可固化樹脂。In some embodiments, the nanostructured film includes at least one organic resin, wherein the resin is a UV curable resin.

在一些實施例中,模製品包含本文中所描述之奈米結構膜。在一些實施例中,包含本文中所描述之該奈米結構膜的該模製品為發光二極體或液晶顯示器。In some embodiments, the molded article comprises the nanostructured film described herein. In some embodiments, the molded article containing the nanostructured film described herein is a light emitting diode or a liquid crystal display.

定義definition

除非另外定義,否則本文所使用之所有技術及科學術語均具有與由本發明所屬之一般熟習技術者通常所理解相同的含義。以下定義對此項技術中之彼等定義進行補充並係關於本申請案,且不推論為任何相關或不相關案例,例如任何共同擁有的專利或申請案。儘管與本文中所描述之彼等類似或等效的任何方法及材料可在實踐中用於測試本發明,但在本文中描述較佳方法及材料。因此,本文中所使用之術語僅出於描述特定實施例之目的且並不意欲為限制性的。Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by those skilled in the art to which the present invention belongs. The following definitions supplement their definitions in this technology and are related to this application, and are not inferred to be any related or unrelated cases, such as any jointly owned patents or applications. Although any methods and materials similar or equivalent to those described herein can be used in practice to test the present invention, the preferred methods and materials are described herein. Therefore, the terms used herein are only for the purpose of describing specific embodiments and are not intended to be limiting.

除非上下文另外明確指示,否則如本說明書及隨附申請專利範圍中所使用,單數形式「一(a/an)」及「該(the)」包括複數個指示物。因此,舉例而言,對「奈米結構」之提及包括複數個此等奈米結構及類似者。Unless the context clearly dictates otherwise, as used in the scope of this specification and the accompanying application, the singular forms "一 (a/an)" and "the (the)" include plural indicators. Therefore, for example, the reference to "nanostructures" includes a plurality of these nanostructures and the like.

如本文中所使用,術語「約」指示給定數量之值變化了值之±10%,或視情況值之±5%,或在一些實施例中,如所描述之值的±1%。舉例而言,「約100 nm」涵蓋90 nm至110 nm之大小範圍(包括端點)。As used herein, the term "about" indicates that the value of a given quantity has changed by ±10% of the value, or optionally ±5% of the value, or in some embodiments, ±1% of the value described. For example, "about 100 nm" covers the size range (including endpoints) from 90 nm to 110 nm.

「奈米結構」為具有尺寸小於約500 nm之至少一個區域或特徵尺寸的結構。在一些實施例中,奈米結構具有小於約200 nm、小於約100 nm、小於約50 nm、小於約20 nm或小於約10 nm之尺寸。通常,區域或特徵尺寸將沿著結構之最小軸線。此等結構之實例包括奈米線、奈米棒、奈米管、分支奈米結構、奈米四角錐、奈米三角錐、奈米二角錐、奈米晶、奈米點、量子點、奈米粒子及類似者。奈米結構可為例如實質上結晶、實質上單晶、多晶、非晶形或其組合。在一些實施例中,奈米結構之三個尺寸中之每一者具有小於約500 nm、小於約200 nm、小於約100 nm、小於約50 nm、小於約20 nm或小於約10 nm之尺寸。A "nanostructure" is a structure having at least one region or feature size smaller than about 500 nm. In some embodiments, the nanostructure has a size less than about 200 nm, less than about 100 nm, less than about 50 nm, less than about 20 nm, or less than about 10 nm. Generally, the area or feature size will be along the smallest axis of the structure. Examples of such structures include nanowires, nanorods, nanotubes, branched nanostructures, nanotetragonal pyramids, nanotriangular pyramids, nanodipyramidals, nanocrystals, nanodots, quantum dots, nano Rice particles and the like. The nanostructure can be, for example, substantially crystalline, substantially single crystal, polycrystalline, amorphous, or a combination thereof. In some embodiments, each of the three dimensions of the nanostructure has a size less than about 500 nm, less than about 200 nm, less than about 100 nm, less than about 50 nm, less than about 20 nm, or less than about 10 nm. .

當與參考奈米結構一起使用時,術語「異質結構」係指藉由至少兩種不同及/或可區分材料類型表徵之奈米結構。通常,奈米結構之一個區域包含第一材料類型,而奈米結構之第二區域包含第二材料類型。在某些實施例中,奈米結構包含第一材料之核心及第二(或第三等)材料之至少一種殼,其中不同材料類型圍繞例如奈米線之長軸、分支奈米線之臂之長軸或奈米晶之中心徑向分佈。殼可能但無需完全覆蓋視為殼之相鄰材料或視為異質結構之奈米結構;舉例而言,藉由覆蓋有第二材料之小島狀物的一種材料之核心表徵之奈米晶為異質結構。在其他實施例中,不同材料類型分佈於奈米結構內之不同位置處;例如沿著奈米線之主要(長)軸線或沿著分支奈米線之臂之長軸。異質結構內之不同區域可包含全部不同的材料,或不同區域可包含具有不同摻雜物或不同濃度之相同摻雜劑的基底材料(例如,矽)。When used with a reference nanostructure, the term "heterostructure" refers to a nanostructure characterized by at least two different and/or distinguishable material types. Generally, one area of the nanostructure contains the first material type, and the second area of the nanostructure contains the second material type. In some embodiments, the nanostructure includes a core of a first material and at least one shell of a second (or third, etc.) material, wherein different types of materials surround the long axis of the nanowire, the arm of the branched nanowire The long axis or the center of the nanocrystal is distributed radially. The shell may but does not need to completely cover the adjacent material regarded as the shell or the nanostructure regarded as the heterostructure; for example, the nanocrystal represented by the core of a material covered with small islands of the second material is heterogeneous structure. In other embodiments, different material types are distributed at different locations within the nanostructure; for example, along the main (long) axis of the nanowire or along the long axis of the arm of the branch nanowire. Different regions within the heterostructure can contain all different materials, or different regions can contain base materials (eg, silicon) with different dopants or different concentrations of the same dopant.

如本文中所使用,奈米結構之「直徑」係指垂直於奈米結構之第一軸之橫截面直徑,其中第一軸具有相對於第二軸及第三軸之最大長度差值(第二軸及第三軸為長度大部分幾乎彼此相等之兩個軸)。第一軸並非必需為奈米結構之最長軸;例如對於盤形奈米結構,橫截面將為垂直於盤之短縱軸的實質上環形橫截面。在橫截面不為環形時,直徑為橫截面之長軸及短軸之平均值。對於細長或高縱橫比奈米結構(諸如奈米線),在垂直於奈米線之最長軸之整個橫截面中量測直徑。對於球形奈米結構,自一側至另一側經由球體中心量測直徑。As used herein, the "diameter" of the nanostructure refers to the cross-sectional diameter perpendicular to the first axis of the nanostructure, where the first axis has the largest difference in length relative to the second axis and the third axis (the The second axis and the third axis are two axes whose lengths are almost equal to each other). The first axis is not necessarily the longest axis of the nanostructure; for example, for a disc-shaped nanostructure, the cross section will be a substantially circular cross section perpendicular to the short longitudinal axis of the disc. When the cross section is not circular, the diameter is the average of the long axis and short axis of the cross section. For slender or high aspect ratio nanostructures (such as nanowires), the diameter is measured in the entire cross section perpendicular to the longest axis of the nanowire. For spherical nanostructures, the diameter is measured from one side to the other through the center of the sphere.

當相對於奈米結構使用時,術語「結晶」或「實質上結晶」係指奈米結構通常在結構之一或多個尺寸上展現長程排序的事實。熟習此項技術者應理解,術語「長程排序(long range ordering)」將視特定奈米結構之絕對大小而定,因為單晶體之排序不可延伸超出晶體邊界。在此情況下,「長程排序」將意謂在奈米結構之至少大部分尺寸上之實質順序。在一些情況下,奈米結構可攜有氧化物或其他塗料,或可由核心及至少一種殼構成。在此等情況下,將瞭解,氧化物、殼或其他塗料可能但不必展現此排序(例如,其可為非晶形、多晶或其他)。在此等情況下,片語「結晶」、「實質上結晶」、「實質上單晶」或「單晶」係指奈米結構之中央核心(排除塗層或殼)。如本文中所使用,術語「結晶」或「實質上結晶」意欲亦涵蓋包含各種缺陷、堆疊疵點、原子取代及類似者之結構,只要結構展現實質上長程排序即可(例如,超過奈米結構或其核心之至少一個軸之長度之至少約80%的排序)。此外,應瞭解,核心與奈米結構外部之間或核心與相鄰殼之間或殼與第二相鄰殼之間的界面可含有非結晶區域且可甚至為非晶形。此不會阻止奈米結構為如本文所定義之結晶或實質上結晶的。When used with respect to nanostructures, the term "crystalline" or "substantially crystalline" refers to the fact that nanostructures usually exhibit a long-range order in one or more dimensions of the structure. Those familiar with this technology should understand that the term "long range ordering" will depend on the absolute size of the specific nanostructure, because the ordering of single crystals cannot extend beyond the crystal boundary. In this case, "long-range ordering" will mean a substantial order on at least most of the dimensions of the nanostructure. In some cases, the nanostructure may carry oxides or other coatings, or may be composed of a core and at least one shell. In such cases, it will be understood that oxides, shells, or other coatings may but need not exhibit this ordering (for example, they may be amorphous, polycrystalline, or otherwise). In these cases, the phrase "crystalline", "substantially crystalline", "substantially single crystal" or "single crystal" refers to the central core of the nanostructure (excluding the coating or shell). As used herein, the term "crystalline" or "substantially crystalline" is intended to also cover structures containing various defects, stacking defects, atomic substitutions, and the like, as long as the structure exhibits a substantial long-range order (for example, more than nanostructure Or at least about 80% of the length of at least one axis of its core). Furthermore, it should be understood that the interface between the core and the outside of the nanostructure or between the core and the adjacent shell or between the shell and the second adjacent shell may contain amorphous regions and may even be amorphous. This does not prevent the nanostructure from being crystalline or substantially crystalline as defined herein.

當相對於奈米結構使用時,術語「單晶」指示奈米結構為實質上結晶的且包含實質上單晶體。當相對於包含核心及一或多種殼之奈米結構異質結構使用時,「單晶」指示核心為實質上結晶的且包含實質上單晶體。When used in relation to a nanostructure, the term "single crystal" indicates that the nanostructure is substantially crystalline and includes substantially single crystals. When used with respect to a nanostructure heterostructure that includes a core and one or more shells, "single crystal" indicates that the core is substantially crystalline and contains substantially single crystals.

「奈米晶」為實質上單晶之奈米結構。奈米晶因此具有尺寸小於約500 nm之至少一種區域或特徵尺寸。在一些實施例中,奈米晶具有小於約200 nm、小於約100 nm、小於約50 nm、小於約20 nm或小於約10 nm之尺寸。術語「奈米晶」意欲涵蓋包含各種缺陷、堆疊疵點、原子取代及類似者之實質上單晶奈米結構,以及不具有此等缺陷、疵點或取代之實質上單晶奈米結構。在包含核心及一或多種殼之奈米晶異質結構之情況下,奈米晶之核心通常為實質上單晶的,但殼無需為單晶的。在一些實施例中,奈米晶之三個尺寸中之每一者具有小於約500 nm、小於約200 nm、小於約100 nm、小於約50 nm、小於約20 nm或小於約10 nm之尺寸。"Nanocrystals" are essentially single crystal nanostructures. Nanocrystals therefore have at least one region or feature size less than about 500 nm in size. In some embodiments, the nanocrystal has a size of less than about 200 nm, less than about 100 nm, less than about 50 nm, less than about 20 nm, or less than about 10 nm. The term "nanocrystalline" is intended to cover substantially single crystal nanostructures including various defects, stacking defects, atomic substitutions and the like, as well as substantially single crystal nanostructures that do not have such defects, defects or substitutions. In the case of a nanocrystalline heterostructure including a core and one or more shells, the core of the nanocrystal is usually substantially single crystal, but the shell need not be single crystal. In some embodiments, each of the three sizes of nanocrystals has a size of less than about 500 nm, less than about 200 nm, less than about 100 nm, less than about 50 nm, less than about 20 nm, or less than about 10 nm. .

術語「量子點」(或「點」)係指展現量子侷限或激子侷限之奈米晶。量子點可在材料特性方面為實質上均勻的,或在某些實施例中,可為異質的,例如包括核心及至少一種殼。量子點之光學特性可受其粒子大小、化學組合物及/或表面組合物影響,且可藉由此項技術中可用的適合光學測試來測定。調整奈米晶大小(例如在約1 nm與約15 nm之間的範圍內)之能力使得在整個光譜中之光發射覆蓋度能夠在顯色性方面提供極大的通用性。The term "quantum dot" (or "dot") refers to nanocrystals that exhibit quantum confinement or exciton confinement. Quantum dots may be substantially uniform in terms of material properties, or in some embodiments, may be heterogeneous, for example, including a core and at least one shell. The optical properties of quantum dots can be affected by their particle size, chemical composition and/or surface composition, and can be determined by suitable optical tests available in this technology. The ability to adjust the size of the nanocrystal (for example, in the range between about 1 nm and about 15 nm) enables the light emission coverage in the entire spectrum to provide great versatility in terms of color rendering.

「配位體」為能夠例如經由共價、離子性、凡得瓦爾力(van der Waals)或與奈米結構之表面的其他分子交互作用而與奈米結構之一或多個面交互作用(無論較弱或較強)的分子。A "ligand" is capable of interacting with one or more surfaces of the nanostructure, for example, through covalent, ionic, van der Waals, or interaction with other molecules on the surface of the nanostructure ( Whether weaker or stronger) molecules.

「光致發光量子產率」為例如藉由奈米結構或奈米結構群體發射之光子與吸收之光子的比率。如此項技術中已知,量子產率通常藉由比較方法,使用具有已知量子產率值之充分表徵標準樣品來測定。"Photoluminescence quantum yield" is, for example, the ratio of photons emitted and absorbed by nanostructures or nanostructure groups. As known in the art, the quantum yield is usually determined by a comparison method using a fully characterized standard sample with a known quantum yield value.

如本文中所使用,術語「單層」為衍生自殼材料的主體晶體結構之殼厚度之量測單元,作為相關晶格面之間的最近距離。藉助於實例,對於立方晶格結構,將一個單層之厚度測定為[111]方向上相鄰晶格面之間的距離。藉助於實例,立方ZnSe之一個單層對應於0.328 nm且立方ZnS之一個單層對應於0.31 nm厚度。經由魏加氏定律(Vegard's law),合金化材料之單層之厚度可由合金組合物測定。As used herein, the term "monolayer" is a measurement unit derived from the shell thickness of the main crystal structure of the shell material, as the shortest distance between related lattice planes. By way of example, for a cubic lattice structure, the thickness of a single layer is measured as the distance between adjacent lattice planes in the [111] direction. By way of example, one single layer of cubic ZnSe corresponds to 0.328 nm and one single layer of cubic ZnS corresponds to a thickness of 0.31 nm. According to Vegard's law, the thickness of a single layer of alloyed material can be determined by the alloy composition.

如本文中所使用,術語「殼」係指沈積於核心上或相同或不同組合物之先前沈積的殼上且由殼材料沈積之單次作用產生的材料。準確的殼厚度視材料以及前驅體輸入及轉化而定且可以奈米或單層報導。如本文中所使用,「目標殼厚度」係指用於計算所需前驅體量之預期殼厚度。如本文中所使用,「實際殼厚度」係指在合成之後殼材料之實際沈積量且可藉由此項技術中已知之方法量測。藉助於實例,可藉由比較自殼合成之前及之後奈米晶之TEM影像測定的粒子直徑來量測實際殼厚度。As used herein, the term "shell" refers to a material deposited on a core or a previously deposited shell of the same or different composition and produced by a single action of shell material deposition. The exact shell thickness depends on the material and precursor input and conversion, and can be reported in nanometers or single layer. As used herein, "target shell thickness" refers to the expected shell thickness used to calculate the amount of precursor required. As used herein, "actual shell thickness" refers to the actual deposition amount of the shell material after synthesis and can be measured by methods known in the art. By way of example, the actual shell thickness can be measured by comparing the particle diameters measured from the TEM images of the nanocrystals before and after the shell synthesis.

如本文中所使用,術語「半高全寬(full width at half-maximum)」(FWHM)為量子點之大小分佈之量度。量子點之發射光譜一般具有高斯曲線(Gaussian curve)形狀。將高斯曲線之寬度定義為FWHM且給出粒子之大小分佈之想法。較小FWHM對應於較窄量子點奈米晶大小分佈。FWHM亦視發射波長最大值而定。As used herein, the term "full width at half-maximum" (FWHM) is a measure of the size distribution of quantum dots. The emission spectrum of quantum dots generally has a Gaussian curve shape. The width of the Gaussian curve is defined as FWHM and the idea of particle size distribution is given. A smaller FWHM corresponds to a narrower quantum dot nanocrystal size distribution. FWHM also depends on the maximum emission wavelength.

如本文中所使用,術語「穩定的」係指抵抗因內部反應或因空氣、熱量、光、壓力或其他自然條件之作用所致的變化或分解的混合物或組合物。奈米結構可以膠態懸浮液形式儲存在溶劑中。膠態穩定性係指對懸浮液之聚集或沈降之抗性。As used herein, the term "stable" refers to a mixture or composition that resists changes or decomposition due to internal reactions or due to the action of air, heat, light, pressure, or other natural conditions. The nanostructure can be stored in a solvent in the form of a colloidal suspension. Colloidal stability refers to the resistance to aggregation or sedimentation of the suspension.

「峰值發射波長」(PWL)為光源之輻射量測發射光譜達成其最大值時的波長。"Peak emission wavelength" (PWL) is the wavelength at which the radiation measurement emission spectrum of the light source reaches its maximum value.

除非另外清楚指示,否則本文中所列出之範圍包括端點。Unless clearly indicated otherwise, the ranges listed herein include endpoints.

各種額外術語經定義或以其他方式表徵於本文中。奈米結構組合物 Various additional terms are defined or otherwise characterized herein. Nanostructured composition

在一些實施例中,本發明提供一種奈米結構組合物,其包含: (a)至少一種奈米結構群體,該等奈米結構包含奈米晶核及至少一種殼; (b)至少一種金屬鹵化物,其黏合至該等奈米結構之表面;以及 (c)至少一種金屬羧酸鹽,其黏合至該等奈米結構之表面。In some embodiments, the present invention provides a nanostructured composition comprising: (a) At least one group of nanostructures, the nanostructures comprising a nanocrystal core and at least one shell; (b) At least one metal halide, which is bonded to the surface of the nanostructures; and (c) At least one metal carboxylate, which is bonded to the surface of the nanostructures.

在一些實施例中,奈米結構為量子點。奈米結構膜 In some embodiments, the nanostructures are quantum dots. Nanostructured membrane

在一些實施例中,本發明提供一種奈米結構膜,其包含: (a)至少一種奈米結構群體,該等奈米結構包含奈米晶核及至少一種殼; (b)至少一種金屬鹵化物,其黏合至該等奈米結構之表面;以及 (c)至少一種金屬羧酸鹽,其黏合至該等奈米結構之表面。In some embodiments, the present invention provides a nanostructured membrane, which comprises: (a) At least one group of nanostructures, the nanostructures comprising a nanocrystal core and at least one shell; (b) At least one metal halide, which is bonded to the surface of the nanostructures; and (c) At least one metal carboxylate, which is bonded to the surface of the nanostructures.

在一些實施例中,奈米結構為量子點。In some embodiments, the nanostructures are quantum dots.

在一些實施例中,本發明提供一種奈米結構膜,其包含: (a)至少一種奈米結構群體,該等奈米結構包含奈米晶核及至少一種殼; (b)至少一種金屬鹵化物,其黏合至該等奈米結構之表面; (c)至少一種金屬羧酸鹽,其黏合至該等奈米結構之表面;以及 (d)至少一種有機樹脂。In some embodiments, the present invention provides a nanostructured membrane, which comprises: (a) At least one group of nanostructures, the nanostructures comprising a nanocrystal core and at least one shell; (b) At least one metal halide, which is bonded to the surface of the nanostructures; (c) at least one metal carboxylate, which is bonded to the surface of the nanostructures; and (d) At least one organic resin.

在一些實施例中,奈米結構為量子點。奈米結構模製品 In some embodiments, the nanostructures are quantum dots. Nanostructured molded products

在一些實施例中,本發明提供一種奈米結構模製品,其包含: (a)第一障壁層; (b)第二障壁層;以及 (c)發光層,其在第一障壁層與第二障壁層之間,其中該發光層包含:奈米結構群體,其包含奈米晶核及至少一種殼;至少一種金屬鹵化物,其黏合至該等奈米結構之表面;及至少一種金屬羧酸鹽,其黏合至該等奈米結構之表面。In some embodiments, the present invention provides a nanostructured molded article comprising: (a) The first barrier layer; (b) The second barrier layer; and (c) A light-emitting layer, which is between the first barrier layer and the second barrier layer, wherein the light-emitting layer includes: a nanostructure group, which includes a nanocrystalline core and at least one shell; at least one metal halide, which is bonded To the surface of the nanostructures; and at least one metal carboxylate which is bonded to the surface of the nanostructures.

在一些實施例中,本發明提供一種奈米結構模製品,其包含: (a)第一障壁層; (b)第二障壁層;以及 (c)發光層,其在第一障壁層與第二障壁層之間,其中該發光層包含:奈米結構群體,其包含奈米晶核及至少一種殼;至少一種金屬鹵化物,其黏合至該等奈米結構之表面;及至少一種金屬羧酸鹽,其黏合至該等奈米結構之表面;以及 (d)至少一種有機樹脂。In some embodiments, the present invention provides a nanostructured molded article comprising: (a) The first barrier layer; (b) The second barrier layer; and (c) A light-emitting layer, which is between the first barrier layer and the second barrier layer, wherein the light-emitting layer includes: a nanostructure group, which includes a nanocrystalline core and at least one shell; at least one metal halide, which is bonded To the surface of the nanostructures; and at least one metal carboxylate which is bonded to the surface of the nanostructures; and (d) At least one organic resin.

在一些實施例中,奈米結構為量子點。In some embodiments, the nanostructures are quantum dots.

在一些實施例中,模製品為用於顯示器之膜或基板。在一些實施例中,模製品為液晶顯示器。在一些實施例中,模製品為發光二極體。奈米晶核 In some embodiments, the molded article is a film or substrate for a display. In some embodiments, the molded article is a liquid crystal display. In some embodiments, the molded article is a light emitting diode. Nanocrystalline core

用於各種奈米結構之膠體合成的方法為此項技術中已知的。此等方法包括用於控制奈米結構生長之技術,例如控制所得奈米結構之大小及/或形狀分佈。Methods for colloidal synthesis of various nanostructures are known in the art. These methods include techniques for controlling the growth of nanostructures, such as controlling the size and/or shape distribution of the resulting nanostructures.

在典型的膠體合成中,藉由快速注入經歷熱解成熱溶液(例如,熱溶劑及/或界面活性劑)的前驅體來產生半導體奈米結構。可同時或依序注入前驅體。前驅體快速反應以形成晶核。通常在低於注入/凝核溫度之生長溫度下,奈米結構生長經由將單體添加至晶核中而發生。In a typical colloid synthesis, a semiconductor nanostructure is produced by rapidly injecting a precursor that undergoes pyrolysis into a hot solution (for example, a hot solvent and/or surfactant). The precursors can be injected simultaneously or sequentially. The precursor reacts quickly to form crystal nuclei. Generally, at a growth temperature lower than the injection/nucleation temperature, nanostructure growth occurs by adding monomer to the nucleus.

配位體與奈米結構之表面交互作用。在生長溫度下,配位體自奈米結構表面快速吸附且解吸附,從而准許自奈米結構添加及/或移除原子,同時遏制生長奈米結構之聚集。一般而言,與奈米結構表面弱配位之配位體准許奈米結構快速生長,而更強黏合至奈米結構表面之配位體造成更慢的奈米結構生長。配位體亦可與一個(或多個)前驅體交互作用以減緩奈米結構生長。The surface interaction between the ligand and the nanostructure. At the growth temperature, the ligand rapidly adsorbs and desorbs from the surface of the nanostructure, thereby permitting the addition and/or removal of atoms from the nanostructure, while inhibiting the aggregation of the growing nanostructure. Generally speaking, ligands that are weakly coordinated to the surface of the nanostructure allow the nanostructure to grow quickly, while the ligand that is more strongly bound to the surface of the nanostructure causes a slower growth of the nanostructure. The ligand can also interact with one (or more) precursors to slow down the growth of nanostructures.

在存在單一配位體之情況下,奈米結構生長通常產生球形奈米結構。然而,若例如兩種(或更多種)配位體不同地吸附至生長奈米結構之不同結晶面,則使用兩種或更多種配位體之混合物准許控制生長,使得可產生非球形奈米結構。In the presence of a single ligand, nanostructure growth usually produces spherical nanostructures. However, if, for example, two (or more) ligands are adsorbed differently to different crystal faces of the growing nanostructure, the use of a mixture of two or more ligands permits controlled growth, so that non-spherical shapes can be produced Nano structure.

因此已知多種參數影響奈米結構生長且可獨立或組合地操控以控制所得奈米結構之大小及/或形狀分佈。此等包括例如溫度(凝核及/或生長)、前驅體組合物、時間依賴性前驅體濃度、前驅體彼此之間的比率、界面活性劑組合物、界面活性劑數目以及界面活性劑彼此之間及/或與前驅體的比率。Therefore, it is known that various parameters affect the growth of nanostructures and can be manipulated independently or in combination to control the size and/or shape distribution of the resulting nanostructures. These include, for example, temperature (nucleation and/or growth), precursor composition, time-dependent precursor concentration, the ratio between the precursors, the surfactant composition, the number of surfactants, and the relationship between the surfactants. Time and/or ratio to the precursor.

第II-VI族奈米結構之合成已描述於美國專利第6,225,198號、第6,322,901號、第6,207,229號、第6,607,829號、第7,060,243號、第7,374,824號、第6,861,155號、第7,125,605號、第7,566,476號、第8,158,193號及第8,101,234號以及美國專利申請公開案第2011/0262752號及第2011/0263062號中。在一些實施例中,核心為選自由以下組成之群的第II-VI族奈米晶:ZnO、ZnSe、ZnS、ZnTe、CdO、CdSe、CdS、CdTe、HgO、HgSe、HgS及HgTe。在一些實施例中,核心為選自由以下組成之群的奈米晶:ZnSe、ZnS、CdSe及CdS。The synthesis of II-VI group nanostructures has been described in U.S. Patent Nos. 6,225,198, 6,322,901, 6,207,229, 6,607,829, 7,060,243, 7,374,824, 6,861,155, 7,125,605, 7,566,476 , No. 8,158,193 and No. 8,101,234, and U.S. Patent Application Publication No. 2011/0262752 and No. 2011/0263062. In some embodiments, the core is a group II-VI nanocrystal selected from the group consisting of ZnO, ZnSe, ZnS, ZnTe, CdO, CdSe, CdS, CdTe, HgO, HgSe, HgS, and HgTe. In some embodiments, the core is a nanocrystal selected from the group consisting of ZnSe, ZnS, CdSe, and CdS.

儘管諸如CdSe及CdS量子點之第II-VI族奈米結構可展現所需發光行為,諸如鎘毒性之問題限制了可使用此等奈米結構之應用。因此,具有有利發光特性之較少毒性替代物為高度合乎需要的。歸因於其可相容發射範圍,通常第III-V族奈米結構且尤其基於InP之奈米結構提供基於鎘之材料的最佳已知替代物。Although Group II-VI nanostructures such as CdSe and CdS quantum dots can exhibit the desired luminescence behavior, problems such as cadmium toxicity limit the applications in which these nanostructures can be used. Therefore, less toxic alternatives with favorable luminescence characteristics are highly desirable. Due to its compatible emission range, generally III-V nanostructures and especially InP-based nanostructures provide the best known alternatives to cadmium-based materials.

在一些實施例中,奈米結構不含鎘。如本文中所使用,術語「不含鎘」預期奈米結構含有小於100 ppm重量比之鎘。有害物質限制令(The Restriction of Hazardous Substances;RoHS)順應性定義要求在原始均勻前驅體材料中必須存在不超過0.01% (100 ppm)重量比之鎘。本發明之無Cd奈米結構中之鎘含量受前驅體材料中之痕量金屬濃度限制。無Cd奈米結構之前驅體材料中之痕量金屬(包括鎘)濃度可藉由感應耦合電漿質譜法(inductively coupled plasma mass spectroscopy;ICP-MS)分析量測,且處於十億分率(ppb)水準。在一些實施例中,「不含鎘」之奈米結構含有小於約50 ppm、小於約20 ppm、小於約10 ppm或小於約1 ppm之鎘。In some embodiments, the nanostructure does not contain cadmium. As used herein, the term "cadmium-free" expects that the nanostructure contains less than 100 ppm by weight of cadmium. The Restriction of Hazardous Substances (RoHS) compliance definition requires that no more than 0.01% (100 ppm) of cadmium by weight must be present in the original homogeneous precursor material. The cadmium content in the Cd-free nanostructure of the present invention is limited by the trace metal concentration in the precursor material. The concentration of trace metals (including cadmium) in the Cd-free nanostructure precursor material can be measured by inductively coupled plasma mass spectroscopy (ICP-MS) analysis and is in parts per billion ( ppb) level. In some embodiments, the "cadmium-free" nanostructure contains less than about 50 ppm, less than about 20 ppm, less than about 10 ppm, or less than about 1 ppm of cadmium.

在一些實施例中,核心為第III-V族奈米結構。在一些實施例中,核心為選自由以下組成之群的第III-V族奈米晶:BN、BP、BAs、BSb、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs及InSb。在一些實施例中,核心為InP奈米晶。In some embodiments, the core is a group III-V nanostructure. In some embodiments, the core is a group III-V nanocrystal selected from the group consisting of BN, BP, BAs, BSb, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs and InSb. In some embodiments, the core is InP nanocrystal.

第III-V族奈米結構之合成已描述於美國專利第5,505,928號、第6,306,736號、第6,576,291號、第6,788,453號、第6,821,337號、第7,138,098號、第7,557,028號、第8,062,967號、第7,645,397號以及第8,282,412號及美國專利申請公開案第2015/236195號中。第III-V族奈米結構之合成亦描述於Wells, R.L.等人, 「The use of tris(trimethylsilyl)arsine to prepare gallium arsenide and indium arsenide」,Chem. Mater. 1: 4-6 (1989)及Guzelian, A.A.等人, 「Colloidal chemical synthesis and characterization of InAs nanocrystal quantum dots」,Appl. Phys. Lett. 69 : 1432-1434 (1996)中。The synthesis of III-V group nanostructures has been described in U.S. Patent Nos. 5,505,928, 6,306,736, 6,576,291, 6,788,453, 6,821,337, 7,138,098, 7,557,028, 8,062,967, 7,645,397 And in No. 8,282,412 and U.S. Patent Application Publication No. 2015/236195. The synthesis of III-V family nanostructures is also described in Wells, RL et al., "The use of tris(trimethylsilyl)arsine to prepare gallium arsenide and indium arsenide", Chem. Mater. 1: 4-6 (1989) and Guzelian, AA et al., "Colloidal chemical synthesis and characterization of InAs nanocrystal quantum dots", Appl. Phys. Lett. 69 : 1432-1434 (1996).

基於InP之奈米結構之合成已描述於例如Xie, R.等人, 「Colloidal InP nanocrystals as efficient emitters covering blue to near-infrared」,J. Am. Chem. Soc. 129 :15432-15433 (2007);Micic, O.I.等人, 「Core-shell quantum dots of lattice-matched ZnCdSe2 shells on InP cores: Experiment and theory」,J. Phys. Chem. B 104 :12149-12156 (2000);Liu, Z.等人, 「Coreduction colloidal synthesis of III-V nanocrystals: The case of InP」,Angew. Chem. Int. Ed. Engl. 47 :3540-3542 (2008);Li, L.等人, 「Economic synthesis of high quality InP nanocrystals using calcium phosphide as the phosphorus precursor」,Chem. Mater. 20 :2621-2623(2008);D. Battaglia及X. Peng, 「Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent」,Nano Letters 2 :1027-1030(2002);Kim, S.等人, 「Highly luminescent InP/GaP/ZnS nanocrystals and their application to white light-emitting diodes」,J. Am. Chem. Soc. 134 :3804-3809(2012);Nann, T.等人, 「Water splitting by visible light: A nanophotocathode for hydrogen production」,Angew. Chem. Int. Ed. 49 :1574-1577 (2010);Borchert, H.等人, 「Investigation of ZnS passivated InP nanocrystals by XPS」,Nano Letters 2 :151-154(2002);L. Li及P. Reiss, 「One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection」,J. Am. Chem. Soc. 130 :11588-11589(2008);Hussain, S.等人, 「One-pot fabrication of high-quality InP/ZnS(core/shell)quantum dots and their application to cellular imaging」,Chemphyschem. 10 :1466-1470(2009);Xu, S.等人, 「Rapid synthesis of high-quality InP nanocrystals」,J. Am. Chem. Soc. 128 :1054-1055(2006);Micic, O. I.等人, 「Size-dependent spectroscopy of InP quantum dots」,J. Phys. Chem. B 101 :4904-4912(1997);Haubold, S.等人, 「Strongly luminescent InP/ZnS core-shell nanoparticles」,Chemphyschem. 5 :331-334(2001);CrosGagneux, A.等人, 「Surface chemistry of InP quantum dots: A comprehensive study」,J. Am. Chem. Soc. 132 :18147-18157(2010);Micic, O. I.等人, 「Synthesis and characterization of InP, GaP, and GaInP2 quantum dots」,J. Phys. Chem. 99 :7754-7759(1995);Guzelian, A.A.等人, 「Synthesis of size-selected, surface-passivated InP nanocrystals」,J. Phys. Chem. 100 :7212-7219(1996);Lucey, D.W.等人, 「Monodispersed InP quantum dots prepared by colloidal chemistry in a non-coordinating solvent」,Chem. Mater. 17 :3754-3762(2005);Lim, J.等人, 「InP@ZnSeS, core@composition gradient shell quantum dots with enhanced stability」,Chem. Mater. 23 :4459-4463(2011);以及Zan, F.等人, 「Experimental studies on blinking behavior of single InP/ZnS quantum dots: Effects of synthetic conditions and UV irradiation」,J. Phys. Chem. C 116 :394-3950(2012)。然而,此等努力在製備具有高量子產率之InP奈米結構方面僅取得了有限的成果。The synthesis of nanostructures based on InP has been described in, for example, Xie, R. et al., "Colloidal InP nanocrystals as efficient emitters covering blue to near-infrared", J. Am. Chem. Soc. 129 : 15432-15433 (2007) ; Micic, OI et al., "Core-shell quantum dots of lattice-matched ZnCdSe 2 shells on InP cores: Experiment and theory", J. Phys. Chem. B 104 :12149-12156 (2000); Liu, Z. et al. People, "Coreduction colloidal synthesis of III-V nanocrystals: The case of InP", Angew. Chem. Int. Ed. Engl. 47 :3540-3542 (2008); Li, L. et al., "Economic synthesis of high quality InP nanocrystals using calcium phosphide as the phosphorus precursor", Chem. Mater. 20 :2621-2623(2008); D. Battaglia and X. Peng, "Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent", Nano Letters 2 :1027-1030 (2002); Kim, S. et al., "Highly luminescent InP/GaP/ZnS nanocrystals and their application to white light-emitting diodes", J. Am. Chem. Soc. 134 : 3804-3809 (2012 ); Nann, T. et al., "Water splitting by visible light: A nanophotocathode for hydrogen production", Angew. Chem. Int. Ed. 49 :157 4-1577 (2010); Borchert, H. et al., "Investigation of ZnS passivated InP nanocrystals by XPS", Nano Letters 2 :151-154 (2002); L. Li and P. Reiss, "One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection", J. Am. Chem. Soc. 130 :11588-11589(2008); Hussain, S. et al., "One-pot fabrication of high-quality InP/ZnS(core/ shell)quantum dots and their application to cellular imaging", Chemphyschem. 10 :1466-1470(2009); Xu, S. et al., "Rapid synthesis of high-quality InP nanocrystals", J. Am. Chem. Soc. 128 :1054-1055 (2006); Micic, OI et al., "Size-dependent spectroscopy of InP quantum dots", J. Phys. Chem. B 101 :4904-4912 (1997); Haubold, S. et al., "Strongly luminescent InP/ZnS core-shell nanoparticles", Chemphyschem. 5 :331-334(2001); CrosGagneux, A. et al., "Surface chemistry of InP quantum dots: A comprehensive study", J. Am. Chem. Soc. 132 :18147-18157 (2010); Micic, OI et al., "Synthesis and characterization of InP, GaP, and GaInP 2 quantum dots", J. Phys. Chem. 99 :7754-7759 (1995); Guzelian, AA et al. , "Syn thesis of size-selected, surface-passivated InP nanocrystals", J. Phys. Chem. 100 :7212-7219 (1996); Lucey, DW et al., "Monodispersed InP quantum dots prepared by colloidal chemistry in a non-coordinating solvent" , Chem. Mater. 17 :3754-3762(2005); Lim, J. et al., "InP@ZnSeS, core@composition gradient shell quantum dots with enhanced stability", Chem. Mater. 23 :4459-4463(2011) ; And Zan, F. et al., "Experimental studies on blinking behavior of single InP/ZnS quantum dots: Effects of synthetic conditions and UV irradiation", J. Phys. Chem. C 116 :394-3950 (2012). However, these efforts have only achieved limited results in the preparation of InP nanostructures with high quantum yields.

在一些實施例中,核心經摻雜。在一些實施例中,奈米晶核之摻雜物包含金屬,包括一或多種過渡金屬。在一些實施例中,摻雜物為選自由以下組成之群的過渡金屬:Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Tc、Re、Fe、Ru、Os、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au及其組合。在一些實施例中,摻雜物包含非金屬。在一些實施例中,摻雜物為ZnS、ZnSe、ZnTe、CdSe、CdS、CdTe、HgS、HgSe、HgTe、CuInS2 、CuInSe2 、AlN、AlP、AlAs、GaN、GaP或GaAs。In some embodiments, the core is doped. In some embodiments, the dopant of the nanocrystalline core includes metal, including one or more transition metals. In some embodiments, the dopant is a transition metal selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au and combinations thereof. In some embodiments, the dopant includes a non-metal. In some embodiments, the dopant is ZnS, ZnSe, ZnTe, CdSe, CdS, CdTe, HgS, HgSe, HgTe, CuInS 2 , CuInSe 2 , AlN, AlP, AlAs, GaN, GaP, or GaAs.

在一些實施例中,核心在殼沈積之前純化。在一些實施例中,過濾核心以自核心溶液移除沈澱物。In some embodiments, the core is purified before shell deposition. In some embodiments, the core is filtered to remove precipitate from the core solution.

在一些實施例中,核心在沈積殼之前經受酸蝕刻步驟。In some embodiments, the core is subjected to an acid etching step before depositing the shell.

在一些實施例中,藉由使用吸收光譜分析量測最低能量電子躍遷且基於量子侷限之原理模製對應量子點大小來測定核心之直徑。零維奈米晶中之量子侷限(諸如量子點)起因於微晶邊界內電子之空間侷限。當材料直徑具有與波函數之德布羅意波長(de Broglie wavelength)相同的量值時,可觀測到量子侷限。奈米粒子之電子及光學特性實質上偏離主體材料之彼等特性。當限制尺寸與粒子波長相比較大時,粒子表現如同游離。在此狀態期間,歸因於連續能態,帶隙保持其初始能量。然而,隨著限制尺寸減小且達到一定界限(通常奈米級),能量光譜變得離散。因此,帶隙變為大小依賴性的。殼層 In some embodiments, the diameter of the core is determined by measuring the lowest energy electronic transition using absorption spectroscopy and molding the corresponding quantum dot size based on the principle of quantum confinement. The quantum confinement in zero-dimensional nanocrystals (such as quantum dots) results from the spatial confinement of electrons within the crystallite boundaries. When the material diameter has the same magnitude as the de Broglie wavelength of the wave function, the quantum limitation can be observed. The electronic and optical properties of the nanoparticles substantially deviate from those of the host material. When the limit size is larger than the wavelength of the particle, the particle behaves as free. During this state, due to the continuous energy state, the band gap maintains its initial energy. However, as the limit size decreases and reaches a certain limit (usually at the nanometer level), the energy spectrum becomes discrete. Therefore, the band gap becomes size-dependent. Shell

在一些實施例中,本發明之奈米結構包括核心及至少一種殼。在一些實施例中,本發明之奈米結構包括核心及至少兩種殼。殼可例如提升量子產率及/或奈米結構之穩定性。在一些實施例中,核心及殼包含不同材料。在一些實施例中,奈米結構包含不同殼材料之殼。In some embodiments, the nanostructure of the present invention includes a core and at least one shell. In some embodiments, the nanostructure of the present invention includes a core and at least two shells. The shell can, for example, increase the quantum yield and/or the stability of the nanostructure. In some embodiments, the core and shell comprise different materials. In some embodiments, the nanostructure includes shells of different shell materials.

在一些實施例中,將包含第II族及第VI族元素之混合物之殼沈積至核心或核/殼結構上。在一些實施例中,藉由鋅源、硒源、硫源、碲源及鎘源中之至少兩者之混合物來沈積殼。在一些實施例中,藉由鋅源、硒源、硫源、碲源及鎘源中之兩者之混合物來沈積殼。在一些實施例中,藉由鋅源、硒源、硫源、碲源及鎘源中之三者之混合物來沈積殼。在一些實施例中,殼由以下構成:鋅及硫;鋅及硒;鋅、硫及硒;鋅及碲;鋅、碲及硫;鋅、碲及硒;鋅、鎘及硫;鋅、鎘及硒;鎘及硫;鎘及硒;鎘、硒及硫;鎘、鋅及硫;鎘、鋅及硒;或鎘、鋅、硫及硒。In some embodiments, a shell comprising a mixture of Group II and Group VI elements is deposited on the core or core/shell structure. In some embodiments, the crust is deposited by a mixture of at least two of a source of zinc, a source of selenium, a source of sulfur, a source of tellurium, and a source of cadmium. In some embodiments, the crust is deposited by a mixture of two of a zinc source, a selenium source, a sulfur source, a tellurium source, and a cadmium source. In some embodiments, the crust is deposited by a mixture of three of a zinc source, a selenium source, a sulfur source, a tellurium source, and a cadmium source. In some embodiments, the shell is composed of: zinc and sulfur; zinc and selenium; zinc, sulfur, and selenium; zinc and tellurium; zinc, tellurium, and sulfur; zinc, tellurium, and selenium; zinc, cadmium, and sulfur; zinc, cadmium And selenium; cadmium and sulfur; cadmium and selenium; cadmium, selenium and sulfur; cadmium, zinc and sulfur; cadmium, zinc and selenium; or cadmium, zinc, sulfur and selenium.

在一些實施例中,殼包含超過一個殼材料之單層。單層之數目為所有奈米結構之平均值;因此,殼中單層之數目可為分數。在一些實施例中,殼中單層之數目在0.25與10之間、在0.25與8之間、在0.25與7之間、在0.25與6之間、在0.25與5之間、在0.25與4之間、在0.25與3之間、在0.25與2之間、在2與10之間、在2與8之間、在2與7之間、在2與6之間、在2與5之間、在2與4之間、在2與3之間、在3與10之間、在3與8之間、在3與7之間、在3與6之間、在3與5之間、在3與4之間、在4與10之間、在4與8之間、在4與7之間、在4與6之間、在4與5之間、在5與10之間、在5與8之間、在5與7之間、在5與6之間、在6與10之間、在6與8之間、在6與7之間、在7與10之間、在7與8之間或在8與10之間。在一些實施例中,殼包含3至5個單層。In some embodiments, the shell comprises more than one single layer of shell material. The number of monolayers is the average of all nanostructures; therefore, the number of monolayers in the shell can be a fraction. In some embodiments, the number of monolayers in the shell is between 0.25 and 10, between 0.25 and 8, between 0.25 and 7, between 0.25 and 6, between 0.25 and 5, between 0.25 and Between 4, between 0.25 and 3, between 0.25 and 2, between 2 and 10, between 2 and 8, between 2 and 7, between 2 and 6, between 2 and 5 Between, between 2 and 4, between 2 and 3, between 3 and 10, between 3 and 8, between 3 and 7, between 3 and 6, between 3 and 5 Between, between 3 and 4, between 4 and 10, between 4 and 8, between 4 and 7, between 4 and 6, between 4 and 5, between 5 and 10 , Between 5 and 8, between 5 and 7, between 5 and 6, between 6 and 10, between 6 and 8, between 6 and 7, between 7 and 10, Between 7 and 8 or between 8 and 10. In some embodiments, the shell contains 3 to 5 monolayers.

可藉由改變所提供之前驅體之量來控制殼之厚度。對於給定殼厚度,視情況以一定量提供前驅體中之至少一者,藉此當生長反應實質上完成時,獲得預定厚度之殼。若提供超過一種不同前驅體,則各前驅體之量可能受限制或前驅體中之一者可以有限量提供,而其他以過量提供。The thickness of the shell can be controlled by changing the amount of precursor provided. For a given shell thickness, at least one of the precursors is provided in a certain amount as appropriate, thereby obtaining a shell with a predetermined thickness when the growth reaction is substantially completed. If more than one different precursors are provided, the amount of each precursor may be limited or one of the precursors may be provided in a limited amount, while the others are provided in excess.

可使用熟習此項技術者已知的技術來測定各殼之厚度。在一些實施例中,藉由比較添加各殼之前及之後奈米結構之平均直徑來測定各殼之厚度。在一些實施例中,藉由TEM來測定添加各殼之前及之後奈米結構之平均直徑。在一些實施例中,各殼具有0.05 nm與3.5 nm之間、0.05 nm與2 nm之間、0.05 nm與0.9 nm之間、0.05 nm與0.7 nm之間、0.05 nm與0.5 nm之間、0.05 nm與0.3 nm之間、0.05 nm與0.1 nm之間、0.1 nm與3.5 nm之間、0.1 nm與2 nm之間、0.1 nm與0.9 nm之間、0.1 nm與0.7 nm之間、0.1 nm與0.5 nm之間、0.1 nm與0.3 nm之間、0.3 nm與3.5 nm之間、0.3 nm與2 nm之間、0.3 nm與0.9 nm之間、0.3 nm與0.7 nm之間、0.3 nm與0.5 nm之間、0.5 nm與3.5 nm之間、0.5 nm與2 nm之間、0.5 nm與0.9 nm之間、0.5 nm與0.7 nm之間、0.7 nm與3.5 nm之間、0.7 nm與2 nm之間、0.7 nm與0.9 nm之間、0.9 nm與3.5 nm之間、0.9 nm與2 nm之間或2 nm與3.5 nm之間的厚度。The thickness of each shell can be measured using techniques known to those skilled in the art. In some embodiments, the thickness of each shell is determined by comparing the average diameter of the nanostructure before and after adding each shell. In some embodiments, the average diameter of the nanostructures before and after adding each shell is measured by TEM. In some embodiments, each shell has between 0.05 nm and 3.5 nm, between 0.05 nm and 2 nm, between 0.05 nm and 0.9 nm, between 0.05 nm and 0.7 nm, between 0.05 nm and 0.5 nm, 0.05 nm Between nm and 0.3 nm, between 0.05 nm and 0.1 nm, between 0.1 nm and 3.5 nm, between 0.1 nm and 2 nm, between 0.1 nm and 0.9 nm, between 0.1 nm and 0.7 nm, 0.1 nm and Between 0.5 nm, 0.1 nm and 0.3 nm, 0.3 nm and 3.5 nm, 0.3 nm and 2 nm, 0.3 nm and 0.9 nm, 0.3 nm and 0.7 nm, 0.3 nm and 0.5 nm Between 0.5 nm and 3.5 nm, between 0.5 nm and 2 nm, between 0.5 nm and 0.9 nm, between 0.5 nm and 0.7 nm, between 0.7 nm and 3.5 nm, between 0.7 nm and 2 nm , 0.7 nm and 0.9 nm, 0.9 nm and 3.5 nm, 0.9 nm and 2 nm, or 2 nm and 3.5 nm.

在一些實施例中,在存在至少一種配位體類型之情況下合成各殼。配位體可例如增強溶劑或聚合物(允許奈米結構分佈在整個組合物中以使得奈米結構不會聚集在一起)中之奈米結構之互溶性,提升奈米結構之量子產率,及/或保持奈米結構發光(例如,當將奈米結構併入基質中時)。在一些實施例中,用於核心合成及殼合成之配位體相同。在一些實施例中,用於核心合成及殼合成之配位體不同。在合成之後,奈米結構表面上之任何配位體可交換為具有其他所需特性之不同配位體。配位體之實例揭示於美國專利第7,572,395號、第8,143,703號、第8,425,803號、第8,563,133號、第8,916,064號、第9,005,480號、第9,139,770號及第9,169,435號以及美國專利申請公開案第2008/0118755號中。In some embodiments, each shell is synthesized in the presence of at least one ligand type. Ligands can, for example, enhance the mutual solubility of the nanostructures in the solvent or polymer (allowing the nanostructures to be distributed throughout the composition so that the nanostructures do not aggregate together), and improve the quantum yield of the nanostructures, And/or keep the nanostructure emitting light (for example, when the nanostructure is incorporated into the matrix). In some embodiments, the ligands used for core synthesis and shell synthesis are the same. In some embodiments, the ligands used for core synthesis and shell synthesis are different. After synthesis, any ligand on the surface of the nanostructure can be exchanged for a different ligand with other desired properties. Examples of ligands are disclosed in U.S. Patent Nos. 7,572,395, 8,143,703, 8,425,803, 8,563,133, 8,916,064, 9,005,480, 9,139,770 and 9,169,435 and U.S. Patent Application Publication No. 2008/0118755 Number in.

適用於合成殼之配位體為熟習此項技術者所已知。在一些實施例中,配位體為選自由以下組成之群的脂肪酸:月桂酸、己酸、肉豆蔻酸、棕櫚酸、硬脂酸及油酸。在一些實施例中,配位體為選自以下之有機膦或有機膦氧化物:三辛基氧化膦(TOPO)、三辛基膦(TOP)、二苯基膦(DPP)、三苯基氧化膦及三丁基氧化膦。在一些實施例中,配位體為選自由以下組成之群的胺:十二基胺、油胺、十六基胺、二辛基胺及十八基胺。在一些實施例中,配位體為三丁基膦、油酸或油酸鋅。Ligands suitable for synthetic shells are known to those skilled in the art. In some embodiments, the ligand is a fatty acid selected from the group consisting of lauric acid, caproic acid, myristic acid, palmitic acid, stearic acid, and oleic acid. In some embodiments, the ligand is an organophosphine or organophosphine oxide selected from the group consisting of trioctylphosphine oxide (TOPO), trioctylphosphine (TOP), diphenylphosphine (DPP), triphenyl Phosphine oxide and tributyl phosphine oxide. In some embodiments, the ligand is an amine selected from the group consisting of dodecylamine, oleylamine, hexadecylamine, dioctylamine, and octadecylamine. In some embodiments, the ligand is tributylphosphine, oleic acid, or zinc oleate.

在一些實施例中,在存在配位體之混合物的情況下產生各殼。在一些實施例中,在存在包含2、3、4、5或6種不同配位體之混合物的情況下產生各殼。在一些實施例中,在存在包含3種不同配位體之混合物的情況下產生各殼。在一些實施例中,配位體之混合物包含三丁基膦、油酸及油酸鋅。In some embodiments, each shell is produced in the presence of a mixture of ligands. In some embodiments, each shell is produced in the presence of a mixture comprising 2, 3, 4, 5, or 6 different ligands. In some embodiments, each shell is produced in the presence of a mixture containing 3 different ligands. In some embodiments, the mixture of ligands includes tributylphosphine, oleic acid, and zinc oleate.

在一些實施例中,在存在溶劑之情況下產生各殼。在一些實施例中,溶劑選自由以下組成之群:1-十八烯、1-十六烯、1-二十烯、二十烷、十八烷、十六烷、十四烷、角鯊烯、角鯊烷、三辛基氧化膦及二辛基醚。在一些實施例中,溶劑為1-十八烯。In some embodiments, each shell is produced in the presence of a solvent. In some embodiments, the solvent is selected from the group consisting of 1-octadecene, 1-hexadecene, 1-eicosene, eicosane, octadecane, hexadecane, tetradecane, squalene Alkenes, squalane, trioctyl phosphine oxide and dioctyl ether. In some embodiments, the solvent is 1-octadecene.

在一些實施例中,使核心或核/殼及殼前驅體在20℃與310℃之間、20℃與280℃之間、20℃與250℃之間、20℃與200℃之間、20℃與150℃之間、20℃與100℃之間、20℃與50℃之間、50℃與310℃之間、50℃與280℃之間、50℃與250℃之間、50℃與200℃之間、50℃與150℃之間、50℃與100℃之間、100℃與310℃之間、100℃與280℃之間、100℃與250℃之間、100℃與200℃之間、100℃與150℃之間、150℃與310℃之間、150℃與280℃之間、150℃與250℃之間、150℃與200℃之間、200℃與310℃之間、200℃與280℃之間、200℃與250℃之間、250℃與310℃之間、250℃與280℃之間或280℃與310℃之間的添加溫度下接觸。在一些實施例中,使核心或核/殼及殼前驅體在20℃與100℃之間的添加溫度下接觸。In some embodiments, the core or core/shell and shell precursors are heated between 20°C and 310°C, between 20°C and 280°C, between 20°C and 250°C, between 20°C and 200°C, 20°C ℃ and 150℃, 20℃ and 100℃, 20℃ and 50℃, 50℃ and 310℃, 50℃ and 280℃, 50℃ and 250℃, 50℃ and Between 200℃, 50℃ and 150℃, 50℃ and 100℃, 100℃ and 310℃, 100℃ and 280℃, 100℃ and 250℃, 100℃ and 200℃ Between, between 100℃ and 150℃, between 150℃ and 310℃, between 150℃ and 280℃, between 150℃ and 250℃, between 150℃ and 200℃, between 200℃ and 310℃ , 200°C and 280°C, 200°C and 250°C, 250°C and 310°C, 250°C and 280°C, or 280°C and 310°C at the addition temperature. In some embodiments, the core or core/shell and shell precursors are contacted at an addition temperature between 20°C and 100°C.

在一些實施例中,在使核心或核/殼與殼前驅體接觸之後,將反應混合物之溫度提高至200℃與310℃之間、200℃與280℃之間、200℃與250℃之間、200℃與220℃之間、220℃與310℃之間、220℃與280℃之間、220℃與250℃之間、250℃與310℃之間、250℃與280℃之間或280℃與310℃之間的高溫。在一些實施例中,在使核心或核/殼與殼前驅體接觸之後,將反應混合物之溫度提高至250℃與310℃之間。In some embodiments, after contacting the core or core/shell with the shell precursor, the temperature of the reaction mixture is increased to between 200°C and 310°C, between 200°C and 280°C, between 200°C and 250°C , 200℃ and 220℃, 220℃ and 310℃, 220℃ and 280℃, 220℃ and 250℃, 250℃ and 310℃, 250℃ and 280℃ or 280℃ High temperature between ℃ and 310℃. In some embodiments, after contacting the core or core/shell with the shell precursor, the temperature of the reaction mixture is increased to between 250°C and 310°C.

在一些實施例中,在使核心或核/殼與殼前驅體接觸之後,溫度達到高溫之時間在2與240分鐘之間、在2與200分鐘之間、在2與100分鐘之間、在2與60分鐘之間、在2與40分鐘之間、在5與240分鐘之間、在5與200分鐘之間、在5與100分鐘之間、在5與60分鐘之間、在5與40分鐘之間、在10與240分鐘之間、在10與200分鐘之間、在10與100分鐘之間、在10與60分鐘之間、在10與40分鐘之間、在40與240分鐘之間、在40與200分鐘之間、在40與100分鐘之間、在40與60分鐘之間、在60與240分鐘之間、在60與200分鐘之間、在60與100分鐘之間、在100與240分鐘之間、在100與200分鐘之間或在200與240分鐘之間。In some embodiments, after contacting the core or core/shell with the shell precursor, the time for the temperature to reach the high temperature is between 2 and 240 minutes, between 2 and 200 minutes, between 2 and 100 minutes, Between 2 and 60 minutes, between 2 and 40 minutes, between 5 and 240 minutes, between 5 and 200 minutes, between 5 and 100 minutes, between 5 and 60 minutes, between 5 and Between 40 minutes, between 10 and 240 minutes, between 10 and 200 minutes, between 10 and 100 minutes, between 10 and 60 minutes, between 10 and 40 minutes, between 40 and 240 minutes Between, between 40 and 200 minutes, between 40 and 100 minutes, between 40 and 60 minutes, between 60 and 240 minutes, between 60 and 200 minutes, between 60 and 100 minutes , Between 100 and 240 minutes, between 100 and 200 minutes, or between 200 and 240 minutes.

在一些實施例中,在使核心或核/殼與殼前驅體接觸之後,使反應混合物之溫度保持處於高溫持續2至240分鐘、2至200分鐘、2至100分鐘、2至60分鐘、2至40分鐘、5至240分鐘、5至200分鐘、5至100分鐘、5至60分鐘、5至40分鐘、10至240分鐘、10至200分鐘、10至100分鐘、10至60分鐘、10至40分鐘、40至240分鐘、40至200分鐘、40至100分鐘、40至60分鐘、60至240分鐘、60至200分鐘、60至100分鐘、100至240分鐘、100至200分鐘或200至240分鐘。在一些實施例中,在使核心或核/殼與殼前驅體接觸之後,使反應混合物之溫度保持處於高溫持續30至120分鐘。In some embodiments, after contacting the core or core/shell with the shell precursor, the temperature of the reaction mixture is maintained at a high temperature for 2 to 240 minutes, 2 to 200 minutes, 2 to 100 minutes, 2 to 60 minutes, 2 To 40 minutes, 5 to 240 minutes, 5 to 200 minutes, 5 to 100 minutes, 5 to 60 minutes, 5 to 40 minutes, 10 to 240 minutes, 10 to 200 minutes, 10 to 100 minutes, 10 to 60 minutes, 10 To 40 minutes, 40 to 240 minutes, 40 to 200 minutes, 40 to 100 minutes, 40 to 60 minutes, 60 to 240 minutes, 60 to 200 minutes, 60 to 100 minutes, 100 to 240 minutes, 100 to 200 minutes or 200 To 240 minutes. In some embodiments, after contacting the core or core/shell with the shell precursor, the temperature of the reaction mixture is maintained at an elevated temperature for 30 to 120 minutes.

在一些實施例中藉由進一步添加殼材料前驅體(其添加至反應混合物中),隨後保持處於高溫來產生額外的殼。通常,在先前殼之反應大體上完成(例如當先前前驅體中之至少一者耗盡或自反應移除時或當額外生長不可偵測時)之後提供額外的殼前驅體。進一步添加前驅體產生額外的殼。In some embodiments, additional shells are generated by further adding shell material precursors (which are added to the reaction mixture) and then maintaining at a high temperature. Generally, the additional shell precursor is provided after the reaction of the previous shell is substantially complete (for example, when at least one of the previous precursors is exhausted or removed from the reaction or when the additional growth is undetectable). Further addition of precursors creates additional shells.

在一些實施例中,在添加額外的殼材料前驅體之前冷卻奈米結構以得到其他殼。在一些實施例中,奈米結構在添加殼材料前驅體以得到其他殼之前保持處於高溫。In some embodiments, the nanostructure is cooled before adding additional shell material precursors to obtain other shells. In some embodiments, the nanostructure is kept at a high temperature before adding shell material precursors to obtain other shells.

在已為奈米結構添加足夠層的殼以達到所需厚度及直徑之後,奈米結構可經冷卻。在一些實施例中,使核/殼奈米結構冷卻至室溫。在一些實施例中,添加有機溶劑以稀釋包含核/殼奈米結構之反應混合物。After enough shells have been added to the nanostructure to achieve the required thickness and diameter, the nanostructure can be cooled. In some embodiments, the core/shell nanostructure is cooled to room temperature. In some embodiments, an organic solvent is added to dilute the reaction mixture containing core/shell nanostructures.

在一些實施例中,用於稀釋反應混合物之有機溶劑為乙醇、己烷、戊烷、甲苯、苯、二***、丙酮、乙酸乙酯、二氯甲烷(氯化甲烷)、氯仿、二甲基甲醯胺或N-甲基吡咯啶酮。在一些實施例中,有機溶劑為甲苯。In some embodiments, the organic solvent used to dilute the reaction mixture is ethanol, hexane, pentane, toluene, benzene, diethyl ether, acetone, ethyl acetate, dichloromethane (chlorinated methane), chloroform, dimethyl Formamide or N-methylpyrrolidone. In some embodiments, the organic solvent is toluene.

在一些實施例中,分離核/殼奈米結構。在一些實施例中,藉由使用有機溶劑進行沈澱來分離核/殼奈米結構。在一些實施例中,藉由用乙醇進行絮凝來分離核/殼奈米結構。In some embodiments, the core/shell nanostructure is separated. In some embodiments, the core/shell nanostructures are separated by precipitation using organic solvents. In some embodiments, the core/shell nanostructures are separated by flocculation with ethanol.

單層之數目將決定核/殼奈米結構之大小。可使用熟習此項技術者已知之技術來測定核/殼奈米結構之大小。在一些實施例中,使用TEM來測定核/殼奈米結構之大小。在一些實施例中,核/殼奈米結構之平均直徑在1 nm與15 nm之間、在1 nm與10 nm之間、在1 nm與9 nm之間、在1 nm與8 nm之間、在1 nm與7 nm之間、在1 nm與6 nm之間、在1 nm與5 nm之間、在5 nm與15 nm之間、在5 nm與10 nm之間、在5 nm與9 nm之間、在5 nm與8 nm之間、在5 nm與7 nm之間、在5 nm與6 nm之間、在6 nm與15 nm之間、在6 nm與10 nm之間、在6 nm與9 nm之間、在6 nm與8 nm之間、在6 nm與7 nm之間、在7 nm與15 nm之間、在7 nm與10 nm之間、在7 nm與9 nm之間、在7 nm與8 nm之間、在8 nm與15 nm之間、在8 nm與10 nm之間、在8 nm與9 nm之間、在9 nm與15 nm之間、咋9 nm與10 nm之間或在10 nm與15 nm之間。在一些實施例中,核/殼奈米結構之平均直徑在6 nm與7 nm之間。 / 殼奈米結構 The number of monolayers will determine the size of the core/shell nanostructure. The size of the core/shell nanostructure can be determined using techniques known to those skilled in the art. In some embodiments, TEM is used to determine the size of the core/shell nanostructure. In some embodiments, the average diameter of the core/shell nanostructure is between 1 nm and 15 nm, between 1 nm and 10 nm, between 1 nm and 9 nm, between 1 nm and 8 nm , Between 1 nm and 7 nm, between 1 nm and 6 nm, between 1 nm and 5 nm, between 5 nm and 15 nm, between 5 nm and 10 nm, between 5 nm and Between 9 nm, between 5 nm and 8 nm, between 5 nm and 7 nm, between 5 nm and 6 nm, between 6 nm and 15 nm, between 6 nm and 10 nm, Between 6 nm and 9 nm, between 6 nm and 8 nm, between 6 nm and 7 nm, between 7 nm and 15 nm, between 7 nm and 10 nm, between 7 nm and 9 Between nm, between 7 nm and 8 nm, between 8 nm and 15 nm, between 8 nm and 10 nm, between 8 nm and 9 nm, between 9 nm and 15 nm, how Between 9 nm and 10 nm or between 10 nm and 15 nm. In some embodiments, the average diameter of the core/shell nanostructure is between 6 nm and 7 nm. Core / shell nanostructure

在一些實施例中,使用美國申請公開案第2017/0306227號之方法來製備核/殼奈米結構,該公開案以全文引用之方式併入本文中。In some embodiments, the core/shell nanostructures are prepared using the method of US Application Publication No. 2017/0306227, which is incorporated herein by reference in its entirety.

在一些實施例中,核/殼奈米結構為核/ZnSe/ZnS奈米結構。在一些實施例中,核/殼奈米結構為InP/ZnSe/ZnS奈米結構。奈米結構組合物 In some embodiments, the core/shell nanostructure is a core/ZnSe/ZnS nanostructure. In some embodiments, the core/shell nanostructure is an InP/ZnSe/ZnS nanostructure. Nanostructured composition

在一些實施例中,本發明提供一種奈米結構組合物,其包含: (a)至少一種奈米結構群體,該等奈米結構包含奈米晶核及至少一種殼; (b)至少一種金屬鹵化物,其黏合至該等奈米結構之表面;以及 (c)至少一種金屬羧酸鹽,其黏合至該等奈米結構之表面。In some embodiments, the present invention provides a nanostructured composition comprising: (a) At least one group of nanostructures, the nanostructures comprising a nanocrystal core and at least one shell; (b) At least one metal halide, which is bonded to the surface of the nanostructures; and (c) At least one metal carboxylate, which is bonded to the surface of the nanostructures.

在一些實施例中,奈米結構組合物包含1、2、3、4、5或6種奈米結構群體。在一些實施例中,奈米結構組合物包含1種奈米結構群體。在一些實施例中,奈米結構組合物包含2種奈米結構群體。在一些實施例中,奈米結構組合物包含3種奈米結構群體。金屬鹵化物 In some embodiments, the nanostructure composition includes 1, 2, 3, 4, 5, or 6 nanostructure populations. In some embodiments, the nanostructure composition includes 1 nanostructure population. In some embodiments, the nanostructure composition includes 2 nanostructure populations. In some embodiments, the nanostructure composition includes 3 types of nanostructure populations. Metal halide

在一些實施例中,奈米結構組合物包含1、2或3種金屬鹵化物。在一些實施例中,奈米結構組合物包含1種金屬鹵化物。In some embodiments, the nanostructure composition includes 1, 2, or 3 metal halides. In some embodiments, the nanostructure composition contains 1 metal halide.

在一些實施例中,金屬鹵化物選自由以下組成之群:LiF、NaF、KF、BeF2 、MgF2 、CaF2 、SrF2 、CuF、AgF、AuF、ZnF2 、HgF2 、AlF3 、GaF3 、InF3 、SnF2 、PbF2 、LiCl、NaCl、KCl、BeCl2 、MgCl2 、CaCl2 、SrCl2 、CuCl、AgCl、ZnCl2 、HgCl2 、AlCl3 、GaCl3 、InCl3 、SnCl2 、PBCl2 、LiBr、NaBr、KBr、BeBr2 、MgBr2 、CaBr2 、SrBr2 、CuBr、AgBr、AuBr、ZnBr2 、HgBr2 、AlBr3 、GaBr3 、InBr3 、SnBr2 、PbBr2 、LiI、NaI、KI、BeI2 、MgI2 、CaI2 、SrI2 、CuI、AgI、AuI、ZnI2 、HgI2 、AlI3 、GaI3 、InI3 、SnI2 及PbI2In some embodiments, the metal halide is selected from the group consisting of LiF, NaF, KF, BeF 2 , MgF 2 , CaF 2 , SrF 2 , CuF, AgF, AuF, ZnF 2 , HgF 2 , AlF 3 , GaF 3. InF 3 , SnF 2 , PbF 2 , LiCl, NaCl, KCl, BeCl 2 , MgCl 2 , CaCl 2 , SrCl 2 , CuCl, AgCl, ZnCl 2 , HgCl 2 , AlCl 3 , GaCl 3 , InCl 3 , SnCl 2 , PBCl 2, LiBr, NaBr, KBr, BeBr 2, MgBr 2, CaBr 2, SrBr 2, CuBr, AgBr, AuBr, ZnBr 2, HgBr 2, AlBr 3, GaBr 3, InBr 3, SnBr 2, PbBr 2, LiI , NaI, KI, BeI 2 , MgI 2 , CaI 2 , SrI 2 , CuI, AgI, AuI, ZnI 2 , HgI 2 , AlI 3 , GaI 3 , InI 3 , SnI 2 and PbI 2 .

在一些實施例中,金屬鹵化物選自由以下組成之群:ZnF2 、ZnI2 、ZnBr2 及ZnCl2In some embodiments, the metal halide is selected from the group consisting of ZnF 2 , ZnI 2 , ZnBr 2 and ZnCl 2 .

在一些實施例中,金屬鹵化物為ZnCl2金屬羧酸鹽 In some embodiments, the metal halide is ZnCl 2 . Metal carboxylate

在一些實施例中,奈米結構組合物包含1、2或3種金屬羧酸鹽。在一些實施例中,奈米結構組合物包含1種金屬羧酸鹽。In some embodiments, the nanostructure composition contains 1, 2, or 3 metal carboxylates. In some embodiments, the nanostructure composition includes 1 metal carboxylate.

在一些實施例中,金屬羧酸鹽為市售金屬羧酸鹽。In some embodiments, the metal carboxylate is a commercially available metal carboxylate.

在一些實施例中,藉由使金屬鹽與羧酸反應來產生金屬羧酸鹽。In some embodiments, the metal carboxylate is produced by reacting the metal salt with the carboxylic acid.

在一些實施例中,金屬鹽為鋅鹽、鎂鹽、鋯鹽、鉿鹽、銫鹽、銦鹽、鋁鹽、鈣鹽、鎵鹽、鍶鹽、鈦鹽或釔鹽。在一些實施例中,金屬鹽為鋅鹽。In some embodiments, the metal salt is zinc salt, magnesium salt, zirconium salt, hafnium salt, cesium salt, indium salt, aluminum salt, calcium salt, gallium salt, strontium salt, titanium salt, or yttrium salt. In some embodiments, the metal salt is a zinc salt.

在一些實施例中,羧酸為C2 -C24 羧酸,其中視情況地,一或多個雜原子(諸如O、N或S)經一或多個碳原子取代。在一個實施例中,羧酸選自:乙酸、丙酸、丁酸、戊酸、己酸、庚酸、辛酸、癸酸、十一酸、月桂酸、肉豆蔻酸、棕櫚酸、硬脂酸、二十二酸、丙烯酸、甲基丙烯酸、丁-2-烯酸、丁-3-烯酸、戊-2-烯酸、戊-4-烯酸、己-2-烯酸、己-3-烯酸、己-4-烯酸、己-5-烯酸、庚-6-烯酸、辛-2-烯酸、癸-2-烯酸、十一-10-烯酸、十二-5-烯酸、油酸、鱈油酸、芥子酸、亞麻油酸、α-次亞麻油酸、十八碳三烯酸、二十碳二烯酸、二十碳三烯酸、二十碳四烯酸、十八碳四烯酸、苯甲酸、對甲苯甲酸、鄰甲苯甲酸、間甲苯甲酸、氫基桂皮酸、環烷酸、肉桂酸及對甲苯磺酸。在另一實施例中,羧酸含有雜原子且為2-[2-(2-甲氧基乙氧基)乙氧基]乙酸、2-(2-甲氧基乙氧基)乙酸、(2-丁氧基乙氧基)乙酸、2-異丁氧基乙酸、3-甲氧基丙酸、甲氧基乙酸或正丁氧基乙酸。In some embodiments, the carboxylic acid is a C 2 -C 24 carboxylic acid, wherein optionally, the one or more heteroatoms (such as O, N or S) substituted with one or more carbon atoms. In one embodiment, the carboxylic acid is selected from: acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, heptanoic acid, caprylic acid, capric acid, undecanoic acid, lauric acid, myristic acid, palmitic acid, stearic acid , Behenic acid, acrylic acid, methacrylic acid, but-2-enoic acid, but-3-enoic acid, pent-2-enoic acid, pent-4-enoic acid, hex-2-enoic acid, hex-3 -Enoic acid, hex-4-enoic acid, hex-5-enoic acid, hept-6-enoic acid, oct-2-enoic acid, dec-2-enoic acid, undec-10-enoic acid, dodecanoic acid 5-enoic acid, oleic acid, codoleic acid, erucic acid, linoleic acid, α-linolenic acid, stearidonic acid, eicosadienoic acid, eicosatrienoic acid, eicosalic acid Tetraenoic acid, stearidonic acid, benzoic acid, p-toluic acid, o-toluic acid, m-toluic acid, hydrocinnamic acid, naphthenic acid, cinnamic acid and p-toluenesulfonic acid. In another embodiment, the carboxylic acid contains heteroatoms and is 2-[2-(2-methoxyethoxy)ethoxy]acetic acid, 2-(2-methoxyethoxy)acetic acid, ( 2-butoxyethoxy)acetic acid, 2-isobutoxyacetic acid, 3-methoxypropionic acid, methoxyacetic acid or n-butoxyacetic acid.

在一些實施例中,羧酸為羧酸聚乙二醇(羧酸PEG)。在一些實施例中,羧酸PEG選自PEG羧甲基酸、PEG戊二酸、PEG丁二酸、PEG戊二醯胺酸及PEG丁二醯胺酸。In some embodiments, the carboxylic acid is carboxylic acid polyethylene glycol (carboxylic acid PEG). In some embodiments, the carboxylic acid PEG is selected from PEG carboxymethyl acid, PEG glutaric acid, PEG succinic acid, PEG glutaric acid, and PEG succinic acid.

在一些實施例中,金屬羧酸鹽為羧酸鋅。在一些實施例中,藉由使鋅鹽與羧酸反應來產生羧酸鋅。In some embodiments, the metal carboxylate is zinc carboxylate. In some embodiments, zinc carboxylate is produced by reacting a zinc salt with a carboxylic acid.

在一些實施例中,金屬鹽為鋅鹽。在一些實施例中,鋅鹽選自由以下組成之群:乙酸鋅、氯化鋅、硫酸鋅、溴化鋅、碳酸鋅、碘化鋅、硝酸鋅、檸檬酸鋅、氰化鋅、氟化鋅、六氟矽酸鋅、甲基丙烯酸鋅、鉬酸鋅、草酸鋅、對甲苯磺酸鋅、過氯酸鋅、磷酸鋅、硫酸鋅及四氟硼酸鋅。In some embodiments, the metal salt is a zinc salt. In some embodiments, the zinc salt is selected from the group consisting of zinc acetate, zinc chloride, zinc sulfate, zinc bromide, zinc carbonate, zinc iodide, zinc nitrate, zinc citrate, zinc cyanide, zinc fluoride , Zinc hexafluorosilicate, zinc methacrylate, zinc molybdate, zinc oxalate, zinc p-toluenesulfonate, zinc perchlorate, zinc phosphate, zinc sulfate and zinc tetrafluoroborate.

在一些實施例中,羧酸鋅選自由以下組成之群:油酸鋅、己酸鋅、辛酸鋅、月桂酸鋅、肉豆蔻酸鋅、棕櫚酸鋅、硬脂酸鋅、二硫胺基甲酸鋅及PEG羧酸鋅。在一些實施例中,羧酸鋅為油酸鋅、月桂酸鋅或PEG羧酸鋅。金屬鹵化物之濃度 In some embodiments, the zinc carboxylate is selected from the group consisting of: zinc oleate, zinc caproate, zinc octoate, zinc laurate, zinc myristate, zinc palmitate, zinc stearate, dithiocarbamic acid Zinc and PEG zinc carboxylate. In some embodiments, the zinc carboxylate is zinc oleate, zinc laurate, or zinc PEG carboxylate. Concentration of metal halide

藉由已知濃度之儲備溶液之體積添加來控制奈米結構組合物中金屬鹵化物之濃度。可使用分析性化學技術(諸如X射線光電子光譜(XPS))來量測奈米結構組合物中金屬鹵化物之濃度。對於OD450 = 1.5之100 μL奈米結構組合物,金屬鹵化物之濃度在約0.01 mM與約40 mM之間、約0.01 mM與約20 mM之間、約0.01 mM與約10 mM之間、約0.01 mM與約5 mM之間、約0.01 mM與約2.5 mM之間、約0.01 mM與約1.5 mM之間、約0.01 mM與約1 mM之間、約0.01 mM與約0.5 mM之間、約0.01 mM與約0.25 mM之間、約0.25 mM與約40 mM之間、約0.25 mM與約20 mM之間、約0.25 mM與約10 mM之間、約0.25 mM與約5 mM之間、約0.25 mM與約2.5 mM之間、約0.25 mM與約1.5 mM之間、約0.25 mM與約1 mM之間、約0.25 mM與約0.5 mM之間、約0.5 mM與約40 mM之間、約0.5 mM與約20 mM之間、約0.5 mM與約10 mM之間、約0.5 mM與約5 mM之間、約0.5 mM與約2.5 mM之間、約0.5 mM與約1.5 mM之間、約0.5 mM與約1 mM之間、約1 mM與約40 mM之間、約1 mM與約20 mM之間、約1 mM與約10 mM之間、約1 mM與約5 mM之間、約1 mM與約2.5 mM之間、約1 mM與約1.5 mM之間、約1.5 mM與約40 mM之間、約1.5 mM與約20 mM之間、約1.5 mM與約10 mM之間、約1.5 mM與約5 mM之間、約1.5 mM與約2.5 mM之間、約2.5 mM與約40 mM之間、約2.5 mM與約20 mM之間、約2.5 mM與約10 mM之間、約2.5 mM與約5 mM之間、約5 mM與約40 mM之間、約5 mM與約20 mM之間、約5 mM與約10 mM之間、約10 mM與約40 mM之間、約10 mM與約20 mM之間或約20 mM與約40 mM之間。對於OD450 = 1.5之100 μL奈米結構組合物,金屬鹵化物之濃度在約1 mM與約2.5 mM之間。The concentration of metal halides in the nanostructured composition is controlled by adding the volume of the stock solution of known concentration. Analytical chemistry techniques such as X-ray photoelectron spectroscopy (XPS) can be used to measure the concentration of metal halides in nanostructured compositions. For 100 μL nanostructured composition with OD 450 = 1.5, the concentration of metal halide is between about 0.01 mM and about 40 mM, between about 0.01 mM and about 20 mM, between about 0.01 mM and about 10 mM, Between about 0.01 mM and about 5 mM, between about 0.01 mM and about 2.5 mM, between about 0.01 mM and about 1.5 mM, between about 0.01 mM and about 1 mM, between about 0.01 mM and about 0.5 mM, Between about 0.01 mM and about 0.25 mM, between about 0.25 mM and about 40 mM, between about 0.25 mM and about 20 mM, between about 0.25 mM and about 10 mM, between about 0.25 mM and about 5 mM, Between about 0.25 mM and about 2.5 mM, between about 0.25 mM and about 1.5 mM, between about 0.25 mM and about 1 mM, between about 0.25 mM and about 0.5 mM, between about 0.5 mM and about 40 mM, Between about 0.5 mM and about 20 mM, between about 0.5 mM and about 10 mM, between about 0.5 mM and about 5 mM, between about 0.5 mM and about 2.5 mM, between about 0.5 mM and about 1.5 mM, Between about 0.5 mM and about 1 mM, between about 1 mM and about 40 mM, between about 1 mM and about 20 mM, between about 1 mM and about 10 mM, between about 1 mM and about 5 mM, Between about 1 mM and about 2.5 mM, between about 1 mM and about 1.5 mM, between about 1.5 mM and about 40 mM, between about 1.5 mM and about 20 mM, between about 1.5 mM and about 10 mM, Between about 1.5 mM and about 5 mM, between about 1.5 mM and about 2.5 mM, between about 2.5 mM and about 40 mM, between about 2.5 mM and about 20 mM, between about 2.5 mM and about 10 mM, Between about 2.5 mM and about 5 mM, between about 5 mM and about 40 mM, between about 5 mM and about 20 mM, between about 5 mM and about 10 mM, between about 10 mM and about 40 mM, Between about 10 mM and about 20 mM or between about 20 mM and about 40 mM. For 100 μL nanostructured composition with OD 450 = 1.5, the concentration of metal halide is between about 1 mM and about 2.5 mM.

在一些實施例中,對於OD450 = 1之體積為1 mL的奈米結構群體,所添加之金屬鹵化物之量在約0.0001 mmol與約1 mmol之間、約0.0001 mmol與約0.5 mmol之間、約0.0001 mmol與約0.1 mmol之間、約0.0001 mmol與約0.05 mmol之間、約0.0001 mmol與約0.01 mmol之間、約0.0001 mmol與約0.005 mmol之間、約0.0001 mmol與約0.001 mmol之間、約0.001 mmol與約1 mmol之間、約0.001 mmol與約0.5 mmol之間、約0.001 mmol與約0.1 mmol之間、約0.001 mmol與約0.05 mmol之間、約0.001 mmol與約0.01 mmol之間、約0.001 mmol與約0.005 mmol之間、約0.005 mmol與約1 mmol之間、約0.005 mmol與約0.5 mmol之間、約0.005 mmol與約0.1 mmol之間、約0.005 mmol與約0.05 mmol之間、約0.005 mmol與約0.01 mmol之間、約0.01 mmol與約1 mmol之間、約0.01 mmol與約0.5 mmol之間、約0.01 mmol與約1 mmol之間、約0.01 mmol與約0.05 mmol之間、約0.05 mmol與約1 mmol之間、約0.05 mmol與約0.5 mmol之間、約0.05 mmol與約0.1 mmol之間、約0.1 mmol與約1 mmol之間、約0.1 mmol與約0.5 mmol之間或約0.5 mmol與約1 mmol之間。金屬羧酸鹽之濃度 In some embodiments, for a nanostructure population with a volume of 1 mL with OD 450 = 1, the amount of metal halide added is between about 0.0001 mmol and about 1 mmol, between about 0.0001 mmol and about 0.5 mmol , Between about 0.0001 mmol and about 0.1 mmol, between about 0.0001 mmol and about 0.05 mmol, between about 0.0001 mmol and about 0.01 mmol, between about 0.0001 mmol and about 0.005 mmol, between about 0.0001 mmol and about 0.001 mmol , Between about 0.001 mmol and about 1 mmol, between about 0.001 mmol and about 0.5 mmol, between about 0.001 mmol and about 0.1 mmol, between about 0.001 mmol and about 0.05 mmol, between about 0.001 mmol and about 0.01 mmol , Between about 0.001 mmol and about 0.005 mmol, between about 0.005 mmol and about 1 mmol, between about 0.005 mmol and about 0.5 mmol, between about 0.005 mmol and about 0.1 mmol, between about 0.005 mmol and about 0.05 mmol , Between about 0.005 mmol and about 0.01 mmol, between about 0.01 mmol and about 1 mmol, between about 0.01 mmol and about 0.5 mmol, between about 0.01 mmol and about 1 mmol, between about 0.01 mmol and about 0.05 mmol , Between about 0.05 mmol and about 1 mmol, between about 0.05 mmol and about 0.5 mmol, between about 0.05 mmol and about 0.1 mmol, between about 0.1 mmol and about 1 mmol, between about 0.1 mmol and about 0.5 mmol Or between about 0.5 mmol and about 1 mmol. Concentration of metal carboxylate

可相對於量子點濃度藉由定量核磁共振(nuclear magnetic resonance;NMR)光譜分析來量測奈米結構組合物中金屬羧酸鹽之濃度。可藉由光密度(optical density;OD)量測來測定量子點濃度。可在450 nm處使用1 cm路徑長光析管來量測OD。對於OD450 = 1.5之100 μL奈米結構組合物,金屬羧酸鹽之濃度在約0.01 mM與約40 mM之間、約0.01 mM與約20 mM之間、約0.01 mM與約10 mM之間、約0.01 mM與約5 mM之間、約0.01 mM與約2.5 mM之間、約0.01 mM與約1.5 mM之間、約0.01 mM與約1 mM之間、約0.01 mM與約0.5 mM之間、約0.01 mM與約0.25 mM之間、約0.25 mM與約40 mM之間、約0.25 mM與約20 mM之間、約0.25 mM與約10 mM之間、約0.25 mM與約5 mM之間、約0.25 mM與約2.5 mM之間、約0.25 mM與約1.5 mM之間、約0.25 mM與約1 mM之間、約0.25 mM與約0.5 mM之間、約0.5 mM與約40 mM之間、約0.5 mM與約20 mM之間、約0.5 mM與約10 mM之間、約0.5 mM與約5 mM之間、約0.5 mM與約2.5 mM之間、約0.5 mM與約1.5 mM之間、約0.5 mM與約1 mM之間、約1 mM與約40 mM之間、約1 mM與約20 mM之間、約1 mM與約10 mM之間、約1 mM與約5 mM之間、約1 mM與約2.5 mM之間、約1 mM與約1.5 mM之間、約1.5 mM與約40 mM之間、約1.5 mM與約20 mM之間、約1.5 mM與約10 mM之間、約1.5 mM與約5 mM之間、約1.5 mM與約2.5 mM之間、約2.5 mM與約40 mM之間、約2.5 mM與約20 mM之間、約2.5 mM與約10 mM之間、約2.5 mM與約5 mM之間、約5 mM與約40 mM之間、約5 mM與約20 mM之間、約5 mM與約10 mM之間、約10 mM與約40 mM之間、約10 mM與約20 mM之間或約20 mM與約40 mM之間。對於OD450 = 1.5之100 μL奈米結構組合物,金屬羧酸鹽之濃度在約1 mM與約2.5 mM之間。The concentration of the metal carboxylate in the nanostructure composition can be measured by quantitative nuclear magnetic resonance (NMR) spectroscopy analysis relative to the concentration of quantum dots. The concentration of quantum dots can be measured by optical density (OD) measurement. The OD can be measured at 450 nm using a 1 cm path long spectrophotometer. For 100 μL nanostructured composition with OD 450 = 1.5, the concentration of metal carboxylate is between about 0.01 mM and about 40 mM, between about 0.01 mM and about 20 mM, between about 0.01 mM and about 10 mM , Between about 0.01 mM and about 5 mM, between about 0.01 mM and about 2.5 mM, between about 0.01 mM and about 1.5 mM, between about 0.01 mM and about 1 mM, between about 0.01 mM and about 0.5 mM , Between about 0.01 mM and about 0.25 mM, between about 0.25 mM and about 40 mM, between about 0.25 mM and about 20 mM, between about 0.25 mM and about 10 mM, between about 0.25 mM and about 5 mM , Between about 0.25 mM and about 2.5 mM, between about 0.25 mM and about 1.5 mM, between about 0.25 mM and about 1 mM, between about 0.25 mM and about 0.5 mM, between about 0.5 mM and about 40 mM , Between about 0.5 mM and about 20 mM, between about 0.5 mM and about 10 mM, between about 0.5 mM and about 5 mM, between about 0.5 mM and about 2.5 mM, between about 0.5 mM and about 1.5 mM , Between about 0.5 mM and about 1 mM, between about 1 mM and about 40 mM, between about 1 mM and about 20 mM, between about 1 mM and about 10 mM, between about 1 mM and about 5 mM , Between about 1 mM and about 2.5 mM, between about 1 mM and about 1.5 mM, between about 1.5 mM and about 40 mM, between about 1.5 mM and about 20 mM, between about 1.5 mM and about 10 mM , Between about 1.5 mM and about 5 mM, between about 1.5 mM and about 2.5 mM, between about 2.5 mM and about 40 mM, between about 2.5 mM and about 20 mM, between about 2.5 mM and about 10 mM , Between about 2.5 mM and about 5 mM, between about 5 mM and about 40 mM, between about 5 mM and about 20 mM, between about 5 mM and about 10 mM, between about 10 mM and about 40 mM , Between about 10 mM and about 20 mM or between about 20 mM and about 40 mM. For 100 μL nanostructured composition with OD 450 = 1.5, the concentration of metal carboxylate is between about 1 mM and about 2.5 mM.

在一些實施例中,對於OD450 = 1之體積為1 mL的奈米結構群體,所添加之金屬羧酸鹽之量在約0.0001 mmol與約1 mmol之間、約0.0001 mmol與約0.5 mmol之間、約0.0001 mmol與約0.1 mmol之間、約0.0001 mmol與約0.05 mmol之間、約0.0001 mmol與約0.01 mmol之間、約0.0001 mmol與約0.005 mmol之間、約0.0001 mmol與約0.001 mmol之間、約0.001 mmol與約1 mmol之間、約0.001 mmol與約0.5 mmol之間、約0.001 mmol與約0.1 mmol之間、約0.001 mmol與約0.05 mmol之間、約0.001 mmol與約0.01 mmol之間、約0.001 mmol與約0.005 mmol之間、約0.005 mmol與約1 mmol之間、約0.005 mmol與約0.5 mmol之間、約0.005 mmol與約0.1 mmol之間、約0.005 mmol與約0.05 mmol之間、約0.005 mmol與約0.01 mmol之間、約0.01 mmol與約1 mmol之間、約0.01 mmol與約0.5 mmol之間、約0.01 mmol與約1 mmol之間、約0.01 mmol與約0.05 mmol之間、約0.05 mmol與約1 mmol之間、約0.05 mmol與約0.5 mmol之間、約0.05 mmol與約0.1 mmol之間、約0.1 mmol與約1 mmol之間、約0.1 mmol與約0.5 mmol之間或約0.5 mmol與約1 mmol之間。金屬鹵化物與金屬羧酸鹽之比率 In some embodiments, for a nanostructure population with a volume of 1 mL of OD 450 = 1, the amount of metal carboxylate added is between about 0.0001 mmol and about 1 mmol, and between about 0.0001 mmol and about 0.5 mmol. Between about 0.0001 mmol and about 0.1 mmol, between about 0.0001 mmol and about 0.05 mmol, between about 0.0001 mmol and about 0.01 mmol, between about 0.0001 mmol and about 0.005 mmol, between about 0.0001 mmol and about 0.001 mmol Between about 0.001 mmol and about 1 mmol, between about 0.001 mmol and about 0.5 mmol, between about 0.001 mmol and about 0.1 mmol, between about 0.001 mmol and about 0.05 mmol, between about 0.001 mmol and about 0.01 mmol Between about 0.001 mmol and about 0.005 mmol, between about 0.005 mmol and about 1 mmol, between about 0.005 mmol and about 0.5 mmol, between about 0.005 mmol and about 0.1 mmol, between about 0.005 mmol and about 0.05 mmol Between about 0.005 mmol and about 0.01 mmol, between about 0.01 mmol and about 1 mmol, between about 0.01 mmol and about 0.5 mmol, between about 0.01 mmol and about 1 mmol, between about 0.01 mmol and about 0.05 mmol Between about 0.05 mmol and about 1 mmol, between about 0.05 mmol and about 0.5 mmol, between about 0.05 mmol and about 0.1 mmol, between about 0.1 mmol and about 1 mmol, between about 0.1 mmol and about 0.5 mmol Sometimes between about 0.5 mmol and about 1 mmol. The ratio of metal halide to metal carboxylate

在一些實施例中,金屬鹵化物與金屬羧酸鹽之莫耳比在約1:1與約1:8之間、約1:1與約1:7之間、1:1與約1:6之間、約1:1與約1:5之間、約1:1與約1:4之間、約1:1與約1:3之間、約1:1與約1:2之間、約1:2與約1:8之間、約1:2與約1:7之間、約1:2與約1:6之間、約1:2與約1:5之間、約1:2與約1:4之間、約1:2與約1:3之間、約1:3與約1:8之間、約1:3與約1:7之間、約1:3與約1:6之間、約1:3與約1:5之間、約1:3與約1:4之間、約1:4與約1:8之間、約1:4與約1:7之間、約1:4與約1:6之間、約1:4與約1:5之間、約1:5與約1:8之間、約1:5與約1:7之間、約1:5與約1:6之間、約1:6與約1:8之間、約1:6與約1:7之間或約1:7與約1:8之間。在一些實施例中,金屬鹵化物與金屬羧酸鹽之莫耳比在約1:1與約1:3之間。溶劑 In some embodiments, the molar ratio of the metal halide to the metal carboxylate is between about 1:1 and about 1:8, between about 1:1 and about 1:7, 1:1 and about 1: Between 6, between about 1:1 and about 1:5, between about 1:1 and about 1:4, between about 1:1 and about 1:3, between about 1:1 and about 1:2 Between about 1:2 and about 1:8, between about 1:2 and about 1:7, between about 1:2 and about 1:6, between about 1:2 and about 1:5, Between about 1:2 and about 1:4, about 1:2 and about 1:3, about 1:3 and about 1:8, about 1:3 and about 1:7, about 1 :3 and about 1:6, about 1:3 and about 1:5, about 1:3 and about 1:4, about 1:4 and about 1:8, about 1:4 Between about 1:7, about 1:4 and about 1:6, about 1:4 and about 1:5, about 1:5 and about 1:8, about 1:5 and about Between 1:7, between about 1:5 and about 1:6, between about 1:6 and about 1:8, between about 1:6 and about 1:7, or about 1:7 and about 1: Between 8. In some embodiments, the molar ratio of metal halide to metal carboxylate is between about 1:1 and about 1:3. Solvent

在一些實施例中,該奈米結構組合物進一步包含溶劑。In some embodiments, the nanostructure composition further includes a solvent.

在一些實施例中,溶劑選自由以下組成之群:氯仿、丙酮、己烷、庚烷、丁酮、乙二醇單乙基醚、乙二醇單丙基醚、1,4-丁二醇二乙酸酯、二乙二醇單丁基醚乙酸酯、乙二醇單丁基醚乙酸酯、三乙酸甘油酯、乙酸庚酯、乙酸己酯、乙酸戊酯、乙酸丁酯、乙酸乙酯、二乙二醇丁基甲基醚、二乙二醇單丁基醚、二(丙二醇)二甲基醚、二乙二醇甲基乙基醚、乙二醇單丁基醚、二乙二醇乙基醚、甲基乙基酮、甲基異丁基酮、單甲基醚乙二醇酯、γ-丁內酯、甲基乙酸-3-乙基醚、丁基卡必醇、丁基卡必醇乙酸酯、丙二醇單甲基醚、丙二醇單甲基醚乙酸酯、環己烷、甲苯、二甲苯、異丙醇及其組合。在一些實施例中,溶劑為己烷、庚烷、甲苯或氯仿。配位體交換 In some embodiments, the solvent is selected from the group consisting of chloroform, acetone, hexane, heptane, butanone, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, 1,4-butanediol Diacetate, diethylene glycol monobutyl ether acetate, ethylene glycol monobutyl ether acetate, glycerol triacetate, heptyl acetate, hexyl acetate, amyl acetate, butyl acetate, acetic acid Ethyl ethyl, diethylene glycol butyl methyl ether, diethylene glycol monobutyl ether, bis(propylene glycol) dimethyl ether, diethylene glycol methyl ethyl ether, ethylene glycol monobutyl ether, diethylene two Alcohol ethyl ether, methyl ethyl ketone, methyl isobutyl ketone, monomethyl ether glycol ester, γ-butyrolactone, methyl acetic acid-3-ethyl ether, butyl carbitol, butane Base carbitol acetate, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, cyclohexane, toluene, xylene, isopropanol, and combinations thereof. In some embodiments, the solvent is hexane, heptane, toluene, or chloroform. Ligand exchange

在一些實施例中,本發明係關於一種用第二配位體置換奈米結構上之第一配位體的方法。在一些實施例中,第二配位體為金屬鹵化物配位體。在一些實施例中,第二配位體為金屬羧酸鹽配位體。在一些實施例中,第二配位體為金屬鹵化物配位體與金屬羧酸鹽配位體之組合。在一些實施例中,奈米結構為量子點。In some embodiments, the present invention relates to a method for replacing the first ligand on the nanostructure with a second ligand. In some embodiments, the second ligand is a metal halide ligand. In some embodiments, the second ligand is a metal carboxylate ligand. In some embodiments, the second ligand is a combination of a metal halide ligand and a metal carboxylate ligand. In some embodiments, the nanostructures are quantum dots.

可藉由1 H NMR來量測由金屬羧酸鹽配位體取代之第一配位體之百分比。在一些實施例中,由金屬羧酸鹽配位體取代之第一配位體之莫耳百分比在約20%與約100%之間、約20%與約80%之間、約20%與約60%之間、約20%與約40%之間、約25%與約100%之間、約25%與約80%之間、約25%與約60%之間、約25%與約40%之間、約30%與約100%之間、約30%與約80%之間、約30%與約60%之間、約30%與約40%之間、約40%與約100%之間、約40%與約80%之間、約40%與約60%之間、約60%與約100%之間、約60%與約80%之間或約80%與約100%之間。The percentage of the first ligand substituted by the metal carboxylate ligand can be measured by 1 H NMR. In some embodiments, the molar percentage of the first ligand substituted by the metal carboxylate ligand is between about 20% and about 100%, between about 20% and about 80%, about 20% and Between approximately 60%, approximately 20% and approximately 40%, approximately 25% and approximately 100%, approximately 25% and approximately 80%, approximately 25% and approximately 60%, approximately 25% and Between about 40%, about 30% and about 100%, about 30% and about 80%, about 30% and about 60%, about 30% and about 40%, about 40% and Between about 100%, about 40% and about 80%, about 40% and about 60%, about 60% and about 100%, about 60% and about 80%, or about 80% and Between about 100%.

可藉由1 H NMR來量測黏合至奈米結構群體中之奈米結構的金屬羧酸鹽配位體之百分比,其中使用以下來計算結合配位體之百分比:(結合金屬羧酸鹽配位體)/(結合+自由金屬羧酸鹽配位體) × 100%。The percentage of metal carboxylate ligands bound to the nanostructures in the nanostructure population can be measured by 1 H NMR. The following is used to calculate the percentage of bound ligands: (bound metal carboxylate ligands Position)/(binding + free metal carboxylate ligand) × 100%.

在一些實施例中,黏合至奈米結構的金屬羧酸鹽配位體之莫耳百分比在約20%與約100%之間、約20%與約80%之間、約20%與約60%之間、約20%與約40%之間、約25%與約100%之間、約25%與約80%之間、約25%與約60%之間、約25%與約40%之間、約30%與約100%之間、約30%與約80%之間、約30%與約60%之間、約30%與約40%之間、約40%與約100%之間、約40%與約80%之間、約40%與約60%之間、約60%與約100%之間、約60%與約80%之間或約80%與約100%之間。用金屬鹵化物及 / 或金屬羧酸鹽官能化的奈米結構之膠態穩定性 In some embodiments, the molar percentage of the metal carboxylate ligand bonded to the nanostructure is between about 20% and about 100%, between about 20% and about 80%, about 20% and about 60%. %, about 20% and about 40%, about 25% and about 100%, about 25% and about 80%, about 25% and about 60%, about 25% and about 40% %, about 30% and about 100%, about 30% and about 80%, about 30% and about 60%, about 30% and about 40%, about 40% and about 100 %, between about 40% and about 80%, between about 40% and about 60%, between about 60% and about 100%, between about 60% and about 80%, or between about 80% and about 100 %between. The colloidal stability of nanostructures functionalized with metal halides and / or metal carboxylates

在一些實施例中,奈米結構以膠態懸浮液形式儲存在溶劑中。膠體為其中微觀分散的不溶粒子之一種物質懸浮於另一種物質中的混合物。可藉由量測在平衡下保持懸浮的不溶粒子之數目來測定膠態穩定性。可藉由聚集或沈降不溶粒子來阻礙膠態穩定性。In some embodiments, the nanostructure is stored in a solvent as a colloidal suspension. A colloid is a mixture in which one substance of microscopically dispersed insoluble particles is suspended in another substance. The colloidal stability can be determined by measuring the number of insoluble particles that remain suspended under equilibrium. The colloidal stability can be hindered by aggregation or sedimentation of insoluble particles.

用金屬鹵化物及/或金屬羧酸鹽鈍化奈米結構保持膠態穩定性且允許儲存奈米粒子持續延長的時段。在一些實施例中,用金屬鹵化物及/或金屬羧酸鹽官能化之奈米結構可在約10℃與約90℃之間的溫度下儲存約1分鐘至約3年、約1分鐘至約12個月、約1分鐘至約6個月、約1分鐘至約3個月、約1分鐘至約1個月、約1分鐘至約15天、約1分鐘至約1天、約1天至約3年、約1天至約12個月、約1天至約6個月、約1天至約3個月、約1天至約1個月、約1天至約15天、約1天至約7天、約1天至約2天、約2天至約3年、約2天至約12個月、約2天至約6個月、約2天至約3個月、約2天至約1個月、約2天至約15天、約2天至約7天、約7天至約3年、約7天至約12個月、約7天至約6個月、約7天至約3個月、約7天至約1個月、約7天至約15天、約15天至約3年、約15天至約12個月、約15天至約6個月、約15天至約3個月、約15天至約1個月、約1個月至約3年、約1個月至約12個月、約1個月至約6個月、約1個月至約3個月、約3個月至約3年、約3個月至約12個月、約3個月至約6個月、約6個月至約3年、約6個月至約12個月或約12個月至約3年。Passivation of nanostructures with metal halides and/or metal carboxylates maintains colloidal stability and allows the storage of nanoparticles for extended periods of time. In some embodiments, nanostructures functionalized with metal halides and/or metal carboxylates can be stored at a temperature between about 10°C and about 90°C for about 1 minute to about 3 years, and about 1 minute to about 1 minute. About 12 months, about 1 minute to about 6 months, about 1 minute to about 3 months, about 1 minute to about 1 month, about 1 minute to about 15 days, about 1 minute to about 1 day, about 1 Day to about 3 years, about 1 day to about 12 months, about 1 day to about 6 months, about 1 day to about 3 months, about 1 day to about 1 month, about 1 day to about 15 days, About 1 day to about 7 days, about 1 day to about 2 days, about 2 days to about 3 years, about 2 days to about 12 months, about 2 days to about 6 months, about 2 days to about 3 months , About 2 days to about 1 month, about 2 days to about 15 days, about 2 days to about 7 days, about 7 days to about 3 years, about 7 days to about 12 months, about 7 days to about 6 Month, about 7 days to about 3 months, about 7 days to about 1 month, about 7 days to about 15 days, about 15 days to about 3 years, about 15 days to about 12 months, about 15 days to about 6 months, about 15 days to about 3 months, about 15 days to about 1 month, about 1 month to about 3 years, about 1 month to about 12 months, about 1 month to about 6 months , About 1 month to about 3 months, about 3 months to about 3 years, about 3 months to about 12 months, about 3 months to about 6 months, about 6 months to about 3 years, about 6 months to about 12 months or about 12 months to about 3 years.

在一些實施例中,用金屬鹵化物及/或金屬羧酸鹽官能化之奈米結構可在約30℃與約90℃之間的溫度下儲存約1分鐘至約3年、約1分鐘至約12個月、約1分鐘至約6個月、約1分鐘至約3個月、約1分鐘至約1個月、約1分鐘至約15天、約1分鐘至約1天、約1天至約3年、約1天至約12個月、約1天至約6個月、約1天至約3個月、約1天至約1個月、約1天至約15天、約1天至約7天、約1天至約2天、約2天至約3年、約2天至約12個月、約2天至約6個月、約2天至約3個月、約2天至約1個月、約2天至約15天、約2天至約7天、約7天至約3年、約7天至約12個月、約7天至約6個月、約7天至約3個月、約7天至約1個月、約7天至約15天、約15天至約3年、約15天至約12個月、約15天至約6個月、約15天至約3個月、約15天至約1個月、約1個月至約3年、約1個月至約12個月、約1個月至約6個月、約1個月至約3個月、約3個月至約3年、約3個月至約12個月、約3個月至約6個月、約6個月至約3年、約6個月至約12個月或約12個月至約3年。用金屬鹵化物及 / 或金屬羧酸鹽官能化的奈米結構之經改良特性 In some embodiments, nanostructures functionalized with metal halides and/or metal carboxylates can be stored at a temperature between about 30°C and about 90°C for about 1 minute to about 3 years, and about 1 minute to about 1 minute. About 12 months, about 1 minute to about 6 months, about 1 minute to about 3 months, about 1 minute to about 1 month, about 1 minute to about 15 days, about 1 minute to about 1 day, about 1 Day to about 3 years, about 1 day to about 12 months, about 1 day to about 6 months, about 1 day to about 3 months, about 1 day to about 1 month, about 1 day to about 15 days, About 1 day to about 7 days, about 1 day to about 2 days, about 2 days to about 3 years, about 2 days to about 12 months, about 2 days to about 6 months, about 2 days to about 3 months , About 2 days to about 1 month, about 2 days to about 15 days, about 2 days to about 7 days, about 7 days to about 3 years, about 7 days to about 12 months, about 7 days to about 6 Month, about 7 days to about 3 months, about 7 days to about 1 month, about 7 days to about 15 days, about 15 days to about 3 years, about 15 days to about 12 months, about 15 days to about 6 months, about 15 days to about 3 months, about 15 days to about 1 month, about 1 month to about 3 years, about 1 month to about 12 months, about 1 month to about 6 months , About 1 month to about 3 months, about 3 months to about 3 years, about 3 months to about 12 months, about 3 months to about 6 months, about 6 months to about 3 years, about 6 months to about 12 months or about 12 months to about 3 years. Improved properties of nanostructures functionalized with metal halides and / or metal carboxylates

在一些實施例中,用金屬鹵化物及/或金屬羧酸鹽官能化之核/殼奈米結構顯示高光致發光量子產率。在一些實施例中,核/殼奈米結構可具有在60%與100%之間、在60%與95%之間、在60%與90%之間、在60%與85%之間、在60%與80%之間、在60%與70%之間、在70%與100%之間、在70%與95%之間、在70%與90%之間、在70%與85%之間、在70%與80%之間、在80%與100%之間、在80%與95%之間、在80%與90%之間、在80%與85%之間、在85%與100%之間、在85%與95%之間、在80%與85%之間、在85%與99%之間、在85%與90%之間、在90%與100%之間、在90%與95%之間或在95%與100%之間的光致發光量子產率。在一些實施例中,用金屬鹵化物及/或金屬羧酸鹽官能化之核/殼奈米結構可具有在95%與100%之間的光致發光量子產率。In some embodiments, core/shell nanostructures functionalized with metal halides and/or metal carboxylates exhibit high photoluminescence quantum yields. In some embodiments, the core/shell nanostructure may have between 60% and 100%, between 60% and 95%, between 60% and 90%, between 60% and 85%, Between 60% and 80%, between 60% and 70%, between 70% and 100%, between 70% and 95%, between 70% and 90%, between 70% and 85 %, between 70% and 80%, between 80% and 100%, between 80% and 95%, between 80% and 90%, between 80% and 85%, between Between 85% and 100%, between 85% and 95%, between 80% and 85%, between 85% and 99%, between 85% and 90%, between 90% and 100% The photoluminescence quantum yield between 90% and 95% or between 95% and 100%. In some embodiments, the core/shell nanostructures functionalized with metal halides and/or metal carboxylates can have a photoluminescence quantum yield between 95% and 100%.

用金屬鹵化物及/或金屬羧酸鹽官能化的核/殼奈米結構之光致發光光譜可基本上覆蓋光譜之任何所需部分。在一些實施例中,核/殼奈米結構之光致發光光譜可具有在300 nm與750 nm之間、在300 nm與650 nm之間、在300 nm與550 nm之間、在300 nm與450 nm之間、在450 nm與750 nm之間、在450 nm與650 nm之間、在450 nm與550 nm之間、在450 nm與750 nm之間、在450 nm與650 nm之間、在450 nm與550 nm之間、在550 nm與750 nm之間、在550 nm與650 nm之間或在650 nm與750 nm之間的發射最大值。在一些實施例中,核/殼奈米結構之光致發光光譜可具有在500 nm與550 nm之間的發射最大值。在一些實施例中,用金屬鹵化物及/或金屬羧酸鹽官能化的核/殼奈米結構之光致發光光譜可具有在600 nm與650 nm之間的發射最大值。The photoluminescence spectrum of core/shell nanostructures functionalized with metal halides and/or metal carboxylates can substantially cover any desired part of the spectrum. In some embodiments, the photoluminescence spectrum of the core/shell nanostructure can have between 300 nm and 750 nm, between 300 nm and 650 nm, between 300 nm and 550 nm, between 300 nm and 550 nm. Between 450 nm, between 450 nm and 750 nm, between 450 nm and 650 nm, between 450 nm and 550 nm, between 450 nm and 750 nm, between 450 nm and 650 nm, The emission maximum between 450 nm and 550 nm, between 550 nm and 750 nm, between 550 nm and 650 nm, or between 650 nm and 750 nm. In some embodiments, the photoluminescence spectrum of the core/shell nanostructure may have an emission maximum between 500 nm and 550 nm. In some embodiments, the photoluminescence spectrum of core/shell nanostructures functionalized with metal halides and/or metal carboxylates may have an emission maximum between 600 nm and 650 nm.

用金屬鹵化物及/或金屬羧酸鹽官能化的核/殼奈米結構之大小分佈可相對較窄。在一些實施例中,用金屬鹵化物及/或金屬羧酸鹽官能化的核/殼奈米結構群體之光致發光光譜可具有在10 nm與60 nm之間、在10 nm與40 nm之間、在10 nm與30 nm之間、在10 nm與20 nm之間、在20 nm與60 nm之間、在20 nm與40 nm之間、在20 nm與30 nm之間、在30 nm與60 nm之間、在30 nm與40 nm之間或在40 nm與60 nm之間的半高全寬。在一些實施例中,用金屬鹵化物及/或金屬羧酸鹽官能化的群體或核/殼奈米結構之光致發光光譜可具有在30 nm與45 nm之間的半高全寬。奈米結構膜 The size distribution of core/shell nanostructures functionalized with metal halides and/or metal carboxylates can be relatively narrow. In some embodiments, the photoluminescence spectrum of the core/shell nanostructure population functionalized with metal halide and/or metal carboxylate can have a photoluminescence spectrum between 10 nm and 60 nm, and between 10 nm and 40 nm. Between, between 10 nm and 30 nm, between 10 nm and 20 nm, between 20 nm and 60 nm, between 20 nm and 40 nm, between 20 nm and 30 nm, at 30 nm Full width at half maximum between 40 nm and 60 nm, between 30 nm and 40 nm, or between 40 nm and 60 nm. In some embodiments, the photoluminescence spectra of populations or core/shell nanostructures functionalized with metal halides and/or metal carboxylates may have a full width at half maximum between 30 nm and 45 nm. Nanostructured membrane

在一些實施例中,將用金屬鹵化物及/或金屬羧酸鹽官能化之核/殼奈米結構併入至奈米結構膜中。在一些實施例中,將奈米結構膜併入至量子點增強膜(quantum dot enhancement film;QDEF)中。In some embodiments, core/shell nanostructures functionalized with metal halides and/or metal carboxylates are incorporated into the nanostructured membrane. In some embodiments, the nanostructured film is incorporated into a quantum dot enhancement film (QDEF).

在一些實施例中,本發明提供一種奈米結構膜,其包含: (a)至少一種奈米結構群體,該等奈米結構包含奈米晶核及至少一種殼; (b)至少一種金屬鹵化物,其黏合至該等奈米結構之表面;以及 (c)至少一種金屬羧酸鹽,其黏合至該等奈米結構之表面。In some embodiments, the present invention provides a nanostructured membrane, which comprises: (a) At least one group of nanostructures, the nanostructures comprising a nanocrystal core and at least one shell; (b) At least one metal halide, which is bonded to the surface of the nanostructures; and (c) At least one metal carboxylate, which is bonded to the surface of the nanostructures.

在一些實施例中,奈米結構為量子點。In some embodiments, the nanostructures are quantum dots.

在一些實施例中,本發明提供一種奈米結構膜,其包含: (a)至少一種奈米結構群體,該等奈米結構包含奈米晶核及至少一種殼; (b)至少一種金屬鹵化物,其黏合至該等奈米結構之表面; (c)至少一種金屬羧酸鹽,其黏合至該等奈米結構之表面;以及 (d)至少一種有機樹脂。In some embodiments, the present invention provides a nanostructured membrane, which comprises: (a) At least one group of nanostructures, the nanostructures comprising a nanocrystal core and at least one shell; (b) At least one metal halide, which is bonded to the surface of the nanostructures; (c) at least one metal carboxylate, which is bonded to the surface of the nanostructures; and (d) At least one organic resin.

在一些實施例中,奈米結構為量子點。In some embodiments, the nanostructures are quantum dots.

在一些實施例中,將用金屬鹵化物及/或金屬羧酸鹽官能化之核/殼奈米結構嵌入於基質中。如本文中所使用,術語「嵌入」用於指示奈米結構圍封或包覆在構成基質之主要組分的基質材料內。在一些實施例中,奈米結構均勻地分佈在整個基質材料中。在一些實施例中,奈米結構根據特定應用之均勻性分佈函數來分佈。In some embodiments, core/shell nanostructures functionalized with metal halides and/or metal carboxylates are embedded in the matrix. As used herein, the term "embedded" is used to indicate that the nanostructure is enclosed or coated in the matrix material that constitutes the main component of the matrix. In some embodiments, the nanostructures are evenly distributed throughout the matrix material. In some embodiments, the nanostructures are distributed according to the uniformity distribution function of the specific application.

在一些實施例中,奈米結構可包括具有在藍色可見光波長光譜、綠色可見光波長光譜或紅色可見光波長光譜中發射之大小的均質群體。在一些實施例中,奈米結構可包括:第一奈米結構群體,其具有在藍色可見光波長光譜中發射之大小;第二奈米結構群體,其具有在綠色可見光波長光譜中發射之大小;以及第三奈米結構群體,其具有在紅色可見光波長光譜中發射之大小。In some embodiments, the nanostructure may include a homogeneous population having a size emitted in the blue visible light wavelength spectrum, the green visible light wavelength spectrum, or the red visible light wavelength spectrum. In some embodiments, the nanostructure may include: a first nanostructure group having a size emitted in the blue visible light wavelength spectrum; a second nanostructure group having a size emitting in the green visible light wavelength spectrum ; And the third nanostructure group, which has the size of emission in the red visible light wavelength spectrum.

基質材料可為能夠容納奈米結構之任何適合主體基質材料。適合基質材料可在化學上及光學上與奈米結構及用於將奈米結構膜應用於裝置中之任何周圍封裝材料或層相容。適合基質材料可包括對一次及二次光皆透光之不變黃的光學材料,由此允許一次光及二次光透射穿過基質材料。基質材料可包括聚合物及有機及無機氧化物。用於基質材料中之適合聚合物可為一般熟習此項技術者已知的可用於此種目的之任何聚合物。聚合物可為實質上半透明的或實質上透明的。基質材料可包括(但不限於):環氧化物、丙烯酸酯、降冰片烯(norbornene)、聚乙烯、聚(乙烯醇縮丁醛):聚(乙酸乙烯酯)、聚脲、聚胺甲酸酯;聚矽氧及矽酮衍生物,包括(但不限於)胺基矽酮(AMS)、聚苯基甲基矽氧烷、聚苯基烷基矽氧烷、聚二苯基矽氧烷、聚二烷基矽氧烷、倍半矽氧烷、氟化矽酮以及乙烯基及氫化物取代之矽酮;由單體形成之丙烯酸聚合物及共聚物,包括(但不限於)甲基丙烯酸甲酯、甲基丙烯酸丁酯及甲基丙烯酸月桂酯;基於苯乙烯之聚合物,諸如聚苯乙烯、胺基聚苯乙烯(APS)及聚(丙烯腈乙烯苯乙烯) (AES);與雙官能單體交聯之聚合物,諸如二乙烯苯;適用於交聯配位體材料之交聯劑、與配位體胺(例如,APS或聚乙烯亞胺配位體胺)結合以形成環氧基之環氧化物及類似物。The host material can be any suitable host host material that can accommodate the nanostructure. Suitable host materials are chemically and optically compatible with the nanostructure and any surrounding packaging materials or layers used to apply the nanostructured film to the device. Suitable host materials may include non-yellowing optical materials that are transparent to both primary and secondary light, thereby allowing primary and secondary light to pass through the host material. The matrix material can include polymers and organic and inorganic oxides. Suitable polymers used in the matrix material may be any polymers known to those skilled in the art that can be used for this purpose. The polymer may be substantially translucent or substantially transparent. The matrix material may include (but is not limited to): epoxide, acrylate, norbornene (norbornene), polyethylene, poly(vinyl butyral): poly(vinyl acetate), polyurea, polyurethane Esters; polysiloxane and silicone derivatives, including (but not limited to) amino silicone (AMS), polyphenylmethylsiloxane, polyphenylalkylsiloxane, polydiphenylsiloxane , Polydialkylsiloxanes, silsesquioxanes, fluorinated silicones and vinyl and hydride substituted silicones; acrylic polymers and copolymers formed from monomers, including (but not limited to) methyl Methyl acrylate, butyl methacrylate and lauryl methacrylate; styrene-based polymers such as polystyrene, amino polystyrene (APS) and poly(acrylonitrile vinyl styrene) (AES); and Polymers crosslinked by bifunctional monomers, such as divinylbenzene; crosslinking agents suitable for crosslinking ligand materials, combined with ligand amines (for example, APS or polyethyleneimine ligand amines) to form Epoxy and the like of epoxy group.

在一些實施例中,基質材料包括散射微珠,諸如TiO2 微珠、ZnS微珠或玻璃微珠,其可提高奈米結構膜之光轉換效率。在一些實施例中,基質材料可包括遮光元件。In some embodiments, the host material includes scattering beads, such as TiO 2 beads, ZnS beads or glass beads, which can improve the light conversion efficiency of the nanostructured film. In some embodiments, the host material may include light shielding elements.

在一些實施例中,基質材料可具有低氧氣及水分滲透性,展現高光穩定性及化學穩定性,展現有利的折射率且黏附至奈米結構之外表面,因此提供氣密密封以保護奈米結構。在另一實施例中,基質材料可用UV或熱固化方法固化以有助於輥對輥處理。In some embodiments, the matrix material can have low oxygen and moisture permeability, exhibit high light stability and chemical stability, exhibit a favorable refractive index, and adhere to the outer surface of the nanostructure, thus providing an airtight seal to protect the nano structure. In another embodiment, the matrix material can be cured by UV or thermal curing methods to facilitate roll-to-roll processing.

在一些實施例中,可藉由在聚合物(例如,光阻劑)中混合奈米結構且將奈米結構-聚合物混合物澆鑄在基板上、將奈米結構與單體混合且將其聚合在一起、在溶膠-凝膠中混合奈米結構以形成氧化物或熟習此項技術者已知的任何其他方法來形成奈米結構膜。In some embodiments, the nanostructure can be mixed with the monomer and polymerized by mixing the nanostructure in the polymer (for example, photoresist) and casting the nanostructure-polymer mixture on the substrate. Together, mix nanostructures in a sol-gel to form oxides or any other method known to those skilled in the art to form nanostructured films.

在一些實施例中,奈米結構膜之形成可包括膜擠壓製程。膜擠壓製程可包括形成基質材料及障壁層塗佈之核心-殼奈米結構(諸如用金屬鹵化物及/或金屬羧酸鹽官能化之奈米結構)的均質混合物,將均質混合物引入至進料至擠壓機中的頂部安裝之料斗中。在一些實施例中,均質混合物可呈丸劑形式。膜擠壓製程可進一步包括自槽模擠壓奈米結構膜且使擠壓之奈米結構膜通過冷卻輥。在一些實施例中,擠壓之奈米結構膜可具有小於約75 µm,例如範圍介於約70 µm至約40 µm、約65 µm至約40 µm、約60 µm至約40 µm或約50 µm至約40 µm之厚度。在一些實施例中,奈米結構膜具有小於約10 µm之厚度。在一些實施例中,奈米結構膜之形成可視情況包括在膜擠壓製程之後的次級製程。次級製程可包括諸如共擠壓、熱成形、真空成形、電漿處理、模製及/或壓花之方法以向奈米結構膜層之頂表面提供紋理。紋理化之頂表面奈米結構膜可有助於改良例如奈米結構膜之經限定光學擴散特性及/或經限定角度光學發射特性。奈米結構模製品 In some embodiments, the formation of the nanostructured film may include a film extrusion process. The film extrusion process may include forming a homogeneous mixture of a core-shell nanostructure (such as a nanostructure functionalized with a metal halide and/or metal carboxylate) coated with a matrix material and a barrier layer, and introducing the homogeneous mixture into Feed the material into the top-mounted hopper in the extruder. In some embodiments, the homogeneous mixture may be in the form of pellets. The film extrusion process may further include extruding the nanostructured film from a slot die and passing the extruded nanostructured film through a cooling roll. In some embodiments, the extruded nanostructured film may have a size of less than about 75 µm, for example, in a range of about 70 µm to about 40 µm, about 65 µm to about 40 µm, about 60 µm to about 40 µm, or about 50 µm. µm to about 40 µm thickness. In some embodiments, the nanostructured film has a thickness of less than about 10 µm. In some embodiments, the formation of the nanostructured film may optionally include a secondary process after the film extrusion process. The secondary process may include methods such as co-extrusion, thermoforming, vacuum forming, plasma processing, molding, and/or embossing to provide texture to the top surface of the nanostructured film. The textured top surface nanostructured film can help improve, for example, the defined optical diffusion characteristics and/or the defined angle optical emission characteristics of the nanostructured film. Nanostructured molded products

在一些實施例中,奈米結構組合物用於形成奈米結構模製品。在一些實施例中,奈米結構模製品為液晶顯示器(LCD)或發光二極體(LED)。在一些實施例中,奈米結構組合物用於形成照明裝置之發光層。照明裝置可用於廣泛多種應用中,諸如可撓性電子設備、觸控式螢幕、監測器、電視、蜂巢式電話及任何其他高清晰度顯示器。在一些實施例中,照明裝置為發光二極體或液晶顯示器。在一些實施例中,照明裝置為量子點發光二極體(quantum dot light emitting diode;QLED)。QLED之實例揭示於美國專利申請案第15/824,701號中,其以全文引用之方式併入本文中。In some embodiments, nanostructured compositions are used to form nanostructured molded articles. In some embodiments, the nanostructured molded article is a liquid crystal display (LCD) or a light emitting diode (LED). In some embodiments, the nanostructured composition is used to form the light-emitting layer of the lighting device. The lighting device can be used in a wide variety of applications, such as flexible electronic devices, touch screens, monitors, televisions, cellular phones, and any other high-definition displays. In some embodiments, the lighting device is a light emitting diode or a liquid crystal display. In some embodiments, the lighting device is a quantum dot light emitting diode (QLED). Examples of QLEDs are disclosed in US Patent Application No. 15/824,701, which is incorporated herein by reference in its entirety.

在一些實施例中,本發明提供一種發光二極體,其包含: (a)第一導電層; (b)第二導電層;以及 (c)發光層,其在第一導電層與第二導電層之間,其中該發光層包含:(i)至少一種奈米結構群體,該等奈米結構包含奈米晶核及至少一種殼;(ii)至少一種金屬鹵化物,其黏合至該等奈米結構之表面;以及 (iii)至少一種金屬羧酸鹽,其黏合至該等奈米結構之表面。In some embodiments, the present invention provides a light emitting diode, which includes: (a) The first conductive layer; (b) The second conductive layer; and (c) A light-emitting layer, which is between the first conductive layer and the second conductive layer, wherein the light-emitting layer includes: (i) at least one group of nanostructures, the nanostructures include a nanocrystal core and at least one shell (Ii) at least one metal halide, which is bonded to the surface of the nanostructures; and (iii) At least one metal carboxylate, which is bonded to the surface of the nanostructures.

在一些實施例中,發光層為奈米結構膜。In some embodiments, the light-emitting layer is a nanostructured film.

在一些實施例中,發光二極體包含第一導電層、第二導電層及發光層,其中發光層配置於第一導電層與第二導電層之間。在一些實施例中,發光層為薄膜。In some embodiments, the light emitting diode includes a first conductive layer, a second conductive layer, and a light emitting layer, wherein the light emitting layer is disposed between the first conductive layer and the second conductive layer. In some embodiments, the light-emitting layer is a thin film.

在一些實施例中,發光二極體包含第一導電層與第二導電層之間的額外層,諸如電洞注入層、電洞傳輸層及電子傳輸層。在一些實施例中,電洞注入層、電洞傳輸層及電子傳輸層為薄膜。在一些實施例中,將層堆疊於基板上。In some embodiments, the light emitting diode includes additional layers between the first conductive layer and the second conductive layer, such as a hole injection layer, a hole transport layer, and an electron transport layer. In some embodiments, the hole injection layer, the hole transport layer, and the electron transport layer are thin films. In some embodiments, the layers are stacked on the substrate.

當將電壓施加至第一導電層及第二導電層時,在第一導電層注入之電洞經由電洞注入層及/或電洞傳輸層移動至發光層,且自第二導電層注入之電子經由電子傳輸層移動至發光層。電洞及電子在發光層中重組以產生激子。玻璃 LCD 顯示 裝置上之量子點 When a voltage is applied to the first conductive layer and the second conductive layer, the holes injected in the first conductive layer move to the light emitting layer through the hole injection layer and/or the hole transport layer, and the holes injected from the second conductive layer The electrons move to the light-emitting layer via the electron transport layer. Holes and electrons recombine in the light-emitting layer to generate excitons. Quantum dots on glass LCD display devices

在一些實施例中,將奈米結構膜併入至玻璃LCD顯示裝置上之量子點中。LCD顯示裝置可包括直接形成於光導板(light guide plate;LGP)上而不需要中間基板或障壁層之奈米結構膜。在一些實施例中,奈米結構膜可為薄膜。在一些實施例中,奈米結構膜可具有500 µm或更小、100 µm或更小或50 µm或更小之厚度。在一些實施例中,奈米結構膜為具有約15 µm或更小之厚度的薄膜。In some embodiments, nanostructured films are incorporated into quantum dots on glass LCD display devices. The LCD display device may include a nanostructure film formed directly on a light guide plate (LGP) without an intermediate substrate or barrier layer. In some embodiments, the nanostructured film may be a thin film. In some embodiments, the nanostructured film may have a thickness of 500 µm or less, 100 µm or less, or 50 µm or less. In some embodiments, the nanostructured film is a thin film having a thickness of about 15 µm or less.

LGP可包括具有一或多個側面之光學空腔,該一或多個側面至少包括包含玻璃之頂部側面。玻璃提供對包括水分及空氣之雜質的極佳抗性。此外,玻璃可形成為薄基板,同時保持結構剛性。因此,LGP可在玻璃表面之至少部分處形成,以提供具有足夠阻擋及結構特性之基板。The LGP may include an optical cavity having one or more sides, and the one or more sides include at least a top side including glass. Glass provides excellent resistance to impurities including moisture and air. In addition, glass can be formed as a thin substrate while maintaining structural rigidity. Therefore, the LGP can be formed on at least part of the glass surface to provide a substrate with sufficient barrier and structural characteristics.

在一些實施例中,奈米結構膜可形成於LGP上。在一些實施例中,奈米結構膜包含嵌入於基質材料(諸如樹脂)中之奈米結構群體。奈米結構膜可藉由此項技術中已知之任何方法(諸如濕式塗佈、塗刷、旋塗或網版印刷)形成於LGP上。在沈積之後,可固化奈米結構膜之樹脂。在一些實施例中,可將一或多個奈米結構膜之樹脂部分地固化,進一步處理且接著最終固化。奈米結構膜可沈積為一個層或單獨的層,且單獨的層可包含不同特性。視顯示裝置之觀察面板之大小而定,奈米結構膜之寬度及高度可為任何所需尺寸。舉例而言,在諸如手錶及電話之小型顯示裝置實施例中,奈米結構膜可具有相對較小的表面面積,或對於諸如TV及電腦監視器之大型顯示裝置實施例,奈米結構膜可具有較大的表面面積。In some embodiments, the nanostructured film can be formed on the LGP. In some embodiments, the nanostructured film comprises a population of nanostructures embedded in a matrix material (such as resin). The nanostructured film can be formed on the LGP by any method known in the art (such as wet coating, painting, spin coating, or screen printing). After deposition, the resin of the nanostructured film can be cured. In some embodiments, the resin of one or more nanostructured films may be partially cured, further processed, and then finally cured. Nanostructured films can be deposited as one layer or separate layers, and the separate layers can contain different properties. Depending on the size of the observation panel of the display device, the width and height of the nanostructured film can be any desired size. For example, in embodiments of small display devices such as watches and phones, nanostructured films can have a relatively small surface area, or for large display device embodiments such as TVs and computer monitors, nanostructured films can be Has a large surface area.

在一些實施例中,光學透明基板藉由此項技術中已知之任何方法(諸如真空沈積、氣相沈積等)形成於奈米結構膜上。光學透明基板可經組態以向奈米結構膜之底層及/或結構提供環境密封。在一些實施例中,遮光元件可包括於光學透明基板中。在一些實施例中,遮光元件可包括於第二偏振濾光器中,其可安置於基板與奈米結構膜之間。在一些實施例中,遮光元件可為二向色濾光其,其例如可反射一次光(例如,藍光、UV光或UV光及藍光之組合),同時透射二次光。遮光元件可包括特定UV光過濾組件以自紅色及綠色子像素移除任何未經轉化之UV光,及/或自藍色子像素移除UV光。量子點之晶片上 (On-Chip) 及近晶片 (Near-Chip) 置放 In some embodiments, the optically transparent substrate is formed on the nanostructured film by any method known in the art (such as vacuum deposition, vapor deposition, etc.). The optically transparent substrate can be configured to provide an environmental seal to the bottom layer and/or structure of the nanostructured film. In some embodiments, the shading element may be included in the optically transparent substrate. In some embodiments, the light-shielding element may be included in the second polarizing filter, which may be disposed between the substrate and the nanostructure film. In some embodiments, the shading element can be a dichroic filter, which can reflect primary light (for example, blue light, UV light, or a combination of UV light and blue light) while transmitting secondary light at the same time. The light-shielding element may include specific UV light filter components to remove any unconverted UV light from the red and green sub-pixels, and/or remove UV light from the blue sub-pixels. Wafer quantum dots (On-Chip) and smectic (Near-Chip) disposed

在一些實施例中,藉由「晶片上」置放將奈米結構併入顯示裝置中。如本文中所使用,「晶片上」係指將奈米結構置放至LED杯體中。在一些實施例中,將奈米結構溶解於樹脂或流體中以填充LED杯體。In some embodiments, the nanostructures are incorporated into the display device by "on-chip" placement. As used herein, "on-chip" refers to placing the nanostructure in the LED cup. In some embodiments, the nanostructure is dissolved in resin or fluid to fill the LED cup.

在一些實施例中,藉由「近晶片」置放將奈米結構併入顯示裝置中。如本文中所使用,「近晶片」係指用奈米結構塗佈LED總成之頂表面,使得射出光線穿過奈米結構膜。具有奈米結構色彩轉換層之顯示裝置 In some embodiments, the nanostructure is incorporated into the display device by "near chip" placement. As used herein, "near chip" refers to coating the top surface of the LED assembly with a nanostructure so that the emitted light passes through the nanostructure film. Display device with nano structure color conversion layer

在一些實施例中,本發明提供一種顯示裝置,其包含: (a)顯示面板,其發射第一光; (b)背光單元,其經組態以向顯示面板提供第一光;以及 (c)濾色器,其包含至少一個包含色彩轉換層之像素區。In some embodiments, the present invention provides a display device, which includes: (a) A display panel, which emits the first light; (b) The backlight unit is configured to provide the first light to the display panel; and (c) A color filter including at least one pixel area including a color conversion layer.

在一些實施例中,濾色器包含至少1、2、3、4、5、6、7、8、9或10個像素區。在一些實施例中,當藍光入射於濾色器上時,紅光、白光、綠光及/或藍光可分別經由像素區發射。在一些實施例中,濾色器描述於美國專利申請公開案第2017/153366號中,其以全文引用之方式併入本文中。In some embodiments, the color filter includes at least 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 pixel regions. In some embodiments, when blue light is incident on the color filter, red light, white light, green light, and/or blue light may be respectively emitted through the pixel area. In some embodiments, the color filter is described in US Patent Application Publication No. 2017/153366, which is incorporated herein by reference in its entirety.

在一些實施例中,各像素區包括色彩轉換層。在一些實施例中,色彩轉換層包含經組態以將入射光轉換為第一色彩之光的本文中所描述之奈米結構。在一些實施例中,色彩轉換層包含經組態以將入射光轉換為藍光的本文中所描述之奈米結構。In some embodiments, each pixel area includes a color conversion layer. In some embodiments, the color conversion layer includes the nanostructure described herein that is configured to convert incident light into light of the first color. In some embodiments, the color conversion layer includes the nanostructure described herein that is configured to convert incident light into blue light.

在一些實施例中,顯示裝置包含1、2、3、4、5、6、7、8、9或10個色彩轉換層。在一些實施例中,顯示裝置包含1個色彩轉換層,其包含本文中所描述之奈米結構。在一些實施例中,顯示裝置包含2個色彩轉換層,其包含本文中所描述之奈米結構。在一些實施例中,顯示裝置包含3個色彩轉換層,其包含本文中所描述之奈米結構。在一些實施例中,顯示裝置包含4個色彩轉換層,其包含本文中所描述之奈米結構。在一些實施例中,顯示裝置包含至少一個紅色轉換層、至少一個綠色轉換層及至少一個藍色轉換層。In some embodiments, the display device includes 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 color conversion layers. In some embodiments, the display device includes a color conversion layer, which includes the nanostructure described herein. In some embodiments, the display device includes two color conversion layers, which include the nanostructure described herein. In some embodiments, the display device includes 3 color conversion layers, which include the nanostructure described herein. In some embodiments, the display device includes 4 color conversion layers, which include the nanostructure described herein. In some embodiments, the display device includes at least one red conversion layer, at least one green conversion layer, and at least one blue conversion layer.

在一些實施例中,色彩轉換層具有在約3 μm與約10 μm之間、約3 μm與約8 μm之間、約3 μm與約6 μm之間、約6 μm與約10 μm之間、約6 μm與約8 μm之間或約8 μm與約10 μm之間的厚度。在一些實施例中,色彩轉換層具有在約3 μm與約10 μm之間的厚度。In some embodiments, the color conversion layer has between about 3 μm and about 10 μm, between about 3 μm and about 8 μm, between about 3 μm and about 6 μm, between about 6 μm and about 10 μm. , A thickness between about 6 μm and about 8 μm or between about 8 μm and about 10 μm. In some embodiments, the color conversion layer has a thickness between about 3 μm and about 10 μm.

可藉由此項技術中已知的任何適合方法來沈積奈米結構色彩轉換層,該方法包括(但不限於)塗刷、噴塗、溶劑噴塗、濕式塗佈、黏合劑塗佈、旋塗、膠帶塗佈、滾塗、流塗、噴墨列印、光阻劑圖案化、滴鑄、刮塗、薄霧沈積或其組合。在一些實施例中,藉由光阻劑圖案化來沈積奈米結構色彩轉換層。在一些實施例中,藉由噴墨列印來沈積奈米結構色彩轉換層。噴墨列印 The nano-structured color conversion layer can be deposited by any suitable method known in the art, including (but not limited to) painting, spraying, solvent spraying, wet coating, adhesive coating, spin coating , Tape coating, roll coating, flow coating, inkjet printing, photoresist patterning, drop casting, knife coating, mist deposition or a combination thereof. In some embodiments, the nanostructured color conversion layer is deposited by photoresist patterning. In some embodiments, the nano-structured color conversion layer is deposited by inkjet printing. Inkjet printing

使用奈米結構於有機溶劑中之分散液形成薄膜通常藉由塗佈技術(諸如旋塗)來實現。然而,此等塗佈技術通常不適用於在大面積上形成薄膜,且不提供圖案化沈積層之手段且因此用途有限。噴墨列印允許以低成本大規模精確地圖案化薄膜之置放。噴墨列印亦允許精確圖案化奈米結構層,允許列印顯示器之像素且消除光圖案化。因此,噴墨列印對於工業應用,尤其在顯示應用中非常具有吸引力。The use of nanostructure dispersions in organic solvents to form thin films is usually achieved by coating techniques (such as spin coating). However, these coating techniques are generally not suitable for forming a thin film on a large area, and do not provide a means for patterning the deposited layer and therefore have limited use. Inkjet printing allows precise placement of patterned films on a large scale at low cost. Inkjet printing also allows precise patterning of the nanostructured layer, allowing the pixels of the display to be printed and eliminating light patterning. Therefore, inkjet printing is very attractive for industrial applications, especially display applications.

常用於噴墨列印之溶劑為二丙二醇單甲基醚乙酸酯(DPMA)、聚甲基丙烯酸縮水甘油酯(PGMA)、二乙二醇單乙基醚乙酸酯(EDGAC)及丙二醇甲基醚乙酸酯(PGMEA)。揮發性溶劑亦常常用於噴墨列印中,此係因為其允許快速乾燥。揮發性溶劑包括乙醇、甲醇、1-丙醇、2-丙醇、丙酮、甲基乙基酮、甲基異丁基酮、乙酸乙酯及四氫呋喃。習知的奈米結構通常不可溶解於此等溶劑中。然而,包含聚(環氧烷)配位體的奈米結構之親水性增加使得此等溶劑中之溶解度增加。Solvents commonly used in inkjet printing are dipropylene glycol monomethyl ether acetate (DPMA), polyglycidyl methacrylate (PGMA), diethylene glycol monoethyl ether acetate (EDGAC) and propylene glycol methyl ester. Ether Acetate (PGMEA). Volatile solvents are also often used in inkjet printing because they allow rapid drying. Volatile solvents include ethanol, methanol, 1-propanol, 2-propanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, and tetrahydrofuran. The conventional nanostructures are usually insoluble in these solvents. However, the increased hydrophilicity of nanostructures containing poly(alkylene oxide) ligands increases the solubility in these solvents.

在一些實施例中,將用於噴墨列印的本文中所描述之奈米結構分散於選自以下之溶劑中:DPMA、PGMA、EDGAC、PGMEA、乙醇、甲醇、1-丙醇、2-丙醇、丙酮、甲基乙基酮、甲基異丁基酮、乙酸乙酯、四氫呋喃、氯仿、氯苯、環己烷、己烷、庚烷、辛烷、十六烷、十一烷、癸烷、十二烷、二甲苯、甲苯、苯、十八烷、十四烷、丁基醚或其組合。在一些實施例中,將用於噴墨列印的本文中所描述之包含聚(環氧烷)配位體之奈米結構分散於選自以下之溶劑中:DPMA、PGMA、EDGAC、PGMEA、乙醇、甲醇、1-丙醇、2-丙醇、丙酮、甲基乙基酮、甲基異丁基酮、乙酸乙酯、四氫呋喃或其組合。In some embodiments, the nanostructure described herein for inkjet printing is dispersed in a solvent selected from the group consisting of DPMA, PGMA, EDGAC, PGMEA, ethanol, methanol, 1-propanol, 2- Propanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, tetrahydrofuran, chloroform, chlorobenzene, cyclohexane, hexane, heptane, octane, hexadecane, undecane, Decane, dodecane, xylene, toluene, benzene, octadecane, tetradecane, butyl ether or combinations thereof. In some embodiments, the nanostructure containing poly(alkylene oxide) ligands described herein for inkjet printing is dispersed in a solvent selected from the group consisting of DPMA, PGMA, EDGAC, PGMEA, Ethanol, methanol, 1-propanol, 2-propanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, tetrahydrofuran or a combination thereof.

為藉由噴墨列印或微分散進行塗覆,應將包含奈米結構之噴墨組合物溶解於適合溶劑中溶劑必須能夠分散奈米結構組合物且必須對所選擇之列印頭不具有任何不利影響。For coating by inkjet printing or microdispersion, the inkjet composition containing the nanostructure should be dissolved in a suitable solvent. The solvent must be able to disperse the nanostructure composition and must not be compatible with the selected print head. Any adverse effects.

在一些實施例中,噴墨組合物進一步包含一或多種額外組分,諸如界面活性化合物、潤滑劑、濕潤劑、分散劑、疏水劑、黏著劑、流動改良劑、消泡劑、除氣劑、稀釋劑、助劑、著色劑、染料、顏料、敏化劑、穩定劑及抑制劑。In some embodiments, the inkjet composition further includes one or more additional components, such as interfacial active compounds, lubricants, wetting agents, dispersants, hydrophobic agents, adhesives, flow modifiers, defoamers, deaerators , Diluents, additives, colorants, dyes, pigments, sensitizers, stabilizers and inhibitors.

在一些實施例中,本文中所描述之奈米結構組合物包含按重量計約0.01%與約20%之間的噴墨組合物。在一些實施例中,包含聚(環氧烷)配位體之奈米結構包含按重量計在約0.01%與約20%之間、約0.01%與約15%之間、約0.01%與約10%之間、約0.01%與約5%之間、約0.01%與約2%之間、約0.01%與約1%之間、約0.01%與約0.1%之間、約0.01%與約0.05%之間、約0.05%與約20%之間、約0.05%與約15%之間、約0.05%與約10%之間、約0.05%與約5%之間、約0.05%與約2%之間、約0.05%與約1%之間、約0.05%與約0.1%之間、約0.1%與約20%之間、約0.1%與約15%之間、約0.1%與約10%之間、約0.1%與約5%之間、約0.1%與約2%之間、約0.1%與約1%之間、約0.5%與約20%之間、約0.5%與約15%之間、約0.5%與約10%之間、約0.5%與約5%之間、約0.5%與約2%之間、約0.5%與約1%之間、約1%與約20%之間、約1%與約15%之間、約1%與約10%之間、約1%與約5%之間、約1%與約2%之間、約2%與約20%之間、約2%與約15%之間、約2%與約10%之間、約2%與約5%之間、約5%與約20%之間、約5%與約15%之間、約5%與約10%之間、約10%與約20%之間、約10%與約15%或約15%與20%之間的噴墨組合物。In some embodiments, the nanostructured composition described herein comprises between about 0.01% and about 20% by weight of the inkjet composition. In some embodiments, the nanostructures comprising poly(alkylene oxide) ligands comprise between about 0.01% and about 20%, between about 0.01% and about 15%, about 0.01% and about Between 10%, about 0.01% and about 5%, about 0.01% and about 2%, about 0.01% and about 1%, about 0.01% and about 0.1%, about 0.01% and about Between 0.05%, between about 0.05% and about 20%, between about 0.05% and about 15%, between about 0.05% and about 10%, between about 0.05% and about 5%, between about 0.05% and about Between about 2%, about 0.05% and about 1%, about 0.05% and about 0.1%, about 0.1% and about 20%, about 0.1% and about 15%, about 0.1% and about Between 10%, between about 0.1% and about 5%, between about 0.1% and about 2%, between about 0.1% and about 1%, between about 0.5% and about 20%, between about 0.5% and about Between 15%, between about 0.5% and about 10%, between about 0.5% and about 5%, between about 0.5% and about 2%, between about 0.5% and about 1%, between about 1% and about Between 20%, about 1% and about 15%, about 1% and about 10%, about 1% and about 5%, about 1% and about 2%, about 2% and about Between 20%, about 2% and about 15%, about 2% and about 10%, about 2% and about 5%, about 5% and about 20%, about 5% and about Between 15%, between about 5% and about 10%, between about 10% and about 20%, between about 10% and about 15%, or between about 15% and 20% of the inkjet composition.

在一些實施例中,包含本文中所描述之奈米結構或奈米結構組合物的噴墨組合物用於電子裝置之配製中。在一些實施例中,包含本文中所描述之奈米結構或奈米結構組合物的噴墨組合物用於選自由以下組成之群的電子裝置之配製中:奈米結構膜、顯示裝置、照明裝置、背光單元、濾色器、表面發光裝置、電極、磁性記憶體裝置及電池。在一些實施例中,包含本文中所描述之奈米結構或奈米結構組合物的噴墨組合物用於發光裝置之配製中。 實例In some embodiments, the inkjet composition comprising the nanostructure or nanostructure composition described herein is used in the formulation of electronic devices. In some embodiments, the inkjet composition containing the nanostructure or nanostructure composition described herein is used in the formulation of an electronic device selected from the group consisting of: nanostructure film, display device, lighting Devices, backlight units, color filters, surface light-emitting devices, electrodes, magnetic memory devices, and batteries. In some embodiments, the inkjet composition containing the nanostructure or nanostructure composition described herein is used in the formulation of a light emitting device. Instance

以下實例為本文中所描述之產物及方法之說明性及非限制性實例。領域中通常遇到多種條件、調配物及其他參數之適合修改及調適且其為熟習此項技術者鑒於本發明在本發明之精神及範疇內顯而易見的。 實例1 將量子點轉移至PGMEA中之程序The following examples are illustrative and non-limiting examples of the products and methods described herein. Suitable modifications and adaptations of various conditions, formulations and other parameters are usually encountered in the field, and it is obvious to those who are familiar with the art that the present invention is within the spirit and scope of the present invention. Example 1 Procedure for transferring quantum dots to PGMEA

向在520-545 nm範圍內發射(藉由描述於美國專利申請公開案第2017/306227號中之方法來製備)且溶解於庚烷中之InP/ZnSe/ZnS量子點中添加等體積之丙二醇單甲基醚乙酸酯(PGMEA)。接著將2-[2-(2-甲氧基乙氧基)乙氧基]乙酸添加至溶液中。將混合物攪拌且在30-100℃下加熱,接著使其冷卻至室溫。用非極性反溶劑沈澱量子點且將混合物離心並丟棄上清液。接著將量子點再溶解與PGMEA中。PGMEA溶液隨後藉由在動態真空下蒸發進行濃縮或藉由添加額外溶劑進行稀釋,以獲得所需重量百分比之固體。 實例2 添加ZnCl2 Add an equal volume of propylene glycol to InP/ZnSe/ZnS quantum dots which emit in the range of 520-545 nm (prepared by the method described in U.S. Patent Application Publication No. 2017/306227) and dissolved in heptane Monomethyl ether acetate (PGMEA). Then 2-[2-(2-methoxyethoxy)ethoxy]acetic acid was added to the solution. The mixture was stirred and heated at 30-100°C, then allowed to cool to room temperature. The quantum dots were precipitated with a non-polar anti-solvent and the mixture was centrifuged and the supernatant was discarded. Then dissolve the quantum dots in PGMEA again. The PGMEA solution is then concentrated by evaporation under dynamic vacuum or diluted by adding additional solvent to obtain the desired weight percentage of solids. Example 2 Add ZnCl 2

將氯化鋅添加至經純化InP/ZnSe/ZnS量子點中(藉由描述於美國專利申請公開案第2017/306227號中之方法來製備)。可在包括庚烷、己烷、甲苯及氯仿之不同溶劑中製備經純化InP/ZnSe/ZnS量子點。添加氯化鋅使得提升所量測量子點之量子產率。如 1 至圖 3 中所展示,測試ZnCl2 濃度之範圍(每光密度(OD)單位在450 nm處為0-25 mM)。在一些情況下,量子產率值在添加ZnCl2 之後增加了0.1-5.0%點且在95%與98%之間。Zinc chloride was added to the purified InP/ZnSe/ZnS quantum dots (prepared by the method described in US Patent Application Publication No. 2017/306227). The purified InP/ZnSe/ZnS quantum dots can be prepared in different solvents including heptane, hexane, toluene and chloroform. The addition of zinc chloride improves the quantum yield of the measured dots. As shown in FIG. 3 to FIG. 1, the range of concentration of test ZnCI2 (per optical density (OD) unit at 450 nm is 0-25 mM). In some cases, the quantum yield value increased by 0.1-5.0% after adding ZnCl 2 and was between 95% and 98%.

在添加ZnCl2 後實現之量子產率之提高在量子點合成中為可高度再現的。如 4 中所展示,在添加ZnCl2 後,量子產率之平均提升為+2.5%點(σ = 1.6%點)。除量子產率提升之外,其他光學變化包括發射波長(PWL)略微藍移-0.6 nm (σ = 0.3 nm) (如 2 中所展示),及半高全寬(FWHM)變窄-0.5 nm (σ = 0.3 nm) (如 3 中所展示)。添加ZnCl2 之前及之後各種樣品之統計概述展示於 5 至圖 7 中。The increase in quantum yield achieved after the addition of ZnCl 2 is highly reproducible in the synthesis of quantum dots. As shown in FIG. 4, after the addition of ZnCl 2, the average quantum yield of the lifting point of + 2.5% (σ = 1.6% points). In addition to enhance the quantum yield, other variations include optical emission wavelength (the PWL) is slightly blue-shifted -0.6 nm (σ = 0.3 nm) ( as shown in FIG. 2), and the full width at half (FWHM) narrowed -0.5 nm ( σ = 0.3 nm) (as shown in FIG. 3). Before and after addition of ZnCl 2 Summary statistics of the various samples are shown in FIGS. 5 to 7.

添加ZnCl2 之前及之後InP/ZnSe/ZnS量子點樣品之光學特性(實例A-X)展示於表1中。 表1. 添加ZnCl2 之前及之後的InP/ZnSe/ZnS光學特性 實例 添加前之PWL (nm) 添加前之FWHM (nm) 添加前之PLQY (%) 添加後之PWL (nm) 添加後之FWHM (nm) 添加後之PLQY (%) A 527.6 38.5 89.6 527.1 37.6 91.9 B 529.1 38.5 90.0 528.5 38.0 92.2 C 534.3 39.0 91.5 533.3 38.2 94.6 D 529.7 41.1 91.9 529.1 40.8 94.6 E 531.8 39.0 90.4 531.0 38.4 92.0 F 527.8 40.8 91.2 527.0 40.2 94.9 G 529.2 41.8 93.2 528.9 41.4 96.6 H 527.6 40.9 92.3 527.2 40.3 95.8 I 532.6 40.4 94.0 531.9 40.0 96.9 J 528.1 40.8 92.4 527.7 40.4 94.6 K 526.8 39.3 93.3 525.9 39.1 96.5 L 525.6 38.3 92.7 524.8 37.6 95.3 M 526.6 38.2 93.3 526.2 37.8 97.4 N 526.1 39.3 92.1 526.1 38.8 98.1 O 525.2 36.9 91.0 524.5 36.3 96.4 P 524.3 37.2 93.6 523.6 36.8 98.0 Q 524.3 37.4 94.4 524.4 37.3 94.3 R 526.1 37.3 94.9 526.2 37.3 95.1 S 526.0 38.0 95.8 525.8 37.7 95.6 T 528.9 38.7 93.9 527.8 37.8 95.6 U 528.4 38.8 94.0 528.1 38.4 94.3 V 525.0 39.1 93.1 524.5 38.2 94.5 W 525.4 38.6 93.4 524.6 37.7 94.9 X 525.7 39.5 91.6 524.7 38.5 94.1 實例3 添加其他金屬鹵化物The optical properties of InP/ZnSe/ZnS quantum dot samples before and after adding ZnCl 2 (example AX) are shown in Table 1. Table 1. InP/ZnSe/ZnS optical properties before and after adding ZnCl 2 Instance PWL before adding (nm) FWHM before adding (nm) PLQY before adding (%) PWL after adding (nm) FWHM after addition (nm) PLQY after adding (%) A 527.6 38.5 89.6 527.1 37.6 91.9 B 529.1 38.5 90.0 528.5 38.0 92.2 C 534.3 39.0 91.5 533.3 38.2 94.6 D 529.7 41.1 91.9 529.1 40.8 94.6 E 531.8 39.0 90.4 531.0 38.4 92.0 F 527.8 40.8 91.2 527.0 40.2 94.9 G 529.2 41.8 93.2 528.9 41.4 96.6 H 527.6 40.9 92.3 527.2 40.3 95.8 I 532.6 40.4 94.0 531.9 40.0 96.9 J 528.1 40.8 92.4 527.7 40.4 94.6 K 526.8 39.3 93.3 525.9 39.1 96.5 L 525.6 38.3 92.7 524.8 37.6 95.3 M 526.6 38.2 93.3 526.2 37.8 97.4 N 526.1 39.3 92.1 526.1 38.8 98.1 O 525.2 36.9 91.0 524.5 36.3 96.4 P 524.3 37.2 93.6 523.6 36.8 98.0 Q 524.3 37.4 94.4 524.4 37.3 94.3 R 526.1 37.3 94.9 526.2 37.3 95.1 S 526.0 38.0 95.8 525.8 37.7 95.6 T 528.9 38.7 93.9 527.8 37.8 95.6 U 528.4 38.8 94.0 528.1 38.4 94.3 V 525.0 39.1 93.1 524.5 38.2 94.5 W 525.4 38.6 93.4 524.6 37.7 94.9 X 525.7 39.5 91.6 524.7 38.5 94.1 Example 3 Adding other metal halides

使用實例1中所製備之溶液,將表2中所展示之金屬鹵化物添加至溶液中,且量測烘烤後所產生之量子點光阻劑(quantum dot photoresist;QDPR)膜之溶解度、濃縮物之量子產率(quantum yield;QY)及功率轉換效率(power conversion efficiency;PCE)。量子點及PGMEA溶液中之金屬鹵化物之溶解度量測測定何種鹽干擾膠態穩定性或與PGMEA反應。PGMEA濃縮物之相關量子產率之量測測定何種鹽淬滅發光。並且,對所製備QDPR膜之烘烤後PCE之量測評估了相對於未用金屬鹵化物處理之對照樣品效能。 表2. 金屬鹵化物處理 金屬鹵化物 狀態 QD/PGMEA中之溶解度 PGMEA濃縮物之相關QY (%) QDPR中之烘烤後PCE ZnCl2 PCE提高 可溶解 >10%提升 PCE升高5-10% MgBr2 PCE提高 低溶解度 >10%提升 PEC升高1-4% ZrCl4 未提高 低溶解度 無變化 PCE未改變 ZnBr2 未提高 低溶解度 >10%提升 PCE降低1-2% HfCl4 未提高 低溶解度 >10%提升 PCE降低4% CsBr 失敗 可溶解 無變化 PCE降低5% CsCl 失敗 低溶解度 30%降低 未測試 InCl3 失敗 可溶解 35%降低 未測試 AlCl3 失敗 不可溶 未測試 未測試 CaCl2 失敗 不可溶 未測試 未測試 GaCl3 失敗 不可溶 未測試 未測試 MgCl2 失敗 不可溶 未測試 未測試 SrCl2 失敗 不可溶 未測試 未測試 TiBr4 失敗 混合物變紅 未測試 未測試 YCl3 失敗 PGMEA固化 未測試 未測試 Using the solution prepared in Example 1, add the metal halide shown in Table 2 to the solution, and measure the solubility and concentration of the quantum dot photoresist (QDPR) film produced after baking Quantum yield (QY) and power conversion efficiency (PCE) of things. The dissolution measurement of metal halides in quantum dots and PGMEA solutions determines which salts interfere with colloidal stability or react with PGMEA. The measurement of the relative quantum yield of the PGMEA concentrate determines which salt quenches the luminescence. In addition, the PCE measurement of the prepared QDPR film after baking evaluated the performance compared to the control sample not treated with metal halide. Table 2. Metal halide treatment Metal halide status Solubility in QD/PGMEA Related QY of PGMEA Concentrate (%) PCE after baking in QDPR ZnCl 2 PCE increase Soluble >10% increase PCE increased by 5-10% MgBr 2 PCE increase Low solubility >10% increase PEC increased by 1-4% ZrCl 4 Not improved Low solubility No change PCE unchanged ZnBr 2 Not improved Low solubility >10% increase PCE reduced by 1-2% HfCl 4 Not improved Low solubility >10% increase PCE reduced by 4% CsBr failure Soluble No change PCE reduced by 5% CsCl failure Low solubility 30% reduction Not tested InCl 3 failure Soluble 35% reduction Not tested AlCl 3 failure Insoluble Not tested Not tested CaCl 2 failure Insoluble Not tested Not tested GaCl 3 failure Insoluble Not tested Not tested MgCl 2 failure Insoluble Not tested Not tested SrCl 2 failure Insoluble Not tested Not tested TiBr 4 failure The mixture turns red Not tested Not tested YCl 3 failure PGMEA curing Not tested Not tested

現已完整描述本發明,一般熟習此項技術者將理解,可在廣泛及等效條件、調配物及其他參數範圍內執行相同操作而不影響本發明之範疇或其任何實施例。本文中所引用之所有專利、專利申請案及公開案均全部以全文引用之方式併入本文中。Now that the present invention has been fully described, those skilled in the art will understand that the same operations can be performed within a wide range of equivalent conditions, formulations and other parameters without affecting the scope of the present invention or any of its embodiments. All patents, patent applications and publications cited in this article are all incorporated into this article by reference in their entirety.

1 為基於添加至InP/ZnSe/ZnS量子點樣品中之ZnCl2 濃度的光致發光量子產率(PLQY)之條形圖。在商購積分球(Hamamatsu Quantaurus, Fukuoka, Japan)上在OD450 = 1.5時對100 μL量子點溶液執行量測。虛線框中之濃度表示量子產率與膠態穩定性之間的最佳平衡。 Figure 1 is a bar graph of the photoluminescence quantum yield (PLQY) based on the ZnCl 2 concentration added to the InP/ZnSe/ZnS quantum dot sample. The measurement was performed on 100 μL of quantum dot solution on a commercially available integrating sphere (Hamamatsu Quantaurus, Fukuoka, Japan) at OD 450 = 1.5. The concentration in the dashed box represents the best balance between quantum yield and colloidal stability.

2 為基於添加至InP/ZnSe/ZnS量子點樣品中之ZnCl2 濃度的半高全寬(full width at half maximum;FWHM)之條形圖。在商購積分球(Hamamatsu Quantaurus, Fukuoka, Japan)上在OD450 = 1.5時對100 μL量子點溶液執行量測。 Figure 2 is a bar graph of the full width at half maximum (FWHM) based on the concentration of ZnCl 2 added to the InP/ZnSe/ZnS quantum dot sample. The measurement was performed on 100 μL of quantum dot solution on a commercially available integrating sphere (Hamamatsu Quantaurus, Fukuoka, Japan) at OD 450 = 1.5.

3 為基於添加至InP/ZnSe/ZnS量子點樣品中之ZnCl2 濃度的峰值波長(peak wavelength;PWL)之條形圖。在商購積分球(Hamamatsu Quantaurus, Fukuoka, Japan)上在OD450 = 1.5時對100 μL量子點溶液執行量測。 Figure 3 is a bar graph based on the peak wavelength (PWL) of the ZnCl 2 concentration added to the InP/ZnSe/ZnS quantum dot sample. The measurement was performed on 100 μL of quantum dot solution on a commercially available integrating sphere (Hamamatsu Quantaurus, Fukuoka, Japan) at OD 450 = 1.5.

4 為在添加ZnCl2 之前(左側條柱)及之後(右側條柱)的InP/ZnSe/ZnS量子點樣品(實例A-X)之PLQY之條形圖。虛線表示95%之量子產率值。 Figure 4 is a bar graph of PLQY of InP/ZnSe/ZnS quantum dot samples (Example AX) before (left bar) and after (right bar) ZnCl 2 is added. The dotted line represents the 95% quantum yield value.

5 為InP/ZnSe/ZnS量子點樣品之PLQY量測值之盒狀圖。左側之盒子表示添加ZnCl2 之前純化量子點樣品之概述資料且右側之盒子表示添加ZnCl2 之後的概述資料。 Figure 5 is a box diagram of measured PLQY values of InP/ZnSe/ZnS quantum dot samples. The box on the left shows the summary information of the purified quantum dot sample before adding ZnCl 2 and the box on the right shows the summary information after adding ZnCl 2 .

6 為InP/ZnSe/ZnS量子點樣品之FWHM量測值之盒狀圖。左側之盒子表示添加ZnCl2 之前純化量子點樣品之概述資料且右側之盒子表示添加ZnCl2 之後的概述資料。 Figure 6 is a box diagram of the FWHM measured values of InP/ZnSe/ZnS quantum dot samples. The box on the left shows the summary information of the purified quantum dot sample before adding ZnCl 2 and the box on the right shows the summary information after adding ZnCl 2 .

7 為InP/ZnSe/ZnS量子點樣品之PWL量測值之盒狀圖。左側之盒子表示添加ZnCl2 之前純化量子點樣品之概述資料且右側之盒子表示添加ZnCl2 之後的概述資料。 Figure 7 is a box diagram of PWL measured values of InP/ZnSe/ZnS quantum dot samples. The box on the left shows the summary information of the purified quantum dot sample before adding ZnCl 2 and the box on the right shows the summary information after adding ZnCl 2 .

Claims (78)

一種奈米結構組合物,其包含:  (a)至少一種奈米結構群體,該等奈米結構包含奈米晶核及至少一種殼;  (b)至少一種金屬鹵化物,其黏合至該等奈米結構之表面;以及  (c)至少一種金屬羧酸鹽,其黏合至該等奈米結構之表面。A nanostructure composition comprising: (a) at least one group of nanostructures, the nanostructures comprising a nanocrystalline core and at least one shell; (b) at least one metal halide, which is bonded to the nanostructures The surface of the rice structure; and (c) at least one metal carboxylate which is bonded to the surface of the nano structure. 如請求項1之奈米結構組合物,其中該奈米晶核選自由以下組成之群:Si、Ge、Sn、Se、Te、B、C、P、BN、BP、BAs、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb、ZnO、ZnS、ZnSe、ZnTe、CdS、CdSe、CdSeZn、CdTe、HgS、HgSe、HgTe、BeS、BeSe、BeTe、MgS、MgSe、GeS、GeSe、GeTe、SnS、SnSe、SnTe、PbO、PbS、PbSe、PbTe、CuF、CuCl、CuBr、CuI、Si3 N4 、Ge3 N4 、Al2 O3 、Al2 CO及其組合。Such as the nanostructure composition of claim 1, wherein the nanocrystal nucleus is selected from the group consisting of Si, Ge, Sn, Se, Te, B, C, P, BN, BP, BAs, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, ZnO, ZnS, ZnSe, ZnTe, CdS, CdSe, CdSeZn, CdTe, HgS, HgSe, HgTe, BeS, BeSe, BeTe, MgS, MgSe, GeS, GeSe, GeTe, SnS, SnSe, SnTe, PbO, PbS, PbSe, PbTe, CuF, CuCl, CuBr, CuI, Si 3 N 4 , Ge 3 N 4 , Al 2 O 3 , Al 2 CO and others combination. 如請求項1或請求項2之奈米結構組合物,其中該奈米晶核包含InP。For example, the nanostructure composition of claim 1 or claim 2, wherein the nanocrystalline core contains InP. 如請求項1至3中任一項之奈米結構組合物,其中該等奈米結構包含至少兩種殼。The nanostructure composition according to any one of claims 1 to 3, wherein the nanostructures comprise at least two kinds of shells. 如請求項1至4中任一項之奈米結構組合物,其中該等奈米結構包含兩種殼。The nanostructure composition according to any one of claims 1 to 4, wherein the nanostructures comprise two kinds of shells. 如請求項1至5中任一項之奈米結構組合物,其中至少一種殼選自由以下組成之群:CdS、CdSe、CdO、CdTe、ZnS、ZnO、ZnSe、ZnTe、MgTe、GaAs、GaSb、GaN、HgO、HgS、HgSe、HgTe、InAs、InSb、InN、AlAs、AlN、AlSb、AlS、PbS、PbO、PbSe、PbTe、MgO、MgS、MgSe、MgTe、CuCl、Ge、Si及其合金。Such as the nanostructure composition of any one of claims 1 to 5, wherein at least one shell is selected from the group consisting of CdS, CdSe, CdO, CdTe, ZnS, ZnO, ZnSe, ZnTe, MgTe, GaAs, GaSb, GaN, HgO, HgS, HgSe, HgTe, InAs, InSb, InN, AlAs, AlN, AlSb, AlS, PbS, PbO, PbSe, PbTe, MgO, MgS, MgSe, MgTe, CuCl, Ge, Si and alloys thereof. 如請求項1至6中任一項之奈米結構組合物,其中至少一種殼包含ZnSe。The nanostructure composition according to any one of claims 1 to 6, wherein at least one shell comprises ZnSe. 如請求項1至7中任一項之奈米結構組合物,其中至少一種殼包含ZnS。The nanostructure composition according to any one of claims 1 to 7, wherein at least one shell comprises ZnS. 如請求項1至8中任一項之奈米結構組合物,其中至少一種殼包含ZnSe且至少一種殼包含ZnS。The nanostructure composition according to any one of claims 1 to 8, wherein at least one shell comprises ZnSe and at least one shell comprises ZnS. 如請求項1至9中任一項之奈米結構組合物,其中至少一種金屬鹵化物選自由以下組成之群:LiF、NaF、KF、BeF2 、MgF2 、CaF2 、SrF2 、CuF、AgF、AuF、ZnF2 、HgF2 、AlF3 、GaF3 、InF3 、SnF2 、PbF2 、LiCl、NaCl、KCl、BeCl2 、MgCl2 、CaCl2 、SrCl2 、CuCl、AgCl、ZnCl2 、HgCl2 、AlCl3 、GaCl3 、InCl3 、SnCl2 、PBCl2 、LiBr、NaBr、KBr、BeBr2 、MgBr2 、CaBr2 、SrBr2 、CuBr、AgBr、AuBr、ZnBr2 、HgBr2 、AlBr3 、GaBr3 、InBr3 、SnBr2 、PbBr2 、LiI、NaI、KI、BeI2 、MgI2 、CaI2 、SrI2 、CuI、AgI、AuI、ZnI2 、HgI2 、AlI3 、GaI3 、InI3 、SnI2 及PbI2Such as the nanostructure composition of any one of claims 1 to 9, wherein at least one metal halide is selected from the group consisting of LiF, NaF, KF, BeF 2 , MgF 2 , CaF 2 , SrF 2 , CuF, AgF, AuF, ZnF 2 , HgF 2 , AlF 3 , GaF 3 , InF 3 , SnF 2 , PbF 2 , LiCl, NaCl, KCl, BeCl 2 , MgCl 2 , CaCl 2 , SrCl 2 , CuCl, AgCl, ZnCl 2 , HgCl 2 , AlCl 3 , GaCl 3 , InCl 3 , SnCl 2 , PBCl 2 , LiBr, NaBr, KBr, BeBr 2 , MgBr 2 , CaBr 2 , SrBr 2 , CuBr, AgBr, AuBr, ZnBr 2 , HgBr 2 , AlBr 3 , GaBr 3, InBr 3, SnBr 2, PbBr 2, LiI, NaI, KI, BeI 2, MgI 2, CaI 2, SrI 2, CuI, AgI, AuI, ZnI 2, HgI 2, AlI 3, GaI 3, InI 3. SnI 2 and PbI 2 . 如請求項1至10中任一項之奈米結構組合物,其中至少一種金屬鹵化物選自由以下組成之群:ZnF2 、ZnCl2 、ZnBr2 及ZnI2The nanostructure composition according to any one of claims 1 to 10, wherein at least one metal halide is selected from the group consisting of ZnF 2 , ZnCl 2 , ZnBr 2 and ZnI 2 . 如請求項1至11中任一項之奈米結構組合物,其中至少一種金屬鹵化物為ZnCl2The nanostructure composition according to any one of claims 1 to 11, wherein the at least one metal halide is ZnCl 2 . 如請求項1至12中任一項之奈米結構組合物,其中至少一種金屬羧酸鹽選自由以下組成之群:油酸鋅、己酸鋅、月桂酸鋅、肉豆蔻酸鋅、棕櫚酸鋅、硬脂酸鋅及PEG羧酸鋅。The nanostructure composition according to any one of claims 1 to 12, wherein at least one metal carboxylate is selected from the group consisting of zinc oleate, zinc caproate, zinc laurate, zinc myristate, palmitic acid Zinc, zinc stearate and zinc PEG carboxylate. 如請求項1至13中任一項之奈米結構組合物,其中至少一種金屬羧酸鹽選自由以下組成之群:油酸鋅、月桂酸鋅及PEG羧酸鋅。The nanostructure composition according to any one of claims 1 to 13, wherein at least one metal carboxylate is selected from the group consisting of zinc oleate, zinc laurate and zinc PEG carboxylate. 如請求項1至14中任一項之奈米結構組合物,其中該奈米結構組合物中該至少一種金屬羧酸鹽之濃度在約0.01 mM與約40 mM之間。The nanostructure composition of any one of claims 1 to 14, wherein the concentration of the at least one metal carboxylate in the nanostructure composition is between about 0.01 mM and about 40 mM. 如請求項1至15中任一項之奈米結構組合物,其中該至少一種金屬鹵化物與該至少一種金屬羧酸鹽之莫耳比在約1:1與約1:8之間。The nanostructure composition according to any one of claims 1 to 15, wherein the molar ratio of the at least one metal halide to the at least one metal carboxylate is between about 1:1 and about 1:8. 如請求項1至16中任一項之奈米結構組合物,其中該至少一種金屬鹵化物與該至少一種金屬羧酸鹽之莫耳比在約1:1與約1:3之間。The nanostructure composition according to any one of claims 1 to 16, wherein the molar ratio of the at least one metal halide to the at least one metal carboxylate is between about 1:1 and about 1:3. 如請求項1至17中任一項之奈米結構組合物,其進一步包含溶劑。The nanostructure composition according to any one of claims 1 to 17, which further comprises a solvent. 如請求項1至18中任一項之奈米結構組合物,其進一步包含選自由以下組成之群的溶劑:己烷、庚烷、甲苯及氯仿。The nanostructure composition according to any one of claims 1 to 18, which further comprises a solvent selected from the group consisting of hexane, heptane, toluene and chloroform. 如請求項1至19中任一項之奈米結構組合物,其中該奈米結構組合物可在約10℃與約90℃之間的溫度下穩定地儲存約3個月與3年之間。The nanostructure composition according to any one of claims 1 to 19, wherein the nanostructure composition can be stably stored at a temperature between about 10°C and about 90°C for between about 3 months and 3 years . 如請求項1至20中任一項之奈米結構組合物,其中該奈米結構組合物可在約30℃與約90℃之間的溫度下穩定地儲存約3個月與3年之間。The nanostructure composition according to any one of claims 1 to 20, wherein the nanostructure composition can be stably stored at a temperature between about 30°C and about 90°C for between about 3 months and 3 years . 如請求項1至21中任一項之奈米結構組合物,其中該奈米結構組合物展現約80%與約100%之間的光致發光量子產率。The nanostructured composition of any one of claims 1 to 21, wherein the nanostructured composition exhibits a photoluminescence quantum yield between about 80% and about 100%. 如請求項1至22中任一項之奈米結構組合物,其中該奈米結構組合物展現約95%與約100%之間的光致發光量子產率。The nanostructure composition according to any one of claims 1 to 22, wherein the nanostructure composition exhibits a photoluminescence quantum yield between about 95% and about 100%. 如請求項1至23中任一項之奈米結構組合物,其中該奈米結構組合物展現約10 nm與約60 nm之間的半高全寬。The nanostructure composition according to any one of claims 1 to 23, wherein the nanostructure composition exhibits a full width at half maximum between about 10 nm and about 60 nm. 如請求項1至24中任一項之奈米結構組合物,其中該奈米結構組合物展現約30 nm與約45 nm之間的半高全寬。The nanostructure composition of any one of claims 1 to 24, wherein the nanostructure composition exhibits a full width at half maximum between about 30 nm and about 45 nm. 如請求項1至25中任一項之奈米結構組合物,其中該等奈米結構包含:奈米晶核,其包含InP;至少一種殼,其包含ZnSe;至少一種殼,其包含ZnS;以及至少一種金屬鹵化物,其包含ZnCl2The nanostructure composition according to any one of claims 1 to 25, wherein the nanostructures comprise: a nanocrystal core, which comprises InP; at least one shell, which comprises ZnSe; at least one shell, which comprises ZnS; And at least one metal halide, which contains ZnCl 2 . 如請求項1至26中任一項之奈米結構組合物,其中該等奈米結構為量子點。The nanostructure composition of any one of claims 1 to 26, wherein the nanostructures are quantum dots. 一種製備奈米結構組合物之方法,該方法包含:  (a)提供至少一種奈米結構群體,其中該等奈米結構包含奈米晶核及至少一種殼;  (b)將至少一種金屬羧酸鹽與(a)之該等奈米結構混合;  (c)將至少一種金屬鹵化物與(b)之該等奈米結構混合;  以產生奈米結構組合物。A method for preparing a nanostructure composition, the method comprising: (a) providing at least one nanostructure population, wherein the nanostructures include a nanocrystalline core and at least one shell; (b) combining at least one metal carboxylic acid The salt is mixed with the nanostructures of (a); (c) at least one metal halide is mixed with the nanostructures of (b); to produce a nanostructure composition. 如請求項28之方法,其中該奈米晶核選自由以下組成之群:Si、Ge、Sn、Se、Te、B、C、P、BN、BP、BAs、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb、ZnO、ZnS、ZnSe、ZnTe、CdS、CdSe、CdSeZn、CdTe、HgS、HgSe、HgTe、BeS、BeSe、BeTe、MgS、MgSe、GeS、GeSe、GeTe、SnS、SnSe、SnTe、PbO、PbS、PbSe、PbTe、CuF、CuCl、CuBr、CuI、Si3 N4 、Ge3 N4 、Al2 O3 、Al2 CO及其組合。Such as the method of claim 28, wherein the nanocrystalline nucleus is selected from the group consisting of Si, Ge, Sn, Se, Te, B, C, P, BN, BP, BAs, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, ZnO, ZnS, ZnSe, ZnTe, CdS, CdSe, CdSeZn, CdTe, HgS, HgSe, HgTe, BeS, BeSe, BeTe, MgS, MgSe, GeS, GeSe, GeTe, SnS, SnSe, SnTe, PbO, PbS, PbSe, PbTe, CuF, CuCl, CuBr, CuI, Si 3 N 4 , Ge 3 N 4 , Al 2 O 3 , Al 2 CO and combinations thereof. 如請求項28或29之方法,其中該奈米晶核包含InP。The method of claim 28 or 29, wherein the nanocrystalline core contains InP. 如請求項28至30中任一項之方法,其中該等奈米結構包含至少兩種殼。The method according to any one of claims 28 to 30, wherein the nanostructures include at least two kinds of shells. 如請求項28至31中任一項之方法,其中該等奈米結構包含兩種殼。Such as the method of any one of claims 28 to 31, wherein the nanostructures include two kinds of shells. 如請求項28至32中任一項之方法,其中至少一種殼選自由以下組成之群:CdS、CdSe、CdO、CdTe、ZnS、ZnO、ZnSe、ZnTe、MgTe、GaAs、GaSb、GaN、HgO、HgS、HgSe、HgTe、InAs、InSb、InN、AlAs、AlN、AlSb、AlS、PbS、PbO、PbSe、PbTe、MgO、MgS、MgSe、MgTe、CuCl、Ge、Si及其合金。Such as the method of any one of claim 28 to 32, wherein at least one shell is selected from the group consisting of CdS, CdSe, CdO, CdTe, ZnS, ZnO, ZnSe, ZnTe, MgTe, GaAs, GaSb, GaN, HgO, HgS, HgSe, HgTe, InAs, InSb, InN, AlAs, AlN, AlSb, AlS, PbS, PbO, PbSe, PbTe, MgO, MgS, MgSe, MgTe, CuCl, Ge, Si and alloys thereof. 如請求項28至33中任一項之方法,其中至少一種殼包含ZnSe。The method according to any one of claims 28 to 33, wherein at least one shell comprises ZnSe. 如請求項28至34中任一項之方法,其中至少一種殼包含ZnS。The method according to any one of claims 28 to 34, wherein at least one shell comprises ZnS. 如請求項28至35中任一項之方法,其中至少一種殼包含ZnSe且至少一種殼包含ZnS。The method of any one of claims 28 to 35, wherein at least one shell comprises ZnSe and at least one shell comprises ZnS. 如請求項28至36中任一項之方法,其中至少一種金屬鹵化物選自由以下組成之群:LiF、NaF、KF、BeF2 、MgF2 、CaF2 、SrF2 、CuF、AgF、AuF、ZnF2 、HgF2 、AlF3 、GaF3 、InF3 、SnF2 、PbF2 、LiCl、NaCl、KCl、BeCl2 、MgCl2 、CaCl2 、SrCl2 、CuCl、AgCl、ZnCl2 、HgCl2 、AlCl3 、GaCl3 、InCl3 、SnCl2 、PBCl2 、LiBr、NaBr、KBr、BeBr2 、MgBr2 、CaBr2 、SrBr2 、CuBr、AgBr、AuBr、ZnBr2 、HgBr2 、AlBr3 、GaBr3 、InBr3 、SnBr2 、PbBr2 、LiI、NaI、KI、BeI2 、MgI2 、CaI2 、SrI2 、CuI、AgI、AuI、ZnI2 、HgI2 、AlI3 、GaI3 、InI3 、SnI2 及PbI2Such as the method of any one of claims 28 to 36, wherein at least one metal halide is selected from the group consisting of LiF, NaF, KF, BeF 2 , MgF 2 , CaF 2 , SrF 2 , CuF, AgF, AuF, ZnF 2 , HgF 2 , AlF 3 , GaF 3 , InF 3 , SnF 2 , PbF 2 , LiCl, NaCl, KCl, BeCl 2 , MgCl 2 , CaCl 2 , SrCl 2 , CuCl, AgCl, ZnCl 2 , HgCl 2 , AlCl 3, GaCl 3, InCl 3, SnCl 2, PBCl 2, LiBr, NaBr, KBr, BeBr 2, MgBr 2, CaBr 2, SrBr 2, CuBr, AgBr, AuBr, ZnBr 2, HgBr 2, AlBr 3, GaBr 3, InBr 3, SnBr 2, PbBr 2 , LiI, NaI, KI, BeI 2, MgI 2, CaI 2, SrI 2, CuI, AgI, AuI, ZnI 2, HgI 2, AlI 3, GaI 3, InI 3, SnI 2 And PbI 2 . 如請求項28至37中任一項之方法,其中至少一種金屬鹵化物選自由以下組成之群:ZnF2 、ZnCl2 、ZnBr2 及ZnI2The method according to any one of claims 28 to 37, wherein the at least one metal halide is selected from the group consisting of ZnF 2 , ZnCl 2 , ZnBr 2 and ZnI 2 . 如請求項28至38中任一項之方法,其中至少一種金屬鹵化物為ZnCl2The method according to any one of claims 28 to 38, wherein the at least one metal halide is ZnCl 2 . 如請求項28至39中任一項之方法,其中至少一種金屬羧酸鹽選自由以下組成之群:油酸鋅、己酸鋅、月桂酸鋅、肉豆蔻酸鋅、棕櫚酸鋅、硬脂酸鋅及PEG羧酸鋅。The method according to any one of claims 28 to 39, wherein at least one metal carboxylate is selected from the group consisting of zinc oleate, zinc caproate, zinc laurate, zinc myristate, zinc palmitate, and stearin Zinc acid and zinc PEG carboxylate. 如請求項28至40中任一項之方法,其中至少一種金屬羧酸鹽選自由以下組成之群:油酸鋅、月桂酸鋅及PEG羧酸鋅。The method according to any one of claims 28 to 40, wherein at least one metal carboxylate is selected from the group consisting of zinc oleate, zinc laurate, and zinc PEG carboxylate. 如請求項28至41中任一項之方法,其中將OD450 = 1的每毫升奈米結構群體約0.0001 mmol與約1 mmol之間的至少一種金屬羧酸鹽與(a)之該等奈米結構混合。The method according to any one of claims 28 to 41, wherein the at least one metal carboxylate between about 0.0001 mmol and about 1 mmol per milliliter of nanostructure population with OD 450 = 1 is combined with (a) Rice structure is mixed. 如請求項28至42中任一項之方法,其中將OD450 = 1的每毫升奈米結構群體約0.0001 mmol與約1 mmol之間的至少一種金屬鹵化物與(b)之該等奈米結構混合。The method according to any one of claims 28 to 42, wherein the at least one metal halide between about 0.0001 mmol and about 1 mmol per milliliter of nanostructure population with OD 450 = 1 and (b) the nanoparticles The structure is mixed. 如請求項28至43中任一項之方法,其中該至少一種金屬鹵化物與該至少一種金屬羧酸鹽之莫耳比在約1:1與約1:8之間。The method of any one of claims 28 to 43, wherein the molar ratio of the at least one metal halide to the at least one metal carboxylate is between about 1:1 and about 1:8. 如請求項28至44中任一項之方法,其中該至少一種金屬鹵化物與該至少一種金屬羧酸鹽之莫耳比在約1:1與約1:3之間。The method of any one of claims 28 to 44, wherein the molar ratio of the at least one metal halide to the at least one metal carboxylate is between about 1:1 and about 1:3. 如請求項28至45中任一項之方法,其中該至少一種奈米結構群體進一步包含溶劑。The method according to any one of claims 28 to 45, wherein the at least one nanostructure population further comprises a solvent. 如請求項28至46中任一項之方法,其中該至少一種奈米結構群體進一步包含選自由以下組成之群的溶劑:己烷、庚烷、甲苯及氯仿。The method according to any one of claims 28 to 46, wherein the at least one nanostructure population further comprises a solvent selected from the group consisting of hexane, heptane, toluene, and chloroform. 如請求項28至47中任一項之方法,其中(b)中之該混合係在約10℃與約100℃之間的溫度下進行。The method of any one of claims 28 to 47, wherein the mixing in (b) is carried out at a temperature between about 10°C and about 100°C. 如請求項28至48中任一項之方法,其中(c)中之該混合係在約10℃與約100℃之間的溫度下進行。The method of any one of claims 28 to 48, wherein the mixing in (c) is carried out at a temperature between about 10°C and about 100°C. 如請求項28至49中任一項之方法,其中該奈米結構組合物展現比由未混合至少一種金屬鹵化物所製備之奈米結構組合物所展現之光致發光量子產率大約0.1%與約5.0%之間的該光致發光量子產率。The method of any one of claims 28 to 49, wherein the nanostructured composition exhibits a photoluminescence quantum yield of about 0.1% than that exhibited by a nanostructured composition prepared without mixing at least one metal halide And about 5.0% of the photoluminescence quantum yield. 如請求項28至50中任一項之方法,其中該奈米結構組合物展現比由未混合至少一種金屬鹵化物所製備之奈米結構組合物所展現之半高全寬低約0.1 nm與約2.0 nm之間的該半高全寬。The method according to any one of claims 28 to 50, wherein the nanostructured composition exhibits a full width at half maximum of about 0.1 nm and about 2.0 lower than that of a nanostructured composition prepared without mixing at least one metal halide The full width at half maximum between nm. 一種奈米結構膜,其包含至少一種奈米結構群體,其中該等奈米結構包含:  (a)奈米晶核及至少一種殼; (b)至少一種金屬鹵化物,其黏合至該等奈米結構之表面;以及 (c)至少一種金屬羧酸鹽,其黏合至該等奈米結構之表面。A nanostructured membrane, comprising at least one group of nanostructures, wherein the nanostructures include: (a) a nanocrystalline core and at least one shell; (b) At least one metal halide, which is bonded to the surface of the nanostructures; and (c) At least one metal carboxylate, which is bonded to the surface of the nanostructures. 如請求項52之奈米結構膜,其進一步包含有機樹脂。Such as the nanostructured film of claim 52, which further contains an organic resin. 如請求項52或53之奈米結構膜,其包含一種與五種之間的奈米結構群體。For example, the nanostructured membrane of claim 52 or 53, which contains between one and five nanostructure groups. 如請求項52至54中任一項之奈米結構膜,其包含一種奈米結構群體。Such as the nanostructured membrane of any one of claims 52 to 54, which includes a nanostructure group. 如請求項52至55中任一項之奈米結構膜,其中該至少一種奈米結構群體包含核心,其選自由以下組成之群:Si、Ge、Sn、Se、Te、B、C、P、BN、BP、BAs、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb、ZnO、ZnS、ZnSe、ZnTe、CdS、CdSe、CdSeZn、CdTe、HgS、HgSe、HgTe、BeS、BeSe、BeTe、MgS、MgSe、GeS、GeSe、GeTe、SnS、SnSe、SnTe、PbO、PbS、PbSe、PbTe、CuF、CuCl、CuBr、CuI、Si3 N4 、Ge3 N4 、Al2 O3 、Al2 CO及其組合。The nanostructured membrane of any one of claims 52 to 55, wherein the at least one nanostructure group comprises a core, which is selected from the group consisting of Si, Ge, Sn, Se, Te, B, C, P , BN, BP, BAs, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, ZnO, ZnS, ZnSe, ZnTe, CdS, CdSe, CdSeZn, CdTe, HgS, HgSe , HgTe, BeS, BeSe, BeTe, MgS, MgSe, GeS, GeSe, GeTe, SnS, SnSe, SnTe, PbO, PbS, PbSe, PbTe, CuF, CuCl, CuBr, CuI, Si 3 N 4 , Ge 3 N 4 , Al 2 O 3 , Al 2 CO and combinations thereof. 如請求項52至56中任一項之奈米結構膜,其中該等奈米結構包含InP之奈米晶核。Such as the nanostructured film of any one of claims 52 to 56, wherein the nanostructures include InP nanocrystal nuclei. 如請求項52至57中任一項之奈米結構膜,其中該等奈米結構包含至少兩種殼。The nanostructured membrane of any one of claims 52 to 57, wherein the nanostructures include at least two types of shells. 如請求項52至58中任一項之奈米結構膜,其中該等奈米結構包含兩種殼。Such as the nanostructured membrane of any one of claims 52 to 58, wherein the nanostructures include two kinds of shells. 如請求項52至59中任一項之奈米結構膜,其中至少一種殼選自由以下組成之群:CdS、CdSe、CdO、CdTe、ZnS、ZnO、ZnSe、ZnTe、MgTe、GaAs、GaSb、GaN、HgO、HgS、HgSe、HgTe、InAs、InSb、InN、AlAs、AlN、AlSb、AlS、PbS、PbO、PbSe、PbTe、MgO、MgS、MgSe、MgTe、CuCl、Ge、Si及其合金。Such as the nanostructured film of any one of claims 52 to 59, wherein at least one shell is selected from the group consisting of CdS, CdSe, CdO, CdTe, ZnS, ZnO, ZnSe, ZnTe, MgTe, GaAs, GaSb, GaN , HgO, HgS, HgSe, HgTe, InAs, InSb, InN, AlAs, AlN, AlSb, AlS, PbS, PbO, PbSe, PbTe, MgO, MgS, MgSe, MgTe, CuCl, Ge, Si and their alloys. 如請求項52至60中任一項之奈米結構膜,其中至少一種殼包含ZnSe。The nanostructure film according to any one of claims 52 to 60, wherein at least one of the shells contains ZnSe. 如請求項52至61中任一項之奈米結構膜,其中至少一種殼包含ZnS。The nanostructure film according to any one of claims 52 to 61, wherein at least one of the shells contains ZnS. 如請求項52至62中任一項之奈米結構膜,其中至少一種殼包含ZnSe且至少一種殼包含ZnS。The nanostructured film according to any one of claims 52 to 62, wherein at least one shell contains ZnSe and at least one shell contains ZnS. 如請求項52至63中任一項之奈米結構膜,其中至少一種金屬鹵化物選自由以下組成之群:LiF、NaF、KF、BeF2 、MgF2 、CaF2 、SrF2 、CuF、AgF、AuF、ZnF2 、HgF2 、AlF3 、GaF3 、InF3 、SnF2 、PbF2 、LiCl、NaCl、KCl、BeCl2 、MgCl2 、CaCl2 、SrCl2 、CuCl、AgCl、ZnCl2 、HgCl2 、AlCl3 、GaCl3 、InCl3 、SnCl2 、PBCl2 、LiBr、NaBr、KBr、BeBr2 、MgBr2 、CaBr2 、SrBr2 、CuBr、AgBr、AuBr、ZnBr2 、HgBr2 、AlBr3 、GaBr3 、InBr3 、SnBr2 、PbBr2 、LiI、NaI、KI、BeI2 、MgI2 、CaI2 、SrI2 、CuI、AgI、AuI、ZnI2 、HgI2 、AlI3 、GaI3 、InI3 、SnI2 及PbI2Such as the nanostructured film of any one of claims 52 to 63, wherein at least one metal halide is selected from the group consisting of LiF, NaF, KF, BeF 2 , MgF 2 , CaF 2 , SrF 2 , CuF, AgF , AuF, ZnF 2 , HgF 2 , AlF 3 , GaF 3 , InF 3 , SnF 2 , PbF 2 , LiCl, NaCl, KCl, BeCl 2 , MgCl 2 , CaCl 2 , SrCl 2 , CuCl, AgCl, ZnCl 2 , HgCl 2 , AlCl 3 , GaCl 3 , InCl 3 , SnCl 2 , PBCl 2 , LiBr, NaBr, KBr, BeBr 2 , MgBr 2 , CaBr 2 , SrBr 2 , CuBr, AgBr, AuBr, ZnBr 2 , HgBr 2 , AlBr 3 , GaBr 3, InBr 3, SnBr 2 , PbBr 2, LiI, NaI, KI, BeI 2, MgI 2, CaI 2, SrI 2, CuI, AgI, AuI, ZnI 2, HgI 2, AlI 3, GaI 3, InI 3 , SnI 2 and PbI 2 . 如請求項52至64中任一項之奈米結構膜,其中至少一種金屬鹵化物選自由以下組成之群:ZnF2 、ZnCl2 、ZnBr2 及ZnI2Such as the nanostructure film of any one of claims 52 to 64, wherein at least one metal halide is selected from the group consisting of ZnF 2 , ZnCl 2 , ZnBr 2 and ZnI 2 . 如請求項52至65中任一項之奈米結構膜,其中至少一種金屬鹵化物為ZnCl2The nanostructure film according to any one of claims 52 to 65, wherein at least one metal halide is ZnCl 2 . 如請求項52至66中任一項之奈米結構膜,其中至少一種金屬羧酸鹽選自由以下組成之群:油酸鋅、己酸鋅、月桂酸鋅、肉豆蔻酸鋅、棕櫚酸鋅、硬脂酸鋅、二硫胺基甲酸鋅及PEG羧酸鋅。The nanostructured membrane of any one of claims 52 to 66, wherein at least one metal carboxylate is selected from the group consisting of zinc oleate, zinc caproate, zinc laurate, zinc myristate, zinc palmitate , Zinc stearate, zinc dithiocarbamate and zinc PEG carboxylate. 如請求項52至67中任一項之奈米結構膜,其中至少一種金屬羧酸鹽選自由以下組成之群:油酸鋅、月桂酸鋅及PEG羧酸鋅。The nanostructured membrane of any one of claims 52 to 67, wherein at least one metal carboxylate is selected from the group consisting of zinc oleate, zinc laurate and zinc PEG carboxylate. 如請求項52至68中任一項之奈米結構膜,其中該奈米結構膜中該至少一種金屬羧酸鹽之濃度在約0.01 mM與約40 mM之間。The nanostructured membrane of any one of claims 52 to 68, wherein the concentration of the at least one metal carboxylate in the nanostructured membrane is between about 0.01 mM and about 40 mM. 如請求項52至69中任一項之奈米結構膜,其中該至少一種金屬鹵化物與該至少一種金屬羧酸鹽之莫耳比在約1:1與約1:8之間。The nanostructured film according to any one of claims 52 to 69, wherein the molar ratio of the at least one metal halide to the at least one metal carboxylate is between about 1:1 and about 1:8. 如請求項52至70中任一項之奈米結構膜,其中該至少一種金屬鹵化物與該至少一種金屬羧酸鹽之莫耳比在約1:1與約1:3之間。The nanostructured film according to any one of claims 52 to 70, wherein the molar ratio of the at least one metal halide to the at least one metal carboxylate is between about 1:1 and about 1:3. 如請求項52至71中任一項之奈米結構膜,其中該等奈米結構為量子點。Such as the nanostructure film of any one of claims 52 to 71, wherein the nanostructures are quantum dots. 如請求項52至72中任一項之奈米結構膜,其包含一種與五種之間的有機樹脂。Such as the nanostructured film of any one of claims 52 to 72, which contains between one and five organic resins. 如請求項52至73中任一項之奈米結構膜,其包含一種有機樹脂。Such as the nanostructured film of any one of claims 52 to 73, which contains an organic resin. 如請求項52至74中任一項之奈米結構膜,其中該至少一種有機樹脂為熱固性樹脂或UV可固化樹脂。The nanostructured film according to any one of claims 52 to 74, wherein the at least one organic resin is a thermosetting resin or a UV curable resin. 如請求項52至75中任一項之奈米結構膜,其中該至少一種有機樹脂為UV可固化樹脂。The nanostructure film according to any one of claims 52 to 75, wherein the at least one organic resin is a UV curable resin. 一種模製品,其包含如請求項52至76中任一項之奈米結構膜。A molded article comprising the nanostructured film according to any one of claims 52 to 76. 如請求項77之模製品,其中該模製品為發光二極體或液晶顯示器。Such as the molded article of claim 77, wherein the molded article is a light emitting diode or a liquid crystal display.
TW109102164A 2019-01-24 2020-01-21 Small molecule passivation of quantum dots for increased quantum yield TW202045684A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962796276P 2019-01-24 2019-01-24
US62/796,276 2019-01-24

Publications (1)

Publication Number Publication Date
TW202045684A true TW202045684A (en) 2020-12-16

Family

ID=69593805

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109102164A TW202045684A (en) 2019-01-24 2020-01-21 Small molecule passivation of quantum dots for increased quantum yield

Country Status (6)

Country Link
US (2) US11549058B2 (en)
EP (1) EP3898885B1 (en)
KR (1) KR20210116633A (en)
CN (1) CN113366083A (en)
TW (1) TW202045684A (en)
WO (1) WO2020154322A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113340948A (en) * 2021-06-09 2021-09-03 重庆大学 Preparation method of high-response humidity sensor based on halogenated perovskite microcrystal and product thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11050033B2 (en) * 2018-04-24 2021-06-29 Samsung Electronics Co., Ltd. Light-emitting film, production method thereof, and a light emitting device including the same
KR20210089685A (en) * 2018-11-09 2021-07-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 A light emitting device, a light emitting device, a display device, an electronic device, and a lighting device
EP3997190A1 (en) * 2019-07-11 2022-05-18 Nanosys, Inc. Core-shell nanostructures comprising zinc halide and zinc carboxylate bound to the surface
KR102480363B1 (en) * 2020-08-11 2022-12-23 연세대학교 산학협력단 Material synchronized piezoelectric and luminescence, and device comprising the same
CN117186871A (en) * 2023-09-11 2023-12-08 Tcl科技集团股份有限公司 Composite material, film, light-emitting device, preparation method of light-emitting device, mini-LED backlight module and display device

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5505928A (en) 1991-11-22 1996-04-09 The Regents Of University Of California Preparation of III-V semiconductor nanocrystals
US6607829B1 (en) 1997-11-13 2003-08-19 Massachusetts Institute Of Technology Tellurium-containing nanocrystalline materials
US6322901B1 (en) 1997-11-13 2001-11-27 Massachusetts Institute Of Technology Highly luminescent color-selective nano-crystalline materials
US6251303B1 (en) * 1998-09-18 2001-06-26 Massachusetts Institute Of Technology Water-soluble fluorescent nanocrystals
US6306736B1 (en) 2000-02-04 2001-10-23 The Regents Of The University Of California Process for forming shaped group III-V semiconductor nanocrystals, and product formed using process
US6225198B1 (en) 2000-02-04 2001-05-01 The Regents Of The University Of California Process for forming shaped group II-VI semiconductor nanocrystals, and product formed using process
US6576291B2 (en) 2000-12-08 2003-06-10 Massachusetts Institute Of Technology Preparation of nanocrystallites
US6788453B2 (en) 2002-05-15 2004-09-07 Yissum Research Development Company Of The Hebrew Univeristy Of Jerusalem Method for producing inorganic semiconductor nanocrystalline rods and their use
US6949206B2 (en) 2002-09-05 2005-09-27 Nanosys, Inc. Organic species that facilitate charge transfer to or from nanostructures
US7645397B2 (en) 2004-01-15 2010-01-12 Nanosys, Inc. Nanocrystal doped matrixes
US8563133B2 (en) 2004-06-08 2013-10-22 Sandisk Corporation Compositions and methods for modulation of nanostructure energy levels
CA2567930A1 (en) 2004-06-08 2005-12-22 Nanosys, Inc. Methods and devices for forming nanostructure monolayers and devices including such monolayers
US7557028B1 (en) 2004-07-28 2009-07-07 Nanosys, Inc. Process for group III-V semiconductor nanostructure synthesis and compositions made using same
KR101783487B1 (en) 2009-05-01 2017-10-23 나노시스, 인크. Functionalized matrixes for dispersion of nanostructures
JP2012234634A (en) 2011-04-28 2012-11-29 Hitachi Cable Ltd Flat cable and connection structure of flat cable and printed wiring board
US9139770B2 (en) 2012-06-22 2015-09-22 Nanosys, Inc. Silicone ligands for stabilizing quantum dot films
TWI596188B (en) 2012-07-02 2017-08-21 奈米系統股份有限公司 Highly luminescent nanostructures and methods of producing same
CN105247010B (en) 2013-03-14 2017-10-24 纳米***公司 Solvent-free quantum dot exchange method
US11746290B2 (en) * 2013-09-26 2023-09-05 Samsung Electronics Co., Ltd. Nanocrystal particles and processes for synthesizing the same
KR102474201B1 (en) 2015-11-26 2022-12-06 삼성디스플레이 주식회사 Quantum dot color filter and display device including the same
KR102498798B1 (en) * 2015-12-22 2023-02-09 삼성전자주식회사 Quantum dots and devices including the same
AU2017255530A1 (en) 2016-04-26 2018-11-22 Nanosys, Inc. Stable InP quantum dots with thick shell coating and method of producing the same
EP3321340B1 (en) * 2016-08-11 2021-05-12 Samsung Electronics Co., Ltd. Quantum dot aggregate particles, production methods thereof, and compositions and electronic devices including the same
KR20190126932A (en) * 2017-03-31 2019-11-12 메르크 파텐트 게엠베하 Semiconductor Light Emitting Nanoparticles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113340948A (en) * 2021-06-09 2021-09-03 重庆大学 Preparation method of high-response humidity sensor based on halogenated perovskite microcrystal and product thereof

Also Published As

Publication number Publication date
US11549058B2 (en) 2023-01-10
EP3898885B1 (en) 2023-12-27
CN113366083A (en) 2021-09-07
US20230272276A1 (en) 2023-08-31
KR20210116633A (en) 2021-09-27
WO2020154322A1 (en) 2020-07-30
US20200239769A1 (en) 2020-07-30
EP3898885A1 (en) 2021-10-27

Similar Documents

Publication Publication Date Title
US11549058B2 (en) Small molecule passivation of quantum dots for increased quantum yield
JP7357185B2 (en) Synthesis method of blue-emitting ZnSe1-xTex alloy nanocrystals
US20200325396A1 (en) Methods to improve the quantum yield of indium phosphide quantum dots
JP2020180278A (en) Nanostructures with inorganic ligands for electroluminescent devices
TW202111082A (en) Blue-emitting nanocrystals with cubic shape and fluoride passivation
JP2020514432A (en) Semiconducting luminescent nanoparticles
US11634629B2 (en) Method to improve performance of devices comprising nanostructures
US11053439B2 (en) Methods for synthesis of inorganic nanostructures using molten salt chemistry
US20230235224A1 (en) SYNTHESIS OF BLUE-EMITTING ZnSe1-xTex ALLOY NANOCRYSTALS WITH LOW FULL WIDTH AT HALF-MAXIMUM
TW201923027A (en) Stable InP quantum dots with thick shell coating and method of producing the same
TW202033736A (en) Thin shell quantum dots for enhanced blue light absorption
CN114686233A (en) Quantum dot, method for preparing same, and optical member including quantum dot
US11634631B2 (en) Cadmium free reverse type 1 nanostructures with improved blue light absorption for thin film applications
EP4073202B1 (en) Rohs compliant quantum dot films
WO2023183619A1 (en) Silica composite microparticles comprising nanostructures
KR20230036133A (en) How to improve the performance of devices with QDs containing thin metal oxide coatings