TW202038575A - 實體上鏈共享頻道傳輸 - Google Patents

實體上鏈共享頻道傳輸 Download PDF

Info

Publication number
TW202038575A
TW202038575A TW109104151A TW109104151A TW202038575A TW 202038575 A TW202038575 A TW 202038575A TW 109104151 A TW109104151 A TW 109104151A TW 109104151 A TW109104151 A TW 109104151A TW 202038575 A TW202038575 A TW 202038575A
Authority
TW
Taiwan
Prior art keywords
wtru
symbol
sfi
transmission
resource
Prior art date
Application number
TW109104151A
Other languages
English (en)
Other versions
TWI745858B (zh
Inventor
默罕默德 塔哈那德波羅傑尼
阿格翰柯梅 歐泰瑞
沙魯克 那耶納雷爾
Original Assignee
美商Idac控股公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商Idac控股公司 filed Critical 美商Idac控股公司
Publication of TW202038575A publication Critical patent/TW202038575A/zh
Application granted granted Critical
Publication of TWI745858B publication Critical patent/TWI745858B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2643Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA]
    • H04B7/2656Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA] for structure of frame, burst
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • H04W72/569Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient of the traffic information

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

WTRU可以接收表明可變符號、上鏈符號以及下鏈符號的時槽格式配置(SFC)。該WTRU可以接收與具有重複的PUSCH傳輸相關聯的上鏈許可。所接收的上鏈許可可以包括專用時槽格式指示符(SFI)以及表明與該上鏈符號相關聯的可用資源塊組的資源圖。該WTRU可以基於該SFC、該SFI以及該資源圖識別可用上鏈符號。該WTRU可以基於該資源圖為該可用上鏈符號識別不可用資源塊組。該WTRU可以使用該可用上鏈符號執行PUSCH傳輸重複,其中該PUSCH傳輸避開該不可用資源塊組。

Description

實體上鏈共享頻道傳輸
相關申請案的交叉引用
本申請案主張以下申請案的權益:2019年10月1日申請的名稱為實體上鏈共用通道傳輸的美國臨時申請案No. 62/908,777、2019年8月13日申請的名稱為實體上鏈共用通道傳輸的美國臨時專利申請案No. 62/885,966、以及2019年2月13日申請的名稱為實體上鏈共用通道傳輸的美國臨時專利申請案No. 62/805,046,所有這些申請案的內容藉由引用而被整體併入本文。
在無線通信系統中(例如,5G的NR),定義了實體通道用於傳輸資料以及控制資訊到無線傳輸及接收單元(WTRU)以及從WTRU傳輸資料以及控制資訊。實體上鏈共用通道(PUSCH)可以用於從WTRU傳輸上鏈資料。
在時域中,無線傳輸可以被組織成複數訊框,該訊框可以被劃分成十個相等的子訊框。每個子訊框可以包括兩個相等的時槽,並且每個時槽可以由複數正交分頻多工(OFMD)符號組成。在一個OFDM符號期間的一個子載波可以被稱為資源元素。這些資源元素可以被分組為資源塊。
本文揭露了用於提供具有重複的PUSCH傳輸的系統及實施。這些PUSCH傳輸可以結合例如超可靠低潛時通信(URLLC)來使用。
一種計算系統(其可以是例如WTRU)可以被編程為接收表明可變(flexible)符號、上鏈符號以及下鏈符號的時槽格式配置(SFC)。WTRU可以接收與具有重複的PUSCH傳輸相關聯的上鏈許可。所接收的上鏈許可可以包括專用時槽格式指示符(SFI)以及表明與該上鏈符號相關聯的可用資源塊組的資源圖。
該SFI可以表明對符號的上鏈/下鏈指定的改變。該SFI可以表明可以用於上鏈的可變符號。該SFI可以包括位元映像,該位元映像可以識別可以用於上鏈的可變符號。該SFI可以包括到表格的索引,該表格識別可以用於上鏈的可變符號。
該資源圖可以表明或識別可能不可用於包括PUSCH重複的傳輸的資源塊組。該資源圖可表明資源優先序,可將該資源優先序以及與要傳輸的資料相關聯的優先序進行比較,以確定特定資源是否可用於傳輸該資料。
該WTRU可以基於該SFC、該SFI以及該資源圖識別可用上鏈符號。如果一上鏈符號的至少一個資源塊組被表明為可用,則該符號可以被識別為可用。
該WTRU可以基於該資源圖為該可用上鏈符號識別不可用資源塊組。WTRU可以使用該可用上鏈符號執行PUSCH傳輸重複,其中該PUSCH傳輸避開該不可用資源塊組。如果WTRU接收到終止指示,則WTRU可以放棄任何剩餘重複的傳輸。
提供本發明內容以用簡化的形式介紹一些概念。在詳細描述中進一步描述了這些概念。本發明內容不旨在限制所要求保護的主題的範圍。本文描述了其它特徵。
揭露了用於提供具有重複的PUSCH傳輸的技術。該PUSCH傳輸可以結合例如超可靠低潛時通信(URLLC)來使用。WTRU可以接收表明可變符號、上鏈符號以及下鏈符號的時槽格式配置(SFC)。WTRU可以接收與具有重複的PUSCH傳輸相關聯的上鏈許可。所接收的上鏈許可可以包括專用時槽格式指示符(SFI)以及表明與該上鏈符號相關聯的可用資源塊組的資源圖。WTRU可以基於該SFC、該SFI以及該資源圖來識別可用上鏈符號。如果上鏈符號的至少一個資源塊組被表明為可用,則該符號可以被識別為可用。WTRU可以基於該資源圖為該可用上鏈符號識別不可用資源塊組。WTRU可以使用該可用上鏈符號執行PUSCH傳輸重複,其中該PUSCH傳輸避開該不可用資源塊組。如果WTRU接收到終止指示,則WTRU可以放棄任何剩餘重複的傳輸。
圖1A是示出了於其中可以實施所揭露的一個或複數實施例的範例性通信系統100的圖式。該通信系統100可以是為複數無線使用者提供諸如語音、資料、視訊、訊息傳遞、廣播等內容的多重存取系統。該通信系統100可以經由共用包括無線頻寬的系統資源而使複數無線使用者能夠存取此類內容。舉例來說,通信系統100可以使用一種或多種通道存取方法,例如分碼多重存取(CDMA)、分時多重存取(TDMA)、分頻多重存取(FDMA)、正交FDMA(OFDMA)、單載波FDMA(SC-FDMA)、零尾唯一字DFT-擴展OFDM(ZT UW DTS-s OFDM)、唯一字OFDM(UW-OFDM)、資源塊過濾OFDM以及濾波器組多載波(FBMC)等等。
如圖1A所示,通信系統100可以包括無線傳輸/接收單元(WTRU)102a、102b、102c、102d、RAN 104/113、CN 106/115、公共交換電話網路(PSTN)108、網際網路110以及其他網路112,然而應該瞭解,所揭露的實施例設想了任意數量的WTRU、基地台、網路及/或網路元件。WTRU 102a、102b、102c、102d每一者可以是被配置為在無線環境中操作及/或通信的任何類型的裝置。舉例來說,WTRU 102a、102b、102c、102d任何一者都可以被稱為“站”及/或“STA”,其可以被配置為傳輸及/或接收無線信號、並且可以包括使用者設備(UE)、行動站、固定或行動用戶單元、基於訂用的單元、呼叫器、行動電話、個人數位助理(PDA)、智慧型電話、膝上型電腦、小筆電、個人電腦、無線感測器、熱點或Mi-Fi裝置、物聯網(IoT)裝置、手錶或其他可穿戴裝置、頭戴顯示器(HMD)、車輛、無人機、醫療設備及應用(例如遠端手術)、工業設備及應用(例如機器人及/或在工業及/或自動處理鏈環境中操作的其他無線裝置)、消費類電子裝置、以及在商業及/或工業無線網路上操作的裝置等等。WTRU 102a、102b、102c、102d中的任何一者可被可交換地稱為UE。
該通信系統100還可以包括基地台114a及/或基地台114b。基地台114a、114b的每一者可以是被配置為與WTRU 102a、102b、102c、102d中的至少一者無線地介接來促使其存取一個或複數通信網路(例如CN 106/115、網際網路110、及/或其他網路112)的任何類型的裝置。例如,基地台114a、114b可以是基地收發站(BTS)、節點B、e節點B、本地節點B、本地e節點B、gNB、NR節點B、網站控制器、存取點(AP)、以及無線路由器等等。雖然基地台114a、114b的每一者都被描述成了單一元件,然而應該瞭解,基地台114a、114b可以包括任何數量的互連基地台及/或網路元件。
基地台114a可以是RAN 104/113的一部分,該RAN 104/113還可以包括其他基地台及/或網路元件(未顯示),例如基地台控制器(BSC)、無線電網路控制器(RNC)、中繼節點等等。基地台114a及/或基地台114b可被配置為在稱為胞元(未顯示)的一個或複數載波頻率上傳輸及/或接收無線信號。這些頻率可以處於授權頻譜、無授權頻譜或是授權與無授權頻譜的組合中。胞元可以為相對固定或者有可能隨時間變化的特定地理區域提供無線服務覆蓋。胞元可被進一步分成胞元扇區。例如,與基地台114a相關聯的胞元可被分為三個扇區。因此,在一個實施例中,基地台114a可以包括三個收發器,即,一個收發器用於胞元的每一個扇區。在實施例中,基地台114a可以使用多輸入多輸出(MIMO)技術、並且可以為胞元的每一個扇區使用複數收發器。例如,波束成形可以用於在期望的空間方向上傳輸及/或接收信號。
基地台114a、114b可以經由空中介面116以與WTRU 102a、102b、102c、102d中的一者或多者進行通信,其中該空中介面可以是任何適當的無線通信鏈路(例如射頻(RF)、微波、釐米波、毫米波、紅外線(IR)、紫外線(UV)、可見光等等)。空中介面116可以使用任何適當的無線電存取技術(RAT)來建立。
更具體地說,如上所述,通信系統100可以是多重存取系統、並且可以使用一種或多種通道存取方案,例如CDMA、TDMA、FDMA、OFDMA以及SC-FDMA等等。例如,RAN 104/113中的基地台114a與WTRU 102a、102b、102c可以實施例如通用行動電信系統(UMTS)陸地無線電存取(UTRA)之類的無線電技術,其中該技術可以使用寬頻CDMA(WCDMA)來建立空中介面115/116/117。WCDMA可以包括如高速封包存取(HSPA)及/或演進型HSPA(HSPA+)之類的通信協定。HSPA可以包括高速下鏈(DL)封包存取(HSDPA)及/或高速UL封包存取(HSUPA)。
在實施例中,基地台114a以及WTRU 102a、102b、102c可以實施例如演進型UMTS陸地無線電存取(E-UTRA)之類的無線電技術,其中所述技術可以使用長期演進(LTE)及/或先進LTE(LTE-A)及/或先進LTE Pro(LTE-A Pro)來建立空中介面116。
在實施例中,基地台114a以及WTRU 102a、102b、102c可以實施可以使用新無線電(NR)建立空中介面116的無線電技術,例如NR無線電存取。
在實施例中,基地台114a以及WTRU 102a、102b、102c可以實施多種無線電存取技術。例如,基地台114a以及WTRU 102a、102b、102c可以一起實施LTE無線電存取以及NR無線電存取(例如使用雙連接(DC)原理)。因此,WTRU 102a、102b、102c使用的空中介面可以藉由多種類型的無線電存取技術及/或向/從多種類型的基地台(例如,eNB及gNB)發送的傳輸來表徵。
在其他實施例中,基地台114a以及WTRU 102a、102b、102c可以實施以下的無線電技術,例如IEEE 802.11(即,無線高保真(WiFi))、IEEE 802.16(即,全球互通微波存取(WiMAX))、CDMA2000、CDMA2000 1X、CDMA2000 EV-DO、暫行標準2000(IS-2000)、暫行標準95(IS-95)、暫行標準856(IS-856)、全球行動通信系統(GSM)、增強型資料速率GSM演進(EDGE)、以及GSM EDGE(GERAN)等等。
圖1A中的基地台114b可以例如是無線路由器、本地節點B、本地e節點B或存取點、並且可以使用任何適當的RAT來促成例如營業場所、住宅、車輛、校園、工業設施、空中走廊(例如供無人機使用)以及道路等等的局部區域中的無線連接。在一個實施例中,基地台114b與WTRU 102c、102d可以實施例如IEEE 802.11之類的無線電技術來建立無線區域網路(WLAN)。在實施例中,基地台114b與WTRU 102c、102d可以通過實施IEEE 802.15之類的無線電技術來建立無線個人區域網路(WPAN)。在再一個實施例中,基地台114b以及WTRU 102c、102d可使用基於蜂巢的RAT(例如WCDMA、CDMA2000、GSM、LTE、LTE-A、LTE-A Pro、NR等等)來建立微微胞元或毫微微胞元。如圖1A所示,基地台114b可以直連到網際網路110。因此,基地台114b不需要經由CN 106/115來存取網際網路110。
RAN 104/113可以與CN 106/115進行通信,該CN 106/115可以是被配置為向WTRU 102a、102b、102c、102d的一者或多者提供語音、資料、應用及/或網際網路協定語音(VoIP)服務的任何類型的網路。該資料可以具有不同的服務品質(QoS)需求,例如不同的流通量需求、潛時需求、容錯需求、可靠性需求、資料流通量需求、以及移動性需求等等。CN 106/115可以提供呼叫控制、記帳服務、基於移動位置的服務、預付費呼叫、網際網路連接、視訊分發等等、及/或可以執行使用者認證之類的高階安全功能。雖然在圖1A中沒有顯示,然而應該瞭解,RAN 104/113及/或CN 106/115可以直接或間接地與其他RAN進行通信,該其他RAN使用了與RAN 104/113相同的RAT、或使用了不同RAT。例如,除了與使用NR無線電技術的RAN 104/113連接之外,CN 106/115還可以與使用GSM、UMTS、CDMA 2000、WiMAX、E-UTRA或WiFi無線電技術的另一RAN(未顯示)通信。
CN 106/115還可以充當供WTRU 102a、102b、102c、102d存取PSTN 108、網際網路110及/或其他網路112的閘道。PSTN 108可以包括提供簡易老式電話服務(POTS)的電路交換電話網路。網際網路110可以包括使用了公共通信協定(例如傳輸控制協定/網際網路協定(TCP/IP)網際網路協定族中的TCP、使用者資料報協定(UDP)及/或IP)的全球性互連電腦網路裝置系統。該網路112可以包括由其他服務供應者擁有及/或操作的有線或無線通信網路。例如,該網路112可以包括與一個或複數RAN連接的另一個CN,其中該一個或複數RAN可以使用與RAN 104/113相同的RAT或不同RAT。
通信系統100中的一些或所有WTRU 102a、102b、102c、102d可以包括多模能力(例如WTRU 102a、102b、102c、102d可以包括在不同無線鏈路上與不同無線網路通信的複數收發器)。例如,圖1A所示的WTRU 102c可被配置為與可以使用基於蜂巢的無線電技術的基地台114a通信、以及與可以使用IEEE 802無線電技術的基地台114b通信。
圖1B是示出了範例性WTRU 102的系統圖。如圖1B所示,WTRU 102可以包括處理器118、收發器120、傳輸/接收元件122、揚聲器/麥克風124、小鍵盤126、顯示器/觸控板128、非可移記憶體130、可移記憶體132、電源134、全球定位系統(GPS)晶片組136及/或週邊設備138。應該瞭解的是,在保持符合實施例的同時,WTRU 102還可以包括前述元件的任何子組合。
處理器118可以是通用處理器、專用處理器、常規處理器、數位訊號處理器(DSP)、複數微處理器、與DSP核心關聯的一或複數微處理器、控制器、微控制器、專用積體電路(ASIC)、現場可程式閘陣列(FPGA)電路、其他任何類型的積體電路(IC)以及狀態機等等。處理器118可以執行信號編碼、資料處理、功率控制、輸入/輸出處理、及/或能使WTRU 102在無線環境中操作的其他任何功能。處理器118可以耦合至收發器120,收發器120可以耦合至傳輸/接收元件122。雖然圖1B將處理器118以及收發器120描述成單獨元件,然而應該瞭解,處理器118以及收發器120也可以一起集成在電子元件或晶片中。
傳輸/接收元件122可被配置為經由空中介面116以傳輸信號至基地台(例如,基地台114a)、或從基地台(例如,基地台114a)接收信號。舉個例子,在一個實施例中,傳輸/接收元件122可以是被配置為傳輸及/或接收RF信號的天線。例如,在另一實施例中,傳輸/接收元件122可以是被配置為傳輸及/或接收IR、UV或可見光信號的放射器/偵測器。在再一個實施例中,傳輸/接收元件122可被配置為傳輸及/或接收RF以及光信號。應該瞭解的是,傳輸/接收元件122可以被配置為傳輸及/或接收無線信號的任何組合。
雖然在圖1B中將傳輸/接收元件122描述為是單一元件,但是WTRU 102可以包括任何數量的傳輸/接收元件122。更具體地說,WTRU 102可以使用MIMO技術。因此,在一個實施例中,WTRU 102可以包括經由空中介面116以傳輸及接收無線信號的兩個或複數傳輸/接收元件122(例如複數天線)。
收發器120可被配置為對傳輸/接收元件122要傳輸的信號進行調變、以及對傳輸/接收元件122接收的信號進行解調。如上所述,WTRU 102可以具有多模能力。因此,收發器120可以包括允許WTRU 102經由多種RAT(例如NR以及IEEE 802.11)來進行通信的複數收發器。
WTRU 102的處理器118可以耦合到揚聲器/麥克風124、小鍵盤126及/或顯示器/觸控板128(例如液晶顯示器(LCD)顯示單元或有機發光二極體(OLED)顯示單元)、並且可以接收來自這些元件的使用者輸入資料。處理器118還可以向揚聲器/麥克風124、小鍵盤126及/或顯示器/觸控板128輸出使用者資料。此外,處理器118可以從諸如非可移記憶體130及/或可移記憶體132之類的任何適當的記憶體中存取資訊、以及將資料儲存至這些記憶體。非可移記憶體130可以包括隨機存取記憶體(RAM)、唯讀記憶體(ROM)、硬碟或是其他任何類型的記憶儲存裝置。可移記憶體132可以包括用戶身份模組(SIM)卡、記憶條、安全數位(SD)記憶卡等等。在其他實施例中,處理器118可以從那些並非實際位於WTRU 102的記憶體存取資訊、以及將資料儲存至這些記憶體,例如,此類記憶體可以位於伺服器或家用電腦(未顯示)。
處理器118可以接收來自電源134的電力、並且可被配置分發及/或控制用於WTRU 102中的其他元件的電力。電源134可以是為WTRU 102供電的任何適當裝置。例如,電源134可以包括一個或複數乾電池組(如鎳鎘(Ni-Cd)、鎳鋅(Ni-Zn)、鎳氫(NiMH)、鋰離子(Li-ion)等等)、太陽能電池以及燃料電池等等。
處理器118還可以耦合到GPS晶片組136,該GPS晶片組136可被配置為提供與WTRU 102的目前位置相關的位置資訊(例如經度以及緯度)。作為來自GPS晶片組136的資訊的補充或替代,WTRU 102可以經由空中介面116接收來自基地台(例如基地台114a、114b)的位置資訊、及/或根據從兩個或複數附近基地台接收的信號時序來確定其位置。應該瞭解的是,在保持符合實施例的同時,WTRU 102可以用任何適當的定位方法來獲取位置資訊。
處理器118還可以耦合到其他週邊設備138,其中該週邊設備可以包括提供附加特徵、功能及/或有線或無線連接的一個或複數軟體及/或硬體模組。例如,該週邊設備138可以包括加速度計、電子指南針、衛星收發器、數位相機(用於照片及/或視訊)、通用序列匯流排(USB)埠、振動裝置、電視收發器、免持耳機、藍牙®模組、調頻(FM)無線電單元、數位音樂播放器、媒體播放器、視訊遊戲機模組、網際網路瀏覽器、虛擬實境及/或增強現實(VR/AR)裝置、以及活動追蹤器等等。該週邊設備138可以包括一個或複數感測器,該感測器可以是以下的一者或多者:陀螺儀、加速度計、霍爾效應感測器、磁強計、方位感測器、鄰近感測器、溫度感測器、時間感測器、地理位置感測器、高度計、光感測器、觸摸感測器、磁力計、氣壓計、手勢感測器、生物測定感測器及/或濕度感測器。
WTRU 102可以包括全雙工無線電裝置,對於該無線電裝置,一些或所有信號(例如與用於UL(例如對傳輸而言)以及下鏈(例如對接收而言)的特定子訊框相關聯)的接收或傳輸可以是並行及/或同時的。全雙工無線電裝置可以包括經由硬體(例如扼流圈)或是經由處理器(例如單獨的處理器(未顯示)或是經由處理器118)的信號處理來減小及/或基本消除自干擾的干擾管理單元。在實施例中,WTRU 102可以包括傳輸及接收一些或所有信號(例如與用於UL(例如對傳輸而言)或下鏈(例如對接收而言)的特定子訊框相關聯)的半雙工無線電裝置。
圖1C是示出了根據實施例的RAN 104以及CN 106的系統圖。如上所述,RAN 104可以在空中介面116上使用E-UTRA無線電技術以與WTRU 102a、102b、102c進行通信。該RAN 104還可以與CN 106進行通信。
RAN 104可以包括e節點B 160a、160b、160c,然而應該瞭解,在保持符合實施例的同時,RAN 104可以包括任何數量的e節點B。e節點B 160a、160b、160c每一者都可以包括在空中介面116上與WTRU 102a、102b、102c通信的一個或複數收發器。在一個實施例中,e節點B 160a、160b、160c可以實施MIMO技術。因此,舉例來說,e節點B 160a可以使用複數天線以向WTRU 102a傳輸無線信號、及/或接收來自WTRU 102a的無線信號。
e節點B 160a、160b、160c每一者都可以關聯於特定胞元(未顯示)、並且可被配置為處理無線電資源管理決策、切換決策、UL及/或DL中的使用者排程等等。如圖1C所示,e節點B 160a、160b、160c彼此可以經由X2介面進行通信。
圖1C所示的CN 106可以包括移動性管理實體(MME)162、服務閘道(SGW)164以及封包資料網路(PDN)閘道(或PGW)166。雖然每一前述元件都被描述為是CN 106的一部分,然而應該瞭解,這些元件中的任一元件都可以由CN操作者之外的實體擁有及/或操作。
MME 162可以經由S1介面而連接到RAN 104中的e節點B 162a、162b、162c的每一者、並且可以充當控制節點。例如,MME 162可以負責認證WTRU 102a、102b、102c的使用者、執行承載啟動/停用、以及在WTRU 102a、102b、102c的初始連結期間選擇特定的服務閘道等等。MME 162可以提供用於在RAN 104與使用其他無線電技術(例如GSM及/或WCDMA)的其他RAN(未顯示)之間進行切換的控制平面功能。
SGW 164可以經由S1介面而連接到RAN 104中的e節點B 160a、160b、160c的每一者。SGW 164通常可以路由及轉發去往/來自WTRU 102a、102b、102c的使用者資料封包。SGW 164還可以執行其他功能,例如在eNB間的切換期間錨定使用者平面、在DL資料可供WTRU 102a、102b、102c使用時觸發傳呼、以及管理並儲存WTRU 102a、102b、102c的上下文等等。
SGW 164可以連接到PGW 146,該PGW可以為WTRU 102a、102b、102c提供封包交換網路(例如網際網路110)存取,以促成WTRU 102a、102b、102c與IP賦能的裝置之間的通信。
CN 106可以促成與其他網路的通信。例如,CN 106可以為WTRU 102a、102b、102c提供對電路切換式網路(例如PSTN 108)的存取,以促成WTRU 102a、102b、102c與傳統的陸線通信裝置之間的通信。例如,CN 106可以包括IP閘道(例如IP多媒體子系統(IMS)伺服器)或與之進行通信,並且該IP閘道可以充當CN 106與PSTN 108之間的介面。此外,CN 106可以為WTRU 102a、102b、102c提供針對該其他網路112的存取,該其他網路112可以包括其他服務供應者擁有及/或操作的其他有線及/或無線網路。
雖然在圖1A至圖1D中將WTRU描述為無線終端,然而應該想到的是,在某些代表性實施例中,此類終端可以使用(例如暫時或永久性)與通信網路的有線通信介面。
在代表性實施例中,該其他網路112可以是WLAN。
採用基礎架構基本服務集(BSS)模式的WLAN可以具有用於該BSS的存取點(AP)以及與該AP相關聯的一個或複數站(STA)。該AP可以存取或是介接到分散式系統(DS)、或是將訊務攜入及/或攜出BSS的另一類型的有線/無線網路。源自BSS外部且至STA的訊務可以經由AP到達並被遞送至STA。源自STA且至BSS外部的目的地的訊務可被發送至AP,以遞送到各自的目的地。在BSS內的STA之間的訊務可以經由AP來發送,例如在源STA可以向AP發送訊務,並且AP可以將訊務遞送至目的地STA的情況下。在BSS內的STA之間的訊務可被認為及/或稱為點到點訊務。該點到點訊務可以在源與目的地STA之間(例如在其間直接)用直接鏈路建立(DLS)來發送。在某些代表性實施例中,DLS可以使用802.11e DLS或802.11z通道化DLS(TDLS))。舉例來說,使用獨立BSS(IBSS)模式的WLAN可以不具有AP,並且在該IBSS內或是使用該IBSS的STA(例如所有STA)彼此可以直接通信。在這裡,IBSS通信模式有時可被稱為“特定(Ad-hoc)”通信模式。
在使用802.11ac基礎設施操作模式或類似的操作模式時,AP可以在固定通道(例如主通道)上傳輸信標。該主通道可以具有固定寬度(例如20 MHz的頻寬)或是經由傳訊動態設定的寬度。主通道可以是BSS的操作通道、並且可被STA用來與AP建立連接。在某些代表性實施例中,(例如在802.11系統中)可以實施具有衝突避免的載波感測多重存取(CSMA/CA)。對於CSMA/CA,包括AP的STA(例如每一個STA)可以感測主通道。如果特定STA感測到/偵測到及/或確定主通道繁忙,那麼該特定STA可以回退。在指定的BSS中,一個STA(例如只有一個站)可以在任何指定時間進行傳輸。
高流通量(HT)STA可以使用40 MHz寬的通道來進行通信(例如經由將20 MHz寬的主通道與20 MHz寬的相鄰或不相鄰通道進行組合以形成40 MHz寬的通道)。
超高流通量(VHT)STA可以支援20 MHz、40 MHz、80 MHz及/或160 MHz寬的通道。40 MHz及/或80 MHz通道可以藉由組合連續的20 MHz通道來形成。160 MHz通道可以藉由組合8個連續的20 MHz通道或者藉由組合兩個不連續的80 MHz通道(這種組合可被稱為80+80配置)來形成。對於80+80配置,在通道編碼之後,資料可被傳遞並經過分段解析器,該分段解析器可以將資料分成兩個流。在每一個流上可以單獨執行逆快速傅立葉轉換(IFFT)處理以及時域處理。該流可被映射在兩個80 MHz通道上,並且資料可以由一傳輸STA來傳輸。在一接收STA的接收器上,用於80+80配置的上述操作可以是相反的,並且組合資料可被發送至媒體存取控制(MAC)。
802.11af以及802.11ah支援1 GHz以下的操作模式。與802.11n以及802.11ac的通道操作頻寬以及載波相較,在802.11af以及802.11ah中使用的通道操作頻寬以及載波減少。802.11af在TV白空間(TVWS)頻譜中支援5 MHz、10 MHz以及20 MHz頻寬,並且802.11ah支援使用非TVWS頻譜的1 MHz、2 MHz、4 MHz、8 MHz以及16 MHz頻寬。依照代表性實施例,802.11ah可以支援儀錶類型控制/機器類型通信(MTC),例如巨集覆蓋區域中的MTC裝置。MTC裝置可以具有某種能力,例如包含了支援(例如只支援)某些及/或有限頻寬在內的受限能力。MTC裝置可以包括電池,並且該電池的電池壽命高於臨界值(例如用於保持很長的電池壽命)。
可以支援複數通道以及通道頻寬的WLAN系統(例如802.11n、802.11ac、802.11af以及802.11ah)包括了可被指定為主通道的通道。該主通道的頻寬可以等於BSS中的所有STA所支援的最大公共操作頻寬。主通道的頻寬可以由來自在BSS中操作的所有STA且支援最小頻寬操作模式的STA設定及/或限制。在802.11ah的範例中,即使BSS中的AP以及其他STA支援2 MHz、4 MHz、8 MHz、16 MHz及/或其他通道頻寬操作模式,但對支援(例如只支援)1 MHz模式的STA(例如MTC類型的裝置),主通道可以是1 MHz寬。載波感測及/或網路分配向量(NAV)設定可以取決於主通道的狀態。如果主通道繁忙(例如因為STA(其只支援1 MHz操作模式)對AP進行傳輸),那麼即使大多數的可用頻帶保持空閒並且可供使用,也可以認為整個可用頻帶繁忙。
在美國,可供802.11ah使用的可用頻帶是902 MHz到928 MHz。在韓國,可用頻帶是917.5 MHz到923.5 MHz。在日本,可用頻帶是916.5 MHz到927.5 MHz。依照國家碼,可用於802.11ah的總頻寬是6 MHz到26 MHz。
圖1D是示出了根據實施例的RAN 113以及CN 115的系統圖。如上所述,RAN 113可以在空中介面116上使用NR無線電技術以與WTRU 102a、102b、102c進行通信。RAN 113還可以與CN 115進行通信。
RAN 113可以包括gNB 180a、180b、180c,但是應該瞭解,在保持符合實施例的同時,RAN 113可以包括任何數量的gNB。gNB 180a、180b、180c每一者都可以包括一個或複數收發器,以經由空中介面116而與WTRU 102a、102b、102c通信。在一個實施例中,gNB 180a、180b、180c可以實施MIMO技術。例如,gNB 180a、180b可以使用波束成形以向及/或從gNB 180a、180b、180c傳輸及/或接收信號。因此,舉例來說,gNB 180a可以使用複數天線來向WTRU 102a傳輸無線信號、以及接收來自WTRU 102a的無線信號。在實施例中,gNB 180a、180b、180c可以實施載波聚合技術。例如,gNB 180a可以向WTRU 102a傳輸複數分量載波(未顯示)。這些分量載波的子集可以處於無授權頻譜上,而剩餘分量載波則可以處於授權頻譜上。在實施例中,gNB 180a、180b、180c可以實施協作多點(CoMP)技術。例如,WTRU 102a可以接收來自gNB 180a以及gNB 180b(及/或gNB 180c)的協作傳輸。
WTRU 102a、102b、102c可以使用與可縮放參數集(numerology)相關聯的傳輸來與gNB 180a、180b、180c進行通信。例如,對於不同的傳輸、不同的胞元及/或不同的無線傳輸頻譜部分,OFDM符號間距及/或OFDM子載波間距可以是不同的。WTRU 102a、102b、102c可以使用具有不同或可縮放長度的子訊框或傳輸時間間隔(TTI)(例如包含了不同數量的OFDM符號及/或持續不同的絕對時間長度)以與gNB 180a、180b、180c進行通信。
gNB 180a、180b、180c可被配置為與採用獨立配置及/或非獨立配置的WTRU 102a、102b、102c進行通信。在獨立配置中,WTRU 102a、102b、102c可以在不存取其他RAN(例如,e節點B 160a、160b、160c)下與gNB 180a、180b、180c進行通信。在獨立配置中,WTRU 102a、102b、102c可以使用gNB 180a、180b、180c中的一者或多者作為行動錨點。在獨立配置中,WTRU 102a、102b、102c可以使用無授權頻帶中的信號以與gNB 180a、180b、180c進行通信。在非獨立配置中,WTRU 102a、102b、102c會在與另一RAN(例如e節點B 160a、160b、160c)進行通信/連接的同時與gNB 180a、180b、180c進行通信/連接。舉例來說,WTRU 102a、102b、102c可以實施DC原理而基本同時地與一個或複數gNB 180a、180b、180c以及一個或複數e節點B 160a、160b、160c進行通信。在非獨立配置中,e節點B 160a、160b、160c可以充當WTRU 102a、102b、102c的行動錨點,並且gNB 180a、180b、180c可以提供附加的覆蓋及/或流通量,以服務WTRU 102a、102b、102c。
gNB 180a、180b、180c每一者都可以關聯於特定胞元(未顯示)、並且可以被配置為處理無線電資源管理決策、切換決策、UL及/或DL中的使用者排程、支援網路截割、雙連接、實施NR與E-UTRA之間的互通、路由使用者平面資料至使用者平面功能(UPF)184a、184b、以及路由控制平面資訊至存取及移動性管理功能(AMF)182a、182b等等。如圖1D所示,gNB 180a、180b、180c可以經由Xn介面彼此通信。
圖1D所示的CN 115可以包括至少一個AMF 182a、182b、至少一個UPF 184a、184b、至少一個對話管理功能(SMF)183a、183b、並且有可能包括資料網路(DN)185a、185b。雖然每一前述元件都被描述為是CN 115的一部分,但是應該瞭解,這些元件中的任一元件都可以被CN操作者之外的實體擁有及/或操作。
AMF 182a、182b可以經由N2介面而連接到RAN 113中的gNB 180a、180b、180c的一者或多者、並且可以充當控制節點。例如,AMF 182a、182b可以負責認證WTRU 102a、102b、102c的使用者、支援網路截割(例如處理具有不同需求的不同PDU對話)、選擇特定的SMF 183a、183b、管理註冊區域、終止NAS傳訊、以及移動性管理等等。AMF 182a、182b可以使用網路截割,以基於WTRU 102a、102b、102c使用的服務類型來定製為WTRU 102a、102b、102c提供的CN支援。例如,針對不同的用例,可以建立不同的網路切片,例如依賴於超可靠低潛時 (URLLC)存取的服務、依賴於增強型大規模行動寬頻(eMBB)存取的服務、及/或用於機器類通信(MTC)存取的服務等等。AMF 182可以提供用於在RAN 113與使用其他無線電技術(例如,LTE、LTE-A、LTE-A Pro及/或例如WiFi之類的非3GPP存取技術)的其他RAN(未顯示)之間切換的控制平面功能。
SMF 183a、183b可以經由N11介面而連接到CN 115中的AMF 182a、182b。SMF 183a、183b還可以經由N4介面而連接到CN 115中的UPF 184a、184b。SMF 183a、183b可以選擇及控制UPF 184a、184b、並且可以經由UPF 184a、184b來配置訊務路由。SMF 183a、183b可以執行其他功能,例如管理及分配UE IP位址、管理PDU對話、控制策略實施以及QoS、以及提供下鏈資料通知等等。PDU對話類型可以是基於IP的、不基於IP的、以及基於乙太網路的等等。
UPF 184a、184b可以經由N3介面而連接RAN 113中的gNB 180a、180b、180c的一者或多者,這樣可以為WTRU 102a、102b、102c提供對封包交換網路(例如網際網路110)的存取,以促成WTRU 102a、102b、102c與IP賦能的裝置之間的通信,UPF 184、184b可以執行其他功能,例如路由及轉發封包、實施使用者平面策略、支援多宿主PDU對話、處理使用者平面QoS、快取下鏈封包、以及提供移動性錨定等等。
CN 115可以促成與其他網路的通信。例如,CN 115可以包括充當CN 115與PSTN 108之間的介面的IP閘道(例如IP多媒體子系統(IMS)伺服器)、或者可以與該IP閘道進行通信。此外,CN 115可以為WTRU 102a、102b、102c提供針對其他網路112的存取,該其他網路112可以包括其他服務供應者擁有及/或操作的其他有線及/或無線網路。在一個實施例中,WTRU 102a、102b、102c可以經由與UPF 184a、184b介接的N3介面以及介於UPF 184a、184b與本地資料網路(DN) 185a、185b之間的N6介面以經由UPF 184a、184b而連接到DN 185a、185b。
鑒於圖1A至圖1D以及圖1A至圖1D的對應描述,在這裡對照以下的一項或多項描述的一個或複數或所有功能可以由一個或複數模擬裝置(未顯示)來執行:WTRU 102a-d、基地台114a-b、e節點B 160a-c、MME 162、SGW 164、PGW 166、gNB 180a-c、AMF 182a-b、UPF 184a-b、SMF 183a-b、DN185 a-b及/或這裡描述的一個或複數其他任何裝置。這些模擬裝置可以是被配置為仿真這裡描述的一個或複數或所有功能的一個或複數裝置。舉例來說,這些模擬裝置可用於測試其他裝置、及/或用於模擬網路及/或WTRU功能。
模擬裝置可被設計為在實驗室環境及/或操作者網路環境中實施其他裝置的一項或多項測試。例如,該一個或複數模擬裝置可以在被完全或部分作為有線及/或無線通信網路一部分實施及/或部署的同時執行一個或複數或所有功能,以測試通信網路內的其他裝置。該一個或複數模擬裝置可以在被暫時作為有線及/或無線通信網路的一部分實施/部署的同時執行一個或複數或所有功能。該模擬裝置可以耦合(例如,直接耦合)到另一裝置以執行測試、及/或可以使用空中無線通信來執行測試。
一個或複數模擬裝置可以在未被作為有線及/或無線通信網路一部分實施/部署的同時執行包括所有功能的一個或複數功能。例如,該模擬裝置可以在測試實驗室及/或未被部署(例如測試)的有線及/或無線通信網路的測試場景中使用,以實施一個或複數元件的測試。該一個或複數模擬裝置可以是測試裝置。該模擬裝置可以使用直接的RF耦合及/或經由RF電路(例如,該電路可以包括一個或複數天線)的無線通信來傳輸及/或接收資料。
揭露了用於提供具有重複的PUSCH傳輸的技術。WTRU可以接收符號配置,其中被表明為上鏈(UL)的符號可以被用於具有重複的URLLC PUSCH傳輸。WTRU可以接收UL許可,其具有用於符號重配置的專用SFI以及識別不可用資源的資源圖。WTRU可以確定符號以及該符號內的資源,以傳輸避免衝突的URLLC PUSCH重複。
在無線系統(例如,諸如用於5G的NR)中,可以對用於傳輸上鏈資料的實體上鏈共用通道(PDCCH)以及其經由實體下鏈控制通道(PDCCH)的排程採用一結構以及設計。
在NR中,對於資料傳輸,傳輸塊(TB)可以包括由一個或複數碼塊(CB)構成的資料傳輸單元。CB可以包括與錯誤校正碼的塊以及CRC相關聯的資料部分。碼塊組(CBG)可以包括可以與ACK-NACK的位元相關聯的一組CB。傳輸塊可以包括一個或複數CBG。每TB的CBG的最大數量可以藉由較高層傳訊來配置。
在無線系統(例如NR以及LTE)中,資料傳輸一般可由gNB例如使用下鏈控制資訊(DCI)來動態排程,其中該下鏈控制資訊可由實體下鏈控制通道(PDCCH)來傳輸。
可以藉由DCI來排程用於實體上鏈共用通道(PUSCH)的時域指派。可以提供開始以及長度指示符值(SLIV)。可以應用以下中的一者或多者。
WTRU傳輸PUSCH的時槽可以由K2 確定為
Figure 02_image001
,其中n 可以是具有該排程DCI的時槽。K2可以基於PUSCH的參數集。
Figure 02_image003
以及
Figure 02_image005
可以分別是PUSCH以及PDCCH的子載波間距配置。
相對於時槽開始的開始符號S、以及從分配給PUSCH的符號S開始計數的連續符號的數量L可以從索引列的SLIV確定。可以應用以下中的一者或多者。如果
Figure 02_image007
,則
Figure 02_image009
。如果
Figure 02_image011
,則
Figure 02_image013
,其中
Figure 02_image015
PUSCH映射類型可以被設定為由索引列給出的類型A或類型B。
WTRU可以將表1中定義的S 以及L 組合視為有效的PUSCH分配。 表1
PUSCH 映射類型 普通循環前綴 擴展循環前綴
S L S+L S L S+L
類型A 0 {4,…,14} {4,…,14} 0 {4,…,12} {4,…,12}
類型B {0,…,13} {1,…,14} {1,…,14} {0,…,12} {1,…,12} {1,…,12}
在5G NR中,可以使用跳頻作為PUSCH傳輸的選項。可以應用以下中的一者或多者。
藉由分別在PUSCH-Config(PUSCH-配置)或ConfiguredGrantConfig(配置的許可配置)中提供的較高層參數FrequencyHopping(跳頻),WTRU可以被配置為進行例如所排程的或配置的PUSCH傳輸的跳頻。兩個跳頻模式之一可被配置:時槽內跳頻,適用於單一時槽;以及多時槽PUSCH傳輸。時槽間跳頻可以適用於多時槽PUSCH傳輸。
在資源分配類型1的情況下,無論是否可以為PUSCH傳輸賦能變換預編碼,WTRU都可以執行PUSCH跳頻。例如,如果各自的偵測到的DCI格式中或隨機存取回應UL許可中的跳頻欄位可以被設定為1,或者如果對於具有配置的許可的類型1 PUSCH傳輸,較高層參數FrequencyHoppingOffset(跳頻偏移)可被提供,則WTRU可以執行PUSCH跳頻;否則,可以不執行PUSCH跳頻。如果可以針對PUSCH賦能變換預編碼以及跳頻,則可以執行資源元素(RE)映射。可以應用以下中的一者或多者:調變符號可以首先被映射在子載波上,然後調變符號可以被映射在頻跳內的變換預編碼符號上,然後調變符號可以被映射在佔用不同PRB集合的頻跳上。
對於由DCI格式0_0/0_1排程的PUSCH或者基於類型2配置的UL許可且針對資源分配類型1的PUSCH,可以藉由例如在PUSCH-Config中的較高層參數frequencyHoppingOffsetLists(跳頻偏移列表)來配置頻率偏移。可以應用以下中的一者或多者。如果活動頻寬部分(BWP)的大小可以小於50個實體資源塊(PRB),則可以在該UL許可中表明兩個較高層配置的偏移其中之一。如果該活動BWP的大小可以等於或大於50個PRB,則可以在該UL許可中表明四個較高層配置的偏移其中之一。
對於基於類型1配置的UL許可的PUSCH,該頻率偏移可以由例如在rrc-ConfiguredUplinkGrant(rrc-配置的上鏈許可)中的較高層參數FrequencyHoppingOffset提供。
每一跳中的開始RB可以藉由(1)計算。
Figure 02_image017
(1)
參考(1),可以應用以下中的一者或多者:i =0以及i =1可以分別包括第一跳以及第二跳;
Figure 02_image019
可以包括UL BWP內的開始RB,如從資源分配類型1的資源塊指派資訊所計算的;並且
Figure 02_image021
可以包括兩個頻跳之間的頻率偏移(以RB為單位)。
如果可以配置時槽內跳頻,則該第一跳中的符號數量可以由
Figure 02_image023
計算,該第二跳中的符號數量可以由
Figure 02_image025
計算,其中
Figure 02_image027
可以包括一個時槽中的PUSCH傳輸的長度(以OFDM符號為單位)。
在時槽間跳頻的情況下,時槽期間的開始RB可以藉由(2)來計算。
Figure 02_image029
(2)
參考(2),可以應用以下中的一者或多者:
Figure 02_image031
可以包括無線電訊框內的目前時槽號,其中可以發生多時槽PUSCH傳輸;
Figure 02_image033
可以包括UL BWP內的開始RB,如從資源分配類型1的資源塊指派資訊所計算的;並且
Figure 02_image021
可以包括兩個頻跳之間的頻率偏移(以RB為單位)。
可以提供與PUSCH傳輸相關聯的技術。
對於基於許可的PUSCH傳輸,可以不允許PUSCH傳輸實例(例如,單一PUSCH傳輸實例)跨越時槽邊界。在範例中,UL許可可以在時槽(例如,單一時槽)中或者在連續可用的時槽中跨越時槽邊界來排程兩個或更複數PUSCH重複。可以應用以下中的一者或多者:微時槽級重複、多段傳輸或合併的微時槽以及多段傳輸。
可以執行PUSCH傳輸的微時槽級重複。可以應用以下中的一者或多者。一個或複數時域資源可以被確定以用於基於許可的PUSCH傳輸的微時槽級重複。例如,DCI中的時域資源指派欄位可以表明用於重複(例如,第一次重複)的資源。例如,可以至少基於用於該第一次重複的資源以及該符號的UL/DL方向,來導出用於該剩餘重複的時域資源。重複(例如,每次重複)可以佔用連續的符號。用於微時槽級重複的跳頻可以支援(例如,可以至少支援) PUSCH重複間跳頻以及時槽間跳頻。
可以執行多段PUSCH傳輸。可以應用以下中的一者或多者。可以針對多段基於許可的PUSCH傳輸確定一個或複數時域資源。DCI中的時域資源指派欄位可以表明開始符號以及重複(例如,所有重複)的傳輸持續時間。對於用於多段傳輸的時槽(例如,單一時槽)內的傳輸:如果在時槽內可能有多於一個UL時段(其中每個UL時段可以是如WTRU所確定的用於潛在UL傳輸的時槽內連續符號集合的持續時間),則重複(例如,單一重複)可以在一個UL時段內,並且該重複(例如,每個重複)可以佔用連續符號;並且如果在時槽內不存在多於一個UL時段,則可以在時槽內傳輸單一PUSCH重複。用於多段傳輸的跳頻可以支援(例如,可以至少支援)時槽間跳頻。
可以執行合併的微時槽以及多段PUSCH傳輸。可以應用以下中的一者或多者。可以使用以下來支援(例如,一個)時槽中的一個或複數實際PUSCH重複、或者連續可用的時槽中跨時槽邊界的兩個或更複數實際PUSCH重複:用於動態PUSCH傳輸的(例如,一個) UL許可、以及用於所配置的許可PUSCH傳輸的(例如,一個)所配置的許可配置。合併的微時槽以及多段PUSCH傳輸可以(例如,進一步)包括以下中的一者或多者。由gNB傳訊的重複的次數可以表示“標稱”重複次數。實際重複次數可以大於該標稱次數。例如,可以針對動態PUSCH傳輸以及類型2配置的許可PUSCH傳輸動態地或半靜態地傳訊重複的次數。DCI中的時域資源指派(TDRA)欄位或類型1配置的許可中的TDRA參數可表明用於第一“標稱”重複的資源。用於剩餘重複的時域資源可被導出,例如,可以至少基於用於第一次重複的資源以及符號的UL/DL方向來導出。例如,該時域資源可以從交互作用(例如,基於時槽格式指示符(SFI))中導出,這可以使得在UL以及DL中導出不同的時域資源。如果“標稱”重複跨越時槽邊界或DL/UL切換點,則可以將該“標稱”重複劃分成複數PUSCH重複,例如其中在時槽中的(例如,每個) UL時段中具有(例如,一個) PUSCH重複。可以提供在一些條件下(例如,如果剩餘持續時間可能太小,例如,由於劃分而很小)對重複的處理。解調參考信號(DMRS)可以不在複數PUSCH重複上被共用。最大TBS大小可以增加或不增加。L可以與可大於14的值相關聯,S+L的值可以大於14。對於FFS,TDRA的位元寬度可以高達4位元。在範例中,不同的重複可具有相同或不同的冗餘版本(RV)。
在無線系統(例如,5G NR以及LTE)中,PUSCH上的上鏈資料傳輸可以由(例如,由PDCCH發送的)DCI排程。為了增強可靠性,可以支援複數時槽上的PUSCH重複。然而,在某些設計中,可以支援在不同時槽中以相同的時間分配樣式(例如,在所分配的符號方面)進行重複。對於超可靠低潛時通信(URLLC)應用,PUSCH可以支援更高的可靠性以及更低的潛時。可以執行PUSCH重複,使得PUSCH提供更高的可靠性及/或更低的延遲。
PUSCH傳輸可以包括以下中的一者或多者。UL許可可以支援在連續的可用時槽中排程兩個或更複數PUSCH重複,其中每個時槽中有一個重複、並且可能具有不同的開始符號及/或持續時間(例如,多段傳輸)。
可以提供用於在多段傳輸中進行時間資源指派的(一個或複數)實施方式,使得該多段傳輸有效地適應不同的開始符號及/或持續時間。可以排程PUSCH。UL許可可以支援排程兩個或更複數PUSCH重複,該兩個或更複數PUSCH重複可以在一時槽中、或者跨越在連續可用時槽中(例如,基於微時槽的重複)的時槽邊界。
可以在連續的微時槽上執行重複。圖2A示出了一個範例,其中重複可在連續的微時槽上執行。
DCI中的時域資源指派欄位可表明用於第一次重複以及佔用連續符號的每一重複的資源。這可以由開始以及長度指示符(SLIV)以及重複因數(K)來表示,其中S =時槽內的開始符號,L =重複的長度,並且K =重複的次數。這種方案允許跨越時槽邊界的重複。用於剩餘重複的時域資源可以基於用於該第一次重複的資源以及該符號的UL/DL方向而被導出。
在範例中,在時槽中可能沒有任何或足夠的UL符號(例如,以創建額外的微時槽)來實現重複的傳輸。可以確定UL/DL方向。
可以為合併的微時槽以及多段PUSCH傳輸提供以下中的一者或多者。可提供一種機制,其使用動態UL符號作為由SFI在分離的群組公共PDCCH (GC-PDCCH)中傳訊的動態符號,該分離的群組公共PDCCH可能不具有與傳訊URLLC傳輸的DCI相同的可靠性。在範例中,可以不提供(例如,經由SFI)傳訊UL/DL符號結構的機制。
UL URLLC可以使用PUSCH聚合(例如,重複),例如用於增加可靠性。可以允許微時槽及/或多段聚合(例如,每時槽具有可變位置的重複、每時槽具有可變持續時間的重複) (例如,為了減少的延遲)。WTRU可以確定何時傳輸該重複。所配置的UL符號以及藉由時槽格式指示符(SFI)動態地改變為UL的可變符號可以用於該重複。該SFI可以在群組公共PDCCH中被提供。該SFI可以應用於一個或複數連續時槽。
SFI可靠性對於UL URLLC可能是一個問題。SFI可靠性req’t (10^-1)可以低於URLLC UL許可可靠性req’t (10^-6)。傳輸衝突可能降低性能。如果WTRU傳輸PUSCH重複,則如果該PUSCH重複與來自另一WTRU的傳輸(例如SRS、PUCCH、PUSCH)重疊,則性能可能降低。在gNB已經成功接收PUSCH之後繼續重複可能會浪費資源。
如果重複PUSCH傳輸,WTRU可以避免與其他WTRU的傳輸衝突、減少資源浪費、及/或可靠地獲得SFI。
來自相同時段或其它時段及/或過渡時段的例如SRS、PUCCH、PUSCH之類的信號可能無法被避免(例如,可能導致干擾)。在範例中,來自相同時段或其他時段及/或過渡時段的例如SRS、PUCCH、PUSCH之類的信號可以對某些WTRU (例如,URLLC WTRU)造成干擾,這可以在其他WTRU處造成干擾(例如災難性干擾)。可以提供附加的傳訊。
多分段可能導致短片段(例如,UL時段),其具有不合理的高DMRS開銷。可以提供技術來減輕短片段的影響。
gNB可以在傳輸的重複完成之前終止它們。可以提供使gNB能夠發送終止信號的技術。
參考符號可以用於表示一符號,例如一複數,其可以是固定的且已知的並且可以用作導頻。參考信號可用於表示在處理該參考符號之後產生的時域信號。例如(例如,在OFDM中),該參考符號可以包括可以被饋送到IDFT塊中的複數,而該參考信號可以包括該IDFT塊的輸出。一時槽可以包括時間網格中的一單元,該單元包括一個或複數(例如14個) OFDM符號。下鏈控制資訊(DCI)可以包括可以在PDCCH上為使用者或使用者組發送的位元集合。資源元素(RE)可以包括子載波上的OFDM符號,並且資源元素組(REG)可以指RE組,其可以用作控制通道元素(CCE)的構建塊。CCE可以向使用者指派資源元素。可以被分組在一起並且與預編碼器相關聯的時間或頻率上的相鄰REG可以被稱為REG束。如本文所述,NR-REG、NR-CCE以及NR-PDCCH可包括REG、CCE以及PDCCH (例如,對於5G中的新無線電(NR))。如本文所述,WTRU以及使用者可以互換使用及/或可以指相同的事物。如本文所述,g節點B以及gNB可以互換使用及/或可以指相同的事物。控制資源集(CORESET)可以包括資源元素集,其可以用於下鏈控制通道。該CORESET可以由該CORESET的頻率資源以及該CORESET的時間長度(例如,按照符號)以及該CORESET的REG束的類型來配置。搜尋空間(例如,或搜尋空間集合)可包括可由WTRU或WTRU組監視(例如,在PDCCH的盲偵測期間)的PDCCH候選者集合。碼塊(CB)可以包括可以與錯誤校正碼的塊以及CRC相關聯的資料的一部分。碼塊組(CBG)可以包括可以與ACK-NACK的單一位元相關聯的一組CB。傳輸塊(TB)可以包括由一個或複數CB組成的資料傳輸單元。開始以及長度指示符值(SLIV)可以包括可以用於資料傳輸的時域分配的參數。
可以提供多段傳輸。可以利用針對開始以及長度指示符值(SLIV)的適應性映射來執行多段PUSCH傳輸。可以用一個或複數(例如,複數) SLIV來執行多段PUSCH傳輸。
可以執行多段PUSCH傳輸。可以應用以下中的一者或多者。
在範例中,PUSCH重複可以在不同時槽中用不同時間資源分配來執行。
多段PUSCH傳輸可以包括用於SLIV的適應性映射。可以應用以下中的一者或多者。PUSCH傳輸可以在不同的時槽中被重複,例如,其具有不同的開始符號以及長度,其可以由相同的SLIV表明。用於該PUSCH的第一次傳輸的SLIV可以被映射到時槽中的PUSCH傳輸的開始以及長度(例如,根據預定義的規則)。針對該PUSCH(例如,以及稍後的重複)的重複(例如,第二次重複)的時間資源分配可以基於不同的規則。
S2 (例如,PUSCH的第二次重複的開始符號)可被映射到某些數目,這些數目可被限於某一範圍(例如,以提供用於第二次重複的接收的更低潛時)。
圖2B示出了其中開始符號可以適於重複(例如,以降低延遲)的範例。S2可從值S確定,該值S可對應於SLIV (例如,如圖2B所示)。可以應用以下中的一者或多者。如果
Figure 02_image007
,則S2= S mod 7= (SLIV mod 14) mod 7。如果
Figure 02_image011
,則S2=S。
在範例中,如果L<7,則可以從SLIV映射S2,使得避免省略PUSCH重複(例如,由於不一致的時槽格式)。例如,如果可以由DCI在時槽中為PUSCH傳輸指派的符號中的一者或多者可以被指定(例如,也被指定)為時槽格式中的DL符號(例如,由半靜態時槽格式指示符(SFI)或動態SFI指定,其可以由群組公共DC經由群組公共PDCCH而被傳訊),則可能出現不一致的時槽格式。S2可以包括值(S mod 7)或(S mod 7) +7,其中S可以對應於所排程的SLIV (例如,基於預定規則)。S2的值可以取決於(S mod 7)或(S mod 7) +7中的哪一者可以與對應於該時槽的SFI一致。如果(S mod 7)以及(S mod 7) +7可以與SFI一致,則S2可包括值(S mod 7)。
在範例中,一個或複數值(例如,兩個值,S1= f1(S)以及S2= f2(S))可從S (例如,從SLIV獲得的開始值)獲得。在奇數次傳輸(例如,第一次、第三次、第五次等傳輸)中,S1可以是預設開始符號。在偶數次傳輸(例如,或奇數次重複)中,S2可以是預設開始符號。如果SFI可能與預設開始符號不一致(例如,S1S2 ,這取決於其可能是奇數次傳輸還是偶數次傳輸),則可以使用另一開始符號(例如,S2 可以用於奇數次傳輸,而S1 可以用於偶數次傳輸)。圖3示出了與適應性開始符號相關聯的範例,該適應性開始符號可以從(例如,單一) SLIV獲得。
例如,可以利用一個或複數(例如,複數) SLIV來執行多段PUSCH傳輸。可以應用以下中的一者或多者。可以傳訊傳輸重複的開始及/或長度。例如,可以使用複數SLIV (例如,每個重複一SLIV)以傳訊針對PUSCH的不同重複(例如,不同時槽上的PUSCH)的不同開始及/或長度。PUSCH可以利用用於SLIV的向量來排程,該向量可以表明用於不同重複的不同值(例如,代替用於這些重複的一個SLIV值)。可以將SLIV到重複(例如,時間上的每個重複)的開始(S)以及長度(L)的映射標準化。可以應用以下中的一者或多者。如果
Figure 02_image007
,則
Figure 02_image009
。如果
Figure 02_image011
,則
Figure 02_image013
,其中
Figure 02_image015
PUSCH傳輸可以利用一個或複數(例如,複數) SLIV來排程。這些SLIV可以被排序(例如,可以具有索引,或被包括在向量中)。可以基於可以與對應時槽格式相容的第一SLIV來選擇活動SLIV (例如,在每個時槽中) (例如,SFI可以不將SLIV的分配符號表示為DL符號)。
在範例中,可以與用於第一次傳輸的時槽格式相容的SLIV的有序集合中的第一SLIV可以表明該第一次傳輸的開始以及長度。稍後的重複可以使用可以與對應時槽的格式相容的第一未使用的SLIV。例如,SLIV的有序集合可以被循環移位(例如,在每個傳輸之後)。如果PUSCH傳輸可以被排程為具有複數SLIV (例如,SLIV1、SLIV2、SLIV3、SLIV4)以及兩次重複(例如,總共三次傳輸),則可以應用以下中的一者或多者。可與第一時槽的SFI相容的有序集合(例如,SLIV1、SLIV2、SLIV3、SLIV4)中的第一SLIV1可表明第一次傳輸的開始以及長度。可與第二時槽的SFI相容的有序集合(SLIV2、SLIV3、SLIV4、SLIV1)中的第一SLIV可表明第二次傳輸(例如,第一次重複)的開始以及長度。可與第三時槽的SFI相容的有序集合(SLIV3、SLIV4、SLIV1、SLIV2)中的第一SLIV可表明第三次傳輸(例如,第二次重複)的開始以及長度。
SLIV的有序集合可以被排程(例如,由DCI顯式地排程)。SLIV的有序集合中的第一值(例如,SLIV1)可由DCI表明(例如,由該DCI顯式地表明),並且SLIV的該有序集合中的其它值可例如基於該第一SLIV以及預定義規則來確定。圖4示出了用於適應性SLIV選擇的範例WTRU實施。
可以提供傳輸的微時槽重複。可以針對各自的重複,以相似(例如,相同)的長度來執行傳輸的微時槽重複。可以針對各個重複以可變長度執行傳輸的微時槽重複。在範例中,PUSCH傳輸的微時槽重複可以利用跳頻來執行。在範例中,PUSCH傳輸的微時槽重複可以利用DMRS共用以及DMRS子集選擇來執行。
可以針對PUSCH傳輸執行微時槽重複。可以用相同的長度傳輸微時槽重複。可以應用以下中的一者或多者。
微時槽重複可以包括相同的重複長度(L)。WTRU可以使用例如SFI以及UL許可(例如,單一UL許可)的組合來選擇用於傳輸的資源。WTRU可以選擇以下的連續集合:在開始符號之後的L個連續上鏈(U)或可變(F)符號。WTRU可以跳過上鏈(U)或可變(F)符號的集合(例如,任何集合),該集合的數量小於UL許可可以請求的重複長度(L)。WTRU可以移動到下一個資源(例如,下一個正確大小的資源導致非連續的微時槽,每個微時槽包括連續的符號)。圖5示出了微時槽重複包括相同重複長度(L)的範例。參考圖5,可以應用以下中的一者或多者:L = 4,K = 4,時槽1的SFI可以導致第一次與第二次重複之間的(例如,一個)間隙(例如,對於DL符號以及F符號,以允許符號切換),並且可以不使用孤立的最後符號。時槽2中的SFI可能導致一間隙。
WTRU可以使用例如SFI指示符以及UL許可參數的組合以:執行時槽是否具有微時槽重複能力的快速估計、及/或(例如,向gNB)表明覆蓋(override)微時槽重複參數的請求。
現在參考圖6B,可以應用以下中的一者或多者。例如,如果時槽支援基於SFI的請求長度的(例如,多於一個)微時槽,則該時槽可以支援微時槽重複,這可以在圖6B中針對微時槽大小2、4以及7來說明。在範例中,給定SFI7,裝置(例如,WTRU或STA)可以確定(例如,基於圖6B確定)時槽(例如,相同時槽)內的複數微時槽可能不被支援(例如,給定開始位置S)。該裝置可以確定(例如,基於圖6B確定)該裝置可以等待(例如,可以等待整個時槽)以開始第一次傳輸。該裝置可以發送排程請求(SR),該排程請求(SR)可以包括針對較高優先序傳輸的請求。
基於UL許可以及所接收到的SFI,WTRU可以識別該WTRU能夠滿足傳輸特性(例如,超可靠性以及潛時要求)的概率、並向另一裝置(例如,gNB)傳輸請求。例如,WTRU可以傳輸對(例如在目前UL許可參數中)覆蓋的請求。
WTRU可能不在某個微時槽(例如,沒有足夠資源的微時槽)上傳輸,這可能導致重傳的總數小於UL許可定義的數量(例如,如圖6A所示)。圖6A示出了可以跳過沒有足夠資源的微時槽的範例。
可以提供可變長度的微時槽重複。可以應用以下中的一者或多者。
例如,微時槽重複可以包括可變長度,以允許填充不同大小的資源。WTRU可以使用例如SFI以及UL許可的組合以選擇用於傳輸的資源。WTRU可以在開始符號之後選擇L個連續上鏈(U)符號或可變(F)符號的連續集合。WTRU可以使用以下中的一者或多者將資訊適配在資源內,而不是跳過包括小於UL許可所請求的重複長度(L)的數量的U符號或F符號的集合:截斷或速率匹配;或預先配置的最小可允許長度(例如,複數SLIV或每SLIV的複數長度)。
如本文所述,WTRU可以藉由在資源內進行速率匹配或截斷傳輸以將沒有足夠資源的微時槽適配到可用資源。圖7A及圖7B示出了在沒有足夠資源的微時槽上截斷傳輸的範例。
如本文所述,WTRU可以被配置為具有WTRU可以在其中傳輸重複的最小可允許長度。在範例中,WTRU可以被配置有一個或複數(例如複數離散的) SLIV值,這可以使得WTRU能夠選擇封包以在資源上發送(例如基於所識別的資源,動態地選擇最佳封包來發送(見圖8))。圖8示出了與用於重複的靈活可允許長度相關聯的範例。如圖8所示,WTRU可以基於可用資源來(例如即時地)截斷或速率匹配傳輸,也可以不基於可用資源來(例如即時地)截斷或速率匹配傳輸。WTRU可以被配置為具有一個或複數長度(例如較佳的最大長度、最小長度以及在有限資源的情況下的回退長度)。在範例中,可以跳過可能小於最小長度的資源。可以應用以下中的一者或多者。
WTRU可以向gNB發送SR (例如URLLC SR)。例如,該SR可以表明可靠性以及潛時要求。WTRU可以接收用於時槽(例如目前時槽)的SFI。WTRU可以監視PDCCH並且可以解碼用於PUSCH重複的DCI,其可以表明UL許可。該DCI可以表明以下中的一者或多者:許可的開始、較佳的許可長度、回退許可長度及/或要在其中進行傳輸的時槽的最大數目。WTRU可以例如基於許可的開始、許可的長度以及SFI來估計重複相容性。如果WTRU估計重複可以是相容的,則WTRU可以繼續傳輸。如果WTRU估計重複可能不相容,則WTRU可以發送信號至gNB,該信號可以請求並提高優先序/可靠性。
WTRU可以建構用於時槽(例如目前時槽)的PUSCH分配。WTRU可以創建用於重複的符號分配。
該分配以包括(例如,針對每次重複的)連續符號的大小相等的非連續分配。可以應用以下中的一者或多者。WTRU可以在一個或複數隨後的時槽中進行傳輸,直到可以執行所配置的重複次數。WTRU可以在一個或複數隨後的時槽中進行傳輸,直到達到時槽參數的數量(例如,最大數量)。WTRU可以跳過一個或複數資源/重複(例如,不具有足夠資源的任何資源/重複)。
WTRU可以創建用於重複的符號分配。該分配可以包括用於每次重複的連續符號的大小不等的非連續分配。可以應用以下中的一者或多者。WTRU可以在一個或複數隨後的時槽中進行傳輸,直到可以執行所配置的重複次數。WTRU可以在一個或複數隨後的時槽上進行傳輸,直到達到時槽參數的最大數目。WTRU可以速率匹配、截斷或使用資源/重複(例如,不具有足夠資源的任何資源/重複)的最小長度。
可以提供具有微時槽重複的DMRS共用。
在微時槽重複(例如,每個微時槽重複)內,WRTU可以(例如,顯式地或隱式地)表明與前一個微時槽的DMRS共用。在顯式DMRS共用中,WTRU可以被指派一組DMRS索引。與其接下來的N 個微時槽執行DMRS共用的WTRU可以在包括DMRS的微時槽上發送包括關於N 的指示的DMRS。該接下來的N 個微時槽可以在沒有DMRS下發送資訊。在隱式DMRS共用中,WTRU可以基於參數來假定DMRS共用,該參數可以包括以下參數中的一者或多者:微時槽長度(例如,如果L = 2或4,則可以假定DMRS共用。如果L = 7,則可以關閉DMRS共用);重複之間的間隔(例如,其可以是gNB配置的或基於通道修改估計器(諸如都卜勒估計器)而被配置的);及/或可用資源是否小於預定義參數。
如果開啟DMRS共用,則DMRS共用可能影響跳頻(FH),例如,因為跳頻資源可能與單獨的DMRS相關聯。與前一微時槽共用DMRS的微時槽可將其跳頻樣式設定為類似於(例如,等同於)前一微時槽的跳頻樣式。在範例中,如果FH指示符被設定為真(例如打開),則WTRU可以確定(例如隱式地確定) DMRS共用可能是不活動的。
圖9示出了與跳頻及DMRS共用相關聯的範例。如圖9所示,可以執行具有跳躍(例如,跳頻)的微時槽間重複。WTRU可以基於UL-DL-F符號(例如可用的UL-DL-F符號)來調整微時槽(例如每個微時槽,其中微時槽之間具有跳頻)內的頻率位置。可以定義每次重複的跳(例如,單跳)。可以改變跳位置(例如,在重複之間)。共用DMRS的微時槽的FH樣式可以被覆蓋。微時槽(例如,不共用DMRS的微時槽)的FH樣式可以保持相同(例如,如圖9所示)。可以修改微時槽的FH跳躍樣式(例如,可以移位整個FH樣式)。
可以選擇DMRS子集用於微時槽重複。可以應用以下中的一者或多者。DMRS可以在兩個或更複數微時槽之間被共用。在範例中,DMRS可以針對時槽內的微時槽的子集而被共用。DMRS可以在時槽內的所有微時槽(例如,包括可能不包括任何DMRS的微時槽)之間共用。包括DMRS的微時槽的選擇可以基於傳訊(例如,經由DCI的動態傳訊)。DMRS子集分配可以例如藉由較高層傳訊來配置(例如,半靜態地配置)。可以基於一個或複數規則(例如,預定義的規則)來選擇包括DMRS的微時槽。在範例中,可以選擇最接近時槽中心的微時槽以包括DMRS,並且所選擇的微時槽的DMRS可以由時槽中的微時槽(例如,時槽中的所有微時槽)共用。圖10示出了與DMRS共用相關聯的範例。如圖10所示,可以選擇每個時槽內的微時槽傳輸用於DMRS共用(例如,可以最接近時槽中心的微時槽)。
PUSCH傳輸的重複可以利用跳頻來執行。可以實現微時槽重複。可以實施跳頻(例如,至少2跳的跳頻)以用於:PUSCH重複間跳躍以及時槽間跳躍。
例如,可以執行微時槽重複,使得重複(例如,每個重複)可以包括連續的符號。一個或複數微時槽可能不包括足夠的資源來完成傳輸。可以在不連續的微時槽上執行該傳輸。可以執行以下中的一者或多者:具有重複的微時槽內跳躍;具有重複跳躍的微時槽內跳躍;具有跳躍的微時槽間重複;或者PUSCH重複間跳躍。
在具有重複的微時槽內跳躍中,WTRU可以在微時槽(例如,每個微時槽)內跳頻。例如,考慮到可用的UL-DL-F符號,微時槽傳輸可以包括第一次傳輸的重複(例如,精確或幾乎精確的重複)。針對每次重複,可以定義一個或複數(例如,複數)跳。例如,在重複之間,跳位置可以是固定的。
在具有重複跳躍的微時槽內跳躍中,WTRU可以在微時槽(例如,每個微時槽)內跳頻。例如,考慮到可用的UL-DL-F符號,微時槽內的跳頻位置可以不同於先前微時槽重複的跳頻位置。針對每次重複,可以定義一個或複數(例如,複數)跳。例如,可以在重複之間改變跳位置。
在具有跳躍的微時槽間重複中,WTRU可以在微時槽(例如每個微時槽)內固定頻率位置。可以考慮可用的UL-DL-F符號來執行微時槽之間的跳頻。針對每次重複,可以定義一跳(例如,單跳)。例如,可以在重複之間改變跳位置。
可以執行PUSCH傳輸的組合的微時槽以及多段重複。可以應用以下中的一者或多者。
可以為組合的微時槽以及多段重複提供動態SFI。WTRU可以導出UL傳輸結構,該UL傳輸結構可以包括例如:重複次數的指示;每次重複的符號數量的指示(例如,基於在DCI中發送的第一次重複的開始以及持續時間的資訊);以及標稱重複次數的指示。實際重複次數可大於該標稱重複次數的指示,這可發生在例如以下情況下:基於DL/UL切換或基於時槽邊界,WTRU確定將用於標稱重複的(例如,總數個)符號數劃分成兩個重複(例如,兩個單獨的重複)。關於時槽的DL/UL結構的知識可以(例如,由WTRU及/或gNB)用於確定(例如,每次)重複的資源分配(例如,在動態TDD的情況下,其中gNB可以在DCI格式2-0訊息中發送SFI以動態改變時槽格式)。該SFI可以在單獨的DCI中被傳訊,該DCI例如對於某些WTRU (例如URLLC WTRU)可能是不可靠的。可以使用低聚合等級(例如,最低聚合等級)來發送SFI。例如,如果可以使用最低聚合等級來發送SFI,則該SFI可以與較高的可靠性等級相關聯。該SFI可以作為URLLC DCI的一部分被發送,該URLLC DCI可以提供與相似(例如,相同)的可靠性等級相關聯的URLLC DCI以及SFI。該SFI可以在具有有限數量的條目的受限SFI表中被索引,這可以提供具有小酬載的緊湊DCI。該URLLC SFI表可以是預定義的、或者可以是RRC配置的。
可以提供用於資源避開的傳訊。可以應用以下中的一者或多者。
gNB可以傳訊WTRU要避開的資源,該資源可以包括例如來自相同時段、其他時段及/或過渡時段的SRS、PUCCH、PUSCH信號。WTRU可以例如在這些資源周圍進行速率匹配、及/或在這些資源上打孔其傳輸。
該傳訊可以基於例如位元欄位或位元映像,其可以被映射到UL重複跨越的資源,該UL重複跨越的資源表明(例如顯式地表明)RB以及OFDM符號中的資源的頻率以及時間。時間-頻率資源的粒度可以由較高層半靜態地配置。在範例中,頻率中的傳訊可以基於資源塊及/或資源塊組(RBG)。時間中的傳訊可以基於OFDM符號、OFDM符號組、微時槽、時槽及/或子訊框。該傳訊可以是DCI,該DCI發送表的索引,其表明期望位元欄位。
gNB可以WTRU特定方式(例如使用WTRU特定PDCCH)將能用資源傳訊給WTRU、或者以群組方式(例如使用群組公共PDCCH)將能用資源傳訊給WTRU組。gNB可以傳訊表明可以使用或不能使用的資源的時間-頻率位元映像。gNB可以傳訊表明可以使用或不能使用的資源的時間-頻率位元映像配置的索引。WTRU可讀取該位元映像並在由該位元映像表明為不能用的資源周圍執行速率匹配。WTRU可讀取該位元映像並打孔其與該位元映像表明為不能用的資源重合的資料。
位元映像的傳訊可以與以下中的一者或多者相關聯。該位元映像的粒度可以是固定的且是預定義的。該位元映像的粒度可以由gNB配置。該位元映像的特性(例如,所使用的特定位元映像、位元映像的粒度、位元映像是否是活動的等)可以被配置(例如,由gNB向一個或複數WTRU進行RRC配置)。可以將實際的位元映像傳訊給WTRU。該位元映像可以被動態地傳訊給WTRU。例如,可以藉由將預配置表的集合索引到WTRU而傳訊該位元映像。例如,基於可用於傳輸的(例如,所有)資源,該位元映像可以表明資源的可用性。該位元映像可以表明傳輸資源以及非傳輸資源。表2是範例性傳輸/非傳輸位元映像的圖式,其中可能不被使用的資源由零(例如,非傳輸資源)表明,並且其中可能被使用的資源由一(例如,傳輸資源)表明。該資源塊組(RBG)可以表明例如頻域中的傳訊的粒度。例如,符號軸粒度可以是基於每符號(例如,如表2所示)、基於每配置的符號組、基於每時槽、或基於每微時槽的。 表2
  RBG0 RBG1 RBG2 RBG3
符號0 0 0 0 0
符號1 1 1 1 1
符號2 1 1 1 1
符號3 1 1 1 1
符號4 0 0 0 0
符號5 0 0 0 0
符號6 0 0 0 0
符號7 1 1 1 1
符號8 1 1 1 1
符號9 1 1 1 1
符號10 1 1 1 1
符號11 1 1 1 1
符號12 1 1 1 1
符號13 0 0 0 0
該位元映像可以基於(例如,僅基於)可用於UL傳輸的資源、或者可用於UL傳輸的資源以及可變資源(例如,與SFI組合,如表4中所示)來表明資源的可用性。表3是具有SFI的傳輸/非傳輸位元映像的範例性說明。如表4中所示,與DL符號重合的資源可以不被表明或傳訊。如圖所示,符號0、1及2可以被省略,因為它們與由表3中的SFI傳訊的下鏈符號/資源重合。表4是與資源塊組(RBG)相關聯的位元映像的範例性圖。 表3
  SFI
符號0 D
符號1 D
符號2 D
符號3 F
符號4 F
符號5 F
符號6 U
符號7 U
符號8 U
符號9 U
符號10 U
符號11 U
符號12 U
符號13 U
表4
  RBG0 RBG1 RBG2 RBG3
符號3 1 1 1 1
符號4 0 0 0 0
符號5 0 0 0 0
符號6 0 0 0 0
符號7 1 1 1 1
符號8 1 1 1 1
符號9 1 1 1 1
符號10 1 1 1 1
符號11 1 1 1 1
符號12 1 1 1 1
符號13 0 0 0 0
在範例中,可以不表明DL符號/資源以及可變符號/資源,這可以減少傳輸開銷。表5是與RBS相關聯的位元映像的範例性說明。如表5所示,符號0、1、2、3、4及5可被省略(例如,當它們與由表3中的SFI所傳訊的下鏈以及可變符號/資源重合時)。 表5
  RBG0 RBG1 RBG2 RBG3
符號6 0 0 0 0
符號7 1 1 1 1
符號8 1 1 1 1
符號9 1 1 1 1
符號10 1 1 1 1
符號11 1 1 1 1
符號12 1 1 1 1
符號13 0 0 0 0
可以針對某些場景預定義一個或複數規則。舉例來說,規則可包括在UL/DL切換後放置(例如,總是放置)過渡資源,其中URLLC WTRU將避開在UL/DL切換後的這些過渡資源。一個或複數規則可以被預定義並且與用於某些場景的傳訊組合。例如,規則可以包括:gNB要表明是否要使用過渡資源,這可例如基於顯式傳訊或WTRU能力,其中URLLC WTRU要避開該過渡資源(例如,如果表明了使用過渡資源)。在範例中,gNB可將資源優先序圖傳訊給WTRU。該傳訊可以被傳輸到特定的WTRU (例如,在WTRU特定的PDCCH中)或傳輸到WTRU組(例如,所有URLLC WTRU,例如,在群組公共PDCCH中傳輸)。WTRU可以基於例如WTRU的傳輸的優先序(例如,其可在DCI期間被傳訊給WTRU或者可以由WTRU自主地導出)以及(一個或複數)資源的優先序來導出允許的資源。在範例中,WTRU可以不在與大於或等於WTRU的優先序的優先序相關聯的資源(例如非傳輸資源)中進行傳輸。WTRU可以將資源的優先序與WTRU的傳輸的優先序進行比較。例如,如果資源的優先序可能大於WTRU的訊務的優先序,則WTRU可以避免在該資源中進行傳輸。該優先序圖的粒度可以是固定的、預定義的或可配置的(例如,基於所使用的優先序的數量)。在範例中,如果優先序的數量是n,則可以在ceiling(log2 (n))的倍數個資源中傳訊該位元映像中的位元的粒度。在範例中,如果可能的優先序的數量是八(8),則三(3)位元可以用於傳訊資源的優先序,並且該資源可以三個為一組而被傳訊。表6是3位資源優先序圖的範例性說明。如表6所示,優先序值可以在零(000)到七(111)的範圍內,其中最大優先序可以是七(111)。在範例中,三(3)個RBG可以被分組在一起以形成優先序傳訊組。可以在資源優先序圖中傳訊該優先序傳訊組的優先序,並且WTRU可以使用該資源優先序圖以及各自的優先序傳訊組的優先序,例如以識別WTRU可以在其上進行傳輸的資源。 表6
  組1 組2
  RBG0 RBG1 RBG2 RBG3 RBG4 RBG5
符號0 1 1 1 1 1 1
優先序 7 7
符號1 1 1 1 1 1 1
優先序 7 7
符號2 0 0 0 0 0 0
優先序 0 0
符號3 0 0 0 0 0 0
優先序 0 0
符號4 0 1 0 0 1 0
優先序 2 2
符號5 0 1 0 0 1 0
優先序 2 2
符號6 0 1 0 0 1 0
優先序 2 2
符號7 0 1 0 0 1 0
優先序 2 2
符號8 0 1 0 0 1 0
優先序 2 2
符號9 0 1 0 0 1 0
優先序 2 2
符號10 0 1 0 0 1 0
優先序 2 2
符號11 0 1 0 0 1 0
優先序 2 2
符號12 0 1 0 0 1 0
優先序 2 2
符號13 1 1 1 1 1 1
優先序 7 7
表7是基於優先序位元映像以及WTRU優先序5 (101)的傳輸(例如由“x”表明)資源以及非傳輸(例如由“o”表明)資源的範例性說明。如表7所示,WTRU可以在用“x”標記的資源上傳輸,其中WTRU的優先序5大於或等於用“x”標記的RBG的值(例如參見表6)。 表7
  組 1 組 2
  RBG0 RBG1 RBG2 RBG3 RBG4 RBG5
符號0 o o o o o o
符號1 o o o o o o
符號2 x x x x x x
符號3 x x x x x x
符號4 x x x x x x
符號5 x x x x x x
符號6 x x x x x x
符號7 x x x x x x
符號8 x x x x x x
符號9 x x x x x x
符號10 x x x x x x
符號11 x x x x x x
符號12 x x x x x x
符號13 o o o o o o
表8是基於優先序位元映像以及WTRU優先序2 (001)的傳輸(例如由“x”表明)資源以及非傳輸(例如由“o”表明)資源的範例性說明。如表8所示,WTRU可以在標記有“x”的資源上傳輸。 表8
  組1 組2
  RBG0 RBG1 RBG2 RBG3 RBG4 RBG5
符號0 o o o o o o
符號1 o o o o o o
符號2 x x x x x x
符號3 x x x x x x
符號4 o o o o o o
符號5 o o o o o o
符號6 o o o o o o
符號7 o o o o o o
符號8 o o o o o o
符號9 o o o o o o
符號10 o o o o o o
符號11 o o o o o o
符號12 o o o o o o
符號13 o o o o o o
現在參考表2至表8,本文描述的傳訊可以與SFI組合,這可以減少總傳訊開銷。
WTRU可以將這裡(例如,結合表2到7)描述的規則與最小大小(例如,最小數量的OFDM符號)結合,這可以防止(例如,僅)配置的最小大小的符號可以在重複中被使用的情形。
由優先序圖或位元映像中的(例如,每個)條目表示的符號的數量可以是可配置的或者可以大於一。
可以提供重複的提前終止。可以應用以下中的一者或多者。
gNB可將重複的提前終止傳訊給WTRU。對於以下情形中的一者或多者,重複可被提前終止:gNB已成功解碼傳輸且想要分配其餘資源給另一WTRU;gNB確定重新排程目前WTRU的傳輸(例如,由於來自相同WTRU或不同WTRU的具有較高優先序的傳輸);以及gNB在傳輸(例如使用CSI-IM資源)之後測量到通道中的干擾、並確定該傳輸可能不成功(例如即使具有重複)。
WTRU可以監視來自gNB的提前終止信號。WTRU可以被配置為例如使用RRC傳訊以指定間隔監視該提前終止信號。WTRU可以被啟動以使用專用DCI或用於排程傳輸的DCI來監視該提前終止信號。可以藉由PDCCH或序列來執行該提前終止傳訊。例如,可以藉由傳輸可以被預定義或配置的特定序列來執行該提前終止傳訊。該DCI可以表明是否可以終止該傳輸。該DCI可以表明WTRU針對終止信號要監視的一個或複數可能的資源。該DCI可以表明該終止的原因(例如,解碼成功)。
在頻域雙工(FDD)情況下,WTRU可以定義的間隔監視該提前終止信號,例如,即使在WTRU正在進行傳輸時。在時域雙工(TDD)場景中,WTRU可以在傳輸期間可以發現的DL符號期間監視該提前終止信號。例如,如果在TDD場景中,在重複期間不存在DL信號,則傳輸可能不是可以終止的。
在DL/UL切換或非傳輸資源的存在導致具有高開銷的傳輸的情況下,WTRU可以執行以下中的一者或多者。無論如何,WTRU都可以傳輸信號。如果開銷高於臨界值,則WTRU可以丟棄該傳輸。例如,該臨界值可以是固定的(例如,或靜態的)、RRC配置的、或可以是動態地配置的。
WTRU可以執行以下中的一者或多者以執行提前重複終止。
WTRU可以接收表明多重複/多段傳輸的排程DCI。該DCI可以包括以下中的一者或多者:第1次重複的開始以及持續時間以及標稱重複的總數的指示;SFI表(例如,受限SFI表,其可以減少開銷)的一個或複數索引,以表明動態TDD場景中的時槽的DL/UL結構;具有相關聯的傳訊的資源避開機制;或者是否監視提前終止信號以及關聯配置的指示。
該DCI可以包括SFI表的一個或複數索引,以表明例如在動態TDD場景中的時槽的DL/UL結構。可以應用以下中的一者或多者。如果傳訊了SFI (例如,僅單一SFI),則該SFI在整個傳輸上(例如,對於附加時槽)可以是固定的。如果傳訊了SFI (例如,僅單一SFI),則該SFI可以與該時槽相關聯(例如,僅與該時槽相關聯),並且WTRU可以在將來預期附加的SFI傳輸。如果傳訊了複數SFI,則可以由該複數SFI來指示用於整個多時槽傳輸的時槽結構。例如,該時槽結構可能不會被具有與前一SFI不同結構的後續SFI覆蓋。如果沒有傳訊SFI,則WTRU可以使用來自先前時槽的現有SFI。WTRU可以恢復到半靜態SFI,其可以是先前已經由網路(例如gNB)配置的。
DCI可以包括資源避開機制以及相關聯的傳訊。可以應用以下中的一者或多者。在範例中,該資源避開機制以及相關聯的傳訊可以包括表明允許的以及不允許的資源的位元映像。在範例中,該資源避開機制以及相關聯的傳訊可以包括(例如,使用資源優先序位元映像,如本文所述)表明被排程的訊務的優先序以及不同資源的優先序的傳訊。
WTRU可以使用所定義的規則以及相關聯的傳訊來建構複數傳輸。可以應用以下中的一者或多者。WTRU可以例如基於該SFI來估計用於目前時槽的DL/UL或可變的符號結構。WTRU可以讀取針對在分配的DCI中表明的資源內的該WTRU可在其上進行傳輸的資源的傳訊。例如,WRTU可以用於傳輸的資源可以由以下各項中的一者或多者來表明:資源優先序圖;該資源優先序圖以及該SFI的組合;或者資源傳輸位元映像。WTRU可以在非傳輸資源周圍執行速率匹配。WTRU可以對該WTRU的資料進行打孔以避開非傳輸資源。
WTRU可以監視或接收提前終止配置(例如,或提前終止信號)。
WTRU可以傳輸資料。可以應用以下中的一者或多者。如果WTRU被配置用於提前終止,則WTRU可以(例如在預定義的資源中)監視提前終止信號。如果WTRU接收到提前終止信號,則WTRU可以停止傳輸(例如即使WTRU可能正在重複中)。WTRU可以在接收到該提前終止信號時停止傳輸。WTRU可以在接收到該提前終止信號之後的預定義(或用信號通知的)數量的重傳之後停止傳輸。
WTRU可以使用專用SFI以及資源避開圖來執行PUSCH重複。WTRU可以接收表明可變符號、上鏈符號以及下鏈符號的時槽格式配置(SFC)。WTRU可以接收可以與具有重複的PUSCH傳輸相關聯的上鏈許可。所接收的上鏈許可可以包括專用時槽格式指示符(SFI)以及表明與該上鏈符號相關聯的可用資源塊組的資源圖。WTRU可以基於該SFC、該SFI以及該資源圖以識別可用上鏈符號。WTRU可以基於該資源圖來為該可用上鏈符號識別不可用資源塊組。WTRU可以使用該可用上鏈符號以執行PUSCH傳輸重複,其中該PUSCH傳輸避開該不可用資源塊組。
圖11示出了URLLC PUSCH重複的範例性實施。圖11示出了範例性SFI (例如,其中該SFI可以用滿足(例如,可以等於) URLLC傳輸的可靠性而被傳輸)、資源避開圖以及提前終止。
WTRU可以接收符號配置,其中被表示為UL的符號可以被用於具有重複的URLLC PUSCH傳輸。WTRU可以接收UL許可,其具有用於符號重配置的專用SFI以及識別不可用資源的資源圖。WTRU可以確定複數符號以及該複數符號內的資源。WTRU可以使用所確定的複數符號以及該複數符號內的資源來傳輸URLLC PUSCH重複。這樣的傳輸可以避免衝突。
該專用SFI可以表明符號(例如,所有符號)的改變。該專用SFI可以表明可變符號的改變(例如,僅針對可變符號)。該專用SFI可以表明針對可變符號及/或上鏈符號的改變(例如,僅針對可變符號以及上鏈符號)。
該專用SFI的大小可以從其可能正在修改的SFI (例如,半靜態SFI)中導出,例如被隱式地導出。該專用SFI可以是可被改變的符號長度的位元映像。例如,如果存在5個可變符號,則該專用SFI可以是長度為5的位元映像,其中每個位元表明對應的可變符號是否是上鏈符號。
該SFI可以給定為[ d d d d f f f u u d f u u d],其中d表示下鏈,f表示可變,u表示上鏈。位元映像或4符號位元映像中的索引可以用於表明四個可變符號中的哪個可變符號可以是上鏈。位元映像或4符號位元映像中的索引可以用於表明四個可變符號中的哪個可變符號可以是上鏈或下鏈。
該專用SFI可以是到第二RRC配置表(例如,與可以用於SFI傳輸的RRC配置表分離)的索引,其可以表明該可變符號中的哪個可變符號將被切換到上鏈。
該SFI可以給定為[ d d d d f f f u u d f u u d],其中有4個可變符號。可以使用RRC配置表。RRC配置表的大小可以在一定範圍內(例如,從1個條目到16個條目)。該表中的索引可以用於表明該可變符號中的哪些是上鏈。專用SFI欄位大小可以是可配置的。
資源圖可表明UL傳輸的不能用資源塊(RB)組。資源圖可表明資源優先序,並且不能用資源可取決於該資源優先序與要發送的資料訊務的優先序之間的關係。在範例中,如果訊務優先序高於/低於資源優先序,則其可以在該資源上被發送/不被發送。WTRU可以跳過被許可的資源中的不能用RB組(例如,所有不能用RB組)。WTRU可以跳過整個資源(例如,如果UL/可變UL中的RB組不能用)。
WTRU可以發送具有重複的URLLC PUSCH傳輸。WTRU可以接收時槽格式配置(SFC),該SFC將符號表明為UL、DL或可變的。該SFC可以基於RRC配置的或半靜態的SFI。該WTRU可以接收具有重複的UL許可(例如,用於PUSCH傳輸),該UL許可可以包括專用SFI以及資源圖,該資源圖可以表明UL符號中RBG的可用性。WTRU可以基於該SFC、該SFI及/或該資源圖,將連續符號的集合確定為可用的UL符號,其中如果符號的至少一個RBG被表明為可用的,則該UL符號是可用的。WTRU可以基於該資源圖來為連續可用UL符號的集合確定不可用的RBG。WTRU可以在該連續可用UL符號的資源中傳輸PUSCH重複,其中該PUSCH重複可以不在該不可用的RBG中的資源中傳輸(例如,可以使用速率匹配或打孔)。如果接收到提前終止指示,則WTRU可以放棄剩餘重複的傳輸。
因此,已經揭露了用於提供具有重複的PUSCH傳輸的技術。該PUSCH傳輸可以結合例如超可靠低潛時通信(URLLC)來使用。WTRU接收表明可變符號、上鏈符號以及下鏈符號的時槽格式配置(SFC)。WTRU可以接收可以與具有重複的該PUSCH傳輸相關聯的上鏈許可。所接收的上鏈許可可以包括專用時槽格式指示符(SFI)以及表明與該上鏈符號相關聯的可用資源塊組的資源圖。WTRU可以基於該SFC、該SFI以及該資源圖以識別可用上鏈符號。如果上鏈符號的至少一個資源塊組可以被表示為可用,則該上鏈符號可以被識別為可用。WTRU可以基於該資源圖,為該可用上鏈符號識別不可用資源塊組。WTRU可以使用該可用上鏈符號以執行PUSCH傳輸重複,其中該PUSCH傳輸避開該不可用資源塊組。如果WTRU接收到終止指示,則WTRU可以放棄任何剩餘重複的傳輸。
應當理解,儘管已經揭露了說明性的實施方式,但是潛在實施方式的範圍不限於明確闡述的那些。例如,雖然已經參考特定標準或條件描述了系統,但是所設想的實施方式可擴展到使用該特定標準或條件的實施方式之外。儘管本文描述的解決方案考慮某些技術(例如,新無線電(NR)、5G或LTE、LTE-A特定協定),但本文描述的技術可以不限於任何技術、並且可以適用於任何系統。儘管在此以特定的組合描述了特徵及元素,但是每個特徵或元素可以在沒有其他特徵及元素的情況下單獨使用,及/或以具有或不具有其他特徵及元素的各種組合使用。
應當理解,執行本文所述過程的實體可以是邏輯實體,其可以用儲存在行動裝置、網路節點或電腦系統的記憶體中並在其處理器上執行的軟體(即,電腦可執行指令)的形式實施。即,該(一個或複數)操作可以用儲存在行動裝置及/或網路節點(諸如節點或電腦系統)的記憶體中的軟體(即,電腦可執行指令)的形式來實施,該電腦可執行指令在由該節點的處理器執行時執行所討論的過程。還應當理解,圖中所示的任何傳輸及接收過程可以由該節點的通信電路在該節點的處理器以及其執行的該電腦可執行指令(例如,軟體)的控制下執行。
本文描述的各種技術可以結合硬體或軟體或在適當的情況下結合這兩者的組合來實現。因此,此處所描述的主題的實現方式及裝置或其某些方面或部分可採取包含在諸如快閃記憶體驅動器、CD-ROM、硬碟驅動器或任何其它機器可讀儲存媒體等有形媒體中的程式碼(即,指令)的形式,其中當該程式碼被載入到諸如電腦等機器中並由其執行時,該機器成為用於實施此處所描述的主題的裝置。在程式碼被儲存在媒體上的情況下,可能是這樣的情況:所討論的程式碼被儲存在一個或複數媒體上,共同執行所討論的動作,也就是說,一起採用的一個或複數媒體包含用於執行動作的代碼,但是在存在多於一個單一媒體的情況下,不要求代碼的任何特定部分儲存在任何特定媒體上。在程式碼在可程式設計裝置上執行的情況下,計算裝置通常包括處理器、處理器可讀的儲存媒體(包括揮發性及非揮發性記憶體及/或記憶元件)、至少一個輸入裝置以及至少一個輸出裝置。一個或複數程式可以例如經由使用API、或可重用控制等來實施或利用結合本文所述主題描述的過程。這樣的程式可以用高級過程或物件導向的程式設計語言來實現以與電腦系統通信。然而,如果需要,所述(一個或複數)程式可以用組合語言或機器語言來實現。在任何情況下,所述語言可以是編譯或解釋語言、並且與硬體實施方式結合。
儘管範例性實施例可以涉及在一個或複數獨立計算系統的上下文中利用本文描述的主題的各方面,但是本文描述的主題不限於此,而是可以結合諸如網路或分散式運算環境之類的任何計算環境來實現。此外,本文描述的主題的各方面可以在複數處理晶片或裝置中或跨該複數處理晶片或裝置實現,並且記憶體可以類似地跨複數裝置來實現。這樣的裝置可以包括個人電腦、網路服務器、手持裝置、超級電腦、或整合到諸如汽車以及飛機的其他系統中的電腦。
在描述本揭露的主題的說明性實現方式中,如附圖中所示,為了清楚起見,採用了特定術語。然而,所要求保護的主題不旨在限於如此選擇的特定術語,並且應當理解,每個特定元素包括以類似方式操作以實現類似目的所有技術等效物。這裡描述的細節是範例性的,而不是限制本申請案的範圍。
儘管在此以特定的組合描述了特徵及元素,但是本領域中具有通常知識者將理解,每個特徵或元素可以單獨使用或與其它特徵及元素任意組合使用,或者與或不與其它特徵及元素任意組合使用。另外,本文描述的實施方式可以在電腦程式、軟體或韌體中實現,該電腦程式、軟體或韌體併入電腦可讀媒體中以由電腦或處理器執行。電腦可讀媒體的範例包括電子信號(其經由有線或無線連接傳輸)以及電腦可讀儲存媒體。電腦可讀儲存媒體的範例包括但不限於唯讀記憶體(ROM)、隨機存取記憶體(RAM)、暫存器、快取記憶體、半導體儲存裝置、諸如內部硬碟以及可移磁片之類的磁性媒體、磁光媒體、以及諸如CD-ROM碟片以及數位多功能光碟(DVD)之類的光學媒體。與軟體相關聯的處理器可用於實施用於WTRU、UE、終端、基地台、RNC以及任何主機電腦的射頻收發器。
DCI:下鏈控制資訊 DL:下鏈 DMRS:解調參考信號 FH:跳頻 N2、N3、N4、N6、N11、S1、X2、Xn:介面 PUSCH:實體上鏈共用通道 RB:資源塊 SFI:時槽格式指示符 SLIV:長度指示符值 UL:上鏈 100:通信系統 102、102a、102b、102c、102d:無線傳輸/接收單元(WTRU) 104、113:無線電存取網路(RAN) 106、115:核心網路(CN) 108:公共交換電話網路(PSTN) 110:網際網路 112:其他網路 114a、114b:基地台 116:空中介面 118:處理器 120:收發器 122:傳輸/接收元件 124:揚聲器/麥克風 126:小鍵盤 128:顯示器/觸控板 130:非可移記憶體 132:可移記憶體 134:電源 136:全球定位系統(GPS)晶片組 138:週邊設備 160a、160b、160c:e節點B 162:移動性管理實體(MME) 164:服務閘道(SGW) 166:封包資料網路(PDN)閘道(PGW) 180a、180b、180c:gNB 182a、182b:存取及移動性管理功能(AMF) 183a、183b:對話管理功能(SMF) 184a、184b:使用者平面功能(UPF) 185a、185b:資料網路(DN)
從以下結合附圖以範例方式給出的詳細描述中可以獲得更詳細的理解,其中: 圖1A是示出了可以實施所揭露的一個或複數實施例的範例性通信系統的系統圖; 圖1B是示出了根據實施例的可以在圖1A所示的通信系統內部使用的範例性無線傳輸/接收單元(WTRU)的系統圖; 圖1C是示出了根據實施例的可以在圖1A所示的通信系統內部使用的範例性無線電存取網路(RAN)以及範例性核心網路(CN)的系統圖; 圖1D是示出了根據實施例的可以在圖1A所示的通信系統內部使用的另一個範例性RAN以及另一個範例性CN的系統圖; 圖2A示出了範例性的微時槽重複; 圖2B示出了範例性符號適應性; 圖3示出了適應性開始符號的範例性實施; 圖4示出了用於適應性開始以及長度指示符值(SLIV)選擇的範例性實施; 圖5示出了具有孤立符號的範例性實施; 圖6A示出了具有微時槽跳過的範例性實施; 圖6B示出了具有時槽重複的範例性實施; 圖7A以及圖7B示出了具有微時槽截斷的範例性實施; 圖8是與微時槽長度及重複相關聯的範例圖式; 圖9示出了具有跳頻的範例性實施方式; 圖10示出了具有微時槽傳輸的範例性實施;以及 圖11示出了具有URLLC PUSCH重複的範例性實施。
DCI:下鏈控制資訊
DL:下鏈
RB:資源塊
SFI:時槽格式指示符
UL:上鏈

Claims (20)

  1. 一種無線傳輸及接收單元(WTRU),包括: 一處理器,其被配置為至少: 接收: 一時槽格式配置(SFC),該SFC表明可變符號、上鏈符號以及下鏈符號, 與一實體上鏈共用通道(PUSCH)傳輸相關聯的一上鏈許可, 一時槽格式指示符(SFI),以及 一資源圖,其表明與該上鏈符號相關聯的可用資源塊組; 基於該SFC、該SFI以及該資源圖,識別可用上鏈符號; 基於該資源圖,針對該可用上鏈符號,識別一不可用資源塊組;以及 使用該可用上鏈符號來執行一PUSCH傳輸,其中該PUSCH傳輸避開該不可用資源塊組。
  2. 如請求項1所述的WTRU, 其中該資源圖表明一資源優先序,以及 其中識別不可用資源塊組包括確定與要發送的資料相關聯的一優先序高於該資源優先序。
  3. 如請求項1所述的WTRU,其中該SFI指示可變符號的改變。
  4. 如請求項3所述的WTRU,其中該SFI包括一位元映像,該位元映像識別可被用於上鏈的可變符號。
  5. 如請求項3所述的WTRU,其中該SFI包括到一表格的一索引,該表格識別可被用於上鏈的可變符號。
  6. 如請求項1所述的WTRU,其中該SFI和資源圖與該上鏈許可相關聯。
  7. 如請求項1所述的WTRU,其中識別一可用上鏈符號包括識別與該可用上鏈符號相關聯的至少一個資源塊組被識別為可用。
  8. 如請求項1所述的WTRU,其中該上鏈許可與具有重複的PUSCH傳輸相關聯。
  9. 如請求項8所述的WTRU,其中執行一PUSCH傳輸包括在該可用上鏈符號的資源中執行一PUSCH傳輸重複。
  10. 如請求項9所述的WTRU,其中該處理器更被配置為: 接收一終止的一指示;以及 放棄剩餘重複的傳輸。
  11. 一種方法,包括: 一無線傳輸接收單元(WTRU)接收: 一時槽格式配置(SFC),該SFC表明可變符號、上鏈符號以及下鏈符號, 與一實體上鏈共用通道(PUSCH)傳輸相關聯的一上鏈許可, 一時槽格式指示符(SFI),以及 一資源圖,其表明與該上鏈符號相關聯的可用資源塊組; 該WTRU基於該SFC、該SFI以及該資源圖識別一可用上鏈符號; 該WTRU基於該資源圖為該可用上鏈符號識別不可用資源塊組;以及 該WTRU使用該可用上鏈符號執行一PUSCH傳輸,其中該PUSCH傳輸避開該不可用資源塊組。
  12. 如請求項11所述的方法, 其中該資源圖表明一資源優先序,以及 其中識別不可用資源塊組包括確定與要發送的資料相關聯的一優先序高於該資源優先序。
  13. 如請求項11所述的方法,其中該SFI表明可變符號的改變。
  14. 如請求項13所述的方法,其中該SFI包括一位元映像,該位元映像識別可以用於上鏈的可變符號。
  15. 如請求項13所述的方法,其中該SFI包括到一表格的一索引,該表格識別可以用於上鏈的可變符號。
  16. 如請求項11所述的方法,其中該SFI和資源圖與該上鏈許可相關聯。
  17. 如請求項11所述的方法,其中識別一可用上鏈符號包括識別與該可用上鏈符號相關聯的至少一個資源塊組被識別為可用。
  18. 如請求項11所述的方法,其中該上鏈許可與具有重複的PUSCH傳輸相關聯。
  19. 如請求項18所述的方法,其中執行一PUSCH傳輸包括在該可用上鏈符號的資源中執行一PUSCH傳輸重複。
  20. 如請求項19所述的方法,更包括: 接收一終止的一指示;以及 放棄剩餘重複的傳輸。
TW109104151A 2019-02-13 2020-02-11 實體上鏈共享頻道傳輸的裝置及方法 TWI745858B (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201962805046P 2019-02-13 2019-02-13
US62/805,046 2019-02-13
US201962885966P 2019-08-13 2019-08-13
US62/885,966 2019-08-13
US201962908777P 2019-10-01 2019-10-01
US62/908,777 2019-10-01

Publications (2)

Publication Number Publication Date
TW202038575A true TW202038575A (zh) 2020-10-16
TWI745858B TWI745858B (zh) 2021-11-11

Family

ID=69784545

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109104151A TWI745858B (zh) 2019-02-13 2020-02-11 實體上鏈共享頻道傳輸的裝置及方法

Country Status (7)

Country Link
US (1) US20220132533A1 (zh)
EP (1) EP3925149A1 (zh)
KR (1) KR20210137445A (zh)
CN (1) CN113519138A (zh)
BR (1) BR112021015752A2 (zh)
TW (1) TWI745858B (zh)
WO (1) WO2020167650A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11711842B2 (en) * 2018-11-02 2023-07-25 Qualcomm Incorporated Aggregation factor associations in uplink and downlink transmissions
CN113424631B (zh) * 2019-02-15 2023-09-22 Lg 电子株式会社 执行上行链路传输的方法、用户设备、设备和存储介质以及执行上行链路接收的方法和基站
US11641249B2 (en) * 2019-03-25 2023-05-02 Lenovo (Singapore) Pte. Ltd. Method and apparatus for determining a duration of a repetition of a transport block
US11882083B2 (en) * 2019-03-29 2024-01-23 Qualcomm Incorporated Uplink shared channel repetition for ultra-reliable low latency communications
CN113938263B (zh) * 2019-04-30 2024-03-01 Oppo广东移动通信有限公司 一种dmrs配置方法、用户设备以及网络设备
CN113767691A (zh) * 2019-05-02 2021-12-07 夏普株式会社 用于在微时隙pusch上进行冗余版本确定的用户设备、基站和方法
KR20230106740A (ko) 2019-08-01 2023-07-13 주식회사 윌러스표준기술연구소 무선 통신 시스템에서 상향링크 공유 채널(physicaluplink shared channel: pusch)를 송수신하는 방법, 장치 및 시스템
US11622348B2 (en) * 2020-03-27 2023-04-04 Qualcomm Incorporated Preemption of symbols in a slot format index
US11825468B2 (en) * 2020-04-03 2023-11-21 Qualcomm Incorporated Scheduling restrictions for canceled or conflicting resources
US11818724B2 (en) * 2020-05-01 2023-11-14 Qualcomm Incorporated Communication after change in bandwidth part
US20210359829A1 (en) * 2020-05-13 2021-11-18 Qualcomm Incorporated Requesting intended time division duplex configurations
CN114337950B (zh) * 2020-09-29 2024-06-04 维沃移动通信有限公司 传输处理方法、装置、终端及可读存储介质
US20220123865A1 (en) * 2020-10-21 2022-04-21 Qualcomm Incorporated Determination and counting of uplink repetitions
WO2022151383A1 (zh) * 2021-01-15 2022-07-21 华为技术有限公司 一种上行传输方法及装置
CN114826514A (zh) * 2021-01-19 2022-07-29 中国电信股份有限公司 用于提升pucch上行覆盖性能的传输方法、装置和***
WO2022216022A1 (ko) * 2021-04-06 2022-10-13 엘지전자 주식회사 물리 상향링크 공유 채널 전송 방법 및 장치
KR20220152789A (ko) * 2021-05-10 2022-11-17 삼성전자주식회사 무선 통신 시스템에서 상향링크 채널을 전송하기 위한 방법 및 장치

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102726109B (zh) * 2010-01-26 2016-01-20 Lg电子株式会社 在无线通信***中分配资源的方法和设备
EP3270526B1 (en) * 2015-03-12 2020-08-12 LG Electronics Inc. Method for reducing transmission resource of control channel in short tti, and device using same
WO2018175578A1 (en) * 2017-03-22 2018-09-27 Idac Holdings, Inc. Resource allocation for uplink control channel
US10548165B2 (en) * 2017-04-25 2020-01-28 Qualcomm Incorporated Flexible scheduling in new radio (NR) networks
WO2018222001A2 (ko) * 2017-06-02 2018-12-06 엘지전자 주식회사 무선 통신 시스템에서 신호를 송신 또는 수신하는 방법 및 이를 위한 장치
US10673605B2 (en) * 2017-06-15 2020-06-02 Apple Inc. Semi-static and dynamic TDD configuration for 5G-NR
CN111096018B (zh) * 2017-08-02 2023-10-27 英特尔公司 用于实现新无线电(nr)网络中的前向兼容性的预留资源的装置、***和方法

Also Published As

Publication number Publication date
TWI745858B (zh) 2021-11-11
WO2020167650A1 (en) 2020-08-20
KR20210137445A (ko) 2021-11-17
US20220132533A1 (en) 2022-04-28
CN113519138A (zh) 2021-10-19
BR112021015752A2 (pt) 2021-10-26
EP3925149A1 (en) 2021-12-22

Similar Documents

Publication Publication Date Title
TWI745858B (zh) 實體上鏈共享頻道傳輸的裝置及方法
RU2750435C1 (ru) Способы определения кандидата физического канала управления нисходящей линии связи (pdcch)
EP4362580A2 (en) Sidelink feedback channels
CN112823486B (zh) 下行链路通信中的可靠性增强
CN111034097B (zh) 可靠控制信令
TW202046789A (zh) Nr sl多次通道pscch傳輸方法
KR20220006043A (ko) Nr sl psfch 전송 및 모니터링
WO2020033704A1 (en) Enhanced sidelink control transmission
TW202123723A (zh) 感知及資源分配新無線電(nr)車聯萬物(v2x)方法
TW202143671A (zh) 未授權頻譜中可靠harq—ack傳輸
EP3834530A1 (en) Control information transmission and sensing in wireless systems
US20220124679A1 (en) Wireless resource allocation schemes in vehicle-to-everything (v2x) communication
KR20220005438A (ko) 비허가 스펙트럼에서 설정 그랜트 전송을 위한 방법 및 장치
TW201941650A (zh) Noma排程及傳輸
US20230300806A1 (en) Methods and apparatus for flexible aperiodic srs transmission
TW202025823A (zh) 利用所配置的排程進行下鏈資料接收
WO2022031950A1 (en) Methods and apparatus for dynamic spectrum sharing
EP4193553A1 (en) Pdcch coverage enhancement
WO2023055838A1 (en) Systems and methods for acquiring ssb missed due to listen before talk (lbt) failures in 5g new radio networks operating in unlicensed bands (nr u)
WO2023212164A1 (en) Uplink carrier prioritization
WO2023086445A1 (en) Methods on enhancing reliability and supporting mixed priority traffic in high frequency communications
CN116530150A (zh) 针对在无线***中启用音调预留的方法、装置