TW202037101A - Method and device for measuring reflection coefficient of antenna - Google Patents

Method and device for measuring reflection coefficient of antenna Download PDF

Info

Publication number
TW202037101A
TW202037101A TW108137651A TW108137651A TW202037101A TW 202037101 A TW202037101 A TW 202037101A TW 108137651 A TW108137651 A TW 108137651A TW 108137651 A TW108137651 A TW 108137651A TW 202037101 A TW202037101 A TW 202037101A
Authority
TW
Taiwan
Prior art keywords
feedback signal
antenna
signal
symbol
interval
Prior art date
Application number
TW108137651A
Other languages
Chinese (zh)
Other versions
TWI811470B (en
Inventor
金大暎
趙瑩翼
Original Assignee
南韓商三星電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南韓商三星電子股份有限公司 filed Critical 南韓商三星電子股份有限公司
Publication of TW202037101A publication Critical patent/TW202037101A/en
Application granted granted Critical
Publication of TWI811470B publication Critical patent/TWI811470B/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/101Monitoring; Testing of transmitters for measurement of specific parameters of the transmitter or components thereof
    • H04B17/103Reflected power, e.g. return loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/15Performance testing
    • H04B17/19Self-testing arrangements

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

A device for measuring a reflection coefficient of an antenna includes processing circuitry configured to extract a first feedback signal and a second feedback signal from a third feedback signal based on first symbol information of a first symbol included in a radio frequency (RF) transmit signal transferred to the antenna, the first feedback signal corresponding to at least a portion of a cyclic prefix portion of the first symbol, the second feedback signal corresponding to at least a portion of a back-end portion of the first symbol, the third feedback signal being generated from a portion of the RF transmit signal provided by a coupler, and compute the reflection coefficient based on the first feedback signal and the second feedback signal.

Description

用於測量天線的反射係數的方法及裝置Method and device for measuring reflection coefficient of antenna

本發明概念是有關於無線通訊,且更具體而言,是有關於一種測量用於無線通訊的天線的反射係數的方法及裝置。The concept of the present invention relates to wireless communication, and more specifically, to a method and device for measuring the reflection coefficient of an antenna for wireless communication.

當用於無線通訊的天線不具有所設計或所期望的阻抗時,無線通訊的品質可能會劣化。無線通訊裝置可包括天線調諧器(antenna tuner),且可基於天線的所測量反射係數(例如,所測量阻抗)來控制天線調諧器以修改天線的阻抗。因此,將期望在降低測量天線反射係數的開銷(overhead)的同時準確測量天線的反射係數(例如,由於無線通訊裝置的小型化、低功率等)。When the antenna used for wireless communication does not have the designed or expected impedance, the quality of the wireless communication may be degraded. The wireless communication device may include an antenna tuner, and the antenna tuner may be controlled based on the measured reflection coefficient (eg, measured impedance) of the antenna to modify the impedance of the antenna. Therefore, it would be desirable to accurately measure the reflection coefficient of the antenna while reducing the overhead of measuring the reflection coefficient of the antenna (for example, due to the miniaturization, low power, etc. of the wireless communication device).

本發明概念提供一種用於在降低開銷的同時準確測量天線的反射係數的方法及裝置。The concept of the present invention provides a method and device for accurately measuring the reflection coefficient of an antenna while reducing overhead.

根據本發明概念的態樣,提供一種用於測量天線的反射係數的裝置,所述裝置包括處理電路系統,所述處理電路系統被配置成:基於傳遞到所述天線的射頻(radio frequency,RF)傳送訊號中所包含的第一符碼的第一符碼資訊,自第三回饋訊號提取第一回饋訊號及第二回饋訊號,所述第一回饋訊號對應於所述第一符碼的循環前綴部分的至少一部分,所述第二回饋訊號對應於所述第一符碼的後端部分的至少一部分,所述第三回饋訊號係自由耦合器提供的所述RF傳送訊號的一部分而產生;以及基於所述第一回饋訊號及所述第二回饋訊號來計算所述反射係數。According to an aspect of the concept of the present invention, a device for measuring the reflection coefficient of an antenna is provided, the device includes a processing circuit system configured to be based on a radio frequency (RF) transmitted to the antenna. ) The first code information of the first code included in the transmission signal, the first feedback signal and the second feedback signal are extracted from the third feedback signal, the first feedback signal corresponds to the cycle of the first code At least a part of the prefix part, the second feedback signal corresponds to at least a part of the back end part of the first symbol, and the third feedback signal is generated from a part of the RF transmission signal provided by a coupler; And calculating the reflection coefficient based on the first feedback signal and the second feedback signal.

根據本發明概念的另一態樣,提供一種測量天線的反射係數的方法,所述方法包括:獲得在經由耦合器提供至所述天線的射頻(RF)傳送訊號中所包含的第一符碼的第一符碼資訊;基於所述第一符碼資訊來獲得第一回饋訊號,所述第一回饋訊號是自在其中所述耦合器傳遞所述第一符碼的循環前綴部分(cyclic prefix portion)的至少一部分的第一間隔中提供的RF回饋訊號而產生;基於所述第一符碼資訊來獲得第二回饋訊號,所述第二回饋訊號是自在其中所述耦合器傳遞所述第一符碼的後端部分(back-end portion)的至少一部分的第二間隔中提供的所述RF回饋訊號而產生;以及基於所述第一回饋訊號及所述第二回饋訊號來計算所述反射係數。According to another aspect of the inventive concept, there is provided a method for measuring the reflection coefficient of an antenna, the method comprising: obtaining a first symbol contained in a radio frequency (RF) transmission signal provided to the antenna via a coupler The first code information; based on the first code information to obtain a first feedback signal, the first feedback signal is free in which the coupler transmits the cyclic prefix portion of the first code (cyclic prefix portion ) Is generated by the RF feedback signal provided in the first interval of at least a part; a second feedback signal is obtained based on the first symbol information, and the second feedback signal is freely transmitted by the coupler. Generated by the RF feedback signal provided in the second interval of at least a part of the back-end portion of the symbol; and calculating the reflection based on the first feedback signal and the second feedback signal coefficient.

根據本發明概念的另一態樣,提供一種測量天線的反射係數的方法,所述方法包括:獲得經由耦合器提供至所述天線的射頻(RF)傳送訊號中所包含的第一符碼的第一符碼資訊;基於所述第一符碼資訊在第一間隔之前將所述耦合器設定成第一耦合方向,所述耦合器在所述第一間隔期間傳遞所述第一符碼的循環前綴部分的至少一部分;基於所述第一符碼資訊在第二間隔之前將所述耦合器設定成第二耦合方向,所述耦合器在所述第二間隔期間傳遞所述第一符碼的後端部分的至少一部分;以及基於由所述耦合器在所述第一間隔及所述第二間隔期間提供的RF回饋訊號來計算所述反射係數。According to another aspect of the inventive concept, there is provided a method for measuring the reflection coefficient of an antenna, the method comprising: obtaining the first symbol contained in a radio frequency (RF) transmission signal provided to the antenna via a coupler The first symbol information; based on the first symbol information, the coupler is set to the first coupling direction before the first interval, and the coupler transmits the first symbol during the first interval At least a part of the cyclic prefix part; the coupler is set to the second coupling direction before the second interval based on the first symbol information, and the coupler transmits the first symbol during the second interval And calculating the reflection coefficient based on the RF feedback signal provided by the coupler during the first interval and the second interval.

圖1是根據本發明概念示例性實施例的無線通訊裝置5的方塊圖。如圖1中所示,無線通訊裝置5可包括控制器10、收發器20、前端電路30、天線40及/或回饋電路50。FIG. 1 is a block diagram of a wireless communication device 5 according to an exemplary embodiment of the inventive concept. As shown in FIG. 1, the wireless communication device 5 may include a controller 10, a transceiver 20, a front-end circuit 30, an antenna 40 and/or a feedback circuit 50.

無線通訊裝置5可藉由經由天線40收發(例如,傳送及/或接收)訊號而連接至無線通訊系統。無線通訊裝置5能夠連接至的無線通訊系統可被稱為使用無線電存取技術(radio access technology,RAT)的系統,且作為非限制性實例,可包括使用無線通訊網路的無線通訊系統。無線通訊網路可為蜂巢式網路,例如第五代(例如5G)無線系統、長期演進(long term evolution,LTE)系統、高級LTE系統、分碼多重存取(code division multiple access,CDMA)系統及/或全球行動通訊系統(global system for mobile communications,GSM)系統及/或無線區域網路(wireless local area network,WLAN)系統及/或其他無線通訊系統。在下文中,可假設無線通訊裝置5連接至的無線通訊系統可為使用蜂巢式網路的無線通訊系統,但本發明概念的實施例並非僅限於此。The wireless communication device 5 can be connected to the wireless communication system by receiving and transmitting (for example, transmitting and/or receiving) signals via the antenna 40. The wireless communication system to which the wireless communication device 5 can be connected may be referred to as a system using radio access technology (RAT), and as a non-limiting example, may include a wireless communication system using a wireless communication network. The wireless communication network can be a cellular network, such as fifth-generation (for example, 5G) wireless systems, long term evolution (LTE) systems, advanced LTE systems, code division multiple access (CDMA) systems And/or global system for mobile communications (GSM) system and/or wireless local area network (WLAN) system and/or other wireless communication systems. In the following, it may be assumed that the wireless communication system to which the wireless communication device 5 is connected may be a wireless communication system using a cellular network, but the embodiments of the concept of the present invention are not limited to this.

無線通訊系統的無線通訊網路可藉由共用可用的網路資源來支援包括無線通訊裝置5在內的多個無線通訊裝置的通訊。例如,在無線通訊網路中,可藉由不同的多種連接方法(例如CDMA、分頻多重存取(frequency division multiple access,FDMA)、分時多重存取(time division multiple access,TDMA)、正交分頻多重存取(orthogonal frequency division multiple access,OFDMA)、單載波分頻多重存取(single carrier frequency division multiple access,SC-FDMA)、OFDM-FDMA、OFDM-TDMA及/或OFDM-CDMA)傳送資訊。The wireless communication network of the wireless communication system can support the communication of multiple wireless communication devices including the wireless communication device 5 by sharing available network resources. For example, in wireless communication networks, different connection methods (such as CDMA, frequency division multiple access (FDMA), time division multiple access (TDMA), and orthogonal Frequency division multiple access (orthogonal frequency division multiple access, OFDMA), single carrier frequency division multiple access (SC-FDMA), OFDM-FDMA, OFDM-TDMA and/or OFDM-CDMA) transmission News.

根據一些示例性實施例,無線通訊裝置5可為連接至無線通訊系統的基地台(base station,BS)。基地台(BS通常可被稱為與使用者設備及/或另一BS進行通訊(例如,藉由無線通訊網路)的固定站台,且可藉由與所述使用者設備及/或另一BS進行通訊來交換資料及/或控制資訊。例如,BS可被稱為節點B、演進節點B(evolved-Node B,eNB)、下一代節點B(generation Node B,gNB)、扇區、站點、基地收發器系統(base transceiver system,BTS)、存取點(access point,AP)、中繼節點、遠端無線電頭(remote radio head,RRH)、無線電單元(radio unit,RU)、小型小區等。在本說明書中,BS可在綜合意義上解釋為表示由CDMA中的BS控制器(BS controller,BSC)、WCDMA中的節點B、LTE中的eNB或扇區(站點)等涵蓋的某一功能,且可包括各種覆蓋區域(例如,小區),例如巨型小區(megacell)、大型小區(macrocell)、微型小區(microcell)、微微小區(picocell)、毫微微小區(femtocell)、中繼節點、RRH、RU及/或小型小區通訊範圍。According to some exemplary embodiments, the wireless communication device 5 may be a base station (BS) connected to a wireless communication system. A base station (BS can usually be referred to as a fixed station that communicates with user equipment and/or another BS (for example, via a wireless communication network)), and can communicate with the user equipment and/or another BS Communicate to exchange data and/or control information. For example, BS can be called Node B, evolved-Node B (eNB), next-generation Node B (gNB), sector, site , Base transceiver system (base transceiver system, BTS), access point (access point, AP), relay node, remote radio head (remote radio head, RRH), radio unit (RU), small cell Etc. In this specification, BS can be interpreted in a comprehensive sense to mean covered by BS controller (BSC) in CDMA, Node B in WCDMA, eNB or sector (site) in LTE, etc. A certain function, and can include various coverage areas (for example, cells), such as megacell, macrocell, microcell, picocell, femtocell, relay Node, RRH, RU and/or small cell communication range.

根據一些示例性實施例,無線通訊裝置5可為使用者設備(user equipment,UE)。所述UE可為固定型或行動型,且可能夠藉由與BS進行通訊來收發(例如,傳送及/或接收)資料及/或控制資訊。例如,UE可被稱為終端機設備、行動站台(mobile station,MS)、使用者終端機(user terminal,UT)、用戶站台(subscriber station,SS)、無線裝置、手持式裝置、行動裝置、智慧型電話、蜂巢式電話等。在本說明書中,可假設無線通訊裝置5是UE,但實施例並非僅限於此。According to some exemplary embodiments, the wireless communication device 5 may be user equipment (UE). The UE may be a fixed type or a mobile type, and may be capable of sending and receiving (for example, transmitting and/or receiving) data and/or control information by communicating with a BS. For example, UE can be called terminal equipment, mobile station (mobile station, MS), user terminal (UT), subscriber station (subscriber station, SS), wireless device, handheld device, mobile device, Smart phones, cellular phones, etc. In this specification, it can be assumed that the wireless communication device 5 is a UE, but the embodiment is not limited to this.

參照圖1,天線40可連接至前端電路30,且可將由前端電路30提供的訊號傳送至其他無線通訊裝置,及/或可將自其他無線通訊裝置接收的訊號提供至前端電路30。在一些實施例中,無線通訊裝置5可包括多個天線40,以用於相控陣列、多輸入多輸出(multiple-input and multiple-output,MIMO)等。天線40可具有阻抗,且天線40的阻抗可由於各種原因而改變。為補償天線40的阻抗改變,如下所述,天線40可連接至前端電路30中所包括的天線調諧器32。1, the antenna 40 can be connected to the front-end circuit 30 and can transmit signals provided by the front-end circuit 30 to other wireless communication devices, and/or can provide signals received from other wireless communication devices to the front-end circuit 30. In some embodiments, the wireless communication device 5 may include multiple antennas 40 for phased arrays, multiple-input and multiple-output (MIMO), etc. The antenna 40 may have impedance, and the impedance of the antenna 40 may be changed due to various reasons. To compensate for the impedance change of the antenna 40, the antenna 40 may be connected to the antenna tuner 32 included in the front-end circuit 30 as described below.

前端電路30可包括耦合器31及/或天線調諧器32。耦合器31可連接至收發器20及天線調諧器32。耦合器31可接收射頻(RF)傳送訊號TX_RF,且可向回饋電路50提供在可轉換耦合方向上與RF傳送訊號TX_RF耦合的訊號(或稱為正向耦合訊號)及/或自天線40及天線調諧器32反射的訊號(或稱為反向耦合訊號)作為RF回饋訊號RF_FB。例如,如圖1中所示,耦合器31可被稱為雙向耦合器,並且當設定正向耦合F時,可向回饋電路50提供與RF傳送訊號TX_RF耦合的訊號作為RF回饋訊號RF_FB,且當設定反向耦合R時,可向回饋電路50提供所反射訊號作為RF回饋訊號RF_FB。可基於由天線控制器14提供的前端控制訊號C_FE根據前端控制訊號C_FE來設定耦合器31的耦合方向。在一些實施例中,如下參照圖4及圖5所述,耦合器31可同時或並行地向回饋電路50提供與RF傳送訊號TX_RF耦合的訊號及所反射訊號。天線調諧器32可根據前端訊號C_FE具有可變阻抗,且因此,天線40及/或天線調諧器32的阻抗可受控制。根據一些示例性實施例,天線40及天線調諧器32的阻抗(例如,天線40與天線調諧器32的組合阻抗)可被簡稱為天線40的阻抗或反射係數。The front-end circuit 30 may include a coupler 31 and/or an antenna tuner 32. The coupler 31 can be connected to the transceiver 20 and the antenna tuner 32. The coupler 31 can receive the radio frequency (RF) transmission signal TX_RF, and can provide the feedback circuit 50 with a signal coupled with the RF transmission signal TX_RF in a switchable coupling direction (or called a forward coupling signal) and/or from the antenna 40 and The signal reflected by the antenna tuner 32 (or called the reverse coupling signal) is used as the RF feedback signal RF_FB. For example, as shown in FIG. 1, the coupler 31 can be called a bidirectional coupler, and when the forward coupling F is set, a signal coupled with the RF transmission signal TX_RF can be provided to the feedback circuit 50 as the RF feedback signal RF_FB, and When the reverse coupling R is set, the reflected signal can be provided to the feedback circuit 50 as the RF feedback signal RF_FB. The coupling direction of the coupler 31 can be set based on the front-end control signal C_FE provided by the antenna controller 14 according to the front-end control signal C_FE. In some embodiments, as described below with reference to FIGS. 4 and 5, the coupler 31 can provide the feedback circuit 50 with the signal coupled with the RF transmission signal TX_RF and the reflected signal simultaneously or in parallel. The antenna tuner 32 can have a variable impedance according to the front-end signal C_FE, and therefore, the impedance of the antenna 40 and/or the antenna tuner 32 can be controlled. According to some exemplary embodiments, the impedance of the antenna 40 and the antenna tuner 32 (for example, the combined impedance of the antenna 40 and the antenna tuner 32) may be simply referred to as the impedance or the reflection coefficient of the antenna 40.

收發器20可包括傳送器21、接收器22及/或開關23。傳送器21可藉由處理自控制器10接收的基頻傳送訊號TX_BB來產生RF傳送訊號TX_RF。例如,傳送器21可包括濾波器、混頻器、功率放大器等。在本說明書中,在傳送模式中提供至耦合器31的RF傳送訊號TX_RF可被簡稱為傳送訊號。接收器22可藉由處理自開關23接收的RF接收訊號RX_RF來產生基頻接收訊號RX_BB。例如,接收器22可包括濾波器、混頻器、低雜訊放大器等。在本說明書中,在接收模式中由耦合器31提供至接收器22的RF接收訊號RX_RF、及基頻接收訊號RX_BB可被簡稱為接收訊號。開關23可在接收模式中向接收器22提供經由耦合器31接收的訊號作為RF接收訊號RX_RF,而在傳送模式中向前端電路30提供RF傳送訊號TX_RF。在一些實施例中,開關23可由雙工器及/或開關多工器(switchplexer)代替,或者在一些實施例中,開關23可包括雙工器及/或開關多工器。The transceiver 20 may include a transmitter 21, a receiver 22, and/or a switch 23. The transmitter 21 can generate the RF transmission signal TX_RF by processing the baseband transmission signal TX_BB received from the controller 10. For example, the transmitter 21 may include a filter, a mixer, a power amplifier, and the like. In this specification, the RF transmission signal TX_RF provided to the coupler 31 in the transmission mode may be referred to as a transmission signal for short. The receiver 22 can generate the baseband receiving signal RX_BB by processing the RF receiving signal RX_RF received from the switch 23. For example, the receiver 22 may include a filter, a mixer, a low noise amplifier, and the like. In this specification, the RF receiving signal RX_RF and the baseband receiving signal RX_BB provided by the coupler 31 to the receiver 22 in the receiving mode can be referred to as receiving signals for short. The switch 23 can provide the receiver 22 with the signal received via the coupler 31 as the RF reception signal RX_RF in the reception mode, and provide the RF transmission signal TX_RF to the front-end circuit 30 in the transmission mode. In some embodiments, the switch 23 may be replaced by a duplexer and/or a switch multiplexer, or in some embodiments, the switch 23 may include a duplexer and/or a switch multiplexer.

回饋電路50可自耦合器31接收RF回饋訊號RF_FB,且可藉由處理RF回饋訊號RF_FB來產生回饋訊號S_FB(或基頻回饋訊號)。例如,回饋電路50可包括濾波器、混頻器等。如圖1中所示,回饋電路50可將回饋訊號S_FB提供至控制器10。The feedback circuit 50 can receive the RF feedback signal RF_FB from the coupler 31, and can generate the feedback signal S_FB (or the fundamental frequency feedback signal) by processing the RF feedback signal RF_FB. For example, the feedback circuit 50 may include a filter, a mixer, and the like. As shown in FIG. 1, the feedback circuit 50 can provide the feedback signal S_FB to the controller 10.

控制器10可包括傳送(transmit,TX)控制器11、緩衝器13及/或天線控制器14,且如下所述,緩衝器13及天線控制器14可用於測量天線40的反射係數。根據一些示例性實施例,本文中闡述為由無線通訊裝置5、控制器10、收發器20、前端電路30、回饋電路50、天線調諧器32、傳送器21、接收器22、TX控制器11及/或天線控制器14執行的操作可由處理電路系統執行。本發明中所使用的用語「處理電路系統(processing circuitry)」可例如指包括邏輯電路的硬體;硬體/軟體組合,例如執行軟體的處理器;或者其組合。例如,更具體而言,處理電路系統可包括但不限於中央處理單元(central processing unit,CPU)、算術邏輯單元(arithmetic logic unit,ALU)、數位訊號處理器、微型電腦、現場可程式化閘陣列(field programmable gate array,FPGA)、系統晶片(System-on-Chip,SoC)、可程式化邏輯單元、微處理器、應用專用積體電路(application-specific integrated circuit,ASIC)等。例如,控制器10中所包括的組件可在藉由邏輯合成等設計的專用硬體區塊中實施,可在包括至少一個處理器及由所述至少一個處理器處理的軟體區塊的處理單元中實施,且可在專用硬體區塊與處理單元的組合中實施。在本說明書中,控制器10可被稱為用於測量天線40的反射係數的裝置。The controller 10 may include a transmit (TX) controller 11, a buffer 13 and/or an antenna controller 14, and as described below, the buffer 13 and the antenna controller 14 may be used to measure the reflection coefficient of the antenna 40. According to some exemplary embodiments, it is explained herein that the wireless communication device 5, the controller 10, the transceiver 20, the front-end circuit 30, the feedback circuit 50, the antenna tuner 32, the transmitter 21, the receiver 22, and the TX controller 11 And/or the operations performed by the antenna controller 14 may be performed by the processing circuitry. The term “processing circuitry” used in the present invention may, for example, refer to hardware including logic circuits; a combination of hardware/software, such as a processor that executes software; or a combination thereof. For example, more specifically, the processing circuit system may include, but is not limited to, central processing unit (CPU), arithmetic logic unit (ALU), digital signal processor, microcomputer, and field programmable gate. Field programmable gate array (FPGA), System-on-Chip (SoC), programmable logic unit, microprocessor, application-specific integrated circuit (ASIC), etc. For example, the components included in the controller 10 may be implemented in a dedicated hardware block designed by logic synthesis or the like, and may be implemented in a processing unit including at least one processor and a software block processed by the at least one processor. It can be implemented in a combination of dedicated hardware blocks and processing units. In this specification, the controller 10 may be referred to as a device for measuring the reflection coefficient of the antenna 40.

TX控制器11可控制經由傳送器21進行的傳送。例如,TX控制器11可根據無線通訊裝置5連接至的無線通訊系統及/或相對的無線通訊裝置來設定各種傳送參數並控制收發器20中所包括的傳送器21,以便產生基頻傳送訊號TX_BB及RF傳送訊號TX_RF。如圖1中所示,TX控制器11可向天線控制器14提供傳送參數中RF傳送訊號TX_RF中所包含的符碼資訊I_SYM。例如,符碼資訊I_SYM可包括符碼的長度及/或循環前綴部分的長度,及/或如下參照圖13及圖14所述,可包括關於視窗化間隔的資訊,且如下所述,可用於測量天線40的反射係數。The TX controller 11 can control transmission via the transmitter 21. For example, the TX controller 11 can set various transmission parameters and control the transmitter 21 included in the transceiver 20 according to the wireless communication system to which the wireless communication device 5 is connected and/or the relative wireless communication device, so as to generate a baseband transmission signal TX_BB and RF transmission signal TX_RF. As shown in FIG. 1, the TX controller 11 can provide the antenna controller 14 with the symbol information I_SYM included in the RF transmission signal TX_RF in the transmission parameters. For example, the symbol information I_SYM may include the length of the symbol and/or the length of the cyclic prefix part, and/or as described below with reference to FIG. 13 and FIG. 14, may include information about the windowing interval, and as described below, can be used for The reflection coefficient of the antenna 40 is measured.

緩衝器13可擷取(例如,儲存)由回饋電路50提供的回饋訊號S_FB,且向天線控制器14提供回饋資料D_FB。例如,緩衝器13可包括記憶體、快取等,且可將藉由擷取回饋訊號S_FB而產生的回饋資料D_FB儲存於記憶體中。在一些實施例中,緩衝器13可根據天線控制器14的控制(例如,控制訊號)以某一間隔(例如,根據所述某一間隔週期性地)來擷取回饋訊號S_FB。The buffer 13 can retrieve (for example, store) the feedback signal S_FB provided by the feedback circuit 50 and provide the feedback data D_FB to the antenna controller 14. For example, the buffer 13 may include a memory, a cache, etc., and the feedback data D_FB generated by capturing the feedback signal S_FB may be stored in the memory. In some embodiments, the buffer 13 may retrieve the feedback signal S_FB at a certain interval (for example, periodically according to the certain interval) according to the control of the antenna controller 14 (for example, a control signal).

天線控制器14可自TX控制器11接收符碼資訊I_SYM,並自緩衝器13接收回饋資料D_FB。另外,天線控制器14可以各種方式獲得指示符碼限制的時序資訊。天線控制器14可產生前端訊號C_FE,且前端訊號C_FE可包括用於設定耦合器31的耦合方向的耦合器控制訊號及/或用於調整天線調諧器32的阻抗的天線調諧訊號。The antenna controller 14 can receive the symbol information I_SYM from the TX controller 11 and the feedback data D_FB from the buffer 13. In addition, the antenna controller 14 can obtain the timing information restricted by the indicator code in various ways. The antenna controller 14 may generate a front-end signal C_FE, and the front-end signal C_FE may include a coupler control signal for setting the coupling direction of the coupler 31 and/or an antenna tuning signal for adjusting the impedance of the antenna tuner 32.

天線控制器14可藉由使用RF傳送訊號TX_RF中所包含的符碼包括循環前綴部分及與所述循環前綴部分匹配的後端部分的特性來測量天線40的反射係數(或阻抗)。例如,如下參照圖2所述,天線控制器14可在其中耦合器31被設定成第一耦合方向的狀態下基於由TX控制器11提供的符碼資訊I_SYM及一個符碼的時序資訊自所述符碼獲得循環前綴部分,且可在其中耦合器31被設定成第二耦合方向的狀態下獲得符碼的後端部分。天線控制器14可依據符碼的與耦合器31的不同耦合方向對應的循環前綴部分及後端部分來計算天線40的反射係數。因此,為測量天線40的反射係數,可省略用於回饋提供至天線40的傳送訊號(例如,RF傳送訊號TX_RF)的附加組件。另外,由於可在不考量包括耦合器31及回饋電路50的回饋路徑中產生的延遲的情況下確定所反射訊號的時序,因此可準確測量天線40的反射係數。The antenna controller 14 can measure the reflection coefficient (or impedance) of the antenna 40 by using the characteristics of the symbol included in the RF transmission signal TX_RF, including a cyclic prefix part and a back-end part matching the cyclic prefix part. For example, as described below with reference to FIG. 2, the antenna controller 14 can be based on the symbol information I_SYM provided by the TX controller 11 and the timing information of a symbol in the state where the coupler 31 is set to the first coupling direction. The preamble code obtains the cyclic prefix part, and the back end part of the code can be obtained in a state in which the coupler 31 is set to the second coupling direction. The antenna controller 14 can calculate the reflection coefficient of the antenna 40 according to the cyclic prefix part and the back end part of the symbol corresponding to different coupling directions of the coupler 31. Therefore, in order to measure the reflection coefficient of the antenna 40, the additional component for feeding back the transmission signal (for example, the RF transmission signal TX_RF) provided to the antenna 40 can be omitted. In addition, since the timing of the reflected signal can be determined without considering the delay generated in the feedback path including the coupler 31 and the feedback circuit 50, the reflection coefficient of the antenna 40 can be accurately measured.

圖2是根據本發明概念示例性實施例測量天線40的反射係數的操作的實例的時序圖。在下文中,參照圖1來闡述圖2。FIG. 2 is a timing diagram of an example of an operation of measuring the reflection coefficient of the antenna 40 according to an exemplary embodiment of the inventive concept. In the following, FIG. 2 is explained with reference to FIG. 1.

提供至圖1中天線40的RF傳送訊號TX_RF可包含一系列符碼。例如,如圖2中所示,RF傳送訊號TX_RF可包含第一符碼SYM1、第一符碼SYM1之前的第二符碼SYM2及第一符碼SYM1之後的第三符碼SYM3。第一符碼SYM1可包括循環前綴部分CP及資料符碼,且第一符碼SYM1的長度TSYM 可與循環前綴部分CP的長度TCP 及資料符碼的長度TU 之和相同或相似。循環前綴部分CP的長度TCP 可被稱為保護間隔(guard interval),且資料符碼可被稱為第一符碼SYM1的有效部分。循環前綴部分CP可為資料符碼的後端部分BE的複本,可***至資料符碼的前端中,且由於循環前綴部分CP,可防止或減少符碼間干擾(inter-symbol interference,ISI),且可去除或減少載波間干擾(inter-carrier interference,ICI)。在本說明書中,資料符碼的與循環前綴部分CP對應的後端部分BE可被簡稱為後端部分BE。The RF transmission signal TX_RF provided to the antenna 40 in FIG. 1 may include a series of symbols. For example, as shown in FIG. 2, the RF transmission signal TX_RF may include a first symbol SYM1, a second symbol SYM2 before the first symbol SYM1, and a third symbol SYM3 after the first symbol SYM1. The first symbol SYM1 may include a cyclic prefix part CP and a data symbol, and the length T SYM of the first symbol SYM1 may be the same as or similar to the sum of the length T CP of the cyclic prefix part CP and the length T U of the data symbol. The length T CP of the cyclic prefix part CP can be referred to as a guard interval, and the data symbol can be referred to as the effective part of the first symbol SYM1. The cyclic prefix part CP can be a copy of the back end part BE of the data symbol, which can be inserted into the front end of the data symbol, and because the cyclic prefix part CP can prevent or reduce inter-symbol interference (ISI) , And can remove or reduce inter-carrier interference (inter-carrier interference, ICI). In this specification, the back-end part BE of the data symbol corresponding to the cyclic prefix part CP may be referred to as the back-end part BE for short.

如上參照圖1所述,天線控制器14可控制耦合器31,使得耦合器31在循環前綴部分CP通過的間隔(例如,第一間隔)與後端部分BE通過的間隔(例如,第二間隔)中具有不同的耦合方向。例如,在圖2中的「情形A」中,耦合器31可在包含循環前綴部分CP的間隔中被設定為正向耦合F,而在包含後端部分BE的間隔中被設定為反向耦合R。另外,在圖2中的「情形B」中,耦合器31可在包含循環前綴部分CP的間隔中被設定為反向耦合R,而在包含後端部分BE的間隔中被設定為正向耦合F。由於循環前綴部分CP是後端部分BE的複本,因此可相對於相同的訊號或相似的訊號獲得與正向耦合F相關的訊號及與反向耦合R相關的訊號,且因此可計算天線40的反射係數。例如,當訊號rfwd 指示藉由正向耦合F獲得的訊號且訊號rrev 指示藉由反向耦合R獲得的訊號時,可如以下公式1來計算天線40的反射係數Γ。As described above with reference to FIG. 1, the antenna controller 14 may control the coupler 31 so that the coupler 31 passes through the interval (for example, the first interval) of the cyclic prefix part CP and the interval (for example, the second interval) where the back-end part BE passes. ) Has different coupling directions. For example, in "Case A" in FIG. 2, the coupler 31 may be set to be forward coupled F in the interval including the cyclic prefix part CP, and set to be reverse coupled in the interval including the back end part BE R. In addition, in the "case B" in FIG. 2, the coupler 31 may be set to be reverse coupled R in the interval including the cyclic prefix part CP, and set to be forward coupled in the interval including the back end part BE F. Since the cyclic prefix part CP is a copy of the back-end part BE, the signal related to the forward coupling F and the signal related to the reverse coupling R can be obtained with respect to the same signal or similar signals, and therefore the antenna 40 can be calculated Reflection coefficient. For example, when the signal r fwd indicates the signal obtained by forward coupling F and the signal r rev indicates the signal obtained by reverse coupling R, the reflection coefficient Γ of the antenna 40 can be calculated as in the following formula 1.

公式1Formula 1

Figure 02_image001
Figure 02_image001

圖3是根據本發明概念示例性實施例測量天線40的反射係數Γ的方法的流程圖。在一些實施例中,圖3中的方法可由圖1中的天線控制器14來執行。如圖3中所示,測量天線40的反射係數Γ的方法可包括多個操作S110至S180。以下,參照圖1及圖2來闡述圖3。FIG. 3 is a flowchart of a method for measuring the reflection coefficient Γ of the antenna 40 according to an exemplary embodiment of the concept of the present invention. In some embodiments, the method in FIG. 3 may be executed by the antenna controller 14 in FIG. 1. As shown in FIG. 3, the method of measuring the reflection coefficient Γ of the antenna 40 may include a plurality of operations S110 to S180. Hereinafter, FIG. 3 will be explained with reference to FIG. 1 and FIG. 2.

可執行獲得符碼資訊I_SYM及時序資訊的操作(S110)。如上參照圖1所述,天線控制器14可自TX控制器11接收符碼資訊I_SYM,且符碼資訊I_SYM可包括循環前綴部分CP的長度TCP 及符碼的長度TSYM 。關於符碼的時序資訊可作為用於偵測第一符碼SYM1的間隔的資訊而指示符碼的間隔,且可以各種方式來獲得。以下參照圖6至圖10來闡述獲得符碼的時序資訊的方法的實例。因此,天線控制器14可基於符碼資訊I_SYM及時序資訊來不僅確定改變耦合器31的耦合方向的時序而且確定其中可擷取循環前綴部分CP及後端部分BE的間隔。The operation of obtaining symbol information I_SYM and timing information may be performed (S110). Described above with reference to FIG 1, the controller 14 may be an antenna from TX controller 11 receives information I_SYM codes, and the codes may include information I_SYM portion CP of the length of the cyclic prefix length T CP and the codes of T SYM. The timing information about the symbol can be used as information for detecting the interval of the first symbol SYM1 to indicate the interval of the symbol, and can be obtained in various ways. Hereinafter, an example of the method of obtaining the timing information of the symbol will be described with reference to FIGS. 6-10. Therefore, the antenna controller 14 can determine not only the timing of changing the coupling direction of the coupler 31 but also the interval in which the cyclic prefix part CP and the back end part BE can be extracted based on the symbol information I_SYM and timing information.

可執行將耦合器31設定成第一耦合方向的操作(S120)。例如,耦合器31可被設定成正向耦合F,且因此可向回饋電路50提供與RF傳送訊號TX_RF耦合的訊號作為RF回饋訊號RF_FB。另一方面,耦合器31可被設定成反向耦合R,且因此可向回饋電路50提供自天線40反射的訊號作為RF回饋訊號RF_FB。The operation of setting the coupler 31 to the first coupling direction may be performed (S120). For example, the coupler 31 can be set to be positively coupled F, and thus can provide the feedback circuit 50 with a signal coupled to the RF transmission signal TX_RF as the RF feedback signal RF_FB. On the other hand, the coupler 31 can be set to reverse coupling R, and thus can provide the feedback circuit 50 with the signal reflected from the antenna 40 as the RF feedback signal RF_FB.

可執行獲得第一回饋訊號的操作(S130)。例如,回饋電路50可自已被設定成第一耦合方向(例如,在操作S120中)的耦合器31接收RF回饋訊號RF_FB,且藉由處理RF回饋訊號RF_FB向控制器10的緩衝器13提供回饋訊號S_FB。緩衝器13可擷取自回饋電路50接收的回饋訊號S_FB作為第一回饋訊號。因此,當耦合器31在操作S120中被設定成正向耦合F時,第一回饋訊號可對應於RF傳送訊號TX_RF,而當耦合器31被設定成反向耦合R時,第一回饋訊號能夠對應於自天線40反射的訊號。在一些實施例中,天線控制器14可控制緩衝器13擷取第一回饋訊號。The operation of obtaining the first feedback signal may be performed (S130). For example, the feedback circuit 50 may receive the RF feedback signal RF_FB from the coupler 31 that has been set to the first coupling direction (for example, in operation S120), and provide feedback to the buffer 13 of the controller 10 by processing the RF feedback signal RF_FB The signal S_FB. The buffer 13 can retrieve the feedback signal S_FB received from the feedback circuit 50 as the first feedback signal. Therefore, when the coupler 31 is set to be forward coupled F in operation S120, the first feedback signal can correspond to the RF transmission signal TX_RF, and when the coupler 31 is set to be reverse coupled to R, the first feedback signal can correspond to For the signal reflected from the antenna 40. In some embodiments, the antenna controller 14 can control the buffer 13 to capture the first feedback signal.

可執行判斷循環前綴部分CP是否已結束的操作(S140)。例如,天線控制器14可基於在操作S110中獲得的符碼資訊I_SYM及時序資訊來估計循環前綴部分CP的結束,且基於循環前綴部分CP的所估計結束,可判斷提供至耦合器31的RF傳送訊號TX_RF中所包含的第一符碼SYM1的循環前綴部分CP是否已結束。如圖3中所示,當循環前綴部分CP未終止時,可在操作S130中繼續獲得第一回饋訊號的操作,且當循環前綴部分CP已結束時,可相繼執行操作S150。因此,第一回饋訊號可自被設定成第一耦合方向的耦合器31獲得包括循環前綴部分CP的至少一部分的第一回饋訊號。在一些實施例中,當循環前綴部分CP已結束時,天線控制器14可控制緩衝器13終止擷取第一回饋訊號。An operation of judging whether the cyclic prefix part CP has ended may be performed (S140). For example, the antenna controller 14 may estimate the end of the cyclic prefix part CP based on the symbol information I_SYM and timing information obtained in operation S110, and based on the estimated end of the cyclic prefix part CP, may determine the RF provided to the coupler 31 Whether the cyclic prefix part CP of the first symbol SYM1 contained in the transmission signal TX_RF has ended. As shown in FIG. 3, when the cyclic prefix part CP is not terminated, the operation of obtaining the first feedback signal may be continued in operation S130, and when the cyclic prefix part CP has ended, operation S150 may be performed successively. Therefore, the first feedback signal can obtain the first feedback signal including at least a part of the cyclic prefix part CP from the coupler 31 set to the first coupling direction. In some embodiments, when the cyclic prefix part CP has ended, the antenna controller 14 may control the buffer 13 to stop capturing the first feedback signal.

當循環前綴部分CP已結束時,可執行將耦合器31設定成第二耦合方向的操作(S150)。操作S150的第二耦合方向可不同於操作S120的第一耦合方向。例如,當耦合器31在操作S120中被設定成正向耦合F時,耦合器31可在操作S150中被設定成反向耦合R,而當耦合器31在操作S120中被設定成反向耦合R時,耦合器31可在操作S150中被設定成正向耦合F。When the cyclic prefix part CP has ended, an operation of setting the coupler 31 to the second coupling direction may be performed (S150). The second coupling direction of operation S150 may be different from the first coupling direction of operation S120. For example, when the coupler 31 is set to be forward coupled F in operation S120, the coupler 31 may be set to be reverse coupled R in operation S150, and when the coupler 31 is set to reverse coupling R in operation S120 At this time, the coupler 31 may be set to be positively coupled F in operation S150.

可執行獲得第二回饋訊號的操作(S160)。例如,回饋電路50可自在操作S150中被設定成第二耦合方向的耦合器31接收RF回饋訊號RF_FB,且可藉由處理RF回饋訊號RF_FB向緩衝器13提供回饋訊號S_FB。緩衝器13可擷取自回饋電路50接收的回饋訊號S_FB作為第二回饋訊號。因此,當耦合器31在操作S150中被設定成正向耦合F時,第二回饋訊號可對應於RF傳送訊號TX_RF,而當耦合器31在操作S150中被設定成反向耦合R時,第二回饋訊號能夠對應於自天線40反射的訊號。在一些實施例中,天線控制器14可控制緩衝器13擷取第二回饋訊號。The operation of obtaining the second feedback signal may be performed (S160). For example, the feedback circuit 50 can receive the RF feedback signal RF_FB from the coupler 31 that is set to the second coupling direction in operation S150, and can provide the feedback signal S_FB to the buffer 13 by processing the RF feedback signal RF_FB. The buffer 13 can retrieve the feedback signal S_FB received from the feedback circuit 50 as the second feedback signal. Therefore, when the coupler 31 is set to be forward coupled F in operation S150, the second feedback signal may correspond to the RF transmission signal TX_RF, and when the coupler 31 is set to be reverse coupled to R in operation S150, the second feedback signal The feedback signal can correspond to the signal reflected from the antenna 40. In some embodiments, the antenna controller 14 can control the buffer 13 to retrieve the second feedback signal.

可執行判斷第一符碼SYM1是否已結束的操作(S170)。例如,天線控制器14可基於在操作S110中獲得的符碼資訊I_SYM及時序資訊來估計第一符碼SYM1的結束,且基於第一符碼SYM1的所估計結束,可判斷提供至耦合器31的RF傳送訊號TX_RF中所包含的第一符碼SYM1是否已結束。如圖3中所示,當第一符碼SYM1尚未結束時,可在操作S160中繼續獲得第二回饋訊號的操作,而當第一符碼SYM1已結束時,可相繼執行操作S180。因此,第二回饋訊號可自被設定成第二耦合方向的耦合器31獲得包括第一符碼SYM1的後端部分BE的至少一部分的第二回饋訊號。在一些實施例中,當第一符碼SYM1已結束時,天線控制器14可控制緩衝器13終止擷取第二回饋訊號。The operation of judging whether the first symbol SYM1 has ended can be performed (S170). For example, the antenna controller 14 may estimate the end of the first symbol SYM1 based on the symbol information I_SYM and timing information obtained in operation S110, and based on the estimated end of the first symbol SYM1, may determine to provide to the coupler 31 Whether the first symbol SYM1 contained in the RF transmission signal TX_RF has ended. As shown in FIG. 3, when the first symbol SYM1 has not ended, the operation of obtaining the second feedback signal can be continued in operation S160, and when the first symbol SYM1 has ended, operation S180 can be performed successively. Therefore, the second feedback signal can obtain the second feedback signal including at least a part of the back end portion BE of the first symbol SYM1 from the coupler 31 set to the second coupling direction. In some embodiments, when the first symbol SYM1 has ended, the antenna controller 14 can control the buffer 13 to stop capturing the second feedback signal.

當第一符碼SYM1已結束時,可執行基於第一回饋訊號及第二回饋訊號計算天線40的反射係數的操作(S180)。例如,天線控制器14可依據自緩衝器13提供的回饋資料D_FB獲得第一回饋訊號及第二回饋訊號,且基於第一回饋訊號及第二回饋訊號,可計算天線40的反射係數,例如,如在公式1中(例如,使用公式1)。如下參照圖17所述,天線控制器14可執行基於所計算的反射係數來控制天線調諧器32及/或偵測無線通訊裝置5的外部物體的操作。When the first symbol SYM1 has ended, the operation of calculating the reflection coefficient of the antenna 40 based on the first feedback signal and the second feedback signal may be performed (S180). For example, the antenna controller 14 can obtain the first feedback signal and the second feedback signal according to the feedback data D_FB provided from the buffer 13, and can calculate the reflection coefficient of the antenna 40 based on the first feedback signal and the second feedback signal, for example, As in Formula 1 (for example, use Formula 1). As described below with reference to FIG. 17, the antenna controller 14 may perform operations of controlling the antenna tuner 32 and/or detecting external objects of the wireless communication device 5 based on the calculated reflection coefficient.

圖4是根據本發明概念示例性實施例的無線通訊裝置5'的方塊圖。如圖4中所示,圖4所示無線通訊裝置5'可包括控制器10'、收發器20'、前端電路30'、天線40'及/或回饋電路50'。與圖1所示無線通訊裝置5相較,圖4所示無線通訊裝置5'中的耦合器31'可同時或並行地產生與RF傳送訊號TX_RF耦合的訊號及自天線40'反射的訊號。在下文中,不再對圖4進行與參照圖1給出的說明相同或相似的說明。FIG. 4 is a block diagram of a wireless communication device 5'according to an exemplary embodiment of the inventive concept. As shown in FIG. 4, the wireless communication device 5'shown in FIG. 4 may include a controller 10', a transceiver 20', a front-end circuit 30', an antenna 40', and/or a feedback circuit 50'. Compared with the wireless communication device 5 shown in FIG. 1, the coupler 31' in the wireless communication device 5'shown in FIG. 4 can simultaneously or in parallel generate a signal coupled with the RF transmission signal TX_RF and a signal reflected from the antenna 40'. In the following, descriptions of FIG. 4 that are the same as or similar to those given with reference to FIG. 1 will not be given.

前端電路30'可包括耦合器31'及/或天線調諧器32'。耦合器31'可同時或並行地向回饋電路50'提供與RF傳送訊號TX_RF耦合的訊號及自天線40'反射的訊號。例如,耦合器31'可在傳送模式中自收發器20'接收RF傳送訊號TX_RF,將作為與RF傳送訊號TX_RF耦合的訊號的正向回饋訊號F_FB傳送至回饋電路50',並將作為自天線40'反射的訊號的反向回饋訊號R_FB提供至回饋電路50'。因此,與圖1中的耦合器31不同,可省略自控制器10'的天線控制器14'提供的用於控制圖4中耦合器31'的耦合方向的訊號。The front-end circuit 30' may include a coupler 31' and/or an antenna tuner 32'. The coupler 31' can provide the feedback circuit 50' with a signal coupled with the RF transmission signal TX_RF and a signal reflected from the antenna 40' simultaneously or in parallel. For example, the coupler 31' can receive the RF transmission signal TX_RF from the transceiver 20' in the transmission mode, and transmit the forward feedback signal F_FB, which is a signal coupled with the RF transmission signal TX_RF, to the feedback circuit 50', and will serve as the self antenna The reverse feedback signal R_FB of the reflected signal 40' is provided to the feedback circuit 50'. Therefore, unlike the coupler 31 in FIG. 1, the signal provided from the antenna controller 14' of the controller 10' for controlling the coupling direction of the coupler 31' in FIG. 4 can be omitted.

收發器20'可包括傳送器21'、接收器22'及/或開關23'。傳送器21'可藉由處理基頻傳送訊號TX_BB來產生RF傳送訊號TX_RF,且接收器22'可藉由處理RF接收訊號RX_RF來產生基頻接收訊號RX_BB。控制器10'可包括傳送控制器11'、緩衝器13'及/或天線控制器14'。傳送控制器11'可控制傳送操作,且可向天線控制器14'提供符碼資訊I_SYM。緩衝器13'可擷取自回饋電路50'接收的回饋訊號S_FB,並將回饋資料D_FB提供至天線控制器14'。The transceiver 20' may include a transmitter 21', a receiver 22' and/or a switch 23'. The transmitter 21' can generate the RF transmission signal TX_RF by processing the baseband transmission signal TX_BB, and the receiver 22' can generate the baseband reception signal RX_BB by processing the RF reception signal RX_RF. The controller 10' may include a transmission controller 11', a buffer 13' and/or an antenna controller 14'. The transmission controller 11' can control the transmission operation, and can provide the symbol information I_SYM to the antenna controller 14'. The buffer 13' can retrieve the feedback signal S_FB received from the feedback circuit 50' and provide the feedback data D_FB to the antenna controller 14'.

天線控制器14'可基於符碼資訊I_SYM、時序資訊及/或回饋資料D_FB來測量天線40'的反射係數。如圖4中所示,天線控制器14'可基於天線40'的所測量反射係數向天線調諧器32'提供天線調諧訊號C_ANT,以調整天線調諧器32'的阻抗。另外,天線控制器14'可向回饋電路50'提供回饋控制訊號C_FB,且回饋電路50'可藉由根據回饋控制訊號C_FB處理正向回饋訊號F_FB及/或反向回饋訊號R_FB中的一者來產生回饋訊號S_FB。換言之,圖1中的天線控制器14可藉由使用前端控制訊號C_FE中所包含的耦合器控制訊號來控制耦合器31的耦合方向,而圖4中的天線控制器14'可藉由使用回饋控制訊號C_FB來控制緩衝器13'擷取與正向回饋訊號F_FB及/或反向回饋訊號R_FB中的一者對應的回饋訊號S_FB。根據一些示例性實施例,本文中闡述為由無線通訊裝置5'、控制器10'、收發器20'、前端電路30'、回饋電路50'、天線調諧器32'、傳送器21'、接收器22'、TX控制器11'及/或天線控制器14'執行的操作可由處理電路系統執行。The antenna controller 14' can measure the reflection coefficient of the antenna 40' based on the symbol information I_SYM, timing information and/or the feedback data D_FB. As shown in FIG. 4, the antenna controller 14' may provide an antenna tuning signal C_ANT to the antenna tuner 32' based on the measured reflection coefficient of the antenna 40' to adjust the impedance of the antenna tuner 32'. In addition, the antenna controller 14' can provide the feedback control signal C_FB to the feedback circuit 50', and the feedback circuit 50' can process one of the forward feedback signal F_FB and/or the reverse feedback signal R_FB according to the feedback control signal C_FB To generate the feedback signal S_FB. In other words, the antenna controller 14 in FIG. 1 can control the coupling direction of the coupler 31 by using the coupler control signal included in the front-end control signal C_FE, and the antenna controller 14' in FIG. 4 can use feedback The control signal C_FB controls the buffer 13' to retrieve the feedback signal S_FB corresponding to one of the forward feedback signal F_FB and/or the reverse feedback signal R_FB. According to some exemplary embodiments, it is explained herein that the wireless communication device 5', the controller 10', the transceiver 20', the front-end circuit 30', the feedback circuit 50', the antenna tuner 32', the transmitter 21', and the receiver The operations performed by the device 22', the TX controller 11' and/or the antenna controller 14' may be performed by the processing circuit system.

圖5是根據本發明概念示例性實施例測量天線40'的反射係數的方法的流程圖。在一些實施例中,圖5中的操作可由圖4中的天線控制器14'執行。如圖5中所示,測量天線40'的反射係數的方法可包括多個操作S210至S280。在下文中,參照圖4來闡述圖5,且省略先前參照圖3給出的說明。5 is a flowchart of a method for measuring the reflection coefficient of an antenna 40' according to an exemplary embodiment of the concept of the present invention. In some embodiments, the operations in FIG. 5 may be performed by the antenna controller 14' in FIG. 4. As shown in FIG. 5, the method of measuring the reflection coefficient of the antenna 40' may include a plurality of operations S210 to S280. Hereinafter, FIG. 5 is explained with reference to FIG. 4, and the description given previously with reference to FIG. 3 is omitted.

可執行獲得符碼資訊I_SYM及時序資訊的操作(S210)。接下來,回饋電路50'可被配置成處理與第一耦合方向對應的訊號(S220)。例如,天線控制器14'可藉由使用回饋控制訊號C_FB處理正向回饋訊號F_FB或反向回饋訊號R_FB來產生回饋訊號S_FB。The operation of obtaining symbol information I_SYM and timing information may be performed (S210). Next, the feedback circuit 50' may be configured to process the signal corresponding to the first coupling direction (S220). For example, the antenna controller 14' can generate the feedback signal S_FB by using the feedback control signal C_FB to process the forward feedback signal F_FB or the reverse feedback signal R_FB.

可執行獲得第一回饋訊號的操作(S230)。緩衝器13'可擷取自回饋電路50'接收的回饋訊號S_FB作為第一回饋訊號。因此,當回饋電路50'在操作S220中被設定成處理正向回饋訊號F_FB時,第一回饋訊號可對應於RF傳送訊號TX_RF,但當回饋電路50'在操作S220中被設定成處理反向回饋訊號R_FB時,第一回饋訊號可對應於自天線40'反射的訊號。接下來,可執行判斷循環前綴部分CP是否已結束的操作(S240)。當循環前綴部分CP尚未結束時,可隨後執行操作S230,但當循環前綴部分CP已結束時,可隨後執行操作S250,且因此,第一回饋訊號可包括循環部分CP的至少一部分。The operation of obtaining the first feedback signal may be performed (S230). The buffer 13' can retrieve the feedback signal S_FB received from the feedback circuit 50' as the first feedback signal. Therefore, when the feedback circuit 50' is set to process the forward feedback signal F_FB in operation S220, the first feedback signal may correspond to the RF transmission signal TX_RF, but when the feedback circuit 50' is set to process the reverse signal in operation S220 When the feedback signal R_FB is returned, the first feedback signal may correspond to the signal reflected from the antenna 40'. Next, an operation of judging whether the cyclic prefix part CP has ended can be performed (S240). When the cyclic prefix part CP has not ended, operation S230 may be subsequently performed, but when the cyclic prefix part CP has ended, operation S250 may be subsequently performed, and therefore, the first feedback signal may include at least a part of the cyclic part CP.

回饋電路可被配置成處理與第二耦合方向對應的訊號(S250)。例如,當回饋電路50'在操作S220中被設定成處理正向回饋訊號F_FB時,天線控制器14'可藉由使用回饋控制訊號C_FB被設定成處理反向回饋訊號R_FB,但當回饋電路50'在操作S220中被設定成處理反向回饋訊號R_FB時,天線控制器14'可被設定成處理正向回饋訊號F_FB。The feedback circuit may be configured to process the signal corresponding to the second coupling direction (S250). For example, when the feedback circuit 50' is set to process the forward feedback signal F_FB in operation S220, the antenna controller 14' can be set to process the reverse feedback signal R_FB by using the feedback control signal C_FB, but when the feedback circuit 50 When it is set to process the reverse feedback signal R_FB in operation S220, the antenna controller 14' can be set to process the forward feedback signal F_FB.

可執行獲得第二回饋訊號的操作(S260)。例如,緩衝器13'可擷取自回饋電路50'接收的回饋訊號S_FB作為第二回饋訊號。因此,當回饋電路50'在操作S250中被設定成處理正向回饋訊號F_FB時,第二回饋訊號可對應於RF傳送訊號TX_RF,但當回饋電路50'在操作S250中被設定成處理反向回饋訊號R_FB時,第二回饋訊號可對應於自天線40'反射的訊號。接下來,可執行判斷第一符碼SYM1是否已結束的操作(S270)。當第一符碼SYM1尚未結束時,可隨後執行操作S260,且因此,第二回饋訊號可包括後端部分BE的至少一些。當第一符碼SYM1已結束時,可執行基於第一回饋訊號及第二回饋訊號計算天線40'的反射係數的操作(S280)。The operation of obtaining the second feedback signal may be performed (S260). For example, the buffer 13' can retrieve the feedback signal S_FB received from the feedback circuit 50' as the second feedback signal. Therefore, when the feedback circuit 50' is set to process the forward feedback signal F_FB in operation S250, the second feedback signal may correspond to the RF transmission signal TX_RF, but when the feedback circuit 50' is set to process the reverse signal in operation S250 When the feedback signal R_FB is returned, the second feedback signal may correspond to the signal reflected from the antenna 40'. Next, an operation of judging whether the first symbol SYM1 has ended can be performed (S270). When the first symbol SYM1 has not ended, operation S260 may be subsequently performed, and therefore, the second feedback signal may include at least some of the back end portion BE. When the first symbol SYM1 has ended, an operation of calculating the reflection coefficient of the antenna 40' based on the first feedback signal and the second feedback signal may be performed (S280).

在下文中,參照包括耦合器31的無線通訊裝置5來闡述本發明概念的示例性實施例,在耦合器31中,耦合方向由天線控制器14切換,如圖1中所示。然而,本發明概念並非僅限於此,且應理解,以下所述的實施例亦適用於包括耦合器31'的無線通訊裝置5',如圖4及圖5中所示。In the following, an exemplary embodiment of the inventive concept is explained with reference to a wireless communication device 5 including a coupler 31 in which the coupling direction is switched by the antenna controller 14 as shown in FIG. 1. However, the concept of the present invention is not limited to this, and it should be understood that the embodiments described below are also applicable to the wireless communication device 5'including the coupler 31', as shown in FIGS. 4 and 5.

圖6是根據本發明概念示例性實施例的控制器60的實例的方塊圖。與圖1中的控制器10相似,圖6所示控制器60可包括TX控制器61、緩衝器63及/或天線控制器64,且可更包括時序分析器65。在下文中,不再對圖6進行與參照圖1給出的說明相同或相似的說明。根據一些示例性實施例,本文中闡述為由控制器60、TX控制器61、天線控制器64及/或時序分析器65執行的操作可由處理電路系統執行。FIG. 6 is a block diagram of an example of the controller 60 according to an exemplary embodiment of the inventive concept. Similar to the controller 10 in FIG. 1, the controller 60 shown in FIG. 6 may include a TX controller 61, a buffer 63 and/or an antenna controller 64, and may further include a timing analyzer 65. In the following, descriptions of FIG. 6 that are the same as or similar to those given with reference to FIG. 1 will not be given. According to some exemplary embodiments, the operations described herein as being performed by the controller 60, the TX controller 61, the antenna controller 64, and/or the timing analyzer 65 may be performed by the processing circuitry.

時序分析器65可產生時序資訊I_TIM,並將時序資訊I_TIM提供至天線控制器64。如圖6中的虛線所示,時序分析器65在一些實施例中可接收回饋訊號S_FB,且在一些實施例中可接收由緩衝器63藉由擷取回饋訊號S_FB而提供至天線控制器64的回饋資料D_FB。時序分析器65可自包含循環前綴部分CP及後端部分BE的回饋訊號S_FB偵測第一符碼SYM1的邊界。在一些實施例中,天線控制器14可偵測第一符碼SYM1之前的至少一個符碼的邊界,例如,圖2所示第二符碼SYM2的邊界,且可基於第二符碼SYM2的所偵測到的邊界及符碼資訊I_SYM來控制在第一符碼SYM1中耦合器31的耦合方向。以下參照圖7來闡述時序分析器65的操作的實例。因此,天線控制器64可基於自傳送控制器61接收的符碼資訊I_SYM、自緩衝器63接收的回饋資料D_FB及/或自時序分析器65接收的時序資訊I_TIM來測量天線(例如,圖1中的天線40)的反射係數。The timing analyzer 65 can generate timing information I_TIM and provide the timing information I_TIM to the antenna controller 64. As shown by the dashed line in FIG. 6, the timing analyzer 65 may receive the feedback signal S_FB in some embodiments, and may receive the feedback signal S_FB from the buffer 63 and provide it to the antenna controller 64 in some embodiments. The feedback data D_FB. The timing analyzer 65 can detect the boundary of the first symbol SYM1 from the feedback signal S_FB including the cyclic prefix part CP and the back end part BE. In some embodiments, the antenna controller 14 can detect the boundary of at least one symbol before the first symbol SYM1. For example, the boundary of the second symbol SYM2 shown in FIG. 2 may be based on the boundary of the second symbol SYM2. The detected boundary and symbol information I_SYM control the coupling direction of the coupler 31 in the first symbol SYM1. An example of the operation of the timing analyzer 65 is explained below with reference to FIG. 7. Therefore, the antenna controller 64 can measure the antenna based on the symbol information I_SYM received from the transmission controller 61, the feedback data D_FB received from the buffer 63, and/or the timing information I_TIM received from the timing analyzer 65 (for example, FIG. 1 The reflection coefficient of the antenna 40).

圖7是用於闡釋根據本發明概念示例性實施例的圖3中操作S110的實例的流程圖。可執行產生符碼的時序資訊I_TIM的操作(圖7所示S110a)。在一些實施例中,圖7所示操作S110a可為圖5所示操作S210的實例。另外,在一些實施例中,圖7所示操作S110a可由圖6中的時序分析器65執行,且在下文中,參照圖6來闡述圖7。FIG. 7 is a flowchart for explaining an example of operation S110 in FIG. 3 according to an exemplary embodiment of the inventive concept. The operation of generating symbol timing information I_TIM can be performed (S110a shown in Figure 7). In some embodiments, operation S110a shown in FIG. 7 may be an example of operation S210 shown in FIG. 5. In addition, in some embodiments, the operation S110a shown in FIG. 7 may be performed by the timing analyzer 65 in FIG. 6, and in the following, FIG. 7 will be explained with reference to FIG. 6.

參照圖7,可進行執行(例如,確定)符碼的二個部分之間的相關性的操作(S111)。根據一些示例性實施例,可執行符碼的所述二個部分之間的多個相關性。接下來,可執行基於最大(例如,最高或高)相關性來產生符碼的時序資訊I_TIM的操作(S112)。根據一些示例性實施例,可自在操作S111中執行的所述多個相關性中確定最大相關性。時序分析器65可執行符碼的包含循環前綴部分CP的一部分與符碼的包含後端部分BE的一部分的相關性操作,且因此,可基於在其中找到最高相關性或高相關性的點來偵測符碼的邊界。因此,時序分析器65可向天線控制器64提供包含符碼的所偵測到的邊界的時序資訊I_TIM。Referring to FIG. 7, an operation of performing (for example, determining) the correlation between the two parts of the symbol may be performed (S111). According to some exemplary embodiments, multiple dependencies between the two parts of the code can be performed. Next, an operation of generating symbol timing information I_TIM based on the maximum (for example, the highest or high) correlation may be performed (S112). According to some exemplary embodiments, the maximum correlation may be determined from the plurality of correlations performed in operation S111. The timing analyzer 65 may perform a correlation operation between a part of the symbol including the cyclic prefix part CP and a part of the symbol including the back-end part BE, and therefore, may be based on the point where the highest correlation or high correlation is found. Detect the boundary of the code. Therefore, the timing analyzer 65 can provide the antenna controller 64 with the timing information I_TIM of the detected boundary including the symbol.

圖8是根據本發明概念示例性實施例的控制器80的實例的方塊圖。與圖1中的控制器10相似,圖8所示控制器80可包括傳送控制器81、緩衝器83及/或天線控制器84,且傳送(TX)控制器81可向天線控制器84提供符碼的時序訊號T_SYM。在下文中,將參照圖1來闡述圖8。根據一些示例性實施例,本文中闡述為由控制器80、TX控制器81及/或天線控制器84執行的操作可由處理電路系統執行。FIG. 8 is a block diagram of an example of a controller 80 according to an exemplary embodiment of the inventive concept. Similar to the controller 10 in FIG. 1, the controller 80 shown in FIG. 8 may include a transmission controller 81, a buffer 83 and/or an antenna controller 84, and the transmission (TX) controller 81 may provide the antenna controller 84 Symbol timing signal T_SYM. Hereinafter, FIG. 8 will be explained with reference to FIG. 1. According to some exemplary embodiments, the operations described herein as being performed by the controller 80, the TX controller 81, and/or the antenna controller 84 may be performed by the processing circuitry.

天線控制器84可自傳送控制器81接收符碼資訊I_SYM及符碼的時序訊號T_SYM,並自緩衝器83接收回饋資料D_FB。如上所述,符碼資訊I_SYM可包括循環前綴部分CP的長度TCP 及資料符碼的長度TU ,且符碼的時序訊號T_SYM可表示基頻傳送訊號TX_BB中所包含的符碼的邊界。天線控制器84可預先知道路徑的延遲(例如,無線通訊裝置5的傳送路徑延遲、無線通訊裝置5'的傳送路徑延遲等),基於時序訊號T_SYM及路徑的延遲來識別符碼的邊界,並產生指示符碼的邊界的時序資訊I_TIM。以下參照圖9來闡述其中天線控制器84基於時序訊號T_SYM來產生時序資訊I_TIM的操作的實例。The antenna controller 84 can receive the symbol information I_SYM and the symbol timing signal T_SYM from the transmission controller 81, and receive the feedback data D_FB from the buffer 83. As described above, the symbol information I_SYM may include the length T CP of the cyclic prefix part CP and the length T U of the data symbol, and the symbol timing signal T_SYM may indicate the boundary of the symbol included in the baseband transmission signal TX_BB. The antenna controller 84 can know the path delay in advance (for example, the transmission path delay of the wireless communication device 5, the transmission path delay of the wireless communication device 5', etc.), and identify the symbol boundary based on the timing signal T_SYM and the path delay, and The timing information I_TIM of the boundary of the indicator code is generated. Hereinafter, an example in which the antenna controller 84 generates timing information I_TIM based on the timing signal T_SYM will be described with reference to FIG. 9.

圖9是用於闡釋根據本發明概念示例性實施例的圖3中操作S110的實例的流程圖。可執行產生符碼的時序資訊I_TIM的操作(圖9所示S110b)。在一些實施例中,圖9所示操作S110b可為圖5所示操作S210的實例。另外,在一些實施例中,圖9所示操作S110b可由圖8中的天線控制器84執行,且在下文中,參照圖1及圖8來闡述圖9。FIG. 9 is a flowchart for explaining an example of operation S110 in FIG. 3 according to an exemplary embodiment of the inventive concept. The operation of generating symbol timing information I_TIM can be performed (S110b shown in Figure 9). In some embodiments, operation S110b shown in FIG. 9 may be an example of operation S210 shown in FIG. 5. In addition, in some embodiments, the operation S110b shown in FIG. 9 may be performed by the antenna controller 84 in FIG. 8, and in the following, FIG. 9 is explained with reference to FIG. 1 and FIG. 8.

參照圖9,可執行接收符碼的時序訊號T_SYM的操作(S113),且然後,可執行基於路徑的延遲來產生時序資訊I_TIM的操作(S114)。例如,如上參照圖8所述,時序訊號T_SYM可為與第一符碼SYM1的邊界同步的訊號,且因此,可基於時序訊號T_SYM及路徑的延遲來產生指示符碼的邊界的時序資訊。9, the operation of receiving the timing signal T_SYM of the symbol may be performed (S113), and then, the operation of generating the timing information I_TIM based on the path delay may be performed (S114). For example, as described above with reference to FIG. 8, the timing signal T_SYM may be a signal synchronized with the boundary of the first symbol SYM1, and therefore, timing information of the boundary of the indicator code may be generated based on the timing signal T_SYM and the path delay.

在一些實施例中,天線控制器84可基於符碼的時序訊號T_SYM來估計到達耦合器31的符碼的邊界。例如,天線控制器84可預先知道其中基頻傳送訊號TX_BB中所包含的第一符碼SYM1通過傳送器21及開關23並到達耦合器31的路徑,即,傳送路徑的延遲,且因此可基於符碼的時序訊號T_SYM及傳送路徑的延遲來估計第一符碼SYM1的邊界到達耦合器31的時間點。In some embodiments, the antenna controller 84 may estimate the boundary of the symbol reaching the coupler 31 based on the symbol timing signal T_SYM. For example, the antenna controller 84 may know in advance the path where the first symbol SYM1 included in the baseband transmission signal TX_BB passes through the transmitter 21 and the switch 23 and reaches the coupler 31, that is, the delay of the transmission path, and therefore can be based on The symbol timing signal T_SYM and the delay of the transmission path are used to estimate the time point when the boundary of the first symbol SYM1 reaches the coupler 31.

在一些實施例中,天線控制器84可基於符碼的時序訊號T_SYM來估計回饋訊號S_FB中所包含的符碼的邊界。例如,天線控制器84可預先知道其中由耦合器31提供的RF回饋訊號RF_FB被回饋電路50處理以產生回饋訊號S_FB的路徑的延遲,即,回饋路徑的延遲,且因此可基於符碼的時序訊號T_SYM、傳送路徑的延遲及回饋路徑的延遲來估計第一符碼SYM1的邊界到達緩衝器13的時間點。In some embodiments, the antenna controller 84 may estimate the boundary of the symbol contained in the feedback signal S_FB based on the symbol timing signal T_SYM. For example, the antenna controller 84 may know in advance the delay of the path in which the RF feedback signal RF_FB provided by the coupler 31 is processed by the feedback circuit 50 to generate the feedback signal S_FB, that is, the delay of the feedback path, and therefore may be based on the timing of the symbol The signal T_SYM, the delay of the transmission path and the delay of the feedback path are used to estimate the time point when the boundary of the first symbol SYM1 reaches the buffer 13.

圖10是根據本發明概念示例性實施例的控制器100的實例的方塊圖。與圖1中的控制器10相似,圖10所示控制器100可包括TX控制器110、緩衝器130及/或天線控制器140,且可更包括接收(receive,RX)控制器120(例如,接收(reception,RX)控制器)。在下文中,不再對圖10進行與關於圖1給出的說明相同或相似的說明。FIG. 10 is a block diagram of an example of the controller 100 according to an exemplary embodiment of the inventive concept. Similar to the controller 10 in FIG. 1, the controller 100 shown in FIG. 10 may include a TX controller 110, a buffer 130, and/or an antenna controller 140, and may further include a receive (RX) controller 120 (eg , Receive (reception, RX) controller). In the following, descriptions of FIG. 10 that are the same as or similar to those given with respect to FIG. 1 will not be given.

RX控制器120可控制藉由接收器22進行的接收。例如,RX控制器120可根據無線通訊裝置5連接至的無線通訊系統及/或相對的無線通訊裝置來設定各種接收參數並控制收發器20中所包括的接收器22,以便處理RF接收訊號RX_RF及基頻接收訊號RX_BB。如圖10中所示,RX控制器120可包括用於處理基頻接收訊號RX_BB的時序分析器121。與以上參照圖6進行的說明相似,RX控制器120中所包括的時序分析器121可用於偵測基頻接收訊號RX_BB中的符碼的邊界。根據一些示例性實施例,本文中闡述為由控制器100、TX控制器110、天線控制器140、RX控制器120及/或時序分析器121執行的操作可由處理電路系統執行。The RX controller 120 can control the reception by the receiver 22. For example, the RX controller 120 can set various receiving parameters and control the receiver 22 included in the transceiver 20 according to the wireless communication system to which the wireless communication device 5 is connected and/or the relative wireless communication device, so as to process the RF reception signal RX_RF And the baseband receiving signal RX_BB. As shown in FIG. 10, the RX controller 120 may include a timing analyzer 121 for processing the baseband reception signal RX_BB. Similar to the above description with reference to FIG. 6, the timing analyzer 121 included in the RX controller 120 can be used to detect the boundary of the symbols in the baseband received signal RX_BB. According to some exemplary embodiments, the operations described herein as being performed by the controller 100, the TX controller 110, the antenna controller 140, the RX controller 120, and/or the timing analyzer 121 may be performed by the processing circuitry.

在一些實施例中,如圖10中的虛線所示,接收(RX)控制器120可接收回饋訊號S_FB或回饋資料D_FB。在測量天線40的反射係數時,收發器20可在傳送模式中運行,且因此,RX控制器120的時序分析器121可處於空閒狀態,而不處理基頻接收訊號RX_BB。因此,可共用(例如,使用)RX控制器120中所包括的時序分析器121來測量天線40的反射係數。以下參照圖12闡述其中在圖10所示控制器100中產生時序資訊I_TIM的操作的實例。In some embodiments, as shown by the dotted line in FIG. 10, the receiving (RX) controller 120 may receive the feedback signal S_FB or the feedback data D_FB. When measuring the reflection coefficient of the antenna 40, the transceiver 20 may operate in the transmission mode, and therefore, the timing analyzer 121 of the RX controller 120 may be in an idle state without processing the baseband reception signal RX_BB. Therefore, the timing analyzer 121 included in the RX controller 120 may be shared (for example, used) to measure the reflection coefficient of the antenna 40. Hereinafter, an example of the operation in which the timing information I_TIM is generated in the controller 100 shown in FIG. 10 is explained with reference to FIG. 12.

圖11是用於闡釋根據本發明概念示例性實施例的圖3中操作S110的實例的流程圖。可執行產生符碼的時序資訊I_TIM的操作(圖11所示S110c)。在一些實施例中,圖11所示操作S110c可為圖5所示操作S210的實例。另外,在一些實施例中,圖11所示操作S110c可由圖10中的天線控制器140執行,且在下文中,參照圖1及圖10來闡述圖11。FIG. 11 is a flowchart for explaining an example of operation S110 in FIG. 3 according to an exemplary embodiment of the inventive concept. The operation of generating symbol timing information I_TIM can be performed (S110c shown in Figure 11). In some embodiments, operation S110c shown in FIG. 11 may be an example of operation S210 shown in FIG. 5. In addition, in some embodiments, the operation S110c shown in FIG. 11 may be performed by the antenna controller 140 in FIG. 10, and in the following, FIG. 11 will be explained with reference to FIG. 1 and FIG. 10.

參照圖11,可執行將回饋訊號S_FB提供至RX控制器120的操作(S115),且然後,可執行自RX控制器120接收時序資訊I_TIM的操作(S116)。例如,如上參照圖10所述,RX控制器120的時序分析器121可用於測量天線40的反射係數,且因此,天線控制器140可藉由向RX控制器120提供回饋訊號S_FB(或回饋資料D_FB)而自時序分析器121獲得指示回饋訊號S_FB中所包含的符碼的邊界的時序資訊I_TIM。根據一些示例性實施例,天線控制器140可控制RX控制器120產生(例如,確定)時序資訊I_TIM(例如,藉由向RX控制器120提供回饋訊號S_FB)。11, the operation of providing the feedback signal S_FB to the RX controller 120 may be performed (S115), and then, the operation of receiving the timing information I_TIM from the RX controller 120 may be performed (S116). For example, as described above with reference to FIG. 10, the timing analyzer 121 of the RX controller 120 can be used to measure the reflection coefficient of the antenna 40, and therefore, the antenna controller 140 can provide the RX controller 120 with the feedback signal S_FB (or feedback data). D_FB) and the timing information I_TIM indicating the boundary of the symbols contained in the feedback signal S_FB is obtained from the timing analyzer 121. According to some exemplary embodiments, the antenna controller 140 may control the RX controller 120 to generate (eg, determine) the timing information I_TIM (eg, by providing the feedback signal S_FB to the RX controller 120).

圖12是根據本發明概念示例性實施例的傳送訊號中所包含的第一符碼SYM1至第三符碼SYM3的時序圖。圖12相繼且單獨地示出第二符碼SYM2、第一符碼SYM1及第三符碼SYM3。在下文中,參照圖1來闡述圖12。FIG. 12 is a timing diagram of the first symbol SYM1 to the third symbol SYM3 included in the transmission signal according to an exemplary embodiment of the concept of the present invention. FIG. 12 successively and individually shows the second symbol SYM2, the first symbol SYM1, and the third symbol SYM3. In the following, FIG. 12 is explained with reference to FIG. 1.

可使用視窗化來防止或減少由於相繼符碼之間的相位不連續性所致的頻譜洩漏(spectral leakage)。例如,如圖12中所示,可出現第一視窗化間隔TWIN1 ,在第一視窗化間隔TWIN1 中,第一符碼SYM1的一部分及第二符碼SYM2的一部分在第一符碼SYM1與第二符碼SYM2之間的邊界附近失真。另外,可出現第二視窗化間隔TWIN2 ,在第二視窗化間隔TWIN2 中,第一符碼SYM1的一部分及第三符碼SYM3的一部分在第一符碼SYM1與第三符碼SYM3之間的邊界附近失真。可在產生基頻傳送訊號TX_BB時應用視窗化,且因此,基頻傳送訊號TX_BB中所包含的一系列符碼可能在符碼之間的邊界附近失真。由於使用相互匹配的訊號來測量天線40的反射係數,因此如以下將參照圖13所述,可排除(例如,去除或減小)回饋訊號S_FB的視窗化間隔,例如,與第一視窗化間隔TWIN1 對應的一部分及與第二視窗化間隔TWIN2 對應的一部分。Windowing can be used to prevent or reduce spectral leakage due to phase discontinuities between successive symbols. For example, as shown in FIG. 12, a first windowing interval T WIN1 may appear. In the first windowing interval T WIN1 , a part of the first symbol SYM1 and a part of the second symbol SYM2 are in the first symbol SYM1. Distorted near the boundary with the second symbol SYM2. In addition, a second windowing interval T WIN2 may appear. In the second windowing interval T WIN2 , a part of the first symbol SYM1 and a part of the third symbol SYM3 are between the first symbol SYM1 and the third symbol SYM3. Distortion near the boundary between. Windowing can be applied when the baseband transmission signal TX_BB is generated, and therefore, a series of symbols included in the baseband transmission signal TX_BB may be distorted near the boundary between the symbols. Since mutually matched signals are used to measure the reflection coefficient of the antenna 40, as described below with reference to FIG. 13, the windowing interval of the feedback signal S_FB can be excluded (for example, removed or reduced), for example, and the first windowing interval A part corresponding to T WIN1 and a part corresponding to the second windowing interval T WIN2 .

圖13是根據本發明概念示例性實施例測量天線40的反射係數的方法的流程圖。圖13示出圖3中操作S110及S180的實例。如上參照圖3所述,可執行獲得符碼資訊I_SYM及時序資訊I_TIM的操作(圖13所示S110'),且可執行計算天線40的反射係數的操作(圖13所示S180')。在下文中,參照圖3及圖12來闡述圖13。FIG. 13 is a flowchart of a method of measuring the reflection coefficient of the antenna 40 according to an exemplary embodiment of the concept of the present invention. FIG. 13 shows an example of operations S110 and S180 in FIG. 3. As described above with reference to FIG. 3, the operation of obtaining the symbol information I_SYM and the timing information I_TIM may be performed (S110' shown in FIG. 13), and the operation of calculating the reflection coefficient of the antenna 40 may be performed (S180' shown in FIG. 13). Hereinafter, FIG. 13 will be explained with reference to FIG. 3 and FIG. 12.

參照圖13,操作S110'可包括操作S117。可執行獲得關於視窗化間隔的資訊的操作(S117)。如上參照圖12所述,可在產生基頻傳送訊號TX_BB時應用視窗化,且TX控制器11可控制視窗化。因此,天線控制器14可自TX控制器11獲得關於視窗化間隔的資訊。例如,圖1中的符碼資訊I_SYM可不僅包括循環前綴部分CP的長度TCP 及符碼的長度TSYM ,而且包括關於視窗化間隔的資訊,例如,視窗化間隔的長度及/或位置。Referring to FIG. 13, operation S110' may include operation S117. An operation of obtaining information about the windowing interval may be performed (S117). As described above with reference to FIG. 12, windowing can be applied when the baseband transmission signal TX_BB is generated, and the TX controller 11 can control the windowing. Therefore, the antenna controller 14 can obtain information about the windowing interval from the TX controller 11. For example, the symbol information I_SYM in FIG. 1 may not only include the length T CP of the cyclic prefix part CP and the symbol length T SYM , but also information about the windowing interval, for example, the length and/or position of the windowing interval.

操作S180'可包括操作S181。可執行提取與將視窗化間隔排除在外的間隔對應的回饋訊號的操作(S181)。如上參照圖3所述,在操作S180'之前,可獲得包含循環前綴部分CP的至少一部分的第一回饋訊號及包含後端部分BE的至少一部分的第二回饋訊號。如上參照圖12所述,由於使用相互匹配的訊號來測量天線40的反射係數,因此可自第一回饋訊號提取與已從中排除視窗化間隔(例如,圖12中的TWIN1 )的間隔對應的一部分,且可自第二回饋訊號提取與已從中排除視窗化間隔(例如,圖12中的TWIN2 )的間隔對應的一部分。天線控制器14可基於所提取的部分來計算天線40的反射係數。Operation S180' may include operation S181. The operation of extracting the feedback signal corresponding to the interval excluding the windowed interval may be performed (S181). As described above with reference to FIG. 3, before operation S180', the first feedback signal including at least a part of the cyclic prefix part CP and the second feedback signal including at least a part of the back end part BE can be obtained. As described above with reference to FIG. 12, since mutually matched signals are used to measure the reflection coefficient of the antenna 40, it is possible to extract from the first feedback signal the interval corresponding to the interval from which the windowing interval (for example, T WIN1 in FIG. 12) has been excluded. A part, and a part corresponding to the interval from which the windowing interval (for example, T WIN2 in FIG. 12) has been excluded from the second feedback signal can be extracted. The antenna controller 14 may calculate the reflection coefficient of the antenna 40 based on the extracted part.

圖14是用於闡釋根據本發明概念示例性實施例的圖13中的操作S117的實例的流程圖。如上參照圖13所述,可在圖14所示操作S117'中執行獲得關於視窗化間隔的資訊的操作。如圖14中所示,操作S117'可包括操作S117_1、S117_2及S117_3,且在下文中,參照圖1來闡述圖14。FIG. 14 is a flowchart for explaining an example of operation S117 in FIG. 13 according to an exemplary embodiment of the inventive concept. As described above with reference to FIG. 13, the operation of obtaining information about the windowing interval may be performed in operation S117' shown in FIG. As shown in FIG. 14, operation S117' may include operations S117_1, S117_2, and S117_3, and hereinafter, FIG. 14 is explained with reference to FIG. 1.

可執行獲得關於視窗化間隔的資訊的操作(S117_1)。例如,天線控制器14可自TX控制器11接收包括關於視窗化間隔的資訊的符碼資訊I_SYM,及/或自符碼資訊I_SYM獲得關於視窗化間隔的資訊。An operation of obtaining information about the windowing interval may be performed (S117_1). For example, the antenna controller 14 may receive the symbol information I_SYM including information about the windowing interval from the TX controller 11, and/or the self-coding information I_SYM may obtain information about the windowing interval.

可執行將視窗化間隔的長度TWIN 與臨限值TTHR 進行比較的操作(S117_2)。例如,天線控制器14可獲得視窗化間隔的長度TWIN 作為在操作S117_1中獲得的關於視窗化間隔的資訊,且可將視窗化間隔的長度TWIN 與臨限值TTHR 進行比較。可基於可用以計算天線40的反射係數的最小(例如,最低或低)循環前綴部分CP(或後端部分BE)的長度來預先確定臨限值TTHR 。換言之,為計算天線40的反射係數,視窗化間隔的長度TWIN 可小於臨限值TTHR 。因此,如圖14中所示,當視窗化間隔的長度TWIN 小於臨限值TTHR 時,可結束獲得關於視窗化間隔的資訊的操作S117',但當視窗化間隔的長度TWIN 不小於臨限值TTHR 時,可隨後執行操作S117_3。The operation of comparing the length T WIN of the windowing interval with the threshold value T THR (S117_2) can be performed. For example, the antenna controller 14 may obtain the length T WIN of the windowing interval as the information about the windowing interval obtained in operation S117_1, and may compare the length T WIN of the windowing interval with the threshold value T THR . The threshold value T THR may be predetermined based on the length of the smallest (eg, lowest or low) cyclic prefix part CP (or back end part BE) that can be used to calculate the reflection coefficient of the antenna 40. In other words, in order to calculate the reflection coefficient of the antenna 40, the length T WIN of the windowing interval may be smaller than the threshold T THR . Therefore, as shown in FIG. 14, when the length of the windowing interval T WIN is less than the threshold value T THR , the operation S117' of obtaining information about the windowing interval may be ended, but when the length of the windowing interval T WIN is not less than When the threshold T THR is reached, operation S117_3 may be subsequently performed.

可執行請求縮短視窗化間隔的操作(S117_3)。例如,天線控制器14可請求TX控制器11縮短視窗化間隔。因應於來自天線控制器14的請求,TX控制器11可對基頻傳送訊號TX_BB應用縮短的視窗化間隔。在一些實施例中,天線控制器14可向TX控制器11請求視窗化間隔的縮短,且同時或並行地,可向TX控制器11提供所期望視窗化間隔的長度。在一些實施例中,TX控制器11可預先知道臨限值TTHR ,且因應於來自天線控制器14的請求,可對基頻TX訊號TX_BB應用小於臨限值TTHR 的視窗化間隔。The operation of requesting to shorten the windowing interval can be performed (S117_3). For example, the antenna controller 14 may request the TX controller 11 to shorten the windowing interval. In response to a request from the antenna controller 14, the TX controller 11 can apply a shortened windowing interval to the baseband transmission signal TX_BB. In some embodiments, the antenna controller 14 may request the TX controller 11 to shorten the windowing interval, and simultaneously or in parallel, may provide the TX controller 11 with the length of the desired windowing interval. In some embodiments, the TX controller 11 may know the threshold T THR in advance, and in response to a request from the antenna controller 14, may apply a windowing interval smaller than the threshold T THR to the baseband TX signal TX_BB.

圖15是根據本發明概念示例性實施例測量天線40的反射係數的操作的實例的圖。在一些實施例中,圖15中的操作可由圖1中的天線控制器14執行,且在下文中,參照圖1來闡述圖15。15 is a diagram of an example of an operation of measuring the reflection coefficient of the antenna 40 according to an exemplary embodiment of the inventive concept. In some embodiments, the operations in FIG. 15 may be performed by the antenna controller 14 in FIG. 1, and in the following, FIG. 15 is explained with reference to FIG. 1.

在一些實施例中,可自多個符碼中的每一者計算反射係數,且基於所計算的反射係數,可確定天線40的反射係數。例如,如圖15中所示,可自三個符碼(SYMx、SYMy及SYMz)中的每一者計算三個反射係數Γx 、Γy 及Γz ,且自所述三個反射係數Γx 、Γy 及Γz 或者例如作為所述三個反射係數Γx 、Γy 及Γz 的平均值,可確定天線40的反射係數Γ。天線控制器14可控制耦合器31的耦合方向,以便可自所述多個符碼中的每一者計算多個反射係數。例如,如圖15中所示,天線控制器14可以符碼長度TSYM 為週期來雙態切換(toggle)耦合器31的耦合方向。儘管圖15示出其中天線40的反射係數Γ是基於三個連續符碼(SYMx、SYMy及SYMz)來確定的實例,但在一些實施例中,天線40的反射係數Γ可基於多於二個符碼或多於三個符碼來確定,且在一些實施例中,可基於二或更多個不連續(例如,無序)符碼來確定。In some embodiments, the reflection coefficient may be calculated from each of the plurality of symbols, and based on the calculated reflection coefficient, the reflection coefficient of the antenna 40 may be determined. For example, as shown in FIG. 15, three reflection coefficients Γ x , Γ y and Γ z can be calculated from each of the three symbols (SYMx, SYMy, and SYMz), and from the three reflection coefficients Γ x , Γ y and Γ z or, for example, as the average value of the three reflection coefficients Γ x , Γ y and Γ z , the reflection coefficient Γ of the antenna 40 can be determined. The antenna controller 14 can control the coupling direction of the coupler 31 so that multiple reflection coefficients can be calculated from each of the multiple symbols. For example, as shown in FIG. 15, the antenna controller 14 may toggle the coupling direction of the coupler 31 with the symbol length T SYM as a period. Although FIG. 15 shows an example in which the reflection coefficient Γ of the antenna 40 is determined based on three consecutive symbols (SYMx, SYMy, and SYMz), in some embodiments, the reflection coefficient Γ of the antenna 40 may be based on more than two symbols. The symbol or more than three symbols are determined, and in some embodiments, it may be determined based on two or more discrete (eg, disordered) symbols.

圖16是根據本發明概念示例性實施例的天線的所測量反射係數的圖。圖16示出藉由使用上述測量天線的反射係數的方法所得的模擬結果。FIG. 16 is a graph of the measured reflection coefficient of an antenna according to an exemplary embodiment of the inventive concept. Fig. 16 shows simulation results obtained by using the above-mentioned method of measuring the reflection coefficient of the antenna.

如圖16中的三角形標記所指示,每一天線可具有為大約0.4、大約0.6及大約0.8之一的反射係數,以及為大約0°、大約45°、大約90°、大約135°、大約180°、大約225°、大約270°及大約315°之一的相位。如圖16中的圓形標記所示,根據依據本發明概念示例性實施例測量天線的反射係數的方法,藉由使用新無線電(new radio,NR)6G以下(sub-6G)100百萬赫(MHz)的傳送訊號而測量的反射係數可與實際的反射係數一致。As indicated by the triangular mark in FIG. 16, each antenna may have a reflection coefficient of one of about 0.4, about 0.6, and about 0.8, and is about 0°, about 45°, about 90°, about 135°, about 180 °, about 225°, about 270°, and about 315°. As shown by the circular mark in FIG. 16, according to a method for measuring the reflection coefficient of an antenna according to an exemplary embodiment of the inventive concept, by using a new radio (NR) below 6G (sub-6G) 100 MHz (MHz) transmission signal and the measured reflection coefficient can be consistent with the actual reflection coefficient.

圖17是根據本發明概念示例性實施例使用天線的反射係數的方法的流程圖。在一些實施例中,在其中計算天線的反射係數的圖3中操作S180及圖5中操作S280之後,可隨後執行圖17所示操作S190。在圖17中,操作S190被示為包括操作S191及S192,但在一些實施例中,操作S190可僅包括操作S191及/或S192中的一者。另外,在一些實施例中,操作S190可由圖1中的天線控制器14執行,且在下文中,參照圖1來闡述圖17。FIG. 17 is a flowchart of a method of using the reflection coefficient of an antenna according to an exemplary embodiment of the concept of the present invention. In some embodiments, after operation S180 in FIG. 3 and operation S280 in FIG. 5 in which the reflection coefficient of the antenna is calculated, operation S190 shown in FIG. 17 may be subsequently performed. In FIG. 17, operation S190 is shown as including operations S191 and S192, but in some embodiments, operation S190 may include only one of operations S191 and/or S192. In addition, in some embodiments, operation S190 may be performed by the antenna controller 14 in FIG. 1, and in the following, FIG. 17 is explained with reference to FIG. 1.

可執行用於控制天線調諧器32的操作(S191)。例如,天線控制器14可藉由使用前端控制訊號C_FE來控制天線調諧器32,使得天線40的所計算的反射係數最小化或減小。換言之,天線控制器14可基於藉由使用符碼的循環前綴部分CP所測量的天線40的反射係數來執行天線阻抗調諧(antenna impedance tuning,AIT)。根據一些示例性實施例,可使用由天線控制器14基於所測量的反射係數調諧的天線40來執行與另一裝置(例如,外部基地台及/或UE)的無線通訊(例如,傳送及/或接收無線通訊訊號)。由於根據一些示例性實施例測量的反射係數是準確的,因此天線40由天線控制器14恰當地調諧(例如,被調諧成具有所確定的或所設計的阻抗),且所述無線通訊可在沒有訊號劣化或低訊號劣化的情況下執行。An operation for controlling the antenna tuner 32 may be performed (S191). For example, the antenna controller 14 can control the antenna tuner 32 by using the front-end control signal C_FE, so that the calculated reflection coefficient of the antenna 40 is minimized or reduced. In other words, the antenna controller 14 may perform antenna impedance tuning (AIT) based on the reflection coefficient of the antenna 40 measured by using the cyclic prefix part CP of the symbol. According to some exemplary embodiments, the antenna 40 tuned by the antenna controller 14 based on the measured reflection coefficient may be used to perform wireless communication (for example, transmission and/or UE) with another device (for example, an external base station and/or UE). Or receive wireless communication signals). Since the reflection coefficient measured according to some exemplary embodiments is accurate, the antenna 40 is appropriately tuned by the antenna controller 14 (for example, tuned to have a determined or designed impedance), and the wireless communication can be Execute without signal degradation or low signal degradation.

可執行偵測外部物體的操作(S192)。當外部物體(如無線通訊裝置5的使用者)在無線通訊裝置5附近時,天線40的反射係數可改變。在使用例如毫米波等高頻帶的訊號的無線通訊系統中,無線通訊裝置5可經由天線40輸出具有高傳送功率的訊號。因此,無線通訊裝置5的使用者可自由天線40產生的電磁波吸收高能量,且可偵測使用者是否被容許接近無線通訊裝置5以減少由使用者吸收的能量,或者偵測無線通訊裝置5的已被使用者接近的一部分。為此,天線控制器14可將天線40的所測量反射係數與天線40的所設計(例如,所確定)反射係數進行比較,且基於所測量反射係數與所設計反射係數之間的誤差,可確定例如使用者等的外部物體是否已接近無線通訊裝置5(或天線40)。The operation of detecting external objects can be performed (S192). When an external object (such as a user of the wireless communication device 5) is near the wireless communication device 5, the reflection coefficient of the antenna 40 can be changed. In a wireless communication system using high-frequency signals such as millimeter waves, the wireless communication device 5 can output signals with high transmission power through the antenna 40. Therefore, the user of the wireless communication device 5 can freely absorb high energy from the electromagnetic waves generated by the antenna 40, and can detect whether the user is allowed to approach the wireless communication device 5 to reduce the energy absorbed by the user, or detect the wireless communication device 5 The part that has been approached by the user. To this end, the antenna controller 14 may compare the measured reflection coefficient of the antenna 40 with the designed (for example, determined) reflection coefficient of the antenna 40, and based on the error between the measured reflection coefficient and the designed reflection coefficient, It is determined whether an external object such as a user has approached the wireless communication device 5 (or antenna 40).

圖18是根據本發明概念示例性實施例的通訊裝置200的實例的方塊圖。在一些實施例中,通訊裝置200可執行圖1中控制器10中所包括的組件中的至少一些的操作。FIG. 18 is a block diagram of an example of a communication device 200 according to an exemplary embodiment of the inventive concept. In some embodiments, the communication device 200 may perform operations of at least some of the components included in the controller 10 in FIG. 1.

如圖18中所示,通訊裝置200可包括應用專用積體電路(ASIC)210、應用專用指令集處理器(application specific instruction set processor,ASIP)230、記憶體250、主處理器270及/或主記憶體290。ASIC 210、ASIP 230及/或主處理器270中的二或更多者可彼此進行通訊。此外,ASIC 210、ASIP 230、記憶體250、主處理器270及/或主記憶體290中的至少二或更多者可嵌入一個晶片中。As shown in FIG. 18, the communication device 200 may include an application specific integrated circuit (ASIC) 210, an application specific instruction set processor (ASIP) 230, a memory 250, a main processor 270, and/or Main memory 290. Two or more of the ASIC 210, ASIP 230, and/or main processor 270 can communicate with each other. In addition, at least two or more of the ASIC 210, the ASIP 230, the memory 250, the main processor 270, and/or the main memory 290 may be embedded in one chip.

ASIP 230可包括為特定用途而客製化的積體電路,支援特定應用的專用指令集,及/或執行專用指令集中所包含的指令。記憶體250可與ASIP 230進行通訊及/或可作為非揮發性儲存器來儲存由ASIP 230執行的多個指令。例如,作為非限制性實例,記憶體250可包括可由ASIP 230存取的記憶體類型,例如隨機存取記憶體(random access memory,RAM)、唯讀記憶體(read-only memory,ROM)、磁帶、磁碟、光碟、揮發性記憶體、非揮發性記憶體及/或其組合。The ASIP 230 may include an integrated circuit customized for a specific purpose, a dedicated instruction set that supports a specific application, and/or execute instructions included in the dedicated instruction set. The memory 250 can communicate with the ASIP 230 and/or can be used as a non-volatile memory to store multiple commands executed by the ASIP 230. For example, as a non-limiting example, the memory 250 may include types of memory accessible by ASIP 230, such as random access memory (RAM), read-only memory (ROM), Tape, floppy disk, optical disc, volatile memory, non-volatile memory and/or combinations thereof.

主處理器270可藉由執行多個指令來控制通訊裝置200。例如,主處理器270可控制ASIC 210及/或ASIP 230,處理經由無線通訊網路接收的資料及/或處理對通訊裝置200的使用者輸入。主記憶體290可與主處理器270進行通訊,及/或可作為非揮發性儲存器來儲存由主處理器270執行的多個指令。例如,作為非限制性實例,主記憶體290可包括可由主處理器270存取的記憶體,例如RAM、ROM、磁帶、磁碟、光碟、揮發性記憶體、非揮發性記憶體及/或其組合。The main processor 270 can control the communication device 200 by executing a plurality of instructions. For example, the main processor 270 can control the ASIC 210 and/or ASIP 230, process data received via the wireless communication network and/or process user input to the communication device 200. The main memory 290 can communicate with the main processor 270, and/or can be used as a non-volatile memory to store a plurality of instructions executed by the main processor 270. For example, as a non-limiting example, the main memory 290 may include memory accessible by the main processor 270, such as RAM, ROM, tape, magnetic disk, optical disc, volatile memory, non-volatile memory, and/or Its combination.

測量天線的反射係數的方法可由圖18所示通訊裝置200中所包括的組件中的至少一者來執行。在一些實施例中,圖1中天線控制器14的操作可被實施為儲存於記憶體250中的多個指令,且ASIP 230可藉由執行儲存於記憶體250中的多個指令來執行測量天線的反射係數的方法的操作中的至少一者。在一些實施例中,測量天線的反射係數的方法的操作中的至少一者可由藉由邏輯合成等設計的硬體區塊來執行,且此種硬體區塊可包含於ASIC 210中。在一些實施例中,測量天線的反射係數的方法的操作中的至少一者可被實施為儲存於主記憶體290中的多個指令,且主處理器270可藉由執行儲存於主記憶體290中的所述多個指令來執行所述操作中的所述至少一者。The method of measuring the reflection coefficient of the antenna may be performed by at least one of the components included in the communication device 200 shown in FIG. 18. In some embodiments, the operation of the antenna controller 14 in FIG. 1 can be implemented as a plurality of commands stored in the memory 250, and the ASIP 230 can perform measurement by executing the plurality of commands stored in the memory 250 At least one of the operations of the method of the reflection coefficient of the antenna. In some embodiments, at least one of the operations of the method of measuring the reflection coefficient of the antenna may be performed by a hardware block designed by logic synthesis or the like, and such a hardware block may be included in the ASIC 210. In some embodiments, at least one of the operations of the method for measuring the reflection coefficient of an antenna can be implemented as a plurality of instructions stored in the main memory 290, and the main processor 270 can be stored in the main memory by executing The plurality of instructions in 290 perform the at least one of the operations.

傳統裝置基於傳送訊號及延遲來計算天線的反射係數,直至自天線反射的與傳送訊號對應的訊號被回饋為止。傳統裝置利用附加組件來獲得傳送訊號,並依賴於對所反射訊號的延遲的準確確定。因此,傳統裝置使用過多的開銷(例如,所述附加組件的成本及/或所佔用的實體空間),且消耗過多的資源來確定所反射訊號的延遲(例如,處理器及/或功率資源)。然而,根據一些示例性實施例,提供一種改良的無線通訊裝置,其不使用附加組件且不依賴於對所反射訊號的延遲的確定便能準確測量天線的反射係數。因此,所述改良的無線通訊裝置克服了傳統裝置的缺點,以減少開銷及資源消耗。The traditional device calculates the reflection coefficient of the antenna based on the transmission signal and the delay until the signal corresponding to the transmission signal reflected from the antenna is fed back. Traditional devices use additional components to obtain the transmitted signal and rely on accurate determination of the delay of the reflected signal. Therefore, traditional devices use excessive overhead (for example, the cost of the additional components and/or the physical space occupied), and consume excessive resources to determine the delay of the reflected signal (for example, processor and/or power resources) . However, according to some exemplary embodiments, an improved wireless communication device is provided that does not use additional components and does not rely on the determination of the delay of the reflected signal to accurately measure the reflection coefficient of the antenna. Therefore, the improved wireless communication device overcomes the shortcomings of the traditional device to reduce overhead and resource consumption.

雖然已參照本發明概念的實施例具體示出及闡述了本發明概念,但應理解,在不背離以下申請專利範圍的精神及範圍的條件下,可在形式及細節上作出各種改變。Although the inventive concept has been specifically illustrated and described with reference to the embodiments of the inventive concept, it should be understood that various changes in form and details can be made without departing from the spirit and scope of the scope of the following patent applications.

5、5':無線通訊裝置 10、10'、60、80、100:控制器 11、11'、61、81、110:傳送(TX)控制器 13、13'、63、83、130:緩衝器 14、14'、64、84、140:天線控制器 20、20':收發器 21、21':傳送器 22、22':接收器 23、23':開關 30、30':前端電路 31、31':耦合器 32、32':天線調諧器 40、40':天線 50、50':回饋電路 65、121:時序分析器 120:接收(RX)控制器 200:通訊裝置 210:應用專用積體電路(ASIC) 230:應用專用指令集處理器(ASIP) 250:記憶體 270:主處理器 290:主記憶體 BE:後端部分 C_ANT:天線調諧訊號 C_FB:回饋控制訊號 C_FE:前端訊號 CP:循環前綴部分 D_FB:回饋資料 F:正向耦合 F_FB:正向回饋訊號 I_SYM:符碼資訊 I_TIM:時序資訊 R:反向耦合 R_FB:反向回饋訊號 RF_FB:射頻(RF)回饋訊號 RX_BB:基頻接收訊號 RX_RF:RF接收訊號 S110、S110'、S110a、S110b、S110c、S111、S112、S113、S114、S115、S116、S117、S117'、S117_1、S117_2、S117_3、S120、S130、S140、S150、S160、S170、S180、S180'、S181、S190、S191、S192、S210、S220、S230、S240、S250、S260、S270、S280:操作 S_FB:回饋訊號 SYM1:第一符碼 SYM2:第二符碼 SYM3:第三符碼 SYMx、SYMy、SYMz:符碼 TCP:循環前綴部分的長度 T_SYM:時序訊號 TSYM:符碼的長度 TTHR:臨限值 TU:資料符碼的長度 TWIN:視窗化間隔的長度 TWIN1:第一視窗化間隔 TWIN2:第二視窗化間隔 TX_BB:基頻傳送訊號 TX_RF:RF傳送訊號 Γ、Γx、Γy、Γz:反射係數5, 5': wireless communication device 10, 10', 60, 80, 100: controller 11, 11', 61, 81, 110: transmission (TX) controller 13, 13', 63, 83, 130: buffer 14, 14', 64, 84, 140: antenna controller 20, 20': transceiver 21, 21': transmitter 22, 22': receiver 23, 23': switch 30, 30': front-end circuit 31 , 31': coupler 32, 32': antenna tuner 40, 40': antenna 50, 50': feedback circuit 65, 121: timing analyzer 120: receiving (RX) controller 200: communication device 210: application-specific Integrated circuit (ASIC) 230: Application-specific instruction set processor (ASIP) 250: Memory 270: Main processor 290: Main memory BE: Back-end part C_ANT: Antenna tuning signal C_FB: Feedback control signal C_FE: Front-end signal CP: cyclic prefix part D_FB: feedback data F: forward coupling F_FB: forward feedback signal I_SYM: code information I_TIM: timing information R: reverse coupling R_FB: reverse feedback signal RF_FB: radio frequency (RF) feedback signal RX_BB: Baseband receiving signal RX_RF: RF receiving signal S110, S110', S110a, S110b, S110c, S111, S112, S113, S114, S115, S116, S117, S117', S117_1, S117_2, S117_3, S120, S130, S140, S150 , S160, S170, S180, S180', S181, S190, S191, S192, S210, S220, S230, S240, S250, S260, S270, S280: operation S_FB: feedback signal SYM1: first symbol SYM2: second symbol Code SYM3: third symbol SYMx, SYMy, SYMz: symbol T CP : length of cyclic prefix part T_SYM: timing signal T SYM : length of symbol T THR : threshold value T U : length of data symbol T WIN : Length of windowing interval T WIN1 : first windowing interval T WIN2 : second windowing interval TX_BB: fundamental frequency transmission signal TX_RF: RF transmission signal Γ, Γ x , Γ y , Γ z : reflection coefficient

結合附圖閱讀以下詳細說明,將更清楚地理解本發明概念的實施例,附圖中: 圖1是根據本發明概念示例性實施例的無線通訊裝置的方塊圖,所述無線通訊裝置包括被配置成輸出正向回饋訊號或反向回饋訊號的耦合器。 圖2是根據本發明概念示例性實施例測量天線的反射係數的操作的實例的時序圖。 圖3是根據本發明概念示例性實施例使用圖1所示無線通訊裝置測量天線的反射係數的方法的流程圖。 圖4是根據本發明概念示例性實施例的無線通訊裝置的方塊圖,所述無線通訊裝置包括被配置成並行地輸出正向回饋訊號及反向回饋訊號的耦合器。 圖5是根據本發明概念示例性實施例使用圖4所示無線通訊裝置測量天線的反射係數的方法的流程圖。 圖6是根據本發明概念示例性實施例包括時序分析器(timing analyzer)的控制器的實例的方塊圖。 圖7是根據本發明概念示例性實施例使用圖6所示時序分析器執行的圖3中操作S110的實例的流程圖。 圖8是根據本發明概念示例性實施例的控制器的實例的方塊圖,所述控制器包括被配置成產生時序資訊I_TIM的天線控制器。 圖9是根據本發明概念示例性實施例使用圖8所示天線控制器執行的圖3中操作S110的實例的流程圖。 圖10是根據本發明概念示例性實施例包括接收控制器的控制器的實例的方塊圖。 圖11是根據本發明概念示例性實施例使用圖10所示接收控制器執行的圖3中操作S110的實例的流程圖。 圖12是根據本發明概念示例性實施例的傳送訊號中所包含的符碼的時序圖。 圖13是根據本發明概念示例性實施例測量天線的反射係數的方法的流程圖,其中自回饋訊號排除視窗化間隔(windowing interval)。 圖14是根據本發明概念示例性實施例的圖13中操作S117的實例的流程圖。 圖15是根據本發明概念示例性實施例在多個符碼上測量天線的反射係數的操作的實例的圖。 圖16是根據本發明概念示例性實施例的天線的所測量反射係數的圖。 圖17是根據本發明概念示例性實施例使用天線的反射係數的方法的流程圖。 圖18是根據本發明概念示例性實施例的通訊裝置的實例的方塊圖。Read the following detailed description in conjunction with the accompanying drawings to better understand the embodiments of the present invention concept. In the accompanying drawings: FIG. 1 is a block diagram of a wireless communication device according to an exemplary embodiment of the inventive concept, the wireless communication device including a coupler configured to output a forward feedback signal or a reverse feedback signal. 2 is a timing diagram of an example of an operation of measuring the reflection coefficient of an antenna according to an exemplary embodiment of the inventive concept. 3 is a flowchart of a method for measuring the reflection coefficient of an antenna using the wireless communication device shown in FIG. 1 according to an exemplary embodiment of the concept of the present invention. 4 is a block diagram of a wireless communication device according to an exemplary embodiment of the inventive concept. The wireless communication device includes a coupler configured to output a forward feedback signal and a reverse feedback signal in parallel. 5 is a flowchart of a method for measuring the reflection coefficient of an antenna using the wireless communication device shown in FIG. 4 according to an exemplary embodiment of the concept of the present invention. 6 is a block diagram of an example of a controller including a timing analyzer according to an exemplary embodiment of the inventive concept. FIG. 7 is a flowchart of an example of operation S110 in FIG. 3 performed using the timing analyzer shown in FIG. 6 according to an exemplary embodiment of the inventive concept. FIG. 8 is a block diagram of an example of a controller according to an exemplary embodiment of the inventive concept, the controller including an antenna controller configured to generate timing information I_TIM. 9 is a flowchart of an example of operation S110 in FIG. 3 performed using the antenna controller shown in FIG. 8 according to an exemplary embodiment of the inventive concept. FIG. 10 is a block diagram of an example of a controller including a receiving controller according to an exemplary embodiment of the inventive concept. FIG. 11 is a flowchart of an example of operation S110 in FIG. 3 performed using the receiving controller shown in FIG. 10 according to an exemplary embodiment of the inventive concept. FIG. 12 is a timing diagram of symbols included in a transmission signal according to an exemplary embodiment of the concept of the present invention. FIG. 13 is a flowchart of a method for measuring the reflection coefficient of an antenna according to an exemplary embodiment of the concept of the present invention, wherein the self-feedback signal excludes the windowing interval. FIG. 14 is a flowchart of an example of operation S117 in FIG. 13 according to an exemplary embodiment of the inventive concept. FIG. 15 is a diagram of an example of an operation of measuring the reflection coefficient of an antenna on a plurality of symbols according to an exemplary embodiment of the inventive concept. FIG. 16 is a graph of the measured reflection coefficient of an antenna according to an exemplary embodiment of the inventive concept. FIG. 17 is a flowchart of a method of using the reflection coefficient of an antenna according to an exemplary embodiment of the inventive concept. FIG. 18 is a block diagram of an example of a communication device according to an exemplary embodiment of the inventive concept.

5:無線通訊裝置 5: Wireless communication device

10:控制器 10: Controller

11:傳送(TX)控制器 11: Transmission (TX) controller

13:緩衝器 13: Buffer

14:天線控制器 14: Antenna controller

20:收發器 20: Transceiver

21:傳送器 21: Teleporter

22:接收器 22: receiver

23:開關 23: switch

30:前端電路 30: Front-end circuit

31:耦合器 31: Coupler

32:天線調諧器 32: antenna tuner

40:天線 40: Antenna

50:回饋電路 50: feedback circuit

C_FE:前端訊號 C_FE: Front-end signal

D_FB:回饋資料 D_FB: feedback information

F:正向耦合 F: Forward coupling

I_SYM:符碼資訊 I_SYM: Symbol information

R:反向耦合 R: reverse coupling

RF_FB:射頻(RF)回饋訊號 RF_FB: Radio frequency (RF) feedback signal

RX_BB:基頻接收訊號 RX_BB: baseband receive signal

RX_RF:RF接收訊號 RX_RF: RF receiving signal

S_FB:回饋訊號 S_FB: feedback signal

TX_BB:基頻傳送訊號 TX_BB: baseband transmission signal

TX_RF:RF傳送訊號 TX_RF: RF transmission signal

Claims (25)

一種用於測量天線的反射係數的裝置,所述裝置包括: 處理電路系統,被配置成, 基於傳遞到所述天線的射頻(RF)傳送訊號中所包含的第一符碼的第一符碼資訊,自第三回饋訊號提取第一回饋訊號及第二回饋訊號,所述第一回饋訊號對應於所述第一符碼的循環前綴部分的至少一部分,所述第二回饋訊號對應於所述第一符碼的後端部分的至少一部分,所述第三回饋訊號係自由耦合器提供的所述射頻傳送訊號的一部分而產生,且 基於所述第一回饋訊號及所述第二回饋訊號來計算所述反射係數。A device for measuring the reflection coefficient of an antenna, the device comprising: The processing circuit system is configured to, Based on the first code information of the first code contained in the radio frequency (RF) transmission signal transmitted to the antenna, the first feedback signal and the second feedback signal are extracted from the third feedback signal, the first feedback signal Corresponding to at least a part of the cyclic prefix part of the first symbol, the second feedback signal corresponds to at least a part of the back end part of the first symbol, and the third feedback signal is provided by a coupler Part of the radio frequency transmission signal is generated, and The reflection coefficient is calculated based on the first feedback signal and the second feedback signal. 如請求項1所述的裝置,其中所述處理電路系統被配置成: 在基於所述第一符碼資訊產生所述第一回饋訊號之前,將所述耦合器設定成第一耦合方向;且 在基於所述第一符碼資訊產生所述第二回饋訊號之前,將所述耦合器設定成第二耦合方向。The device according to claim 1, wherein the processing circuit system is configured to: Before generating the first feedback signal based on the first code information, setting the coupler to a first coupling direction; and Before generating the second feedback signal based on the first code information, the coupler is set to a second coupling direction. 如請求項1所述的裝置,更包括: 傳送控制器,被配置成控制傳送器,所述傳送器被配置成產生所述射頻傳送訊號, 其中所述處理電路系統被配置成, 自所述傳送控制器接收視窗化間隔,所述視窗化間隔包含所述第一符碼的邊界,且 基於所述第一回饋訊號的第一回饋資訊及所述第二回饋訊號的第二回饋資訊來計算所述反射係數,所述第一回饋資訊包括所述第一回饋訊號但不具有所述第一回饋訊號的與所述視窗化間隔對應的部分,且所述第二回饋資訊包括所述第二回饋訊號但不具有所述第二回饋訊號的與所述視窗化間隔對應的部分。The device according to claim 1, further comprising: A transmission controller configured to control a transmitter, the transmitter being configured to generate the radio frequency transmission signal, Wherein the processing circuit system is configured to, Receiving a windowing interval from the transmission controller, the windowing interval including the boundary of the first symbol, and The reflection coefficient is calculated based on the first feedback information of the first feedback signal and the second feedback information of the second feedback signal, the first feedback information includes the first feedback signal but does not have the first feedback signal A portion of a feedback signal corresponding to the windowing interval, and the second feedback information includes the second feedback signal but does not have a portion of the second feedback signal corresponding to the windowing interval. 如請求項3所述的裝置,其中 所述處理電路系統被配置成請求所述傳送控制器縮短所述視窗化間隔。The device according to claim 3, wherein The processing circuitry is configured to request the transmission controller to shorten the windowing interval. 如請求項1所述的裝置,其中所述第一符碼資訊包括: 所述第一符碼的長度; 所述循環前綴部分的長度;以及 時序資訊,指示所述第一符碼的邊界。The device according to claim 1, wherein the first code information includes: The length of the first symbol; The length of the cyclic prefix part; and The timing information indicates the boundary of the first symbol. 如請求項5所述的裝置,更包括: 時序分析器,被配置成藉由確定所述第一回饋訊號與所述第二回饋訊號之間的相關性來產生所述時序資訊。The device according to claim 5 further includes: The timing analyzer is configured to generate the timing information by determining the correlation between the first feedback signal and the second feedback signal. 如請求項5所述的裝置,更包括: 傳送控制器,被配置成控制傳送器,所述傳送器被配置成產生所述射頻傳送訊號,其中 所述處理電路系統被配置成, 自所述傳送控制器接收指示符碼邊界的時序訊號,且 基於所述射頻傳送訊號的路徑延遲及所述時序訊號來產生所述時序資訊。The device according to claim 5 further includes: A transmission controller configured to control a transmitter, the transmitter being configured to generate the radio frequency transmission signal, wherein The processing circuit system is configured to, Receive the timing signal of the indicator code boundary from the transmission controller, and The timing information is generated based on the path delay of the radio frequency transmission signal and the timing signal. 如請求項5所述的裝置,更包括: 接收控制器,被配置成控制接收器,所述接收器被配置成經由所述天線接收接收訊號,其中 所述處理電路系統被配置成, 控制所述接收控制器基於所述第三回饋訊號來產生所述時序資訊,且 自所述接收控制器接收所述時序資訊。The device according to claim 5 further includes: A receiving controller configured to control a receiver, the receiver being configured to receive a reception signal via the antenna, wherein The processing circuit system is configured to, Controlling the receiving controller to generate the timing information based on the third feedback signal, and Receiving the timing information from the receiving controller. 如請求項1所述的裝置,其中 所述處理電路系統被配置成基於所述反射係數來產生天線調諧訊號。The device according to claim 1, wherein The processing circuit system is configured to generate an antenna tuning signal based on the reflection coefficient. 如請求項1所述的裝置,其中 所述處理電路系統被配置成基於所述天線的所述反射係數及所確定反射係數來偵測所述天線附近的外部物體。The device according to claim 1, wherein The processing circuit system is configured to detect external objects near the antenna based on the reflection coefficient of the antenna and the determined reflection coefficient. 一種測量天線的反射係數的方法,所述方法包括: 獲得在經由耦合器提供至所述天線的射頻(RF)傳送訊號中所包含的第一符碼的第一符碼資訊; 基於所述第一符碼資訊來獲得第一回饋訊號,所述第一回饋訊號是自在其中所述耦合器傳遞所述第一符碼的循環前綴部分的至少一部分的第一間隔中提供的射頻回饋訊號而產生; 基於所述第一符碼資訊來獲得第二回饋訊號,所述第二回饋訊號是自在其中所述耦合器傳遞所述第一符碼的後端部分的至少一部分的第二間隔中提供的所述射頻回饋訊號而產生;以及 基於所述第一回饋訊號及所述第二回饋訊號來計算所述反射係數。A method for measuring the reflection coefficient of an antenna, the method comprising: Obtaining first symbol information of the first symbol contained in the radio frequency (RF) transmission signal provided to the antenna via the coupler; A first feedback signal is obtained based on the first symbol information, and the first feedback signal is a radio frequency provided in the first interval in which the coupler transmits at least a part of the cyclic prefix portion of the first symbol Generated by feedback signal; A second feedback signal is obtained based on the first code information, and the second feedback signal is provided in a second interval in which the coupler transmits at least a part of the back end portion of the first code Said radio frequency feedback signal; and The reflection coefficient is calculated based on the first feedback signal and the second feedback signal. 如請求項11所述的方法,更包括: 基於所述第一符碼資訊在所述第一間隔之前將所述耦合器設定成第一耦合方向;以及 基於所述第一符碼資訊在所述第二間隔之前將所述耦合器設定成第二耦合方向。The method described in claim 11 further includes: Setting the coupler to a first coupling direction before the first interval based on the first symbol information; and The coupler is set to a second coupling direction before the second interval based on the first symbol information. 如請求項12所述的方法,其中 所述第一耦合方向及所述第二耦合方向是所述耦合器的正向耦合及所述耦合器的反向耦合中不同的耦合方向。The method according to claim 12, wherein The first coupling direction and the second coupling direction are different coupling directions in the forward coupling of the coupler and the reverse coupling of the coupler. 如請求項11所述的方法,其中 獲得所述第一符碼資訊包括自傳送控制器獲得視窗化間隔,所述視窗化間隔包含所述第一符碼的邊界;且 計算所述反射係數包括: 自所述第一回饋訊號提取所述第一間隔中將所述視窗化間隔排除在外的部分,以產生第一回饋資訊, 自所述第二回饋訊號提取所述第二間隔中將所述視窗化間隔排除在外的部分,以產生第二回饋資訊,以及 基於所述第一回饋資訊及所述第二回饋資訊來計算所述反射係數。The method according to claim 11, wherein Obtaining the first code information includes obtaining a windowing interval from a transmission controller, the windowing interval including the boundary of the first code; and The calculation of the reflection coefficient includes: Extracting the part of the first interval excluding the windowing interval from the first feedback signal to generate first feedback information, Extracting the part of the second interval excluding the windowing interval from the second feedback signal to generate second feedback information, and The reflection coefficient is calculated based on the first feedback information and the second feedback information. 如請求項14所述的方法,其中獲得所述第一符碼資訊更包括: 請求所述傳送控制器縮短所述視窗化間隔。The method according to claim 14, wherein obtaining the first code information further includes: Request the transmission controller to shorten the windowing interval. 如請求項11所述的方法,其中所述第一符碼資訊包括: 所述第一符碼的長度; 所述循環前綴部分的長度;以及 時序資訊,指示所述第一符碼的邊界。The method according to claim 11, wherein the first code information includes: The length of the first symbol; The length of the cyclic prefix part; and Timing information indicates the boundary of the first symbol. 如請求項16所述的方法,其中獲得所述第一符碼資訊包括: 確定所述第一回饋訊號與所述第二回饋訊號之間的多個相關性;以及 基於所述多個相關性中的最高相關性來產生所述時序資訊。The method according to claim 16, wherein obtaining the first code information includes: Determining multiple correlations between the first feedback signal and the second feedback signal; and The timing information is generated based on the highest correlation among the plurality of correlations. 如請求項16所述的方法,其中獲得所述第一符碼資訊包括: 接收指示符碼邊界的時序訊號;以及 基於所述射頻傳送訊號的路徑延遲及所述時序訊號來產生所述時序資訊。The method according to claim 16, wherein obtaining the first code information includes: Receive the timing signal at the boundary of the indicator code; and The timing information is generated based on the path delay of the radio frequency transmission signal and the timing signal. 如請求項16所述的方法,其中獲得所述第一符碼資訊包括: 將所述第一回饋訊號及所述第二回饋訊號提供至接收控制器,所述接收控制器被配置成控制接收器,所述接收器被配置成經由所述天線接收接收訊號;以及 自所述接收控制器接收所述時序資訊。The method according to claim 16, wherein obtaining the first code information includes: Providing the first feedback signal and the second feedback signal to a receiving controller, the receiving controller being configured to control a receiver, the receiver being configured to receive the received signal via the antenna; and Receiving the timing information from the receiving controller. 如請求項11所述的方法,更包括: 基於所述反射係數來控制連接至所述天線的天線調諧器。The method described in claim 11 further includes: The antenna tuner connected to the antenna is controlled based on the reflection coefficient. 如請求項11所述的方法,更包括: 基於所述天線的所述反射係數及所確定反射係數來偵測所述天線附近的外部物體。The method described in claim 11 further includes: Detecting external objects near the antenna based on the reflection coefficient of the antenna and the determined reflection coefficient. 一種測量天線的反射係數的方法,所述方法包括: 獲得經由耦合器提供至所述天線的射頻(RF)傳送訊號中所包含的第一符碼的第一符碼資訊; 基於所述第一符碼資訊在第一間隔之前將所述耦合器設定成第一耦合方向,所述耦合器在所述第一間隔期間傳遞所述第一符碼的循環前綴部分的至少一部分; 基於所述第一符碼資訊在第二間隔之前將所述耦合器設定成第二耦合方向,所述耦合器在所述第二間隔期間傳遞所述第一符碼的後端部分的至少一部分;以及 基於由所述耦合器在所述第一間隔及所述第二間隔期間提供的射頻回饋訊號來計算所述反射係數。A method for measuring the reflection coefficient of an antenna, the method comprising: Obtaining first symbol information of the first symbol included in the radio frequency (RF) transmission signal provided to the antenna via the coupler; The coupler is set to a first coupling direction before the first interval based on the first symbol information, and the coupler transmits at least a part of the cyclic prefix part of the first symbol during the first interval ; The coupler is set to a second coupling direction before the second interval based on the first symbol information, and the coupler transmits at least a part of the rear end portion of the first symbol during the second interval ;as well as The reflection coefficient is calculated based on the radio frequency feedback signal provided by the coupler during the first interval and the second interval. 如請求項22所述的方法,其中 所述第一耦合方向及所述第二耦合方向是所述耦合器的正向耦合及反向耦合中不同的耦合方向。The method according to claim 22, wherein The first coupling direction and the second coupling direction are different coupling directions in the forward coupling and the reverse coupling of the coupler. 如請求項22所述的方法,其中所述第一符碼資訊包括: 所述第一符碼的長度; 所述循環前綴部分的長度;以及 時序資訊,指示所述第一符碼的邊界。The method according to claim 22, wherein the first code information includes: The length of the first symbol; The length of the cyclic prefix part; and Timing information indicates the boundary of the first symbol. 如請求項22所述的方法,其中 獲得所述第一符碼資訊包括自傳送控制器獲得視窗化間隔,所述視窗化間隔包含所述第一符碼的邊界;且 計算所述反射係數包括: 提取自所述射頻回饋訊號產生的基頻回饋訊號的與將所述視窗化間隔排除在外的所述第一間隔及所述第二間隔對應的部分,以產生回饋資訊,以及 基於所述回饋資訊來計算所述反射係數。The method according to claim 22, wherein Obtaining the first code information includes obtaining a windowing interval from a transmission controller, the windowing interval including the boundary of the first code; and The calculation of the reflection coefficient includes: Extracting portions of the fundamental frequency feedback signal generated from the radio frequency feedback signal corresponding to the first interval and the second interval excluding the windowing interval to generate feedback information, and The reflection coefficient is calculated based on the feedback information.
TW108137651A 2018-11-27 2019-10-18 Method and device for measuring reflection coefficient of antenna TWI811470B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0148763 2018-11-27
KR20180148763 2018-11-27
KR1020190039744A KR20200063019A (en) 2018-11-27 2019-04-04 Method and device for measuring antenna reflection coefficient
KR10-2019-0039744 2019-04-04

Publications (2)

Publication Number Publication Date
TW202037101A true TW202037101A (en) 2020-10-01
TWI811470B TWI811470B (en) 2023-08-11

Family

ID=71081198

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108137651A TWI811470B (en) 2018-11-27 2019-10-18 Method and device for measuring reflection coefficient of antenna

Country Status (2)

Country Link
KR (1) KR20200063019A (en)
TW (1) TWI811470B (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8600319B2 (en) * 2011-10-14 2013-12-03 Intel Mobile Communications GmbH Feedback receiver for antenna tuner calculations
US10090901B2 (en) * 2012-02-07 2018-10-02 Motorola Mobility Llc Method and apparatus for optimizing antenna precoder selection with coupled antennas
EP2850733B1 (en) * 2012-05-13 2017-11-29 Amir Khandani Full duplex wireless transmission with self-interference cancellation
US20170142615A1 (en) * 2015-11-18 2017-05-18 Prakash Bhalerao Method and apparatus for communicating additional narrowband traffic over an existing 4g/lte network
US10355662B2 (en) * 2016-12-06 2019-07-16 Honeywell International Inc. Impedance matching using tunable elements
DE112017006442T5 (en) * 2016-12-21 2019-09-19 Intel Corporation WIRELESS COMMUNICATION TECHNOLOGY, DEVICES AND METHOD

Also Published As

Publication number Publication date
KR20200063019A (en) 2020-06-04
TWI811470B (en) 2023-08-11

Similar Documents

Publication Publication Date Title
US10727958B2 (en) Method and device for measuring antenna reflection coefficient
US8102754B2 (en) Synchronization time difference measurements in OFDM systems
TWI742533B (en) Electronic devices and methods for cell ctivation of secondary cell
WO2016106491A1 (en) Method and apparatus for aligning beams of antennae of high-low frequency co-station network
RU2666781C2 (en) Methods of frequency adaptation of measurements taking into account the carrier frequency
US11296838B2 (en) Cluster-set determination for comp based on reliability and delay budget in URLLC
RU2684186C1 (en) Optimization of automatic gain adjustment when working in narrow bandwidth
US9553752B1 (en) Method and apparatus for frequency offset detection in OFDM systems with frequency reuse
WO2020029873A1 (en) Communication method and apparatus, and communication system
US11146373B2 (en) Method and apparatus for reference signal configuration of a wireless communication system
TWI811470B (en) Method and device for measuring reflection coefficient of antenna
US9065525B1 (en) Receiving apparatus
US11736207B2 (en) Channel correction method and apparatus
US11178511B2 (en) Method and device for positioning communication device
CN116156611B (en) SINR estimation method, device, system and storage medium for PUCCH
KR100915226B1 (en) Transmitting Method of random access preamble
WO2023045905A1 (en) Communication method and related apparatus
CN112602350B (en) Method, apparatus, and computer readable medium for detecting cells in a carrier aggregation scenario
KR102041669B1 (en) Method and system for multi-antenna transmit beamforming to serve receiver mobility
JP6691727B2 (en) Passive automatic antenna tuning based on received signal analysis
JP2017538308A5 (en)