TW202007086A - 積體電路 - Google Patents

積體電路 Download PDF

Info

Publication number
TW202007086A
TW202007086A TW108104335A TW108104335A TW202007086A TW 202007086 A TW202007086 A TW 202007086A TW 108104335 A TW108104335 A TW 108104335A TW 108104335 A TW108104335 A TW 108104335A TW 202007086 A TW202007086 A TW 202007086A
Authority
TW
Taiwan
Prior art keywords
switch
phase
voltage
locked loop
output terminal
Prior art date
Application number
TW108104335A
Other languages
English (en)
Other versions
TWI800601B (zh
Inventor
金奎植
金友石
金泰翼
呂煥碩
Original Assignee
南韓商三星電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南韓商三星電子股份有限公司 filed Critical 南韓商三星電子股份有限公司
Publication of TW202007086A publication Critical patent/TW202007086A/zh
Application granted granted Critical
Publication of TWI800601B publication Critical patent/TWI800601B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/089Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector generating up-down pulses
    • H03L7/0891Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector generating up-down pulses the up-down pulses controlling source and sink current generators, e.g. a charge pump
    • H03L7/0895Details of the current generators
    • H03L7/0898Details of the current generators the source or sink current values being variable
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/10Details of the phase-locked loop for assuring initial synchronisation or for broadening the capture range
    • H03L7/107Details of the phase-locked loop for assuring initial synchronisation or for broadening the capture range using a variable transfer function for the loop, e.g. low pass filter having a variable bandwidth
    • H03L7/1072Details of the phase-locked loop for assuring initial synchronisation or for broadening the capture range using a variable transfer function for the loop, e.g. low pass filter having a variable bandwidth by changing characteristics of the charge pump, e.g. changing the gain
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/16Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
    • H03L7/18Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/089Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector generating up-down pulses
    • H03L7/0891Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector generating up-down pulses the up-down pulses controlling source and sink current generators, e.g. a charge pump
    • H03L7/0895Details of the current generators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/093Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal using special filtering or amplification characteristics in the loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/099Details of the phase-locked loop concerning mainly the controlled oscillator of the loop

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

一種積體電路。所述積體電路包括鎖相迴路電路。所述鎖相迴路電路包括:電壓控制振盪器,被配置成基於控制電壓輸出具有預定頻率的時脈訊號;相位頻率偵測器,被配置成將所述時脈訊號與參考訊號進行比較以輸出第一控制訊號及第二控制訊號;電荷幫浦,被配置成基於所述第一控制訊號及所述第二控制訊號輸出所述控制電壓;電壓電源,包括輸出端子,所述輸出端子藉由傳輸開關連接至所述電荷幫浦的輸出端子;以及洩漏移除電路,連接至所述傳輸開關且被配置成在所述傳輸開關關斷時移除流經所述傳輸開關的漏電流。

Description

積體電路
本發明概念是有關於積體電路,且更具體而言,是有關於所述積體電路中所包括的鎖相迴路電路。
鎖相迴路(phase locked loop,PLL)電路是一種用於對相位進行調整以使輸出訊號的頻率及/或相位與參考訊號同步的電路,且可用於各種領域中。鎖相迴路電路可包括電壓控制振盪器(voltage controlled oscillator,VCO)以及用於將控制電壓提供至電壓控制振盪器的迴路濾波器,且由電壓控制振盪器產生的輸出訊號的特性可由控制電壓確定。因此,為了確保鎖相迴路電路的效能,可有效地移除由迴路濾波器輸出的控制電壓中所包括的各種雜訊分量。
本發明概念的態樣是提供一種鎖相迴路電路,所述鎖相迴路電路包括傳輸開關,所述傳輸開關輸出控制電壓以顯著減小在各種電路元件中出現的洩漏分量對控制電壓的影響。
根據本發明概念的態樣,一種積體電路可包括鎖相迴路電路。所述鎖相迴路電路可包括:電壓控制振盪器,被配置成基於控制電壓輸出具有預定頻率的時脈訊號;相位頻率偵測器,被配置成將所述時脈訊號與參考訊號進行比較以輸出第一控制訊號及第二控制訊號;電荷幫浦,被配置成基於所述第一控制訊號及所述第二控制訊號輸出所述控制電壓;電壓電源,包括輸出端子,所述輸出端子藉由傳輸開關連接至所述電荷幫浦的輸出端子;以及洩漏移除電路,連接至所述傳輸開關且被配置成在所述傳輸開關關斷時移除流經所述傳輸開關的漏電流。
根據本發明概念的態樣,一種積體電路可包括鎖相迴路電路。所述鎖相迴路電路可包括:電壓控制振盪器,被配置成基於控制電壓輸出時脈訊號;相位頻率偵測器,被配置成將所述時脈訊號與參考訊號進行比較以輸出第一控制訊號及第二控制訊號;電荷幫浦,包括輸出端子且被配置成基於所述第一控制訊號及所述第二控制訊號輸出所述控制電壓;電壓電源,被配置成當所述鎖相迴路電路處於第一鎖定模式中時經由傳輸開關將第一電壓輸出至所述電荷幫浦的所述輸出端子,且當所述鎖相迴路電路處於所述第一鎖定模式之後的第二鎖定模式中時浮置所述電壓電源的輸出端子;以及洩漏移除設備,連接至所述傳輸開關及所述電壓電源的所述輸出端子,用於在所述鎖相迴路電路處於所述第二鎖定模式中時移除流經所述傳輸開關的漏電流。
根據本發明概念的態樣,一種積體電路可包括鎖相迴路電路。所述鎖相迴路電路可包括:振盪器,被配置成基於控制電壓輸出時脈訊號;相位頻率偵測器,被配置成將所述時脈訊號與參考時脈訊號進行比較以輸出第一控制訊號及第二控制訊號;電荷幫浦,具有輸出端子且被配置成基於所述第一控制訊號及所述第二控制訊號在所述電荷幫浦的所述輸出端子上輸出所述控制電壓;傳輸開關,具有第一節點及第二節點,所述第一節點連接至電荷幫浦的所述輸出端子;電壓電源,包括連接至所述第二節點以及第一電阻及第二電阻的輸出端子,且被配置成當所述鎖相迴路電路處於粗鎖定模式(coarse lock mode)中時經由所述傳輸開關將電壓輸出至所述電荷幫浦的所述輸出端子,且當所述鎖相迴路電路處於所述粗鎖定模式之後的細鎖定模式(fine lock mode)中時浮置所述電壓電源的所述輸出端子;以及緩衝器,具有連接至所述第一節點的輸入端子以及經由緩衝器開關連接至所述第二節點的輸出端子,且被配置成當所述鎖相迴路電路處於所述細鎖定模式中時阻擋流經所述傳輸開關的漏電流。
依據功能性區塊、單元及/或模組闡述並在圖式中示出了實作例。該些區塊、單元及/或模組可由電子(或光學)電路(例如,邏輯電路、分立組件、微處理器、硬接線電路、記憶體元件、佈線連接件等)實體實作,所述電子(或光學)電路可利用半導體製作技術及/或其他製造技術一起形成於單個積體電路中(例如,作為單個半導體晶片)或形成為單獨的積體電路及/或分立的組件(例如,一起接線於印刷電路板上的若干半導體晶片)。該些區塊、單元及/或模組可由利用軟體(例如,微碼)程式化的一個或多個處理器(例如,微處理器、控制器、CPU、GPU)實作以執行在本文中所論述的各種功能。每一區塊、單元及/或模組可由專用硬體或作為專用硬體的組合實作以執行一些功能,且可由處理器實作以執行其他功能。此外,實施例的每一區塊、單元及/或模組可由實體上單獨的電路實施且不需要被形成為單個積體電路。
以下,將參照附圖詳細闡述本揭露的示例性實施例。圖1及圖2為示出根據示例性實施例包括鎖相迴路電路的系統(或積體電路)的示意圖。
首先,參照圖1,根據示例性實施例的系統或積體電路10可包括自動頻率控制器(automatic frequency detector,AFC)11以及鎖相迴路(PLL)電路12。鎖相迴路電路是一種藉由調整相位變化而非振幅而使輸出訊號與現有訊號的頻率及相位同步的電路,且可包括偵測相位及頻率的電路、振盪器等。舉例而言,鎖相迴路電路12中所包括的振盪器可為電壓控制振盪器(VCO)。由鎖相迴路電路12輸出的訊號的頻率及/或相位可由被輸入至電壓控制振盪器的控制電壓調整。
自動頻率控制器11可控制鎖相迴路電路12的操作。舉例而言,自動頻率控制器11調整被輸入至鎖相迴路電路12的電壓控制振盪器的控制電壓,藉此調整鎖相迴路電路12的輸出訊號的頻率及/或相位。
接下來,參照圖2,根據示例性實施例的系統或積體電路20可包括自動頻率控制器30以及鎖相迴路電路40。鎖相迴路電路40可包括相位頻率偵測器(phase frequency detector,PFD)41、電荷幫浦(charge pump,CP)42、迴路濾波器(loop filter,LF)43、電壓控制振盪器(VCO)44、分頻器(1/N)45等。圖2中所示的鎖相迴路電路40的配置以舉例方式示出,且可以各種方式進行修改。
如上所述,鎖相迴路電路40可使由電壓控制振盪器44產生的輸出訊號OUT的頻率及/或相位與參考訊號(或參考時脈訊號)REF同步。為此,相位頻率偵測器41可接收輸出訊號OUT的回饋,且可將輸出訊號OUT與參考訊號REF進行比較。分頻器45可設置於輸出訊號OUT的回饋路徑中,且相位頻率偵測器41可將參考訊號REF的頻率與穿過分頻器45的輸出訊號OUT的頻率進行比較,藉此輸出對應於所述二者之間的差的訊號。
舉例而言,由相位頻率偵測器41輸出的訊號可被用作電荷幫浦42的控制訊號。電荷幫浦42可包括連接至第一功率節點的第一電流源、以及連接至第二功率節點的第二電流源,且在所述第一電流源與所述第二電流源之間可連接有第一開關及第二開關。電荷幫浦42的輸出節點可為位於第一開關與第二開關之間的節點,且所述第一開關及所述第二開關中的每一者可藉由相位頻率偵測器41輸出的訊號而被導通或關斷。
電荷幫浦42輸出預定控制電壓,且電壓控制振盪器44的輸出訊號OUT的頻率及/或相位可由電荷幫浦42輸出的控制電壓確定。同時,為移除由電荷幫浦42輸出的控制電壓的雜訊分量,迴路濾波器43可連接於電荷幫浦42與電壓控制振盪器44之間。舉例而言,迴路濾波器43中所包括的電容器可藉由電荷幫浦42輸出的電流被充電,且控制電壓可藉由被充電的電容器而被輸入至電壓控制振盪器44。
根據先前技術,鎖相迴路電路40可以粗鎖定模式及細鎖定模式運作。在粗鎖定模式中,迴路濾波器43中所包括的能夠將適當的電壓提供至電容器的電壓電源可被激活。舉例而言,電壓電源可經由被實作為開關元件的傳輸開關連接至電容器,且所述傳輸開關在粗鎖定模式中可被導通,因此迴路濾波器43的電容器可藉由電壓電源的輸出電壓被充電。電壓電源可簡單地被實作為分壓器等。當粗鎖定模式終止且細鎖定模式開始時,傳輸開關被關斷,因此迴路濾波器可自電壓電源分離。
近來,在電子裝置中消耗的功率已變成重要的問題,為了減小安裝於電子裝置的處理器上的鎖相迴路電路40的功耗,可降低用於驅動鎖相迴路電路40的電源電壓VDD。舉例而言,在數位領域中設計例如相位頻率偵測器41、電荷幫浦42、迴路濾波器43以及電壓控制振盪器44等組件,藉此降低電源電壓VDD。
如上所述,當電源電壓VDD被減小時,傳輸開關可僅被實作為具有相對較小臨限電壓的開關元件。因此,漏電流可流經在細鎖定模式中被關斷的傳輸開關。漏電流可影響由迴路濾波器43提供至電壓控制振盪器44的控制電壓。因此,電壓控制振盪器44的輸出訊號在細鎖定模式中可能無法準確地同步至期望的頻率及/或相位。
此外,隨著電源電壓VDD被降低,傳輸開關的臨限電壓對電源電壓VDD的比率(VDD/VTH)可被降低。因此,可導致傳輸開關在特定的電壓下具有增大的導通電阻(turn-on resistance)。為了防止穩定時間(settling time)因導通電阻的增大而增加,可增大傳輸開關的大小。然而,可發生在傳輸開關的關斷狀態中經過傳輸開關的漏電流增大的問題。
為解決上述問題,根據示例性實施例的鎖相迴路電路40可包括洩漏移除器(或洩漏移除電路),所述洩漏移除器顯著減小在傳輸開關的關斷狀態中經過傳輸開關的漏電流對控制電壓的影響。洩漏移除器可使傳輸開關的兩端處的電壓保持為相同的值,或可連接至傳輸開關的一側以顯著減小電壓根據漏電流的變化。因此,無需增大傳輸開關的大小便可將傳輸開關設計為具有期望的導通電阻,且可將鎖相迴路電路40的穩定時間確定為期望值。
圖3為被提供用來示出鎖相迴路電路的電路圖。
圖3可為示出根據先前技術在鎖相迴路電路50中所包括的電荷幫浦51、迴路濾波器52以及電壓電源53的電路圖。電荷幫浦51可包括第一電流源CS1、第二電流源CS2、第一控制開關TC1 以及第二控制開關TC2 等。第一電流源CS1及第一控制開關TC1 可連接至提供第一電源電壓VDD的第一功率節點,而第二電流源CS2及第二控制開關TC2 可連接至提供第二電源電壓VSS的第二功率節點。電荷幫浦51的輸出節點可被定義為第一控制開關TC1 與第二控制開關TC2 之間的節點。
第一控制開關TC1 及第二控制開關TC2 可分別由第一控制訊號UP及第二控制訊號DN控制。第一控制訊號UP與第二控制訊號DN可具有相反的相位。迴路濾波器52可移除電荷幫浦51的輸出電壓VCP 中所包括的雜訊分量,藉此產生控制電壓VCTRL
迴路濾波器52可包括電容器CF1 、CF2 以及電阻器RF 。電壓電源53可經由傳輸開關TG連接至迴路濾波器52,且傳輸開關TG在粗鎖定模式中可被導通。在粗鎖定模式中,電壓電源53的第一開關T1及第二開關T2可與傳輸開關TG一起被導通。因此,由電壓電源53的第一電阻R1及第二電阻R2確定的電壓可被提供至迴路濾波器52。當粗鎖定模式終止且細鎖定模式開始時,傳輸開關TG被關斷,因此電壓電源53可自控制電壓VCTRL 的輸出節點分離。
傳輸開關TG在細鎖定模式中被關斷,因此電壓電源53可不影響控制電壓VCTRL 。然而,在實際電路中可因傳輸開關TG的斷開電阻(off resistance)而產生經過電壓電源53的漏電流,因此可由此導致控制電壓VCTRL 的變化。
圖4為被提供用來示出鎖相迴路電路的控制電壓的曲線圖。
參照圖4,在開始細鎖定模式的第一時間點t1之後,控制電壓VCTRL 可因經過傳輸開關TG及電壓電源53的漏電流而發生波動。詳細而言,當減小第一電源電壓VDD的大小以降低鎖相迴路電路50的功耗時,傳輸開關TG的臨限電壓與斷開電阻被一起減小,因此可產生更大的影響控制電壓VCTRL 的漏電流。
圖5及圖6為被提供用來示出根據示例性實施例的鎖相迴路電路以及所述鎖相迴路電路的操作的電路圖。
參照圖5,根據示例性實施例的鎖相迴路電路100可包括電荷幫浦110、迴路濾波器120、電壓電源130以及洩漏移除器(或洩漏移除電路)140等。電荷幫浦110可具有由第一電源電壓VDD操作的第一電流源CS1以及連接至第二電源電壓VSS以***作的第二電流源CS2,且可藉由第一控制開關TC1 及第二控制開關TC2 的通/斷操作而產生輸出電壓VCP
第一控制開關TC1 及第二控制開關TC2 可分別藉由第一控制訊號UP及第二控制訊號DN被導通/關斷,且第一控制訊號UP及第二控制訊號DN可由設置於電荷幫浦110的前端處的相位頻率偵測器41(如在圖2中所示)產生。相位頻率偵測器可將電壓控制振盪器的輸出訊號與參考訊號REF進行比較,藉此產生第一控制訊號UP及第二控制訊號DN。
迴路濾波器120可包括電容器CF1 、CF2 以及電阻器RF 。電壓電源130可被實作為分壓器等。傳輸開關TG可包括連接至電荷幫浦110的輸出端子的第一節點、以及連接至電壓電源130的第二節點。因此,當傳輸開關TG被導通時,電壓電源130可連接至迴路濾波器120。
當鎖相迴路電路100以粗鎖定模式運作時,傳輸開關TG、以及電壓電源130中的第一開關T1及第二開關T2可被導通。因此,由電壓電源130的第一電阻R1及第二電阻R2確定的電壓可經由傳輸開關TG被輸入至迴路濾波器120。傳輸開關TG可為與NMOS電晶體及PMOS電晶體組合的開關元件,且可以各種開關元件進行替換。舉例而言,第一開關T1及第二開關T2可由第一開關訊號S1控制,且傳輸開關TG可由第二開關訊號S2控制。在示例性實施例中,第一電阻R1及第二電阻R2可具有相同的電阻值。傳輸開關TG可更包括反相器。傳輸開關TG的PMOS電晶體及NMOS電晶體可藉由第二開關訊號S2被導通或關斷。舉例而言,反相器具有連接至PMOS電晶體及NMOS電晶體中的一者的閘極的輸入節點、以及連接至PMOS電晶體及NMOS電晶體中的另一者的閘極的輸出節點。反相器可經由輸入節點接收第二開關訊號S2以導通/關斷PMOS電晶體及NMOS電晶體。
當鎖相迴路電路100進入細鎖定模式時,為防止電壓電源130影響控制電壓VCTRL ,傳輸訊號TG、以及第一開關T1及第二開關T2可被關斷。在細鎖定模式中,電壓電源130的輸出端子可被浮置並藉由被關斷的第一開關訊號S1而自第一電源電壓VDD及第二電源電壓VSS分離。然而,如上所述,由於可存在於傳輸開關TG、第一開關T1及第二開關T2中的斷開電阻的存在,可產生經過傳輸開關TG及電壓電源130的漏電流。控制電壓VCTRL 可因所述漏電流而產生波動,此在使得電壓控制振盪器能夠產生具有準確的相位及頻率的輸出訊號時為干擾因素。
在示例性實施例中,可利用洩漏移除器140顯著減小漏電流對控制電壓VCTRL 的影響。參照圖5,洩漏移除器140可包括緩衝器以及連接至所述緩衝器的輸出端子的緩衝器開關T3。緩衝器可包括具有負回饋結構的運算放大器U1。舉例而言,運算放大器U1可為單一增益運算放大器。緩衝器開關T3可連接於運算放大器U1的輸出端子與傳輸開關TG的第二節點之間。運算放大器U1的反相輸入端子經由負回饋路徑連接至運算放大器U1的輸出端子,且非反相輸入端子可連接至傳輸開關TG的第一節點。
當鎖相迴路電路100進入粗鎖定模式之後的細鎖定模式時,傳輸開關TG、以及第一開關T1及第二開關T2被關斷,且緩衝器開關T3可被導通。在圖5中所示的示例性實施例中,由於具有負回饋結構的運算放大器U1的存在,傳輸開關TG的第一節點的電壓與第二節點的電壓可保持在相同大小。因此,可顯著減小或阻擋由傳輸開關TG的斷開電阻導致的漏電流,且在細鎖定模式中控制電壓VCTRL 可保持在穩定的值。在示例性實施例中,可藉由自動頻率控制器(AFC)30控制傳輸開關TG、第一開關T1、第二開關T2、緩衝器開關T3等。舉例而言,自動頻率控制器30可產生第一開關訊號S1至第三開關訊號S3。
此外,在示例性實施例中,在不改變例如傳輸開關TG的大小(例如,PMOS電晶體及NMOS電晶體中的每一者的寬度/長度)等設計的情況下,可利用洩漏移除器140移除或阻擋經過傳輸開關TG的漏電流。在示例性實施例中,可移除導通電阻與根據傳輸開關TG的大小的漏電流之間的相關性。因此,可自由地確定傳輸開關TG的大小等,因此可將鎖相迴路電路100的穩定時間設計為期望值。
如上所述,自由地確定傳輸開關TG的大小。就此而言,其可有助於改善電壓電源130的輸出電壓分佈。即使在第一開關T1及第二開關T2中的每一者的設計結構相同時,第一開關T1與第二開關T2亦可因各種變化(例如,製程變化、電壓變化以及溫度PVT變化)而具有不同的導通電阻。因此,第一電阻R1及第二電阻R2中的每一者的電阻值增大,故可減小電壓電源130的輸出電壓分佈。在此種情形中,電壓電源130的輸出電壓穩定所需的穩定時間可增加。根據先前技術,當傳輸開關TG的大小(寬度/長度)被設計為大以便減少電壓電源130的輸出電壓穩定所需的穩定時間時,在細鎖定模式中經過傳輸開關TG的漏電流增大,因此控制電壓VCTRL 可發生波動。然而,在示例性實施例中,無論傳輸開關TG的大小如何,皆能夠藉由洩漏移除器140移除或阻擋漏電流。因此,傳輸開關TG被設計為足夠大,且第一電阻R1及第二電阻R2中的每一者的電阻值被設計為足夠大,因此可減小電壓電源130的輸出電壓分佈,同時亦可減少電壓電源130的輸出電壓的穩定時間。
參照圖6,根據示例性實施例的鎖相迴路電路200可包括電荷幫浦210、迴路濾波器220、電壓電源230、洩漏移除器(或洩漏移除電路)240等。在圖6中所示的示例性實施例中,可僅利用不具有單獨的緩衝器的緩衝器開關T3實作洩漏移除器240。參照圖6,緩衝器開關T3連接於電荷幫浦210中所包括的運算放大器U1的輸出端子與傳輸開關TG之間,藉此實作洩漏移除器240。舉例而言,電荷幫浦210與洩漏移除器240可共用運算放大器U1。
參照圖6,電荷幫浦210可包括第一控制開關TC1 至第四控制開關TC4 、第一電流源CS1、第二電流源CS2以及運算放大器U1。運算放大器U1的反相輸入端子經由負回饋路徑連接至運算放大器U1的輸出端子,且非反相輸入端子可連接至電荷幫浦210的輸出端子。此外,運算放大器U1的輸出端子可連接於第三控制開關TC3 與第四控制開關TC4 之間。第一控制開關TC1 至第四控制開關TC4 可分別藉由第一控制訊號UP及第二控制訊號DN被導通/關斷。運算放大器U1可為被設置用來解決可在電荷幫浦210中發生的電荷共用問題的元件。
在示例性實施例中,包括緩衝器開關T3的洩漏移除器240可包括運算放大器U1以及第三控制開關TC3 及第四控制開關TC4 。在此種情形中,電荷幫浦210可與圖5所示的電荷幫浦110相同。
傳輸開關TG可包括連接至電荷幫浦210的輸出端子的第一節點、以及連接至電壓電源230的第二節點。運算放大器U1的非反相輸入端子連接至電荷幫浦210的輸出端子,且緩衝器開關T3連接於運算放大器U1的輸出端子與傳輸開關TG的第二節點之間。因此,可實作作為圖5中所示示例性實施例的電路。當在細鎖定模式中導通緩衝器開關T3時,藉由運算放大器U1在傳輸開關TG的第一節點與第二節點處保持相同的電壓,因此可減小由傳輸開關TG的斷開電阻導致的漏電流。
圖7為被提供用來示出根據示例性實施例的鎖相迴路電路的操作的時序圖。
圖7為被提供用來示出在圖5及圖6中所示的根據示例性實施例的鎖相迴路電路100及200的操作的時序圖。參照圖7,在粗鎖定模式中,可導通第一開關T1及第二開關T2以及傳輸開關TG。然後,當細鎖定模式開始時,關斷第一開關T1及第二開關T2以及傳輸開關TG,且導通緩衝器開關T3。因此,在細鎖定模式期間,傳輸開關TG的第一節點及第二節點可藉由運算放大器U1而具有相同的電壓,此外,當電荷幫浦110及210運作以輸出控制電壓VCTRL 時,可減小由傳輸開關TG的斷開電阻導致的漏電流的影響。
圖8為被提供用來示出根據示例性實施例的鎖相迴路電路以及所述鎖相迴路電路的操作的電路圖。
參照圖8,根據示例性實施例的鎖相迴路電路300可包括電荷幫浦310、迴路濾波器320、電壓電源330以及洩漏移除器340等。在圖8中所示的示例性實施例中,可利用第一子電阻RS1及第二子電阻RS2將洩漏移除器340實作為分壓器。舉例而言,第一子電阻RS1及第二子電阻RS2可具有相同的電阻值,且相較於電壓電源330的第一電阻R1及第二電阻R2可具有相對較大的電阻值。在示例性實施例中,第一子電阻RS1及第二子電阻RS2可具有為第一電阻R1及第二電阻R2的數十至數百倍的電阻值。傳輸開關TG的第一節點可連接至電荷幫浦310的輸出端子,且傳輸開關TG的第二節點可連接至位於第一子電阻RS1與第二子電阻RS2之間的共用節點。
當粗鎖定模式終止且細鎖定模式開始時,可分別藉由第一開關訊號及第二開關訊號關斷傳輸開關TG、第一開關T1以及第二開關T2。在鎖相迴路電路300的情形中,粗鎖定模式中的控制電壓VCTRL 與細鎖定模式中的控制電壓VCTRL 之間的差異可能不顯著。由於利用具有相對較大電阻值的第一子電阻RS1及第二子電阻RS2保持傳輸開關TG的第二節點的電壓,因此可減小經過傳輸開關TG的漏電流。第一子電阻RS1及第二子電阻RS2具有較電壓電源330中所包括的第一電阻R1及第二電阻R2的電阻值大的電阻值。在此種情形中,由利用洩漏移除器340所添加的功耗可能不顯著。
圖9、圖10A及圖10B為被提供用來示出根據示例性實施例的鎖相迴路電路的操作的曲線圖。
首先,圖9為示出被輸入至根據示例性實施例的鎖相迴路電路中的電壓控制振盪器的控制電壓的曲線圖。參照圖9,控制電壓在預定穩定時間TS 期間增大且可達到目標電壓VT 。儘管在圖9中未示出,但控制電壓可在穩定時間TS 期間增大至大於目標電壓VT 的值。
為由鎖相迴路電路產生具有期望頻率及/或相位的輸出訊號,需要將準確的控制電壓輸入至電壓控制振盪器。然而,如上所述,在細鎖定模式中經過保持關斷狀態的傳輸開關的漏電流會影響控制電壓,因此發生控制電壓的波動。因此,可能無法提供由鎖相迴路電路的輸出訊號所預期的頻率及/或相位。
如先前參照各種示例性實施例所述,在本揭露中,利用洩漏移除器減小傳輸開關的兩端處的電壓差,因此可移除漏電流。
在其中放大圖9所示第一部分TD 的圖10A及圖10B中,首先參照為在鎖相迴路電路不包括洩漏移除器的情形中的曲線圖的圖10A,控制電壓可基於目標電壓VT 改變第一變化量VD1。然後,參照示出在包括洩漏移除器的鎖相迴路電路中的控制電壓的圖10B,控制電壓可基於目標電壓VT 改變第二變化量VD2,且第二變化量VD2可小於第一變化量VD1。舉例而言,第一變化量VD1可為第二變化量VD2的數十至數百倍。
圖11為示出根據示例性實施例包括鎖相迴路電路的RF系統的圖式。然而,應注意,可在根據示例性實施例的鎖相迴路電路中採用不同於RF系統的各種系統。
參照圖11,根據示例性實施例的RF系統400可包括傳輸模組410、接收模組420以及處理器430等。傳輸模組410與接收模組420可共用匹配網路403、鎖相迴路電路405以及天線ANT等。
當處理器430輸出待被傳輸的傳輸資料時,傳輸模組410可在自鎖相迴路電路405接收的載波訊號中交疊傳輸資料。舉例而言,混合器411可將傳輸訊號轉換成高頻訊號,且功率放大器(power amplifier,PA)412可將傳輸訊號放大並經由匹配網路403及天線ANT輸出傳輸訊號。
當天線ANT接收所接收的訊號時,低雜訊放大器(low noise amplifier,LNA)421可將所接收的訊號放大並將所接收的訊號遞送至混合器422。混合器422可參照鎖相迴路電路405的輸出訊號將所接收的訊號轉換成低頻訊號,且可藉由可變增益放大器(variable gain amplifier,VGA)423將被轉換成低頻訊號的所接收訊號放大。類比數位轉換器(analog-to-digital converter,ADC)424可將可變增益放大器423的輸出轉換成數位資料,且然後將所述數位資料遞送至處理器430。
鎖相迴路電路405將輸出訊號傳輸至兩側(亦即,傳輸模組410及接收模組420),且可用於固定頻率以防止頻率波動,或準確地改變頻率。因此,若未穩定地保持鎖相迴路電路405的輸出訊號的頻率,則RF系統400的整體效能可劣化。
如上所述,根據示例性實施例的鎖相迴路電路可利用洩漏移除器在細鎖定模式中減小控制電壓的波動。因此,可穩定地操作接收控制電壓以確定輸出訊號的頻率的電壓控制振盪器,藉此改善例如RF系統400的操作穩定性等效能。
圖12為示出根據示例性實施例包括鎖相迴路電路的電子裝置的方塊圖。
圖12中所示根據示例性實施例的電子裝置1000可包括顯示器1010、通訊模組1020、記憶體1030、處理器1040以及埠1050等。電子裝置1000可更包括電源以及感測器模組等。在圖12中所示的組件中,可為電子裝置1000提供埠1050以與視訊卡、聲音卡、記憶卡、通用串列匯流排(universal serial bus,USB)裝置等通訊。根據先前技術,電子裝置1000可為包括智慧型電話、平板個人電腦、智慧型穿戴裝置等以及桌上型電腦及膝上型電腦的概念。
處理器1040可執行某一操作、命令、任務等。處理器1040可為中央處理單元(central processing unit,CPU)、應用處理器(application processor,AP)或微處理器單元(microprocessor unit,MCU),且可經由匯流排1060與顯示器1010、通訊模組1020、記憶體裝置1030、以及連接至埠1050的其他裝置通訊。
例如顯示器1010、通訊模組1020、記憶體1030、處理器1040等組件可包括根據以上所揭露示例性實施例的鎖相迴路電路。根據示例性實施例的鎖相迴路電路可利用洩漏移除器在細鎖定模式中穩定地產生控制電壓,藉此準確地保持輸出訊號的頻率。
如上所述,根據本發明概念的示例性實施例,可提供一種電路,所述電路利用分壓器提供適用於迴路濾波器的電壓,並在將分壓器連接至迴路濾波器的傳輸開關被關斷時顯著減小經過傳輸開關及分壓器的漏電流。由於無論傳輸開關的元件的設計如何皆會降低漏電流,因此可改善鎖相迴路電路的效能而無需與穩定時間作出折衷。
儘管以上已示出並闡述了示例性實施例,但對於熟習此項技術者將顯而易見,在不背離由隨附申請專利範圍所界定的本揭露的範圍的條件下可作出各種修改及變化。
10‧‧‧系統/積體電路 11‧‧‧自動頻率控制器(AFC) 12‧‧‧鎖相迴路(PLL)電路 20‧‧‧系統/積體電路 30‧‧‧自動頻率控制器(AFC) 40‧‧‧鎖相迴路電路 41‧‧‧相位頻率偵測器(PFD) 42‧‧‧電荷幫浦(CP) 43‧‧‧迴路濾波器(LF) 44‧‧‧電壓控制振盪器(VCO) 45‧‧‧分頻器(1/N) 50‧‧‧鎖相迴路電路 51‧‧‧電荷幫浦 52‧‧‧迴路濾波器 53‧‧‧電壓電源 100‧‧‧鎖相迴路電路 110‧‧‧電荷幫浦 120‧‧‧迴路濾波器 130‧‧‧電壓電源 140‧‧‧洩漏移除器 200‧‧‧鎖相迴路電路 210‧‧‧電荷幫浦 220‧‧‧迴路濾波器 230‧‧‧電壓電源 240‧‧‧洩漏移除器 300‧‧‧鎖相迴路電路 310‧‧‧電荷幫浦 320‧‧‧迴路濾波器 330‧‧‧電壓電源 340‧‧‧洩漏移除器 400‧‧‧RF系統 403‧‧‧匹配網路 405‧‧‧鎖相迴路(PLL)電路 410‧‧‧傳輸模組 411‧‧‧混合器 412‧‧‧功率放大器(PA) 420‧‧‧接收模組 421‧‧‧低雜訊放大器(LNA) 422‧‧‧混合器 423‧‧‧可變增益放大器(VGA) 424‧‧‧類比數位轉換器(ADC) 430‧‧‧處理器 1000‧‧‧電子裝置 1010‧‧‧顯示器 1020‧‧‧通訊模組 1030‧‧‧記憶體 1040‧‧‧處理器 1050‧‧‧埠 1060‧‧‧匯流排 ANT‧‧‧天線 CF1、CF2‧‧‧電容器 CS1‧‧‧第一電流源 CS2‧‧‧第二電流源 DN‧‧‧第二控制訊號 OUT‧‧‧輸出訊號 R1‧‧‧第一電阻 R2‧‧‧第二電阻 REF‧‧‧參考訊號 RF‧‧‧電阻器 RS1‧‧‧第一子電阻 RS2‧‧‧第二子電阻 S1‧‧‧第一開關訊號 S2‧‧‧第二開關訊號 S3‧‧‧第三開關訊號 t1‧‧‧第一時間點 T1‧‧‧第一開關 T2‧‧‧第二開關 T3‧‧‧緩衝器開關 TC1‧‧‧第一控制開關 TC2‧‧‧第二控制開關 TC3‧‧‧第三控制開關 TC4‧‧‧第四控制開關 TD‧‧‧第一部分 TG‧‧‧傳輸開關 TS‧‧‧穩定時間 U1‧‧‧運算放大器 UP‧‧‧第一控制訊號 VCP‧‧‧輸出電壓 VCTRL‧‧‧控制電壓 VD1‧‧‧第一變化量 VD2‧‧‧第二變化量 VDD‧‧‧電源電壓/第一電源電壓 VSS‧‧‧第二電源電壓 VT‧‧‧目標電壓
藉由結合附圖閱讀以下詳細說明,將更清楚地理解本揭露的上述及其他態樣、特徵及其他優點,在附圖中: 圖1及圖2為示出根據示例性實施例包括鎖相迴路電路的系統的示意圖。 圖3為被提供用來示出鎖相迴路電路的一部分的電路圖。 圖4為被提供用來示出鎖相迴路電路的控制電壓的曲線圖。 圖5及圖6為被提供用來示出根據示例性實施例的鎖相迴路電路以及所述鎖相迴路電路的操作的電路圖。 圖7為被提供用來示出根據示例性實施例的鎖相迴路電路的操作的時序圖。 圖8為被提供用來示出根據示例性實施例的鎖相迴路電路以及所述鎖相迴路電路的操作的電路圖。 圖9、圖10A及圖10B為被提供用來示出根據示例性實施例的鎖相迴路電路的操作的曲線圖。 圖11為示出根據示例性實施例包括鎖相迴路電路的RF系統的圖式。 圖12為示出根據示例性實施例包括鎖相迴路電路的電子裝置的方塊圖。
20‧‧‧系統/積體電路
30‧‧‧自動頻率控制器(AFC)
40‧‧‧鎖相迴路電路
41‧‧‧相位頻率偵測器(PFD)
42‧‧‧電荷幫浦(CP)
43‧‧‧迴路濾波器(LF)
44‧‧‧電壓控制振盪器(VCO)
45‧‧‧分頻器(1/N)
OUT‧‧‧輸出訊號
REF‧‧‧參考訊號

Claims (20)

  1. 一種積體電路,包括: 鎖相迴路電路,包括: 電壓控制振盪器,被配置成基於控制電壓輸出具有預定頻率的時脈訊號; 相位頻率偵測器,被配置成將所述時脈訊號與參考訊號進行比較以輸出第一控制訊號及第二控制訊號; 電荷幫浦,被配置成基於所述第一控制訊號及所述第二控制訊號輸出所述控制電壓; 電壓電源,包括輸出端子,所述輸出端子藉由傳輸開關連接至所述電荷幫浦的輸出端子;以及 洩漏移除電路,連接至所述傳輸開關且被配置成在所述傳輸開關關斷時移除流經所述傳輸開關的漏電流。
  2. 如申請專利範圍第1項所述的積體電路,其中所述電壓電源包括連接至所述電壓電源的所述輸出端子的第一電阻及第二電阻、連接於所述第一電阻與第一功率節點之間的第一開關、以及連接於所述第二電阻與第二功率節點之間的第二開關。
  3. 如申請專利範圍第2項所述的積體電路,其中所述第一開關及所述第二開關、以及所述傳輸開關被配置成在所述鎖相迴路電路的粗鎖定模式中被導通,且在所述鎖相迴路電路的細鎖定模式中被關斷。
  4. 如申請專利範圍第2項所述的積體電路,其中所述第一電阻及所述第二電阻具有相同的電阻值。
  5. 如申請專利範圍第1項所述的積體電路,其中所述傳輸開關包括第一節點及第二節點,所述第一節點連接至所述電荷幫浦的所述輸出端子,所述第二節點連接至所述電壓電源的所述輸出端子。
  6. 如申請專利範圍第5項所述的積體電路,其中所述洩漏移除電路包括緩衝器及緩衝器開關,所述緩衝器開關連接於所述緩衝器的輸出端子與所述傳輸開關的所述第二節點之間。
  7. 如申請專利範圍第6項所述的積體電路,其中所述緩衝器包括單一增益運算放大器,所述單一增益運算放大器具有非反相輸入端子及反相輸入端子,所述非反相輸入端子連接至所述傳輸開關的所述第一節點,且所述反相輸入端子經由負回饋路徑連接至所述緩衝器開關。
  8. 如申請專利範圍第7項所述的積體電路,其中所述洩漏移除電路及所述電荷幫浦被配置成共用所述單一增益運算放大器。
  9. 如申請專利範圍第7項所述的積體電路,其中所述電荷幫浦包括連接至第一功率節點的第一電流源、連接於所述第一電流源與所述電荷幫浦的所述輸出端子之間的第一控制開關、連接至第二功率節點的第二電流源、連接於所述第二電流源與所述電荷幫浦的所述輸出端子之間的第二控制開關、以及串聯連接於所述第一功率節點與所述第二功率節點之間的第三控制開關及第四控制開關,且 其中所述非反相輸入端子連接至所述電荷幫浦的所述輸出端子,且所述反相輸入端子連接至經由所述負回饋路徑連接至所述第三控制開關及所述第四控制開關的節點。
  10. 如申請專利範圍第6項所述的積體電路,其中所述緩衝器開關被配置成在所述鎖相迴路電路的粗鎖定模式中被關斷,且在所述鎖相迴路電路的細鎖定模式中被導通。
  11. 如申請專利範圍第1項所述的積體電路,其中所述洩漏移除電路包括第一子電阻及第二子電阻,所述第一子電阻及所述第二子電阻串聯連接於第一功率節點與第二功率節點之間且經由所述傳輸開關連接至所述電荷幫浦的所述輸出端子,且 其中所述電壓電源包括第一電阻及第二電阻,所述第一電阻及所述第二電阻串聯連接且在所述第一功率節點與所述第二功率節點之間連接至所述電壓電源的所述輸出端子。
  12. 如申請專利範圍第11項所述的積體電路,其中所述第一子電阻及所述第二子電阻中的每一者的電阻值大於所述第一電阻及所述第二電阻中的每一者的電阻值。
  13. 如申請專利範圍第1項所述的積體電路,更包括: 分頻器,被配置成對所述時脈訊號進行劃分並將經劃分的所述時脈訊號提供至所述相位頻率偵測器。
  14. 一種積體電路,包括: 鎖相迴路電路,包括: 電壓控制振盪器,被配置成基於控制電壓輸出時脈訊號; 相位頻率偵測器,被配置成將所述時脈訊號與參考訊號進行比較以輸出第一控制訊號及第二控制訊號; 電荷幫浦,包括輸出端子且被配置成基於所述第一控制訊號及所述第二控制訊號輸出所述控制電壓; 電壓電源,被配置成當所述鎖相迴路電路處於第一鎖定模式中時經由傳輸開關將第一電壓輸出至所述電荷幫浦的所述輸出端子,且當所述鎖相迴路電路處於所述第一鎖定模式之後的第二鎖定模式中時浮置所述電壓電源的輸出端子;以及 洩漏移除設備,連接至所述傳輸開關及所述電壓電源的所述輸出端子,用於在所述鎖相迴路電路處於所述第二鎖定模式中時移除流經所述傳輸開關的漏電流。
  15. 如申請專利範圍第14項所述的積體電路,其中所述電壓電源具有連接至所述電荷幫浦的所述輸出端子的第一電阻及第二電阻、連接於所述第一電阻與第一功率節點之間的第一開關、以及連接於所述第二電阻與第二功率節點之間的第二開關,且 其中所述洩漏移除設備具有連接於所述洩漏移除設備的輸出端子與所述電荷幫浦的所述輸出端子之間的第三開關。
  16. 如申請專利範圍第15項所述的積體電路,其中所述第一開關及所述第二開關以及所述傳輸開關被配置成在所述鎖相迴路電路處於所述第一鎖定模式中時被導通,且在所述鎖相迴路電路處於所述第二鎖定模式中時被關斷,且 其中所述第三開關被配置成在所述鎖相迴路電路處於所述第一鎖定模式中時被關斷,且在所述鎖相迴路電路處於所述第二鎖定模式中時被導通。
  17. 如申請專利範圍第15項所述的積體電路,更包括: 自動頻率控制器,被配置成控制所述第一開關、所述第二開關、所述第三開關及所述傳輸開關。
  18. 一種積體電路,包括: 鎖相迴路電路,包括: 振盪器,被配置成基於控制電壓輸出時脈訊號; 相位頻率偵測器,被配置成將所述時脈訊號與參考時脈訊號進行比較以輸出第一控制訊號及第二控制訊號; 電荷幫浦,具有輸出端子且被配置成基於所述第一控制訊號及所述第二控制訊號在所述電荷幫浦的所述輸出端子上輸出所述控制電壓; 傳輸開關,具有第一節點及第二節點,所述第一節點連接至所述電荷幫浦的所述輸出端子; 電壓電源,包括連接至所述第二節點以及第一電阻及第二電阻的輸出端子,且被配置成當所述鎖相迴路電路處於粗鎖定模式中時經由所述傳輸開關將電壓輸出至所述電荷幫浦的所述輸出端子,且當所述鎖相迴路電路處於所述粗鎖定模式之後的細鎖定模式中時浮置所述電壓電源的所述輸出端子;以及 緩衝器,具有連接至所述第一節點的輸入端子以及經由緩衝器開關連接至所述第二節點的輸出端子,且被配置成當所述鎖相迴路電路處於所述細鎖定模式中時阻擋流經所述傳輸開關的漏電流。
  19. 如申請專利範圍第18項所述的積體電路,其中所述緩衝器包括單一增益運算放大器,所述單一增益運算放大器具有非反相輸入端子及反相輸入端子,所述非反相輸入端子連接至所述第一節點,且所述反相輸入端子經由負回饋路徑連接至所述緩衝器開關。
  20. 如申請專利範圍第18項所述的積體電路,其中當所述鎖相迴路電路處於所述細鎖定模式中時,所述緩衝器開關被導通,且所述第一開關及所述第二開關以及所述傳輸開關被關斷。
TW108104335A 2018-07-13 2019-02-01 積體電路 TWI800601B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0081730 2018-07-13
KR1020180081730A KR102527676B1 (ko) 2018-07-13 2018-07-13 위상 고정 루프 회로

Publications (2)

Publication Number Publication Date
TW202007086A true TW202007086A (zh) 2020-02-01
TWI800601B TWI800601B (zh) 2023-05-01

Family

ID=69138270

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108104335A TWI800601B (zh) 2018-07-13 2019-02-01 積體電路

Country Status (7)

Country Link
US (1) US11005484B2 (zh)
JP (1) JP7351632B2 (zh)
KR (1) KR102527676B1 (zh)
CN (1) CN110719103B (zh)
DE (1) DE102018132424A1 (zh)
SG (1) SG10201901763TA (zh)
TW (1) TWI800601B (zh)

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5659588A (en) * 1996-08-15 1997-08-19 Lsi Logic Corporation Phase-locked loop having filter leakage cancellation circuit
JPH11225244A (ja) 1998-02-04 1999-08-17 Ricoh Co Ltd Ccdアナログ信号処理回路の直流再生回路
AU767508B2 (en) * 1999-11-12 2003-11-13 Gct Semiconductor, Inc. Single chip CMOS transmitter/receiver and method of using same
KR100378193B1 (ko) 2001-02-14 2003-03-29 삼성전자주식회사 반도체 메모리장치의 입출력 회로 및 전류제어 회로
US20030038661A1 (en) * 2001-07-27 2003-02-27 Ramesh Chokkalingam Apparatus to decrease the spurs level in a phase-locked loop
KR100794695B1 (ko) 2001-12-29 2008-01-14 매그나칩 반도체 유한회사 차지 펌프 회로
JP2003298414A (ja) 2002-04-03 2003-10-17 Toshiba Corp 半導体集積回路
SE522959C2 (sv) * 2002-04-16 2004-03-16 Spirea Ab Laddningspump av lågläckagetyp
US6608511B1 (en) * 2002-07-17 2003-08-19 Via Technologies, Inc. Charge-pump phase-locked loop circuit with charge calibration
US6958636B2 (en) * 2004-01-16 2005-10-25 International Business Machines Corporation Charge leakage correction circuit for applications in PLLs
US7132865B1 (en) * 2004-03-03 2006-11-07 Atheros Communications, Inc. Mitigating parasitic current that leaks to the control voltage node of a phase-locked loop
JP4091576B2 (ja) 2004-03-24 2008-05-28 株式会社東芝 半導体集積回路及び周波数変調装置
JP2006302971A (ja) 2005-04-15 2006-11-02 Fujitsu Ltd 電源クランプ回路及び半導体装置
KR100733447B1 (ko) 2005-09-28 2007-06-29 주식회사 하이닉스반도체 누설전류 방지를 위한 메모리장치의 데이터 출력 멀티플렉서
JP4482524B2 (ja) 2006-01-06 2010-06-16 川崎マイクロエレクトロニクス株式会社 リーク電流補償回路を備えたpll回路
CN101127524A (zh) * 2007-07-10 2008-02-20 中国人民解放军国防科学技术大学 Pll中消除电流过冲的电荷泵电路
US8164369B2 (en) * 2008-11-12 2012-04-24 Qualcomm Incorporated Techniques for minimizing control voltage noise due to charge pump leakage in phase locked loop circuits
US9570975B2 (en) * 2009-12-14 2017-02-14 Realtek Semiconductor Corp. Method and apparatus for charge leakage compensation for charge pump with leaky capacitive load
US8040167B1 (en) * 2010-03-26 2011-10-18 Realtek Semiconductor Corp. Method and apparatus for charge leakage compensation for charge pump
CN201754557U (zh) * 2010-07-30 2011-03-02 苏州科山微电子科技有限公司 可解决电荷分配和电流失配问题的电荷泵
CN102291129B (zh) * 2011-06-01 2013-01-16 浙江大学 一种用于抑制vco电压纹波的锁相环电路
TWI469525B (zh) * 2011-06-22 2015-01-11 Realtek Semiconductor Corp 具有電荷洩漏補償之電荷泵裝置及其方法
US9166607B2 (en) 2012-03-01 2015-10-20 Qualcomm Incorporated Capacitor leakage compensation for PLL loop filter capacitor
KR101904749B1 (ko) 2012-05-10 2018-10-08 삼성전자주식회사 위상 고정 루프의 스위칭 및 위상 잡음 향상 기법을 적용한 트랜시버
CN103297042A (zh) * 2013-06-24 2013-09-11 中国科学院微电子研究所 一种可快速锁定的电荷泵锁相环电路
KR102211727B1 (ko) * 2014-01-20 2021-02-03 삼성전자주식회사 디지털 위상 고정 루프, 디지털 위상 고정 루프를 제어하는 방법 및 디지털 위상 고정 루프를 이용한 초저전력 송수신기
US9455723B2 (en) 2015-02-27 2016-09-27 Qualcomm Incorporated Leakage compensation circuit for phase-locked loop (PLL) large thin oxide capacitors
US9438254B1 (en) * 2015-05-21 2016-09-06 Stmicroelectronics International N.V. Charge pump circuit for a phase locked loop
EP3363067A1 (en) 2015-10-15 2018-08-22 Energ2 Technologies, Inc. Low-gassing carbon materials for improving performance of lead acid batteries
US10176853B2 (en) 2016-05-25 2019-01-08 Mediatek Inc. Pre-processing circuit with data-line DC immune clamping and associated method and sensing circuit
CN107147281B (zh) * 2017-05-26 2020-01-03 中国科学技术大学 一种动态电流补偿的电荷泵
CN107896108B (zh) * 2017-12-07 2020-11-17 西安电子科技大学 用于锁相环的电荷泵电路

Also Published As

Publication number Publication date
JP2020014191A (ja) 2020-01-23
JP7351632B2 (ja) 2023-09-27
US20200021298A1 (en) 2020-01-16
DE102018132424A1 (de) 2020-01-16
KR20200007523A (ko) 2020-01-22
KR102527676B1 (ko) 2023-05-03
US11005484B2 (en) 2021-05-11
CN110719103B (zh) 2024-07-23
CN110719103A (zh) 2020-01-21
SG10201901763TA (en) 2020-02-27
TWI800601B (zh) 2023-05-01

Similar Documents

Publication Publication Date Title
US5781048A (en) Synchronous circuit capable of properly removing in-phase noise
US7466174B2 (en) Fast lock scheme for phase locked loops and delay locked loops
US8901978B2 (en) Multi phase clock signal generator, signal phase adjusting loop utilizing the multi phase clock signal generator, and multi phase clock signal generating method
US7888982B2 (en) Semiconductor memory apparatus
US9762211B2 (en) System and method for adjusting duty cycle in clock signals
US10547298B1 (en) Duty cycle correction system and method
CN110720177A (zh) 用于改善锁定时间的装置和方法
TWI412234B (zh) 鎖相迴路及其壓控振盪器
US8085073B2 (en) Phase synchronization apparatus
US9281824B2 (en) Clock amplitude detection
CN110858750B (zh) 电荷泵电路及相关方法
US9742413B2 (en) Electronic device and information processing apparatus
US7812650B2 (en) Bias voltage generation circuit and clock synchronizing circuit
TW202007086A (zh) 積體電路
KR20070069366A (ko) 클럭 동기 장치
US8493115B2 (en) Phase locked loop circuit and system having the same
US9768788B2 (en) Phase-locked loop with lower power charge pump
KR100803361B1 (ko) Pll 회로의 루프 필터 및 그 제어 방법
US7242255B1 (en) Method and apparatus for minimizing phase error and jitter in a phase-locked loop
KR19990042341A (ko) 클럭 동기 지연 회로와 결합된 지연 동기 루프(dll)
TW201828605A (zh) 頻帶選擇時脈資料回復電路以及相關方法
KR100845775B1 (ko) Pll 회로
TW202315333A (zh) 對製程、電壓、溫度的變化不敏感的數位控制振盪器以及包括其的數位鎖相迴路
KR20110047841A (ko) 위상고정루프 회로