TW202005950A - Integrated systems and processes for chemical production - Google Patents

Integrated systems and processes for chemical production Download PDF

Info

Publication number
TW202005950A
TW202005950A TW108116656A TW108116656A TW202005950A TW 202005950 A TW202005950 A TW 202005950A TW 108116656 A TW108116656 A TW 108116656A TW 108116656 A TW108116656 A TW 108116656A TW 202005950 A TW202005950 A TW 202005950A
Authority
TW
Taiwan
Prior art keywords
produce
carbonylation
hydrogen
stream
product
Prior art date
Application number
TW108116656A
Other languages
Chinese (zh)
Inventor
薩德許 H 蘇克拉杰
赫伯特 莽斯特曼
Original Assignee
美商諾沃梅爾公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商諾沃梅爾公司 filed Critical 美商諾沃梅爾公司
Publication of TW202005950A publication Critical patent/TW202005950A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/04Preparation of ammonia by synthesis in the gas phase
    • C01C1/0405Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/04Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D305/00Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms
    • C07D305/02Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms not condensed with other rings
    • C07D305/10Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms not condensed with other rings having one or more double bonds between ring members or between ring members and non-ring members
    • C07D305/12Beta-lactones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/04Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • C07D307/06Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to ring carbon atoms
    • C07D307/08Preparation of tetrahydrofuran
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Provided herein are integrated systems and processes for more efficient use of raw materials in chemical synthesis of ammonia, urea and copolymers. The systems and processes may include nutrient fermentation, carbonylation of syngas derived from gasification of a biomass, ammonia and urea formation from the hydrogen-enriched gas and nitrogen derived from air separation, and polymerization of a carbonylation product, glycerol derived from plant oil transesterification, or a combination of the foregoing.

Description

用於化學品製造之整合系統及方法Integrated system and method for chemical manufacturing

本發明大體上係針對用於在化學品合成中更高效使用原材料之整合系統及方法。特定言之,本發明係關於處理原材料以產生分子組分,該等分子組分經整合至化學品合成方法中以產生生物基產物。The present invention is generally directed to integrated systems and methods for more efficient use of raw materials in chemical synthesis. In particular, the present invention relates to processing raw materials to produce molecular components that are integrated into chemical synthesis methods to produce bio-based products.

以可持續且高效節能方式使用塑料、肥料、碳纖維、泡沫及超吸收性材料產生化學品產物得到世界範圍的關注。然而,在製造方法中最小化廢棄物及高效節能同樣至關重要。為製得可持續化學品產物,某些化學方法可包括含碳材料之氣化。The use of plastics, fertilizers, carbon fibers, foams, and superabsorbent materials to produce chemical products in a sustainable and energy-efficient manner has attracted worldwide attention. However, minimizing waste and efficient energy saving in manufacturing methods are also crucial. To produce sustainable chemical products, certain chemical methods may include the gasification of carbonaceous materials.

需要減小化學品合成之環境影響的工業化學品合成系統及方法。本文提供藉由提供更高效、可持續且低成本整合系統及方法來滿足此需要之系統及方法。There is a need for industrial chemical synthesis systems and methods that reduce the environmental impact of chemical synthesis. This article provides systems and methods to meet this need by providing more efficient, sustainable, and low-cost integrated systems and methods.

本發明係針對用於產生寶貴化學品產物之整合系統及方法。有利地,此等系統及方法更有效且經濟地產生具有減小環境影響之化學品產物。舉例而言,本文中之系統及方法可更高效節能且更少浪費同時產生具有生物基特徵之化學品產物。此外,藉由整合及流線型設備操作而改良諸如能量產生及維持以及總體水使用之操作。The present invention is directed to integrated systems and methods for producing valuable chemical products. Advantageously, these systems and methods produce chemical products with reduced environmental impact more efficiently and economically. For example, the systems and methods herein can be more energy efficient and less wasteful while producing chemical products with bio-based characteristics. In addition, operations such as energy generation and maintenance and overall water usage are improved by integrating and streamlining equipment operations.

在一些態樣中,系統包含至少一個操作單元,其中各操作單元進一步包含至少一個反應器。在本發明之系統中,各反應器大體上包含經組態為殼體之壁。各反應器之大小、形狀及組態可取決於諸多變量,諸如將添加何種材料或試劑,將移除何種產物或中間物及將執行反應或其他動作之速率。因此,本發明反應器侷限性不意欲為限制性的,其中可使用替代性組態例如以優化條件、方法、產物特性及/或產物產率。In some aspects, the system includes at least one operating unit, wherein each operating unit further includes at least one reactor. In the system of the present invention, each reactor generally includes a wall configured as a shell. The size, shape, and configuration of each reactor can depend on many variables, such as what materials or reagents will be added, what products or intermediates will be removed, and the rate at which reactions or other actions will be performed. Therefore, the reactor limitations of the present invention are not intended to be limiting, where alternative configurations can be used, for example to optimize conditions, methods, product characteristics, and/or product yields.

在某些實施例中,系統包含:醱酵單元、氣化單元、空氣分離單元、羰基化單元及聚合單元。在某些變化形式中,系統包含:醱酵單元、氣化單元、空氣分離單元及羰基化單元。In some embodiments, the system includes: a fermentation unit, a gasification unit, an air separation unit, a carbonylation unit, and a polymerization unit. In some variations, the system includes: fermentation unit, gasification unit, air separation unit and carbonylation unit.

在一些實施例中,方法包含:將空氣分離成氧氣流及氮氣流;使含碳材料氣化以產生包含一氧化碳、二氧化碳及氫氣之原始合成氣流;將一氧化碳與二氧化碳及氫氣分離;使養分醱酵以產生生物基醇流;使一部分生物基醇流脫水以產生生物基烯烴;藉由氧流使生物基烯烴氧化以產生生物基環氧化物;以及藉由一氧化碳使該生物基環氧化物羰基化以產生生物基羰基化產物、氫氣流及二氧化碳流。In some embodiments, the method includes: separating air into a stream of oxygen and a stream of nitrogen; gasifying the carbon-containing material to produce an original synthesis gas stream containing carbon monoxide, carbon dioxide, and hydrogen; separating carbon monoxide from carbon dioxide and hydrogen; and fermenting the nutrients To produce a bio-based alcohol stream; dehydrate a portion of the bio-based alcohol stream to produce bio-based olefins; oxidize the bio-based olefins with an oxygen stream to produce bio-based epoxides; and carbonylate the bio-based epoxides with carbon monoxide To produce bio-based carbonylation products, hydrogen flow and carbon dioxide flow.

在某些實施例中,該等方法產生氫化產物,諸如氨。在一些實施例中,藉由使含碳源氣化或甲烷重組而產生合成氣。在一些實施例中,環氧化物在存在合成氣及羰基化催化劑的情況下經羰基化。在一些實施例中,環氧化物在存在合成氣及羰基化催化劑的情況下經羰基化。在一些實施例中,環氧化物為環氧乙烷。在一些實施例中,羰基化產物包含β內酯(諸如β-丙內酯)或環酐(諸如丁二酸酐)或其任何組合。在一些實施例中,氮氣在存在氨化催化劑的情況下與氫富集合成氣組合。在一些實施例中,二氧化碳係藉由養分醱酵、烯烴氧化產生,藉由烯烴氧化產生,以合成氣提供或其任何組合。In certain embodiments, these methods produce hydrogenated products, such as ammonia. In some embodiments, syngas is produced by gasifying a carbon-containing source or recombining methane. In some embodiments, the epoxide is carbonylated in the presence of syngas and a carbonylation catalyst. In some embodiments, the epoxide is carbonylated in the presence of syngas and a carbonylation catalyst. In some embodiments, the epoxide is ethylene oxide. In some embodiments, the carbonylation product comprises beta lactone (such as beta-propiolactone) or cyclic anhydride (such as succinic anhydride) or any combination thereof. In some embodiments, nitrogen gas is combined with hydrogen-rich gas in the presence of an amination catalyst. In some embodiments, carbon dioxide is produced by nutrient fermentation, olefin oxidation, produced by olefin oxidation, supplied as syngas, or any combination thereof.

在一些實施例中,氫化產物進一步與二氧化碳組合以產生脲。在一些實施例中,脲產率為至少約65%。在一些實施例中,氫化產物與二氧化碳之組合進一步產生胺基甲酸銨。在一些實施例中,環氧化物羰基化產物進一步與甘油組合以形成多元醇共聚物。在一些實施例中,甘油源自植物油轉酯化。在一些實施例中,環氧化物源自使烯烴氧化。在一些實施例中,烯烴源自使醇脫水。在一些實施例中,醇源自使養分醱酵。In some embodiments, the hydrogenated product is further combined with carbon dioxide to produce urea. In some embodiments, the urea yield is at least about 65%. In some embodiments, the combination of the hydrogenation product and carbon dioxide further produces ammonium carbamate. In some embodiments, the epoxide carbonylation product is further combined with glycerin to form a polyol copolymer. In some embodiments, glycerin is derived from transesterification of vegetable oils. In some embodiments, the epoxide is derived from the oxidation of olefins. In some embodiments, the olefin is derived from dehydrating the alcohol. In some embodiments, the alcohol is derived from fermenting nutrients.

在其他態樣中,提供一種產生生物基氫化產物之方法,其包含:在存在合成氣的情況下使環氧化物羰基化以產生羰基化產物及氫富集合成氣,其中合成氣包含氫及一氧化碳;且將甘油與羰基化產物組合以產生共聚物。In other aspects, a method of producing a bio-based hydrogenation product is provided, which includes: carbonylating an epoxide in the presence of syngas to produce a carbonylation product and hydrogen-enriched synthesis gas, wherein the syngas contains hydrogen and Carbon monoxide; and combining glycerol with the carbonylation product to produce a copolymer.

在一些實施例中,共聚物包含多元醇。在一些實施例中,羰基化產物包含β-丙內酯、聚丙內酯、丁二酸酐、多元醇或其任何組合。在一些實施例中,甘油源自植物油轉酯化。在一些實施例中,植物油為植物油(vegetable oil),諸如玉米油。在一些實施例中,環氧化物為環氧乙烷。在一些實施例中,在存在催化劑、鏈轉移劑或前述之任一混合物的情況下組合甘油及羰基化產物。In some embodiments, the copolymer includes a polyol. In some embodiments, the carbonylation product comprises β-propiolactone, polypropiolactone, succinic anhydride, polyol, or any combination thereof. In some embodiments, glycerin is derived from transesterification of vegetable oils. In some embodiments, the vegetable oil is vegetable oil, such as corn oil. In some embodiments, the epoxide is ethylene oxide. In some embodiments, the glycerol and carbonylation products are combined in the presence of a catalyst, chain transfer agent, or any mixture of the foregoing.

在一些實施例中,藉由含碳源氣化或甲烷重組而產生合成氣。在一些實施例中,環氧化物源自養分醱酵。在一些實施例中,氫富集合成氣進一步與烯烴及一氧化碳組合以產生醛產物。在一些實施例中,氫富集合成氣進一步與氮氣組合以產生氨。在一些實施例中,氨進一步與二氧化碳組合以產生脲。In some embodiments, synthesis gas is produced by gasification of a carbon-containing source or reorganization of methane. In some embodiments, the epoxide is derived from nutrient fermentation. In some embodiments, the hydrogen-enriched synthesis gas is further combined with olefins and carbon monoxide to produce aldehyde products. In some embodiments, the hydrogen-rich gas is further combined with nitrogen to produce ammonia. In some embodiments, ammonia is further combined with carbon dioxide to produce urea.

在其他態樣中,提供一種方法,其包含:使養分醱酵以產生醇;使醇水合以產生烯烴;藉由氧氣使烯烴氧化以產生環氧化物;以及藉由合成氣使環氧化物羰基化以產生羰基化產物及氫富集合成氣,其中合成氣包含氫及一氧化碳。In other aspects, a method is provided that includes: fermenting nutrients to produce alcohol; hydrating the alcohol to produce olefin; oxidizing the olefin with oxygen to produce an epoxide; and synthesizing the epoxide carbonyl To produce carbonylation products and hydrogen-enriched synthesis gas, where the synthesis gas contains hydrogen and carbon monoxide.

在一些實施例中,養分包含植物基糖、碳水化合物、多醣、蛋白質複合物、蛋白質水解產物或前述之混合物。在一些實施例中,氧源自空氣分離。在一些實施例中,羰基化產物包含β-丙內酯、聚丙內酯,或多元醇或其任何組合。在一些實施例中,藉由含碳源氣化或甲烷重組而產生合成氣。在一些實施例中,羰基化產物進一步與甘油組合以產生共聚物。在一些實施例中,甘油源自植物油轉酯化。In some embodiments, the nutrients comprise plant-based sugars, carbohydrates, polysaccharides, protein complexes, protein hydrolysates, or mixtures of the foregoing. In some embodiments, oxygen is derived from air separation. In some embodiments, the carbonylation product comprises β-propiolactone, polypropiolactone, or a polyol or any combination thereof. In some embodiments, synthesis gas is produced by gasification of a carbon-containing source or reorganization of methane. In some embodiments, the carbonylation product is further combined with glycerol to produce a copolymer. In some embodiments, glycerin is derived from transesterification of vegetable oils.

在一些實施例中,氫富集合成氣與氮氣組合以產生氨。在一些實施例中,氮氣源自空氣分離。在一些實施例中,氨進一步與二氧化碳組合以產生脲。在一些實施例中,氫富集氣體用於氫燃料電池中之能量產生。在一些實施例中,將氫富集氣體饋入至費托(Fischer Tropsch)反應器中以產生產物。在一些實施例中,將氫富集氣體饋入至甲醇合成反應器中以產生甲醇。在一些實施例中,甲醇經進一步處理以產生甲醇衍生產物,諸如二甲醚或烯烴。在一些實施例中,氫富集合成氣進一步與烯烴及一氧化碳組合以產生醛產物。在一些實施例中,氫富集合成氣再次與環氧化物接觸以進一步富集合成氣並且產生第二氫富集合成氣。在一些實施例中,第二氫富集合成氣用於費托反應、氨合成、甲醇合成或氫燃料電池中。In some embodiments, the hydrogen-rich gas is combined with nitrogen to produce ammonia. In some embodiments, nitrogen is derived from air separation. In some embodiments, ammonia is further combined with carbon dioxide to produce urea. In some embodiments, hydrogen-enriched gas is used for energy generation in hydrogen fuel cells. In some embodiments, the hydrogen-rich gas is fed into a Fischer Tropsch reactor to produce products. In some embodiments, hydrogen-rich gas is fed into a methanol synthesis reactor to produce methanol. In some embodiments, methanol is further processed to produce methanol-derived products, such as dimethyl ether or olefins. In some embodiments, the hydrogen-enriched synthesis gas is further combined with olefins and carbon monoxide to produce aldehyde products. In some embodiments, the hydrogen-enriched forming gas is again contacted with the epoxide to further enrich the forming gas and produce a second hydrogen-enriched forming gas. In some embodiments, the second hydrogen-rich gas is used in Fischer-Tropsch reactions, ammonia synthesis, methanol synthesis, or hydrogen fuel cells.

在一些實施例中,醱酵方法產生醇及二氧化碳。在一些實施例中,二氧化碳經電解以產生氧氣及一氧化碳氣體。在一些實施例中,氧氣用於氧化烯烴。在一些實施例中,一氧化碳氣體用於使環氧化物羰基化。In some embodiments, the fermentation method produces alcohol and carbon dioxide. In some embodiments, carbon dioxide is electrolyzed to produce oxygen and carbon monoxide gas. In some embodiments, oxygen is used to oxidize olefins. In some embodiments, carbon monoxide gas is used to carbonylate the epoxide.

相關申請案之交叉參考Cross-reference of related applications

本申請案主張2018年5月18日申請之美國臨時專利申請案第62/673,638號及2018年6月27日申請之第62/690,782號之優先權及權益,該等申請案各自以全文引用的方式併入本文中。This application claims the priority and rights of US Provisional Patent Application No. 62/673,638 filed on May 18, 2018 and No. 62/690,782 filed on June 27, 2018, each of which is cited in full Is incorporated into this article.

以下描述闡述例示性系統、方法、參數以及類似者。然而,應認識到此描述並不意欲限制本發明之範疇,而係替代地提供作為例示性實施例之描述。The following description sets forth exemplary systems, methods, parameters, and the like. However, it should be appreciated that this description is not intended to limit the scope of the invention, but is instead provided as a description of exemplary embodiments.

本文提供用於產生生物基氫化產物之整合系統及方法。此等方法大體上可經由更高效碳利用而獲得更佳經濟情況,藉由減少廢棄物而提高化學品合成之環境佔據面積,減小某些生產設施之總體溫室氣體排放以及賦予化學品合成產物所需特性,諸如生物基內含物。用於化學品製造之整合系統及方法 Provided herein are integrated systems and methods for producing biobased hydrogenated products. These methods can generally achieve better economic conditions through more efficient carbon utilization, increase the environmental footprint of chemical synthesis by reducing waste, reduce the overall greenhouse gas emissions of certain production facilities and confer chemical synthesis products Desired characteristics, such as bio-based inclusions. Integrated system and method for chemical manufacturing

本發明係針對用於提供更節約碳及有成本效益的製造化學品產物之系統及方法。在一些實施例中,該等系統及方法在化學品合成中習知地整合經忽視之副產物、分子組分及/或中間物作為試劑以產生化學品產物。舉例而言,在一個態樣中,本文提供包括以下步驟之方法:將原材料轉化成分子組分,諸如氫氣、氧氣、氮氣、一氧化碳及二氧化碳,及將該等分子組分整合至化學品合成中以產生寶貴化學品。The present invention is directed to systems and methods for providing more carbon-saving and cost-effective manufacturing of chemical products. In some embodiments, these systems and methods conventionally integrate neglected by-products, molecular components, and/or intermediates as reagents in chemical synthesis to produce chemical products. For example, in one aspect, this article provides a method that includes the steps of converting raw materials into molecular components, such as hydrogen, oxygen, nitrogen, carbon monoxide, and carbon dioxide, and integrating these molecular components into chemical synthesis To produce valuable chemicals.

在某些實施例中,本發明之整合方法包含: a) 提供乙醇; b) 將至少一部分乙醇轉化為環氧乙烷; c) 提供包含氫、一氧化碳及二氧化碳之合成氣; d) 在存在合成氣及羰基化催化劑的情況下使至少一部分環氧乙烷羰基化以產生β-丙內酯、丁二酸酐及富集合成氣,其中富集合成氣包含氫及二氧化碳; e) 將至少一部分β-丙內酯轉化為丙烯酸; f) 視情況在存在一或多種交聯劑的情況下,使至少一部分丙烯酸聚合,以產生吸附性聚合物; g) 將至少一部分丙烯酸轉化為丙烯酸酯; h) 將至少一部分丁二酸酐轉化為四氫呋喃; i) 將至少一部分丁二酸酐轉化為1,4-丁二醇; j) 將至少一部分丁二酸酐轉化為丁二酸; k) 使至少一部分1,4-丁二醇及至少一部分丁二酸酐聚合以產生聚丁烯丁二酸鹽;提供植物油; l) 視情況在存在催化劑或鏈轉移劑的情況下,使植物油轉酯化以產生甘油; m) 將甘油與至少一部分β-丙內酯或一部分丁二酸酐組合以產生多元醇; n) 將至少一部分丁二酸轉化為丁二酸鹽; o) 將至少一部分丁二酸鹽轉化為二醯胺; p) 將至少一部分二醯胺轉化為二異氰酸酯; q) 將至少一部分β-丙內酯轉化為7-氧雜雙環[2.2.1]庚-5-烯-2-甲酸; r) 將至少一部分7-氧雜雙環[2.2.1]庚-5-烯-2-甲酸轉化為苯甲酸; s) 將至少一部分苯甲酸轉化為苯;將至少一部分苯轉化為苯乙烯; t) 提供氮氣: u) 將包含氫及二氧化碳之富集合成氣與氮氣組合以產生氨; v) 提供二氧化碳; w) 將二氧化碳與氨組合以產生脲; x) 將至少一部分β-丙內酯與至少一部分氨組合以產生β丙胺酸、N-(3-羥基-1-側氧基丙基)或3-羥基丙醯胺; y) 將至少一部分3-羥基丙醯胺轉化為丙烯腈或丙烯醯胺;使丙烯醯胺聚合以產生聚丙烯醯胺; z) 使丙烯腈聚合以產生聚丙烯腈; aa) 將至少一部分聚丙烯腈轉化為碳纖維; bb) 將至少一部分乙醇轉化為乙醛; cc) 將至少一部分乙醛轉化為丁醛醇; dd) 將至少一部分丁醛醇轉化為1,3-丁二醇; ee) 將至少一部分1,3-丁二醇轉化為丁二烯; ff) 將至少一部分丙烯腈、至少一部分丁二烯及至少一部分苯乙烯組合以產生丙烯腈丁二烯苯乙烯三元共聚物; gg) 將至少一部分丁二烯與至少一部分苯乙烯組合以產生苯乙烯丁二烯共聚物; hh) 使至少一部分丁二烯聚合以產生聚丁二烯; ii) 將至少一部分聚丁二烯與至少一部分苯乙烯組合以產生苯乙烯丁二烯嵌段共聚物; jj) 使生物質醱酵以提供乙醇; kk) 使含碳源氣化或甲烷重組以提供合成氣;以及 ll) 使空氣分離成氧及氮氣。In some embodiments, the integrated method of the present invention includes: a) Provide ethanol; b) Convert at least a part of ethanol to ethylene oxide; c) Provide syngas containing hydrogen, carbon monoxide and carbon dioxide; d) carbonylation of at least a portion of ethylene oxide in the presence of synthesis gas and a carbonylation catalyst to produce β-propiolactone, succinic anhydride and enriched synthesis gas, wherein the enriched synthesis gas contains hydrogen and carbon dioxide; e) Convert at least a part of β-propiolactone to acrylic acid; f) If necessary, in the presence of one or more crosslinking agents, polymerize at least a part of acrylic acid to produce an adsorbent polymer; g) convert at least a portion of acrylic acid to acrylate; h) converting at least a portion of succinic anhydride to tetrahydrofuran; i) converting at least a portion of succinic anhydride to 1,4-butanediol; j) converting at least a portion of succinic anhydride to succinic acid; k) polymerizing at least a portion of 1,4-butanediol and at least a portion of succinic anhydride to produce polybutene succinate; providing vegetable oil; l) Transesterification of vegetable oil to produce glycerol in the presence of catalysts or chain transfer agents as appropriate; m) combining glycerol with at least a portion of β-propiolactone or a portion of succinic anhydride to produce a polyol; n) Convert at least a part of succinic acid to succinate; o) converting at least a portion of the succinate to diamide; p) converting at least a portion of diamide to diisocyanate; q) converting at least a portion of β-propiolactone to 7-oxabicyclo[2.2.1]hept-5-ene-2-carboxylic acid; r) converting at least a portion of 7-oxabicyclo[2.2.1]hept-5-ene-2-carboxylic acid to benzoic acid; s) Convert at least a portion of benzoic acid to benzene; convert at least a portion of benzene to styrene; t) Provide nitrogen: u) Combine the enriched gas containing hydrogen and carbon dioxide with nitrogen to produce ammonia; v) provide carbon dioxide; w) Combining carbon dioxide with ammonia to produce urea; x) combining at least a portion of β-propiolactone with at least a portion of ammonia to produce β-alanine, N-(3-hydroxy-1-oxopropyl) or 3-hydroxypropionamide; y) converting at least a portion of 3-hydroxypropylamide to acrylonitrile or acrylamide; polymerizing acrylamide to produce polypropylene amide; z) Polymerizing acrylonitrile to produce polyacrylonitrile; aa) Convert at least a portion of polyacrylonitrile into carbon fiber; bb) convert at least a portion of ethanol to acetaldehyde; cc) convert at least a portion of acetaldehyde to butyraldehyde alcohol; dd) convert at least a part of butyraldehyde to 1,3-butanediol; ee) converting at least a portion of 1,3-butanediol to butadiene; ff) combining at least a portion of acrylonitrile, at least a portion of butadiene and at least a portion of styrene to produce an acrylonitrile butadiene styrene terpolymer; gg) combining at least a portion of butadiene with at least a portion of styrene to produce a styrene butadiene copolymer; hh) polymerizing at least a portion of butadiene to produce polybutadiene; ii) combining at least a portion of polybutadiene with at least a portion of styrene to produce a styrene butadiene block copolymer; jj) Fermentation of biomass to provide ethanol; kk) Gasification of carbon-containing sources or recombination of methane to provide syngas; and ll) Separate the air into oxygen and nitrogen.

應理解,在其他例示性實施例中,上文所描述之步驟a)-ll)中之一或多者在其他組態中可經省略或彼此組合,如同各組合經各別地列出時一樣。It should be understood that in other exemplary embodiments, one or more of the steps a)-ll) described above may be omitted or combined with each other in other configurations, as if each combination is listed separately same.

舉例而言,在一些變化形式中,提供一種整合方法,其包含: 將空氣分離成氧氣流及氮氣流; 使含碳材料氣化以產生包含一氧化碳、二氧化碳及氫氣之原始合成氣流; 使植物物質醱酵以產生生物基醇流; 使一部分生物基醇流還原以產生生物基烯烴; 藉由氧流使生物基烯烴氧化以產生生物基環氧化物;及 藉由原始合成氣流使生物基環氧化物羰基化以產生生物基羰基化產物、氫氣流及二氧化碳流。For example, in some variations, an integrated approach is provided, which includes: Separate air into oxygen and nitrogen flow; Gasification of carbonaceous materials to produce an original synthesis gas stream containing carbon monoxide, carbon dioxide and hydrogen; Fermentation of plant matter to produce bio-based alcohol flow; Reduce a portion of the bio-based alcohol stream to produce bio-based olefins; Oxidation of bio-based olefins by oxygen flow to produce bio-based epoxides; and The bio-based epoxide is carbonylated by the original synthesis gas stream to produce bio-based carbonylation products, hydrogen flow, and carbon dioxide flow.

在前述變化形式中,生物基羰基化產物可包含β內酯流及丁二酸酐流。在一個變化形式中,丁二酸酐流可經還原以產生四氫呋喃。在另一變化形式中,四氫呋喃可與一部分β內酯流反應以產生環己烯衍生物。在又一變化形式中,環己烯衍生物可用於產生生物基苯乙烯產物。在其他變化形式中,氮氣流可藉由氫氣流氫化以產生氨流。在一個變化形式中,氨流可與一部分β內酯流反應以產生3-羥基丙醯胺。在另一變化形式中,3-羥基丙醯胺經脫水以產生生物基丙烯腈產物。在其他變化形式中,生物基1,3-丁二烯產物係由生物基醇流產生。In the aforementioned variations, the bio-based carbonylation product may include a β-lactone stream and a succinic anhydride stream. In a variation, the succinic anhydride stream can be reduced to produce tetrahydrofuran. In another variation, tetrahydrofuran can react with a portion of the beta lactone stream to produce cyclohexene derivatives. In yet another variation, cyclohexene derivatives can be used to produce bio-based styrene products. In other variations, the nitrogen stream can be hydrogenated by a hydrogen stream to produce an ammonia stream. In a variation, the ammonia stream can react with a portion of the β-lactone stream to produce 3-hydroxypropionamide. In another variation, 3-hydroxypropionamide is dehydrated to produce a bio-based acrylonitrile product. In other variations, the bio-based 1,3-butadiene product is produced from a bio-based alcohol stream.

在某些實施例中,本發明之整合系統包含: a) β-丙內酯製造單元,其包含:羰基化催化劑源;溶劑源;一氧化碳源;環氧乙烷源;第一羰基化反應器,包含:至少一個入口,接收包含來自一氧化碳源之一氧化碳、來自環氧乙烷源之環氧乙烷、來自羰基化催化劑源之羰基化催化劑及來自溶劑源之溶劑的反應流;及出口,輸出包含β-丙內酯之β-丙內酯產物流; b) 丙烯酸製造單元,其包含:沸石源;聚合抑制劑源;丙烯酸反應器,包含:至少一個入口,接收來自羰基化反應器之至少一部分β-丙內酯、來自沸石源之沸石及來自聚合抑制劑源之聚合抑制劑,及出口,輸出包含丙烯酸之丙烯酸產物流;以及蒸餾塔,包含:入口,接收來自丙烯酸反應器之丙烯酸產物流且將丙烯酸與丙烯酸產物流分離;出口,輸出丙烯酸; c) 丙烯酸酯製造單元,其包含:沸石源;醇源;聚合抑制劑源;丙烯酸酯反應器,包含:至少一個入口,接收來自羰化反應器之至少一部分β-丙內酯、來自沸石源之沸石及來自聚合抑制劑源之聚合抑制劑、來自醇源之C1-8醇,及出口,輸出包含丙烯酸酯之丙烯酸酯產物流;以及蒸餾塔,包含:入口,接收來自丙烯酸酯反應器之丙烯酸酯產物流且將丙烯酸酯與丙烯酸酯產物流分離;出口,輸出丙烯酸酯; d) 吸收劑聚合物製造單元,其包含:聚合催化劑源;溶劑源;吸收劑聚合物反應器,包含:至少一個入口,接收來自羰基化反應器之至少一部分β-丙內酯、來自聚合催化劑源之聚合催化劑及來自溶劑源之溶劑;出口,輸出吸收劑聚合物流;以及蒸餾塔,包含:入口,接收來自吸收劑聚合物反應器之吸收劑聚合物流且將吸收劑聚合物與吸收劑聚合物產物流分離;出口,輸出吸收劑聚合物; e) 丁二酸酐製造單元,其包含:羰基化催化劑源;溶劑源;一氧化碳源;第二羰基化反應器,包含:至少一個入口,接收來自第一羰化反應器之至少一部分β-丙內酯、來自一氧化碳源之一氧化碳;來自羰基化催化劑源之羰基化催化劑及來自溶劑源之溶劑;出口,輸出包含丁二酸酐之丁二酸酐產物流;以及分離單元,包含:入口,接收來自丁二酸酐反應器之丁二酸酐流且將丁二酸酐與丁二酸酐流分離;出口,輸出丁二酸酐; f) 丁二酸製造單元,其包含:水源;加熱源;丁二酸反應器,包含:至少一個入口,接收來自丁二酸酐反應器之至少一部分丁二酸酐及來自水源之水;出口,輸出包含丁二酸之丁二酸產物流; g) 1,4-丁二醇製造單元,其包含:氫源;氫化催化劑源;溶劑源;1,4-丁二醇反應器,包含:至少一個入口,接收來自丁二酸酐反應器之至少一部分丁二酸酐、來自氫源之氫、來自氫催化劑源之氫化催化劑及來自溶劑源之溶劑;出口,輸出包含1,4-丁二醇之1,4-丁二醇產物流; h) 四氫呋喃製造單元,其包含:氫源;氫化催化劑源;溶劑源;四氫呋喃反應器,包含:至少一個入口,接收來自丁二酸酐反應器之至少一部分丁二酸酐、來自氫源之氫、來自氫化催化劑源之氫化催化劑及來自溶劑源之溶劑;出口,輸出包含四氫呋喃之四氫呋喃產物流; i) 聚丁烯丁二酸鹽製造單元,其包含:聚合催化劑源;溶劑源;聚丁烯丁二酸鹽反應器,包含:至少一個入口,接收來自丁二酸酐反應器之至少一部分丁二酸酐、來自1,4-丁二醇反應器之1,4-丁二醇、拉埃自聚合催化劑源之聚合催化劑及來自溶劑源之溶劑;出口,輸出包含聚丁烯丁二酸鹽之聚丁烯丁二酸鹽產物流; j) 多元醇製造單元,其包含:聚合催化劑源;溶劑源;甘油源;多元醇反應器,包含:至少一個入口,接收來自第一羰基化反應器之至少一部分β-丙內酯或來自丁二酸酐反應器之至少一部分丁二酸酐、來自甘油源之甘油、來自聚合催化劑源之聚合催化劑及來自溶劑源之溶劑;出口,輸出包含多元醇之多元醇產物流; k) 二醯胺製造單元,其包含:催化劑源;溶劑源;羥胺源;醇源;丁二酸鹽反應器,包含:至少一個入口,接收來自丁二酸反應器之至少一部分丁二酸、來自催化劑源之催化劑、來自醇源之醇及來自溶劑源之溶劑;出口,輸出包含丁二酸鹽之丁二酸鹽產物流;二醯胺反應器,包含:至少一個入口,接收來自丁二酸鹽反應器之至少一部分丁二酸鹽、來自羥胺源之羥胺及來自溶劑源之溶劑;出口,輸出包含二醯胺之二醯胺產物流; l) 二異氰酸酯製造單元,其包含:催化劑源;溶劑源;乙酸硬石膏源;熱源;二異氰酸酯反應器,包含:至少一個入口,接收來自二醯胺反應器之至少一部分二醯胺、來自催化劑源之催化劑、來自乙酸硬石膏源之乙酸硬石膏及來自溶劑源之溶劑;出口,輸出包含二異氰酸酯之二異氰酸酯產物流; m) 7-氧雜雙環[2.2.1]庚-5-烯-2-甲酸製造單元,其包含:催化劑源;溶劑源;呋喃源;7-氧雜雙環[2.2.1]庚-5-烯-2-甲酸反應器,包含:至少一個入口,接收來自二醯胺反應器之至少一部分β-丙內酯、來自催化劑源之催化劑、來自呋喃源之呋喃及來自溶劑源之溶劑;出口,輸出包含7-氧雜雙環[2.2.1]庚-5-烯-2-甲酸之7-氧雜雙環[2.2.1]庚-5-烯-2-甲酸產物流; n) 苯甲酸製造單元,其包含:氫化催化劑源;溶劑源;氫源;苯甲酸反應器,包含:至少一個入口,接收來自7-氧雜雙環[2.2.1]庚-5-烯-2-甲酸反應器之至少一部分7-氧雜雙環[2.2.1]庚-5-烯-2-甲酸、來自氫化催化劑源之氫化催化劑、來自氫源之氫及來自溶劑源之溶劑;出口,輸出包含苯甲酸之苯甲酸產物流; o) 苯製造單元,其包含:氫化催化劑源;溶劑源;氫源;苯反應器,包含:至少一個入口,接收來自苯甲酸反應器之至少一部分苯甲酸、來自氫化催化劑源之氫化催化劑、來自氫源之氫及來自溶劑源之溶劑;出口,輸出包含苯之苯產物流; p) 苯乙烯製造單元,其包含:催化劑源;溶劑源;乙烯源;苯乙烯反應器,包含:至少一個入口,接收來自苯反應器之至少一部分苯、來自催化劑源之催化劑、來自乙烯源之乙烯及來自溶劑源之溶劑;出口,輸出包含苯乙烯之苯乙烯產物流; q) 氨製造單元,其包含:催化劑源;氮氣源;氨反應器,包含:至少一個入口,接收來自第一或第二羰基化反應器之包含氫氣及二氧化碳之至少一部分富集合成氣、來自催化劑源之催化劑及來自氮氣源之氮氣;出口,輸出包含氨之氨產物流; r) 脲製造單元,其包含:催化劑源;二氧化碳氣體源;脲反應器,包含:至少一個入口,接收來自氨反應器之至少一部分氨、來自催化劑源之催化劑及來自二氧化碳氣體源之二氧化碳氣體;出口,輸出包含脲之脲產物流; s) 丙胺酸及衍生物製造單元,其包含:催化劑源;溶劑源;丙胺酸及衍生物反應器,包含:至少一個入口,接收來自氨反應器之至少一部分氨、來自第一羰基化反應器之至少一部分β-丙內酯、來自催化劑源之催化劑及來自溶劑源之溶劑;出口,輸出包含β丙胺酸、N-(3-羥基-1-側氧基丙基)或3-羥基丙醯胺之丙胺酸產物流;分離單元,包含:入口,接收來自丙胺酸及衍生物反應器之丙胺酸產物流且將3-羥基丙醯胺與丙胺酸產物流分離;出口,輸出3-羥基丙醯胺; t) 丙烯腈及丙烯醯胺製造單元,其包含:溶劑源;脫水劑源;丙烯腈及丙烯醯胺反應器,包含:至少一個入口,接收來自丙胺酸及衍生物製造單元之分離單元的至少一部分3-羥基丙醯胺、來自脫水劑源之脫水劑及來自溶劑源之溶劑;出口,輸出包含丙烯腈及丙烯醯胺之丙烯腈及丙烯醯胺產物流;分離單元,包含:入口,接收來自丙烯腈及丙烯醯胺反應器之丙烯腈及丙烯醯胺產物流且將丙烯腈及丙烯醯胺與丙烯腈及丙烯醯胺產物流分離;出口,輸出丙烯腈;另一出口,輸出丙烯醯胺; u) 聚丙烯醯胺製造單元,其包含:溶劑源;聚合催化劑源;聚丙烯醯胺反應器,包含:至少一個入口,接收來自丙烯腈及丙烯醯胺製造單元之分離單元的至少一部分丙烯醯胺、來自聚合催化劑源之聚合催化劑及來自溶劑源之溶劑;出口,輸出包含聚丙烯醯胺之聚丙烯醯胺產物流; v) 聚丙烯腈製造單元,其包含:溶劑源;聚合催化劑源;聚丙烯腈反應器,包含:至少一個入口,接收來自丙烯腈及丙烯醯胺製造單元之分離單元的至少一部分丙烯腈、來自聚合催化劑源之聚合催化劑及來自溶劑源之溶劑;出口,輸出包含聚丙烯腈之聚丙烯腈產物流; w) 碳纖維製造單元,其包含:溶劑源;碳纖維反應器,包含:至少一個入口,接收來自聚丙烯腈反應器之至少一部分聚丙烯腈及來自溶劑源之溶劑;出口,輸出包含碳纖維之碳纖維產物流; x) 乙醛製造單元,其包含:氧化催化劑源;溶劑源;乙醇源;氧源;乙醛反應器,包含:至少一個入口,接收來自乙醇源之乙醇、來自氧化催化劑源之氧化催化劑、來自氧源之氧及來自溶劑源之溶劑;出口,輸出包含乙醛之乙醛產物流; y) 丁醛醇製造單元,其包含:溶劑源;丁醛醇反應器,其包含:至少一個入口,接收來自乙醛反應器之至少一部分乙醛及來自溶劑源之溶劑;出口,輸出包含丁醛醇之丁醛醇產物流; z) 1,3-丁二醇製造單元,其包含:氫化催化劑源;溶劑源;氫源;1,3-丁二醇反應器,其包含:至少一個入口,接收來自丁醛醇反應器之至少一部分丁醛醇、來自氫化催化劑源之氫化催化劑、來自氫源之氫及來自溶劑源之溶劑;出口,輸出包含1,3-丁二醇之1,3-丁二醇產物流; aa) 丁二烯製造單元,其包含:溶劑源;催化劑源;丁二烯反應器,包含:至少一個入口,接收來自乙醛反應器之至少一部分1,3-丁二醇、來自催化劑源之催化劑及來自溶劑源之溶劑;出口,輸出包含丁二烯之丁二烯產物流; bb) 聚丁二烯製造單元,其包含:溶劑源;聚合催化劑源;聚丁二烯反應器,包含:至少一個入口,接收來自丁二烯反應器之至少一部分丁二烯、來自聚合催化劑源之聚合催化劑及來自溶劑源之溶劑;出口,輸出包含聚丁二烯之聚丁二烯產物流; cc) 丙烯腈丁二烯苯乙烯三元共聚物製造單元,其包含:溶劑源;聚合催化劑源;丙烯腈丁二烯苯乙烯三元共聚物,包含:至少一個入口,接收來自丙烯腈及丙烯醯胺製造單元之分離單元的至少一部分丙烯腈、來自苯乙烯反應器之至少一部分苯乙烯、來自丁二烯反應器之至少一部分丁二烯、來自聚合催化劑源之聚合催化劑及來自溶劑源之溶劑;出口,輸出包含丙烯腈丁二烯苯乙烯三元共聚物之丙烯腈丁二烯苯乙烯三元共聚物產物流; dd) 苯乙烯丁二烯共聚物製造單元,其包含:溶劑源;聚合催化劑源;苯乙烯丁二烯共聚物反應器,包含:至少一個入口,接收來自丁二烯反應器之至少一部分丁二烯及來自苯乙烯反應器之至少一部分苯乙烯、來自聚合催化劑源之聚合催化劑及來自溶劑源之溶劑;出口,輸出包含苯乙烯丁二烯共聚物之苯乙烯丁二烯共聚物產物流; ee) 苯乙烯丁二烯嵌段共聚物製造單元,其包含:溶劑源;聚合催化劑源;苯乙烯丁二烯嵌段共聚物反應器,其包含:至少一個入口,接收來自聚丁二烯反應器之至少一部分聚丁二烯及來自苯乙烯反應器之至少一部分苯乙烯、來自聚合催化劑源之聚合催化劑及來自溶劑源之溶劑;出口,輸出包含苯乙烯丁二烯嵌段共聚物之苯乙烯丁二烯嵌段共聚物產物流。In some embodiments, the integrated system of the present invention includes: a) β-propiolactone production unit, including: a carbonylation catalyst source; a solvent source; a carbon monoxide source; an ethylene oxide source; a first carbonylation reactor, including: at least one inlet, receiving carbon monoxide from a carbon monoxide source , A reaction stream of ethylene oxide from an ethylene oxide source, a carbonylation catalyst from a carbonylation catalyst source, and a solvent from a solvent source; and an outlet, which outputs a β-propiolactone product stream containing β-propiolactone ; b) Acrylic acid manufacturing unit, including: zeolite source; polymerization inhibitor source; acrylic acid reactor, including: at least one inlet, receiving at least a portion of β-propiolactone from carbonylation reactor, zeolite from zeolite source, and polymerization The polymerization inhibitor of the inhibitor source, and the outlet, output the acrylic acid product stream containing acrylic acid; and the distillation column, including: an inlet, which receives the acrylic acid product stream from the acrylic acid reactor and separates the acrylic acid from the acrylic acid product stream; the outlet, outputs acrylic acid; c) Acrylate production unit, which contains: zeolite source; alcohol source; polymerization inhibitor source; acrylate reactor, including: at least one inlet, receiving at least a part of β-propiolactone from carbonylation reactor, from zeolite source Zeolite and polymerization inhibitor from the source of polymerization inhibitor, C1-8 alcohol from alcohol source, and outlet, output acrylate product stream containing acrylate; and distillation column, including: inlet, receiving from acrylate reactor Acrylate product stream and separate the acrylate product stream from the acrylate product; outlet, output acrylate; d) Absorbent polymer manufacturing unit, comprising: a polymerization catalyst source; a solvent source; an absorbent polymer reactor, comprising: at least one inlet, receiving at least a portion of β-propiolactone from the carbonylation reactor, from the polymerization catalyst Polymerization catalyst of the source and solvent from the solvent source; outlet, output absorbent polymer stream; and distillation column, comprising: an inlet, which receives the absorbent polymer stream from the absorbent polymer reactor and polymerizes the absorbent polymer with the absorbent Product stream separation; outlet, output absorbent polymer; e) Succinic anhydride manufacturing unit, comprising: a carbonylation catalyst source; a solvent source; a carbon monoxide source; a second carbonylation reactor, including: at least one inlet, receiving at least a portion of β-propane from the first carbonylation reactor Ester, carbon monoxide from one of the carbon monoxide sources; carbonylation catalyst from the carbonylation catalyst source and solvent from the solvent source; outlet, output of succinic anhydride product stream containing succinic anhydride; and separation unit, including: inlet, receiving from succinic acid The succinic anhydride stream of the anhydride reactor and separating the succinic anhydride and the succinic anhydride stream; outlet, output succinic anhydride; f) Succinic acid manufacturing unit, including: water source; heating source; succinic acid reactor, including: at least one inlet, receiving at least a part of succinic anhydride from the succinic anhydride reactor and water from the water source; outlet, output Succinic acid product stream containing succinic acid; g) 1,4-butanediol manufacturing unit, comprising: hydrogen source; hydrogenation catalyst source; solvent source; 1,4-butanediol reactor, comprising: at least one inlet, receiving at least one from the succinic anhydride reactor Part of succinic anhydride, hydrogen from hydrogen source, hydrogenation catalyst from hydrogen catalyst source, and solvent from solvent source; outlet, output of 1,4-butanediol product stream containing 1,4-butanediol; h) Tetrahydrofuran manufacturing unit, including: hydrogen source; hydrogenation catalyst source; solvent source; tetrahydrofuran reactor, including: at least one inlet, receiving at least a portion of succinic anhydride from the succinic anhydride reactor, hydrogen from the hydrogen source, from The hydrogenation catalyst from the hydrogenation catalyst source and the solvent from the solvent source; at the outlet, a tetrahydrofuran product stream containing tetrahydrofuran is output; i) Polybutene succinate manufacturing unit, comprising: a polymerization catalyst source; a solvent source; a polybutene succinate reactor, comprising: at least one inlet, receiving at least a portion of succinic acid from the succinic anhydride reactor Anhydride, 1,4-butanediol from 1,4-butanediol reactor, polymerization catalyst from Lae self-polymerization catalyst source, and solvent from solvent source; outlet, output of polybutene succinate containing polybutene Butene succinate product stream; j) Polyol production unit, comprising: a polymerization catalyst source; a solvent source; a glycerin source; a polyol reactor, comprising: at least one inlet, receiving at least a portion of β-propiolactone from the first carbonylation reactor or from butane At least a portion of the succinic anhydride in the dianhydride reactor, glycerin from the glycerin source, the polymerization catalyst from the polymerization catalyst source, and the solvent from the solvent source; the outlet, the polyol product stream containing the polyol is output; k) Diamide production unit, comprising: catalyst source; solvent source; hydroxylamine source; alcohol source; succinate reactor, including: at least one inlet, receiving at least a part of succinic acid from the succinic acid reactor, Catalyst from catalyst source, alcohol from alcohol source and solvent from solvent source; outlet, output succinate product stream containing succinate; diamide reactor, including: at least one inlet, receiving from succinate At least a part of the succinate, hydroxylamine from the hydroxylamine source and the solvent from the solvent source of the acid salt reactor; the outlet, the output of diamide product stream containing diamide; l) A diisocyanate manufacturing unit, comprising: a catalyst source; a solvent source; an anhydrite acetate source; a heat source; a diisocyanate reactor, including: at least one inlet, receiving at least a portion of the diamide and the catalyst from the diamide reactor Source catalyst, anhydrite acetate from anhydrite acetate source and solvent from solvent source; outlet, output diisocyanate product stream containing diisocyanate; m) 7-oxabicyclo[2.2.1]hept-5-ene-2-carboxylic acid manufacturing unit, comprising: catalyst source; solvent source; furan source; 7-oxabicyclo[2.2.1]hept-5- Enene-2-carboxylic acid reactor, comprising: at least one inlet, receiving at least a portion of β-propiolactone from the diamide reactor, the catalyst from the catalyst source, the furan from the furan source, and the solvent from the solvent source; the outlet, The output contains 7-oxabicyclo[2.2.1]hept-5-ene-2-carboxylic acid 7-oxabicyclo[2.2.1]hept-5-ene-2-carboxylic acid product stream; n) Benzoic acid manufacturing unit, including: hydrogenation catalyst source; solvent source; hydrogen source; benzoic acid reactor, including: at least one inlet, receiving 7-oxabicyclo[2.2.1]hept-5-ene-2 -At least a part of 7-oxabicyclo[2.2.1]hept-5-ene-2-carboxylic acid, hydrogenation catalyst from hydrogenation catalyst source, hydrogen from hydrogen source and solvent from solvent source for formic acid reactor; export, output Benzoic acid product stream containing benzoic acid; o) Benzene manufacturing unit, including: hydrogenation catalyst source; solvent source; hydrogen source; benzene reactor, including: at least one inlet, receiving at least a portion of benzoic acid from the benzoic acid reactor, hydrogenation catalyst from the hydrogenation catalyst source, from Hydrogen from the hydrogen source and the solvent from the solvent source; outlet, output benzene product stream containing benzene; p) Styrene manufacturing unit, including: catalyst source; solvent source; ethylene source; styrene reactor, including: at least one inlet, receiving at least part of benzene from benzene reactor, catalyst from catalyst source, and ethylene source Ethylene and solvent from solvent source; export, export styrene product stream containing styrene; q) Ammonia production unit, including: a catalyst source; a nitrogen source; an ammonia reactor, including: at least one inlet, receiving at least a portion of the enriched composition gas containing hydrogen and carbon dioxide from the first or second carbonylation reactor, from Catalyst from catalyst source and nitrogen from nitrogen source; outlet, output ammonia product stream containing ammonia; r) Urea manufacturing unit, including: a catalyst source; a carbon dioxide gas source; a urea reactor, including: at least one inlet, receiving at least a portion of ammonia from an ammonia reactor, a catalyst from a catalyst source, and carbon dioxide gas from a carbon dioxide gas source; Outlet, output urea product stream containing urea; s) Alanine and derivative manufacturing unit, including: catalyst source; solvent source; alanine and derivative reactor, including: at least one inlet, receiving at least a part of ammonia from the ammonia reactor, from the first carbonylation reactor At least a part of β-propiolactone, catalyst from the catalyst source and solvent from the solvent source; the outlet, the output contains β-alanine, N-(3-hydroxy-1-oxopropyl) or 3-hydroxypropane Amine's alanine product stream; separation unit, including: inlet, receiving the alanine product stream from the alanine and derivative reactor and separating 3-hydroxypropionamide from the alanine product stream; outlet, output 3-hydroxypropyl Amide t) Acrylonitrile and acrylamide production units, which include: a solvent source; a dehydrating agent source; acrylonitrile and acrylamide reactors, including: at least one inlet that receives at least at least one separation unit from the alanine and derivative production unit Part of 3-hydroxypropionamide, dehydrating agent from dehydrating agent source, and solvent from solvent source; outlet, output of acrylonitrile and acrylamide product stream containing acrylonitrile and acrylamide; separation unit, including: inlet, receiving Acrylonitrile and acrylamide product streams from acrylonitrile and acrylamide reactors and separating acrylonitrile and acrylamide from acrylonitrile and acrylamide product streams; outlet, output acrylonitrile; another outlet, output acrylonitrile amine; u) Polypropylene amide manufacturing unit, including: a solvent source; a polymerization catalyst source; a polypropylene amide reactor, including: at least one inlet, receiving at least a portion of the propylene amide from the separation unit of the acrylonitrile and acrylic amide manufacturing unit Amine, polymerization catalyst from the polymerization catalyst source and solvent from the solvent source; export, export polypropylene amide product stream containing polypropylene amide; v) A polyacrylonitrile manufacturing unit, comprising: a solvent source; a polymerization catalyst source; a polyacrylonitrile reactor, comprising: at least one inlet, receiving at least a part of acrylonitrile from the separation unit of the acrylonitrile and acrylamide manufacturing unit, from The polymerization catalyst of the polymerization catalyst source and the solvent from the solvent source; the outlet, output polyacrylonitrile product stream containing polyacrylonitrile; w) Carbon fiber manufacturing unit, including: solvent source; carbon fiber reactor, including: at least one inlet, receiving at least a portion of polyacrylonitrile from the polyacrylonitrile reactor and solvent from the solvent source; outlet, output of carbon fiber containing carbon fiber Logistics x) An acetaldehyde manufacturing unit, including: an oxidation catalyst source; a solvent source; an ethanol source; an oxygen source; an acetaldehyde reactor, including: at least one inlet, receiving ethanol from the ethanol source, oxidation catalyst from the oxidation catalyst source, from Oxygen from the oxygen source and solvent from the solvent source; outlet, output acetaldehyde product stream containing acetaldehyde; y) Butyraldehyde alcohol production unit, which contains: a solvent source; butyraldehyde alcohol reactor, which contains: at least one inlet, which receives at least a part of acetaldehyde from the acetaldehyde reactor and the solvent from the solvent source; and the outlet, which contains butane Aldol-butanol product stream; z) 1,3-butanediol manufacturing unit, which comprises: a hydrogenation catalyst source; a solvent source; a hydrogen source; a 1,3-butanediol reactor, which comprises: at least one inlet, which receives the butanol alcohol reactor At least a portion of butyraldehyde alcohol, the hydrogenation catalyst from the hydrogenation catalyst source, the hydrogen from the hydrogen source, and the solvent from the solvent source; at the outlet, a 1,3-butanediol product stream containing 1,3-butanediol is output; aa) Butadiene manufacturing unit, comprising: a solvent source; a catalyst source; a butadiene reactor, comprising: at least one inlet, receiving at least a portion of 1,3-butanediol from the acetaldehyde reactor, from the catalyst source Catalyst and solvent from solvent source; outlet, butadiene product stream containing butadiene; bb) Polybutadiene manufacturing unit, comprising: a solvent source; a polymerization catalyst source; a polybutadiene reactor, comprising: at least one inlet, receiving at least a portion of butadiene from the butadiene reactor, from a polymerization catalyst source The polymerization catalyst and the solvent from the solvent source; export, output polybutadiene product stream containing polybutadiene; cc) Acrylonitrile butadiene styrene terpolymer manufacturing unit, including: solvent source; polymerization catalyst source; acrylonitrile butadiene styrene terpolymer, including: at least one inlet, receiving from acrylonitrile and propylene At least a part of acrylonitrile of the separation unit of the amide production unit, at least a part of styrene from the styrene reactor, at least a part of butadiene from the butadiene reactor, a polymerization catalyst from the polymerization catalyst source, and a solvent from the solvent source ; Export, output acrylonitrile butadiene styrene terpolymer product stream containing acrylonitrile butadiene styrene terpolymer; dd) Styrene butadiene copolymer manufacturing unit, comprising: a solvent source; a polymerization catalyst source; a styrene butadiene copolymer reactor, comprising: at least one inlet, receiving at least a portion of butadiene from the butadiene reactor Olefin and at least a portion of styrene from the styrene reactor, polymerization catalyst from the polymerization catalyst source and solvent from the solvent source; the outlet, the output styrene butadiene copolymer product stream containing styrene butadiene copolymer; ee) Styrene butadiene block copolymer manufacturing unit, which comprises: a solvent source; a polymerization catalyst source; a styrene butadiene block copolymer reactor, which comprises: at least one inlet to receive the reaction from the polybutadiene At least a part of the polybutadiene and at least a part of the styrene from the styrene reactor, the polymerization catalyst from the polymerization catalyst source and the solvent from the solvent source; export, export styrene containing styrene butadiene block copolymer Butadiene block copolymer product stream.

應理解,在其他例示性實施例中,上文所描述之製造單元a)-ee)中之一或多者可在其他組態中經省略或彼此組合,如同各組合經各別列出時一樣。舉例而言,圖12 描繪製造多種化學品產物之整合系統之一個例示性組態。It should be understood that in other exemplary embodiments, one or more of the manufacturing units a)-ee) described above may be omitted or combined with each other in other configurations as if each combination was listed separately same. For example, FIG. 12 depicts an exemplary configuration of an integrated system for manufacturing multiple chemical products.

在一些實施例中,系統包含至少一個操作單元,其中各操作單元進一步包含至少一個反應器。在本發明之系統中,各反應器大體上包含經組態為殼體之壁。各反應器之大小、形狀及組態可取決於諸多變量,諸如將添加何種材料或試劑,將移除何種產物或中間物及將執行反應或其他動作之速率。因此,本發明反應器侷限性不意欲為限制性的,其中使用替代性組態例如以優化條件、方法、產物特性及/或產物產率。在較佳實施例中,系統包含:醱酵單元、氣化單元、空氣分離單元及羰基化單元。In some embodiments, the system includes at least one operating unit, wherein each operating unit further includes at least one reactor. In the system of the present invention, each reactor generally includes a wall configured as a shell. The size, shape, and configuration of each reactor can depend on many variables, such as what materials or reagents will be added, what products or intermediates will be removed, and the rate at which reactions or other actions will be performed. Therefore, the reactor limitations of the present invention are not intended to be limiting, where alternative configurations are used, for example, to optimize conditions, methods, product characteristics, and/or product yields. In a preferred embodiment, the system includes: a fermentation unit, a gasification unit, an air separation unit, and a carbonylation unit.

在某些實施例中,醱酵單元包含經組態以藉由使養分醱酵而產生乙醇的反應器。醱酵單元反應器包含養分入口、醱酵反應區、加熱器、混合器及乙醇出口。養分入口經設定大小並塑形使得養分進料流經引入至醱酵單元反應器中。醱酵反應區經設定大小並塑形以接收養分進料流使得養分進料流在醱酵反應期間藉由混合器混合且藉由加熱器加熱以產生乙醇。乙醇出口經設定大小並塑形使得乙醇自反應器移除。In some embodiments, the fermentation unit includes a reactor configured to produce ethanol by fermenting nutrients. The fermentation unit reactor includes a nutrient inlet, a fermentation reaction zone, a heater, a mixer and an ethanol outlet. The nutrient inlet is sized and shaped so that the nutrient feed flows into the reactor of the fermentation unit. The fermentation reaction zone is sized and shaped to receive the nutrient feed stream so that the nutrient feed stream is mixed by the mixer and heated by the heater during the fermentation reaction to produce ethanol. The ethanol outlet is sized and shaped so that ethanol is removed from the reactor.

在某些實施例中,醱酵單元反應器可包含研磨機,例如以將用於醱酵之植物物質與用於產生甘油之植物物質分離。在包括包含研磨機之醱酵單元反應器之一些實施例中,醱酵反應器可進一步包含過濾器,例如以進一步將用於醱酵之植物物質與用於產生甘油之植物物質分離。在包括包含研磨機之醱酵單元反應器之一些實施例中,醱酵反應器可進一步包含植物物質出口,例如以自醱酵單元反應器中移除用於產生甘油之植物物質。在某些較佳實施例中,醱酵單元反應器經組態以將乙醇與其他醱酵反應組分(諸如水)分離,例如包括蒸餾區。在一些實施例中,包括蒸餾區之醱酵單元反應器可包含經組態以便於例如將水與乙醇相分離的一或多個蒸餾塔盤。在某些實施例中,醱酵單元反應器之乙醇出口與反應器連通,該反應器經組態以進行脫水及氧化以產生環氧化物。在一些實施例中,醱酵單元反應器之蒸餾區可在與反應器連通之乙醇出口中封端,該反應器經組態以對醇進行脫水且氧化以產生環氧化物。In some embodiments, the fermentation unit reactor may include a grinder, for example, to separate plant material used for fermentation and plant material used to produce glycerin. In some embodiments including a fermentation unit reactor including a grinder, the fermentation reactor may further include a filter, for example, to further separate the plant material used for the fermentation from the plant material used to produce glycerin. In some embodiments including a fermentation unit reactor including a grinder, the fermentation unit reactor may further include a plant material outlet, for example, to remove plant material used to produce glycerin from the fermentation unit reactor. In certain preferred embodiments, the fermentation unit reactor is configured to separate ethanol from other fermentation reaction components, such as water, for example, including a distillation zone. In some embodiments, the fermentation unit reactor including the distillation zone may include one or more distillation trays configured to facilitate, for example, the separation of water from ethanol. In certain embodiments, the ethanol outlet of the fermentation unit reactor is in communication with the reactor, which is configured for dehydration and oxidation to produce epoxides. In some embodiments, the distillation zone of the fermentation unit reactor may be terminated in an ethanol outlet communicating with the reactor, the reactor being configured to dehydrate and oxidize the alcohol to produce epoxides.

在某些實施例中,氣化單元包含經組態以產生合成氣之反應器,該合成氣包含一氧化碳、二氧化碳及氫氣。醱酵單元反應器包含含碳源入口、氧氣入口、氣化區、加熱器及合成氣出口。含碳源入口經設定大小並塑形使得含碳源進料流經引入至氣化單元反應器中。氣化區經設定大小並塑形以接收含碳源進料流,使得含碳源進料流與來自氧氣入口之氧氣混合且藉由加熱器加熱以產生合成氣。合成氣出口經設定大小並塑形使得自反應器移除包含一氧化碳、二氧化碳及氫氣之合成氣。在某些實施例中,合成氣出口與反應器連通,該反應器經組態以藉由氫氣來氫化氮氣以產生氨。In some embodiments, the gasification unit includes a reactor configured to generate syngas, the syngas including carbon monoxide, carbon dioxide, and hydrogen. The fermentation unit reactor includes a carbon source inlet, an oxygen inlet, a gasification zone, a heater, and a synthesis gas outlet. The carbon-containing source inlet is sized and shaped so that the carbon-containing source feed stream is introduced into the gasification unit reactor. The gasification zone is sized and shaped to receive the carbon-containing source feed stream so that the carbon-containing source feed stream is mixed with oxygen from the oxygen inlet and heated by a heater to produce syngas. The syngas outlet is sized and shaped to remove syngas containing carbon monoxide, carbon dioxide, and hydrogen from the reactor. In certain embodiments, the synthesis gas outlet is in communication with a reactor configured to hydrogenate nitrogen with hydrogen to produce ammonia.

在某些實施例中,空氣分離單元包含反應器,該反應器經組態以將空氣分離成至少氧氣流及氫氣流。空氣分離單元反應器包含空氣源入口、第一空氣分離區、第二空氣分離區、第一分子篩、第二分子篩、真空泵及至少一個氣體出口。空氣源入口經設定大小並塑形使得空氣源進料流經引入至空氣分離單元反應器之第一空氣分離區中。位於第一空氣分離區中之第一分子篩以親和力將第一目標氣體吸附至第一分子篩且空氣源進料流繼續至位於第二空氣分離區中之第二分子篩,其中第二分子篩以親和力將第二目標氣體吸附至第二分子篩。真空泵經由至少一個氣體出口而自第一分子篩抽取第一目標氣體且隨後真空泵用於經由至少一個氣體出口而自第二分子篩抽取第二目標氣體。在某些較佳實施例中,第一目標氣體及第二目標氣體分別為氮氣及氧氣或分別為氧氣及氮氣。在某些實施例中,至少一個氣體出口與反應器連通,該反應器經組態以對醇進行脫水且氧化以產生環氧化物。In certain embodiments, the air separation unit includes a reactor configured to separate air into at least an oxygen stream and a hydrogen stream. The air separation unit reactor includes an air source inlet, a first air separation zone, a second air separation zone, a first molecular sieve, a second molecular sieve, a vacuum pump, and at least one gas outlet. The air source inlet is sized and shaped so that the air source feed flow is introduced into the first air separation zone of the air separation unit reactor. The first molecular sieve in the first air separation zone adsorbs the first target gas to the first molecular sieve with affinity and the air source feed stream continues to the second molecular sieve in the second air separation zone, where the second molecular sieve will affinity The second target gas is adsorbed to the second molecular sieve. The vacuum pump extracts the first target gas from the first molecular sieve via at least one gas outlet and then the vacuum pump is used to extract the second target gas from the second molecular sieve via at least one gas outlet. In some preferred embodiments, the first target gas and the second target gas are nitrogen and oxygen, respectively, or oxygen and nitrogen, respectively. In certain embodiments, at least one gas outlet is in communication with a reactor configured to dehydrate and oxidize the alcohol to produce an epoxide.

在某些實施例中,羰基化單元包含經組態以利用環氧化物及一氧化碳產生至少一種羰基化產物,諸如β內酯、酸酐及/或聚內酯的反應器。空氣分離單元反應器包含環氧化物源入口、一氧化碳源入口、羰基化區、加熱器、混合器及羰基化產物出口。環氧化物源入口經設定大小並塑形使得環氧化物源進料流經引入至羰基化單元反應器中。一氧化碳源入口經設定大小並塑形使得一氧化碳源進料流經引入至羰基化單元反應器中。羰基化區經設定大小並塑形以接收一氧化碳源進料流、環氧化物源進料流及用於羰基化反應之羰基化催化劑。加熱器可加熱羰基化區之內含物以足以進行羰基化反應。混合器可混合羰基化區之內含物以足以進行羰基化反應。羰基化產物出口經設定大小並塑形使得自羰基化單元反應器移除至少一種羰基化產物。在某些較佳實施例中,羰基化單元反應器與氣化單元反應器連通以接收一氧化碳進料流。In certain embodiments, the carbonylation unit includes a reactor configured to utilize epoxide and carbon monoxide to produce at least one carbonylation product, such as beta lactone, anhydride, and/or polylactone. The air separation unit reactor includes an epoxide source inlet, a carbon monoxide source inlet, a carbonylation zone, a heater, a mixer, and a carbonylation product outlet. The epoxide source inlet is sized and shaped so that the epoxide source feed stream is introduced into the carbonylation unit reactor. The carbon monoxide source inlet is sized and shaped so that the carbon monoxide source feed stream is introduced into the carbonylation unit reactor. The carbonylation zone is sized and shaped to receive a carbon monoxide source feed stream, an epoxide source feed stream, and a carbonylation catalyst for the carbonylation reaction. The heater can heat the contents of the carbonylation zone enough to carry out the carbonylation reaction. The mixer can mix the contents of the carbonylation zone enough to carry out the carbonylation reaction. The carbonylation product outlet is sized and shaped so that at least one carbonylation product is removed from the carbonylation unit reactor. In certain preferred embodiments, the carbonylation unit reactor is in communication with the gasification unit reactor to receive the carbon monoxide feed stream.

用於產生氨之習知系統及方法通常需要將一氧化碳及二氧化碳與氫分離以產生氨。此通常係由於一氧化碳及二氧化碳使通常用於習知方法之催化劑去活化。相比之下,本文中之方法使用氫/二氧化碳富集合成氣以產生氨,此係由於其因缺乏一氧化碳而具有更少不利影響。對於包括分離(而非諸如經由昂貴膜來分離氫)之實施例,可例如經由使二氧化碳溶劑化之分離以移除二氧化碳以獲得更少不利影響。Conventional systems and methods for producing ammonia generally require the separation of carbon monoxide and carbon dioxide from hydrogen to produce ammonia. This is usually due to the deactivation of carbon monoxide and carbon dioxide that are commonly used in conventional methods. In contrast, the method in this article uses hydrogen/carbon dioxide enriched gas to produce ammonia, which has less adverse effects due to lack of carbon monoxide. For embodiments that include separation (rather than separation of hydrogen such as through expensive membranes), carbon dioxide can be removed, for example, by solvating carbon dioxide to obtain less adverse effects.

在一些實施例中,提供用於產生化學品產物之方法,其包含:使含碳材料氣化以產生合成氣;在存在羰基化催化劑的情況下藉由合成氣使環氧化物羰基化以產生β內酯及氫富集合成氣;以及在存在第二羰基化催化劑的情況下藉由二氧化碳富集合成氣使β內酯羰基化以產生丁二酸酐羰基化產物。在一些實施例中,可將空氣分離以產生氮氣進料流及/或氧進料流,其可經整合至該等方法中以產生羰基化產物及其衍生物,諸如氨及脲。在一些實施例中,可將原材料整合至本發明之方法中以產生具有羰基化產物及其衍生物之共聚物。In some embodiments, a method for producing a chemical product is provided, comprising: gasifying a carbonaceous material to produce syngas; carbonylating an epoxide with syngas in the presence of a carbonylation catalyst to produce β-lactone and hydrogen-enriched gas; and carbonylation of β-lactone by carbon dioxide-enriched gas in the presence of a second carbonylation catalyst to produce a succinic anhydride carbonylation product. In some embodiments, air may be separated to produce a nitrogen feed stream and/or an oxygen feed stream, which may be integrated into these processes to produce carbonylation products and their derivatives, such as ammonia and urea. In some embodiments, raw materials can be integrated into the method of the present invention to produce copolymers having carbonylation products and their derivatives.

參考 1 ,方法100 為產生包括氨、脲、單體及聚合物之化學品產物之例示性方法。在方法100 中,含碳源102 經歷氣化104 以產生合成氣106 。隨後,藉由合成氣106 使第一試劑116 羰基化122 產生羰基化產物132 及氫富集合成氣142 。氫富集合成氣142 與第二試劑之接觸產生合成產物162 。可將氫富集合成氣142 與源自空氣分離152 之氮氣組合以產生氨162 。氨162 可進一步與二氧化碳組合以產生脲172 。羰基化產物132 可與二醇、三醇或前述(元素182 )之混合物組合以形成非均相共聚物192 。在一些實施例中,上文所描述之第一試劑116 可由源自養分112 之醱酵114 之環氧化物製成。在一些實施例中,空氣分離152 產生氮流及氧流。在一些實施例中,氧流可用於養分112 之醱酵114 中。養分112 之醱酵114 可進一步產生二氧化碳流。在一些實施例中,二氧化碳流與氨162 組合以產生脲172Referring to FIG. 1 , the method 100 is an exemplary method for producing chemical products including ammonia, urea, monomers, and polymers. In the method 100 , the carbon-containing source 102 undergoes gasification 104 to produce syngas 106 . Subsequently, the carbonylation 122 of the first reagent 116 by the synthesis gas 106 produces a carbonylation product 132 and a hydrogen-enriched synthesis gas 142 . The contact of the hydrogen-rich assembly gas 142 with the second reagent produces a synthesis product 162 . The hydrogen enriched gas 142 may be combined with nitrogen from the air separation 152 to produce ammonia 162 . Ammonia 162 may be further combined with carbon dioxide to produce urea 172 . The carbonylation product 132 can be combined with diols, triols, or a mixture of the foregoing (element 182 ) to form a heterogeneous copolymer 192 . In some embodiments, a first agent 116 described above may be derived from the fermentation nutrient Po epoxide of 114. 112 is made. In some embodiments, the air separation 152 produces a nitrogen stream and an oxygen stream. In some embodiments, the oxygen flow may be used in nutrients 112 and fermentation 114 . Nutrient 112 and fermentation 114 can further produce carbon dioxide flow. In some embodiments, the carbon dioxide stream is combined with ammonia 162 to produce urea 172 .

上文所描述之例示性方法可使用適用於醱酵、脫水、氧化、氣化、羰基化及/或電解之一或多個反應器(亦稱為反應區)、反應容器或方法容器執行。該一或多個方法容器可包括經設定大小並塑形以藉由由不鏽鋼構成之一或多個阻擋層保持一定體積之物質的封閉體。該一或多個方法容器可經組態為分批處理反應器、固定床反應器、填充塔反應器、流體化床反應器、層流反應器、塞式流動反應器及/或連續攪拌槽反應器。The exemplary methods described above can be performed using one or more reactors (also referred to as reaction zones), reaction vessels, or process vessels suitable for fermentation, dehydration, oxidation, gasification, carbonylation, and/or electrolysis. The one or more method containers may include a closed body that is sized and shaped to hold a volume of material by one or more barriers composed of stainless steel. The one or more process vessels may be configured as batch processing reactors, fixed bed reactors, packed column reactors, fluidized bed reactors, laminar flow reactors, plug flow reactors and/or continuous stirring tanks reactor.

上文所描述之例示性方法可經由將習知地未使用的碳原子合併至最終產物中而減小化學品合成之環境佔據面積且增大碳效率。整合方法可相較於習知化學品製造設備而排放更少二氧化碳至大氣中。整合方法對於使用生物質或基於化石-燃料源之方法或蒸汽甲烷重組可提高碳效率,同時產生寶貴的商用化學品而非將呈二氧化碳形式之顯著碳部分排放至大氣。用於合成氨及脲之整合方法 The exemplary method described above can reduce the environmental footprint of chemical synthesis and increase carbon efficiency by incorporating conventionally unused carbon atoms into the final product. The integrated method can emit less carbon dioxide into the atmosphere than conventional chemical manufacturing equipment. Integrated methods can increase carbon efficiency for biomass or fossil-fuel-based methods or steam methane reorganization, while producing valuable commercial chemicals rather than emitting significant carbon fractions in the form of carbon dioxide to the atmosphere. Integrated method for synthesis of ammonia and urea

在一個態樣中,本文提供一種用於合成氨、脲或前述之混合物之方法。參考 2A ,方法200 為經由合成氣之羰基化及空氣分離以產生氨及脲之例示性方法。在方法200 中,含碳源202 經歷氣化204 以產生合成氣206 。合成氣可由一氧化碳、氫及二氧化碳製成。隨後,環氧化物216 經歷藉由合成氣206 之羰基化222 以產生羰基化產物232 。氮氣源自空氣分離252 ,且氮氣與氫富集合成氣242 接觸以產生氨262 ,該氨可與二氧化碳組合以產生脲272In one aspect, provided herein is a method for synthesizing ammonia, urea, or a mixture of the foregoing. Referring to FIG. 2A , method 200 is an exemplary method for producing ammonia and urea through carbonylation of syngas and air separation. In the method 200 , the carbon-containing source 202 undergoes gasification 204 to produce syngas 206 . Syngas can be made from carbon monoxide, hydrogen and carbon dioxide. Subsequently, epoxide 216 undergoes carbonylation 222 by syngas 206 to produce carbonylation product 232 . Nitrogen is derived from air separation 252 , and nitrogen is contacted with hydrogen-enriched gas 242 to produce ammonia 262 , which can be combined with carbon dioxide to produce urea 272 .

在一些實施例中, 2A 中所描繪之方法包含多個含碳源。舉例而言,參考 2B ,石油及/或化石燃料201 、城市固體廢棄物(MSW)205 及生物質203 為非限制性例示性含碳源。在一些實施例中, 2A 中所描繪之方法中之環氧化物216 可藉由對乙烯215 進行氧化來產生,如 2B 中所展示。乙烯可由石腦油(naphtha)217 產生。在一些實施例中,糖類用於產生乙醇214 ,該乙醇隨後可與玉米油212 反應以製得生物柴油211 及甘油210 。乙醇214 亦可用於產生乙烯215 。在一些實施例中,由 2A 之方法中之空氣分離252 產生之O2 可用於氧化乙烯215 以產生如 2B 中所展示之環氧化物216In some embodiments, the method depicted in FIG. 2A includes multiple carbon-containing sources. For example, referring to FIG. 2B , petroleum and/or fossil fuel 201 , municipal solid waste (MSW) 205, and biomass 203 are non-limiting exemplary carbon-containing sources. In some embodiments, the method depicted in FIG. 2A in the can 216 of the epoxide by oxidation of ethylene to produce 215, as shown in FIG. 2B. Ethylene can be produced from naphtha 217 . In some embodiments, sugars are used to produce ethanol 214 , which can then be reacted with corn oil 212 to produce biodiesel 211 and glycerin 210 . Ethanol 214 can also be used to produce ethylene 215 . In some embodiments, the isolated 252 O produced by the process of FIG. 2A in the air 2 may be used to produce ethylene oxide 215 as shown in FIG. 2B of epoxide 216.

在一些實施例中,本文中所描述之方法可更有效地使用原材料以產生羰基化產物。舉例而言,參考 3A ,方法300 涉及使生物質、MSW及/或基於化石燃料源氣化302 以產生合成氣304 。合成氣可由一氧化碳、氫氣及二氧化碳製成。養分312 可經醱酵以產生醇及二氧化碳314 。醇可經脫水以產生烯烴316 ,該烯烴隨後可在存在催化劑的情況下藉由來自空氣分離單元352 之氧進行氧化以產生環氧化物及二氧化碳。環氧化物322 可在存在羰基化催化劑的情況下與一氧化碳經歷羰基化以產生環氧化物羰基化產物。例示性羰基化產物可包括β-丙內酯(BPL)、丁二酸酐、聚丙內酯(PPL)及多元醇,或其任何混合物。可回收具有H2 :CO約為2之氫富集合成氣流。氮可在催化性反應中與氫富集合成氣組合以產生氨362 ;該氨隨後可與二氧化碳反應以產生脲372In some embodiments, the methods described herein can use raw materials more efficiently to produce carbonylation products. For example, referring to FIG. 3A , method 300 involves gasifying 302 biomass, MSW, and/or fossil fuel-based sources to produce syngas 304 . Syngas can be made from carbon monoxide, hydrogen and carbon dioxide. Nutrients 312 can be fermented to produce alcohol and carbon dioxide 314 . The alcohol can be dehydrated to produce olefin 316 , which can then be oxidized by oxygen from the air separation unit 352 in the presence of a catalyst to produce epoxide and carbon dioxide. The epoxide 322 may undergo carbonylation with carbon monoxide in the presence of a carbonylation catalyst to produce an epoxide carbonylation product. Exemplary carbonylation products may include β-propiolactone (BPL), succinic anhydride, polypropiolactone (PPL), and polyols, or any mixture thereof. Hydrogen-rich gas stream with H 2 :CO about 2 can be recovered. Nitrogen can be combined with hydrogen-rich gas in a catalytic reaction to produce ammonia 362 ; this ammonia can then react with carbon dioxide to produce urea 372 .

在一些實施例中, 3A 中所描繪之方法進一步包含轉化石油313 以產生乙烯315 該乙烯隨後可經氧化以產生用於如 3B 中所展示之羰基化方法322 中使用的環氧化物。In some embodiments, the method depicted in FIG. 3A, further comprising the conversion of ethylene to produce oil 313 315, then the ethylene may be oxidized to produce the epoxide hydroformylation process for it as shown in FIG. 3B 322 used .

在一些變化形式中,本文中描述之系統及方法包含將合成氣分離成一氧化碳、氫氣及二氧化碳之分子組分。在某些變化形式中,分離提供更高純度之一氧化碳流、更高純度之氫氣流及/或更高純度之二氧化碳流。在系統及方法之一些變化形式中,使用合成氣之羰基化產生富集合成氣。然而,在本文中描述之系統及方法的其他變化形式中,可不需要羰基化以富集合成氣。相反,可使用此項技術中已知之適合方法及技術來分離合成氣之分子組分。舉例而言,可藉由使用膜過濾將合成氣分離成其分子組分。合成氣 In some variations, the systems and methods described herein include separating the synthesis gas into molecular components of carbon monoxide, hydrogen, and carbon dioxide. In some variations, the separation provides a higher purity carbon monoxide stream, a higher purity hydrogen stream, and/or a higher purity carbon dioxide stream. In some variations of the system and method, the carbonylation of syngas is used to produce enriched synthesis gas. However, in other variations of the systems and methods described herein, carbonylation may not be required to enrich the gas. Instead, suitable methods and techniques known in the art can be used to separate the molecular components of the syngas. For example, the synthesis gas can be separated into its molecular components by using membrane filtration. Syngas

在本文中描述之方法中,合成氣體可被稱為「合成氣(syngas)」。在一些變化形式中,合成氣包括氫及一氧化碳氣體之混合物。在某些變化形式中,合成氣進一步含有二氧化碳。在一些實施例中,合成氣包含藉由含碳源氣化所產生之分子組分,諸如一氧化碳、氫及二氧化碳。In the method described herein, the synthesis gas may be referred to as "syngas". In some variations, the synthesis gas includes a mixture of hydrogen and carbon monoxide gas. In some variations, the syngas further contains carbon dioxide. In some embodiments, the syngas includes molecular components such as carbon monoxide, hydrogen, and carbon dioxide produced by gasification of a carbon-containing source.

大體而言,合成氣可源自含碳源之氣化,包括生物質、掩埋沼氣(landfill gas)、天然氣、煤、焦爐氣、鋼廠氣、石油及基於石油之產物。產生合成氣之習知工業方法包括氣化生物質、煤、石油及石油衍生之材料。本發明之方法包含氣化,該氣化包括加熱含碳材料以產生分子組分。可採用用於氣化之此項技術中已知之任何適合方法。In general, synthesis gas can be derived from the gasification of carbon-containing sources, including biomass, landfill gas, natural gas, coal, coke oven gas, steel plant gas, petroleum, and petroleum-based products. Known industrial methods for producing syngas include gasification of biomass, coal, petroleum, and petroleum-derived materials. The method of the present invention includes gasification, which includes heating the carbonaceous material to produce molecular components. Any suitable method known in the art for gasification can be used.

在某些實施例中,在高溫及壓力下,在存在鹼金屬催化劑源及蒸汽的情況下,進行含碳材料之氣化,產生合成氣。In certain embodiments, at high temperatures and pressures, in the presence of an alkali metal catalyst source and steam, the gasification of the carbonaceous material is performed to produce syngas.

在本文中之方法之一些變化形式中,生物質及基於石油之原料靈活性可呈現某些優點。此係由於進料成本及將原材料供應至設備所需要之定位及分配通道。在一些實施例中,生物質係用於產生合成氣且包括例如原木、甘蔗渣、玉米秸稈、柳枝稷、農業廢棄物及城市固體廢棄物。在一些實施例中,生物質衍生之碳構成最終化學品產物之至少10%碳含量。在某些實施例中,生物質衍生之碳構成最終化學品產物之100%碳含量。在某些實施例中,使用基於化石燃料之原材料源。此等源包括(例如)掩埋沼氣、天然氣、煤、石油及基於石油之產物。在某些實施例中,基於化石燃料之原材料源構成最終化學品產物之至少10%碳含量。在某些實施例中,基於石油之原材料源構成最終化學品產物之100%碳含量。在某些實施例中,用於醱酵以產生醇之養分可來自多種源。此等源包括(例如)玉米、甜菜及椰棗。In some variations of the methods herein, biomass and petroleum-based feedstock flexibility may present certain advantages. This is due to the cost of feed and the positioning and distribution channels required to supply raw materials to the equipment. In some embodiments, the biomass system is used to produce syngas and includes, for example, logs, bagasse, corn stover, switchgrass, agricultural waste, and municipal solid waste. In some embodiments, the biomass-derived carbon constitutes at least 10% of the carbon content of the final chemical product. In certain embodiments, the biomass-derived carbon constitutes 100% carbon content of the final chemical product. In some embodiments, fossil fuel-based raw material sources are used. Such sources include, for example, buried biogas, natural gas, coal, petroleum, and petroleum-based products. In certain embodiments, the source of raw materials based on fossil fuels constitutes at least 10% of the carbon content of the final chemical product. In certain embodiments, the petroleum-based raw material source constitutes 100% carbon content of the final chemical product. In some embodiments, the nutrients used for fermentation to produce alcohol can come from a variety of sources. Such sources include, for example, corn, beets, and dates.

天然氣之蒸汽甲烷重組亦常用於產生氫富集合成氣。在某些實施例中,可能需要使用蒸汽甲烷重組以得到其氫比一氧化碳之比率為約2或更大之合成氣。有利地,蒸汽甲烷重組取代了產生具有較高氫比一氧化碳比率之合成氣所需要的水煤氣轉化反應要求,以執行多種下游化學品製造方法。在一些實施例中,用於氨製造之氫富集合成氣係藉由在蒸汽甲烷重組方法中使甲烷與水反應而產生的。在某些實施例中,在可進行蒸汽甲烷重組方法之前,必須自天然氣移除所有含硫化合物以防止催化劑毒化。舉例而言,自天然氣移除含硫合物之習知工業方法為在存在氧化鋅的情況下將其加熱至400℃。Natural gas steam methane reorganization is also commonly used to produce hydrogen-rich gas. In some embodiments, it may be necessary to use steam methane reforming to obtain a syngas having a hydrogen to carbon monoxide ratio of about 2 or greater. Advantageously, steam methane reformation replaces the water gas conversion reaction requirements needed to produce syngas with a higher ratio of hydrogen to carbon monoxide to perform a variety of downstream chemical manufacturing methods. In some embodiments, the hydrogen-enriched synthesis gas used in ammonia production is produced by reacting methane with water in a steam methane reforming process. In some embodiments, before the steam methane recombination process can be performed, all sulfur compounds must be removed from the natural gas to prevent catalyst poisoning. For example, a conventional industrial method for removing sulfur compounds from natural gas is to heat it to 400°C in the presence of zinc oxide.

在一些實施例中,將經純化天然氣傳送至蒸汽甲烷重組器,其中該經純化天然氣在存在鎳催化劑的情況下與過熱蒸汽混合且在高於750℃下重組。在高溫下,甲烷轉化為形成合成氣之氫、二氧化碳及少量一氧化碳,該合成氣之氫比一氧化碳比率為約2或更大。In some embodiments, the purified natural gas is sent to a steam methane reformer, where the purified natural gas is mixed with superheated steam in the presence of a nickel catalyst and reformed above 750°C. At high temperatures, methane is converted into hydrogen, carbon dioxide, and a small amount of carbon monoxide that form syngas. The ratio of hydrogen in the syngas to carbon monoxide is about 2 or greater.

在某些實施例中,合成氣流之氫比一氧化碳比率小於一。具有此比率之合成氣流傾向於為產生富含碳流之典型的生物質及固體氣化。在一些實施例中,合成氣流之氫比一氧化碳比率為至少1、至少1.5、至少2.0、至少2.5、至少3.0、至少3.5、至少4.0、至少4.5或至少5.0。在一些實施例中,合成氣流之氫比一氧化碳比率為約0.5-1.0、約1.0-1.5、約1.5-2.0、約2.0-2.5、約2.5-3.0、約3.0-3.5、約3.5-4.0、約4.0-4.5、約4.5-5.0、約1.0-2.0、約2.0-3.0、約3.0-4.0或約4.0-5.0。在一些實施例中,合成氣流之氫比一氧化碳比率為約1.5-3.0。此等氫富集合成氣流可為天然氣及其他輕脂族化合物之蒸汽甲烷重組之結果。在一些實施例中,氫富集合成氣源自環氧化物與一氧化碳之間的羰基化反應之廢氣,該一氧化碳包含於來自如本文所述之氣化中之合成氣。In some embodiments, the ratio of hydrogen to carbon monoxide in the synthesis gas stream is less than one. Syngas streams with this ratio tend to be typical biomass and solid gasifications that produce carbon-rich streams. In some embodiments, the syngas stream has a hydrogen to carbon monoxide ratio of at least 1, at least 1.5, at least 2.0, at least 2.5, at least 3.0, at least 3.5, at least 4.0, at least 4.5, or at least 5.0. In some embodiments, the syngas stream has a hydrogen to carbon monoxide ratio of about 0.5-1.0, about 1.0-1.5, about 1.5-2.0, about 2.0-2.5, about 2.5-3.0, about 3.0-3.5, about 3.5-4.0, about 4.0-4.5, about 4.5-5.0, about 1.0-2.0, about 2.0-3.0, about 3.0-4.0, or about 4.0-5.0. In some embodiments, the syngas stream has a hydrogen to carbon monoxide ratio of about 1.5-3.0. These hydrogen-enriched gas streams can be the result of steam methane reorganization of natural gas and other light aliphatic compounds. In some embodiments, the hydrogen-enriched synthesis gas is derived from the exhaust gas of the carbonylation reaction between the epoxide and carbon monoxide contained in the syngas from the gasification as described herein.

源自含碳生物質之氣化之合成氣可含有大量二氧化碳。在一些變化形式中,合成氣可具有大於20%莫耳體積之二氧化碳。在某些變化形式中,用於本文中之方法之羰基化催化劑未受合成氣流中之高含量二氧化碳抑制。在一些實施例中,本文中之系統及方法可包括例如藉由使用過濾膜以將二氧化碳與合成氣分離。Syngas derived from the gasification of carbonaceous biomass can contain large amounts of carbon dioxide. In some variations, the syngas may have more than 20% molar volume of carbon dioxide. In certain variations, the carbonylation catalyst used in the method herein is not inhibited by the high content of carbon dioxide in the synthesis gas stream. In some embodiments, the systems and methods herein may include, for example, by using filter membranes to separate carbon dioxide from syngas.

在一些實施例中,用於羰基化反應之合成氣流含有在1莫耳%至30莫耳%範圍內之二氧化碳。在一些實施例中,過量二氧化碳經轉移用於下游化學品製造用途。在某些實施例中,含有很少或不含二氧化碳之合成氣流為下游化學品製造方法所需的。In some embodiments, the synthesis gas stream used for the carbonylation reaction contains carbon dioxide in the range of 1 mol% to 30 mol%. In some embodiments, excess carbon dioxide is transferred for downstream chemical manufacturing uses. In some embodiments, a synthesis gas stream containing little or no carbon dioxide is required for downstream chemical manufacturing processes.

視含碳源而定,合成氣可包含微量組分,諸如硫化羰、硫化氫、氮、水蒸氣及灰分。在一些實施例中,合成氣流含有諸如含硫化合物、氰化氫及含氮化合物之污染物,該等污染物可對用於本發明中描述之方法中之催化劑具有抑制性。因此,在一些實施例中,合成氣流可能在用於下游化學品製造方法之前需要調節方法。在一些實施例中,合成氣流實質上不含抑制性污染物。Depending on the carbon source, the syngas may contain trace components such as carbonyl sulfide, hydrogen sulfide, nitrogen, water vapor, and ash. In some embodiments, the synthesis gas stream contains contaminants such as sulfur-containing compounds, hydrogen cyanide, and nitrogen-containing compounds, which may have inhibitory effects on the catalyst used in the method described in the present invention. Therefore, in some embodiments, the syngas stream may require conditioning methods before being used in downstream chemical manufacturing methods. In some embodiments, the syngas stream is substantially free of inhibitory contaminants.

合成氣之製造可使用一系列不同的進料以及多種處理條件及操作。類似地,用於處置及純化適用於實踐本發明中所描述之方法之合成氣的多種裝置及方法為可獲得的。羰基化 Syngas can be manufactured using a series of different feeds and a variety of processing conditions and operations. Similarly, various devices and methods are available for handling and purifying synthesis gas suitable for practicing the methods described in this invention. Carbonylation

羰基化可包括藉由包含一氧化碳及或二氧化碳之合成氣將烯烴氧化物或環氧化物(諸如環氧乙烷)轉化為羰基化產物,諸如β內酯及/或丁二酸酐。Carbonylation may include the conversion of olefin oxides or epoxides (such as ethylene oxide) into carbonylation products, such as beta lactones and/or succinic anhydride, by synthesis gas containing carbon monoxide and or carbon dioxide.

在某些實施例中,式

Figure 02_image001
之環氧化物之羰基化產生式
Figure 02_image003
之β內酯。In some embodiments, the formula
Figure 02_image001
Epoxide carbonylation formula
Figure 02_image003
Of β-lactone.

在某些實施例中,各Ra 、Rb 、Rc 及Rd 獨立地為H、視情況經取代之烷基、視情況經取代之烯基、視情況經取代之環烷基或視情況經取代之芳基。應理解,環氧化物及β內酯可具有非對稱中心,且以不同對映異構形式或非對映異構形式存在。該通式之化合物之所有光學異構體及立體異構體及其呈任何比率之混合物視為在該化學式之範疇內。因此,本文提供之任何化學式可包括(視情況可為)外消旋體、一或多個對映異構形式、一或多個非對映異構形式、一或多個滯轉異構形式及其呈任何比率之混合物。In certain embodiments, each R a, R b, R c and R d are independently H, optionally substituted alkyl of, the optionally substituted alkenyl, optionally substituted cycloalkyl or optionally of In the case of substituted aryl. It should be understood that epoxides and β-lactones may have asymmetric centers and exist in different enantiomeric or diastereoisomeric forms. All optical isomers and stereoisomers of the compound of the general formula and mixtures in any ratio are considered to be within the scope of the chemical formula. Therefore, any chemical formula provided herein may include, as the case may be, the racemate, one or more enantiomeric forms, one or more diastereoisomeric forms, one or more hysteresis forms And mixtures in any ratio.

「烷基」係指單價非分支鏈或分支鏈飽和烴鏈。在一些實施例中,烷基具有1至10個碳原子(亦即,C1-10 烷基)、1至9個碳原子(亦即,C1-9 烷基)、1至8個碳原子(亦即,C1-8 烷基)、1至7個碳原子(亦即,C1-7 烷基)、1至6個碳原子(亦即,C1-6 烷基)、1至5個碳原子(亦即,C1-5 烷基)、1至4個碳原子(亦即,C1-4 烷基)、1至3個碳原子(亦即,C1-3 烷基)或1至2個碳原子(亦即,C1-2 烷基)。烷基之實例包括甲基、乙基、丙基、異丙基、正丁基、第二丁基、第三丁基、戊基、2-戊基、異戊基、新戊基、己基、2-己基、3-己基、3-甲基戊基及類似者。當命名具有特定碳原子數目之烷基殘基時,可涵蓋具有該碳原子數目之所有幾何異構體;因此,例如,「丁基」可包括正丁基、第二丁基、異丁基及第三丁基;「丙基」可包括正丙基及異丙基。"Alkyl" means a monovalent unbranched or branched saturated hydrocarbon chain. In some embodiments, the alkyl group has 1 to 10 carbon atoms (ie, C 1-10 alkyl), 1 to 9 carbon atoms (ie, C 1-9 alkyl), 1 to 8 carbons Atom (ie, C 1-8 alkyl), 1 to 7 carbon atoms (ie, C 1-7 alkyl), 1 to 6 carbon atoms (ie, C 1-6 alkyl), 1 To 5 carbon atoms (ie, C 1-5 alkyl), 1 to 4 carbon atoms (ie, C 1-4 alkyl), 1 to 3 carbon atoms (ie, C 1-3 alkyl) Group) or 1 to 2 carbon atoms (ie, C 1-2 alkyl group). Examples of alkyl groups include methyl, ethyl, propyl, isopropyl, n-butyl, second butyl, third butyl, pentyl, 2-pentyl, isopentyl, neopentyl, hexyl, 2-hexyl, 3-hexyl, 3-methylpentyl and the like. When naming alkyl residues with a specific number of carbon atoms, all geometric isomers with that number of carbon atoms can be covered; therefore, for example, "butyl" can include n-butyl, second butyl, isobutyl And tertiary butyl; "propyl" may include n-propyl and isopropyl.

「烯基」係指具有至少一個烯烴不飽和位點(亦即,具有至少一個式C=C之部分)的不飽和直鏈或分支鏈單價烴鏈或其組合。在一些實施例中,烯基具有2至10個碳原子(亦即,C2-10 烯基)。烯基可呈「順式」或「反式」組態,或替代地呈「E」或「Z」組態。烯基之實例包括乙烯基、烯丙基、丙-1-烯基、丙-2-烯基、2-甲基丙-1-烯基、丁-1-烯基、丁-2-烯基、丁-3-烯基、其異構體,及類似者。"Alkenyl" means an unsaturated linear or branched monovalent hydrocarbon chain having at least one olefinic unsaturation site (ie, having at least one moiety of formula C=C) or a combination thereof. In some embodiments, the alkenyl group has 2 to 10 carbon atoms (ie, C 2-10 alkenyl). The alkenyl group can be in a "cis" or "trans" configuration, or alternatively in an "E" or "Z" configuration. Examples of alkenyl groups include vinyl, allyl, prop-1-enyl, prop-2-enyl, 2-methylprop-1-enyl, but-1-enyl, but-2-enyl , But-3-enyl, its isomers, and the like.

「環烷基」係指經由環碳原子連接之碳環非芳族基團。環烷基之實例包括環丙基、環丁基、環戊基、環己基及類似物。"Cycloalkyl" means a carbocyclic non-aromatic group connected via a ring carbon atom. Examples of cycloalkyl include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and the like.

「芳基」係指具有單個環或具有多個稠環之環系統之6至18個環碳原子的單價芳族碳環基。芳基之實例包括苯基、萘基及及類似者。"Aryl" means a monovalent aromatic carbocyclic group having 6 to 18 ring carbon atoms in a ring system with a single ring or with multiple fused rings. Examples of aryl groups include phenyl, naphthyl and the like.

術語「視情況經取代之」意謂指定基團未經取代或經一或多個取代基取代。取代基之實例可包括鹵基、-OSO2 R2 、-OSiR4 、-OR、C=CR2 、-R、-OC(O)R、-C(O)OR及-C(O)NR2 ,其中R獨立地為H、視情況經取代之烷基、視情況經取代之烯基或視情況經取代之芳基。在一些實施例中,R獨立地為未經取代之烷基、未經取代之烯基或未經取代之芳基。在一些實施例中,R獨立地為H、甲基(Me)、乙基(Et)、丙基(Pr)、丁基(Bu)、苯甲基(Bn)、烯丙基、苯基(Ph)或鹵烷基。在某些實施例中,取代基可包括F、Cl、-OSO2 Me、-OTBS (其中「TBS」為第三丁基(二甲基)矽烷基))、-OMOM、-OMe、-OEt、-OiPr、-OPh、-OCH2 CHCH2 、-OBn、-OCH2 (呋喃基)、-OCF2 CHF2 、-C=CH2 、-OC(O)Me、-OC(O)nPr、-OC(O)Ph、-OC(O)C(Me)CH2 、-C(O)OMe、-C(O)OnPr、-C(O)NMe2 、-CN、-Ph、-C6 F5 、-C6 H4 OMe及-OH。 The term "optionally substituted" means that the specified group is unsubstituted or substituted with one or more substituents. Examples of substituents may include halo, -OSO 2 R 2 , -OSiR 4 , -OR, C=CR 2 , -R, -OC(O)R, -C(O)OR, and -C(O)NR 2 , where R is independently H, optionally substituted alkyl, optionally substituted alkenyl, or optionally substituted aryl. In some embodiments, R is independently unsubstituted alkyl, unsubstituted alkenyl, or unsubstituted aryl. In some embodiments, R is independently H, methyl (Me), ethyl (Et), propyl (Pr), butyl (Bu), benzyl (Bn), allyl, phenyl ( Ph) or haloalkyl. In some embodiments, the substituents may include F, Cl, -OSO 2 Me, -OTBS (where "TBS" is a third butyl (dimethyl) silane group), -OMOM, -OMe, -OEt , -OiPr, -OPh, -OCH 2 CHCH 2 , -OBn, -OCH 2 (furanyl), -OCF 2 CHF 2 , -C=CH 2 , -OC(O)Me, -OC(O)nPr, -OC(O)Ph, -OC(O)C(Me)CH 2 , -C(O)OMe, -C(O)OnPr, -C(O)NMe 2 , -CN, -Ph, -C 6 F 5 , -C 6 H 4 OMe and -OH.

在一個變化形式中,Ra 、Rb 、Rc 及Rd 中之三者為H,且剩餘Ra 、Rb 、Rc 及Rd 為視情況經取代之烷基、視情況經取代之烯基、視情況經取代之環烷基或視情況經取代之芳基。在一個變化形式中,Ra 、Rb 、Rc 及Rd 中之三者為H,且剩餘Ra 、Rb 、Rc 及Rd 為未經取代之烷基或經選自由以下組成之群中的取代基取代之烷基:鹵基、-OSO2 R2 、-OSiR4 、-OR、C=CR2 、-R、-OC(O)R、-C(O)OR及-C(O)NR2 ,其中R獨立地為H、Me、Et、Pr、Bu、Bn、烯丙基及Ph。 In one variation, R a, R b, R c and R d are the three H, and the remaining R a, R b, R c, and R d is optionally substituted the alkyl, optionally substituted Alkenyl, optionally substituted cycloalkyl, or optionally substituted aryl. In one variation, R a, R b, R c and R d are the three H, and the remaining R a, R b, R c, and R d is unsubstituted selected from the group consisting or consisting by Alkyl groups substituted by substituents in the group: halo, -OSO 2 R 2 , -OSiR 4 , -OR, C=CR 2 , -R, -OC(O)R, -C(O)OR and- C(O)NR 2 , where R is independently H, Me, Et, Pr, Bu, Bn, allyl, and Ph.

在一個變化形式中,Ra 、Rb 、Rc 及Rd 中之兩者為H,且Ra 、Rb 、Rc 及Rd 中之剩餘兩者為視情況經取代之烷基。在一個變化形式中,Ra 、Rb 、Rc 及Rd 中之兩者為H,剩餘Ra 、Rb 、Rc 及Rd 中之一者為視情況經取代之烷基,且剩餘Ra 、Rb 、Rc 及Rd 中之一者為視情況經取代之芳基。在一個變化形式中,Ra 、Rb 、Rc 及Rd 中之兩者為H,剩餘Ra 、Rb 、Rc 及Rd 中之一者為視情況經取代之烷基,且剩餘Ra 、Rb 、Rc 及Rd 中之一者為視情況經取代之烯基。在一個變化形式中,Ra 、Rb 、Rc 及Rd 中之兩者為H,剩餘Ra 、Rb 、Rc 及Rd 中之一者為視情況經取代之烷基,且剩餘Ra 、Rb 、Rc 及Rd 中之一者為視情況經取代之環烷基。在一個變化形式中,Ra 、Rb 、Rc 及Rd 中之兩者為H,且剩餘Ra 、Rb 、Rc 及Rd 中之一者為視情況經取代之烯基,且剩餘Ra 、Rb 、Rc 及Rd 中之一者為視情況經取代之芳基。 In one variation, both R a, R b, R c and R d of the H, and R a R b, R c the remaining two, and R d is the sum of the alkyl group optionally substituted. In one variation, both R a, R b, R c, and R d is in the H, the remaining R a, R b, R c, and R d is one of those of the optionally substituted alkyl group, and the remaining R a, R b, R c, and R d is one of those of the optionally substituted aryl group. In one variation, both R a, R b, R c, and R d is in the H, the remaining R a, R b, R c, and R d is one of those of the optionally substituted alkyl group, and the remaining R a, R b, R c, and R d is one of those of the optionally substituted alkenyl group. In one variation, both R a, R b, R c, and R d is in the H, the remaining R a, R b, R c, and R d is one of those of the optionally substituted alkyl group, and the remaining R a, R b, R c, and R d is one of those of the optionally substituted cycloalkyl group. In one variation, both R a, R b, R c and R d of the H, and the remaining R a, R b, R c, and R d is one of those of the optionally substituted alkenyl group, and the remaining R a, R b, R c, and R d is one of those of the optionally substituted aryl group.

在某些實施例中,Ra 、Rb 、Rc 及Rd 為H。在某些實施例中,Ra 、Rb 、Rc 為H,且Rd 為視情況經取代之烷基。在某些實施例中,Rd 、Rb 及Rc 為H,且Ra 為視情況經取代之烷基。在某些實施例中,Ra 、Rb 及Rc 為H,且Rd 為視情況經取代之烯基。在某些實施例中,Rd 、Rb 及Rc 為H,且Ra 為視情況經取代之烯基。在某些實施例中,Ra 、Rb 及Rc 為H,且Rd 為視情況經取代之環烷基。在某些實施例中,Rd 、Rb 及Rc 為H,且Ra 為視情況經取代之環烷基。在某些實施例中,Ra 、Rb 及Rc 為H,且Rd 為視情況經取代之芳基。在某些實施例中,Rd 、Rb 及Rc 為H,且Ra 為視情況經取代之芳基。 In certain embodiments, R a, R b, R c , and R d is H. In certain embodiments, R a, R b, R c is H, and R d is optionally substituted alkyl it. In certain embodiments, R d, R b, and R c is H, and R a is optionally substituted alkyl it. In certain embodiments, R a, R b, and R c is H, and R d is the optionally substituted alkenyl group. In certain embodiments, R d, R b, and R c is H, and R a is optionally substituted alkenyl group of. In certain embodiments, R a, R b, and R c is H, and R d is optionally substituted cycloalkyl of. In certain embodiments, R d, R b, and R c is H, and R a is optionally substituted cycloalkyl of. In certain embodiments, R a, R b, and R c is H, and R d is optionally substituted aryl it. In certain embodiments, R d, R b, and R c is H, and R a is optionally substituted aryl it.

在某些實施例中,Ra 及Rb 為視情況經取代之烷基,且Rc 及Rd 為H。在某些實施例中,Rc 及Rd 視情況經取代之烷基,且Ra 及Rb 為H。在某些實施例中,Ra 及Rb 一起形成視情況經取代之環。在某些實施例中,Rc 及Rd 一起形成視情況經取代之環。在某些實施例中,視情況經取代之環為含有3至10個碳原子之碳環非芳族環。在某些實施例中,碳環非芳族環含有至少一個烯系不飽和位點。 In certain embodiments, R a and R b is optionally substituted by the alkyl group, and R c and R d is H. In certain embodiments, R c and R d are optionally substituted alkyl, and R a and R b are H. In certain embodiments, R a and R b together form an optionally substituted ring. In certain embodiments, R c and R d together form an optionally substituted ring. In certain embodiments, the optionally substituted ring is a carbocyclic non-aromatic ring containing 3 to 10 carbon atoms. In certain embodiments, the carbocyclic non-aromatic ring contains at least one ethylenically unsaturated site.

在某些實施例中,Ra 及Rd 一起形成視情況經取代之環。在某些實施例中,視情況經取代之環為含有3至10個碳原子之碳環非芳族環。在某些實施例中,碳環非芳族環含有至少一個烯系不飽和位點。 In certain embodiments, form an optionally substituted ring together with the R a and R d. In certain embodiments, the optionally substituted ring is a carbocyclic non-aromatic ring containing 3 to 10 carbon atoms. In certain embodiments, the carbocyclic non-aromatic ring contains at least one ethylenically unsaturated site.

在某些實施例中,Ra 及Rd 各自獨立地為視情況經取代之烷基,且Rb 及Rc 為H。在某些實施例中,Ra 為視情況經取代之烷基,Rd 為視情況經取代之芳基,且Rb 及Rc 為H。在某些實施例中,Rd 為視情況經取代之烷基,Ra 為視情況經取代之芳基且Rb 及Rc 為H。在某些實施例中,Ra 為視情況經取代之烯基,Rd 為視情況經取代之芳基,且Rb 及Rc 為H。在某些實施例中,Rd 為視情況經取代之烯基,Ra 為視情況經取代之芳基,且Rb 及Rc 為H。在某些實施例中,Ra 為視情況經取代之烷基,Rd 為視情況經取代之烯基,且Rb 及Rc 為H。在某些實施例中,Rd 為視情況經取代之烷基,Ra 為視情況經取代之烯基,且Rb 及Rc 為H。 In certain embodiments, R a and R d are each independently optionally substituted alkyl, and R b and R c are H. In certain embodiments, R a is optionally substituted alkyl group of, R d is the optionally substituted aryl, and R b and R c is H. In certain embodiments, R d is an optionally substituted alkyl group of, R a is an optionally substituted aryl group and the R b and R c is H. In certain embodiments, R a is optionally substituted alkenyl group of, R d is the optionally substituted aryl, and R b and R c is H. In certain embodiments, R d is optionally substituted alkenyl group of, R a is the optionally substituted aryl, and R b and R c is H. In certain embodiments, R a is optionally substituted alkyl group of, R d is optionally substituted alkenyl group of and R b and R c is H. In certain embodiments, R d is an optionally substituted alkyl group of, R a is optionally substituted alkenyl group of and R b and R c is H.

在下文表A中,A行包括經受羰基化之環氧化物且B行包括藉由環氧化物之羰基化所產生之各別β內酯。 A.

Figure 02_image005
Figure 02_image007
Figure 02_image009
Figure 02_image011
Figure 02_image013
Figure 02_image015
Figure 02_image017
Figure 02_image019
Figure 02_image021
Figure 02_image023
Figure 02_image025
Figure 02_image027
In Table A below, row A includes the epoxide undergoing carbonylation and row B includes the respective β-lactones produced by the carbonylation of the epoxide. Table A.
Figure 02_image005
Figure 02_image007
Figure 02_image009
Figure 02_image011
Figure 02_image013
Figure 02_image015
Figure 02_image017
Figure 02_image019
Figure 02_image021
Figure 02_image023
Figure 02_image025
Figure 02_image027

適用於藉由合成氣來使環氧化物及/或丁二酸酐羰基化之方法包括使用羰基化催化劑。在一些實施例中,羰基化催化劑包含金屬羰基路易斯酸(Lewis acid)部分。在一些實施例中,羰基化催化劑選擇性針對一氧化碳或二氧化碳之羰基化。Suitable methods for the carbonylation of epoxides and/or succinic anhydride by synthesis gas include the use of carbonylation catalysts. In some embodiments, the carbonylation catalyst comprises a metal carbonyl Lewis acid moiety. In some embodiments, the carbonylation catalyst is selective for the carbonylation of carbon monoxide or carbon dioxide.

在一些實施例中,羰基化催化劑用於本文所描述之任一方法中且羰基化催化劑包含金屬羰基化合物結合陽離子路易斯酸,路易斯酸具有式[(Lc )v Mb ]z+ ,其中: LC 為配位體,其中當存在兩個或更多個LC 時,各自可相同或不同; M為金屬原子,其中當存在兩個M時,各自可相同或不同; v為1至4之整數(包括端值); b為1至2之整數(包括端值);以及 z為表示金屬複合物上之陽離子電荷的大於0之整數。In some embodiments, the carbonylation catalyst is used in any of the methods described herein and the carbonylation catalyst comprises a metal carbonyl compound combined with a cationic Lewis acid, the Lewis acid has the formula [(L c ) v M b ] z+ , where: L C is a ligand, where when two or more L C are present, each may be the same or different; M is a metal atom, where when two M are present, each may be the same or different; v is 1 to 4 Integer (inclusive); b is an integer from 1 to 2 (inclusive); and z is an integer greater than 0 representing the cationic charge on the metal composite.

在一些實施例中,路易酸具有結構I:

Figure 02_image029
,其中
Figure 02_image031
為多齒配位體;M為與多齒配位體配位之金屬;以及a為金屬原子之電荷且介於0至2範圍內。In some embodiments, Lewis acid has structure I:
Figure 02_image029
,among them
Figure 02_image031
Is a multidentate ligand; M is a metal coordinated with a multidentate ligand; and a is the charge of a metal atom and is in the range of 0 to 2.

在一些實施例中,路易酸具有結構II

Figure 02_image033
,其中a如上文所定義(各a可不同或相同),M1 為第一金屬原子;M2 為第二金屬原子;以及
Figure 02_image035
包含能夠配位兩個金屬原子之多齒配位體系統。In some embodiments, Lewis acid has structure II
Figure 02_image033
, Where a is as defined above (each a may be different or the same), M 1 is the first metal atom; M 2 is the second metal atom; and
Figure 02_image035
Contains a multidentate ligand system capable of coordinating two metal atoms.

在一些實施例中,視饋入羰基化反應中以及在羰基化反應方法期間使用的多少一氧化碳而定,富集合成氣之氫比一氧化碳比率為至少1.5、至少2、至少2.5、至少3.0、至少3.5、至少4.0、至少4.5、至少5.0、至少5.5、至少6.0、至少6.5、至少7.0、至少7.5、至少8.0、至少8.5、至少9.0、至少9.5或至少10。在一些實施例中,富集合成氣之氫比一氧化碳比率為約1.5-3.0、約3.0-4.5、約4.5-6.0、約6.0-7.5、約7.5-9.0或約9.0-10.0。In some embodiments, depending on how much carbon monoxide is fed into the carbonylation reaction and used during the carbonylation reaction process, the ratio of hydrogen to carbon monoxide enriched in the composition gas is at least 1.5, at least 2, at least 2.5, at least 3.0, at least 3.5, at least 4.0, at least 4.5, at least 5.0, at least 5.5, at least 6.0, at least 6.5, at least 7.0, at least 7.5, at least 8.0, at least 8.5, at least 9.0, at least 9.5 or at least 10. In some embodiments, the ratio of hydrogen to carbon monoxide enriched in the formed gas is about 1.5-3.0, about 3.0-4.5, about 4.5-6.0, about 6.0-7.5, about 7.5-9.0, or about 9.0-10.0.

在一些實施例中,羰基化產物為β內酯。在某些實施例中,β內酯可為β丁內酯、β戊內酯、β庚內酯、β十三烷內酯、順-3,4-二甲基氧雜環丁-2-酮、4-(丁-3-烯-1-基)氧雜環丁-2-酮、4-(丁氧基甲基)-2-氧雜環丁酮、4-[[[(1,1-二甲基乙基)二甲基矽烷基]氧基]甲基]-2-氧雜環丁酮、4-[(2-丙烯-1-基氧基)甲基]-2-氧雜環丁酮、4-[(苯甲醯氧基)甲基]-2-氧雜環丁酮。在一些實施例中,該等方法產生β-丙內酯。空氣分離 In some embodiments, the carbonylation product is β-lactone. In certain embodiments, the β-lactone can be β-butyrolactone, β-valerolactone, β-heptanolide, β-tridecane lactone, cis-3,4-dimethyloxetan-2- Ketone, 4-(but-3-en-1-yl)oxetan-2-one, 4-(butoxymethyl)-2-oxetanone, 4-[[(((, 1-dimethylethyl) dimethylsilyl]oxy]methyl]-2-oxetanone, 4-[(2-propen-1-yloxy)methyl]-2-oxo Heterocyclic ketone, 4-[(benzyloxy)methyl]-2-oxetanone. In some embodiments, these methods produce β-propiolactone. Air separation

在另一態樣中,整合氨及脲合成方法包含將空氣分離成氮流及氧流。在一些實施例中,氮流與氫富集合成氣流接觸以形成氨。在某一些實施例中,氨與二氧化碳接觸以形成脲。在一些實施例中,氧流在氧化步驟中在存在催化劑的情況下與烯烴接觸以產生環氧化物及二氧化碳。氨合成 In another aspect, the integrated ammonia and urea synthesis method includes separating air into a nitrogen stream and an oxygen stream. In some embodiments, the nitrogen stream is contacted with the hydrogen-enriched integrated gas stream to form ammonia. In some embodiments, ammonia is contacted with carbon dioxide to form urea. In some embodiments, the oxygen stream is contacted with olefins in the presence of a catalyst in the oxidation step to produce epoxide and carbon dioxide. Ammonia synthesis

在一些實施例中,氨合成方法包含在壓力容器中使用鐵催化劑將氮氣與氫富集合成氣混合以產生氨。在一些實施例中,可使用釕催化劑。在一些實施例中,氨合成方法包含在約100-150℃、約150-200℃、約200-250℃、約250-300℃、約300-350、約350-400℃、約400-450℃、約450-500℃、約500-550℃、約550-600℃、約600-700℃、約700-800℃或約800-900℃下將氮氣與氫富集合成氣混合。在一些實施例中,氨合成方法包含在約400-450℃下將氮氣與氫富集合成氣混合。在一些實施例中,氨合成方法包含在約50-100 atm、約100-150 atm、約150-200 atm、約200-250 atm、約250-300 atm、約300-350 atm或約350-400 atm下將氮氣與氫富集合成氣混合。在一些實施例中,氨合成方法包含在約200 atm下將氮氣與氫富集合成氣混合。In some embodiments, the ammonia synthesis method includes using an iron catalyst in a pressure vessel to mix nitrogen and hydrogen-rich gas to produce ammonia. In some embodiments, ruthenium catalysts can be used. In some embodiments, the ammonia synthesis method comprises at about 100-150°C, about 150-200°C, about 200-250°C, about 250-300°C, about 300-350, about 350-400°C, about 400-450 Nitrogen and hydrogen-rich gas are mixed at ℃, about 450-500 ℃, about 500-550 ℃, about 550-600 ℃, about 600-700 ℃, about 700-800 ℃ or about 800-900 ℃. In some embodiments, the ammonia synthesis method includes mixing nitrogen and hydrogen-rich gas at about 400-450°C. In some embodiments, the ammonia synthesis method comprises at about 50-100 atm, about 100-150 atm, about 150-200 atm, about 200-250 atm, about 250-300 atm, about 300-350 atm, or about 350- At 400 atm, nitrogen and hydrogen enriched gas are mixed. In some embodiments, the ammonia synthesis method includes mixing nitrogen and hydrogen-rich gas at about 200 atm.

在一些實施例中,氨合成方法為約10-20分鐘、約20-30分鐘、約30-40分鐘、約40-50分鐘、約50-60分鐘、約1-2小時、約2-3小時或約3-4小時。In some embodiments, the ammonia synthesis method is about 10-20 minutes, about 20-30 minutes, about 30-40 minutes, about 40-50 minutes, about 50-60 minutes, about 1-2 hours, about 2-3 Hours or about 3-4 hours.

在一些實施例中,氫富集合成氣及氮氣在催化劑床上通過超過一次、超過兩次、超過三次、超過四次、超過五次、超過六次、超過七次、超過八次、超過九次、超過十次、超過15次、超過20次、超過25次、或超過30次。In some embodiments, the hydrogen-rich integrated gas and nitrogen pass over the catalyst bed more than once, more than two times, more than three times, more than four times, more than five times, more than six times, more than seven times, more than eight times, more than nine times , More than ten times, more than 15 times, more than 20 times, more than 25 times, or more than 30 times.

在一些實施例中,各自通過催化劑床之轉化率在約5-10%、約10-15%、約15-20%、約20-25%、約25-30%、約30-35%、約35-40%、約40-45%或約45-50%範圍內。在一些實施例中,各自通過催化劑床之轉化率為約15%。截至該方法結束,在一些實施例中,氮及氫至氨之轉化超過約50%、超過約55%、超過約60%、超過約65%、超過約70%、超過約80%、超過約85%、超過約90%、超過約95%或超過約97%。在一些實施例中,氮及氫至氨之轉化為約97%。在一些實施例中,在冷卻之後,氨變成液體且未反應氣體再循環回至氨化方法中。脲合成 In some embodiments, the conversion rate through the catalyst bed is about 5-10%, about 10-15%, about 15-20%, about 20-25%, about 25-30%, about 30-35%, Within the range of about 35-40%, about 40-45%, or about 45-50%. In some embodiments, each conversion rate through the catalyst bed is about 15%. As of the end of the method, in some embodiments, the conversion of nitrogen and hydrogen to ammonia exceeds about 50%, exceeds about 55%, exceeds about 60%, exceeds about 65%, exceeds about 70%, exceeds about 80%, exceeds about 85%, more than about 90%, more than about 95%, or more than about 97%. In some embodiments, the conversion of nitrogen and hydrogen to ammonia is about 97%. In some embodiments, after cooling, ammonia becomes liquid and unreacted gas is recycled back to the ammoniation process. Urea synthesis

在另一態樣中,可使用在醇醱酵、烯烴氧化及合成氣製造期間產生的過量二氧化碳來使氨產物羰基化以產生含氮化合物,諸如脲。在一些實施例中,二氧化碳源自醇醱酵方法。在一些實施例中,二氧化碳源自烯烴氧化方法。在一些實施例中,二氧化碳源自合成氣。在一些實施例中,二氧化碳源自醇醱酵、烯烴氧化及合成氣或其組合。在一些實施例中,二氧化碳可源自烯烴氧化及/或醱酵及/或合成氣以用於下游化學方法中。In another aspect, excess carbon dioxide generated during alcohol fermentation, olefin oxidation, and synthesis gas production can be used to carbonylate the ammonia product to produce a nitrogen-containing compound, such as urea. In some embodiments, the carbon dioxide is derived from the alcohol fermentation method. In some embodiments, the carbon dioxide originates from the olefin oxidation process. In some embodiments, carbon dioxide is derived from syngas. In some embodiments, the carbon dioxide is derived from alcohol fermentation, olefin oxidation, and syngas, or a combination thereof. In some embodiments, carbon dioxide may be derived from olefin oxidation and/or fermentation and/or synthesis gas for use in downstream chemical processes.

在一些實施例中,用於脲生產方法之二氧化碳源自生物質之氣化。在某些實施例中,用於脲製造方法之二氧化碳源自石油及基於石油源之氣化。在一些實施例中,在脲製造方法中與氨反應的二氧化碳源自醇醱酵、烯烴氧化及氣化之混合物。在一些實施例中,在脲製造方法中與氨反應之二氧化碳源自至少10%、至少20%、至少30%、至少40%、至少50%、至少60%、至少70%、至少80%或至少90%生物基源。在一些實施例中,在脲製造方法中與氨反應之二氧化碳源自約100%生物基源。In some embodiments, the carbon dioxide used in the urea production process is derived from the gasification of biomass. In certain embodiments, the carbon dioxide used in the urea manufacturing process is derived from petroleum and gasification based on petroleum sources. In some embodiments, the carbon dioxide that reacts with ammonia in the urea manufacturing process originates from a mixture of alcohol fermentation, olefin oxidation, and gasification. In some embodiments, the carbon dioxide that reacts with ammonia in the urea manufacturing process originates from at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, or At least 90% bio-based sources. In some embodiments, the carbon dioxide that reacts with ammonia in the urea manufacturing process originates from about 100% bio-based sources.

在一些實施例中,二氧化碳在高壓下與氨反應以形成胺基甲酸銨。在一些實施例中,二氧化碳在約50-100 atm、約100-150 atm、約150-200 atm、約200-250 atm、約250-300 atm、約300-350 atm、約350-400 atm或約400-500 atm下與氨反應。在一些實施例中,二氧化碳在約250 atm下與氨反應。由於反應為發熱的,因此藉由產生蒸汽之鍋爐回收熱。在一些實施例中,初始反應實現超過50%、超過55%、超過60%、超過65%、超過70%、超過75%、超過80%、超過85%、超過90%或超過95%之二氧化碳至脲之轉化。在一些實施例中,初始反應實現超過75%之二氧化碳至脲之轉化。In some embodiments, carbon dioxide reacts with ammonia under high pressure to form ammonium carbamate. In some embodiments, the carbon dioxide is at about 50-100 atm, about 100-150 atm, about 150-200 atm, about 200-250 atm, about 250-300 atm, about 300-350 atm, about 350-400 atm or Reacts with ammonia at about 400-500 atm. In some embodiments, carbon dioxide reacts with ammonia at about 250 atm. Since the reaction is exothermic, heat is recovered by the boiler that generates steam. In some embodiments, the initial reaction achieves more than 50%, more than 55%, more than 60%, more than 65%, more than 70%, more than 75%, more than 80%, more than 85%, more than 90%, or more than 95% carbon dioxide Conversion to urea. In some embodiments, the initial reaction achieves more than 75% conversion of carbon dioxide to urea.

執行三步驟純化方法以移除水及未消耗的反應氨、二氧化碳及胺基甲酸銨,得到脲產物。在一些實施例中,脲產物包含約30-40%、約40-50%、約50-60%、約60-70%、約70-75%、約75-80%、約80-85%、約85-90%或約90-95%脲。在一些實施例中,脲產物包含約5-10%、約10-15%、約15-20%、約20-25%、約25-30%、約30-35%、約35-40%、約45-50%、或約50-55%脲。在一些實施例中,脲產物包含約75-80%脲,以及約20%氨。A three-step purification method is performed to remove water and unconsumed reaction ammonia, carbon dioxide, and ammonium carbamate to obtain a urea product. In some embodiments, the urea product comprises about 30-40%, about 40-50%, about 50-60%, about 60-70%, about 70-75%, about 75-80%, about 80-85% , About 85-90% or about 90-95% urea. In some embodiments, the urea product comprises about 5-10%, about 10-15%, about 15-20%, about 20-25%, about 25-30%, about 30-35%, about 35-40% , About 45-50%, or about 50-55% urea. In some embodiments, the urea product contains about 75-80% urea, and about 20% ammonia.

在不受理論束縛之情況下,在一些實施例中,脲係經由兩個均衡反應中之胺基甲酸銨中間物由氨及二氧化碳產生:

Figure 02_image037
Without being bound by theory, in some embodiments, urea is produced from ammonia and carbon dioxide via the ammonium carbamate intermediate in two equilibrium reactions:
Figure 02_image037

相比之下,使用兩個脲分子以形成縮二脲及氨之工業合成脲為非所需的,不僅因為其降低脲產率,且亦因為縮二脲對於植物為有毒的,使得其不適合用作肥料。 用於合成共聚物之整合系統及方法In contrast, the industrial synthesis of urea using two urea molecules to form biuret and ammonia is undesirable, not only because it reduces the urea yield, but also because biuret is toxic to plants, making it unsuitable Used as fertilizer. Integrated system and method for synthesizing copolymer

在另一態樣中,提供整合原材料以產生共聚物以及羰基化產物之系統及方法。在一些實施例中,該方法將植物物質轉換成甘油三酯,將甘油三酯轉酯(transesterificate)化以產生甘油且將甘油與羰基化產物(諸如β內酯)共聚合。在一些實施例中,該方法包含β內酯與甘油之共聚合。在一些實施例中,該方法包含丁二酸酐與甘油之共聚合。In another aspect, a system and method for integrating raw materials to produce copolymers and carbonylation products are provided. In some embodiments, the method converts plant matter to triglycerides, transesterifies the triglycerides to produce glycerol, and copolymerizes the glycerol with a carbonylation product such as beta lactone. In some embodiments, the method comprises copolymerization of beta lactone and glycerin. In some embodiments, the method includes copolymerization of succinic anhydride and glycerin.

參考 4 方法400 為涉及處理植物482 以自植物萃取植物油之例示性方法。例示性植物可包括玉米、甜菜及椰棗。可用甲醇及氫富集合成氣處理植物油,其在轉酯化區484 中經歷化學修飾以產生甘油486 。含碳源402 經歷氣化404 以產生合成氣流406 。隨後,藉由合成氣流使環氧化物羰基化422 產生環氧化物羰基化產物432 。羰基化產物432 可與甘油486 組合以產生共聚物及/或多元醇492 植物油轉酯化 Referring to FIG. 4 , the method 400 is an exemplary method involving treating the plant 482 to extract vegetable oil from the plant. Exemplary plants may include corn, beets, and dates. The vegetable oil can be treated with methanol and hydrogen-enriched synthesis gas, which undergoes chemical modification in the transesterification zone 484 to produce glycerol 486 . The carbon-containing source 402 undergoes gasification 404 to produce a syngas stream 406 . Subsequently, the epoxide carbonylation product 432 is produced by synthesizing the epoxide carbonylation 422 . The carbonylation product 432 can be combined with glycerol 486 to produce a copolymer and/or polyol 492 . Vegetable oil transesterification

植物脂肪及植物油由甘油三酯構成,其為藉由三種游離脂肪酸與三醇(甘油)之反應所形成之酯。在不受理論束縛之情況下,在轉酯化方法中,所添加醇藉由鹼去質子化以使得其成為更強的親核試劑。除三酸甘油酯及醇以外,反應不具有其他輸入物。在一些實施例中,催化劑(酸及/或鹼)用於轉酯化反應。在一些實施例中,在轉酯化反應期間加熱三酸甘油酯及醇。用於轉酯化之常用鹼催化劑包括氫氧化鈉、氫氧化鉀及甲醇鈉。Vegetable fats and vegetable oils are composed of triglycerides, which are esters formed by the reaction of three free fatty acids and triols (glycerol). Without being bound by theory, in the transesterification process, the added alcohol is deprotonated by a base to make it a stronger nucleophile. Except for triglycerides and alcohols, the reaction has no other inputs. In some embodiments, catalysts (acids and/or bases) are used in the transesterification reaction. In some embodiments, the triglyceride and alcohol are heated during the transesterification reaction. Common alkali catalysts used for transesterification include sodium hydroxide, potassium hydroxide and sodium methoxide.

在某些實施例中,轉酯化反應涉及使植物油或脂肪與短鏈醇(諸如甲醇及乙醇)反應。在一些實施例中,轉酯化方法必須使用低分子量乙醇,乙醇由於低成本而最常使用。然而,使用甲醇可達成更高的生物柴油轉化率。In certain embodiments, the transesterification reaction involves reacting vegetable oils or fats with short-chain alcohols such as methanol and ethanol. In some embodiments, the transesterification process must use low molecular weight ethanol, which is most commonly used due to low cost. However, using methanol can achieve a higher biodiesel conversion rate.

在一些實施例中,轉酯化反應使用藉由本文中所描述之醇醱酵方法所產生的乙醇。在一些實施例中,轉酯化反應藉由酸催化。在一些實施例中,轉酯化反應為鹼催化的,此係由於此途徑具有比用於酸催化反應的彼等更短的反應時間及更低的催化劑成本。In some embodiments, the transesterification reaction uses ethanol produced by the alcohol fermentation method described herein. In some embodiments, the transesterification reaction is catalyzed by an acid. In some embodiments, the transesterification reaction is base-catalyzed because this pathway has a shorter reaction time and lower catalyst cost than those used for acid-catalyzed reactions.

在一些實施例中,鹼催化轉酯化反應藉由醇進行以產生生物柴油及甘油(其可為此反應之副產物)。轉酯化產物包括生物柴油、肥皂、甘油、過量醇及痕量之水。在一些實施例中,甘油與生物柴油及其他產物分離,經處理且純化以用於下游化學品製造。在一些實施例中,基於密度差異將甘油與生物柴油分離。在一些實施例中,殘餘甲醇藉由蒸餾回收且重複使用且肥皂可經移除或轉化為酸。在一些變化形式中,甘油可經整合回至本文中所描述之系統及方法中。In some embodiments, the base-catalyzed transesterification reaction is performed with alcohol to produce biodiesel and glycerol (which may be a by-product of this reaction). Transesterification products include biodiesel, soap, glycerin, excess alcohol, and trace amounts of water. In some embodiments, glycerin is separated from biodiesel and other products, processed and purified for downstream chemical manufacturing. In some embodiments, glycerol is separated from biodiesel based on density differences. In some embodiments, residual methanol is recovered by distillation and reused and soap can be removed or converted to acid. In some variations, glycerin can be integrated back into the systems and methods described herein.

在一些實施例中,所萃取植物油可用於經由轉酯化之化學反應產生寶貴的生物燃料,生物柴油。在本發明中,不存在關於可用於生物柴油製造中之植物油的限制。例示性進料可包括(但不限於)玉米、甜菜、椰棗、紅花、棉籽及任何較高含油植物。不純且再循環植物油經處理以移除源自儲存、操作及處理之雜質。無關於原料,去除水,因為其存在在鹼催化轉酯化期間使得甘油三酯水解,得到脂肪酸鹽(肥皂)而非產生生物柴油。In some embodiments, the extracted vegetable oil can be used to produce a valuable biofuel, biodiesel, through a transesterification chemical reaction. In the present invention, there are no restrictions on vegetable oils that can be used in the production of biodiesel. Exemplary feeds can include, but are not limited to, corn, sugar beet, date palm, safflower, cottonseed, and any higher oleaginous plants. Impure and recycled vegetable oils are processed to remove impurities originating from storage, handling and processing. Regardless of the raw material, water is removed because its presence causes the hydrolysis of triglycerides during alkali-catalyzed transesterification, resulting in fatty acid salts (soap) instead of producing biodiesel.

在一些實施例中,用於製造生物柴油之植物油源自玉米,此係由於本發明中描述之整合方法可使用玉米糖類作為醇醱酵中之養分源。在一些實施例中,在本發明中用於生物柴油製造之植物油將源自處理用作醱酵之養分源之植物物質。在一些實施例中,在本發明中用於生物柴油製造之植物油將源自獲自其他源(諸如農業廢棄物)之植物物質。植物油萃取方法可產生不含任何污染物之實質上純的油。In some embodiments, the vegetable oil used to manufacture biodiesel is derived from corn, since the integrated method described in the present invention can use corn sugar as a nutrient source in alcohol fermentation. In some embodiments, the vegetable oil used in the production of biodiesel in the present invention will be derived from the treatment of plant matter used as a nutrient source for fermentation. In some embodiments, the vegetable oil used in the production of biodiesel in the present invention will be derived from plant matter obtained from other sources, such as agricultural waste. The vegetable oil extraction method can produce a substantially pure oil that does not contain any contaminants.

在一些實施例中,純植物油流與醇流及合成氣流反應以引發轉酯化反應。在一些實施例中,用於轉酯化方法中之醇包含乙醇。在一些實施例中,用於轉酯化方法中之醇包含甲醇。在一些實施例中,合成氣流之氫比一氧化碳比率小於一。在一些實施例中,合成氣流之氫比一氧化碳比率大於一。在一些實施例中,轉酯化反應係鹼催化的。In some embodiments, the pure vegetable oil stream reacts with the alcohol stream and the synthesis gas stream to initiate the transesterification reaction. In some embodiments, the alcohol used in the transesterification process comprises ethanol. In some embodiments, the alcohol used in the transesterification process comprises methanol. In some embodiments, the ratio of hydrogen to carbon monoxide in the syngas stream is less than one. In some embodiments, the syngas stream has a hydrogen to carbon monoxide ratio greater than one. In some embodiments, the transesterification reaction is base catalyzed.

在一些實施例中,植物油包含少量水分及游離脂肪酸。在一些實施例中,植物油包含低於10%、低於5%、低於4%、低於3%、低於2%或小於1%之水分(w/w)。在一些實施例中,植物油包含低於30%、低於25%、低於20%、低於15%、低於10%、低於5%或小於1%之游離脂肪酸(w/w)。In some embodiments, the vegetable oil contains a small amount of water and free fatty acids. In some embodiments, the vegetable oil contains less than 10%, less than 5%, less than 4%, less than 3%, less than 2%, or less than 1% moisture (w/w). In some embodiments, the vegetable oil contains less than 30%, less than 25%, less than 20%, less than 15%, less than 10%, less than 5%, or less than 1% of free fatty acids (w/w).

在一些實施例中,轉酯化反應物具有約超過50%、超過55%、超過60%、超過65%、超過70%、超過75%、超過80%、超過85%、超過90%、超過95%或超過98%之轉化率。在一些實施例中,轉酯化反應具有超過98%之轉化率。聚合反應 In some embodiments, the transesterification reactant has about more than 50%, more than 55%, more than 60%, more than 65%, more than 70%, more than 75%, more than 80%, more than 85%, more than 90%, more than 95% or more than 98% conversion rate. In some embodiments, the transesterification reaction has a conversion rate exceeding 98%. Polymerization

在一些實施例中,共聚合在存在金屬複合物的情況下進行,該金屬複合物包括具有至少一種配位體之永久配位體集合,該配位體為聚合起始劑及具有能夠引發聚合物鏈之複數個位點的鏈轉移劑。在一些實施例中,作為聚合起始劑之配位體具有複數個聚合物引發位點。適用於本發明之鏈轉移劑包含具有能夠在環氧化物與甘油之共聚合中引發鏈生長之兩個或更多個位點之任何化合物。在一些實施例中,此等化合物並不具有干擾聚合之其他官能基。在一些實施例中,可在存在催化劑的情況下執行甘油與環氧化物之共聚合。在一些實施例中,聚合系統進一步包括共催化劑。In some embodiments, the copolymerization is performed in the presence of a metal complex that includes a permanent ligand set with at least one ligand, which is a polymerization initiator and has the ability to initiate polymerization A chain transfer agent at a plurality of sites on the physical chain. In some embodiments, the ligand as a polymerization initiator has a plurality of polymer initiation sites. The chain transfer agent suitable for the present invention includes any compound having two or more sites capable of initiating chain growth in the copolymerization of epoxide and glycerin. In some embodiments, these compounds do not have other functional groups that interfere with the polymerization. In some embodiments, the copolymerization of glycerin and epoxide can be performed in the presence of a catalyst. In some embodiments, the polymerization system further includes a co-catalyst.

在一些實施例中,鏈轉移劑可具有較寬廣化學結構陣列。在一些實施例中,鏈轉移劑之各分子能夠引發兩個或更多個聚碳酸酯鏈。在不受理論束縛之情況下,此可藉由數個機制發生,包括(例如):藉由使環氧化物單體開環,藉由與二氧化碳分子反應以得到能夠維持聚合物鏈生長之部分,或藉由此等之組合。在一些實施例中,鏈轉移劑包含能夠獨立地與二氧化碳或環氧化物反應之兩個或更多個官能基。此等官能基之實例包括分子,諸如二酸、乙二醇、二醇、三醇、羥基酸、胺基酸、胺基乙醇、二硫醇、氫硫基乙醇、醣類、兒茶酚、聚醚等。在一些實施例中,鏈轉移劑包含自身能夠反應多次以引發超過一個聚合物鏈之多重活性官能基。後者之實例包括具有能夠反應多次之單原子之官能基,諸如氨、一級胺及水,以及具有超過一個親核原子之官能基,諸如脒(amidines)、胍、脲、

Figure 108116656-A0101-12-0030-1
酸等。In some embodiments, the chain transfer agent may have a broader array of chemical structures. In some embodiments, each molecule of the chain transfer agent can initiate two or more polycarbonate chains. Without being bound by theory, this can occur by several mechanisms, including (for example): by ring-opening the epoxide monomer, by reacting with carbon dioxide molecules to obtain a portion that can sustain the growth of the polymer chain , Or by a combination of these. In some embodiments, the chain transfer agent contains two or more functional groups capable of independently reacting with carbon dioxide or epoxide. Examples of such functional groups include molecules such as diacids, ethylene glycol, glycols, triols, hydroxy acids, amino acids, amino ethanols, dithiols, hydrogen thioethanols, sugars, catechols, Polyether, etc. In some embodiments, the chain transfer agent contains multiple reactive functional groups that can react multiple times to initiate more than one polymer chain. Examples of the latter include functional groups with single atoms capable of reacting multiple times, such as ammonia, primary amines and water, and functional groups with more than one nucleophilic atom, such as amidines, guanidine, urea,
Figure 108116656-A0101-12-0030-1
Acid and so on.

在一些實施例中,在不受任何理論限制的情況下,甘油與羰基化產物之共聚合可包含開環聚合。在一些實施例中,β內酯及/或丁二酸酐在存在具有羥基之化合物(諸如甘油)的情況下經受開環聚合反應。在一些實施例中,共聚合包含在鹼金屬氫氧化物(例如氫氧化鈉或氫氧化鉀)或鹼金屬醇化物(例如甲醇鈉、乙醇鈉、乙醇鉀或異丙醇鉀)作為催化劑下在添加含有2至8個反應性氫之至少一種起始劑分子下的陰離子聚合。在一些實施例中,共聚合包含藉由路易酸(例如五氯化銻或醚合三氟化硼)之陽離子聚合。在一些實施例中,共聚合包含來自在伸烷基中包含2至4個碳之一或多個環氧烷之漂白土作為催化劑。In some embodiments, without being bound by any theory, the copolymerization of glycerol and the carbonylation product may include ring-opening polymerization. In some embodiments, the β-lactone and/or succinic anhydride is subjected to ring-opening polymerization in the presence of a compound having a hydroxyl group, such as glycerin. In some embodiments, the copolymerization comprises an alkali metal hydroxide (eg sodium hydroxide or potassium hydroxide) or an alkali metal alcoholate (eg sodium methoxide, sodium ethoxide, potassium ethoxide or potassium isopropoxide) as a catalyst Anionic polymerization under the addition of at least one initiator molecule containing 2 to 8 reactive hydrogens. In some embodiments, the copolymerization includes cationic polymerization by Lewis acid (eg, antimony pentachloride or boron trifluoride etherate). In some embodiments, the copolymerization contains bleaching earth from one or more alkylene oxides containing 2 to 4 carbons in the alkylene group as a catalyst.

在一些實施例中,多元醇產物含有至少10%、至少20%、至少30%、至少40%、至少50%、至少60%、至少70%、至少80%或至少90%生物基內含物。在一些實施例中,多元醇產物含有約100%生物基內含物。多元醇生物基內含物可源自導致環氧化物羰基化產物與甘油之共聚合的化學方法中之任一者,包括產生甘油之植物物質處理、環氧化物製造及合成氣產生。In some embodiments, the polyol product contains at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, or at least 90% biobased content . In some embodiments, the polyol product contains about 100% bio-based inclusions. Polyol biobased inclusions can be derived from any of the chemical methods that lead to the copolymerization of epoxide carbonylation products with glycerin, including treatment of glycerin-producing plant matter, epoxide manufacturing, and syngas production.

參考 5 ,方法500 為產生多元醇之例示性方法。方法500 包含提供源自生物質或基於化石燃料源之氣化502 的經調節合成氣504 ;提供養分用於醱酵512 以產生醇及二氧化碳514 ;使醇脫水516 以產生烯烴;在催化反應中氧化烯烴518 以產生環氧化物及二氧化碳;使環氧化物與一氧化碳在存在羰基化催化劑的情況下反應522 以產生β內酯產物;回收氫富集合成氣流;處理582 並萃取584 植物油;使植物油在醇及氫富集合成氣流下經歷轉酯化處理586 以產生生物柴油及甘油;將長鏈烷基酯及甘油副產物處理成單獨流588 ;以及使β內酯與經處理甘油在存在催化劑的情況下共聚合592 以產生多元醇共聚物產物。 源自整合方法中之養分醱酵的環氧化物之羰基化Referring to FIG. 5 , the method 500 is an exemplary method of producing polyols. Method 500 includes providing conditioned syngas 504 derived from biomass or gasification 502 based on fossil fuel sources; providing nutrients for fermentation 512 to produce alcohol and carbon dioxide 514 ; dehydrating alcohol 516 to produce olefins; in a catalytic reaction Oxidizing olefin 518 to produce epoxide and carbon dioxide; reacting epoxide with carbon monoxide in the presence of a carbonylation catalyst 522 to produce β-lactone product; recovering hydrogen enriched into a gas stream; processing 582 and extracting 584 vegetable oil; making vegetable oil Undergoing transesterification treatment 586 to produce biodiesel and glycerol under an alcohol and hydrogen-enriched gas stream; processing long-chain alkyl esters and glycerol by-products into separate streams 588 ; and allowing β-lactone and treated glycerol in the presence of a catalyst 592 is copolymerized to produce a polyol copolymer product. Carbonylation of epoxides derived from nutrient fermentation in integrated methods

在另一態樣中,本文提供源自整合方法中使養分醱酵的環氧化物之羰基化。參考 6 ,方法600 為包括使養分培養基醱酵612 以產生醇之例示性方法。舉例而言,適合之培養基可含有對醱酵具有一般技術者熟知的可代謝糖類及能量源、蛋白質複合物、維生素及礦物。醇與醱酵區分離且經脫水以產生烯烴614 。隨後,烯烴經氧化以產生環氧化物618 ,隨後該環氧化物在羰基化單元622 中與合成氣606 反應以產生羰基化產物632 及氫富集合成氣642 。在一些實施例中,氫富集合成氣642 用於氨形成644 中。在一些實施例中,合成氣606 源自含碳源602 包括(例如)生物質、甲烷及基於石油之材料之氣化604養分 In another aspect, provided herein is the carbonylation of the epoxide derived from the nutrient fermentation in an integrated process. Referring to FIG. 6 , the method 600 is an exemplary method that includes fermenting the nutrient medium 612 to produce alcohol. For example, a suitable culture medium may contain metabolizable carbohydrates and energy sources, protein complexes, vitamins and minerals well known to those skilled in the art. The alcohol is separated from the fermentation zone and dehydrated to produce olefin 614 . Subsequently, the olefin is oxidized to produce epoxide 618 , which is then reacted with syngas 606 in carbonylation unit 622 to produce carbonylation product 632 and hydrogen-enriched synthesis gas 642 . In some embodiments, hydrogen-rich gas 642 is used in ammonia formation 644 . In some embodiments, syngas 606 is derived from a carbon-containing source 602 , including, for example, gasification 604 of biomass, methane, and petroleum-based materials. nutrient

在一些實施例中,養分包含單糖、複合糖、複合碳水化合物、多醣、蛋白質複合物、蛋白質水解產物或前述之混合物。用於細菌細胞之維持及生長之任何適合的方法可用於醱酵。舉例而言,醱酵條件可包括適合之溫度。在一些變化形式中,可在約250℃與約600℃之間,或在約300℃與約400℃之間的溫度下執行醱酵。醇脫水 In some embodiments, the nutrients comprise monosaccharides, complex sugars, complex carbohydrates, polysaccharides, protein complexes, protein hydrolysates, or mixtures of the foregoing. Any suitable method for the maintenance and growth of bacterial cells can be used for fermentation. For example, the fermentation conditions may include suitable temperatures. In some variations, the fermentation can be performed at a temperature between about 250°C and about 600°C, or at a temperature between about 300°C and about 400°C. Alcohol dehydration

在一些實施例中,脫水包含自醇移除羥基及氫原子以產生烯烴。可使用用於將醇脫水成對應不飽和烴之任何適合方法。In some embodiments, dehydration includes removing hydroxyl and hydrogen atoms from the alcohol to produce olefins. Any suitable method for dehydrating the alcohol to the corresponding unsaturated hydrocarbon can be used.

在一些變化形式中,脫水包含使經氣化醇穿過裝填有粗糙氧化鋁顆粒之試管且保持在約250-300℃、300-350℃、約350-400℃、約400-450℃或約450-500℃的溫度下。在一些實施例中,醇係藉由使用化學脫水劑在約50-100℃、約100-150℃、約150-200℃、約200-250℃或約250-300℃下脫水。在一些實施例中,脫水劑包含硫酸。在一些實施例中,該方法產生甲醇、乙醇、正丙醇、異丙醇、正丁醇、異丁醇或前述之混合物。在一些實施例中,該方法產生乙醇。In some variations, dehydration comprises passing the vaporized alcohol through a test tube filled with coarse alumina particles and maintaining it at about 250-300°C, 300-350°C, about 350-400°C, about 400-450°C, or about 450-500℃. In some embodiments, the alcohol is dehydrated by using a chemical dehydrating agent at about 50-100°C, about 100-150°C, about 150-200°C, about 200-250°C, or about 250-300°C. In some embodiments, the dehydrating agent includes sulfuric acid. In some embodiments, the method produces methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, or a mixture of the foregoing. In some embodiments, the method produces ethanol.

整合化學脫水方法,諸如醇脫水以形成烯烴可因此成為在如上文所描述之此類條件下在整個設備中保持高效水利用率之關鍵方法操作因素。烯烴氧化 Integrating chemical dehydration methods, such as alcohol dehydration to form olefins, can therefore be a key method operating factor to maintain efficient water utilization throughout the plant under such conditions as described above. Olefin oxidation

烯烴氧化包含將烯烴轉化為氧化烯烴或環氧化物,諸如環氧乙烷。可使用用於氧化烯烴以產生環氧化物之適合方法。舉例而言,此類方法包括使用銀環氧化催化劑及/或升級的銀環氧化催化劑。Olefin oxidation involves the conversion of olefins to oxidized olefins or epoxides, such as ethylene oxide. Suitable methods for oxidizing olefins to produce epoxides can be used. For example, such methods include the use of silver epoxidation catalysts and/or upgraded silver epoxidation catalysts.

在一些實施例中,該方法產生選自由以下組成之群的環氧化物:環氧乙烷、環氧丙烷、1,2-丁烯氧化物、2,3-丁烯氧化物、環氧環己烷、3-乙烯基環氧環己烷、環氧氯丙烷、縮水甘油酯、縮水甘油醚、氧化苯乙烯及更高α烯烴之環氧化物。在一些實施例中,該方法產生環氧乙烷。In some embodiments, the method produces an epoxide selected from the group consisting of ethylene oxide, propylene oxide, 1,2-butene oxide, 2,3-butene oxide, epoxy ring Epoxides of hexane, 3-vinylepoxycyclohexane, epichlorohydrin, glycidyl esters, glycidyl ethers, styrene oxide and higher alpha olefins. In some embodiments, the method produces ethylene oxide.

在一些實施例中,烯烴藉由氧氣氧化。在一些實施例中,氧氣源自空氣分離。在一些實施例中,氧源自二氧化碳電解。如下文使用之二氧化碳電解或轉化係指任何電化學方法,其中二氧化碳、碳酸鹽或碳酸氫鹽在電解方法中之任何步驟中經轉化為另一化學物質。In some embodiments, the olefin is oxidized by oxygen. In some embodiments, oxygen is derived from air separation. In some embodiments, oxygen originates from carbon dioxide electrolysis. Carbon dioxide electrolysis or conversion as used below refers to any electrochemical method in which carbon dioxide, carbonate or bicarbonate is converted into another chemical substance at any step in the electrolysis method.

電化學電池通常含有陽極、陰極及電解質。催化劑可置放於陽極上、陽極及陰極兩者處或僅陰極上。此外,催化劑可置放於電解質中或與陽極及陰極組合以促進所需電化學反應。在一些實施例中,催化劑包含以下中之一或多者:Ni、Cu、Au、Ru、Rh、Hg、Sn、Zr、Al、Co、Fe、Cr、Mn、V、Pd、Ag、Cd、Hf、Ta、W、Re、Ir、Pt、Si、Tl、Pb、Bi、Sb、Te、U、Sm、La、Ce及Nd。Electrochemical cells usually contain an anode, a cathode and an electrolyte. The catalyst may be placed on the anode, both the anode and the cathode, or only the cathode. In addition, the catalyst can be placed in the electrolyte or combined with the anode and cathode to promote the desired electrochemical reaction. In some embodiments, the catalyst comprises one or more of Ni, Cu, Au, Ru, Rh, Hg, Sn, Zr, Al, Co, Fe, Cr, Mn, V, Pd, Ag, Cd, Hf, Ta, W, Re, Ir, Pt, Si, Tl, Pb, Bi, Sb, Te, U, Sm, La, Ce and Nd.

在一些實施例中,催化劑增強二氧化碳轉化率或其他化合物之轉化。此等催化劑可包括進行以下各者中之至少一者的例如催化活性元素、輔助催化劑(其為任何有機分子或離子)或有機分子及/或離子之混合物:a)使化學反應加速或b)降低反應之過電勢,而不需在方法中經實質上消耗);以及輔助聚合物,其係指進行以下各者中之至少一者之聚合物:a)使化學反應加速;b)增大給定電勢下之電化學反應中可見的電流;或c)增大反應之選擇性。涉及二氧化碳轉化為其他化學品之反應類型包括均相催化反應、非均相催化反應、發電設備中之化學反應、化學設備中之化學反應及燃料電池中之化學反應。In some embodiments, the catalyst enhances carbon dioxide conversion or conversion of other compounds. Such catalysts may include, for example, catalytically active elements, auxiliary catalysts (which are any organic molecules or ions), or mixtures of organic molecules and/or ions that perform at least one of the following: a) accelerate chemical reactions or b) Reduce the overpotential of the reaction without substantial consumption in the method); and auxiliary polymer, which refers to a polymer that performs at least one of the following: a) accelerates the chemical reaction; b) increases The current visible in an electrochemical reaction at a given potential; or c) increase the selectivity of the reaction. The types of reactions involving the conversion of carbon dioxide to other chemicals include homogeneous catalytic reactions, heterogeneous catalytic reactions, chemical reactions in power generation equipment, chemical reactions in chemical equipment, and chemical reactions in fuel cells.

當電化學電池用作二氧化碳轉化系統時,將包含二氧化碳、碳酸鹽或碳酸氫鹽之反應物饋入至電池中。施加電壓且二氧化碳反應以形成新型化學化合物。在一些實施例中,用於電化學反應之二氧化碳源自醇醱酵。在一些實施例中,用於電化學反應之二氧化碳源自烯烴氧化方法。在一些實施例中,用於電化學反應之二氧化碳源自合成氣。在一些實施例中,用於電化學反應之二氧化碳源自養分醱酵、烯烴氧化方法及合成氣或其組合。在一些實施例中,電化學反應消耗二氧化碳以形成氧及一氧化碳。在一些實施例中,電化學反應將二氧化碳、碳酸鹽及碳酸氫鹽或其混合物轉化為氧及一氧化碳。When an electrochemical cell is used as a carbon dioxide conversion system, a reactant containing carbon dioxide, carbonate or bicarbonate is fed into the cell. Voltage is applied and carbon dioxide reacts to form new chemical compounds. In some embodiments, the carbon dioxide used for the electrochemical reaction is derived from alcohol fermentation. In some embodiments, the carbon dioxide used for the electrochemical reaction originates from the olefin oxidation method. In some embodiments, the carbon dioxide used for the electrochemical reaction is derived from syngas. In some embodiments, the carbon dioxide used for the electrochemical reaction is derived from nutrient fermentation, olefin oxidation methods, and syngas or a combination thereof. In some embodiments, the electrochemical reaction consumes carbon dioxide to form oxygen and carbon monoxide. In some embodiments, the electrochemical reaction converts carbon dioxide, carbonate and bicarbonate, or mixtures thereof to oxygen and carbon monoxide.

二氧化碳電解可幫助還原自大規模工業設備排放之二氧化碳且消除對空氣分離單元供應氧氣之需求。Carbon dioxide electrolysis can help reduce carbon dioxide emitted from large-scale industrial equipment and eliminate the need for oxygen supply to the air separation unit.

養分醱酵方法可用於在本文中描述之所有整合方法中產生環氧化物。藉由氫富集合成氣之下游反應 Nutrient fermentation methods can be used to produce epoxides in all integrated methods described herein. Downstream reaction of enriched gas by hydrogen

在一些實施例中,氫富集合成氣經整合至下游化學品製造方法中以製得多種寶貴產物。在一些實施例中,氫富集合成氣之H2 :CO比率為至少1.5、至少2、至少2.5、至少3.0、至少3.5、至少4.0、至少4.5、至少5.0、至少5.5、至少6.0、至少6.5、至少7.0、至少7.5、至少8.0、至少8.5、至少9.0、至少9.5或至少10。在一些實施例中,氫富集合成氣經整合至費-托法中以產生費-托產物。本文中之系統及方法中產生之高純度氫氣流可針對用於能量消耗之氫燃料電池。在一些實施例中,氫富集合成氣可與氫燃料電池反應以產生電能。在一些實施例中,氫富集合成氣可與氮氣反應以產生氨。在一些實施例中,氨可進一步與二氧化碳反應以產生脲。In some embodiments, the hydrogen-rich integrated gas is integrated into downstream chemical manufacturing processes to produce a variety of valuable products. In some embodiments, the H 2 :CO ratio of the hydrogen-enriched gas is at least 1.5, at least 2, at least 2.5, at least 3.0, at least 3.5, at least 4.0, at least 4.5, at least 5.0, at least 5.5, at least 6.0, at least 6.5 , At least 7.0, at least 7.5, at least 8.0, at least 8.5, at least 9.0, at least 9.5 or at least 10. In some embodiments, the hydrogen-rich integrated gas is integrated into the Fischer-Tropsch process to produce a Fischer-Tropsch product. The high-purity hydrogen stream generated in the systems and methods herein can be directed to hydrogen fuel cells for energy consumption. In some embodiments, the hydrogen-rich gas can be reacted with a hydrogen fuel cell to produce electrical energy. In some embodiments, the hydrogen-enriched gas can react with nitrogen to produce ammonia. In some embodiments, ammonia may further react with carbon dioxide to produce urea.

在一些實施例中,氫富集合成氣可進一步饋入經組態用於費-托法744 反應器中,如 7 中之例示性方法700 描繪。在一些實施例中,氫富集合成氣可進一步饋入經組態為氫燃料電池電源742 之電池中,如方法700 中再次描繪。再次參考 7 方法700 亦可包括在步驟712 中使養分醱酵以產生醇714 ;使醇脫水以產生烯烴716 ;藉由氧使烯烴氧化以產生環氧化物718 ;使含碳源氣化702 以產生H2 :CO<1之合成氣流;調節合成氣704 ;藉由合成氣流使環氧化物羰基化722 以產生羰基化產物732 ;以及在下游化學品製造方法中利用環氧化物羰基化產物製得衍生物。舉例而言,在一些變化形式中,此類下游方法可包括與甘油反應以產生多元醇。在一些實施例中,可將醇與其他醱酵副產物分離,隨後使醇脫水。在一些實施例中,氫富集合成氣流經轉移用於非化學品合成用途,諸如用於在燃料或電力工業中出售或用於作為商用化學品出售。In some embodiments, the hydrogen-rich synthesis gas feed by further configured for Fischer - Tropsch process reactor 744, as in the FIG. 7 illustrates a method 700 is depicted. In some embodiments, the hydrogen-rich gas can be further fed into a battery configured as a hydrogen fuel cell power supply 742 , as depicted again in method 700 . Referring again to FIG. 7 , the method 700 may also include fermenting nutrients to produce alcohol 714 in step 712 ; dehydrating the alcohol to produce olefin 716 ; oxidizing the olefin with oxygen to produce epoxide 718 ; gasifying the carbon-containing source 702 to produce a syngas stream with H 2 :CO<1; adjust syngas 704 ; carbonylate epoxide 722 by syngas stream to produce carbonylation product 732 ; and use epoxide carbonylation in downstream chemical manufacturing methods The product produces a derivative. For example, in some variations, such downstream methods may include reaction with glycerol to produce a polyol. In some embodiments, the alcohol may be separated from other fermentation by-products, and the alcohol is subsequently dehydrated. In some embodiments, the hydrogen-rich integrated gas stream is transferred for non-chemical synthesis uses, such as for sale in the fuel or power industry or for sale as a commercial chemical.

在一些實施例中,源自羰基化反應之氫富集合成氣用於在第二羰基化反應中使環氧化物羰基化。參考 8 ,方法800 為例示性方法,其中環氧化物在第一羰基化單元822 及第二羰基化單元824 中藉由合成氣碳酸化804 。將第一氫富集氣體與二氧化碳組合以產生甲醇842 。隨後,甲醇經歷甲醇至烯烴方法844 其中產生烯烴產物流。烯烴產物流經歷烯烴氧化處理818 產生環氧化物流。在某些實施例中,氧可獲自空氣之分離。第二氫富集合成氣可用於其他氫化反應846 。在一些實施例中,將一氧化碳下游添加至第一羰基化單元。藉由第二羰基化826 中產生的β內酯執行第二羰基化反應。此反應產生酐產物流,其可在下游化學品製造方法中用作中間物。在一些實施例中,酐產物流經歷氫化處理846 以轉化為寶貴的化學品。視步驟846 中使用的催化劑類型及產生的酐化學結構而定,產生多種氫化產物。舉例而言,此類氫化產物可包括四氫呋喃、丁二醇及γ-丁內酯。In some embodiments, the hydrogen-enriched synthesis gas from the carbonylation reaction is used to carbonylate the epoxide in the second carbonylation reaction. Referring to FIG. 8 , the method 800 is an exemplary method in which the epoxide is carbonated 804 by syngas in the first carbonylation unit 822 and the second carbonylation unit 824 . The first hydrogen-rich gas is combined with carbon dioxide to produce methanol 842 . Subsequently, methanol and methanol-to-olefin subjected to the method 844, wherein the olefin product stream is generated. The olefin product stream undergoes olefin oxidation treatment 818 to produce an epoxide stream. In some embodiments, oxygen can be obtained from the separation of air. The second hydrogen-rich gas can be used for other hydrogenation reactions 846 . In some embodiments, carbon monoxide is added downstream to the first carbonylation unit. The second carbonylation reaction is performed by the β lactone produced in the second carbonylation 826 . This reaction produces an anhydride product stream, which can be used as an intermediate in downstream chemical manufacturing processes. In some embodiments, the anhydride product stream undergoes hydroprocessing 846 to be converted into valuable chemicals. Depending on the type of catalyst used in step 846 and the chemical structure of the anhydride produced, various hydrogenation products are produced. For example, such hydrogenated products may include tetrahydrofuran, butanediol, and gamma-butyrolactone.

第二羰基化方法可用於本文中描述之所有整合方法中以增大合成氣中之H2 :CO比率。The second carbonylation method can be used in all integration methods described herein to increase the H 2 :CO ratio in the syngas.

在一些實施例中,方法包含使含碳材料氣化以產生包含分子組分一氧化碳之合成氣;藉由合成氣使包含環氧乙烷之第一試劑羰基化以產生包含β-丙內酯之羰基化產物及氫富集合成氣;以及使包含氫之富集合成氣與包含烯烴之第二試劑反應以產生醛或異醛。參考 9 方法900 為涉及製造醛及異醛之例示性方法。在一些實施例中,當源自醇脫水之烯烴918 與合成氣接觸且在存在催化劑的情況下經受氫甲醯化反應942 時,進行整合醛及異醛製造方法900 以產生醛及異醛流。In some embodiments, the method includes gasifying a carbon-containing material to produce a synthesis gas that includes the molecular component carbon monoxide; carbonylating a first reagent that includes ethylene oxide with the synthesis gas to produce a β-propiolactone-containing synthesis gas The carbonylation product and hydrogen-enriched integrated gas; and reacting the hydrogen-enriched integrated gas with a second reagent containing an olefin to produce an aldehyde or isoaldehyde. Referring to FIG. 9 , the method 900 is an exemplary method involving manufacturing aldehyde and isoaldehyde. In some embodiments, when the olefin 918 derived from alcohol dehydration is contacted with syngas and undergoes hydroformylation reaction 942 in the presence of a catalyst, an integrated aldehyde and isoaldehyde manufacturing method 900 is performed to produce an aldehyde and isoaldehyde stream .

在一些實施例中,提供使用二氧化碳電解劑整合設備操作以產生更高價值化學品的方法。參考 10 ,方法1000 為涉及電解二氧化碳以產生氧及一氧化碳1002 之例示性方法;使養分醱酵以產生醇及二氧化碳1012 ;使醇脫水以產生烯烴1014 ;藉由氧使烯烴氧化以產生環氧化物1016 ;以及在存在羰基化催化劑的情況下藉由一氧化碳使環氧化物羰基化以產生β內酯產物1022 。在一個變化形式中,可在固體氧化物電解器中執行電解步驟。在一些實施例中,方法包括醇分離步驟,該醇分離步驟包含蒸餾。在一些實施例中,方法包括諸如使用分子篩及滲透蒸發的脫水步驟。在一些實施例中,用於電解之二氧化碳源源自醇醱酵1012 、烯烴氧化1016 、含有二氧化碳之合成氣製造流或前述之混合物。氧流1004 經處理且視情況經純化。In some embodiments, a method of integrating equipment operations using carbon dioxide electrolyzer to produce higher value chemicals is provided. Referring to Figure 10, 1000 is directed to a method to produce carbon dioxide electrolysis exemplary method 1002 of oxygen and carbon monoxide; Po the nutrient fermentation to produce alcohol and carbon dioxide 1012; dehydrated to produce an olefin alcohol 1014; olefin by oxygen to produce ethylene oxide Compound 1016 ; and carbonylation of the epoxide by carbon monoxide in the presence of a carbonylation catalyst to produce beta lactone product 1022 . In a variant, the electrolysis step can be performed in a solid oxide electrolyser. In some embodiments, the method includes an alcohol separation step that includes distillation. In some embodiments, the method includes dehydration steps such as the use of molecular sieves and pervaporation. In some embodiments, the source of carbon dioxide for electrolysis is derived from alcohol fermentation 1012 , olefin oxidation 1016 , a synthesis gas production stream containing carbon dioxide, or a mixture of the foregoing. Oxygen stream 1004 is treated and purified as appropriate.

在一些實施例中,視情況經純化之氧流1004 用於烯烴氧化1016 中,因此產生替代性或並行流至醇脫水用於環氧化物製造。在一些實施例中,一氧化碳流1006 經處理且視情況經純化。在一些實施例中,在羰基化單元1022 中,視情況經純化之一氧化碳流1006 與來自烯烴氧化1016 之環氧化物混合,產生環氧化物羰基化產物。藉由本發明中之方法之某些實施例製得的羰基化產物包括例如β內酯及β內酯聚合物1032In some embodiments, the optionally purified oxygen stream 1004 is used in olefin oxidation 1016 , thus generating alternative or parallel streams to alcohol dehydration for epoxide manufacturing. In some embodiments, the carbon monoxide stream 1006 is processed and optionally purified. In some embodiments, in the carbonylation unit 1022 , optionally purified carbon oxide stream 1006 is mixed with epoxide from olefin oxidation 1016 to produce an epoxide carbonylation product. The carbonylation products made by certain embodiments of the method of the present invention include, for example, β-lactone and β-lactone polymer 1032 .

參考 11A ,方法1100 為產生氨、脲及共聚物之例示性方法。該方法包含提供源自生物質或基於化石燃料源之氣化1104 的合成氣1106 ;提供養分用於醱酵以產生醇及二氧化碳1112 ;使醇脫水以產生烯烴1114 ;提供來自空氣分離單元1152 之氮及氧;在催化性反應中將氧與烯烴組合以產生環氧化物及二氧化碳1116 ;在存在羰基化催化劑的情況下使環氧化物與合成氣反應1122 以產生β內酯產物1132 ;回收具有比起始合成氣流更高氫比一氧化碳比率之氫富集合成氣流1142 ;在處理期間純化植物油1182 ;藉由醇及氫富集合成氣流使植物油經歷轉酯化處理以產生長鏈烷基酯及甘油1184 ;將長鏈烷基酯及甘油副產物處理成單獨流1186 ;以及在存在催化劑的情況下將β內酯與經處理甘油共聚合以產生多元醇共聚物產物1192 。在一些實施例中,由養分醱酵1112 產生之醇1113 可用於如 11B 中所展示之植物油萃取方法1182 中。在一些實施例中,由含碳源1102 之氣化1104 產生之氣體可直接地用於藉由與來自空氣分離1152 之N2 反應來製造氨1162 而不需經由如 11B 中所展示的羰基化反應1122用於製造單體及聚合物之整合方法 Referring to FIG. 11A , method 1100 is an exemplary method for producing ammonia, urea, and copolymers. The method includes providing synthesis gas 1106 derived from biomass or gasification 1104 based on a fossil fuel source; providing nutrients for fermentation to produce alcohol and carbon dioxide 1112 ; dehydrating alcohol to produce olefin 1114 ; providing air from the air separation unit 1152 Nitrogen and oxygen; combining oxygen and olefins in a catalytic reaction to produce epoxide and carbon dioxide 1116 ; reacting epoxide with synthesis gas 1122 in the presence of a carbonylation catalyst to produce beta lactone product 1132 ; recovering Hydrogen-enriched gas stream 1142 with a higher ratio of hydrogen to carbon monoxide than the initial synthesis gas stream; purified vegetable oil 1182 during the process; the vegetable oil undergoes transesterification treatment by alcohol and hydrogen-enriched gas stream to produce long-chain alkyl esters and Glycerol 1184 ; processing long-chain alkyl esters and glycerol byproducts into separate streams 1186 ; and copolymerizing beta lactone with treated glycerol in the presence of a catalyst to produce polyol copolymer product 1192 . In some embodiments, the alcohol produced by the nutrient Po 1113 1112 can be used for fermentation of vegetable oil extraction process as shown in FIG. 11B of 1182. In some embodiments, the gas generated from the gasification of carbon-containing source 1102 may be directly used in 1104 by the separation 1152 of N 2 from the air is reacted with ammonia produced without via a carbonyl 1162 as shown in FIG. 11B yl Chemical reaction 1122 . Integrated method for manufacturing monomers and polymers

本文提供產生單體、聚合物、共聚物及/或三元共聚物產物之系統及方法。本發明之較佳實施例係針對用於製造包括丙烯腈、丁二烯及苯乙烯之單體的整合方法。在某些較佳實施例中,本發明係針對用於製造聚合物、共聚物及三聚物(包括聚丙烯腈、苯乙烯丁二烯共聚物、苯乙烯丁二烯嵌段共聚物及丙烯腈苯乙烯丁二烯三聚物)之整合方法。Provided herein are systems and methods for producing monomer, polymer, copolymer, and/or terpolymer products. The preferred embodiment of the present invention is directed to an integrated method for manufacturing monomers including acrylonitrile, butadiene and styrene. In certain preferred embodiments, the present invention is directed to the manufacture of polymers, copolymers and terpolymers (including polyacrylonitrile, styrene butadiene copolymers, styrene butadiene block copolymers and propylene Nitrile styrene butadiene terpolymer) integration method.

在某些實施例中,丙烯腈化合物及其他腈化合物可由β-羥基醯胺及/或β內酯產生。在某些實施例中,方法包括以下步驟:將空氣分離成氧氣及氮氣;使含碳材料氣化以產生包含一氧化碳、二氧化碳及氫氣之原始合成氣流;使養分醱酵以產生生物基醇;使一部分生物基醇脫水以產生生物基烯烴;藉由氧使生物基烯烴氧化以產生生物基環氧化物;藉由該原始合成氣使該生物基環氧化物羰基化以產生生物基β內酯、氫流及二氧化碳流;藉由氫氣使氮氣氫化以產生氨;使生物基β內酯與氨反應以產生β丙胺酸-正-3-羥基-1-丙氧基、β-丙胺酸及3-羥基丙醯胺;以及使3-羥基丙醯胺脫水以產生丙烯醯胺及丙烯腈。在某些實施例中,將3-羥基丙醯胺與氨水組合。在某些實施例中,將3-羥基丙醯胺與含氫氧化銨之水組合。在某些實施例中,將3-羥基丙醯胺與氨及脫水劑組合。在一些實施例中,脫水劑可為五氧化二磷、有機磷化合物、碳二亞胺化合物、三嗪化合物、有機矽化合物、過渡金屬複合物或鋁複合物。In certain embodiments, acrylonitrile compounds and other nitrile compounds can be produced from β-hydroxyamide and/or β-lactone. In some embodiments, the method includes the steps of: separating air into oxygen and nitrogen; vaporizing the carbonaceous material to produce an original synthesis gas stream containing carbon monoxide, carbon dioxide, and hydrogen; fermenting nutrients to produce bio-based alcohol; Dehydration of a part of the bio-based alcohol to produce bio-based olefins; Oxidation of the bio-based olefins to produce bio-based epoxides; Carbonylation of the bio-based epoxides by the original syngas to produce bio-based beta lactones, Hydrogen flow and carbon dioxide flow; hydrogenation of nitrogen by hydrogen to produce ammonia; reaction of bio-based β-lactone with ammonia to produce β-alanine-n-3-hydroxy-1-propoxy, β-alanine and 3- Hydroxypropylamide; and dehydration of 3-hydroxypropylamide to produce acrylamide and acrylonitrile. In certain embodiments, 3-hydroxypropionamide is combined with ammonia. In certain embodiments, 3-hydroxypropionamide is combined with ammonium hydroxide-containing water. In certain embodiments, 3-hydroxypropionamide is combined with ammonia and a dehydrating agent. In some embodiments, the dehydrating agent may be phosphorus pentoxide, an organic phosphorus compound, a carbodiimide compound, a triazine compound, an organic silicon compound, a transition metal composite, or an aluminum composite.

在一些變化形式中,根據本文中所描述之方法製造之丙烯腈化合物及其他腈化合物可用作用於工業製備聚合物、共聚物及/或三聚物的單體。In some variations, acrylonitrile compounds and other nitrile compounds manufactured according to the methods described herein can be used as monomers for the industrial preparation of polymers, copolymers, and/or terpolymers.

舉例而言,根據本文中所描述之方法製備之丙烯腈可用於製造聚丙烯腈。在一些態樣中,提供一種製造聚丙烯腈之方法,其包含:根據本文所描述之方法中之任一者製造丙烯腈;以及在適合之條件下聚合丙烯腈以產生聚丙烯腈。For example, acrylonitrile prepared according to the methods described herein can be used to make polyacrylonitrile. In some aspects, a method of manufacturing polyacrylonitrile is provided, comprising: manufacturing acrylonitrile according to any of the methods described herein; and polymerizing acrylonitrile under suitable conditions to produce polyacrylonitrile.

本發明之某些實施例係針對一種製造氨、單體、共聚物及三元共聚物產物之方法。該方法包含氣化含碳材料以提供包含一氧化碳及氫氣之合成氣;分離空氣以產生氧氣及氮氣;使養分醱酵以產生乙醇;利用一部分乙醇製造丁二烯;使一部分乙醇脫水以產生乙烯;在催化性反應中藉由氧氣使乙烯氧化以產生環氧化物;藉由合成氣使環氧化物羰基化以產生包含β內酯、丁二酸酐之羰基化產物及氫富集合成氣;使丁二酸酐脫水以產生四氫呋喃;使四氫呋喃與β內酯反應以產生環己烯;利用環己烯製造苯乙烯;藉由氫富集合成氣催化還原氮氣以產生氨;使β內酯與氨反應以產生3-羥基丙醯胺;以及使3-羥基丙醯胺脫水以產生丙烯腈。在某些實施例中,方法包括以下步驟:使環己烯脫水以產生苯甲酸;使苯甲酸脫水以產生苯;以及使苯與乙烯反應以產生苯乙烯。在某些實施例中,環己烯為7-氧雜雙環[2.2.1]庚-5-烯-2-甲酸。在某些較佳實施例中,丁二烯及苯乙烯可經共聚合以產生苯乙烯-丁二烯共聚物產物。在某些較佳實施例中,丙烯腈、苯乙烯及丁二烯可經聚合以產生丙烯腈-苯乙烯-丁二烯三元共聚物產物。Certain embodiments of the present invention are directed to a method of manufacturing ammonia, monomer, copolymer, and terpolymer products. The method includes gasifying a carbon-containing material to provide a synthesis gas containing carbon monoxide and hydrogen; separating air to produce oxygen and nitrogen; fermenting nutrients to produce ethanol; using a portion of ethanol to produce butadiene; dehydrating a portion of ethanol to produce ethylene; Oxidation of ethylene by oxygen in catalytic reactions to produce epoxides; carbonylation of epoxides by synthesis gas to produce carbonylation products including β-lactone, succinic anhydride and hydrogen-enriched synthesis gas; Dehydration of dianhydride to produce tetrahydrofuran; reacting tetrahydrofuran with β-lactone to produce cyclohexene; producing styrene from cyclohexene; catalytic reduction of nitrogen by hydrogen-enriched synthesis gas to produce ammonia; reacting β-lactone with ammonia to 3-hydroxypropionamide is produced; and 3-hydroxypropionamide is dehydrated to produce acrylonitrile. In certain embodiments, the method includes the steps of: dehydrating cyclohexene to produce benzoic acid; dehydrating benzoic acid to produce benzene; and reacting benzene with ethylene to produce styrene. In certain embodiments, the cyclohexene is 7-oxabicyclo[2.2.1]hept-5-ene-2-carboxylic acid. In certain preferred embodiments, butadiene and styrene can be copolymerized to produce a styrene-butadiene copolymer product. In certain preferred embodiments, acrylonitrile, styrene, and butadiene can be polymerized to produce an acrylonitrile-styrene-butadiene terpolymer product.

在某些實施例中,方法包括乙醇之偶合脫水及去氫化以產生丁二烯之步驟。在某些較佳實施例中,可將乙醇饋入至固定床反應器中,該固定床反應器填充有金屬氧化物催化劑以催化偶合脫水及去氫化。在一些實施例中,該金屬氧化物可為來自包括以下之群中之單一氧化物:Al2 O3 、Fe2 O3 、ArO3 及ThO2 。在一些實施例中,該金屬氧化物可為來自包括以下之群中之二元氧化物:Al2 O3 :ZnO、Al2 O3 :Cr2 O3 、Al2 O3 :MgO、Al2 O3 :CaO。在一些實施例中,該金屬氧化物可為三元氧化物,諸如Al2 O3 :Fe2 O3 :Cr2 O3In certain embodiments, the method includes the steps of coupled dehydration and dehydrogenation of ethanol to produce butadiene. In certain preferred embodiments, ethanol can be fed into a fixed bed reactor that is filled with metal oxide catalyst to catalyze coupled dehydration and dehydrogenation. In some embodiments, the metal oxide may be a single oxide from the group including: Al 2 O 3 , Fe 2 O 3 , ArO 3 and ThO 2 . In some embodiments, the metal oxide may be a binary oxide from the group consisting of: Al 2 O 3 :ZnO, Al 2 O 3 :Cr 2 O 3 , Al 2 O 3 :MgO, Al 2 O 3 : CaO. In some embodiments, the metal oxide may be a ternary oxide, such as Al 2 O 3 :Fe 2 O 3 :Cr 2 O 3 .

在某些實施例中,方法包括呋喃與β-丙內酯之反應,其包含其中內酯環之兩個亞甲基碳反應之環加成反應。在某些實施例中,β-丙內酯經歷重組以形成隨後經歷環加成之丙烯酸。另一方面,丙內酯亦可以協調的方式直接地與呋喃反應。In certain embodiments, the method includes the reaction of furan with β-propiolactone, which includes a cycloaddition reaction in which two methylene carbons of the lactone ring react. In certain embodiments, β-propiolactone undergoes recombination to form acrylic acid that subsequently undergoes cycloaddition. On the other hand, propiolactone can also directly react with furan in a coordinated manner.

在某些實施例中,藉由引入熱量來促進β-丙內酯與呋喃之反應。在某些實施例中,藉由使呋喃及β-丙內酯之混合物與催化劑接觸來促進環加成反應。在某些實施例中,藉由使呋喃及β-丙內酯之混合物與路易斯酸催化劑接觸來促進環加成反應。在某些實施例中,在溶劑中進行環加成反應。在某些實施例中,在氣相中進行環加成反應。在某些實施例中,在存在固體催化劑的情況下進行環加成反應。在某些實施例中,藉由在存在固體路易斯酸催化劑的情況下加熱呋喃及β-丙內酯之混合物來進行環加成反應。在某些實施例中,藉由在連續攪拌槽反應器中在存在均相路易斯酸催化劑的情況下加熱呋喃及β-丙內酯於溶劑中之混合物來進行環加成反應。在某些實施例中,藉由在存在均相路易斯酸催化劑的情況下使呋喃及β-丙內酯之混合物流動穿過溶劑中之塞式流動反應器來進行環加成反應。In some embodiments, the reaction of β-propiolactone and furan is promoted by introducing heat. In certain embodiments, the cycloaddition reaction is promoted by contacting the mixture of furan and β-propiolactone with the catalyst. In certain embodiments, the cycloaddition reaction is promoted by contacting a mixture of furan and β-propiolactone with a Lewis acid catalyst. In some embodiments, the cycloaddition reaction is performed in a solvent. In some embodiments, the cycloaddition reaction is performed in the gas phase. In some embodiments, the cycloaddition reaction is carried out in the presence of a solid catalyst. In certain embodiments, the cycloaddition reaction is performed by heating a mixture of furan and β-propiolactone in the presence of a solid Lewis acid catalyst. In certain embodiments, the cycloaddition reaction is performed by heating a mixture of furan and β-propiolactone in a solvent in a continuous stirred tank reactor in the presence of a homogeneous Lewis acid catalyst. In certain embodiments, the cycloaddition reaction is performed by flowing a mixture of furan and β-propiolactone through a plug flow reactor in a solvent in the presence of a homogeneous Lewis acid catalyst.

在某些實施例中,使環己烯脫水之步驟包含在存在脫水劑的情況下加熱環己烯化合物。在某些實施例中,步驟包括自執行脫水反應之反應區中連續地移除水蒸氣。在某些實施例中,脫水反應為酸催化的。在某些實施例中,藉由磷酸或硫酸來酸催化脫水反應。在某些實施例中,脫水反應為酸催化的。在某些實施例中,藉由固體支撐之酸催化劑來酸催化脫水反應。在某些實施例中,藉由在存在硫酸的情況下加熱含環己烯環化合物來執行脫水反應。在某些實施例中,藉由在存在磺酸樹脂的情況下加熱含環己烯環化合物來執行脫水反應。在含環己烯環化合物包含酯之某些實施例中,脫水步驟導致酯基水解。在含環己烯環化合物包含酯之某些實施例中,脫水條件促進酯水解且產物為酸。在某些實施例中,含環己烯環化合物為酸或酯,脫水步驟導致形成甲酸鹽。In certain embodiments, the step of dehydrating cyclohexene comprises heating the cyclohexene compound in the presence of a dehydrating agent. In certain embodiments, the step includes continuously removing water vapor from the reaction zone where the dehydration reaction is performed. In certain embodiments, the dehydration reaction is acid-catalyzed. In some embodiments, the dehydration reaction is acid catalyzed by phosphoric acid or sulfuric acid. In certain embodiments, the dehydration reaction is acid-catalyzed. In some embodiments, the dehydration reaction is acid catalyzed by a solid supported acid catalyst. In some embodiments, the dehydration reaction is performed by heating the cyclohexene ring-containing compound in the presence of sulfuric acid. In some embodiments, the dehydration reaction is performed by heating the cyclohexene ring-containing compound in the presence of a sulfonic acid resin. In certain embodiments where the cyclohexene ring-containing compound contains an ester, the dehydration step results in hydrolysis of the ester group. In certain embodiments where the cyclohexene ring-containing compound contains an ester, the dehydration conditions promote ester hydrolysis and the product is an acid. In certain embodiments, the cyclohexene ring-containing compound is an acid or ester, and the dehydration step results in the formation of formate.

在某些實施例中,脫水反應藉由與強鹼反應而經催化。在某些實施例中,其中環己烯化合物包含作為甲酸酯之取代基,脫水反應包含在存在水之情況下藉由強鹼處理酯以形成芳族酸之鹽。在某些實施例中,所形成鹽包含苯甲酸鉀。在某些實施例中,來自脫水步驟之苯甲酸鉀經連續地饋入至歧化反應(disproportionation reaction)中。在某些實施例中,由酯水解釋放之醇經回收並用於利用在該方法中之較早步驟期間形成的β-丙內酯或丙烯酸產生額外丙烯酸酯。In some embodiments, the dehydration reaction is catalyzed by reaction with a strong base. In certain embodiments, where the cyclohexene compound includes a substituent as a formate, the dehydration reaction includes treating the ester with a strong base in the presence of water to form a salt of an aromatic acid. In certain embodiments, the salt formed comprises potassium benzoate. In some embodiments, potassium benzoate from the dehydration step is continuously fed into the disproportionation reaction. In certain embodiments, the alcohol released from the hydrolysis of the ester is recovered and used to generate additional acrylates using β-propiolactone or acrylic acid formed during earlier steps in the process.

在某些實施例中,脫水反應之產物包含苯甲酸、苯甲酸鹽、苯甲酸酯、苯甲酸酐或此等中之任何兩者或更多者之混合物。在某些實施例中,脫水反應之產物包含苯甲酸。在某些實施例中,脫水反應之產物包含選自由以下組成之群的化合物:苯甲酸甲酯、苯甲酸乙酯、苯甲酸丁酯、2-乙基己基苯甲酸酯、C.sub.3-12醇之苯甲酸酯及此等中之任何兩者或更多者之混合物。在某些實施例中,脫水反應之產物包含苯甲酸鉀。在某些實施例中,脫水反應之產物包含苯甲酸鈉。在某些實施例中,脫水反應之產物包含苯甲酸酐。In some embodiments, the product of the dehydration reaction comprises benzoic acid, benzoate, benzoate, benzoic anhydride, or a mixture of any two or more of these. In some embodiments, the product of the dehydration reaction includes benzoic acid. In certain embodiments, the product of the dehydration reaction comprises a compound selected from the group consisting of methyl benzoate, ethyl benzoate, butyl benzoate, 2-ethylhexyl benzoate, C.sub. 3-12 Alcohol benzoates and mixtures of any two or more of these. In some embodiments, the product of the dehydration reaction includes potassium benzoate. In some embodiments, the product of the dehydration reaction includes sodium benzoate. In some embodiments, the product of the dehydration reaction comprises benzoic anhydride.

在某些實施例中,方法包括對環己烯脫水之產物進行歧化的步驟。在某些實施例中,脫水環己烯產生經單取代之苯化合物,諸如苯甲酸。在某些實施例中,方法包括將經單取代之苯化合物轉化為金屬苯甲酸鹽之步驟。在某些實施例中,方法包括藉由適合之催化劑處理金屬苯甲酸鹽之步驟。在某些實施例中,在高於約200℃之溫度下執行藉由催化劑處理金屬苯甲酸鹽之步驟。In certain embodiments, the method includes the step of disproportionating the dehydrated product of cyclohexene. In certain embodiments, dehydrating cyclohexene produces mono-substituted benzene compounds, such as benzoic acid. In certain embodiments, the method includes the step of converting the mono-substituted benzene compound to a metal benzoate. In certain embodiments, the method includes the step of treating the metal benzoate with a suitable catalyst. In some embodiments, the step of treating the metal benzoate by the catalyst is performed at a temperature above about 200°C.

在某些實施例中,用於歧化之催化劑包含過渡金屬。在某些實施例中,在存在包含第10-12族過渡金屬之催化劑的情況下執行歧化。在某些實施例中,在存在包含第12族過渡金屬之催化劑的情況下執行歧化。在某些實施例中,在存在包含鎘之催化劑的情況下執行歧化。在某些實施例中,在存在包含鋅之催化劑的情況下執行歧化。在某些實施例中,在存在包含汞之催化劑的情況下執行歧化。In certain embodiments, the catalyst used for disproportionation contains transition metals. In certain embodiments, disproportionation is performed in the presence of a catalyst comprising Group 10-12 transition metals. In certain embodiments, disproportionation is performed in the presence of a Group 12 transition metal-containing catalyst. In some embodiments, disproportionation is performed in the presence of a cadmium-containing catalyst. In some embodiments, disproportionation is performed in the presence of a zinc-containing catalyst. In some embodiments, disproportionation is performed in the presence of a mercury-containing catalyst.

在某些實施例中,該方法進一步包括自歧化反應區連續地抽取含有苯之物料流。在某些實施例中,該方法進一步包括純化自反應區抽取之苯的步驟。在某些實施例中,純化包括蒸餾、萃取、結晶或此等之組合。In certain embodiments, the method further includes continuously drawing a stream containing benzene from the disproportionation reaction zone. In certain embodiments, the method further includes the step of purifying benzene extracted from the reaction zone. In some embodiments, purification includes distillation, extraction, crystallization, or a combination of these.

在某些實施例中,來自歧化反應之苯經處理以將其轉化為苯乙烯。此轉化易於使用已知方法實現,例如藉由苯與乙烯之反應以產生乙苯,該乙苯隨後以氧化方式去氫化以提供苯乙烯。在某些實施例中,其中經饋入至該方法中之環氧乙烷及呋喃中之任一者或兩者源自生物質,所得苯含有2、4或6個生物基碳原子。可使此產物與源自生物乙醇之乙烯反應以提供生物基苯乙烯,進而提供製得生物基聚苯乙烯及相關產物之機會。由此產生之苯乙烯可含有2、4、6或8個生物基碳原子。在某些實施例中,所產生之苯乙烯具有含有源自乙醇之四個碳原子之新穎屬性。對於生物基對苯二甲酸及苯乙烯之整合方法為非常碳高效的,此係由於各步驟為高產率的且進料中之每一碳原子經併入至適用的最終產物中。In certain embodiments, benzene from the disproportionation reaction is treated to convert it to styrene. This conversion is easily achieved using known methods, for example by the reaction of benzene with ethylene to produce ethylbenzene, which is then dehydrogenated oxidatively to provide styrene. In certain embodiments, where either or both of the ethylene oxide and furan fed into the process are derived from biomass, the resulting benzene contains 2, 4 or 6 bio-based carbon atoms. This product can be reacted with ethylene derived from bioethanol to provide biobased styrene, which in turn provides an opportunity to produce biobased polystyrene and related products. The resulting styrene can contain 2, 4, 6 or 8 bio-based carbon atoms. In certain embodiments, the styrene produced has novel properties containing four carbon atoms derived from ethanol. The integration method for bio-based terephthalic acid and styrene is very carbon efficient, because each step is of high yield and each carbon atom in the feed is incorporated into the applicable final product.

如本文所使用,在一些變化形式中,一或多個數值前面之術語「約」意謂數值± 5%。應理解,本文中提及「約」值或參數包括(且描述)針對該值或參數本身之實施例。舉例而言,提及「約x」之描述包括「x」本身之描述。As used herein, in some variations, the term "about" before one or more numerical values means a numerical value ± 5%. It should be understood that references to "about" values or parameters herein include (and describe) embodiments directed to the values or parameters themselves. For example, a reference to "about x" includes a description of "x" itself.

100‧‧‧方法 102‧‧‧含碳源 104‧‧‧氣化 106‧‧‧合成氣 112‧‧‧養分 114‧‧‧醱酵 116‧‧‧第一試劑 122‧‧‧羰基化 132‧‧‧羰基化產物 142‧‧‧氫富集合成氣 152‧‧‧空氣分離 162‧‧‧合成產物/氨 172‧‧‧脲 182‧‧‧元素 192‧‧‧非均相共聚物 200‧‧‧方法 201‧‧‧石油/化石燃料 202‧‧‧含碳源 203‧‧‧生物質 204‧‧‧氣化 205‧‧‧城市固體廢棄物 206‧‧‧合成氣 207‧‧‧H2 208‧‧‧CO 210‧‧‧甘油 211‧‧‧生物柴油 212‧‧‧玉米油 213‧‧‧糖類 214‧‧‧乙醇 215‧‧‧乙烯 216‧‧‧環氧化物 217‧‧‧石腦油 222‧‧‧羰基化 232‧‧‧羰基化產物 242‧‧‧氫富集合成氣 252‧‧‧空氣分離 262‧‧‧氨 272‧‧‧脲 300‧‧‧方法 302‧‧‧氣化 304‧‧‧合成氣 312‧‧‧養分醱酵 313‧‧‧石油 314‧‧‧二氧化碳 315‧‧‧乙烯 316‧‧‧醇脫水 318‧‧‧烯烴氧化 322‧‧‧環氧化物羰基化 352‧‧‧空氣分離單元 362‧‧‧氨形成 372‧‧‧脲形成 400‧‧‧方法 402‧‧‧含碳源 404‧‧‧氣化 406‧‧‧合成氣流 422‧‧‧羰基化 432‧‧‧羰基化產物 442‧‧‧氫富集合成氣 482‧‧‧植物油萃取 484‧‧‧轉酯化區 486‧‧‧甘油 492‧‧‧聚合物/多元醇 500‧‧‧方法 502‧‧‧氣化 504‧‧‧合成氣調節 512‧‧‧醱酵 514‧‧‧二氧化碳 516‧‧‧醇脫水 518‧‧‧烯烴氧化 522‧‧‧羰基化 582‧‧‧植物處理 584‧‧‧植物油萃取 586‧‧‧轉酯化 588‧‧‧甘油處理 592‧‧‧共聚合 600‧‧‧方法 602‧‧‧含碳源 604‧‧‧氣化 606‧‧‧合成氣 612‧‧‧養分醱酵 614‧‧‧醇脫水 616‧‧‧烯烴氧化 618‧‧‧環氧化物 622‧‧‧羰基化單元 632‧‧‧羰基化產物 642‧‧‧氫富集合成氣 644‧‧‧氨形成 700‧‧‧方法 702‧‧‧氣化 704‧‧‧合成氣調節 712‧‧‧醱酵步驟 714‧‧‧醇 716‧‧‧醇脫水 718‧‧‧烯烴氧化 722‧‧‧羰基化 732‧‧‧羰基化產物 742‧‧‧氫燃料電池 744‧‧‧費-托法 800‧‧‧方法 802‧‧‧氣化 804‧‧‧合成氣調節 812‧‧‧醱酵 816‧‧‧醇脫水 818‧‧‧烯烴氧化處理 822‧‧‧第一羰基化單元 824‧‧‧第二羰基化單元 842‧‧‧甲醇合成 844‧‧‧甲醇至烯烴處理 846‧‧‧氫化反應 900‧‧‧方法 902‧‧‧氣化 904‧‧‧合成氣調節 912‧‧‧醱酵 916‧‧‧醇脫水 918‧‧‧烯烴氧化 922‧‧‧羰基化 932‧‧‧羰基化產物 942‧‧‧氫甲醯化反應 1000‧‧‧方法 1002‧‧‧二氧化碳固體氧化物電解器 1004‧‧‧氧處理 1006‧‧‧一氧化碳流處理 1012‧‧‧醱酵 1014‧‧‧醇脫水 1016‧‧‧烯烴氧化 1022‧‧‧羰基化單元 1032‧‧‧羰基化產物 1100‧‧‧方法 1102‧‧‧含碳源 1104‧‧‧氣化 1106‧‧‧合成氣 1112‧‧‧養分醱酵 1113‧‧‧醇產生 1114‧‧‧醇脫水 1116‧‧‧烯烴氧化 1118‧‧‧環氧化物 1122‧‧‧羰基化反應 1132‧‧‧羰基化產物 1142‧‧‧氫富集合成氣 1152‧‧‧空氣分離單元 1162‧‧‧氨 1172‧‧‧脲 1182‧‧‧植物油萃取方法 1184‧‧‧轉酯化 1186‧‧‧甘油 1192‧‧‧多元醇共聚物產物/聚合物100‧‧‧Method 102‧‧‧Carbon source 104‧‧‧Gasification 106‧‧‧Synthesis gas 112‧‧‧‧Nutrition 114‧‧‧ Fermentation 116‧‧‧First reagent 122‧‧‧Carbonylation 132‧ ‧‧Carbonylation product 142‧‧‧Hydrogen enriched synthesis gas 152‧‧‧Air separation 162‧‧‧Synthetic product/ammonia 172‧‧‧Urea 182‧‧‧Element 192‧‧‧ Heterogeneous copolymer 200‧‧ ‧Method 201‧‧‧Petroleum/fossil fuel 202‧‧‧Carbon source 203‧‧‧Biomass 204‧‧‧Gasification 205‧‧‧Urban solid waste 206‧‧‧Syngas 207‧‧‧‧H 2 208 ‧‧‧CO 210‧‧‧Glycerin 211‧‧‧Biodiesel 212‧‧‧ Corn oil 213‧‧‧Sugar 214‧‧‧Ethanol 215‧‧‧Ethylene 216‧‧‧Epoxide 217‧‧‧ Naphtha 222‧‧‧carbonylation 232‧‧‧carbonylation product 242‧‧‧hydrogen enriched synthesis gas 252‧‧‧air separation 262‧‧‧ammonia 272‧‧‧urea 300‧‧‧method 302‧‧‧gasification 304 ‧‧‧Syngas 312‧‧‧Nutrition fermentation 313‧‧‧Petroleum 314‧‧‧Carbon dioxide 315‧‧‧Ethylene 316‧‧‧ Alcohol dehydration 318‧‧‧Olefin oxidation 322‧‧‧Epoxide carbonylation 352‧ ‧‧Air separation unit 362‧‧‧Ammonia formation 372‧‧‧Urea formation 400‧‧‧Method 402‧‧‧Carbon source 404‧‧‧Gasification 406‧‧‧Synthetic gas flow 422‧‧‧Carbonylation 432‧‧ ‧Carbonylation product 442‧‧‧Hydrogen enriched gas 482‧‧‧Vegetable oil extraction 484‧‧‧Transesterification zone 486‧‧‧Glycerol 492‧‧‧Polymer/polyol 500‧‧‧‧Method 502‧‧‧ Gasification 504‧‧‧Synthesis gas regulation 512‧‧‧ Fermentation 514‧‧‧Carbon dioxide 516‧‧‧Alcohol dehydration 518‧‧‧Olefin oxidation 522‧‧‧Carbonylation 582‧‧‧Plant treatment 584‧‧‧ Vegetable oil extraction 586‧‧‧Transesterification 588‧‧‧Glycerin treatment 592‧‧‧Copolymerization 600‧‧‧Method 602‧‧‧Carbon source 604‧‧‧Gasification 606‧‧‧Synthesis gas 612‧‧‧Nutrition fermentation 614‧‧‧alcohol dehydration 616‧‧‧alkene oxidation 618‧‧‧epoxide 622‧‧‧carbonylation unit 632‧‧‧carbonylation product 642‧‧‧hydrogen enriched gas 644‧‧‧ ammonia formation 700‧ ‧‧Method 702‧‧‧Gasification 704‧‧‧Syngas adjustment 712‧‧‧Enzymatic fermentation step 714‧‧‧Alcohol 716‧‧‧Alcohol dehydration 718‧‧‧Olefin oxidation 722‧‧‧‧carbonylation 732‧‧‧ Carbonylation product 742 ‧ ‧ ‧ hydrogen fuel cell 744 ‧ ‧ ‧ Fischer-Tropsch 800 ‧ ‧ ‧ method 802 ‧ ‧ ‧ gasification 804 ‧ ‧ ‧ syngas adjustment 812 ‧ ‧ ‧ fermented 816 ‧ ‧ ‧ alcohol dehydration 818 ‧ ‧‧Olefin oxidation treatment 822‧‧‧First carbonylation unit 82 4‧‧‧Second carbonylation unit 842‧‧‧Methanol synthesis 844‧‧‧Methanol to olefin treatment 846‧‧‧Hydrogenation 900‧‧‧Method 902‧‧‧Gasification 904‧‧‧Syngas regulation 912‧‧ ‧ Fermentation 916‧‧‧ Alcohol dehydration 918‧‧‧Olefin oxidation 922‧‧‧Carbonylation 932‧‧‧Carbonylation product 942‧‧‧Hydroformylation reaction 1000‧‧‧Method 1002‧‧‧Carbon dioxide solid oxide Electrolyzer 1004‧‧‧Oxygen treatment 1006‧‧‧Carbon monoxide flow treatment 1012‧‧‧Sorrel fermentation 1014‧‧‧Alcohol dehydration 1016‧‧‧Olefin oxidation 1022‧‧‧carbonylation unit 1032‧‧‧carbonylation product 1100‧‧ ‧Method 1102‧‧‧Carbon-containing source 1104‧‧‧Gasification 1106‧‧‧Syngas 1112‧‧‧Nutrient fermentation 1113‧‧‧Alcohol production 1114‧‧‧Alcohol dehydration 1116‧‧‧Olefin oxidation 1118‧‧‧ Epoxide 1122‧carbonylation reaction 1132‧‧‧carbonylation product 1142‧‧‧hydrogen enriched integrated gas 1152‧‧‧air separation unit 1162‧‧‧ammonia 1172‧‧‧urea 1182‧‧‧vegetable oil extraction method 1184‧‧‧Transesterification 1186‧‧‧Glycerin 1192‧‧‧polyol copolymer product/polymer

可結合附圖參照以下描述來最好地理解本申請案,在附圖中相同部分可由相同編號表示。The present application can be best understood with reference to the following description in conjunction with the accompanying drawings, in which the same parts may be denoted by the same numbers.

1 描繪例示性生產系統利用合成氣產生氨、脲及聚合物之通用流程。Figure 1 depicts the general flow of an exemplary production system using synthesis gas to produce ammonia, urea, and polymers.

2A 2B 3A3B 描繪經由合成氣之羰基化及空氣分離以產生氨及脲之生產系統的多個例示性組態。Figures 2A , 2B , 3A, and 3B depict various exemplary configurations of production systems that produce ammonia and urea via carbonylation and air separation of syngas.

45 描繪利用羰基化產物及甘油產生共聚物之生產系統之多個例示性組態。 4 and 5 depict various exemplary configurations of production systems that use carbonylation products and glycerin to produce copolymers.

6-10 11A11B 描繪藉由源自養分醱酵之環氧化物來使合成氣羰基化之生產系統之多個例示性組態。Figures 6-10 , 11A and 11B depict various exemplary configurations of production systems for carbonylation of syngas by epoxides derived from nutrient fermentation.

12 描繪例示性整合系統產生多種化學品產物之通用流程。Figure 12 depicts the general flow of an exemplary integrated system for producing multiple chemical products.

100‧‧‧方法 100‧‧‧Method

102‧‧‧含碳源 102‧‧‧Carbon source

104‧‧‧氣化 104‧‧‧Gasification

106‧‧‧合成氣 106‧‧‧Syngas

112‧‧‧養分 112‧‧‧ nutrients

114‧‧‧醱酵 114‧‧‧ Yeast

116‧‧‧第一試劑 116‧‧‧ First reagent

122‧‧‧羰基化 122‧‧‧carbonylation

132‧‧‧羰基化產物 132‧‧‧carbonylation products

142‧‧‧氫富集合成氣 142‧‧‧Hydrogen enriched into gas

152‧‧‧空氣分離 152‧‧‧ Air separation

162‧‧‧合成產物/氨 162‧‧‧Synthetic product/ammonia

172‧‧‧脲 172‧‧‧ Urea

182‧‧‧元素 182‧‧‧Element

192‧‧‧非均相共聚物 192‧‧‧ Heterogeneous copolymer

Claims (54)

一種用於產生生物基氫化產物之方法,其包含: 提供環氧化物; 提供包含氫及一氧化碳之合成氣; 在存在該合成氣的情況下使該環氧化物羰基化以產生羰基化產物及氫富集合成氣; 分離空氣以產生氮氣及氧氣;及 將該氮氣與該氫富集合成氣組合以產生氫化產物。A method for producing bio-based hydrogenation products, comprising: Provide epoxide; Provide synthesis gas containing hydrogen and carbon monoxide; Carbonylation of the epoxide in the presence of the syngas to produce carbonylation products and hydrogen-enriched gas; Separating air to produce nitrogen and oxygen; and The nitrogen gas is combined with the hydrogen-rich forming gas to produce a hydrogenated product. 如請求項1之方法,其中該氫化產物包含氨。The method of claim 1, wherein the hydrogenation product comprises ammonia. 如請求項1或2之方法,其進一步包含將該氫化產物與二氧化碳組合以產生脲。The method of claim 1 or 2, further comprising combining the hydrogenated product with carbon dioxide to produce urea. 如請求項3之方法,其中該二氧化碳係藉由醇醱酵產生,藉由烯烴氧化產生,以合成氣提供或其任何組合。The method of claim 3, wherein the carbon dioxide is produced by alcohol fermentation, produced by oxidation of olefins, supplied as syngas, or any combination thereof. 如請求項3或4之方法,其中脲之產率為至少約65%。The method of claim 3 or 4, wherein the yield of urea is at least about 65%. 如請求項3至5中任一項之方法,其中該氫化產物與該二氧化碳之該組合進一步產生胺基甲酸銨。The method of any one of claims 3 to 5, wherein the combination of the hydrogenation product and the carbon dioxide further produces ammonium carbamate. 如請求項1至6中任一項之方法,其中該合成氣係藉由使含碳源氣化或甲烷重組產生。The method according to any one of claims 1 to 6, wherein the synthesis gas is produced by gasifying a carbon-containing source or reforming methane. 如請求項1至7中任一項之方法,其中該環氧化物係在存在該合成氣及羰基化催化劑的情況下經羰基化。The method of any one of claims 1 to 7, wherein the epoxide is carbonylated in the presence of the synthesis gas and a carbonylation catalyst. 如請求項1至8中任一項之方法,其中該環氧化物為環氧乙烷。The method according to any one of claims 1 to 8, wherein the epoxide is ethylene oxide. 如請求項1至9中任一項之方法,其中該羰基化產物包含β-丙內酯、聚丙內酯、多元醇或其任何組合。The method of any one of claims 1 to 9, wherein the carbonylation product comprises β-propiolactone, polypropiolactone, polyol, or any combination thereof. 如請求項1至10中任一項之方法,其進一步包含使該羰基化產物與甘油接觸以形成多元醇共聚物。The method of any one of claims 1 to 10, further comprising contacting the carbonylation product with glycerin to form a polyol copolymer. 如請求項11之方法,其中該甘油源自植物油轉酯化。The method of claim 11, wherein the glycerin is derived from transesterification of vegetable oil. 如請求項1至12中任一項之方法,其中該環氧化物源自使烯烴氧化。The method of any one of claims 1 to 12, wherein the epoxide is derived from the oxidation of olefins. 如請求項13之方法,其中該烯烴源自使醇脫水。The method of claim 13, wherein the olefin is derived from dehydrating the alcohol. 如請求項14之方法,其中該醇源自使養分醱酵。The method of claim 14, wherein the alcohol is derived from fermenting nutrients. 一種產生生物基氫化產物之方法,其包含: 提供環氧化物; 提供包含氫及一氧化碳之合成氣; 在存在該合成氣的情況下使該環氧化物羰基化以產生羰基化產物及氫富集合成氣; 將甘油與該羰基化產物組合以產生共聚物。A method for producing bio-based hydrogenation products, comprising: Provide epoxide; Provide synthesis gas containing hydrogen and carbon monoxide; Carbonylation of the epoxide in the presence of the syngas to produce carbonylation products and hydrogen-enriched gas; Glycerin is combined with the carbonylation product to produce a copolymer. 如請求項16之方法,其中該羰基化產物包含β內酯、聚丙內酯、多元醇或其任何組合。The method of claim 16, wherein the carbonylation product comprises beta lactone, polypropylene lactone, polyol, or any combination thereof. 如請求項16或17之方法,其中該環氧化物為環氧乙烷。The method of claim 16 or 17, wherein the epoxide is ethylene oxide. 如請求項16至18中任一項之方法,其中該環氧化物係在存在羰基化催化劑的情況下藉由該合成氣羰基化。The method of any one of claims 16 to 18, wherein the epoxide is carbonylated by the syngas in the presence of a carbonylation catalyst. 如請求項16至19中任一項之方法,其中該環氧化物源自使烯烴氧化。The method of any one of claims 16 to 19, wherein the epoxide is derived from the oxidation of olefins. 如請求項20之方法,其中該烯烴源自使醇脫水。The method of claim 20, wherein the olefin is derived from dehydrating the alcohol. 如請求項21之方法,其中該醇源自使養分醱酵。The method of claim 21, wherein the alcohol is derived from fermenting nutrients. 如請求項16至21中任一項之方法,其中該合成氣係藉由含碳源氣化或甲烷重組產生。The method of any one of claims 16 to 21, wherein the synthesis gas is produced by gasification of a carbon-containing source or methane recombination. 如請求項16至23中任一項之方法,其進一步包含使該氫富集合成氣與烯烴及一氧化碳接觸以產生醛產物。The method of any one of claims 16 to 23, further comprising contacting the hydrogen-enriched forming gas with an olefin and carbon monoxide to produce an aldehyde product. 如請求項24之方法,其中該烯烴藉由使醇脫水來產生。The method of claim 24, wherein the olefin is produced by dehydrating the alcohol. 如請求項24或25之方法,其中該一氧化碳源自合成氣。The method of claim 24 or 25, wherein the carbon monoxide is derived from syngas. 如請求項16至26中任一項之方法,其進一步包含使該氫富集合成氣與氮氣接觸以產生氨。The method of any one of claims 16 to 26, further comprising contacting the hydrogen-enriched forming gas with nitrogen to produce ammonia. 如請求項27之方法,其進一步包含將該氨與二氧化碳組合以產生脲。The method of claim 27, further comprising combining the ammonia with carbon dioxide to produce urea. 如請求項16至28中任一項之方法,其中該甘油源自使植物油轉酯化。The method of any one of claims 16 to 28, wherein the glycerin is derived from transesterification of the vegetable oil. 如請求項29之方法,其中該植物油為植物油(vegetable oil)。The method of claim 29, wherein the vegetable oil is vegetable oil. 如請求項29或30之方法,其中該甘油係源自在存在催化劑、鏈轉移劑或前述之混合物的情況下使植物油轉酯化。The method of claim 29 or 30, wherein the glycerin is derived from transesterification of the vegetable oil in the presence of a catalyst, chain transfer agent, or a mixture of the foregoing. 一種方法,其包含: 提供包含氫及一氧化碳之合成氣; 使養分醱酵以產生醇; 使該醇水合以產生烯烴; 藉由氧氣氧化該烯烴以產生環氧化物;及 藉由該合成氣使該環氧化物羰基化以產生羰基化產物及氫富集合成氣。A method that includes: Provide synthesis gas containing hydrogen and carbon monoxide; Ferment nutrients to produce alcohol; Hydrate the alcohol to produce olefins; Oxidize the olefin with oxygen to produce an epoxide; and The epoxidation of the epoxide by the syngas produces carbonylation products and hydrogen-enriched synthesis gas. 如請求項32之方法,其進一步包含將該氫富集合成氣與氮氣組合以產生氫化產物。The method of claim 32, further comprising combining the hydrogen-enriched forming gas with nitrogen to produce a hydrogenated product. 如請求項33之方法,其中該氫化產物包含氨。The method of claim 33, wherein the hydrogenation product comprises ammonia. 如請求項33或34之方法,其進一步包含將該氫化產物與二氧化碳組合以產生脲。The method of claim 33 or 34, further comprising combining the hydrogenation product with carbon dioxide to produce urea. 如請求項32至35中任一項之方法,其中該羰基化產物包含β-丙內酯、聚丙內酯、多元醇或其任何組合。The method of any one of claims 32 to 35, wherein the carbonylation product comprises β-propiolactone, polypropiolactone, polyol, or any combination thereof. 如請求項32至36中任一項之方法,其中使養分醱酵進一步產生二氧化碳氣體。The method according to any one of claims 32 to 36, wherein nutrient fermentation is further performed to generate carbon dioxide gas. 如請求項37之方法,其中將該二氧化碳氣體與該氨組合以產生脲。The method of claim 37, wherein the carbon dioxide gas is combined with the ammonia to produce urea. 如請求項37之方法,其中該二氧化碳氣體經電解以產生氧及一氧化碳。The method of claim 37, wherein the carbon dioxide gas is electrolyzed to produce oxygen and carbon monoxide. 如請求項32至39中任一項之方法,其進一步包含使該氫富集合成氣與烯烴及一氧化碳接觸以產生醛產物。The method of any one of claims 32 to 39, further comprising contacting the hydrogen-enriched forming gas with an olefin and carbon monoxide to produce an aldehyde product. 如請求項32至40中任一項之方法,其進一步包含將該氫富集合成氣饋入至甲醇合成反應器中。The method of any one of claims 32 to 40, further comprising feeding the hydrogen-enriched gas into the methanol synthesis reactor. 如請求項32至41中任一項之方法,其進一步包含使該羰基化產物與甘油接觸以產生共聚物。The method of any one of claims 32 to 41, further comprising contacting the carbonylation product with glycerin to produce a copolymer. 如請求項42之方法,其中該甘油源自使植物油轉酯化。The method of claim 42, wherein the glycerin is derived from transesterification of the vegetable oil. 如請求項43之方法,其中該植物油為植物油。The method of claim 43, wherein the vegetable oil is vegetable oil. 如請求項32至44中任一項之方法,其中該養分包含糖類、碳水化合物、多醣、蛋白質複合物、蛋白質水解產物或其任何組合。The method of any one of claims 32 to 44, wherein the nutrients comprise sugars, carbohydrates, polysaccharides, protein complexes, protein hydrolysates, or any combination thereof. 一種整合方法,其包含: 將空氣分離成氧氣流及氮氣流; 使含碳材料氣化以產生包含一氧化碳、二氧化碳及氫氣之原始合成氣流; 使植物物質醱酵以產生生物基醇流; 還原一部分該生物基醇流以產生生物基烯烴; 藉由該氧流氧化該生物基烯烴以產生生物基環氧化物;及 藉由該原始合成氣流使該生物基環氧化物羰基化以產生生物基羰基化產物、氫氣流及二氧化碳流。An integrated approach, which includes: Separate air into oxygen and nitrogen flow; Gasification of carbonaceous materials to produce an original synthesis gas stream containing carbon monoxide, carbon dioxide and hydrogen; Fermentation of plant matter to produce bio-based alcohol flow; Reducing a portion of the bio-based alcohol stream to produce bio-based olefins; Oxidizing the bio-based olefins by the oxygen stream to produce bio-based epoxides; and The bio-based epoxide is carbonylated by the original synthesis gas stream to produce bio-based carbonylation products, hydrogen flow, and carbon dioxide flow. 如請求項46之方法,其中該生物基羰基化產物包含β內酯流及丁二酸酐流。The method of claim 46, wherein the bio-based carbonylation product comprises a β-lactone stream and a succinic anhydride stream. 如請求項47之方法,其中該丁二酸酐流經還原以產生四氫呋喃。The method of claim 47, wherein the succinic anhydride is passed through reduction to produce tetrahydrofuran. 如請求項48之方法,其中該四氫呋喃與一部分該β內酯流反應以產生環己烯衍生物。The method of claim 48, wherein the tetrahydrofuran reacts with a portion of the β-lactone stream to produce a cyclohexene derivative. 如請求項49之方法,其中該環己烯衍生物用於產生生物基苯乙烯產物。The method of claim 49, wherein the cyclohexene derivative is used to produce a bio-based styrene product. 如請求項46至50中任一項之方法,其中藉由該氫氣流使該氮氣流氫化以產生氨流。The method of any one of claims 46 to 50, wherein the nitrogen stream is hydrogenated by the hydrogen stream to produce an ammonia stream. 如請求項51之方法,其中該氨流與一部分該β內酯流反應以產生3-羥基丙醯胺。The method of claim 51, wherein the ammonia stream reacts with a portion of the β-lactone stream to produce 3-hydroxypropylamide. 如請求項52之方法,其中該3-羥基丙醯胺經脫水以產生生物基丙烯腈產物。The method of claim 52, wherein the 3-hydroxypropionamide is dehydrated to produce a bio-based acrylonitrile product. 如請求項46至53中任一項之方法,其中生物基1,3-丁二烯產物係由該生物基醇流產生。The method of any one of claims 46 to 53, wherein the bio-based 1,3-butadiene product is produced from the bio-based alcohol stream.
TW108116656A 2018-05-18 2019-05-15 Integrated systems and processes for chemical production TW202005950A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862673638P 2018-05-18 2018-05-18
US62/673,638 2018-05-18
US201862690782P 2018-06-27 2018-06-27
US62/690,782 2018-06-27

Publications (1)

Publication Number Publication Date
TW202005950A true TW202005950A (en) 2020-02-01

Family

ID=68540915

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108116656A TW202005950A (en) 2018-05-18 2019-05-15 Integrated systems and processes for chemical production

Country Status (2)

Country Link
TW (1) TW202005950A (en)
WO (1) WO2019221925A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MA41507A (en) 2015-02-13 2017-12-19 Novomer Inc POLYMER PRODUCTION SYSTEMS AND PROCESSES
WO2022040040A1 (en) 2020-08-17 2022-02-24 Novomer, Inc. Betapropiolactone and functionalized betapropiolactone based polymer systems
KR102677935B1 (en) * 2023-04-07 2024-06-24 노루 아이씨 코포레이션 엘티디 Biodegradeble material manufacturing method and system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2936593A (en) * 1956-04-27 1960-05-17 Air Liquide Process for the production of ammonia synthesis gas
US6933404B2 (en) * 2001-12-18 2005-08-23 Metabolix Inc. Methods of making intermediates from polyhydroxyalkanoates
EP1626042A1 (en) * 2004-08-10 2006-02-15 Urea Casale S.A. Process for urea production from ammonia and carbon dioxide
US9290620B2 (en) * 2009-10-21 2016-03-22 Nalco Company Production and composition of glycerol based polyols
US8481766B2 (en) * 2009-11-10 2013-07-09 Northwestern University Methods of producing epoxides from alkenes using a two-component catalyst system
US10597294B2 (en) * 2014-05-30 2020-03-24 Novomer, Inc. Integrated methods for chemical synthesis
WO2017004441A2 (en) * 2015-07-01 2017-01-05 Novomer, Inc Methods for coproduction of terephthalic acid and styrene from ethylene oxide

Also Published As

Publication number Publication date
WO2019221925A1 (en) 2019-11-21

Similar Documents

Publication Publication Date Title
US8927781B2 (en) Method for producing ethanol
AU2009229636B2 (en) Method of extracting butyric acid from a fermented liquid and chemically converting butyric acid into biofuel
US8252567B2 (en) Method for the indirect production of butanol and hexanol
TW202005950A (en) Integrated systems and processes for chemical production
US11299450B2 (en) System and process for co-producing dimethyl carbonate and ethylene glycol
CN103113187B (en) By the method for acetic acid ethanol co-production ethyl acetate
CN113683483B (en) Production method and device of high-purity 1, 6-hexanediol
CN110078600A (en) A kind of reactive distillation process device and method for polymethoxy dimethyl ether synthesis
CN110156575B (en) Reactive distillation-vapor permeation coupling process for polymethoxy dimethyl ether synthesis
CN110423197A (en) A kind of device and method using low concentration ethylene glycol production glycol acetate
Moiseev Biotechnology is storming the heights of petrochemistry
CN110407725B (en) Preparation method of 2-mercaptoethanol
CN103864587B (en) Method for synthesizing 2-ethyl-2-hexenal
KR101813115B1 (en) Integrated system comprising electrocatalytic reactor of glycerol and chemical catalyst reactor of biomass
JP2024513839A (en) Integrated fermentation and electrolysis processes to improve carbon capture efficiency
CN110862302A (en) Method for preparing 1, 4-butanediol by combining slurry bed hydrogenation and fixed bed hydrogenation
CN101460438A (en) Process for the conversion of synthesis gas to oxygenates
CN111434657B (en) Preparation method of gamma-valerolactone and levulinate ester compound
CN106635108A (en) Comprehensive utilization technology of biomass resources
CN107892643B (en) Method for producing ethanol from acetic acid
CN117106485A (en) Method for producing hydrogen by biomass waste cyclic catalytic reaction
CN117645590A (en) Method for producing succinic anhydride by high-efficiency bi-component solvent maleic anhydride liquid phase hydrogenation
CN115745772A (en) Method for producing succinic acid by esterification and hydrogenation of maleic anhydride
CN103739443A (en) Method for cogeneration ethanol and methanol employing synthesis gas and ethyl acetate reaction
CN116924877A (en) Process and device for refining recycle gas in vinyl acetate synthesis process