TW202005455A - 未授權nr中prach結構 - Google Patents

未授權nr中prach結構 Download PDF

Info

Publication number
TW202005455A
TW202005455A TW108112183A TW108112183A TW202005455A TW 202005455 A TW202005455 A TW 202005455A TW 108112183 A TW108112183 A TW 108112183A TW 108112183 A TW108112183 A TW 108112183A TW 202005455 A TW202005455 A TW 202005455A
Authority
TW
Taiwan
Prior art keywords
prach
wtru
random access
channel
sequence
Prior art date
Application number
TW108112183A
Other languages
English (en)
Inventor
艾爾登 貝拉
艾哈邁德雷札 希達亞特
艾爾芬 沙辛
陸 楊
俊霖 潘
Original Assignee
美商Idac控股公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商Idac控股公司 filed Critical 美商Idac控股公司
Publication of TW202005455A publication Critical patent/TW202005455A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/0055ZCZ [zero correlation zone]
    • H04J13/0059CAZAC [constant-amplitude and zero auto-correlation]
    • H04J13/0062Zadoff-Chu
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

執行PRACH的無線傳輸/接收單元(WTRU)可以基於WTRU嘗試存取的通道的不同參數配置來調整PRACH格式。該PRACH格式可以上取樣率和序列長度為特徵。該WTRU可以確定該WTRU嘗試存取的通道的參數配置,其包括該通道的子載波間距。該WTRU可以基於所確定的參數配置來確定PRACH格式。該序列長度可以是固定的,並且該上取樣率可以基於該子載波間距而變化。該上取樣率可以指示用於PRACH頻寬內的PRACH序列的子載波組。該WTRU可以使用所確定的PRACH格式來執行隨機存取。

Description

未授權NR中PRACH結構
相關申請的交叉引用
本申請要求2018年4月4日提交的美國臨時專利申請62/652,647和2018年5月9日提交的美國臨時專利申請62/669,091的權益,其內容藉由引用結合到本文中。
使用無線通信的行動通信繼續發展。第五代可以稱為5G。先前(傳統)代行動通信可以是例如***(4G)長期演進(LTE)。
本文在此揭露用於實體隨機存取通道(PRACH)結構的實施(例如,系統、方法及/或裝置)。這些實施可以在3GPP中實施,例如在新無線電(NR)中實施。實施可以包括PRACH序列的相位對齊部分。實施可以包括用於PRACH序列的Golay構造。可以執行針對相鄰通道干擾減輕的實體上鏈共享通道(PUSCH)穿孔。可以實施用於多個無線傳輸/接收單元(WTRU)的共同退避計數器。實施可以包括(例如,一個)叢集內的交錯PRACH。先聽候送(LBT)可以在窄頻PRACH中執行。
執行PRACH的無線傳輸/接收單元(WTRU)可以基於WTRU嘗試存取的通道的不同參數配置(numerology)來調整PRACH格式。PRACH格式可以上取樣率和序列長度為特徵。WTRU可以確定WTRU嘗試存取的通道的參數配置,包括通道的子載波間距。WTRU可以基於所確定的參數配置來確定PRACH格式。序列長度可以是固定的,並且上取樣率可以基於子載波間距而變化。例如,如果實體隨機存取通道具有第一子載波間距,則可以使用第一上取樣率。如果實體隨機存取通道具有小於第一子載波間距的第二子載波間距,則可以使用大於第一上取樣率的第二上取樣率,來將序列長度保持在固定值。上取樣率可以指示用於PRACH頻寬內的PRACH序列的子載波組。例如,如果上取樣率是1,則該子載波組可以是連續的,並且如果上取樣率是2,則該子載波組可以包括替代的子載波。WTRU可以使用所確定的PRACH格式來執行隨機存取。
執行PRACH的無線傳輸/接收單元(WTRU)可以基於先前嘗試存取通道是否成功,來調整PRACH格式。WTRU可以基於所接收的指示來確定先前嘗試存取通道是否成功。如果先前的嘗試不成功,則WTRU可以確定第二PRACH格式,該第二PRACH格式包括與在先前嘗試存取通道中使用的第一PRACH格式的第一上取樣率不同的上取樣率。
第1A圖是示出可以實施一個或多個揭露的實施方式的範例性通信系統100的圖。通信系統100可以是多重存取系統,其向多個無線使用者提供內容,例如語音、資料、視訊、訊息傳遞、廣播等。通信系統100可以使多個無線使用者能夠藉由共享系統資源(包括無線頻寬)來存取這樣的內容。例如,通信系統100可以採用一種或多種通道存取方法,例如分碼多重存取(CDMA)、分時多重存取(TDMA)、分頻多重存取(FDMA)、正交FDMA(OFDMA)、單載波FDMA(SC-FDMA)、零尾唯一字DFT擴展OFDM(ZT UW DTS-s OFDM)、唯一字OFDM(UW-OFDM)、資源塊濾波OFDM、濾波器組多載波(FBMC)等。
如第1A圖所示,通信系統100可以包括無線傳輸/接收單元(WTRU)102a、102b、102c、102d、RAN 104/113、CN 106/115、公共交換電話網路(PSTN)108、網際網路110和其他網路112,但是可以理解,所揭露的實施方式考慮了任意數量的WTRU、基地台、網路及/或網路元件。WTRU 102a、102b、102c、102d中的每一個可以是被配置為在無線環境中操作及/或通信的任何類型的裝置。作為範例,WTRU 102a、102b、102c、102d(其中的任何一個可以被稱為“基地台”及/或“STA”)可以被配置為傳輸及/或接收無線信號,並且可以包括:使用者設備(UE)、行動台、固定或行動用戶單元、基於訂閱的單元、呼叫器、行動電話、個人數位助理(PDA)、智慧手機、膝上型電腦、小筆電、個人電腦、無線感測器、熱點或Mi-Fi裝置、物聯網(IoT)裝置、手錶或其他可穿戴裝置、頭戴式顯示器(HMD)、車輛、無人機、醫療裝置和應用(例如,遠程手術)、工業裝置和應用(例如,在工業及/或自動處理鏈環境中操作的機器人及/或其他無線裝置)、消費電子裝置、在商業及/或工業無線網路上操作的裝置等。WTRU 102a、102b、102c、102d中的任何一個可以互換地稱為UE。
通信系統100還可以包括基地台114a及/或基地台114b。基地台114a、114b中的每一個可以是被配置為,與WTRU 102a、102b、102c、102d中的至少一個有無線介面的任何類型的裝置,以促進存取一個或多個通信網路,例如,CN 106/115、網際網路110、及/或其他網路112。作為範例,基地台114a、114b可以是基地台收發台(BTS)、節點B、e節點B、家庭節點B、家庭e節點B、gNB、NR 節點B、站點控制器、存取點(AP)、無線路由器等。雖然基地台114a、114b每個都被描繪為單個元件,但是應當理解,基地台114a、114b可以包括任意數量的互連基地台及/或網路元件。
基地台114a可以是RAN 104/113的一部分,該RAN 104/113還可以包括其他基地台及/或網路元件(未示出),例如基地台控制器(BSC)、無線電網路控制器(RNC)、中繼器。基地台114a及/或基地台114b可以被配置為在可以被稱為胞元(未示出)的一個或多個載波頻率上傳輸及/或接收無線信號。這些頻率可以是在授權頻譜、非授權頻譜,或授權和非授權頻譜的組合之中。胞元可以為特定地理區域提供無線服務的覆蓋,該特定地理區域可以是相對固定的或者可以隨時間改變。可以將胞元進一步劃分為胞元扇區。例如,與基地台114a相關聯的胞元可以被劃分為三個扇區。因此,在一個實施方式中,基地台114a可以包括三個收發器,即胞元的每個扇區有一個。在實施方式中,基地台114a可以採用多輸入多輸出(MIMO)技術,並且可以為胞元的每個扇區使用多個收發器。例如,可使用波束成形,以在期望的空間方向上傳輸及/或接收信號。
基地台114a、114b可以藉由空中介面116與WTRU 102a、102b、102c、102d中的一個或多個通信,該空中介面116可以是任何合適的無線通信鏈路(例如,射頻(RF)、微波、釐米波、微米波、紅外線(IR)、紫外線(UV)、可見光等)。可以使用任何合適的無線電存取技術(RAT)來建立空中介面116。
更具體地,如上所述,通信系統100可以是多重存取系統,並且可以採用一種或多種通道存取方式,例如CDMA、TDMA、FDMA、OFDMA、SC-FDMA等。例如,RAN 104/113中的基地台114a和WTRU 102a、102b、102c可以實施諸如通用行動電信系統(UMTS)地面無線電存取(UTRA)之類的無線電技術,其可以使用寬頻CDMA(WCDMA)來建立空中介面115/116/117。WCDMA可以包括諸如高速封包存取(HSPA)及/或演進HSPA(HSPA+)的通信協定。HSPA可以包括高速下鏈(DL)封包存取(HSDPA)及/或高速UL封包存取(HSUPA)。
在一個實施方式中,基地台114a和WTRU 102a、102b、102c可以實施諸如演進的UMTS陸地無線電存取(E-UTRA)的無線電技術,其可以使用長期演進(LTE)和/先進LTE(LTE-A)及/或先進LTE Pro(LTE-A Pro)來建立空中介面116。
在實施方式中,基地台114a和WTRU 102a、102b、102c可以實施諸如NR無線電存取的無線電技術,其可以使用新無線電(NR)來建立空中介面116。
在一個實施方式中,基地台114a和WTRU 102a、102b、102c可以實施多種無線電存取技術。例如,基地台114a和WTRU 102a、102b、102c可以一起實施LTE無線電存取和NR無線電存取,例如使用雙連接(DC)原理。因此,WTRU 102a、102b、102c使用的空中介面,可以多種類型的無線電存取技術及/或向/從多種類型的基地台(例如,eNB和gNB)傳輸的傳輸為特徵。
在其他實施方式中,基地台114a和WTRU 102a、102b、102c可以實施無線電技術,例如IEEE 802.11(即,無線保真度(WiFi)、IEEE 802.16(即,全球微波互通存取(WiMAX))、CDMA2000、CDMA 2000 1X、CDMA2000 EV-DO、臨時標準2000(IS-2000)、臨時標準95(IS-95)、臨時標準856(IS-856)、全球行動通信系統(GSM)、用於GSM演進的增強資料速率(EDGE)、GSMEDGE(GERAN)等。
例如,第1A圖中的基地台114b可以是無線路由器、家庭節點B、家庭e節點B或存取點,並且可以利用任何合適的RAT來促進局部區域中的無線連接,例如商業場所、住宅、車輛、校園、工業設施、空中走廊(例如,供無人機使用)、道路等。在一個實施方式中,基地台114b和WTRU 102c、102d可以實施諸如IEEE 802.11之類的無線電技術以建立無線域網路(WLAN)。在一個實施方式中,基地台114b和WTRU 102c、102d可以實施諸如IEEE 802.15的無線電技術以建立無線個人區域網路(WPAN)。在又一個實施方式中,基地台114b和WTRU 102c、102d可以利用基於蜂巢的RAT(例如、WCDMA、CDMA2000、GSM、LTE、LTE-A、LTE-A Pro、NR等)來建立微微胞元或毫微微胞元。如第1A圖所示,基地台114b可以具有到網際網路110的直接連接。因此,可以不要求基地台114b經由CN 106/115存取網際網路110。
RAN 104/113可以與CN 106/115通信,CN 106/115可以是被配置為向WTRU 102a、102b、102c、102d中的一者或多者提供語音、資料、應用及/或網際網路協定語音(VoIP)服務的任何類型的網路。資料可具有不同的服務品質(QoS)需求,例如不同的流通量需求、潛時需求、容錯需求、可靠性需求、資料流通量需求,行動性需求等。CN 106/115可以提供呼叫控制、計費服務、基於行動位置的服務、預付費呼叫、網際網路連接、視訊分發等,及/或執行高級安全功能,例如使用者驗證。儘管未在第1A圖中示出,但是應當理解,RAN 104/113及/或CN 106/115可以與和RAN 104/113使用相同RAT或不同RAT的其他RAN進行直接或間接通信。例如,除了連接到可以利用NR無線電技術的RAN 104/113之外,CN 106/115還可以與採用GSM、UMTS、CDMA 2000、WiMAX、E-UTRA或WiFi無線電技術的另一RAN(未示出)通信。
CN 106/115還可以用作WTRU 102a、102b、102c、102d的閘道以存取PSTN 108、網際網路110及/或其他網路112。PSTN 108可以包括提供普通老式電話服務(POTS)的電路交換電話網路。網際網路110可以包括全球性互連電腦網路和裝置的系統,其使用共同通信協定,例如TCP/IP網際網路協定族中的傳輸控制協定(TCP)、使用者資料報協定(UDP)及/或網際網路協定(IP)。網路112可以包括由其他服務提供商擁有及/或操作的有線及/或無線通信網路。例如,網路112可以包括連接到一個或多個RAN的另一個CN,該一個或多個RAN可以與RAN 104/113使用相同的RAT或不同的RAT。
通信系統100中的一些或所有WTRU 102a、102b、102c、102d可以包括多模式能力(例如,WTRU 102a、102b、102c、102d可以包括用於藉由不同無線鏈路與不同無線網路通信的多個收發器)。例如,第1A圖所示的WTRU 102c可以被配置為,與可以採用基於蜂巢的無線電技術的基地台114a通信,並且與可以採用IEEE 802無線電技術的基地台114b通信。
第1B圖是示出範例性WTRU 102的系統圖。如第1B圖所示,WTRU 102可包括處理器118、收發器120、傳輸/接收元件122、揚聲器/麥克風124、小鍵盤126、顯示器/觸控板128、非可移記憶體130、可移記憶體132、電源134、全球定位系統(GPS)晶片組136及/或其他週邊設備138等。應當理解,WTRU 102可以包括前述元件的任何子組合,同時保持與實施方式一致。
處理器118可以是通用處理器、專用處理器、傳統處理器、數位信號處理器(DSP)、多個微處理器、與DSP核心相關聯的一個或多個微處理器、控制器、微控制器、應用專用積體電路(ASIC)、現場可編程門陣列(FPGA)電路、任何其他類型的積體電路(IC)、狀態機等。處理器118可以執行信號編碼、資料處理、功率控制、輸入/輸出處理及/或使WTRU 102能夠在無線環境中操作的任何其他功能。處理器118可以耦合到收發器120,收發器120可以耦合到傳輸/接收元件122。雖然第1B圖將處理器118和收發器120描繪為各別的組件,但是應當理解,處理器118和收發器120可以在電子封裝或晶片中整合在一起。
傳輸/接收元件122可以被配置為,藉由空中介面116向基地台(例如,基地台114a)傳輸信號或從基地台接收信號。例如,在一個實施方式中,傳輸/接收元件122可以是配置成傳輸及/或接收RF信號的天線。在一個實施方式中,傳輸/接收元件122可以是放射器/檢測器,其被配置為例如傳輸及/或接收IR、UV或可見光信號。在又一個實施方式中,傳輸/接收元件122可以被配置為傳輸及/或接收RF和光信號。應當理解,傳輸/接收元件122可以被配置為傳輸及/或接收無線信號的任何組合。
雖然傳輸/接收元件122在第1B圖中被描繪為單個元件,但是WTRU 102可以包括任意數量的傳輸/接收元件122。更具體地,WTRU 102可以採用MIMO技術。因此,在一個實施方式中,WTRU 102可以包括用於藉由空中介面116傳輸和接收無線信號的兩個或更多個傳輸/接收元件122(例如,多個天線)。
收發器120可以被配置為調變將由傳輸/接收元件122傳輸的信號,並且解調由傳輸/接收元件122接收的信號。如上所述,WTRU 102可以具有多模式能力。因此,收發器120可以包括多個收發器,用於使WTRU 102能夠藉由多個RAT進行通信,例如NR和IEEE 802.11。
WTRU 102的處理器118可以耦合至揚聲器/麥克風124、小鍵盤126及/或顯示器/觸控板128(例如,液晶顯示器(LCD)顯示單元、或有機發光二極管(OLED)顯示單元),並且可以從揚聲器/麥克風124、小鍵盤126及/或顯示器/觸控板128(例如,液晶顯示器(LCD)顯示單元、或有機發光二極管(OLED)顯示單元)接收使用者輸入資料。處理器118還可以將使用者資料輸出到揚聲器/麥克風124、小鍵盤126及/或顯示器/觸控板128。另外,處理器118可以從任何類型的合適的記憶體存取資訊,以及儲存資料至該記憶體,例如非可移記憶體130及/或可移記憶體132。非可移記憶體130可以包括隨機存取記憶體(RAM)、唯讀記憶體(ROM)、硬碟或任何其他類型的儲存裝置。可移記憶體132可以包括用戶身份模組(SIM)卡、記憶條、安全數位(SD)記憶卡等。在其他實施方式中,處理器118可以從非實體上位於WTRU 102(例如,伺服器或家庭電腦(未示出))上的記憶體存取資訊,並在該記憶體中儲存資料。
處理器118可以從電源134接收電力,並且可以被配置為向WTRU 102中的其他組件分配及/或控制電力。電源134可以是用於為WTRU 102供電的任何合適的裝置。作為範例,電源134可以包括一個或多個乾電池(例如,鎳鎘(NiCd)電池、鎳鋅(NiZn)電池、鎳金屬氫化物(NiMH)電池、鋰離子(Li-ion)電池等)、太陽能電池、燃料電池等。
處理器118還可以耦合至GPS晶片組136,GPS晶片組136可以被配置為提供關於WTRU 102的當前位置的位置資訊(例如,經度和緯度)。WTRU 102可以藉由空中介面116從基地台(例如,基地台114a、114b)接收加上或取代GPS晶片組136的資訊之位置資訊及/或基於從兩個或更多個附近基地台接收到的信號的定時來確定其位置。應當理解,WTRU 102可以藉由任何合適的位置確定方法獲取位置資訊,同時保持與實施方式一致。
處理器118還可以進一步耦合至其他週邊設備138,其可以包括提供附加特徵、功能及/或有線或無線連接的一個或多個軟體及/或硬體模組。例如,週邊設備138可以包括加速度計、電子指南針、衛星收發器、數位照相機(用於照片或視訊)、通用串行匯流排(USB)埠、振動裝置、電視收發器、免持耳機、藍牙®模組、調頻(FM)無線電單元、數位音樂播放器、媒體播放器、視訊遊戲播放器模組、網際網路瀏覽器、虛擬實境及/或增強實境(VR/AR)裝置、活動跟蹤器等。週邊設備138可以包括一個或多個感測器,感測器可以是陀螺儀、加速度計、霍爾效應感測器、計磁器、方位感測器、接近感測器、溫度感測器、時間感測器、地理定位感測器、高度計、光感測器、觸控感測器、計磁器、氣壓計、手勢感測器、生物識別感測器及/或濕度感測器中的一個或多個。
WTRU 102可以包括全雙工無線電,對於該全雙工無線電,一些或所有信號的傳輸和接收(例如,與用於上鏈(例如,用於傳輸)和下鏈(例如,用於接收)的特別子訊框相關聯)可以是並行的及/或同時的。全雙工無線電可以包括干擾管理單元,以藉由硬體(例如,扼流圈),或者經由處理器(例如,單獨的處理器(未示出)或藉由處理器118)進行信號處理而減少及/或實質上消除自干擾。在一個實施方式中,WRTU 102可以包括半雙工無線電,對於該半雙工無線電,一些或所有信號的傳輸和接收(例如,與用於上鏈(例如,用於傳輸)或下鏈(例如,用於接收)的特別子訊框相關聯)。
第1C圖是示出根據實施方式的RAN 104和CN 106的系統圖。如上所述,RAN 104可以使用E-UTRA無線電技術,藉由空中介面116與WTRU 102a、102b、102c通信。RAN 104還可以與CN 106通信。
RAN 104可以包括e節點B 160a、160b、160c,但是應當理解,RAN 104可以包括任意數量的e節點B,同時保持與實施方式一致。e節點B 160a、160b、160c每個可以包括一個或多個收發器,用於藉由空中介面116與WTRU 102a、102b、102c通信。在一個實施方式中,e節點B 160a、160b、160c可以實施MIMO技術。因此,e節點B 160a例如可以使用多個天線來向WTRU 102a傳輸無線信號及/或從WTRU 102a接收無線信號。
e節點B 160a、160b、160c中的每一個可以與特別胞元(未示出)相關聯,並且可以被配置為處理無線電資源管理決定、切換決定、UL及/或DL中的使用者的排程等。如第1C圖所示,e節點B 160a、160b、160c可以藉由X2介面彼此通信。
第1C圖中所示的CN 106可以包括行動性管理實體(MME)162、服務閘道(SGW)164和封包資料網路(PDN)閘道(或PGW)166。雖然前述元件中的每一個被描繪為作為CN 106的一部分,但是應當理解,這些元件中的任何元件可以由除CN操作者之外的實體擁有及/或操作。
MME 162可以經由S1介面連接到RAN 104中的e節點B 162a、162b、162c中的每一者,並且可以用作控制節點。例如,MME 162可以負責驗證WTRU 102a、102b、102c的使用者、承載啟動/去啟動、在WTRU 102a、102b、102c的初始附著期間選擇特別服務閘道等。MME 162可以提供用於在RAN 104和採用其他無線電技術(例如GSM及/或WCDMA)的其他RAN(未示出)之間進行切換的控制平面功能。
SGW 164可以經由S1介面連接到RAN 104中的e節點B 160a、160b、160c中的每一者。SGW164通常可以將使用者資料封包路由和轉發到WTRU 102a、102b、102c或從WTRU 102a、102b、102c路由以及轉發使用者資料封包。SGW 164可以執行其他功能,例如在e節點B間交接期間錨定使用者平面、當DL資料可用於WTRU 102a、102b、102c時觸發傳呼、管理和儲存WTRU 102a、102b、102c的上下文等等。
SGW 164可以連接到PGW 166,PGW 166可以向WTRU 102a、102b、102c提供對封包交換網路(例如網際網路110)的存取,以促進WTRU 102a、102b、102c和賦能IP的裝置之間的通信。
CN 106可以促進與其他網路的通信。例如,CN 106可以向WTRU 102a、102b、102c提供對電路交換網路(例如PSTN 108)的存取,以促進WTRU 102a、102b、102c與傳統陸線通信裝置之間的通信。例如,CN 106可以包括用作CN 106和PSTN 108之間的介面的IP閘道(例如,IP多媒體子系統(IMS)伺服器),或者可以與該閘道通信。此外,CN 106可以為WTRU 102a、102b、102c提供對其他網路112的存取,該其他網路112可以包括由其他服務提供商擁有及/或操作的其他有線及/或無線網路。
儘管在第1A圖至第1D圖中將WTRU描述為無線終端,但是在某些代表性實施方式中,可以預期這樣的終端可以與通信網路使用(例如,臨時或永久)有線介面。
在代表性實施方式中,其他網路112可以是WLAN。
基礎設施基本服務集(BSS)模式中的WLAN可以具有用於BSS的存取點(AP)以及與AP相關聯的一個或多個站(STA)。AP可以具有到分發系統(DS)或其他類型的有線/無線網路的存取或介面,該有線/無線網路將訊務送入及/或送出BSS。來自BSS外部往STA的訊務可以藉由AP到達並且可以被遞送到STA。源自STA往BSS外部的目的地的訊務可以被傳輸到AP以被傳遞到分別目的地。BSS內的STA之間的訊務可以藉由AP傳輸,例如,其中源STA可以向AP傳輸訊務,並且AP可以將訊務傳遞到目的地STA。可以將BSS內的STA之間的訊務視為及/或稱為點對點訊務。可以利用直接鏈路建立(DLS)在源和目的地STA之間(例如,直接在其之間)傳輸點對點訊務。在某些代表性實施方式中,DLS可以使用802.11e DLS或802.11z隧道化DLS(TDLS)。使用獨立BSS(IBSS)模式的WLAN可以不具有AP,並且IBSS內或使用IBSS的STA(例如,所有STA)可以彼此直接通信。IBSS通信模式在本文中有時可稱為 “特定(ad-hoc)”通信模式。”
當使用802.11ac基礎設施操作模式或類似操作模式時,AP可以在固定通道(例如主通道)上傳輸信標。主通道可以是固定寬度(例如,20 MHz寬頻寬)或藉由傳訊動態設置的寬度。主通道可以是BSS的操作通道,並且可以由STA用來建立與AP的連接。在某些代表性實施方式中,可以例如在802.11系統中實施具有衝突避免的載波感測多重存取(CSMA/CA)。對於CSMA/CA,STA(例如,每個STA)(包括AP)可以感測主通道。如果主通道被特別STA感測/檢測及/或確定為忙,則特別STA可以退避。一個STA(例如,僅一個站)可以在給定BSS中的任何給定時間傳輸。
高流通量(HT)STA可以使用40 MHz寬的通道進行通信,例如,藉由主20 MHz通道與相鄰或不相鄰的20 MHz通道的組合,以形成40 MHz寬的通道。
超高流通量(VHT)STA可以支援20 MHz、40 MHz、80 MHz及/或160 MHz寬的通道。可以藉由組合連續的20 MHz通道來形成40 MHz及/或80 MHz通道。可以藉由組合8個連續的20 MHz通道,或者藉由組合兩個非連續的80 MHz通道來形成160 MHz通道,這可以被稱為80+80配置。對於80+80配置,在通道編碼之後,資料可以藉由可以將資料分成兩個串流的段解析器。可以各別對每個串流進行逆快速傅立葉變換(IFFT)處理和時域處理。可以將串流映射到兩個80 MHz通道,並且資料可以由傳輸STA傳輸。在接收STA的接收機處,可以顛倒上述用於80+80配置的操作,並且可以將組合資料傳輸到媒體存取控制(MAC)。
802.11af和802.11ah支援次1GHz的操作模式。相對於802.11n和802.11ac中使用的,802.11af和802.11ah中的通道操作頻寬和載波減少了。802.11af支援TV白空間(TVWS)頻譜中的5 MHz、10 MHz和20 MHz頻寬,802.11ah支援使用非TVWS頻譜的1 MHz、2 MHz、4 MHz、8 MHz和16 MHz頻寬。根據代表性實施方式,802.11ah可以支援儀錶類型控制/機器類型通信,例如巨集覆蓋區域中的MTC裝置。MTC裝置可以具有某些能力,例如,有限的能力,包括支援(例如,僅支援)某些及/或有限的頻寬。MTC裝置可以包括電池壽命高於臨界值的電池(例如,以維持非常長的電池壽命)。
可以支援多個通道的WLAN系統和諸如802.11n、802.11ac、802.11af和802.11ah的通道頻寬包括可以被指定為主通道的通道。主通道的頻寬可以等於BSS中所有STA支援的最大共同操作頻寬。主通道的頻寬可以由STA(來自BSS中操作的所有STA)設置及/或限制,其支援最小頻寬操作模式。在802.11ah的範例中,對於支援(例如,僅支援)1 MHz模式的STA(例如,MTC類型裝置),主通道可以是1 MHz寬,即使AP和BSS中的其他STA支援2 MHz、4 MHz、8 MHz、16 MHz及/或其他通道頻寬操作模式。載波感測及/或網路分配向量(NAV)設置可取決於主通道的狀態。如果主通道忙,例如,由於STA(僅支援1 MHz操作模式)正在向AP傳輸,即使大多數頻段保持空閒並且可能可用,也可認為整個可用頻段都很忙。
在美國,可由802.11ah使用的可用頻段為902 MHz至928 MHz。在韓國,可用頻段為917.5 MHz至923.5 MHz。在日本,可用頻段從916.5 MHz到927.5 MHz。802.11ah可用的總頻寬為6 MHz至26 MHz,這具體取決於國家/地區代碼。
第1D圖是示出根據實施方式的RAN 113和CN 115的系統圖。如上所述,RAN 113可以使用NR無線電技術藉由空中介面116與WTRU 102a、102b、102c通信。RAN 113還可以與CN 115通信。
RAN 113可以包括gNB 180a、180b、180c,但是應當理解,RAN 113可以包括任意數量的gNB,同時保持與實施方式一致。gNB 180a、180b、180c中的每一者可以包括一個或多個收發器,用於藉由空中介面116與WTRU 102a、102b、102c通信。在一個實施方式中,gNB 180a、180b、180c可以實施MIMO技術。例如,gNB 180a、108b可以利用波束成形來向gNB 180a、180b、180c傳輸信號及/或從gNB 180a、180b、180c接收信號。因此,例如,gNB 180a可以使用多個天線來向WTRU 102a傳輸無線信號及/或從WTRU 102a接收無線信號。在一個實施方式中,gNB 180a、180b、180c可以實施載波聚合技術。例如,gNB 180a可以將多個分量載波傳輸到WTRU 102a(未示出)。這些分量載波的子集可以在非授權頻譜上,而其餘分量載波可以在授權頻譜上。在一個實施方式中,gNB 180a、180b、180c可以實施協調多點(CoMP)技術。例如,WTRU 102a可以從gNB 180a、180b、180c(及/或gNB 180c)接收協調傳輸。
WTRU 102a、102b、102c可以使用與可縮放參數配置相關聯的傳輸與gNB 180a、180b、180c通信。例如,OFDM符號間距及/或OFDM子載波間距可以針對不同傳輸、不同胞元及/或無線傳輸頻譜的不同部分而變化。WTRU 102a、102b、102c可以使用各種或可縮放長度的子訊框或傳輸時間間隔(TTI),與gNB 180a、180b、180c通信(例如,包含不同數量的OFDM符號及/或持續變化的絕對時間長度)。
gNB 180a、180b、180c可以被配置為,以分立配置及/或非分立配置與WTRU 102a、102b、102c通信。在分立配置中,WTRU 102a、102b、102c可以與gNB 180a、180b、180c通信,而不存取其他RAN(例如,諸如e節點B 160a、160b、160c)。在分立配置中,WTRU 102a、102b、102c可以使用gNB 180a、180b、180c中的一者或多者作為行動性錨點。在分立配置中,WTRU 102a、102b、102c可以使用非授權頻段中的信號與gNB 180a、180b、180c通信。在非分立配置中,WTRU 102a、102b、102c可以與gNB 180a、180b、180c通信/連接,同時還與諸如e節點B 160a、160b、160c的另一RAN通信/連接。例如,WTRU 102a、102b、102c可以實施DC原理,以實質上同時與一個或多個gNB 180a、180b、180c和一個或多個e節點B 160a,160b,160c通信。在非分立配置中,e節點B 160a、160b、160c可以用作WTRU 102a、102b、102c的行動性錨點,並且gNB 180a、180b、180c可以提供用於服務WTRU 102a、102b、102C的附加覆蓋及/或流通量。
gNB 180a、180b、180c中的每一者可以與特別胞元(未示出)相關聯,並且可以被配置為處理無線電資源管理決定、交接決定、UL及/或DL中的使用者的排程、網路截割的支援、雙連接性、NR和E-UTRA之間的交互工作、路由往使用者平面功能(UPF)184a、184b的使用者平面資料、路由往存取和行動性管理功能(AMF)182a、182b的控制平面資訊等等。如第1D圖所示,gNB 180a、180b、180c可以藉由Xn介面彼此通信。
第1D圖中所示的CN 115可以包括至少一個AMF 182a、182b、至少一個UPF 184a、184b、至少一個對話管理功能(SMF)183a、183b、以及可能的資料網路(DN)185a、185b。雖然前述元件中的每一個被描繪為CN 115的一部分,但是應當理解,這些元件中的任何元件可以由除CN操作者者之外的實體擁有及/或操作。
AMF 182a、182b可以經由N2介面連接到RAN 113中的gNB 180a、180b、180c中的一者或多者,並且可以用作控制節點。例如,AMF 182a、182b可以負責驗證WTRU 102a、102b、102c的使用者、支援網路截割(例如,處理具有不同需求的不同PDU對話)、選擇特別的SMF 183a、183b、管理註冊區域、NAS傳訊的終止、行動性管理等。AMF 182a、182b可以使用網路截割,以便基於正在使用的WTRU 102a、102b、102c的服務類型來定制對WTRU 102a、102b、102c的CN支援。例如,可以針對不同的使用情況建立不同的網路截割,例如依賴於超可靠低潛時(URLLC)存取的服務、依賴於增強型大規模行動寬頻(eMBB)存取的服務、及/或用於機器類型通信(MTC)存取的服務等等。AMF 162可以提供用於在RAN 113和採用其他無線電技術(例如LTE、LTE-A、LTE-A Pro及/或非3GPP存取技術,例如WiFi)的其他RAN(未示出)之間進行切換的控制平面功能。
SMF 183a、183b可以經由N11介面連接到CN 115中的AMF 182a、182b。SMF 183a、183b還可以經由N4介面連接到CN 115中的UPF 184a,184b。SMF 183a、183b可以選擇和控制UPF 184a、184b,並藉由UPF 184a,184b而配置訊務之路由。SMF 183a、183b可以執行其他功能,諸如管理和分配UE IP位址、管理PDU對話、控制策略實施和QoS、提供下鏈資料通知等。PDU對話類型可以是基於IP的、基於非IP的、基於乙太網的等。
UPF 184a、184b可以經由N3介面連接到RAN 113中的gNB 180a、180b、180c中的一者或多者,其可以向WTRU 102a、102b、102c提供對封包交換網路的存取,例如網際網路110,以促進WTRU 102a、102b、102c與賦能IP的裝置之間的通信。UPF 184、184b可以執行其他功能,例如路由和轉發封包、實施使用者平面策略、支援多連接(multi-homed)PDU對話、處理使用者平面QoS、緩衝下鏈封包、提供行動性錨定等。
CN 115可以促進與其他網路的通信。例如,CN 115可以包括用作CN 115和PSTN 108之間的介面的IP閘道(例如,IP多媒體子系統(IMS)伺服器),或者可以與該閘道進行通信。此外,CN 115可以為WTRU 102a、102b、102c提供對其他網路112的存取,其他網路112可以包括由其他服務提供商擁有及/或操作的其他有線及/或無線網路。在一個實施方式中,WTRU 102a、102b、102c可以藉由UPF 184a、184b,經由到UPF 184a、184b的N3介面和介於UPF 184a、184b與DN 185a、185b之間的N6介面連接到本地資料網路(DN)185a、185b。
鑒於第1A圖至第1D圖以及第1A圖至第1D圖的相應描述,這裡描述的關於以下一個或多個的一個或多個或全部功能可以由一個或多個模擬裝置(未顯示)來執行:WTRU 102a-d、基地台114a-b、e節點B 160a-c、MME 162、SGW 164、PGW 166、gNB 180a-c、AMF 182a-b、UPF 184a-b、SMF 183a-b、DN 185a-b,及/或這裡描述的任何一個或多個其他裝置。這些模擬裝置可以是被配置為模擬本文描述的一個或多個或全部功能的一個或多個裝置。例如,這些模擬裝置可以用於測試其他裝置及/或模擬網路及/或WTRU功能。
這些模擬裝置可以被設計為在實驗室環境及/或操作者網路環境中實施其他裝置的一個或多個測試。例如,一個或多個模擬裝置可以執行一個或多個或所有功能,同時作為有線及/或無線通信網路的一部分被完全或部分地實施及/或部署,以便測試通信網路內的其他裝置。一個或多個模擬裝置可以執行一個或多個或所有功能,同時作為有線及/或無線通信網路的一部分臨時實施/部署。模擬裝置可以直接耦合到另一裝置以執行測試,及/或可以使用空中無線通信執行測試。
一個或多個模擬裝置可以執行一個或多個(包括所有)功能,而不是作為有線及/或無線通信網路的一部分而被實施/部署。例如,模擬裝置可以用在測試實驗室及/或非部署(例如,測試)有線及/或無線通信網路中的測試場景中,以便實施一個或多個組件的測試。一個或多個模擬裝置可以是測試裝置。經由RF電路(例如,其可以包括一個或多個天線)的直接RF耦合及/或無線通信可以由模擬裝置用於傳輸及/或接收資料。
可以實施LTE授權輔助存取(LAA)和增強LAA(eLAA)。授權輔助存取(LAA)可以用作LTE先進Pro的一部分。eLAA實施可以在未授權頻段中賦能LTE的上鏈和下鏈操作。
可以執行先聽候送(LBT)。
LBT協定可以在LAA中實施。與LBT相關的類別可以包括以下中的一個或多個:無LBT;無隨機退避的LBT;具有固定大小爭用視窗的隨機退避的LBT;和具有可變大小爭用視窗的隨機退避的LBT。
對於無LBT的情況,無LBT程序被傳輸實體執行。
對於無隨機退避的LBT的情況,在傳輸實體傳輸之前感測到通道空閒的持續時間可以是確定的。
對於具有固定大小爭用視窗的隨機退避的LBT的情況,LBT可以包括以下步驟中的一個或多個。傳輸實體可以在爭用視窗內抽取隨機N次。可以藉由N的最小值和最大值來指定爭用視窗的大小。爭用視窗的大小可以是固定的。可以在LBT中使用隨機次數N,例如以確定在傳輸實體在通道上傳輸之前可以感測通道空閒的持續時間。
對於具有可變大小爭用視窗的隨機退避的LBT的情況,LBT可以包括以下中的一個或多個。傳輸實體可以在爭用視窗內抽取隨機次數N。爭用視窗的大小可以由N的最小值和最大值指定。傳輸實體可以改變爭用視窗的大小,例如,當抽取隨機次數N時。隨機次數N可以用在LBT中,例如以確定在傳輸實體在通道上傳輸之前可以感測通道空閒的持續時間。
可以執行交錯資源分配(例如,塊(B)-IDMA)。
可以實施eLAA系統中的資源分配框架。例如,非授權資料通道的資源分配的基本單元可以是交錯。交錯可以包括20 MHz頻率頻寬內的十個等間距資源塊(RB)。例如,由於未授權頻段中的法規要求(例如,佔用頻寬和10dBm/MHz要求),可以使用頻率中的交錯結構,以允許無線傳輸/接收單元(WTRU)利用最大可用傳輸功率。第2圖示出了範例***錯。例如,如第2圖所示,交錯可以由OFDM符號的120個子載波組成。子載波可以以叢集方式分佈,其中叢集大小(例如,每個叢集大小)可以是12,並且叢集可以彼此分離9×12個子載波。
交錯資源分配可以(例如僅)應用於資料通道。可以使用授權頻段來傳輸控制通道(例如,PUCCH)和隨機存取通道(RACH)。
可以執行隨機存取通道i(例如,如可以是示出的實體隨機存取通道)。
嘗試存取網路的WTRU可以在實體隨機存取通道(PRACH)中(例如在NR中)傳輸隨機存取前導碼。
可以產生序列。
在NR中,可以根據等式(1)及等式(2)產生隨機存取前導碼集合
Figure 02_image001
Figure 02_image003
等式1
Figure 02_image005
等式2 從中可以根據等式3產生頻域表示
Figure 02_image007
等式3 其中
Figure 02_image009
Figure 02_image011
,這取決於表1和表2給出的PRACH前導碼格式。序列號
Figure 02_image013
可以從邏輯根序列索引獲得,並且
Figure 02_image015
可以是循環移位。 1
Figure 02_image017
Figure 02_image019
PRACH 前導碼格式
Figure 108112183-A0304-0001
2
Figure 02_image043
Figure 02_image045
( 其中
Figure 02_image047
) 的前導碼格式
格式
Figure 02_image021
Figure 02_image023
Figure 02_image049
Figure 02_image027
支援的受限集
A1 139
Figure 02_image050
Figure 02_image052
Figure 02_image054
-
A2 139
Figure 02_image050
Figure 02_image056
Figure 02_image058
-
A3 139
Figure 02_image050
Figure 02_image060
Figure 02_image062
-
B1 139
Figure 02_image050
Figure 02_image064
Figure 02_image065
-
B2 139
Figure 02_image050
Figure 02_image067
Figure 02_image068
-
B3 139
Figure 02_image050
Figure 02_image070
Figure 02_image071
-
B4 139
Figure 02_image050
Figure 02_image073
Figure 02_image075
-
C0 139
Figure 02_image050
Figure 02_image077
Figure 02_image079
-
C2 139
Figure 02_image050
Figure 02_image056
Figure 02_image081
可以根據等式4將前導序列映射到實體資源
Figure 02_image082
等式4 其中
Figure 02_image084
可以是振幅縮放因子,並且
Figure 02_image086
可以是天線埠。可以產生OFDM信號。PRACH前導碼可以包括循環前綴、OFDM符號的重複和保護間隔。循環前綴、保護間隔、OFDM符號和重複次數的持續時間可以取決於例如PRACH前導碼格式。第3圖示出了PRACH前導碼結構的範例。
例如,當用於PRACH的資源分配是B-IDMA時,頻率資源的分配可以是非連續的。可以在此提供改進相對於與連續資源分配相關聯的覆蓋的覆蓋及/或降低PRACH前導碼的峰均功率比(PAPR)的技術。
例如,當實體上鏈共享通道(PUSCH)和PRACH使用不同的OFDM參數配置(例如,不同的子載波間距)時,PUSCH和PRACH可能由於相鄰通道的干擾而彼此干擾。可以提供減輕PUSCH和PRACH之間的干擾的技術。
如果LBT程序失敗(例如,由於LBT需求),則WTRU可能必須避免在即將到來的PRACH資源中存取和傳輸。這可能在例如gNB可能經常且週期性地排程PRACH資源(例如,由於gNB處的不成功LBT)中具有的延遲之外,增加初始存取延遲。
可以使用塊交錯的分頻多重存取(B-IFDMA)來執行PRACH序列產生。
Zadoff-Chu序列(例如,如在NR中)可以用於產生PRACH前導碼。可以例如使用B-IFDMA方法傳輸所選擇的Zadoff-Chu序列。例如,序列(例如,Zadoff-Chu序列)可以被劃分為L個部分。L可以對應於交錯中的組塊(chunk)的數量。組塊包括(例如,被定義為)一組連續的子載波組。交錯可以包括L個組塊。L個組塊中的一些(例如,所有)可能在頻域中不相鄰。在範例中,可以互換地使用包括多個連續子載波的組塊和資源塊。資源塊可以包括(例如,定義為)12個子載波。可以將序列的部分(例如,塊)映射到為隨機存取前導碼傳輸分配的交錯的組塊(例如,資源塊)。例如,序列的每個部分(例如,每個塊)可以被映射到為隨機存取前導碼傳輸分配的交錯的一個組塊(例如,一個資源塊)。
第4圖示出了具有B-IDMA的PRACH資源分配的範例。如第4圖所示,序列可以被劃分為L個部分,並且L個部分中的每個部分可以被映射到交錯的一個資源塊。
一個資源塊(例如,在NR中)可以具有12個子載波。交錯的大小(例如,如第4圖所示的交錯)可以是12L個子載波。例如,如果L=12,則分配大小可以是144個子載波。如果L=10,則分配大小可以是120個子載波。分配大小可以包括例如分配給PRACH序列的子載波的數量。
該序列的長度(例如,用於序列的子載波的數量)可以不等於可用子載波的數量。例如,所使用的序列的長度可以小於120(例如,113),小於144(例如,139)等。為了將序列映射到可用資源(例如,子載波),可以使用以下一個或多個。
在範例中,序列可以被劃分為多個部分,使得前L-1部分可以具有12個元素(例如,係數),並且最後部分可以具有N-(12*(L-1))個係數,其中N可以是序列長度。例如,如果L=10並且N是113,則最後部分可以具有5個係數。可以將M個零映射到未被序列使用的資源塊的資源(例如,沒有序列的係數被映射到那些資源)。在該範例中,映射到交錯的最後資源塊的零的數量可以是12-5=7。作為另一範例,如果L=12並且N是139,則最後部分可以具有7個係數。映射到交錯的最後資源塊的零的數量可以是12-7=5。
在範例中,M個零可以被映射到交錯的最後資源塊或者在交錯的第一個資源塊和最後一個資源塊之間共享。M個零可以被映射到交錯的最後資源塊的最後M個子載波。M個零可以在交錯的第一個資源塊的前k個子載波與交錯的最後一個資源塊的最後n個子載波之間共享,其中M=k+n。第5圖中示出了PRACH序列映射的範例。在第5圖中,假設N=113並且L=10。可以映射到第一RB的第一序列部分可以具有8個係數,並且可以映射到最後RB的最後序列部分可以具有9個係數。剩餘的序列部分可以映射到剩餘的8個RB,其每個用於映射序列的12個係數(例如,PRACH序列)。
例如,在從PRACH序列產生OFDM信號之前,可以將PRACH序列的(例如,每個)序列部分與相位因子相乘。序列部分與相位因子的乘法可以降低從PRACH序列產生的OFDM信號的PAPR。可以從集合(例如,小集合)中選擇相位因子,及/或可以將序列因子保存在表格中以用於序列(例如,每個序列)。作為範例,相位因子可以從{1,-1,i,-i}或{1+i,1-i,-1-i,-1+i}中選擇,其中
Figure 02_image088
第6圖示出了PRACH前導碼OFDM信號產生的範例。如第6圖所示,離散傅立葉變換(DFT)塊可用於將PRACH序列變換到頻域。對於某些序列,例如Zadoff-Chu序列,可以跳過DFT塊。DFT擴展序列可以被劃分為L個部分,例如,部分1到部分L。(例如,每個)部分可以與相位因子相乘,例如相位因子1到相位因子L。相位因子1到相位因子L可以相同。一些(例如,所有)相位因子1-L可以是不同的。序列部分(例如,每個序列部分)可以被映射到交錯的一個資源塊。藉由逆離散傅立葉變換(IDFT)可以產生OFDM信號。一個或多個序列(例如,每個序列)的相位因子可以離線計算及/或保存在表格中。
本文的範例可以類似地應用於其他類型的序列,例如導出自Zadoff-Chu序列的序列。組塊的大小可以是12個子載波,也可以不是12個子載波。組塊可以包括任何數量的子載波,例如,取決於具體設計。
當PRACH前導碼的子載波間距不同於PUSCH的子載波間距時,可以應用這裡描述的一個或多個範例。第7A圖示出了三個樣本情況,其中PRACH和PUSCH資源塊具有不同的參數配置(例如,子載波間距、頻寬等)。例如,當PRACH和PUSCH資源塊具有相同數量的子載波時,PRACH和PUSCH資源塊可以具有不同的頻寬,並且PRACH和PUSCH的子載波間距不同。可以將PUSCH RB的大小作為參考,來確定PRACH組塊大小。
在第7A圖(a)中,PUSCH RB的大小可以是12×30 kHz=360 kHz,並且PRACH RB的大小可以是12×15 kHz=180 kHz。PRACH RB(例如,每個PRACH RB)可以屬不同的交錯。例如,每個RB可以被用於(例如,被定義為)交錯的一個“組塊”。
在第7A圖(b)中,PUSCH RB的大小可以是12×15 kHz=180 kHz,並且PRACH RB的大小可以是12×30 kHz=360 kHz。PRACH RB可以屬一個交錯,例如,PRACH RB可以被用於(例如,被定義為)交錯的一個“組塊”。
在第7A圖(c)中,PUSCH RB的大小可以是12×15 kHz=180 kHz,PRACH RB的大小可以是12×1.25 kHz=15 kHz。多個PRACH RB(例如,12個PRACH RB)可以構成交錯的一個“組塊”。
可以執行窄頻PRACH序列產生。可以在通道的一部分中產生PRACH前導碼(例如,包括PRACH序列)或PRACH序列。例如,如本文所述,PRACH序列可以在通道的部分內是連續的或交錯的。
在範例中,PRACH序列可以在通道頻寬的至少一部分中傳輸(例如,如第7B圖中所示的叢集720)。第7B圖示出了PRACH序列映射的範例。雖然本文描述的一個或多個範例可以假設一個部分/叢集,但是一個或多個範例可以適用於一個以上的部分/叢集。PRACH序列可以從Zadoff-Chu序列或另一種類型的序列(例如,Golay序列)導出。
如第7B圖的(a)和(b)所示,頻域中的一些子載波可以用於PRACH(例如,PRACH序列)。可以為PRACH分配頻域中的子載波。PRACH序列可以映射到子載波(例如,分配的子載波),例如映射到分配給PRACH的一個或多個子載波。用於PRACH序列的子載波可以是連續的(例如,如第7B圖中的(a)所示)或交錯的(例如,如第7B圖中的(b)所示)。可以例如在映射到分配的子載波之前處理(例如,預處理)PRACH序列。預處理的一個範例可以是對序列(例如,PRACH序列)進行DFT變換。
可以使用一個或多個實施方式來將PRACH序列映射到資源(例如,子載波)。PRACH序列可以被映射到一組連續的子載波(例如,如第7B圖中的(a)所示)。通道BW(例如,可用通道BW)可以是K ×Δf Hz,其中K 可以是子載波的數量(例如,可用子載波)。Δf可以是子載波間距(例如,對於可用子載波)。例如,K 可以是1024,並且Δf可以是60 kHz,這導致61.440 MHz的通道頻寬(例如,可用通道頻寬)。可用通道頻寬可以包括PRACH頻寬。分配給PRACH序列使用的頻寬(例如,PRACH頻寬)可以是L ×Δf Hz,例如,排除可以***用於PRACH序列的子載波周圍的任何保護頻段。L 可以是PRACH序列的序列長度。序列長度可以是被分配及/或映射到PRACH序列的資源(例如,子載波)的數量。例如,序列長度L 可以是139(例如,如第7B圖的(a)中的陰影所示),並且Δf可以是60 kHz,這導致8.340 MHz的PRACH頻寬。
第7B圖示出了以下中的一個或多個。PRACH序列可以映射到一組交錯的子載波。如第7B圖中的(b)所示,用於PRACH序列的子載波可以在一些子載波之間交錯。PRACH序列可以映射到一些子載波,但不映射到其他子載波。PRACH序列可以映射到子載波702-710。例如,PRACH序列可以不被映射到子載波702和704之間的三個子載波712、714和716。第7B圖示出了映射到每第四個子載波的範例,但是可以使用其他映射(例如,參見表3中的範例)。
Δf可以是兩個子載波之間的子載波間距(例如,兩個相鄰的子載波,例如702和712)。隨著子載波間距Δf改變,PRACH序列可以被映射到不同的子載波。用於PRACH序列的兩個子載波之間的子載波的數量(例如,未用於PRACH序列的子載波)可以改變(例如,參見表3)。例如,PRACH序列可以被映射到某些子載波,使得如果子載波間距Δf減小,則可能存在多於三個子載波,這些子載波未被映射到子載波702和704之間的PRACH序列。例如,用於PRACH序列的兩個子載波(例如,子載波702和704)之間的子載波的數量,可以與PRACH格式的上取樣率成比例地變化(例如,參見表3)。在範例中,當上取樣率是1時,用於PRACH序列的兩個子載波(例如,子載波702和704)之間的子載波的數量可以變為零。當子載波702和704之間的子載波的數量變為零時,用於PRACH序列的子載波可以是連續的(例如,如第7B圖的(a)所示)。
WTRU可以接收關於通道的資訊(例如,WTRU嘗試存取的通道)。關於通道的資訊可以包括通道的子載波間距。關於通道的資訊可以指示通道的子載波間距的增加或減少。
在第7B圖的(b)中,可以使用比第7B圖中的(a)中的子載波間距更小的子載波間距。如果第7B圖中的(a)中的子載波間距是Δf,則第7B圖中的(b)中的子載波間距可以是Δf/m ,其中m 是整數。如果在第7B圖中的(b)中m =4,則子載波間距可以是15 kHz(例如,60 kHz/m )。在範例中,如果子載波間距是Δf/m ,則可用子載波的總數可以變為(m ×L )。例如,在第7B圖的(a)中,子載波間距Δf可以是60 kHz,K 可以是1024,這導致61.440 MHz的可用通道頻寬。如果在第7B圖中的(b)中子載波間距是15 kHz,則在61.440 MHz的通道頻寬中總共4096(例如,1024×m )個子載波是可用的。
PRACH頻寬中可用子載波的總數可以從第7B圖中的(a)增加到第7B圖中的(b)。如果子載波間距是Δf/m ,則PRACH頻寬中可用子載波的總數可以變為m ×L 。例如,556(m ×139)個子載波可用於8.340 MHz的PRACH頻寬內的PRACH序列傳輸。從第7B圖中的(a)到第7B圖中的(b),PRACH頻寬可以不變化,例如,如(m ×L )×(Δf/m )=L ×ΔfHz所示。
PRACH序列長度可以是固定的。例如,假設隨著子載波間距從第7B圖中的(a)變為第7B圖中的(b)(例如,第7B圖中的(a)中和第7B圖中的(b)中的L ),PRACH序列長度不改變,PRACH序列可以被映射到PRACH頻寬中的m ×L 個可用子載波中的L 個子載波(例如,參見表3)。可以使用各種技術從m ×L 個可用子載波中選擇L 個子載波。
可以選擇用於PRACH序列傳輸的L 個子載波,以使用PRACH頻寬內的每第m 個子載波。例如,PRACH序列可以以m 的比率進行上取樣,例如,在映射到PRACH頻寬中的子載波之前,而PRACH序列長度可以藉由映射保持固定。在範例中,在PRACH序列被映射到PRACH頻寬中的子載波之前,可以在PRACH序列的係數之間***零。
可以根據通道的可用性或通道中子載波的可用性來選擇用於PRACH序列傳輸的L 個子載波。例如,如果不是每第m 個子載波在PRACH頻寬內可用,則PRACH序列可以不被映射到每第m 個子載波。PRACH序列可以映射到PRACH頻寬中的一些其他子載波,以保持序列長度固定。
可以對子載波(例如,在PRACH頻寬內)編制索引。假設PRACH頻寬內的子載波(例如,第7B圖中的(b)的子載波(例如,702、712、714、716和704))用索引0,1,2,...,m ×L -1表示,PRACH序列被映射到的子載波的索引(例如,第7B圖中的(b)的子載波(例如,702和704))可以被寫為n ×m ,n=0,...,L -1。作為範例,如果L =16並且m =4,則可以用於PRACH傳輸(例如,映射到PRACH序列)的子載波的索引可以是以下集合:{0,4,8,….,60}。
第7C圖示出了PRACH傳輸的範例。該PRACH傳輸可以等效於以m 的比率對PRACH序列進行上取樣,並將上取樣的PRACH序列映射到IDFT,如第7C圖所示。如第7C圖所示,可以預處理PRACH序列。例如,預處理可以包括DFT變換。預處理可以是可選的。可以對PRACH序列(例如,預處理的PRACH序列)進行上取樣(例如,基於m 的上取樣率)。可以(例如藉由子載波映射)將上取樣的PRACH序列映射到子載波。子載波映射可以包括從可用子載波確定子載波子集,並將PRACH序列映射到所確定的子載波子集。子載波的索引可以用於子載波映射。例如,k 可以是子載波索引。可用子載波可以被編制索引為k ={0...N ...N +m ×L -1...m ×K -1}。可以將上取樣的PRACH序列映射到索引為k ={NN +1,...N +m ×L -1}的子載波。可以使用IDFT處理映射的子載波,例如,基於PRACH頻寬。IDFT的輸出可以是具有m 次重複的一個或多個信號(例如,在m 個子載波中)。
第7D圖示出了取樣時域信號(例如,IDFT的輸出)。第7B圖(a)示出了連續PRACH序列的範例。第7B圖(b)示出了交錯PRACH序列的範例。例如,大小為16的IDFT可以用於第7B圖(a)。在第7B圖(a)中,PRACH序列s=[1+1i -1-1i -1+1i 1-1i]/sqrt(2)可以映射到索引為k =0,1,2和3的子載波。在該範例中,可以在第7B圖(b)中使用大小為64的IDFT。在第7B圖(b)中,PRACH序列可以被映射到索引為k =0,4,8,12的子載波。第7B圖(b)中的子載波間距可以是Δf。PRACH頻寬可以是16Δf。如果第7B圖(a)中的PRACH頻寬包括第7B圖(a)中的4個子載波並且m =4,則第7B圖(b)中的PRACH頻寬可以包括16個子載波。
IDFT的輸出信號的大小可以有IDFT的大小之適當縮放(例如,按比例)。如第7C圖所示,大小為64的IDFT的輸出處的信號可以是大小為16的IDFT的輸出處的信號的4倍重複。在PRACH序列的第一係數被映射到的系統頻寬(例如,PRACH頻寬)內的第一子載波的索引k (例如,第7C圖中的N )可以滿足條件mod(Nm )=0,例如以獲得(例如,維持)重複信號結構。
在該範例中,藉由適當的縮放和子載波映射,基於第7B圖的(a)產生的第一時域信號和基於第7B圖的(b)產生的第二時域信號可以是相同的。第7B圖的(a)和第7B圖的(b)中的PRACH序列的時域特性可以相同。
具有較小子載波間距的實施的屬性(例如,第7B圖的(b)中的實施)可以包括以下中的至少一個:PRACH可以與其他通道(PUSCH)以相同的子載波間距被傳輸;可以在PRACH頻寬中多工一個以上的WTRU;WTRU可以選擇IDFT的相應輸出來傳輸全部或部分重複。
PRACH可能不需要更寬的子載波間距,這可能不是PRACH專有的。PUSCH可以支援更窄的子載波間距。例如,如果PUSCH支援較窄的子載波間距,則可以以與PUSCH相同的子載波間距來傳輸PRACH。使用相同的子載波間距來傳輸PRACH和PUSCH可以降低WTRU複雜度。
可以在PRACH頻寬中多工一個以上的WTRU。例如,可以在相同的PRACH頻寬內多路多工最多達m 個WTRU。這可以藉由例如在上取樣塊之後引入循環移位來實施。循環移位可以在0和m -1之間。在範例中,可以具有索引{N +rN +m +rN +2m +r ,...,N +mL -1)+r }的子載波可以被填充。r 可以是移位值。mod(N +rm )可以不等於0。信號可以不具有重複結構。WTRU可以配置有r 值。WTRU可以接收r 值的傳訊。WTRU可以選擇PRACH序列映射到的子載波。在範例中,第一WTRU和第二WTRU可以在PRACH頻寬中多工。第一WTRU可以使用與具有第一循環移位的第一PRACH序列相關聯的PRACH格式,並且第二WTRU可以使用與具有第二循環移位的第二PRACH序列相關聯的PRACH格式。PRACH頻寬可以包括映射到第一PRACH序列的至少一個子載波和映射到第二PRACH序列的至少一個子載波。
WTRU可以選擇IDFT的相應輸出以傳輸所有或一些重複,例如,在潛在地***循環前綴及/或保護間隔之後。
WTRU可以(例如基於關於通道的資訊)確定要使用的PRACH格式。可以基於以下中的一個或多個來關聯或/和確定特定PRACH格式:子載波間距、上取樣率、序列長度或PRACH頻寬。例如,WTRU可以使用更寬或更窄的子載波間距來產生PRACH前導碼。表3中提供了樣本PRACH配置表。WTRU可以配置有一種或多種PRACH格式。如表3所示,序列長度可以設計為從一種PRACH格式固定為另一種PRACH格式。子取樣率、子載波間距及/或PRACH頻寬中的一個或多個,可以從一種PRACH格式變化到另一種PRACH格式。如PRACH格式1-3所示,上取樣率可以基於(例如,與子載波間距成比例)子載波間距而變化,例如,以保持序列長度固定。
可以選擇及/或使用PRACH格式來控制WTRU的傳輸功率。例如,WTRU可以配置有具有較窄PRACH頻寬的PRACH格式(例如,由於功率譜密度(PSD)/MHz規則)。較窄傳輸頻寬可能導致較低的傳輸功率。WTRU可以靠近基地台。例如,當已經連接的WTRU準備交接時,WTRU可以配置有具有較窄PRACH頻寬的PRACH格式。WTRU可以配置有具有較窄PRACH頻寬和多個PRACH OFDM符號重複的PRACH格式,例如,以補償由於窄頻PRACH傳輸引起的功率損耗。
在範例中,WTRU可以(例如,最初)藉由使用第一PRACH格式傳輸PRACH前導碼,來開始嘗試存取通道。WTRU可以基於指示來確定,存取通道的嘗試是否成功。WTRU可以接收該指示以及關於WTRU接收的通道的資訊。如果隨機存取不成功(例如,由WTRU基於該指示確定),則WTRU可以改變第一PRACH格式,例如,使得WTRU可以以更大的功率進行傳輸。例如,WTRU可以將第一PRACH格式改變為具有較大PRACH頻寬及/或較大子載波間距的第二PRACH格式(例如,在表3中列出的PRACH格式間)。作為範例,WTRU可以在其第一次嘗試中使用PRACH格式5;如果不成功,WTRU可以在其第二次嘗試中嘗試PRACH格式4等等。在一個範例中,WTRU可以在其第一次嘗試中使用PRACH格式5;如果不成功,WTRU可以在其第二次嘗試中嘗試PRACH格式3等等。 3 範例 PRACH 配置表
Figure 108112183-A0304-0002
LBT考慮可用於執行LBT。
窄頻PRACH可以相對通道存取及/或LBT而被使用。WTRU可以嘗試存取窄頻PRACH。嘗試存取窄頻PRACH的WTRU可以在PRACH所在的頻寬的一部分(例如,子集)上執行LBT(例如,子帶LBT)。當執行子帶LBT時,可以跨越PRACH資源的頻寬或跨越最小頻寬(例如,任一個較窄的)執行能量測量。最小頻寬可以比PRACH資源的頻寬窄。可以將測量的能量與臨界值進行比較。可以例如根據子帶的頻寬來縮放臨界值。例如,如果20 MHz通道(例如,5GHz頻譜中)的LBT臨界值是-72dBm,則2 MHz子帶(例如,窄頻PRACH適合的)的LBT臨界值可以是-62dBm。2 MHz子帶可以是窄頻PRACH適合的頻寬。
WTRU可以(例如平行地)執行多個子帶LBT(一個或多個)。多個子帶LBT(一個或多個)中的至少一個(例如,每個)可以與排程的PRACH資源相關聯。例如,gNB可以排程多個窄頻PRACH資源。可以在頻率上多工多個窄頻PRACH資源。子帶LBT可以與窄頻PRACH資源相關聯。WTRU可以執行多個子帶LBT(一個或多個)(例如,平行),並且可以成功完成一個或多個子帶LBT(一個或多個)。在範例中,在成功完成一個或多個子帶LBT(一個或多個)之後,WTRU可以存取與成功完成的子帶LBT(一個或多個)相關聯的一個或多個排程的PRACH資源及/或在一個或多個排程的PRACH資源上傳輸一個或多個前導碼。包括執行多個子帶LBT(一個或多個)的WTRU行為可以增加WTRU成功進行通道存取的機會。在範例中,當平行地執行多個子帶LBT(一個或多個)時,WTRU可以執行寬頻能量測量及/或可以執行適當的劃分,例如,以獲得個別子帶上的所測量的能量。可以將所測量的能量與子帶LBT臨界值進行比較,例如,在寬頻能量測量及/或適當的劃分之後,以在個別子帶上獲得所測量的能量。
可以例如根據PRACH資源(例如,排程的PRACH資源)的頻寬來縮放在子帶LBT(一個或多個)中使用的LBT臨界值。在範例中,gNB可以排程在頻率中多工的多個PRACH資源(例如,窄頻PRACH資源)。可以將(例如,每個)窄頻PRACH資源與一個或多個預先配置的頻寬大小相關聯(例如,排程)。WTRU可以藉由將所測量的能量與適當的LBT臨界值進行比較,來執行多個子帶LBT(例如,平行地)。(例如,每個)子帶LBT(一個或多個)可以與所排程的PRACH資源(例如,與一個或多個預先配置的頻寬大小相關聯的窄頻PRACH資源)相關聯。適當的LBT臨界值可以是LBT臨界值,其例如根據窄頻PRACH資源的頻寬(例如,一個或多個預先配置的頻寬大小)來縮放。WTRU可以(例如在成功完成一個或多個子帶LBT時)存取一個或多個相關聯的PRACH資源及/或在一個或多個相關聯的PRACH資源上傳輸前導碼。
當WTRU存取多於一個PRACH資源時(例如,在多於一個PRACH資源中的每一個上成功完成LBT時),WTRU可以被配置為跨越資源中的一些(例如,所有)使用相同的PRACH序列及/或跨越多個PRACH資源中的一些(例如,所有)使用不同的PRACH序列。跨越一些(例如,所有)資源使用相同PRACH序列的配置可以增強PRACH序列檢測,例如,在gNB側。跨多個PRACH資源使用不同PRACH序列的配置,可以減少(例如存取相同PRACH資源的WTRU之間)PRACH序列衝突的機會。
如果WTRU被配置為跨多個PRACH資源使用不同PRACH序列,則WTRU的行為可以包括以下中的一個或多個。WTRU可以接收多個隨機存取回應(RAR)。(例如,每個)RAR可以與多個(例如,傳輸的)PRACH資源中的一個相關聯。例如,每個RAR可以對應於多個(例如,較早傳輸的)PRACH資源中的一個。如果WTRU接收到多個RAR,則WTRU可以對所接收的多個RAR之一採取一個或多個後續動作。例如,WTRU可以對所接收的多個RAR中的其他RAR不採取後續動作。在範例中,WTRU可以對首先接收的RAR採取動作,及/或忽略在第一次接收的RAR之後(例如,接著)接收的RAR。RAR可以與較早傳輸的PRACH序列相關聯。WTRU可以對一個或多個最早接收的RAR採取動作,其進行排程以用於由WTRU執行的後續傳輸。WTRU可以針對其他由WTRU所接收的RAR(例如,排程用於一個或多個後續傳輸的RAR)不採取動作。WTRU可以準備傳輸由適當的LBT程序允許的第一個排程的(例如,在先前接收的RAR中)傳輸。在LBT失敗的情況下,WTRU可以準備傳輸由適當的LBT程序等等允許的第二排程(例如,在接著的RAR內)傳輸。
在範例中,gNB可以傳輸多個RAR回應,例如,回應於由WTRU執行的一個PRACH傳輸。RAR可以包括RAR與PRACH傳輸相關聯的指示。(例如,每個)RAR回應可以為由WTRU執行的後續傳輸(例如,WTRU的回應)提供排程資源。WTRU可以(例如按照與此處描述的相同的行為)對所接收的多個RAR中的一者採取一個或多個動作,以在例如最佳資源、第一個資源或對於資源的成功的LBT之後的第一個資源中進行傳輸。
可以執行PUSCH穿孔。
例如,當PRACH使用B-IFDMA時,用於PRACH和PUSCH的資源塊可以是相鄰的(例如,如第7A圖所示)。資源塊(例如,用於PRACH和PUSCH)可以由不同的WTRU使用。當PRACH和PUSCH的一個或多個配置參數(例如,一個或多個子載波間距)不同時,可能發生例如從PUSCH信號到PRACH信號的洩漏。將濾波器應用於傳輸頻寬(例如,整個傳輸頻寬)可以或不可以減少洩漏,例如,由於RB的分布式分配。可以藉由各種技術減少洩漏。例如,將視窗化應用於OFDM信號可以減少洩漏。過濾RB(例如,每個RB(例如,個別地))可以減少洩漏。可以使用PRACH和PUSCHRB之間的一些保護頻段(一個或多個)(例如,根據需要)。在範例中,在PUSCH RB中傳輸的WTRU可以對PUSCH RB的邊緣子載波中的一個或多個進行穿孔。WTRU可以對WTRU的碼塊進行速率匹配,例如,調整WTRU的傳輸速率。PUSCH RB的邊緣子載波的其中之一或更多可以被置空(nulled out)。例如,PUSCH RB的一個或多個邊緣子載波可以不加載資料符號。第8圖中示出了PUSCH穿孔的範例。PUSCH RB的一個或兩個邊緣上的子載波可以被穿孔(例如,根據需要)。如第8圖所示,PRACH資源和PUSCH資源可以是相鄰的。PRACH資源可以包括多個PRACH子載波。PUSCH資源可以包括多個PUSCH子載波。PUSCH子載波802和804可以位於PUSCH資源的邊緣。在第8圖所示的範例中,PUSCH子載波802和804被穿孔。可以向WTRU指示(例如,用信號通知)RB中的被穿孔的子載波(例如,交錯的每個RB)的數量和位置(例如,識別符)。該指示可以基於以下中的至少一個:半靜態配置;動態傳訊;或由WTRU執行的隱含確定。在第8圖所示的範例中,被穿孔的子載波的數量可以是2。可以向WTRU指示PUSCH子載波802和804的數量2和位置。
在範例中,WTRU可以(例如,藉由指示)得知PRACH資源(例如,胞元中的PRACH RB)的一個或多個時間/頻率位置。例如,當WTRU要在PUSCH中傳輸時,WTRU可以確定PUSCH RB是否與PRACH RB相鄰。WTRU可以確定兩種類型的RB(例如,PRACH RB和PUSCH RB)之間的頻域距離是否低於臨界值。如果PRACH RB和PUSCH RB之間的頻域距離低於臨界值,則WTRU可以確定PRACH RB和PUSCH RB是相鄰的。如果WTRU確定PRACH RB和PUSCH RB相鄰,則WTRU可以對某些子載波(例如,與PRACH RB相鄰的PUSCH子載波)穿孔。要被穿孔的子載波的數量及/或要穿孔的子載波的一個或多個位置可以由中央控制器配置,或者可以例如藉由標準來固定和確定。子載波的一個或多個位置可以包括左邊緣、右邊緣、左邊緣和右邊緣兩者等。
在範例中,中央控制器可以指示(例如,命令)WTRU,以例如使用控制通道來應用穿孔。中央控制器可以例如使用控制通道開始及/或停穿止孔。中央控制器可以配置要被穿孔的子載波的數量及/或要被穿孔的子載波的一個或多個位置(例如,左邊緣、右邊緣、左邊緣和右邊緣兩者等)。
在範例中,可以不利用分配給PRACH傳輸的組塊中的所有子載波。一些子載波可以留作保護子載波(例如,空子載波)。作為範例,如第7A圖的(a)所示,兩個PRACH RB可以在交錯中構成一個PRACH組塊。被分配用於PRACH前導碼傳輸的這樣的交錯的WTRU,可以使一個或多個組塊的邊緣子載波不被使用,並且可以(例如,僅)將序列係數映射到一個或多個組塊的中間部分。可以(例如藉由中央控制器)配置要保留未使用的子載波的數量及其位置(例如,左邊緣,右邊緣,左邊緣和右邊緣兩者等)。
在範例中,PRACH序列可以被映射到PRACH組塊中的子載波的一部分(例如,僅一部分子載波)。剩餘的子載波可以留空。例如,組塊的中間子載波可以用於傳輸序列,而邊緣子載波可以是空的。可以選擇PRACH序列的長度,使得它等於所使用的子載波的數量。作為範例,如第7A圖的(a)所示,兩個PRACH RB可以在兩個PRACH交錯中構成兩個不同的PRACH組塊。如果一個交錯具有120個子載波(例如,10個組塊乘以12個子載波),則序列的長度可以例如選擇為59(例如,而不是113)。在這種情況下,序列的6個樣本(例如,元素)(例如,前六個樣本)可以被映射到第一組塊的中間子載波。可以將六個樣本(例如,樣本7-12)映射到第二組塊的中間子載波。六個樣本(例如,樣本13-18)可以被映射到第三組塊的中間子載波等。組塊(例如,最後一個組塊)可以用於在其中間子載波中傳輸樣本(例如,樣本55到59)。
可以使用Golay序列來執行PRACH序列產生。
Golay序列可以用作PRACH序列,Golay序列的PAPR可以被限制為3dB。Golay序列可以由Golay的串聯結構(concatenation structure)產生。例如,(a,b)和(c,d)可以分別是長度為N和M的互補Golay序列。可以產生具有2N個非零部分的Golay序列,及/或可以將部分(例如,每個部分)映射到交錯的一個或多個(例如,一個)組塊,例如,利用B-IDMA資源分配。例如,
Figure 02_image090
, n=1,…,N可以映射到第
Figure 02_image092
個組塊,而
Figure 02_image094
, n=1,…,N可以映射到第
Figure 02_image096
個組塊。對於a =[1 1 1 -1i 1i];b =[1 1i -1 1 -1i];c =[1 1 1 1 -1 -1 -1i 1i 1 -1 -1i 1i];d =[1 1 -1i -1i 1 1 -1i 1i 1i -1i 1i -1i],其中
Figure 02_image098
,第9圖中示出了樣本PRACH OFDM信號產生。如第9圖所示,c可以乘以a1-5,並且乘法結果可以映射到不同的RB(例如,如第9圖所示)。d可以乘以b1-5,並且乘法結果可以映射到不同的RB(例如,如第9圖所示)。
Golay序列的長度可能取決於某些因素。可能無法產生任意長度的Golay序列。Golay序列的長度可以取決於為PRACH傳輸分配的子載波的數量。例如,如果PRACH交錯包括12個子載波的10個RB,則可以產生長度為120的Golay序列(例如,如本文所述)。作為另一範例,如果PRACH交錯包括12個子載波的12個RB,則可以產生長度為144的Golay序列(例如,如本文所述,藉由使用長度為6的(ab )(例如,N=6))。
在一些情況中,具有更長的PRACH序列可能是有益的。例如,長PRACH序列(例如,在NR中)可以具有839個係數及/或使用1.25或5 kHz作為子載波間距。
例如,可以使用10個塊,其中組塊(例如,每個組塊)的頻寬是180 kHz。(例如,每個)塊可以具有144個PRACH子載波,例如,用於1.25 kHz子載波間距。例如,如果使用子載波(例如,所有子載波),則可以傳輸具有1440個元素的序列。例如,如果部分地使用了組塊,可以傳輸較短的序列。作為範例,可以利用10個塊(例如,每個塊)中的96個子載波,這導致960個元素的序列(例如,序列的長度是960)。可以例如使用構造實施之一來產生960個元素的序列。例如,在一個範例中,可以使用第9圖中所示的信號產生,其中(cd )是長度為96的序列。
可以遞迴地產生長度為96的序列,例如,使用等式5。
Figure 02_image100
等式5, 其中
Figure 02_image102
可表示
Figure 02_image104
Figure 02_image106
的串連(concatenation)。
Figure 02_image108
可意味著共軛和反轉y元素的順序。
Figure 02_image104
Figure 02_image106
可以是Golay互補序列對。給定一對長度N的序列
Figure 02_image104
Figure 02_image106
,等式5可以示出如何產生長度2N的序列對。該對的第一序列可以是
Figure 02_image102
,及該對的第二序列可以是
Figure 02_image110
。作為範例,如果
Figure 02_image104
Figure 02_image106
是長度為12的序列,則使用該遞迴三次(例如,如等式6中所示)可以產生長度為96的序列cd
Figure 02_image112
等式4
Figure 02_image114
等式4
Figure 02_image116
等式6
例如,如果x =[1 1 1 1 -1 -1 -1 1 1i -1i -1 1]並且y =[1 1 1i 1i 1 1 -1 1 1 -1 1 -1],則遞迴構造可以產生以下序列:c = [1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i -1.0000 + 0.0000i -1.0000 + 0.0000i -1.0000 + 0.0000i 1.0000 + 0.0000i 0.0000 + 1.0000i 0.0000 - 1.0000i -1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i 0.0000 + 1.0000i 0.0000 + 1.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i -1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i -1.0000 + 0.0000i 1.0000 + 0.0000i -1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i -1.0000 + 0.0000i -1.0000 + 0.0000i -1.0000 + 0.0000i 1.0000 + 0.0000i 0.0000 + 1.0000i 0.0000 - 1.0000i -1.0000 + 0.0000i 1.0000 + 0.0000i -1.0000 + 0.0000i 1.0000 + 0.0000i -1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i -1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i 0.0000 - 1.0000i 0.0000 - 1.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i -1.0000 + 0.0000i -1.0000 + 0.0000i -1.0000 + 0.0000i 1.0000 + 0.0000i 0.0000 + 1.0000i 0.0000 - 1.0000i -1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i 0.0000 + 1.00000 0.0000 + 1.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i -1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i -1.0000 + 0.0000i 1.0000 + 0.0000i -1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i 0.0000 + 1.0000i 0.0000 + 1.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i -1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i -1.0000 + 0.0000i 1.0000 + 0.0000i -1.0000 + 0.0000i 1.0000 + 0.0000i -1.0000 + 0.0000i 0.0000 + 1.0000i 0.0000 - 1.0000i 1.0000 + 0.0000i -1.0000 + 0.0000i -1.0000 + 0.0000i -1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i],d = [ 1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i -1.0000 + 0.0000i -1.0000 + 0.0000i -1.0000 + 0.0000i 1.0000 + 0.0000i 0.0000 + 1.0000i 0.0000 - 1.0000i -1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i 0.0000 + 1.0000i 0.0000 + 1.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i -1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i -1.0000 + 0.0000i 1.0000 + 0.0000i -1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i -1.0000 + 0.0000i -1.0000 + 0.0000i -1.0000 + 0.0000i 1.0000 + 0.0000i 0.0000 + 1.0000i 0.0000 - 1.0000i -1.0000 + 0.0000i 1.0000 + 0.0000i -1.0000 + 0.0000i 1.0000 + 0.0000i -1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i -1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i 0.0000 - 1.0000i 0.0000 - 1.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i -1.0000 + 0.0000i -1.0000 + 0.0000i -1.0000 + 0.0000i 1.0000 + 0.0000i 0.0000 + 1.0000i 0.0000 - 1.0000i -1.0000 + 0.0000i 1.0000 + 0.0000i -1.0000 + 0.0000i 1.0000 + 0.0000i -1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i -1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i 0.0000 - 1.0000i 0.0000 - 1.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i -1.0000 + 0.0000i 1.0000 + 0.0000i -1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i -1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i 0.0000 - 1.0000i 0.0000 - 1.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i -1.0000 + 0.0000i 0.0000 + 1.0000i 0.0000 - 1.0000i 1.0000 + 0.0000i -1.0000 + 0.0000i -1.0000 + 0.0000i -1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i]。
可以使用各種Golay構造實施離線設計PRACH序列。PRACH序列的長度可以是固定的。中央控制器可以配置具有參數的WTRU,該參數包括基本Golay序列(例如,abcd )、Golay構造實施及/或其他參數中的一個或多個。WTRU可以例如基於參數來離線地構建某個(例如,所需的)長度的序列。序列可以在標準中構建及/或指定。
可以執行共共退避計數器輔助前導碼傳輸。
例如,在未授權頻譜中,前導碼的傳輸可能受制於LBT。RACH時間資源(例如,要用於前導碼傳輸(PT)的OFDM符號)的可用性可取決於通道條件。可以使用(例如,定義)前導碼傳輸視窗(PTW)。定義PTW可以改善隨機存取傳輸的機率。第10圖示出了PRACH前導碼傳輸中的LBT的範例。PTW(例如,時刻t0和時刻t3之間的RACH視窗,如第10圖中所示)可以包括WTRU可以傳輸前導碼的時間間隔。可以例如藉由網路預定義或配置PTW。
如第10圖所示,WTRU可以在PTW啟動時,例如在時刻t0,開始LBT程序。例如在時刻t1,WTRU可以開始傳輸前導碼。當通道可用時,可以選擇時刻t1。可以選擇時刻t1,使得OFDM符號在時間上對齊。例如,傳輸前導碼的時間可以與時槽內的OFDM符號對齊。例如,如果通道在時刻t1之前變得可用,WTRU可以傳輸預留信號以佔用通道。前導碼傳輸可以在時刻t2結束。時刻t2可以小於或等於時刻t3。如果確定(例如,估計/計算)時刻t2大於時刻t3,則WTRU可以不開始前導碼傳輸。例如,如果由於前導碼的持續時間(例如,在WTRU可以完成前導碼傳輸之前)確定前導碼傳輸超過最大PTW大小,則WTRU可以不開始前導碼傳輸。
不同的WTRU可以在不同的時間確定(例如,找到)通道可用性,例如,由於LBT操作。第11圖示出了在PTW中執行LBT和PRACH前導碼傳輸(一個或多個)的多個WTRU的範例。在第11圖中,RACH WTRU1和RACH WTRU2在時刻t0和時刻t3之間在RACH視窗中傳輸PT。如第11圖(a)所示,RACH WTRU1可以執行LBT-1。RACH WTRU1可以在RACH WTRU1執行LBT-1之後的時刻t1開始PT,並且在時刻t2結束PT。RACH WTRU2可以執行LBT-2。RACH WTRU2可以在RACH WTRU2執行LBT-2之後的時刻t4開始PT,並且在時刻t5結束PT。如第11圖(a)所示,LBT-1和LBT-2不同。RACH WTRU1的PT和RACH WTRU2的PT不完全重疊。例如,如果來自不同WTRU的PRACH前導碼傳輸沒有(例如,完全)重疊,則接收機處的檢測性能可能降級及/或惡化。
不同的WTRU可以被配置為使用共同退避計數器。例如,藉由使用共同退避計數器,配置有相同PTW的不同WTRU可以將LBT對齊。例如,如第11圖(b)所示,WTRU可以(例如,全部)同時完成LBT。一些或所有WTRU可以找到可用的通道及/或可以例如同時開始前導碼傳輸,如第11圖(b)所示。藉由使用共同退避計數器,例如如果在WTRU的計數器到期時該通道不可用,則WTRU可以等待下一個PTW機會。
可以使用不同的實施來配置共同退避計數器。可以將多個WTRU劃分為子組。WTRU的子組(例如,每個子組)可以被配置有共同退避計數器。可以將WTRU組特定資訊遞送到WTRU的子組。WTRU組特定資訊可以包含共同退避計數器的配置。WTRU的子組可以接收關於共同退避計數器的相同資訊(例如,用於PT)。共同退避計數器可以允許相同子組內的WTRU針對PT彼此對齊。
可以使用退避計數器來對齊相同波束內或跨越不同波束WTRU的PT。例如,可以在以波束為中心的系統中使用波束特定的退避計數器。共同退避計數器可以用於相同波束內的WTRU,例如,因為駐留在相同波束中的WTRU可以接收相同的資訊。不同的退避計數器或共同退避計數器可以用於不同波束中的WTRU。基於不同波束中的WTRU可以接收不同資訊及/或可以不相互干擾(例如,對於PT),不同的退避計數器可以用於不同波束中的WTRU。例如,當不同波束干擾(例如,具有相互干擾)時,可以使用共同退避計數器來對齊不同波束中的WTRU。不同波束中的WTRU可以(例如藉由從網路傳輸的不同資訊)接收共同退避計數器。網路可以動態地控制個別波束或一組波束(例如,所有波束),其可以用於向WTRU傳輸共同退避計數器。當(例如,一旦)WTRU接收到用於共同退避計數器的資訊時,WTRU可以利用用於共同退避計數器的資訊,來對齊相同波束內、跨越一些不同的波束或者所有不同的波束的一個或多個前導碼傳輸。
儘管以特別組合描述了裝置及/或技術的特徵和元件,但是可以單獨使用一個或多個、或每個特徵及/或元件而不使用其他特徵及/或元件,或者在有或沒有其他特徵及/或元件的情況下以各種組合使用。
雖然本文描述的一種或多種技術考慮LTE、LTE-A、NR及/或5G特定協定,但應理解,本文描述的技術不限於此場景並且也適用於其他無線系統。
上述程序可以在併入在電腦可讀媒體中的電腦程式、軟體及/或韌體中實施,以由電腦及/或處理器執行。電腦可讀媒體的範例包括但不限於電子信號(藉由有線及/或無線連接傳輸)及/或電腦可讀儲存媒體。電腦可讀儲存媒體的範例包括但不限於唯獨記憶體(ROM)、隨機存取記憶體(RAM)、暫存器、快取記憶體、半導體記憶裝置、磁性媒體、例如但不限於內部硬碟和可移磁碟、磁光媒體及/或光學媒體,例如CD-ROM碟,及/或數位通用碟(DVD)。與軟體相關聯的處理器可用於實施用於WTRU、終端、基地台、RNC及/或任何主電腦中用途的射頻收發器。
100‧‧‧通信系統 102、102a、102b、102c、102d‧‧‧無線傳輸/接收單元(WTRU) 104、113‧‧‧無線電存取網路(RAN) 106、115‧‧‧核心網路(CN) 108‧‧‧公共交換電話網路(PSTN) 110‧‧‧網際網路 112‧‧‧其他網路 114a、114b‧‧‧基地台 116‧‧‧空中介面 118‧‧‧處理器 120‧‧‧收發器 122‧‧‧傳輸/接收元件 124‧‧‧揚聲器/麥克風 126‧‧‧小鍵盤 128‧‧‧顯示器/觸控板 130‧‧‧非可移記憶體 132‧‧‧可移記憶體 134‧‧‧電源 136‧‧‧全球定位系統(GPS)晶片組 138‧‧‧週邊設備 160a、160b、160c‧‧‧e節點B(eNB) 162‧‧‧行動性管理閘道(MME) 164‧‧‧服務閘道(SGW) 166‧‧‧封包資料網路(PDN)閘道(或PGW) 180a、180b、180c、202、304、404、704‧‧‧gNB 182a、182b‧‧‧存取和行動性管理功能(AMF) 183a、183b‧‧‧對話管理功能(SMF) 184a、184b‧‧‧使用者平面功能(UPF) 185a、185b‧‧‧資料網路(DN) LBT‧‧‧先聽候送 IDFT‧‧‧逆離散傅立葉變換 PRACH‧‧‧實體隨機存取通道 PT‧‧‧前導碼傳輸 PUSCH‧‧‧實體上鏈共享通道 RACH‧‧‧隨機存取通道 RB‧‧‧資源塊 t0、t1、t2、t3、t4、t5‧‧‧時刻 WTRU‧‧‧無線傳輸/接收單元
此外,圖中相同的附圖標記表示相同的元件,並且其中: 第1A圖是示出可以實施一個或多個揭露的實施方式的範例通信系統的系統圖; 第1B圖是示出根據實施方式的可在第1A圖中所說明的通信系統內使用的範例性無線傳輸/接收單元(WTRU)的系統圖; 第1C圖是示出根據實施方式的可以在第1A圖所示的通信系統內使用的範例性無線電存取網路(RAN)和範例性核心網路(CN)的系統圖; 第1D圖是示出根據實施方式的可以在第1A圖所示的通信系統內使用的另一範例性RAN和另一範例性CN的系統圖; 第2圖示出了交錯的範例。 第3圖示出了PRACH前導碼結構的範例。 第4圖示出了具有塊交錯分多重存取(B-IDMA)的PRACH資源分配的範例。 第5圖示出了PRACH序列映射的範例。 第6圖示出了PRACH前導碼正交分頻多工(OFDM)信號產生的範例。 第7A圖示出了用於PRACH和實體上鏈共享通道(PUSCH)的不同參數配置的範例。 第7B圖示出了PRACH序列映射的範例。 第7C圖示出了PRACH傳輸的範例。 第7D圖示出了PRACH時域信號的範例。 第8圖示出了穿孔PUSCH的範例。 第9圖示出了使用Golay序列產生之PRACH OFDM信號產生的範例。 第10圖示出了PRACH前導碼傳輸中的LBT的範例。 第11圖示出了用於多個WTRU的PRACH前導碼傳輸中的LBT的範例。
PRACH‧‧‧實體隨機存取通道

Claims (14)

  1. 一種無線傳輸/接收單元(WTRU),包括: 一處理器,該處理器配置為: 確定與實體隨機存取通道相關的資訊,其中該資訊包括與該實體隨機存取通道相關聯的一子載波間距; 確定與該實體隨機存取通道相關聯的一格式,其中該格式包括一上取樣率或一序列長度中的至少一者,其中該序列長度是固定的,並且該上取樣率基於與該實體隨機存取通道相關聯的該資訊而變化,其中該處理器被配置為: 如果該實體隨機存取通道具有一第一子載波間距,則使用第一上取樣率,以及 如果該實體隨機存取通道具有一第二子載波間距,則使用將該序列長度保持在一固定值的一第二上取樣率;以及 使用該所確定的與該實體隨機存取通道相關聯的格式執行隨機存取。
  2. 如申請專利範圍第1項所述的WTRU,其中該上取樣率指示用於與該實體隨機存取通道相關聯的一序列的一子載波組,並且該子載波組在與該實體隨機存取通道相關聯的一頻寬內。
  3. 如申請專利範圍第1項所述的WTRU,其中該第一子載波間距大於該第二子載波間距,並且該第一上取樣率小於該第二上取樣率。
  4. 如申請專利範圍第1項所述的WTRU,其中該處理器進一步被配置為: 基於在關於該通道的該資訊中接收的一指示,確定存取該通道的一第一次嘗試是否成功,其中該第一次嘗試是基於包括與該第一次嘗試相關聯的一上取樣率的一第一格式; 對於一第二次嘗試,基於該第一次嘗試不成功的一確定,確定包括與該第二次嘗試相關聯的一上取樣率的一第二格式,其中與該第一次嘗試相關聯的該上取樣率和與該第二次嘗試相關聯的該上取樣率不同;以及 使用該所確定的與該實體隨機存取通道相關聯的第二格式來執行隨機存取。
  5. 如申請專利範圍第1項所述的WTRU,其中如果該上取樣率為1,則該子載波組包括與該實體隨機存取通道相關聯的該頻寬中的連續子載波,以及如果該上取樣率為2,則該子載波組包括與該實體隨機存取通道相關聯的該頻寬中的替代子載波。
  6. 如申請專利範圍第1項所述的WTRU,其中該所確定的PRACH格式包括子載波間距,該子載波間距與將由該WTRU傳輸的用於一實體上鏈共享通道(PUSCH)的一子載波間距相同。
  7. 如申請專利範圍第1項所述的WTRU,其中該處理器被配置為使用該所確定的PRACH格式,來確定一逆離散傅立葉變換(IDFT)的一輸出以傳輸PRACH前導碼。
  8. 一種由一無線傳輸/接收單元(WTRU)執行的方法,包括: 確定與一實體隨機存取通道相關的資訊,其中該資訊包括與該實體隨機存取通道相關聯的一子載波間距; 確定與該實體隨機存取通道相關聯的一格式,其中該格式包括一上取樣率或一序列長度中的至少一者,其中該序列長度是固定的,並且該上取樣率基於與該實體隨機存取通道相關聯的該資訊而變化,其中: 如果該實體隨機存取通道具有一第一子載波間距,則使用一第一上取樣率,以及 如果該實體隨機存取通道具有一第二子載波間距,則使用將該序列長度保持在一固定值的一第二上取樣率;以及 使用該所確定的與該實體隨機存取通道相關聯的格式執行隨機存取。
  9. 如申請專利範圍第8項所述的方法,其中該上取樣率指示用於與該實體隨機存取通道相關聯的一序列的一子載波組,並且該子載波組在與該實體隨機存取通道相關聯的一頻寬內。
  10. 如申請專利範圍第8項所述的方法,其中該第一子載波間距大於該第二子載波間距,並且該第一上取樣率小於該第二上取樣率。
  11. 如申請專利範圍第8項所述的方法,還包括: 基於在關於該通道的該資訊中接收的一指示,確定存取該通道的第一次嘗試是否成功,其中該第一次嘗試是基於包括與該第一次嘗試相關聯的一上取樣率的一第一格式; 對於一第二次嘗試,基於該第一次嘗試不成功的一確定,確定包括與該第二次嘗試相關聯的一上取樣率的一第二格式,其中與該第一次嘗試相關聯的該上取樣率和與該第二次嘗試相關聯的該上取樣率不同;以及 使用該所確定的與該實體隨機存取通道相關聯的第二格式來執行隨機存取。
  12. 如申請專利範圍第8項所述的方法,其中如果該上取樣率為1,則該子載波組包括與該實體隨機存取通道相關聯的該頻寬中的連續子載波,以及如果該上取樣率為2,則該子載波組包括與該實體隨機存取通道相關聯的該頻寬中的替代子載波。
  13. 如申請專利範圍第8項所述的方法,其中該所確定的PRACH格式包括子載波間距,該子載波間距與將由該WTRU傳輸的用於一實體上鏈共享通道(PUSCH)的一子載波間距相同。
  14. 如申請專利範圍第8項所述的方法,還包括使用該所確定的PRACH格式,來確定一逆離散傅立葉變換(IDFT)的一輸出以傳輸PRACH一前導碼。
TW108112183A 2018-04-04 2019-04-08 未授權nr中prach結構 TW202005455A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862652647P 2018-04-04 2018-04-04
US62/652647 2018-04-04
US201862669091P 2018-05-09 2018-05-09
US62/669091 2018-05-09

Publications (1)

Publication Number Publication Date
TW202005455A true TW202005455A (zh) 2020-01-16

Family

ID=66223847

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108112183A TW202005455A (zh) 2018-04-04 2019-04-08 未授權nr中prach結構

Country Status (2)

Country Link
TW (1) TW202005455A (zh)
WO (1) WO2019195476A1 (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2296331B1 (en) * 2009-09-15 2013-09-11 Telefonaktiebolaget LM Ericsson (publ) Technique for SC-FDMA signal generation
JP6654690B2 (ja) * 2015-08-26 2020-02-26 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America アンライセンスセルにおける改良されたランダムアクセス手順
WO2017078607A1 (en) * 2015-11-06 2017-05-11 Telefonaktiebolaget Lm Ericsson (Publ) Processing a constant amplitude sequence for transmission
EP3456137B1 (en) * 2016-05-12 2020-05-27 Intel IP Corporation Physical random access channel (prach) design

Also Published As

Publication number Publication date
WO2019195476A1 (en) 2019-10-10

Similar Documents

Publication Publication Date Title
US20210345263A1 (en) Methods for flexible resource usage
RU2750435C1 (ru) Способы определения кандидата физического канала управления нисходящей линии связи (pdcch)
TW201843950A (zh) 在nr中以光束為基礎pdcch傳輸
TW201941653A (zh) 在非地面網路中隨機存取
WO2019099661A1 (en) Enhanced paging monitoring in 5g
US20240063950A1 (en) SHORT PHYSICAL UPLINK CONTROL CHANNEL (sPUCCH) STRUCTURE
TWI739084B (zh) Noma緩和碰撞及降低複雜度方法及裝置
TW201826847A (zh) 多波形資料傳輸公共控制通道及參考符號
US20210135825A1 (en) Methods and apparatuses for non-orthogonal multiple access
US20220109600A1 (en) Coexistence of ofdm and on-off keying (ook) signals in wlan
WO2020167634A1 (en) Receiving control information in nr-u
KR20220005438A (ko) 비허가 스펙트럼에서 설정 그랜트 전송을 위한 방법 및 장치
TW201941650A (zh) Noma排程及傳輸
WO2019195445A1 (en) Methods for bandwidth part management in wireless systems
KR20230130050A (ko) 감소 역량 wtru들에 대한 감소된 대역폭을 위한 방법들, 장치, 및 시스템들
WO2018175578A1 (en) Resource allocation for uplink control channel
TW202005455A (zh) 未授權nr中prach結構
KR102691704B1 (ko) 유연한 자원 활용을 위한 방법
TW202425703A (zh) 在wlan中賦能先占的方法及程序
TW201941554A (zh) 非正交多重存取參考信號裝置
WO2023081067A1 (en) Discrete fourier transform size determination and frequency domain resource allocation
WO2023086445A1 (en) Methods on enhancing reliability and supporting mixed priority traffic in high frequency communications
JP2023519181A (ja) Wlanシステムにおけるマルチruマルチap送信