TW202002734A - Manufacturing method of metal-based high-thermal-conduction substrate - Google Patents

Manufacturing method of metal-based high-thermal-conduction substrate Download PDF

Info

Publication number
TW202002734A
TW202002734A TW107120950A TW107120950A TW202002734A TW 202002734 A TW202002734 A TW 202002734A TW 107120950 A TW107120950 A TW 107120950A TW 107120950 A TW107120950 A TW 107120950A TW 202002734 A TW202002734 A TW 202002734A
Authority
TW
Taiwan
Prior art keywords
metal
thermally conductive
insulating layer
conductive insulating
substrate
Prior art date
Application number
TW107120950A
Other languages
Chinese (zh)
Other versions
TWI674824B (en
Inventor
秦聿樸
Original Assignee
歐銳奇有限公司
秦聿樸
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歐銳奇有限公司, 秦聿樸 filed Critical 歐銳奇有限公司
Priority to TW107120950A priority Critical patent/TWI674824B/en
Application granted granted Critical
Publication of TWI674824B publication Critical patent/TWI674824B/en
Publication of TW202002734A publication Critical patent/TW202002734A/en

Links

Images

Landscapes

  • Insulated Metal Substrates For Printed Circuits (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

A metal-based high-thermal-conduction substrate and a manufacturing method thereof are provided. The manufacturing method includes the following steps. First, a metal base is provided. Subsequently, a thermal-conductive insulating layer is formed on the metal base, in which the material of the thermal-conductive insulating layer includes polymer and thermal-conductive dopants, and the thermal conductivity of the thermal-conductive insulating layer ranges from 100 to 400 W/m.K. Thereafter, a surface treatment is performed on a surface of the thermal-conductive insulating layer to roughen the surface and to form a plurality of functional groups on the surface for bonding to metal atoms. After the surface treatment, a metal layer is formed on the thermal-conductive insulating layer.

Description

金屬基高熱傳導基板及其製造方法 Metal-based high thermal conductivity substrate and manufacturing method thereof

本發明涉及一種高熱傳導基板及其製造方法,特別是涉及一種金屬基高熱傳導基板以及製造方法。 The invention relates to a high thermal conductivity substrate and a manufacturing method thereof, in particular to a metal-based high thermal conductivity substrate and a manufacturing method.

隨著全球電子科技產業的蓬勃發展,印刷電路板的需求量成長極為快速,電路基板因此而成為現今消費性電子產品和相關資訊、通訊週邊產品以及LED照明,LED車用照明的關鍵組件。然而,電子產品的電路基板始終維持一貫的平面型式。 With the vigorous development of the global electronic technology industry, the demand for printed circuit boards has grown extremely fast. As a result, circuit substrates have become a key component of today's consumer electronic products and related information, communication peripheral products, and LED lighting and LED automotive lighting. However, the circuit board of electronic products always maintains a consistent planar pattern.

隨著對於電子產品的效能、速度與外觀要求的提高,無庸置疑的,外型與熱管理是需要被滿足的二大課題,身處關鍵組件位置的電路板,自然也被要求需要具備更多的功能性,包含非平面型式與更高的熱傳導性能。 With the increasing requirements for the efficiency, speed and appearance of electronic products, there is no doubt that appearance and thermal management are the two major topics that need to be met. Circuit boards in key component positions are naturally required to have more The functionality, including non-planar type and higher thermal conductivity.

現行的電路基板製作工藝是採取熱壓法,在一基材上藉由絕緣膠膜將金屬層與之貼合,再在金屬層上製作線路圖案。這樣的方式僅能製作平面電路板,如若需要製作非平面電路板,則需以後加工彎折的方式達到目的,並且,以此種方式只適用可彎折的基材,而依據不同基材的剛性與韌性規格,此時的電路板的線路圖案極可能因此產生斷裂的情況。 The current manufacturing process of the circuit board adopts the hot pressing method, and the metal layer is pasted on the substrate by an insulating adhesive film, and then the circuit pattern is made on the metal layer. This method can only produce planar circuit boards. If non-planar circuit boards need to be produced, the bending method needs to be processed later to achieve the purpose, and in this way, only flexible substrates can be used, depending on the different substrates. Rigidity and toughness specifications, the circuit pattern of the circuit board at this time is likely to be broken.

對於熱管理問題上的貢獻,受限於現行電路基板的製作工藝的熱壓法,貼合基材與金屬層的絕緣膠膜,在必須達到絕緣的要求下,只能捨棄熱傳導的能力,即使在所謂的金屬基電路基板上, 也以2~3W/M.K的熱傳導係數居多,極難滿足電子產品日益增加的熱能傳遞,尤其在高功率與車用LED照明的應用上特別明顯。 The contribution to thermal management issues is limited by the hot pressing method of the current circuit board manufacturing process, and the insulating adhesive film that bonds the base material and the metal layer can only abandon the ability of thermal conduction under the requirement of insulation, even On the so-called metal-based circuit board, the thermal conductivity of 2~3W/MK is also the most, which is extremely difficult to meet the increasing heat transfer of electronic products, especially in high-power and automotive LED lighting applications.

本發明所欲解決的技術問題在於,如何將導熱效果更好的材料作為製作平板狀與非平板狀電路板的基材,用以製作線路化元件。 The technical problem to be solved by the present invention is how to use a material with better thermal conductivity as the base material for making flat and non-flat circuit boards to make circuitized components.

為了解決上述的技術問題,本發明所採用的其中一技術方案是,提供一種金屬基高熱傳導基板的製造方法。前述的製造方法包括:提供一金屬基材,金屬基材可為平板狀或非平板狀;製作一高導熱絕緣層於所述基材上,其中,所述高導熱絕緣層的材料包括一高分子母材以及一導熱摻雜物,且導熱絕緣層的熱傳導係數介於100至400W/m.K;對導熱絕緣層的表面執行一表面處理,以粗糙化導熱絕緣層的表面,以及在表面形成具有原子鍵結的官能基,以和金屬原子鍵結;以及通過無電鍍與電鍍工藝,製作一金屬層在經過表面處理的導熱絕緣層上,供作製作電路之用。 In order to solve the above technical problems, one of the technical solutions adopted by the present invention is to provide a method for manufacturing a metal-based high thermal conductivity substrate. The foregoing manufacturing method includes: providing a metal substrate, which may be flat or non-flat; making a high thermal conductivity insulating layer on the substrate, wherein the material of the high thermal conductivity insulating layer includes a high Molecular base material and a thermally conductive dopant, and the thermal conductivity of the thermally conductive insulating layer is between 100 and 400W/m. K; perform a surface treatment on the surface of the thermally conductive insulating layer to roughen the surface of the thermally conductive insulating layer and form a functional group with atomic bonding on the surface to bond with metal atoms; and through electroless plating and electroplating processes A metal layer is on the surface-treated thermally conductive insulating layer, which is used for making circuits.

本發明所採用的另一技術方案是提供一種金屬機高熱傳導基板,其包括:金屬基材、導熱絕緣層以及金屬層。導熱絕緣層設置於金屬基材上,並包括高分子母材及導熱摻雜物,導熱絕緣層的熱傳導係數介於100至400W/m.K。金屬層設置於導熱絕緣層上,且包括一無電電鍍金屬層以及一有電電鍍金屬層。無電電鍍金屬層設置於導熱絕緣層與有電電鍍金屬層之間。 Another technical solution adopted by the present invention is to provide a metal machine high thermal conductivity substrate, which includes a metal substrate, a thermally conductive insulating layer, and a metal layer. The thermally conductive insulating layer is provided on the metal substrate and includes a polymer base material and a thermally conductive dopant. The thermal conductivity of the thermally conductive insulating layer is between 100 and 400 W/m. K. The metal layer is disposed on the thermally conductive insulating layer, and includes an electroless metal plating layer and an electroplated metal layer. The electroless metal plating layer is disposed between the thermally conductive insulating layer and the electroplated metal layer.

本發明的有益效果在於,在本發明技術方案所提供的金屬基高熱傳導基板及其製造方法中,在金屬基材上製作具有高熱傳導係數的導熱絕緣層,並採用具有粗糙化與金屬原子鍵結效能的表面處理工藝,再藉由無電電鍍與有電電鍍工藝,在具有高熱傳導係數的絕緣層上製作一金屬層,以製作電路。採用本發明製作的金屬基高熱傳導基板,能夠將電子元件所產生的熱能,直接、快速的傳遞出去,可以有效的降低電子產品元件的工作溫度,進而 增加產品使用壽命。 The beneficial effect of the present invention is that in the metal-based high thermal conductivity substrate and the manufacturing method thereof provided by the technical solution of the present invention, a thermally conductive insulating layer with a high thermal conductivity coefficient is fabricated on a metal substrate, and roughening and metal atomic bonding are used. For the surface treatment process of junction efficiency, a metal layer is formed on the insulating layer with high thermal conductivity by electroless plating and electroplating process to make a circuit. The metal-based high thermal conductivity substrate manufactured by the invention can directly and quickly transfer the heat energy generated by the electronic component, and can effectively reduce the working temperature of the electronic product component, thereby increasing the service life of the product.

導熱絕緣層的熱傳導係數,可以透過製作絕緣層時採用的高分子母才與參雜物的種類與比例做調整,常規下的導熱絕緣層的熱傳導係數介於100~400w/mk的範圍。 The thermal conductivity of the thermally conductive insulating layer can be adjusted by the types and proportions of the polymer matrix and impurities used in the production of the insulating layer. The thermal conductivity of the conventional thermally conductive insulating layer is in the range of 100~400w/mk.

為使能更進一步瞭解本發明的特徵及技術內容,請參閱以下有關本發明的詳細說明與附圖,然而所提供的附圖僅用於提供參考與說明,並非用來對本發明加以限制。 In order to further understand the features and technical content of the present invention, please refer to the following detailed description and drawings of the present invention. However, the drawings provided are for reference and description only, and are not intended to limit the present invention.

P1‧‧‧金屬基高熱傳導基板 P1‧‧‧Metal-based high thermal conductivity substrate

10‧‧‧金屬基材 10‧‧‧Metal substrate

10a‧‧‧第一表面 10a‧‧‧First surface

10b‧‧‧第二表面 10b‧‧‧Second surface

11、11’‧‧‧導熱絕緣層 11, 11’‧‧‧ thermal insulation layer

11s‧‧‧表面 11s‧‧‧Surface

12‧‧‧保護層 12‧‧‧Protective layer

13’、13‧‧‧金屬層 13’、13‧‧‧Metal layer

130’、130‧‧‧無電電鍍金屬層 130’、130‧‧‧electroless plating metal layer

131、131’‧‧‧有電電鍍金屬層 131, 131’‧‧‧ with electroplated metal layer

S100~S400‧‧‧流程步驟 S100~S400‧‧‧Process steps

13h‧‧‧開口圖案 13h‧‧‧ opening pattern

圖1為本發明一實施例的金屬基高熱傳導基板的製造方法的流程圖。 FIG. 1 is a flowchart of a method for manufacturing a metal-based high thermal conductivity substrate according to an embodiment of the invention.

圖2A為本發明一實施例的金屬基高熱傳導基板在製造流程中的局部剖面示意圖。 FIG. 2A is a partial cross-sectional schematic diagram of a metal-based high thermal conductivity substrate in a manufacturing process according to an embodiment of the invention.

圖2B為本發明一實施例的金屬基高熱傳導基板在製造流程中的局部剖面示意圖。 2B is a partial cross-sectional schematic diagram of a metal-based high thermal conductivity substrate in the manufacturing process according to an embodiment of the invention.

圖2C為本發明一實施例的金屬基高熱傳導基板在製造流程中的局部剖面示意圖。 2C is a partial cross-sectional schematic diagram of a metal-based high thermal conductivity substrate in the manufacturing process according to an embodiment of the invention.

圖2D為本發明一實施例的金屬基高熱傳導基板在製造流程中的局部剖面示意圖。 FIG. 2D is a partial cross-sectional view of a metal-based high thermal conductivity substrate in the manufacturing process according to an embodiment of the invention.

圖2E為本發明一實施例的金屬基高熱傳導基板在製造流程中的局部剖面示意圖。 2E is a partial cross-sectional schematic diagram of a metal-based high thermal conductivity substrate in the manufacturing process according to an embodiment of the invention.

圖2F為本發明一實施例的金屬基高熱傳導基板在製造流程中的局部剖面示意圖。 FIG. 2F is a partial cross-sectional schematic diagram of a metal-based high thermal conductivity substrate in a manufacturing process according to an embodiment of the invention.

圖2G為本發明一實施例的金屬基高熱傳導基板在製造流程中的局部剖面示意圖。 FIG. 2G is a partial cross-sectional schematic diagram of a metal-based high thermal conductivity substrate in the manufacturing process according to an embodiment of the invention.

圖2H為本發明一實施例的金屬基高熱傳導基板在製造流程中的局部剖面示意圖。 2H is a partial cross-sectional schematic diagram of a metal-based high thermal conductivity substrate in the manufacturing process according to an embodiment of the invention.

請參閱圖1。圖1為本發明一實施例的金屬基高熱傳導基板的 製造方法的流程圖。 Please refer to Figure 1. FIG. 1 is a flowchart of a method for manufacturing a metal-based high thermal conductivity substrate according to an embodiment of the invention.

在步驟S100中,提供一金屬基材。接著,在步驟S200中,形成一導熱絕緣層於金屬基材上。在步驟S300中,對導熱絕緣層執行一表面處理。之後,在步驟S400中,形成一金屬層於導熱絕緣層上。 In step S100, a metal substrate is provided. Next, in step S200, a thermally conductive insulating layer is formed on the metal substrate. In step S300, a surface treatment is performed on the thermally conductive insulating layer. Then, in step S400, a metal layer is formed on the thermally conductive insulating layer.

詳細的製程步驟請參照圖2A至圖2H。圖2A至圖2H分別顯示本發明實施例的金屬基高熱傳導基板在不同的製造步驟中的局部剖面示意圖。 For detailed process steps, please refer to FIGS. 2A to 2H. FIG. 2A to FIG. 2H respectively show partial cross-sectional schematic diagrams of the metal-based high thermal conductivity substrate in different manufacturing steps of the embodiment of the present invention.

首先,如圖2A所示,提供一金屬基材10。金屬基材10可以平板狀基材或者是非平板狀基材。非平板狀基材例如是電子產品的散熱件、半導體元件的承載座等具有不規則形狀或者凹凸結構的基材。 First, as shown in FIG. 2A, a metal substrate 10 is provided. The metal substrate 10 may be a flat substrate or a non-flat substrate. The non-plate-shaped substrate is, for example, a substrate having an irregular shape or a concave-convex structure such as a heat sink of an electronic product and a carrier of a semiconductor element.

在本實施例中,金屬基材10是非平板狀基材,並具有一第一表面10a以及一第二表面10b。須說明的是,本實施例中第一表面10a與第二表面10b都是凹凸表面。前述的凹凸表面是泛指非平坦的表面,也就是說,凹凸表面可以包括曲面、斜面、階梯面、凹陷表面、凸起表面或前述任意組合。根據基材10形狀的不同,凹凸表面的最高點和最低點之間的垂直差距(高低差)可能由0.01公分(cm)至5公分(cm)。在另一實施例中,第一表面10a為凹凸表面,而第二表面10b為平坦表面。 In this embodiment, the metal substrate 10 is a non-flat substrate and has a first surface 10a and a second surface 10b. It should be noted that in this embodiment, the first surface 10a and the second surface 10b are both uneven surfaces. The aforementioned uneven surface generally refers to a non-flat surface, that is to say, the uneven surface may include a curved surface, an inclined surface, a stepped surface, a concave surface, a convex surface, or any combination of the foregoing. Depending on the shape of the substrate 10, the vertical gap (height difference) between the highest point and the lowest point of the uneven surface may be from 0.01 cm (cm) to 5 cm (cm). In another embodiment, the first surface 10a is an uneven surface, and the second surface 10b is a flat surface.

另外,金屬基材10的材料可以是金屬或者是合金,其例如是鋁、銅、鐵、錫、鎳、不鏽鋼等等。 In addition, the material of the metal substrate 10 may be a metal or an alloy, such as aluminum, copper, iron, tin, nickel, stainless steel, or the like.

接著,如圖2B所示,在金屬基材10上形成導熱絕緣層11’。須說明的是,導熱絕緣層11’至少會覆蓋金屬基材10預定要形成金屬層的區域。 Next, as shown in FIG. 2B, a thermally conductive insulating layer 11' is formed on the metal substrate 10. It should be noted that the thermally conductive insulating layer 11' covers at least the area of the metal substrate 10 where the metal layer is to be formed.

舉例而言,當金屬基材10為散熱件時,前述的第一表面10a可以是散熱件的上表面,而第二表面10b是散熱件的底表面。因此,導熱絕緣層11’是覆蓋在第一表面10a上,而基材10的第二 表面10b沒有覆蓋導熱絕緣層11’。 For example, when the metal substrate 10 is a heat sink, the aforementioned first surface 10a may be the upper surface of the heat sink, and the second surface 10b is the bottom surface of the heat sink. Therefore, the thermally conductive insulating layer 11' covers the first surface 10a, while the second surface 10b of the base material 10 does not cover the thermally conductive insulating layer 11'.

在另一實施例中,導熱絕緣層11’可以覆蓋基材10的所有表面(包括第一表面10a、第二表面10b以及側表面),但是後續製程中所形成的金屬層只設置在其中一部分表面(例如是第一表面10a)上。 In another embodiment, the thermally conductive insulating layer 11' may cover all surfaces of the substrate 10 (including the first surface 10a, the second surface 10b, and the side surfaces), but the metal layer formed in the subsequent process is only provided on a part of it On the surface (for example, the first surface 10a).

另外,在一實施例中,導熱絕緣層11’可以利用噴塗法、塗佈法或者是浸塗法來形成於金屬基材10上,其中,噴塗法例如是靜電噴塗法、熱噴塗法、電漿噴塗法等等,塗佈法例如是旋塗法、刮塗法、刷塗法等等。利用噴塗法可以在第一表面10上形成較均勻的導熱絕緣層11’,且噴塗法也適合應用於自動化及批量生產金屬基高熱傳導基板。 In addition, in an embodiment, the thermally conductive insulating layer 11 ′ can be formed on the metal substrate 10 using a spraying method, a coating method, or a dip coating method, where the spraying method is, for example, an electrostatic spraying method, a thermal spraying method, or an electric spraying method. The slurry spray method and the like, and the coating method is, for example, a spin coating method, a blade coating method, a brush coating method, and the like. The spraying method can be used to form a relatively uniform thermally conductive insulating layer 11' on the first surface 10, and the spraying method is also suitable for automation and mass production of metal-based high thermal conductivity substrates.

在本實施例中,導熱絕緣層11’的熱傳導係數介於100至400W/m.K,以提供較好的散熱效果。具體而言,導熱絕緣層11’的材料包括一高分子母材以及一導熱摻雜物。導熱絕緣層11’的熱傳導係數可以透過調整高分子母材與導熱摻雜物的種類與比例來進行調整。 In this embodiment, the thermal conductivity of the thermally conductive insulating layer 11' is between 100 and 400 W/m.K to provide better heat dissipation. Specifically, the material of the thermally conductive insulating layer 11' includes a polymer base material and a thermally conductive dopant. The thermal conductivity of the thermally conductive insulating layer 11' can be adjusted by adjusting the types and ratios of the polymer base material and the thermally conductive dopant.

高分子母材可以是熱塑性或熱固性之材料。高分子母材包含,但不限於,聚乙烯(Polyethylene)、聚丙烯(Polypropylene)、環氧樹脂(Epoxy)、壓克力樹酯、聚氯乙烯(PVC)或其任意組合。導熱摻雜物可以選擇熱傳導係數至少大於100W/m.K的材料,導熱摻雜物包含,但不限於,石墨烯、石墨烯衍生物、氮化鋁、氮化鋁衍生物、氧化鋁、金屬粉(包含合金粉)或其任意組合。在一實施例中,導熱摻雜物的重量是佔導熱絕緣層的總重量的40至70%。 The polymer base material may be a thermoplastic or thermosetting material. The polymer base material includes, but is not limited to, polyethylene (Polyethylene), polypropylene (Polypropylene), epoxy resin (Epoxy), acrylic resin, polyvinyl chloride (PVC), or any combination thereof. The thermally conductive dopant can be selected from materials with a thermal conductivity coefficient of at least 100 W/mK. The thermally conductive dopant includes, but is not limited to, graphene, graphene derivatives, aluminum nitride, aluminum nitride derivatives, aluminum oxide, and metal powder ( Contains alloy powder) or any combination thereof. In an embodiment, the weight of the thermally conductive dopant is 40 to 70% of the total weight of the thermally conductive insulating layer.

在本實施例中,導熱絕緣層11’是形成在金屬基材10的其中一部份表面上,而沒有覆蓋基材10的全部表面。也就是說,在本實施例中,在金屬基材10的另一部分表面10b並沒有形成導熱絕緣層11’。另外,導熱絕緣層11’的厚度大約是介於100微米(μm)至200微米(μm)之間。在一實施例中,第一表面10a的高低差至 少大於0.1公分(cm),因此,導熱絕緣層11’的表面具有和第一表面10a相符的輪廓。 In this embodiment, the thermally conductive insulating layer 11' is formed on a part of the surface of the metal substrate 10 without covering the entire surface of the substrate 10. That is, in this embodiment, the thermally conductive insulating layer 11' is not formed on the other surface 10b of the metal base material 10. In addition, the thickness of the thermally conductive insulating layer 11' is approximately between 100 micrometers (µm) and 200 micrometers (µm). In one embodiment, the height difference of the first surface 10a is at least greater than 0.1 centimeter (cm). Therefore, the surface of the thermally conductive insulating layer 11' has a contour conforming to the first surface 10a.

請參照圖2C,為了避免金屬基材10的第二表面10b因未被導熱絕緣層11’所覆蓋,而在後續製程中接觸到無電電鍍液以及電鍍液。本發明實施例的金屬基高熱傳導基板的製造方法還可進一步包括,形成保護層12覆蓋金屬基材10的另一部分表面,也就是第二表面10b。 Referring to FIG. 2C, in order to avoid the second surface 10b of the metal substrate 10 being not covered by the thermally conductive insulating layer 11', it may contact the electroless plating solution and the plating solution in the subsequent manufacturing process. The method for manufacturing a metal-based high thermal conductivity substrate according to an embodiment of the present invention may further include forming a protective layer 12 to cover another part of the surface of the metal substrate 10, that is, the second surface 10b.

保護層12的材料可為高分子材料。高分子材料可以是熱塑性或者熱固性高分子材料,例如:聚乙烯(Polyethylene)、聚丙烯(Polypropylene)、環氧樹脂(Epoxy)、聚氯乙烯(PVC)、壓克力樹酯或者其任意組合。只要可用以保護金屬基材10,本發明並不限制保護層12的材料。 The material of the protective layer 12 may be a polymer material. The polymer material may be a thermoplastic or thermosetting polymer material, such as: polyethylene (Polyethylene), polypropylene (Polypropylene), epoxy resin (Epoxy), polyvinyl chloride (PVC), acrylic resin, or any combination thereof. As long as it can be used to protect the metal substrate 10, the invention does not limit the material of the protective layer 12.

保護層12可以通過塗佈方式形成於金屬基材10上。另外,先說明的是,在此步驟中形成於金屬基材10上的保護層12,可以在後續步驟中被移除。 The protective layer 12 may be formed on the metal substrate 10 by coating. In addition, it is first explained that the protective layer 12 formed on the metal substrate 10 in this step can be removed in the subsequent step.

在一實施例中,保護層12和導熱絕緣層11’是彼此互不重疊。在另一實施例中,保護層12和導熱絕緣層11’會相互重疊於二者的交界處。也就是說,保護層12的邊緣部分可和導熱絕緣層11’的邊緣部分相互重疊(圖未示)。 In one embodiment, the protective layer 12 and the thermally conductive insulating layer 11' do not overlap each other. In another embodiment, the protective layer 12 and the thermally conductive insulating layer 11' overlap each other at the junction of the two. That is, the edge portion of the protective layer 12 and the edge portion of the thermally conductive insulating layer 11' may overlap each other (not shown).

須說明的是,當導熱絕緣層11’完全覆蓋金屬基材10的所有表面時,形成保護層12的步驟也可以被省略。 It should be noted that when the thermally conductive insulating layer 11' completely covers all surfaces of the metal substrate 10, the step of forming the protective layer 12 may also be omitted.

接著,如圖2D所示,對導熱絕緣層11’執行一表面處理,以粗糙化導熱絕緣層11的一表面11s,以及在表面形成具有原子鍵結的官能基,用以和金屬原子鍵結。 Next, as shown in FIG. 2D, a surface treatment is performed on the thermally conductive insulating layer 11' to roughen a surface 11s of the thermally conductive insulating layer 11 and form a functional group with atomic bonding on the surface for bonding with metal atoms .

具體而言,在本實施例中,是通過一表面處理液,以粗糙化導熱絕緣層11的表面11s,並且對表面11s進行改質。據此,經過表面前處理之後,表面11s的表面粗糙度是介於0.1微米至1微米。 Specifically, in this embodiment, a surface treatment liquid is used to roughen the surface 11s of the thermally conductive insulating layer 11 and modify the surface 11s. According to this, after surface pretreatment, the surface roughness of surface 11s is between 0.1 μm and 1 μm.

進一步而言,在一實施例中,在執行表面前處理的步驟之後,表面11s會具有多個微孔洞。另外,在本實施例中,微孔洞的孔徑尺寸介於0.01微米(μm)至5微米(μm)。 Further, in one embodiment, after performing the surface pretreatment step, the surface 11s will have a plurality of micro holes. In addition, in this embodiment, the pore size of the micropores is between 0.01 micrometer (μm) and 5 micrometer (μm).

另外,利用表面處理液也可對表面11s進行改質,而在表面11s形成可和金屬原子鍵結的官能基。前述的官能基形成於多個微孔洞內,且官能基可含有陰離子以及陽離子至少其中一種,例如是含有:氯離子(Cl-)、亞硫酸根離子(SO3 -)、硝酸根離子(NO3 -)、溴離子(Br-)、鈉離子(Na+)、鉀離子(K+)或其任意組合。在一實施例中,是利用具有界面活性劑的表面處理液來對表面11s進行表面改質,且界面活性劑含有前文中所列舉的官能基。須說明的是,表面11s是在後續製程中預定要形成金屬層的區域。也就是說,被粗糙化的表面11s可以是導熱絕緣層11’的所有外表面或者是導熱絕緣層11’的外表面的其中一部分。 In addition, the surface treatment liquid can also be used to modify the surface 11s, and a functional group capable of bonding to metal atoms can be formed on the surface 11s. The functional groups formed on the plurality of micropores hole, and the functional group may contain at least one anionic and cationic, eg, containing: chloride ion (Cl -), sulfite ion (SO 3 -), nitrate ion ( NO 3 -), bromide ion (Br -), a combination of sodium ions (Na +), potassium ion (K +), or any. In one embodiment, the surface treatment liquid with a surfactant is used to modify the surface 11s, and the surfactant contains the functional groups listed above. It should be noted that the surface 11s is an area where a metal layer is to be formed in the subsequent process. That is, the roughened surface 11s may be all the outer surfaces of the thermally conductive insulating layer 11' or a part of the outer surfaces of the thermally conductive insulating layer 11'.

舉例而言,當導熱絕緣層11形成於金屬基材10的所有表面(包括第一表面10a、第二表面10b以及側表面),且在後續製程中,只有在第一表面10a上形成金屬層時,會將只有覆蓋第一表面11a的一部分導熱絕緣層11’的外表面定義為待鍍的表面11s。也就是說,只有導熱絕緣層11的其中一部分外表面(待鍍的表面11s)會被粗糙化,而另一部分外表面則不會特別進行表面處理。因此,在進行表面處理之後,導熱絕緣層11的外表面在不同的區域會具有不同的表面粗糙度。導熱絕緣層11沒有進行表面前處理的部分在後續步驟中並不會形成金屬層,因而可用來保護金屬基材10。 For example, when the thermally conductive insulating layer 11 is formed on all surfaces of the metal substrate 10 (including the first surface 10a, the second surface 10b, and the side surfaces), and in the subsequent process, only the metal layer is formed on the first surface 10a At this time, the outer surface of only part of the thermally conductive insulating layer 11' covering the first surface 11a is defined as the surface 11s to be plated. That is to say, only a part of the outer surface (surface to be plated 11 s) of the thermally conductive insulating layer 11 will be roughened, and the other part of the outer surface will not be specially surface-treated. Therefore, after the surface treatment, the outer surface of the thermally conductive insulating layer 11 will have different surface roughness in different regions. The portion of the thermally conductive insulating layer 11 that has not undergone surface pretreatment will not form a metal layer in subsequent steps, and thus can be used to protect the metal substrate 10.

接著,如圖2E至圖2H所示,形成金屬層於導熱絕緣層11上,以製作電路。具體而言,如圖2E所示,先形成一無電電鍍金屬層130’於導熱絕緣層11的待鍍表面11s上。也就是說,先通過一無電電鍍法來形成前述的無電電鍍金屬層130’。無電電鍍金屬層130’的材料可以是銅、鋁、鎳、金等導電材料。另外,無電電鍍金屬層130’的厚度大約是介於0.3至0.6微米(μm)。 Next, as shown in FIGS. 2E to 2H, a metal layer is formed on the thermally conductive insulating layer 11 to fabricate a circuit. Specifically, as shown in FIG. 2E, an electroless metal plating layer 130' is first formed on the surface 11s of the thermally conductive insulating layer 11 to be plated. That is, the aforementioned electroless plating metal layer 130' is first formed by an electroless plating method. The material of the electroless plating metal layer 130' may be conductive materials such as copper, aluminum, nickel, gold, and the like. In addition, the thickness of the electroless metal plating layer 130' is approximately 0.3 to 0.6 micrometers (µm).

隨後,如圖2F所示,在無電電鍍金屬層130’上形成一有電電鍍金屬層131’,有電電鍍金屬層131’的厚度至少超過20微米(μm)。也就是說,在進行無電電鍍法之後,再執行有電電鍍法來增加金屬層的總厚度。無電電鍍金屬層130’與有電電鍍金屬層131’共同形成一金屬層13’。在本實施例中,金屬層13’會覆蓋導熱絕緣層11的整個表面11s。 Subsequently, as shown in FIG. 2F, an electroplated metal layer 131' is formed on the electroless plated metal layer 130', and the thickness of the electroplated metal layer 131' exceeds at least 20 micrometers (µm). That is, after the electroless plating method is performed, the electroplating method is performed to increase the total thickness of the metal layer. The electroless plated metal layer 130' and the electroplated metal layer 131' together form a metal layer 13'. In this embodiment, the metal layer 13' covers the entire surface 11s of the thermally conductive insulating layer 11.

須說明的是,在本實施例中,在形成無電電鍍金屬層130’之前,先對導熱絕緣層11進行表面處理,以形成粗糙的表面11s,以及在粗糙的表面11s形成具有原子鍵結的官能基,用以和金屬原子鍵結。粗糙的表面11s可以進一步增加形成官能基的表面積,且粗糙的表面11s也可增加金屬與導熱絕緣層11之間的結合力。 It should be noted that, in this embodiment, before forming the electroless plating metal layer 130', the thermally conductive insulating layer 11 is surface-treated to form a rough surface 11s, and an atomic bond is formed on the rough surface 11s Functional group for bonding to metal atoms. The rough surface 11s can further increase the surface area for forming functional groups, and the rough surface 11s can also increase the bonding force between the metal and the thermally conductive insulating layer 11.

因此,金屬層13’與導熱絕緣層11之間的附著力可以進一步提升。如此,可降低金屬層13’由金屬基材10上脫落的機率,而可提高產品良率。在一實施例中,金屬層13’的附著力至少1.2Kg,而可符合目前電路板的檢驗規範。 Therefore, the adhesion between the metal layer 13' and the thermally conductive insulating layer 11 can be further improved. In this way, the probability of the metal layer 13' falling off from the metal substrate 10 can be reduced, and the product yield can be improved. In one embodiment, the adhesion of the metal layer 13' is at least 1.2 kg, which can meet current circuit board inspection specifications.

另外,在通過有電電鍍法形成有電電鍍金屬層131’時,須將金屬基材10整個浸入電鍍液中。由於本實施例的金屬基材10的材料是金屬材料,因此先前步驟中(圖2C)所形成的保護層12,可以使金屬基材10和電鍍液隔絕。 In addition, when the electroplated metal layer 131' is formed by the electroplating method, the entire metal substrate 10 must be immersed in the plating solution. Since the material of the metal substrate 10 in this embodiment is a metal material, the protective layer 12 formed in the previous step (FIG. 2C) can isolate the metal substrate 10 from the plating solution.

接著,請參照圖2G,在完成有電電鍍金屬層131’的製作之後,去除保護層12。在一實施例中,可以直接從金屬基材10剝離保護層12。在其他實施例中,也可以通過化學溶液將保護層12去除。 Next, referring to FIG. 2G, after the preparation of the electroplated metal layer 131' is completed, the protective layer 12 is removed. In one embodiment, the protective layer 12 can be peeled directly from the metal substrate 10. In other embodiments, the protective layer 12 can also be removed by a chemical solution.

請參照圖2H,圖案化無電電鍍金屬層130’與有電電鍍金屬層131’,以形成線路化的金屬層13。通過上述步驟,可形成本發明其中一實施例的金屬基高熱傳導基板P1。 Referring to FIG. 2H, the electroless plated metal layer 130' and the electroplated metal layer 131' are patterned to form a circuitized metal layer 13. Through the above steps, the metal-based high thermal conductivity substrate P1 according to one embodiment of the present invention can be formed.

在一實施例中,圖案化無電電鍍金屬層130’與有電電鍍金屬層131’可以利用現有的塗布光阻、微影、蝕刻等步驟來實現,以使線路化的金屬層13具有預定的圖案。在另一實施例中,可以利 用雷射雕刻來圖案化無電電鍍金屬層130’與有電電鍍金屬層131’。 In one embodiment, the patterned electroless plated metal layer 130' and the electroplated metal layer 131' can be implemented using existing steps of coating photoresist, lithography, etching, etc., so that the circuitized metal layer 13 has a predetermined pattern. In another embodiment, laser engraving may be used to pattern the electroless plated metal layer 130' and the electroplated metal layer 131'.

在本實施例中,圖案化的無電電鍍金屬層130以及圖案化的有電電鍍金屬層131共同形成線路化的金屬層13。線路化的金屬層13具有一開口圖案13h,而使導熱絕緣層11的其中一部份表面由開口圖案13h中被暴露出來。 In this embodiment, the patterned electroless plated metal layer 130 and the patterned electroplated metal layer 131 together form the circuitized metal layer 13. The circuitized metal layer 13 has an opening pattern 13h, and a part of the surface of the thermally conductive insulating layer 11 is exposed through the opening pattern 13h.

在完成金屬層13’、13的製作後,後續還可進一步在金屬基高熱傳導基板P1上形成防焊層(solder mask)、形成多個用以連接外部線路的端子以及分板(de-panel)等製程。 After the metal layers 13' and 13 are completed, a solder mask, a plurality of terminals for connecting external circuits, and a de-panel can be further formed on the metal-based high thermal conductivity substrate P1 ) And other processes.

綜合上述,本發明的有益效果在於本發明技術方案所提供的金屬基高熱傳導基板及其製造方法,其通過“在金屬基材10上形成熱傳導係數介於100至400W/m.K的導熱絕緣層11,對導熱絕緣層11執行一表面前處理,再於導熱絕緣層11上形成金屬層13’、13”的技術手段,可直接在立體狀金屬基材10的表面上形成金屬層13’、13,並且使金屬基高熱傳導基板P1具有良好的導熱效果。 In summary, the beneficial effect of the present invention lies in the metal-based high thermal conductivity substrate and the manufacturing method thereof provided by the technical solution of the present invention, by "forming a thermally conductive insulating layer 11 with a thermal conductivity coefficient between 100 and 400 W/mK on the metal substrate 10 , Perform a surface pre-treatment on the thermally conductive insulating layer 11 and then form the metal layers 13', 13" on the thermally conductive insulating layer 11, the metal layers 13', 13 can be formed directly on the surface of the three-dimensional metal substrate 10 And, the metal-based high thermal conductivity substrate P1 has a good thermal conductivity effect.

須說明的是,現有技術手段中,通過壓合所形成的電路板主體只能形成平板狀,而無法具有立體結構。相較於先前的技術手段,本發明實施例所提供的製造方法可以在具有任意形狀的基材上形成金屬層13’、13。 It should be noted that in the prior art means, the circuit board body formed by pressing can only be formed into a flat plate shape, and cannot have a three-dimensional structure. Compared with the previous technical means, the manufacturing method provided in the embodiments of the present invention can form metal layers 13', 13 on a substrate having an arbitrary shape.

據此,通過本發明實施例所提供的製造方法,可以利用電子產品散熱件、零組件、半導體元件的承載座、連接器等具有不規則形狀的零件直接做為金屬基材10,並將金屬層13’直接形成在金屬基材10上,以供製作電路。如此,電子元件可以直接焊接在金屬層13’、13上,而可省略現有的平板狀電路板或軟性電路板,進而可縮減電子產品的體積。 Accordingly, through the manufacturing method provided by the embodiments of the present invention, heat dissipation parts of electronic products, components, semiconductor component carriers, connectors, and other parts with irregular shapes can be directly used as the metal substrate 10, and the metal The layer 13' is directly formed on the metal substrate 10 for making circuits. In this way, the electronic component can be directly soldered on the metal layers 13', 13 and the existing flat-shaped circuit board or flexible circuit board can be omitted, thereby reducing the volume of the electronic product.

另外,相較於現有的電路板所使用的絕緣材料(玻璃纖維膠膜板),本發明實施例中的導熱絕緣層11的熱傳導係數更高。當本實 施例的金屬基高熱傳導基板P1配合裝設於其上的電子元件操作時,導熱絕緣層11可以提供更好的導熱效果。 In addition, the thermal conductivity of the thermally conductive insulating layer 11 in the embodiment of the present invention is higher than that of the insulating material (glass fiber adhesive film board) used in the existing circuit board. When the metal-based high thermal conductivity substrate P1 of this embodiment operates in conjunction with electronic components mounted thereon, the thermally conductive insulating layer 11 can provide better thermal conductivity.

進一步而言,當金屬基材10的材料為鋁時,已塗佈導熱絕緣層11的金屬基材10整體的熱傳導係數(K值)可高達150W/m.K,是市售鋁基板的75倍。當金屬基材10的材料為銅時,已塗佈導熱絕緣層11的金屬基材10整體的熱傳導係數(K值)更可高達350W/m.K。 Further, when the material of the metal substrate 10 is aluminum, the thermal conductivity coefficient (K value) of the entire metal substrate 10 coated with the thermally conductive insulating layer 11 can be as high as 150 W/m. K is 75 times that of commercially available aluminum substrates. When the material of the metal substrate 10 is copper, the thermal conductivity coefficient (K value) of the entire metal substrate 10 coated with the thermally conductive insulating layer 11 can be as high as 350 W/m. K.

採用本發明製作的金屬基高熱傳導基板P1,能夠將電子元件所產生的熱能,直接、快速的傳遞出去,可以有效的降低電子產品元件的工作溫度,進而增加產品使用壽命。 The metal-based high thermal conductivity substrate P1 manufactured by the invention can directly and quickly transfer the heat energy generated by the electronic components, and can effectively reduce the working temperature of the electronic product components, thereby increasing the service life of the products.

另外,導熱絕緣層11的熱傳導係數,可以透過調整高分子母材與摻雜物的種類與比例來調整。常規下的導熱絕緣層11的熱傳導係數介於100~400w/mk的範圍。 In addition, the thermal conductivity of the thermally conductive insulating layer 11 can be adjusted by adjusting the types and ratios of the polymer base material and the dopant. The thermal conductivity of the thermally conductive insulating layer 11 under conventional conditions ranges from 100 to 400 w/mk.

以上所公開的內容僅為本發明的優選可行實施例,並非因此侷限本發明的申請專利範圍,所以凡是運用本發明說明書及附圖內容所做的等效技術變化,均包含於本發明的申請專利範圍內。 The content disclosed above is only a preferred and feasible embodiment of the present invention, and does not limit the scope of the patent application of the present invention, so all equivalent technical changes made by using the description and drawings of the present invention are included in the application of the present invention. Within the scope of the patent.

S100~S400‧‧‧流程步驟 S100~S400‧‧‧Process steps

Claims (11)

一種金屬基高熱傳導基板的製造方法,其包括:提供一金屬基材;製作一導熱絕緣層於所述金屬基材上,其中,所述導熱絕緣層的材料包括一高分子母材以及一導熱摻雜物,且所述導熱絕緣層的熱傳導係數介於100至400W/m.K;對所述導熱絕緣層的一表面執行一表面處理,以粗糙化所述導熱絕緣層的表面,以及在所述表面形成具有原子鍵結的官能基,以和金屬原子鍵結;以及製作一金屬層於經所述表面處理的所述導熱絕緣層上。 A method for manufacturing a metal-based high thermal conductivity substrate includes: providing a metal substrate; making a thermally conductive insulating layer on the metal substrate, wherein the material of the thermally conductive insulating layer includes a polymer base material and a thermal conductor Dopants, and the thermal conductivity of the thermally conductive insulating layer is between 100 to 400W/m. K; performing a surface treatment on a surface of the thermally conductive insulating layer to roughen the surface of the thermally conductive insulating layer, and forming a functional group having atomic bonding on the surface to bond with metal atoms; and making A metal layer is on the thermally-conductive insulating layer treated by the surface. 如請求項1所述的製造方法,其中,形成所述金屬層的步驟還進一步包括:形成一無電電鍍金屬層於所述導熱絕緣層上;以及形成一有電電鍍金屬層於所述無電電鍍金屬層上,其中,所述有電電鍍金屬層的厚度大於所述無電電鍍金屬層的厚度。 The manufacturing method according to claim 1, wherein the step of forming the metal layer further comprises: forming an electroless plating metal layer on the thermally conductive insulating layer; and forming an electroplated metal layer on the electroless plating On the metal layer, the thickness of the electroplated metal layer is greater than the thickness of the electroless plated metal layer. 如請求項2所述的製造方法,其中,形成所述金屬層的步驟還進一步包括:圖案化所述無電電鍍金屬層與所述有電電鍍金屬層。 The manufacturing method according to claim 2, wherein the step of forming the metal layer further comprises: patterning the electroless plated metal layer and the electroplated metal layer. 如請求項2所述的製造方法,其中,所述導熱絕緣層覆蓋所述基材的其中一部分表面,且在形成所述無電電鍍金屬層的步驟之前,形成一保護層覆蓋所述基材的另一部分表面;以及在形成所述有電電鍍金屬層的步驟之後,去除所述保護層。 The manufacturing method according to claim 2, wherein the thermally conductive insulating layer covers a part of the surface of the substrate, and before the step of forming the electroless metal plating layer, a protective layer is formed to cover the substrate Another part of the surface; and after the step of forming the electroplated metal layer, removing the protective layer. 如請求項1所述的製造方法,其中,所述金屬基材為平板狀基材或非平板狀基材,且所述導熱絕緣層直接形成於所述金屬基 材上。 The manufacturing method according to claim 1, wherein the metal substrate is a flat substrate or a non-flat substrate, and the thermally conductive insulating layer is directly formed on the metal substrate. 如請求項1所述的製造方法,其中,所述導熱摻雜物的熱傳導係數至少大於100W/m.K,且所述導熱摻雜物的重量佔所述導熱絕緣層的總重量的40至70%。 The manufacturing method according to claim 1, wherein the thermal conductivity of the thermally conductive dopant is at least greater than 100W/m. K, and the weight of the thermally conductive dopant accounts for 40 to 70% of the total weight of the thermally conductive insulating layer. 如請求項1所述的製造方法,其中,所述高分子母材包含聚乙烯、聚丙烯、環氧樹脂、壓克力樹酯、聚氯乙烯(PVC)或其任意組合,且所述導熱摻雜物包含石墨烯、石墨烯衍生物、氮化鋁、氮化鋁、氮化鋁衍生物、氧化鋁、金屬粉或其任意組合。 The manufacturing method according to claim 1, wherein the polymer base material comprises polyethylene, polypropylene, epoxy resin, acrylic resin, polyvinyl chloride (PVC), or any combination thereof, and the thermal conductivity The dopant includes graphene, graphene derivatives, aluminum nitride, aluminum nitride, aluminum nitride derivatives, aluminum oxide, metal powder, or any combination thereof. 如請求項7所述的製造方法,其中,所述官能基形成於多個所述微孔洞內,且所述官能基含有包括氯離子(Cl -)、亞硫酸根離子(SO 3 -)、硝酸根離子(NO 3 -)、溴離子(Br -)、鈉離子(Na +)、鉀離子(K +)或其任意組合。 The manufacturing method of claim 7 requests, wherein said plurality of functional groups are formed on the microporous hole, and the functional group-containing ions comprising chloride (Cl -), sulfite ion (SO 3 -) , (3 NO -) nitrate ion, a bromine ion (Br -), a combination of sodium ions (Na +), potassium ion (K +), or any. 一種金屬基高熱傳導基板,其包括:一金屬基材;一導熱絕緣層,其設置於所述金屬基材上,其中,所述導熱絕緣層的材料包括一高分子母材以及一導熱摻雜物,且所述導熱絕緣層的熱傳導係數介於100至400W/m.K;以及一金屬層,其設置於所述導熱絕緣層上,其中,所述金屬層包括一無電電鍍金屬層以及一有電電鍍金屬層,所述無電電鍍金屬層設置於所述導熱絕緣層與所述有電電鍍金屬層之間。 A metal-based high thermal conductivity substrate includes: a metal substrate; a thermally conductive insulating layer, which is disposed on the metal substrate, wherein the material of the thermally conductive insulating layer includes a polymer base material and a thermally conductive doping Thing, and the thermal conductivity of the thermally conductive insulating layer is between 100 to 400W/m. K; and a metal layer disposed on the thermally conductive insulating layer, wherein the metal layer includes an electroless metal plating layer and an electroplated metal layer, the electroless metal plating layer is disposed on the thermally conductive insulating layer With the electroplated metal layer. 如請求項9所述的金屬基高熱傳導基板,其中,所述金屬基材為平板狀基材或非平板狀基材,且所述導熱絕緣層直接形成於所述金屬基材的表面上。 The metal-based high thermal conductivity substrate according to claim 9, wherein the metal substrate is a flat substrate or a non-flat substrate, and the thermally conductive insulating layer is directly formed on the surface of the metal substrate. 如請求項9所述的金屬基高熱傳導基板,其中,所述高分子母材包含聚乙烯、聚丙烯、環氧樹脂、聚氯乙烯(PVC)或其任意組合,且所述導熱摻雜物包含石墨烯、石墨烯衍生物、氮化鋁、氮化鋁衍生物、氧化鋁、金屬粉或其任意組合。 The metal-based high thermal conductivity substrate according to claim 9, wherein the polymer base material comprises polyethylene, polypropylene, epoxy resin, polyvinyl chloride (PVC) or any combination thereof, and the thermally conductive dopant Contains graphene, graphene derivatives, aluminum nitride, aluminum nitride derivatives, aluminum oxide, metal powder, or any combination thereof.
TW107120950A 2018-06-19 2018-06-19 Manufacturing method thereof metal-based high-thermal-conduction substrate TWI674824B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107120950A TWI674824B (en) 2018-06-19 2018-06-19 Manufacturing method thereof metal-based high-thermal-conduction substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107120950A TWI674824B (en) 2018-06-19 2018-06-19 Manufacturing method thereof metal-based high-thermal-conduction substrate

Publications (2)

Publication Number Publication Date
TWI674824B TWI674824B (en) 2019-10-11
TW202002734A true TW202002734A (en) 2020-01-01

Family

ID=69023727

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107120950A TWI674824B (en) 2018-06-19 2018-06-19 Manufacturing method thereof metal-based high-thermal-conduction substrate

Country Status (1)

Country Link
TW (1) TWI674824B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI745072B (en) * 2020-09-07 2021-11-01 鈺橋半導體股份有限公司 Wiring board with buffer layer and thermally conductive admixture
CN114158178A (en) * 2020-09-08 2022-03-08 钰桥半导体股份有限公司 Circuit board with buffer layer and heat-conducting admixture
TWI782477B (en) * 2021-04-09 2022-11-01 艾姆勒科技股份有限公司 Insulated metal substrate structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0473995A (en) * 1990-07-16 1992-03-09 Showa Aircraft Ind Co Ltd Manufacture of electronic board and electronic board
CN103002655A (en) * 2012-08-23 2013-03-27 苏州金科信汇光电科技有限公司 Ultrahigh-thermal-conductivity metal substrate and manufacturing process thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI745072B (en) * 2020-09-07 2021-11-01 鈺橋半導體股份有限公司 Wiring board with buffer layer and thermally conductive admixture
CN114158178A (en) * 2020-09-08 2022-03-08 钰桥半导体股份有限公司 Circuit board with buffer layer and heat-conducting admixture
CN114158178B (en) * 2020-09-08 2023-11-07 钰桥半导体股份有限公司 Circuit board with buffer layer and heat conducting admixture
TWI782477B (en) * 2021-04-09 2022-11-01 艾姆勒科技股份有限公司 Insulated metal substrate structure

Also Published As

Publication number Publication date
TWI674824B (en) 2019-10-11

Similar Documents

Publication Publication Date Title
US9504165B2 (en) Method of forming conductive traces on insulated substrate
TW202002734A (en) Manufacturing method of metal-based high-thermal-conduction substrate
TW201408153A (en) Ceramic substrate and method for reducing surface roughness of metal filled via holes thereon
WO2011041934A1 (en) Semiconductor carrier structure
CN105984179A (en) Heat sink material and preparation method thereof
KR20140145870A (en) A heat-radiation complex sheet
US20110123930A1 (en) Ceramic substrate preparation process
US20140268619A1 (en) Method of Manufacturing Substrate for Chip Packages and Method of Manufacturing Chip Package
JP2009064806A (en) Circuit board and method of manufacturing the same, and semiconductor module
JP4411720B2 (en) Thermally conductive substrate and manufacturing method thereof
TW201143569A (en) Manufacturing method of metal ceramics multi-layer circuit heat-dissipation substrate
TWI581697B (en) Method for manufacturing heat dissipation structure of ceramic substrate
TWI391039B (en) Circuit board with metal heat sink and manufacturing method thereof
CN109378302B (en) Heat dissipation conformal circuit and manufacturing method thereof
KR102119142B1 (en) Method for fabriating Wafer Level Package's Carrier using lead frame
TWM593131U (en) Heat dissipation structure of bare crystal (die)
TWM536989U (en) Large area ceramic substrate structure
CN109243984A (en) A kind of welding resistance method of IGBT aluminium silicon carbide heat-radiating substrate
TWI429115B (en) Semiconductor bearing structure
KR20100099475A (en) Printed circuit board and method of manufacturing the same
JP2003332503A (en) Circuit board having heat sink and its manufacturing method
JP2011082269A (en) Light emitting diode substrate and method of manufacturing the same
US20110232950A1 (en) Substrate and method for manufacturing the same
US11665859B2 (en) Heat dissipation conductive flexible board
JP2001177022A (en) Heat conduction board and method of manufacturing the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees