TW201947285A - Image display apparatus - Google Patents

Image display apparatus Download PDF

Info

Publication number
TW201947285A
TW201947285A TW107115248A TW107115248A TW201947285A TW 201947285 A TW201947285 A TW 201947285A TW 107115248 A TW107115248 A TW 107115248A TW 107115248 A TW107115248 A TW 107115248A TW 201947285 A TW201947285 A TW 201947285A
Authority
TW
Taiwan
Prior art keywords
optical element
element layer
dynamic optical
layer
microstructure
Prior art date
Application number
TW107115248A
Other languages
Chinese (zh)
Other versions
TWI707160B (en
Inventor
楊鈞翔
黃乙白
丁志宏
張凱傑
吳瑞翊
Original Assignee
群睿股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 群睿股份有限公司 filed Critical 群睿股份有限公司
Priority to TW107115248A priority Critical patent/TWI707160B/en
Publication of TW201947285A publication Critical patent/TW201947285A/en
Application granted granted Critical
Publication of TWI707160B publication Critical patent/TWI707160B/en

Links

Abstract

An image display apparatus includes a planar display device, a lens array layer and a microstructure dynamic optical element layer. The lens array layer is located at a side of the planar display device having a display surface, and the lens array layer is configured to regulate light field. The microstructure dynamic optical element layer is located at the side of the planar display device having the display surface. The microstructure dynamic optical element layer is capable of being switched to have a microstructure function or no microstructure function. When the microstructure dynamic optical element layer is switched to have the microstructure function, the microstructure dynamic optical element layer is capable of regulating the angular direction of the light. Accordingly, the image display apparatus can be used for displaying a stereo image floating in mid-air, and allows a user to observe the stereo image at an oblique viewing angle. In practical applications, the image display apparatus can also be used in different ways according to the usage situation.

Description

影像顯示裝置    Image display device   

本發明乃是關於一種影像顯示裝置,尤指一種為顯示目的使用,能因應不同需求而進行切換的立體影像顯示裝置。 The present invention relates to an image display device, and more particularly to a three-dimensional image display device used for display purposes and capable of being switched according to different needs.

三維立體顯示裝置,一般主流採用雙眼融合影像的技術製成。一般裸視三維立體顯示裝置,都需要讓使用者在面向正對顯示裝置的方向才可以觀賞立體影像,而在非正對顯示裝置的方向則看不到顯示立體影像。在考慮一些情境狀況的場合裡,顯示裝置為水平擺放的情況時,觀賞者自然的視角為斜向的觀看顯示裝置。此時一般主流的三維顯示技術無法提供對觀賞者自然的觀看角度,造成不便。再者,一般三維立體顯示裝置,在正面所觀看的3D感知,對觀賞者來說是只有一個方向的視覺刺激,就像是畫面突出或沉入,而無法達到真正讓影像脫離平面的感覺,實現漂浮於空中的感覺。 Three-dimensional stereo display devices are generally made by binocular image fusion technology. In general, a naked-view 3D stereoscopic display device requires a user to view a stereoscopic image in a direction facing the display device, and a stereoscopic image cannot be displayed in a direction not facing the display device. In the case of considering some situations, when the display device is placed horizontally, the natural viewing angle of the viewer is to look at the display device obliquely. At this time, the mainstream mainstream 3D display technology cannot provide a natural viewing angle to the viewer, causing inconvenience. Moreover, the 3D perception of a general three-dimensional stereoscopic display device when viewed from the front is a visual stimulus with only one direction for the viewer, as if the screen is protruding or sinking in, and it is impossible to achieve the feeling that the image is truly off the plane. Realize the feeling of floating in the air.

台灣專利證書號數:I614533揭露一種「立體顯示裝置」,包括一平面顯示裝置、一透鏡陣列層及一微結構層,透鏡陣列層設置於平面顯示裝置的顯示面上,透鏡陣列層用於調控光場,微結構層設置於透鏡陣列層上,微結構層用於調變光線角度方向。由此,用於顯現漂浮於空中的立體影像,且能在斜向的視角觀賞。 Taiwan patent certificate number: I614533 discloses a "stereoscopic display device", which includes a flat display device, a lens array layer and a microstructure layer. The lens array layer is arranged on the display surface of the flat display device, and the lens array layer is used for regulation. In the light field, the microstructure layer is disposed on the lens array layer, and the microstructure layer is used to adjust the angle direction of the light. Thereby, it is used to display a three-dimensional image floating in the air and can be viewed from an oblique perspective.

然而現有的立體顯示裝置,在實際使用時,並無法彈性的變化使用方式,使其功能受到些許限制。例如只能斜向觀看,無法如一般手機使用方式直立觀看;又例如只有立體(3D)模式,無法 平面(2D)及立體(3D)模式切換;又例如只能整個畫面為立體(3D)影像,無法畫面部分為平面(2D)影像,部分為立體(3D)影像。 However, the existing three-dimensional display device cannot flexibly change the use mode in actual use, so that its function is somewhat limited. For example, it can only be viewed obliquely, and cannot be viewed upright like normal mobile phone use; for example, only stereo (3D) mode, and it is impossible to switch between flat (2D) and stereo (3D) mode; , The part of the screen that cannot be displayed is a flat (2D) image, and the part is a stereo (3D) image.

綜上所述,本發明人有感上述缺陷可改善,乃特潛心研究並配合學理的應用,終於提出一種設計合理且有效改善上述缺陷的本發明。 In summary, the inventor feels that the above-mentioned defects can be improved. However, with intensive research and the application of scientific theory, he finally proposed a present invention with a reasonable design and effective improvement of the above-mentioned defects.

本發明所要解決的技術問題,在於提供一種影像顯示裝置,在實際使用時,可以彈性的變化使用方式,使用上更為方便。 The technical problem to be solved by the present invention is to provide an image display device, which can flexibly change the usage mode in actual use, and is more convenient to use.

為了解決上述的技術問題,本發明提供一種影像顯示裝置,包括:一平面顯示器,該平面顯示器具有一顯示面;一透鏡陣列層,該透鏡陣列層位於該平面顯示器具有該顯示面的一側,該透鏡陣列層能用於調控光場;以及一微結構式動態光學元件層,該微結構式動態光學元件層位於該平面顯示器具有該顯示面的一側,該微結構式動態光學元件層能切換為具有微結構功能或無微結構功能,該微結構式動態光學元件層切換為具有微結構功能時,能用於調變光線角度方向。 In order to solve the above technical problems, the present invention provides an image display device, including: a flat display having a display surface; a lens array layer on a side of the flat display having the display surface, The lens array layer can be used to regulate the light field; and a microstructured dynamic optical element layer, which is located on the flat display side with the display surface, and the microstructured dynamic optical element layer can When switched to have microstructure function or no microstructure function, when the microstructured dynamic optical element layer is switched to have microstructure function, it can be used to adjust the direction of light angle.

為了解決上述技術問題,本發明還提供一種影像顯示裝置包括:一平面顯示器,該平面顯示器具有一顯示面;一透鏡式動態光學元件層,該透鏡式動態光學元件層位於該平面顯示器具有該顯示面的一側,該透鏡式動態光學元件層能切換為具有透鏡陣列功能或無透鏡陣列功能,該透鏡式動態光學元件層切換為具有透鏡陣列功能時,能用於調控光場;以及一微結構層,該微結構層位於該平面顯示器具有該顯示面的一側,該微結構層能用於調變光線角度方向。 In order to solve the above technical problems, the present invention further provides an image display device including: a flat display having a display surface; a lenticular dynamic optical element layer, wherein the lenticular dynamic optical element layer is located on the flat display and has the display; On one side of the surface, the lenticular dynamic optical element layer can be switched to have a lens array function or a lensless array function. When the lenticular dynamic optical element layer is switched to have a lens array function, it can be used to control the light field; and The microstructure layer is located on a side of the flat display having the display surface, and the microstructure layer can be used to adjust the direction of the light angle.

為了解決上述技術問題,本發明還提供一種影像顯示裝置,包括:一平面顯示器,該平面顯示器具有一顯示面;一透鏡式動態光學元件層,該透鏡式動態光學元件層位於該平面顯示器具有 該顯示面的一側,該透鏡式動態光學元件層具有一第一部分及一第二部分,該第一部分具有透鏡陣列功能,能用於調控光場,該第二部分無透鏡陣列功能;以及一微結構層,該微結構層位於該平面顯示器具有該顯示面的一側,該微結構層能用於調變光線角度方向。 In order to solve the above technical problems, the present invention also provides an image display device, including: a flat display, the flat display has a display surface; a lenticular dynamic optical element layer, the lenticular dynamic optical element layer is located on the flat display and has On one side of the display surface, the lenticular dynamic optical element layer has a first portion and a second portion, the first portion has a lens array function, which can be used to regulate the light field, and the second portion has no lens array function; and a micro The microstructure layer is located on a side of the flat display having the display surface, and the microstructure layer can be used to adjust the direction of the light angle.

本發明的有益效果:本發明的影像顯示裝置包括動態光學元件層(如微結構式動態光學元件層或透鏡式動態光學元件層),在實際使用時,該動態光學元件層可因應需要而切換,以便彈性的變化使用方式,使用上更為方便。 Advantageous effects of the present invention: The image display device of the present invention includes a dynamic optical element layer (such as a micro-structured dynamic optical element layer or a lens-type dynamic optical element layer). In actual use, the dynamic optical element layer can be switched as required. In order to flexibly change the way of use, it is more convenient to use.

該微結構式動態光學元件層可切換為具有微結構功能或無微結構功能,使本發明影像顯示裝置兼具有斜向觀看及直立觀看的功能。該透鏡式動態光學元件層可切換為具有透鏡陣列功能或無透鏡陣列功能,使本發明影像顯示裝置兼具有觀看立體影像及平面影像功能。該透鏡式動態光學元件層部分具有透鏡陣列功能,部分無透鏡陣列功能,使用者可同時觀看立體影像及平面影像。 The micro-structured dynamic optical element layer can be switched to have a micro-structure function or no micro-structure function, so that the image display device of the present invention has functions of oblique viewing and upright viewing. The lens-type dynamic optical element layer can be switched to have a lens array function or a lensless array function, so that the image display device of the present invention has the functions of viewing stereoscopic images and planar images. Part of the lens-type dynamic optical element layer has a lens array function, and some does not have a lens array function, and a user can simultaneously view a stereo image and a flat image.

為了能更進一步瞭解本發明為達成既定目的所採取之技術、方法及功效,請參閱以下有關本發明之詳細說明、圖式,相信本發明之目的、特徵與特點,當可由此得以深入且具體之瞭解,然而所附圖式與附件僅提供參考與說明用,並非用來對本發明加以限制者。 In order to further understand the technology, methods and effects adopted by the present invention to achieve the intended purpose, please refer to the following detailed description and drawings of the present invention. It is believed that the purpose, features and characteristics of the present invention can be deepened and specific It is understood, however, that the drawings and attachments are provided for reference and description only, and are not intended to limit the present invention.

1‧‧‧平面顯示器 1‧‧‧ flat display

11‧‧‧顯示面 11‧‧‧display surface

2‧‧‧透鏡陣列層 2‧‧‧ lens array layer

21‧‧‧透鏡 21‧‧‧ lens

3‧‧‧微結構式動態光學元件層 3‧‧‧Micro-structured dynamic optical element layer

4‧‧‧立體影像 4‧‧‧ stereo image

5‧‧‧透鏡式動態光學元件層 5‧‧‧Lens-type dynamic optical element layer

51‧‧‧第一部分 51‧‧‧ Part I

52‧‧‧第二部分 52‧‧‧ Part Two

6‧‧‧微結構層 6‧‧‧ microstructure layer

61‧‧‧微結構 61‧‧‧microstructure

7‧‧‧平面影像 7‧‧‧ plane image

8‧‧‧動態光學元件層 8‧‧‧ dynamic optical element layer

81‧‧‧第一面 81‧‧‧ the first side

82‧‧‧第二面 82‧‧‧Second Side

圖1為本發明影像顯示裝置第一實施例的示意圖。 FIG. 1 is a schematic diagram of a first embodiment of an image display device according to the present invention.

圖2為本發明影像顯示裝置第一實施例另一狀態的示意圖。 FIG. 2 is a schematic diagram of another state of the first embodiment of the image display device of the present invention.

圖3為本發明影像顯示裝置第二實施例的示意圖。 FIG. 3 is a schematic diagram of a second embodiment of an image display device according to the present invention.

圖4為本發明影像顯示裝置第二實施例另一狀態的示意圖。 FIG. 4 is a schematic diagram of another state of the second embodiment of the image display device of the present invention.

圖5為本發明影像顯示裝置第三實施例的示意圖。 FIG. 5 is a schematic diagram of a third embodiment of an image display device according to the present invention.

圖6為本發明透鏡陣列相對排列的示意圖。 FIG. 6 is a schematic diagram of relative arrangement of lens arrays according to the present invention.

圖7為本發明透鏡陣列交錯排列的示意圖。 FIG. 7 is a schematic diagram of staggered arrangement of lens arrays according to the present invention.

圖8為本發明影像顯示裝置第四實施例的示意圖。 FIG. 8 is a schematic diagram of a fourth embodiment of an image display device according to the present invention.

[第一實施例]     [First embodiment]    

請參閱圖1,本發明提供一種影像顯示裝置,其可應用於例如光電、醫療、軍事、展示、顯示器、教育娛樂及消費型電子等各種產業,該影像顯示裝置可應用於主動式或被動式等顯示器,並不予以限制。 Please refer to FIG. 1. The present invention provides an image display device, which can be applied to various industries such as optoelectronics, medical, military, display, display, education and entertainment, and consumer electronics. The image display device can be applied to active or passive The display is not limited.

該影像顯示裝置包括一平面顯示器1、一透鏡陣列層2及一微結構式動態光學元件層3,平面顯示器1具有一顯示面11,透鏡陣列層2位於平面顯示器1具有顯示面11的一側,微結構式動態光學元件層3亦位於平面顯示器1具有顯示面11的一側。平面顯示器1、透鏡陣列層2及微結構式動態光學元件層3可以由下而上依序排列設置為三層,但不予以限制,例如透鏡陣列層2及微結構式動態光學元件層3也可上、下互換。在本實施例中,透鏡陣列層2設置於平面顯示器1的顯示面11上,微結構式動態光學元件層3設置於透鏡陣列層2上。透鏡陣列層2可接觸或不接觸平面顯示器1的顯示面11,微結構式動態光學元件層3可接觸或不接觸透鏡陣列層2。在另一實施例中,微結構式動態光學元件層3亦可設置於平面顯示器1的顯示面11上,透鏡陣列層2再設置於微結構式動態光學元件層3上。 The image display device includes a flat display 1, a lens array layer 2 and a micro-structured dynamic optical element layer 3. The flat display 1 has a display surface 11. The lens array layer 2 is located on a side of the flat display 1 with the display surface 11. The micro-structured dynamic optical element layer 3 is also located on the side of the flat display 1 having the display surface 11. The flat display 1, the lens array layer 2, and the micro-structured dynamic optical element layer 3 can be arranged in three layers from bottom to top, but are not limited. For example, the lens array layer 2 and the micro-structured dynamic optical element layer 3 are also arranged. Can be interchanged up and down. In this embodiment, the lens array layer 2 is disposed on the display surface 11 of the flat display 1, and the microstructured dynamic optical element layer 3 is disposed on the lens array layer 2. The lens array layer 2 may or may not contact the display surface 11 of the flat display 1, and the microstructured dynamic optical element layer 3 may or may not contact the lens array layer 2. In another embodiment, the micro-structured dynamic optical element layer 3 can also be disposed on the display surface 11 of the flat display 1, and the lens array layer 2 is further disposed on the micro-structured dynamic optical element layer 3.

平面顯示器1設置於第一層(下層),其負責顯示集成式攝影(integral photography)技術的圖案。該平面顯示器1可以為任意規格,只要能讓演算法則適用,該平面顯示器1的顯示面11所顯示的畫面是依據演算法則及該平面顯示器1規格將畫面重新繪製,該演算法則不需經過影像反轉的動作,而直接給予深度資訊 做為演算依據,以配合各種顯示面板的規格。該演算法則包括座標定義(Coordinate definition)、取得深度資訊(Give depth information)、集成式影像光線軌跡(integral image ray tracing)及重新組合成集成式影像(integral image)等步驟。本發明概念在於直接給予物體在空中飄浮的位置,再進行運算。而主動式平面顯示器,舉凡如手機、平板或平面螢幕等,都可以作為平面顯示器1,該平面顯示器1的型式及構造並不限制,其特點在於可以控制立體影像的切換,可以達到動畫效果。 The flat display 1 is disposed on the first layer (lower layer), and is responsible for displaying the patterns of integrated photography technology. The flat display 1 can be of any specifications, as long as an algorithm can be used. The picture displayed on the display surface 11 of the flat display 1 is based on the algorithm and the specifications of the flat display 1 to redraw the picture. The reversing action directly gives depth information as a calculation basis to match the specifications of various display panels. The algorithm includes steps such as coordinate definition, obtaining depth information, integrated image ray tracing, and recombination into an integrated image. The concept of the present invention is to directly give an object a floating position in the air, and then perform calculations. Active flat displays, such as mobile phones, tablets, or flat screens, can be used as flat displays 1. The type and structure of the flat display 1 is not limited. It is characterized in that it can control the switching of stereoscopic images and can achieve animation effects.

該平面顯示器1主要目的為顯示漂浮3D影像的演算處理畫面,稱之集成式影像(integral image),且集成式影像在本發明中採用電腦演算處理。利用色彩圖片配合深度圖片(RGB+D)四維資訊資料,重新演算編碼。然而顯示此集成式影像的方式可以依造顯示裝置的功能作為區分,較佳的為主動式裝置,主動式裝置代表顯示裝置本身可以隨意的變化集成式影像的畫面,且較容易達到全彩的3D影像,舉例說明有平面顯示器、CRT TV、OLED等。其次為被動式裝置,被動式裝置代表其裝置本身不能隨意更動影像畫面,例如為燈箱繪圖、光罩刻圖、印刷繪圖等。 The main purpose of the flat display 1 is to display a calculation processing screen of a floating 3D image, which is called an integrated image, and the integrated image is processed by computer calculation in the present invention. Using color pictures with depth pictures (RGB + D) four-dimensional information data, recalculation coding. However, the way to display this integrated image can be distinguished according to the function of the display device. The active device is preferred. The active device represents that the display device itself can change the picture of the integrated image at will, and it is easier to achieve full color. Examples of 3D images include flat displays, CRT TVs, and OLEDs. Secondly, it is a passive device. The passive device represents that the device itself cannot change the image picture arbitrarily, for example, drawing for a light box, engraving of a mask, printing and drawing.

透鏡陣列層2可設置於第二層(中層),該透鏡陣列層2具有調控光場的功效。聚光透鏡可以調控立體物件的光線角度,進而讓使用者看到立體影像不同的角度而產生深度的立體感覺。不同的聚光透鏡可以給予物件點不同的角度資訊,光線由不同的透鏡匯聚於空中形成一個帶有深度資料的點,指出空間上的一點資訊可以被分作不同的光線角度記錄在不同透鏡的像素之中。聚光透鏡曲率將由透鏡的材質決定,並配合與第一層的平面顯示器1的結合,決定立體影像的高度、可視角度範圍及清晰度。該顯示面11所顯示尚未重建的圖像能通過透鏡陣列層2聚焦於非透鏡上層表面而是透鏡上方之空間中。 The lens array layer 2 may be disposed on a second layer (middle layer), and the lens array layer 2 has a function of regulating a light field. The condenser lens can adjust the light angle of the three-dimensional object, so that the user can see different angles of the three-dimensional image to generate a deep three-dimensional feeling. Different condenser lenses can give objects with different angle information. Light is collected by different lenses in the air to form a point with depth data. It is pointed out that a point of information in space can be divided into different light angles and recorded in different lenses. In pixels. The curvature of the condenser lens will be determined by the material of the lens, and in combination with the flat display 1 of the first layer, the height, viewing angle range and sharpness of the stereo image will be determined. The image that has not been reconstructed displayed on the display surface 11 can be focused on the space above the lens by the lens array layer 2 instead of the upper surface of the lens.

在本實施例中,該透鏡陣列層2以光學特性良好的材質所製 成,例如有機玻璃(PPMA)、聚碳酸酯(PC)、聚乙烯(PE)或玻璃(Glass)等透光材質製成,該透鏡陣列層2的材質並不限制。該透鏡陣列層2可包含數個透鏡21,該些透鏡21的排列及構造並不限制。該些透鏡21具有聚焦功能,其曲率搭配透鏡材料結合於平面顯示器1,將決定立體影像高度、可視角度、解析度。 In this embodiment, the lens array layer 2 is made of a material with good optical characteristics, such as a transparent material such as plexiglass (PPMA), polycarbonate (PC), polyethylene (PE), or glass. Therefore, the material of the lens array layer 2 is not limited. The lens array layer 2 may include a plurality of lenses 21. The arrangement and structure of the lenses 21 are not limited. These lenses 21 have a focusing function, and their curvature is combined with the lens material to be combined with the flat display 1 to determine the height, viewing angle, and resolution of the stereo image.

該透鏡陣列層2的結構對顯示的效果有非常重要的關聯,透鏡陣列的排列方式可以為矩形排列或六角形排列的方式,亦即相鄰兩列的透鏡21可呈相對的排列(如圖6所示)或交錯的排列(如圖7所示),皆可以顯示3D影像資訊。 The structure of the lens array layer 2 has a very important relationship with the display effect. The arrangement of the lens array can be a rectangular arrangement or a hexagonal arrangement, that is, the two adjacent columns of lenses 21 can be arranged opposite each other (as shown in FIG. 6) or a staggered arrangement (as shown in FIG. 7) can display 3D image information.

在透鏡陣列層2上的微結構為聚焦功能的透鏡,此微透鏡規格將依照材質折射率n值決定其透鏡聚焦能力。材質折射率n值從1.3至3.0皆可,透光度70%以上,反射率25%以下,可使用光線的波長範圍為300nm至1100nm。該些透鏡21符合造鏡者公式:1/f=(n-1)(1/R1+1/R2) The microstructure on the lens array layer 2 is a lens with focusing function. The specifications of this microlens will determine its lens focusing ability according to the refractive index n of the material. The refractive index n of the material can be from 1.3 to 3.0, the light transmittance is above 70%, the reflectance is below 25%, and the wavelength range of the usable light is 300nm to 1100nm. These lenses 21 conform to the lens-maker formula: 1 / f = (n-1) (1 / R1 + 1 / R2)

其中R1和R2分別為透鏡兩邊的曲率半徑,f是透鏡焦距,n是透鏡折射率。另外透鏡21直徑大小從10um到3cm(較佳為10um到5mm)適用不同的顯示器板面大小。 Where R1 and R2 are the curvature radii on both sides of the lens, f is the focal length of the lens, and n is the refractive index of the lens. In addition, the diameter of the lens 21 is from 10um to 3cm (preferably 10um to 5mm), which is suitable for different display panel sizes.

微結構式動態光學元件層3(動態光學元件層)可設置於第三層(上層),該微結構式動態光學元件層3用於調變光線角度方向。該微結構式動態光學元件層3可為一液晶裝置(液晶微結構層),使微結構式動態光學元件層3可切換為具有微結構功能,微結構式動態光學元件層3亦可切換為無微結構功能。 The micro-structured dynamic optical element layer 3 (dynamic optical element layer) may be disposed on the third layer (upper layer). The micro-structured dynamic optical element layer 3 is used to adjust the angle direction of the light. The microstructured dynamic optical element layer 3 can be a liquid crystal device (liquid crystal microstructure layer), so that the microstructured dynamic optical element layer 3 can be switched to have a microstructure function, and the microstructured dynamic optical element layer 3 can also be switched to No microstructure function.

該微結構式動態光學元件層3可切換為具有微結構功能,可提供微結構層的功能,圖1中為便於說明,刻意將該微結構式動態光學元件層3繪成三角形微結構層,實際上並非實體的微結構層。透過微結構式動態光學元件層3可以讓光線偏折到相對於正向的斜向的角度,而可以讓使用者不須在正向的視角觀賞立體影像。尤其考慮在平面顯示器1為水平擺設的情況下,使用者在正 上方或正下方觀看平面顯示器1是不自然的。且實際使用一般裸視三維顯示器情況下,在斜向的角度是看不到任何東西的。因此透過微結構式動態光學元件層3的功用,可以讓使用者以更為自然的角度觀賞立體影像。 The micro-structured dynamic optical element layer 3 can be switched to have a micro-structure function and can provide the function of the micro-structured layer. For ease of illustration in FIG. 1, the micro-structured dynamic optical element layer 3 is deliberately drawn as a triangular micro-structured layer. It is not actually a solid microstructure layer. Through the micro-structured dynamic optical element layer 3, the light can be deflected to an oblique angle with respect to the forward direction, and the user does not need to watch the stereoscopic image from a forward viewing angle. In particular, in the case where the flat display 1 is horizontally arranged, it is not natural for a user to view the flat display 1 directly above or below. And in the case of a general naked-eye 3D display, nothing can be seen at an oblique angle. Therefore, through the function of the micro-structured dynamic optical element layer 3, the user can watch the stereoscopic image at a more natural angle.

本發明的影像顯示裝置包括三層結構,光線將由平面顯示器1顯現出集成式影像(integral image),透過透鏡陣列層2,將集成式影像(integral image)重新匯聚在空中呈現立體影像於空中,最後切換為具有微結構功能的微結構式動態光學元件層3會將光場折射到斜向的角度,於是在斜向的使用者便可以觀賞顯示位置處的立體影像4,以符合人體工學的視角。 The image display device of the present invention includes a three-layer structure. Light will show an integrated image from the flat display 1. Through the lens array layer 2, the integrated image is re-converged in the air to present a three-dimensional image in the air. Finally, switching to a microstructured dynamic optical element layer 3 with a microstructure function will refract the light field to an oblique angle, so that the user in the oblique direction can watch the stereoscopic image 4 at the display position to conform to the ergonomics. Perspective.

請參閱圖2,該微結構式動態光學元件層3亦可切換為無微結構功能,如此即能以直立方式觀看,如一般手機使用方式直立觀看。是以,本發明影像顯示裝置兼具有斜向觀看及直立觀看的功能,在實際使用時,可彈性的變化使用方式,使用上更為方便。 Please refer to FIG. 2, the micro-structured dynamic optical element layer 3 can also be switched to have no micro-structure function, so that it can be viewed in an upright manner, such as in ordinary mobile phone use. Therefore, the image display device of the present invention has the functions of oblique viewing and upright viewing. In actual use, the usage mode can be flexibly changed, which is more convenient to use.

[第二實施例]     [Second embodiment]    

請參閱圖3,在本實施例中,該影像顯示裝置包括一平面顯示器1、一透鏡式動態光學元件層5及一微結構層6,透鏡式動態光學元件層5位於平面顯示器1具有顯示面11的一側,微結構層6亦位於平面顯示器1具有顯示面11的一側。平面顯示器1、透鏡式動態光學元件層5及微結構層6可以由下而上依序排列設置為三層,但不予以限制,例如透鏡式動態光學元件層5及微結構層6也可上、下互換。在本實施例中,透鏡式動態光學元件層5設置於平面顯示器1的顯示面11上,微結構層6設置於透鏡式動態光學元件層5上,亦即透鏡式動態光學元件層5可設置於平面顯示器1的上方,微結構層6可設置於透鏡式動態光學元件層5的上方。 Please refer to FIG. 3. In this embodiment, the image display device includes a flat display 1, a lenticular dynamic optical element layer 5 and a microstructure layer 6. The lenticular dynamic optical element layer 5 is located on the flat display 1 and has a display surface. The microstructure layer 6 is also located on the side of the flat display 1 with the display surface 11. The flat display 1, the lens-type dynamic optical element layer 5, and the microstructure layer 6 can be arranged in three layers from bottom to top, but it is not limited. For example, the lens-type dynamic optical element layer 5 and the microstructure layer 6 can also be arranged on top. , Down swap. In this embodiment, the lenticular dynamic optical element layer 5 is disposed on the display surface 11 of the flat display 1, and the microstructure layer 6 is disposed on the lenticular dynamic optical element layer 5, that is, the lenticular dynamic optical element layer 5 can be disposed. Above the flat display 1, the microstructure layer 6 may be disposed above the lens-type dynamic optical element layer 5.

透鏡式動態光學元件層5(動態光學元件層)可設置於第二層(中層),該透鏡式動態光學元件層5具有調控光場的功效。該透 鏡式動態光學元件層5可為一液晶裝置(液晶透鏡陣列層),使透鏡式動態光學元件層5可切換為具有透鏡陣列功能,亦即在透鏡式動態光學元件層5所形成的透鏡陣列具有聚焦功能。圖3中為便於說明,刻意將該透鏡式動態光學元件層5繪成透鏡陣列層,實際上並非實體的透鏡陣列層。 The lenticular dynamic optical element layer 5 (dynamic optical element layer) can be disposed on the second layer (middle layer). The lenticular dynamic optical element layer 5 has the effect of regulating the light field. The lenticular dynamic optical element layer 5 can be a liquid crystal device (liquid crystal lens array layer), so that the lenticular dynamic optical element layer 5 can be switched to have a lens array function, that is, a lens formed in the lenticular dynamic optical element layer 5. The array has a focusing function. In FIG. 3, for convenience of description, the lens-type dynamic optical element layer 5 is intentionally drawn as a lens array layer, but it is not actually a physical lens array layer.

微結構層6可設置於第三層(上層),該微結構層6用於調變光線角度方向。透過微結構層6可以讓光線偏折到相對於正向的斜向的角度,而可以讓使用者不須在正向的視角觀賞立體影像。在本實施例中,該微結構層6可由聚酯(PET)、聚丙烯(PP)或聚碳酸酯(PC)等材質製成,該微結構層6的材質並不限制。該微結構層6可包含數個微結構61,該些微結構61可呈三角狀,該微結構61可為等腰三角形或直角三角形等,該微結構層6的排列及構造並不限制。 The microstructure layer 6 may be disposed on the third layer (upper layer), and the microstructure layer 6 is used for adjusting the angle direction of the light. Through the microstructure layer 6, the light can be deflected to an oblique angle with respect to the forward direction, and the user is not required to view the stereoscopic image from a positive perspective. In this embodiment, the microstructure layer 6 may be made of polyester (PET), polypropylene (PP), or polycarbonate (PC), and the material of the microstructure layer 6 is not limited. The microstructure layer 6 may include a plurality of microstructures 61. The microstructures 61 may be triangular. The microstructures 61 may be isosceles triangles or right-angled triangles. The arrangement and structure of the microstructure layers 6 are not limited.

本發明的影像顯示裝置包括三層結構,光線將由平面顯示器1顯現出集成式影像(integral image),透過切換為具有透鏡陣列功能的透鏡式動態光學元件層5,將集成式影像(integral image)重新匯聚在空中呈現立體影像於空中,最後微結構層6會將光場折射到斜向的角度,於是在斜向的使用者便可以觀賞顯示位置處的立體影像4,以符合人體工學的視角。 The image display device of the present invention includes a three-layer structure. Light will show an integrated image from the flat display 1. By switching to a lens-type dynamic optical element layer 5 having a lens array function, the integrated image will be integrated. Re-converge in the air to present the stereo image in the air. Finally, the microstructure layer 6 will refract the light field to an oblique angle, so the user in the oblique direction can view the stereo image 4 at the display position, which is ergonomic. Perspective.

如圖4所示,該透鏡式動態光學元件層5亦可切換為無透鏡陣列功能,如此使用者便可以觀賞平面影像7。是以,本發明影像顯示裝置兼具有平面(2D)及立體(3D)模式切換的功能,在實際使用時,可彈性的變化使用方式,使用上更為方便。 As shown in FIG. 4, the lenticular dynamic optical element layer 5 can also be switched to a lensless array function, so that the user can view the flat image 7. Therefore, the image display device of the present invention also has the function of switching between planar (2D) and stereo (3D) modes. In actual use, the usage mode can be flexibly changed, which is more convenient to use.

[第三實施例]     [Third embodiment]    

請參閱圖5,在本實施例中,該影像顯示裝置包括一平面顯示器1、一透鏡式動態光學元件層5及一微結構層6,本實施例的構造與上述第二實施例大致相同,其差異在於,該透鏡式動態光學元件層5可為一液晶裝置(液晶透鏡陣列層),使透鏡式動態光學元 件層5部分區域具有透鏡陣列功能,亦即只在透鏡式動態光學元件層5部分區域如同透鏡陣列具有聚焦功能,能用於調控光場。該透鏡式動態光學元件層5具有一第一部分51及一第二部分52,透鏡式動態光學元件層5的第一部分51具有透鏡陣列功能,能用於調控光場,透鏡式動態光學元件層5的第二部分52則無透鏡陣列功能。 Please refer to FIG. 5. In this embodiment, the image display device includes a flat display 1, a lens-type dynamic optical element layer 5 and a microstructure layer 6. The structure of this embodiment is substantially the same as the above-mentioned second embodiment. The difference is that the lenticular dynamic optical element layer 5 can be a liquid crystal device (liquid crystal lens array layer), so that a part of the lenticular dynamic optical element layer 5 has a lens array function, that is, only in the lenticular dynamic optical element layer 5 Some areas have a focusing function like a lens array and can be used to regulate the light field. The lenticular dynamic optical element layer 5 has a first portion 51 and a second portion 52. The first portion 51 of the lenticular dynamic optical element layer 5 has a lens array function and can be used to control the light field. The lenticular dynamic optical element layer 5 The second part 52 has no lens array function.

如圖5所示,該透鏡式動態光學元件層5的第一部分51具有透鏡陣列功能,使用者便可以觀賞立體影像4,該透鏡式動態光學元件層5的第二部分52無透鏡陣列功能,如此使用者便可以觀賞平面影像7。是以,本發明影像顯示裝置的畫面可以部分為平面(2D)影像,部分為立體(3D)影像,使用者可同時觀看立體影像及平面影像,在實際使用時,可彈性的變化使用方式,使用上更為方便。 As shown in FIG. 5, the first portion 51 of the lenticular dynamic optical element layer 5 has a lens array function, and a user can view a stereoscopic image 4. The second portion 52 of the lenticular dynamic optical element layer 5 has no lens array function. In this way, the user can view the flat image 7. Therefore, the screen of the image display device of the present invention can be part of a flat (2D) image and part of a stereo (3D) image. The user can view the stereo image and the flat image at the same time. In actual use, the usage mode can be flexibly changed. More convenient to use.

在本發明的另一實施例中,上述各實施例中的透鏡陣列層也可以動態光學元件層(液晶裝置)取代,使其形成透鏡式動態光學元件層。上述各實施例中的微結構層也可以動態光學元件層(液晶裝置)取代,使其形成微結構式動態光學元件層,亦即透鏡陣列層及微結構層可同時為動態光學元件,且透鏡陣列層及微結構層亦可整合為一動態光學元件。在本發明的另一實施例中,該微結構式動態光學元件層也可具有一第一部分及一第二部分,該微結構式動態光學元件層的第一部分具有微結構功能,能用於調變光線角度方向,該微結構式動態光學元件層的第二部分無微結構功能,能以直立方式觀看,如一般手機使用方式直立觀看。 In another embodiment of the present invention, the lens array layer in each of the above embodiments may be replaced by a dynamic optical element layer (liquid crystal device), so that it forms a lens-type dynamic optical element layer. The microstructure layer in each of the above embodiments may also be replaced by a dynamic optical element layer (liquid crystal device) to form a microstructured dynamic optical element layer, that is, the lens array layer and the microstructure layer may be dynamic optical elements at the same time, and the lens The array layer and the microstructure layer can also be integrated into a dynamic optical element. In another embodiment of the present invention, the microstructured dynamic optical element layer may also have a first part and a second part. The first part of the microstructured dynamic optical element layer has a microstructure function and can be used for tuning. The second part of the micro-structured dynamic optical element layer has no micro-structure function and can be viewed in an upright manner, such as in a normal mobile phone use, in a variable light angle direction.

[第四實施例]     [Fourth embodiment]    

請參閱圖8,在本實施例中,透鏡陣列層及微結構層可同時為動態光學元件,且透鏡陣列層及微結構層亦可整合為一動態光學元件,亦即該影像顯示裝置包括一平面顯示器1及一動態光學元件層8,該平面顯示器1具有一顯示面11,該動態光學元件層8位於平面顯示器1具有顯示面11的一側,該動態光學元件層8具 有一第一面81及一第二面82,第一面81具有動態透鏡功能,第二面具有動態微結構功能。 Please refer to FIG. 8. In this embodiment, the lens array layer and the microstructure layer can be dynamic optical elements at the same time, and the lens array layer and the microstructure layer can also be integrated into a dynamic optical element, that is, the image display device includes a A flat display 1 and a dynamic optical element layer 8, the flat display 1 has a display surface 11, the dynamic optical element layer 8 is located on a side of the flat display 1 with the display surface 11, and the dynamic optical element layer 8 has a first surface 81 and a second surface 82. The first surface 81 has a dynamic lens function, and the second surface has a dynamic microstructure function.

以上所述僅為本發明之優選實施例,非意欲侷限本發明的專利保護範圍,故凡是運用本發明說明書及附圖內容所作的等效變化,均同理皆包含於本發明的權利保護範圍內。 The above is only a preferred embodiment of the present invention, and is not intended to limit the scope of patent protection of the present invention. Therefore, any equivalent changes made using the description and drawings of the present invention are also included in the scope of protection of the present invention. Inside.

Claims (15)

一種影像顯示裝置,包括:一平面顯示器,該平面顯示器具有一顯示面;一透鏡陣列層,該透鏡陣列層位於該平面顯示器具有該顯示面的一側,該透鏡陣列層能用於調控光場;以及一微結構式動態光學元件層,該微結構式動態光學元件層位於該平面顯示器具有該顯示面的一側,該微結構式動態光學元件層能切換為具有微結構功能或無微結構功能,該微結構式動態光學元件層切換為具有微結構功能時,能用於調變光線角度方向。     An image display device includes: a flat display having a display surface; a lens array layer located on a side of the flat display having the display surface; and the lens array layer can be used to regulate a light field ; And a micro-structured dynamic optical element layer, which is located on a side of the flat display having the display surface, the micro-structured dynamic optical element layer can be switched to have a micro-structure function or no micro-structure Function, when the microstructured dynamic optical element layer is switched to have a microstructure function, it can be used to adjust the angle direction of light.     如請求項1所述的影像顯示裝置,其中該微結構式動態光學元件層為一液晶裝置。     The image display device according to claim 1, wherein the microstructured dynamic optical element layer is a liquid crystal device.     如請求項1所述的影像顯示裝置,其中該透鏡陣列層為一動態光學元件層。     The image display device according to claim 1, wherein the lens array layer is a dynamic optical element layer.     如請求項3所述的影像顯示裝置,其中該透鏡陣列的動態光學元件層為一液晶裝置。     The image display device according to claim 3, wherein the dynamic optical element layer of the lens array is a liquid crystal device.     如請求項1所述的影像顯示裝置,其中該透鏡陣列層包含數個透鏡,該些透鏡具有聚焦功能,該些透鏡使用光線的波長範圍為300nm至1100nm,該些透鏡直徑為10um到5mm,該些透鏡符合造鏡者公式:1/f=(n-1)(1/R1+1/R2),其中R1和R2分別為透鏡兩邊的曲率半徑,f是透鏡焦距,n是透鏡折射率。     The image display device according to claim 1, wherein the lens array layer includes a plurality of lenses, the lenses have a focusing function, the lenses use a wavelength range of 300 nm to 1100 nm, and the diameters of the lenses are 10 um to 5 mm. These lenses conform to the lens maker's formula: 1 / f = (n-1) (1 / R1 + 1 / R2), where R1 and R2 are the curvature radii of the two sides of the lens, f is the focal length of the lens, and n is the refractive index of the lens .     如請求項1所述的影像顯示裝置,其中該微結構式動態光學元件層具有一第一部分及一第二部分,該微結構式動態光學元件層的第一部分具有微結構功能,能用於調變光線角度方向,該微結構式動態光學元件層的第二部分無微結構功能。     The image display device according to claim 1, wherein the microstructured dynamic optical element layer has a first part and a second part, and the first part of the microstructured dynamic optical element layer has a microstructure function and can be used for adjusting The second part of the microstructured dynamic optical element layer has no microstructure function in changing the direction of the light angle.     一種影像顯示裝置,包括:一平面顯示器,該平面顯示器具有一顯示面;一透鏡式動態光學元件層,該透鏡式動態光學元件層位於該平面顯示器具有該顯示面的一側,該透鏡式動態光學元件層能切 換為具有透鏡陣列功能或無透鏡陣列功能,該透鏡式動態光學元件層切換為具有透鏡陣列功能時,能用於調控光場;以及一微結構層,該微結構層位於該平面顯示器具有該顯示面的一側,該微結構層能用於調變光線角度方向。     An image display device includes: a flat display having a display surface; a lenticular dynamic optical element layer, the lenticular dynamic optical element layer being located on a side of the flat display having the display surface, and the lenticular dynamic The optical element layer can be switched to have a lens array function or a lensless array function. When the lens-type dynamic optical element layer is switched to have a lens array function, it can be used to regulate the light field; and a microstructure layer, which is located at the The flat display has one side of the display surface, and the microstructure layer can be used to adjust the angle direction of the light.     如請求項7所述的影像顯示裝置,其中該透鏡式動態光學元件層為一液晶裝置。     The image display device according to claim 7, wherein the lenticular dynamic optical element layer is a liquid crystal device.     如請求項7所述的影像顯示裝置,其中該微結構層為一動態光學元件層。     The image display device according to claim 7, wherein the microstructure layer is a dynamic optical element layer.     如請求項9所述的影像顯示裝置,其中該微結構層的動態光學元件層為一液晶裝置。     The image display device according to claim 9, wherein the dynamic optical element layer of the microstructure layer is a liquid crystal device.     如請求項7所述的影像顯示裝置,其中該透鏡式動態光學元件層具有一第一部分及一第二部分,該透鏡式動態光學元件層的第一部分具有透鏡陣列功能,能用於調控光場,該透鏡式動態光學元件層的第二部分無透鏡陣列功能。     The image display device according to claim 7, wherein the lenticular dynamic optical element layer has a first portion and a second portion, and the first portion of the lenticular dynamic optical element layer has a lens array function and can be used to regulate the light field The second part of the lenticular dynamic optical element layer has no lens array function.     一種影像顯示裝置,包括:一平面顯示器,該平面顯示器具有一顯示面;一透鏡式動態光學元件層,該透鏡式動態光學元件層位於該平面顯示器具有該顯示面的一側,該透鏡式動態光學元件層具有一第一部分及一第二部分,該透鏡式動態光學元件層的第一部分具有透鏡陣列功能,能用於調控光場,該透鏡式動態光學元件層的第二部分無透鏡陣列功能;以及一微結構層,該微結構層位於該平面顯示器具有該顯示面的一側,該微結構層能用於調變光線角度方向。     An image display device includes: a flat display having a display surface; a lenticular dynamic optical element layer, the lenticular dynamic optical element layer being located on a side of the flat display having the display surface, and the lenticular dynamic The optical element layer has a first part and a second part. The first part of the lenticular dynamic optical element layer has a lens array function and can be used for regulating and controlling the light field. The second part of the lenticular dynamic optical element layer has a lensless array function. And a microstructure layer, the microstructure layer is located on a side of the flat display having the display surface, and the microstructure layer can be used to adjust the angle direction of the light.     如請求項12所述的影像顯示裝置,其中該透鏡式動態光學元件層為一液晶裝置。     The image display device according to claim 12, wherein the lenticular dynamic optical element layer is a liquid crystal device.     如請求項12所述的影像顯示裝置,其中該微結構層為一動態光學元件層。     The image display device according to claim 12, wherein the microstructure layer is a dynamic optical element layer.     一種影像顯示裝置,包括: 一平面顯示器,該平面顯示器具有一顯示面;一動態光學元件層,該動態光學元件層位於該平面顯示器具有該顯示面的一側,該動態光學元件層具有一第一面及一第二面,該第一面具有動態透鏡功能,該第二面具有動態微結構功能。     An image display device includes: a flat display having a display surface; a dynamic optical element layer on a side of the flat display having the display surface; and the dynamic optical element layer having a first One side and a second side, the first side has a dynamic lens function, and the second side has a dynamic microstructure function.    
TW107115248A 2018-05-04 2018-05-04 Image display apparatus TWI707160B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107115248A TWI707160B (en) 2018-05-04 2018-05-04 Image display apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107115248A TWI707160B (en) 2018-05-04 2018-05-04 Image display apparatus

Publications (2)

Publication Number Publication Date
TW201947285A true TW201947285A (en) 2019-12-16
TWI707160B TWI707160B (en) 2020-10-11

Family

ID=69582823

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107115248A TWI707160B (en) 2018-05-04 2018-05-04 Image display apparatus

Country Status (1)

Country Link
TW (1) TWI707160B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113759566A (en) * 2021-03-01 2021-12-07 北京京东尚科信息技术有限公司 Naked eye 3D image display system and application method thereof
TWI808373B (en) * 2021-01-20 2023-07-11 幻景啟動股份有限公司 Floating three-dimensional image display system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201131209A (en) * 2010-03-10 2011-09-16 Core Flex Optical Suzhou Co Ltd Beam splitting film, backlight module, and stereo display apparatus
JP5711826B2 (en) * 2012-01-11 2015-05-07 株式会社東芝 Liquid crystal optical element and stereoscopic image display device
CA2905147A1 (en) * 2013-03-12 2014-09-18 Koninklijke Philips N.V. Transparent autostereoscopic display

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI808373B (en) * 2021-01-20 2023-07-11 幻景啟動股份有限公司 Floating three-dimensional image display system
US11778165B2 (en) 2021-01-20 2023-10-03 Lixel Inc. Floating three-dimensional image display system
CN113759566A (en) * 2021-03-01 2021-12-07 北京京东尚科信息技术有限公司 Naked eye 3D image display system and application method thereof

Also Published As

Publication number Publication date
TWI707160B (en) 2020-10-11

Similar Documents

Publication Publication Date Title
US9857604B2 (en) Stereoscopic display
TWI634350B (en) Method for displaying image
KR101115700B1 (en) display apparatus for selecting display from 2-dimension and 3-dimension image
JP2010072626A (en) Image display apparatus and method to concurrently display two and three dimensional images
TWI641871B (en) Stereoscopic image display device
TWI608254B (en) Image display device
US7697208B2 (en) 3D display with an improved pixel structure (pixelsplitting)
JP4452719B2 (en) Stereoscopic two-dimensional image display device
US20220350056A1 (en) System and method for holographic displays
TWI654448B (en) Image display device
TWI707160B (en) Image display apparatus
US10816869B2 (en) Image display device
JP5793099B2 (en) Display device, electronic device and control circuit
US11092818B2 (en) Device for displaying stereoscopic images
CN110488504A (en) Display device
JP2006098775A (en) Three-dimensional image display system
KR101804189B1 (en) Design method of glassless 3D film minimized Moire pattern
JP5045917B2 (en) 3D display
TWI704380B (en) Stereoscopic image display device with enhanced image quality
JP2009205058A (en) Stereoscopic vision display device
TWI838436B (en) Integrated image display device
TWI734640B (en) Integrated stereoscopic image display device
TWI716217B (en) Integrated stereoscopic image display device
US20230359063A1 (en) Integrated stereoscopic image display device
CN111487787A (en) Stereoscopic image display equipment capable of improving image quality