TW201916434A - Lithium metal electrode and its related lithium metal battery - Google Patents

Lithium metal electrode and its related lithium metal battery Download PDF

Info

Publication number
TW201916434A
TW201916434A TW106134904A TW106134904A TW201916434A TW 201916434 A TW201916434 A TW 201916434A TW 106134904 A TW106134904 A TW 106134904A TW 106134904 A TW106134904 A TW 106134904A TW 201916434 A TW201916434 A TW 201916434A
Authority
TW
Taiwan
Prior art keywords
layer
lithium metal
metal plate
porous
insulating
Prior art date
Application number
TW106134904A
Other languages
Chinese (zh)
Other versions
TWI633696B (en
Inventor
楊思枬
Original Assignee
輝能科技股份有限公司
開曼群島商輝能控股股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 輝能科技股份有限公司, 開曼群島商輝能控股股份有限公司 filed Critical 輝能科技股份有限公司
Priority to TW106134904A priority Critical patent/TWI633696B/en
Application granted granted Critical
Publication of TWI633696B publication Critical patent/TWI633696B/en
Publication of TW201916434A publication Critical patent/TW201916434A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

A lithium metal electrode and its related lithium metal battery is disclosed in the present invention. The lithium metal electrode comprises a current collector, a porous electrical insulation layer, an ionic diffusion layer and a lithium metal layer. The porous electrical insulation layer comprises an insulation layer having larger through holes and an inhibition layer having smaller through holes. The current collector is disposed on one side of the insulation layer and the inhibition layer is disposed on another side of the insulation layer. The lithium dendrites will mostly plate in the through holes of the insulation layer and will not plate upwards due to the inhibition layer. Hence, the lithium dendrites will not penetrate through the electrical insulator so that the safety of the lithium metal battery can be improved greatly.

Description

鋰金屬極板及其應用之鋰金屬電池  Lithium metal plate and lithium metal battery for application thereof  

本發明是關於一種電極板,特別關於一種鋰金屬極板及其應用之鋰金屬電池。 The present invention relates to an electrode plate, and more particularly to a lithium metal plate and a lithium metal battery for use thereof.

現有以鋰為活性材料的電池系統係具有工作電壓高(3.6V)、能量密度大(120Wh/kg)、重量輕、壽命長及環保性佳等優點,在以鋰為活性材料的電池系統中,充電式金屬鋰電池是最早發展的鋰電池系統,雖然具有很高的能量密度,但由於金屬鋰的化性很強、易與電解質反應,造成金屬鋰電池有不穩定和安全性的問題。基於安全性的考量,近年來,多改以研發較為新型的充電式鋰高分子電池的,其係以高分子電解質取代原本有機溶劑以做為電池內的電解液,大大提高了鋰電池在使用上的安全性。 The existing battery system using lithium as an active material has the advantages of high working voltage (3.6V), high energy density (120Wh/kg), light weight, long life and good environmental protection, and is in a battery system using lithium as an active material. The rechargeable lithium metal battery is the earliest developed lithium battery system. Although it has a high energy density, the metal lithium battery is unstable and safe due to its strong chemical properties and easy reaction with the electrolyte. Based on safety considerations, in recent years, it has been changed to develop a new type of rechargeable lithium polymer battery, which replaces the original organic solvent with a polymer electrolyte as an electrolyte in the battery, greatly improving the use of the lithium battery. Security on the ground.

對於電池系統而言,除了過去對於安全性的高度要求外,為了提供電子產品能具有更長的操作時間,電池系統的使用壽命又再次成為電池系統研發的重要議題,故許多電池系統的研究方向,係由追求電池系統的安全性轉向電池系統的壽命。而由過去以鋰電池系統的發展進程來說,雖然金屬鋰電池系統在過去因為安全性的因素而被中斷,但不可否認的是,由於金屬鋰電池系統的活性材料係直接採用金屬鋰,故與其他離子鋰電池系統或鋰高分子電池系統相較,金屬鋰電池系統所提供的能量密度係大於該些鋰化合物的電池系統。 For the battery system, in addition to the high safety requirements in the past, in order to provide electronic products with longer operating time, the service life of the battery system has once again become an important issue in the development of battery systems, so the research direction of many battery systems The pursuit of battery system safety to the life of the battery system. In the past, in the development process of lithium battery systems, although the metal lithium battery system was interrupted in the past because of safety factors, it is undeniable that since the active material of the metal lithium battery system is directly made of metallic lithium, Compared with other ion lithium battery systems or lithium polymer battery systems, metal lithium battery systems provide energy densities greater than those of lithium compounds.

惟,金屬鋰係為一種非常活潑的金屬,若非在適當的儲存環境或是良好的操作環境下,金屬鋰本身係相當容易發生激烈的氧化還原反應。也因此,在實際的應用上,金屬鋰電池若能有效地克服其使用時的安全性疑慮並降低其在製程或儲存時的 困難性,其實是非常符合現行可攜式的智慧型電子產品的需求。 However, metallic lithium is a very active metal. Metal lithium itself is quite prone to intense redox reactions unless it is in a proper storage environment or a good operating environment. Therefore, in practical applications, metal lithium batteries can effectively overcome the safety concerns of their use and reduce their difficulty in process or storage, which is in line with the current portable smart electronic products. demand.

有鑑於上述,本發明遂針對上述習知技術之缺失,提出一種鋰金屬極板及其應用之鋰金屬電池,以有效克服上述之該等問題。 In view of the above, the present invention has been directed to a lithium metal plate and a lithium metal battery for use thereof in order to effectively overcome the above problems in view of the above-mentioned shortcomings of the prior art.

本發明之目的在提供一種鋰金屬極板及其應用之鋰金屬電池,藉由一多孔電性絕緣層中的絕緣結構層,俾使鋰金屬電池中的鋰金屬電池中的鋰金屬可在特定的區域中析出。 The object of the present invention is to provide a lithium metal plate and a lithium metal battery thereof, wherein the lithium metal in the lithium metal battery in the lithium metal battery can be made by the insulating structural layer in the porous electrically insulating layer Precipitated in a specific area.

本發明之目的在提供一種鋰金屬極板及其應用之鋰金屬電池,藉由一多孔電性絕緣層中的多孔抑制層,俾使鋰金屬電池中在充電下所形成的鋰金屬樹枝狀結晶,被限制在特定高度下生長,同時由於因為多孔抑制層之機械應力存在關係,進而限制垂直生長高度,迫使鋰金屬樹枝狀結晶往水平方向成長,使得絕緣結構層的穿孔空間被沈積的鋰金屬相當程度的利用,而不會發生鋰金屬樹枝狀結晶刺穿電性絕緣層,藉以避免內部短路的問題,同時也因機械應力的限制,藉以避免因樹枝狀結晶往垂直方向持續增長而將電池厚度做明顯的增加。 The object of the present invention is to provide a lithium metal plate and a lithium metal battery thereof, which are made of a lithium metal dendrite formed by charging in a lithium metal battery by a porous suppressing layer in a porous electrically insulating layer. Crystallization is restricted to growth at a specific height, and at the same time, due to the mechanical stress of the porous suppression layer, the vertical growth height is restricted, and the lithium metal dendrite is forced to grow in the horizontal direction, so that the perforated space of the insulating structure layer is deposited. The metal is used to a considerable extent without the lithium metal dendrites piercing the electrical insulating layer, in order to avoid the problem of internal short circuit, and also because of the limitation of mechanical stress, to avoid the continuous growth of dendrites in the vertical direction. The battery thickness is significantly increased.

本發明之目的在提供一種鋰金屬極板及其應用之鋰金屬電池,藉由在多孔電性絕緣層結構內部設置有離子擴散層,離子擴散層內有顆粒狀結構或纖維狀結構材料與孔洞分布,其中鋰金屬電池中的鋰金屬可以在離子擴散層的孔洞內進行沈積與剝離,同時沈積過程中鋰金屬更可以依附於離子擴散層的顆粒狀結構或纖維狀結構形成保護鋰金屬表面的(SEI),由於鋰金屬沈積與剝離的尺寸變化(15~20um)相對於固態電解質界面的厚度(10~50nm)差別太大,若無支撐則每次沈積與剝離都會相當的破壞固態電解質界面,而破壞固態電解質界面則需要損耗可逆容量(鋰離子濃度),因此本發明設計離子擴散層內的顆粒狀結構或纖維狀結構材料成為支撐固態電解質界面在鋰金屬沈積與剝離的結構材料,或是更甚者,部分顆粒狀或纖維結構材料直接參與此固態電解質界面的形成,進而支撐固態電解質界面,並使鋰金屬沈積 (plating)與剝離(striping)過程減少持續生成固態電解質界面進而減少可逆容量的損失。 The object of the present invention is to provide a lithium metal plate and a lithium metal battery thereof, which are provided with an ion diffusion layer inside a porous electrically insulating layer structure, and a granular structure or a fibrous structural material and a hole in the ion diffusion layer. Distribution, in which lithium metal in a lithium metal battery can be deposited and stripped in the pores of the ion diffusion layer, and lithium metal can be attached to the granular structure or fibrous structure of the ion diffusion layer to form a surface for protecting the lithium metal surface during deposition. (SEI), because the dimensional change of lithium metal deposition and stripping (15~20um) is too different from the thickness of the solid electrolyte interface (10~50nm), if there is no support, each deposition and stripping will destroy the solid electrolyte interface. The destruction of the solid electrolyte interface requires loss of reversible capacity (lithium ion concentration). Therefore, the granular structure or fibrous structural material in the ion diffusion layer of the present invention is designed to support the solid electrolyte interface in the deposition and stripping of lithium metal, or Even worse, some granular or fibrous structural materials directly participate in the formation of this solid electrolyte interface. The solid electrolyte interface is supported and the lithium metal deposition and stripping process is reduced to continuously create a solid electrolyte interface thereby reducing the loss of reversible capacity.

本發明之目的在提供一種鋰金屬極板及其應用之鋰金屬電池,藉由離子擴散層以在採用液態或膠態電解液的系統中,離子擴散層內的顆粒狀與纖維狀結構材料可以協助電解液依附其表面,並進而在鋰金屬沈積與剝離過程中,因為鋰金屬的體積佔據與釋放,而使電解液順利移入與移出離子擴散層的孔洞空間,這同時有助於持續維持良好的鋰金屬與電解質介面完整性,進而減少沈積介面電阻增加程度與介面過電壓之形成並大幅改善沈積厚度不均問題。 The object of the present invention is to provide a lithium metal plate and a lithium metal battery thereof, which can be used in a system using a liquid or colloidal electrolyte, and a granular and fibrous structural material in the ion diffusion layer can be used. Assisting the electrolyte to adhere to its surface, and in the process of lithium metal deposition and stripping, because the volume of lithium metal is occupied and released, the electrolyte is smoothly moved into and out of the pore space of the ion diffusion layer, which helps to maintain good The lithium metal and electrolyte interface integrity, thereby reducing the deposition interface resistance increase and interface overvoltage formation and greatly improving the deposition thickness unevenness problem.

為達上述之目的,本發明係提供一種鋰金屬極板,其係包含一集電層、一多孔電性絕緣層、至少一離子擴散層及一鋰金屬層,其中多孔電性絕緣層包含一絕緣結構層及一多孔抑制層。 In order to achieve the above object, the present invention provides a lithium metal plate comprising a collector layer, a porous electrically insulating layer, at least one ion diffusion layer and a lithium metal layer, wherein the porous electrically insulating layer comprises An insulating structural layer and a porous inhibiting layer.

本發明尚提供一種鋰金屬電池,其係包含一鋰金屬極板、一正極極板、一電性絕緣層以及一封裝膠框,其中鋰金屬極板係包含一集電層、一多孔電性絕緣層、一離子擴散層及一鋰金屬層,其中多孔電性絕緣層包含一絕緣結構層及一多孔抑制層。 The present invention further provides a lithium metal battery comprising a lithium metal plate, a positive electrode plate, an electrical insulating layer and a package plastic frame, wherein the lithium metal plate comprises a collector layer and a porous battery. The insulating layer, an ion diffusion layer and a lithium metal layer, wherein the porous electrically insulating layer comprises an insulating structural layer and a porous inhibiting layer.

藉由本發明所揭露的鋰金屬極板及其應用之鋰金屬電池,係可利用多孔電性絕緣層與離子擴散層,俾使鋰金屬可在特定區域析出,且不會發生刺穿鋰金屬電池中的電性絕緣層,故不會發生內部短路的問題。 The lithium metal plate and the lithium metal battery thereof disclosed by the invention can utilize the porous electrically insulating layer and the ion diffusion layer, so that the lithium metal can be precipitated in a specific region without piercing the lithium metal battery. In the electrical insulation layer, there is no problem of internal short circuit.

底下藉由具體實施例詳加說明,當更容易瞭解本發明之目的、技術內容、特點及其所達成之功效。 The purpose, technical content, features and effects achieved by the present invention will be more readily understood by the detailed description of the embodiments.

10a、10b、10c、10d、10e‧‧‧鋰金屬極板 10a, 10b, 10c, 10d, 10e‧‧‧ lithium metal plates

102‧‧‧集電層、第一集電層 102‧‧‧ collector layer, first collector layer

104‧‧‧多孔電性絕緣層 104‧‧‧Porous electrical insulation

104a‧‧‧絕緣結構層 104a‧‧‧Insulation structural layer

104b‧‧‧多孔抑制層 104b‧‧‧Porosion inhibition layer

106‧‧‧鋰金屬層 106‧‧‧Lithium metal layer

108‧‧‧離子擴散層 108‧‧‧Ion diffusion layer

H1‧‧‧第一穿孔 H1‧‧‧first perforation

H2‧‧‧第二穿孔 H2‧‧‧Second perforation

AD1‧‧‧第一黏著層 AD1‧‧‧ first adhesive layer

AD2‧‧‧第二黏著層 AD2‧‧‧Second Adhesive Layer

20‧‧‧電性絕緣層 20‧‧‧Electrical insulation

30‧‧‧正極極板 30‧‧‧positive plate

302‧‧‧第二集電層 302‧‧‧Second collector layer

304‧‧‧正極活性材料層 304‧‧‧positive active material layer

40‧‧‧封裝膠框 40‧‧‧Package frame

50‧‧‧鋰金屬電池 50‧‧‧Lithium metal battery

第1圖係為本發明之一種鋰金屬極板的截面結構示意圖。 Fig. 1 is a schematic cross-sectional view showing a lithium metal plate of the present invention.

第2圖係為本發明之另一種鋰金屬極板的截面結構示意圖。 Fig. 2 is a schematic cross-sectional view showing another lithium metal plate of the present invention.

第3圖係為本發明之再一種鋰金屬極板的截面結構示意圖。 Fig. 3 is a schematic cross-sectional view showing still another lithium metal plate of the present invention.

第4圖係為本發明之又一種鋰金屬極板的截面結構示意圖。 Fig. 4 is a schematic cross-sectional view showing still another lithium metal plate of the present invention.

第5圖係為本發明之又一種鋰金屬極板的截面結構示意圖。 Fig. 5 is a schematic cross-sectional view showing still another lithium metal plate of the present invention.

第6圖係為本發明之鋰金屬電池的截面結構示意圖。 Fig. 6 is a schematic cross-sectional view showing the lithium metal battery of the present invention.

如第1圖所示,其係分別表示本發明所揭露之鋰金屬極板的截面結構示意圖。所示之鋰金屬極板10a係包含一集電層102、一多孔電性絕緣層104、至少一離子擴散層108及一鋰金屬層106,且多孔電性絕緣層104係包含一絕緣結構層104a及一多孔抑制層104b;其中,多孔電性絕緣層104的絕緣結構層104a係設置於集電層102的一表面上,由於絕緣結構層104a具有至少一個第一穿孔H1,故可使得集電層102的部分表面可藉由第一穿孔H1而顯露出,在此顯露出的表面上,則係為設置鋰金屬層106的位置,在第一穿孔H1內,除了設置在集電層102表面上的鋰金屬層106外,更在第一穿孔H1內部設置有離子擴散層108,其係可與鋰金屬層106直接地或間接地接觸,抑或是未與鋰金屬層106接觸,離子擴散層108可完全填入第一穿孔H1內、或部分地填入在第一穿孔H1內,但完全不超出絕緣結構層104a,因此也不會穿入至多孔抑制層104b,也完全不會填入至多孔抑制層104b的第二穿孔H2內。當然,絕緣結構層104a更可具有多個第一穿孔H1,因此,在每個第一穿孔H1中,係依照上述結構的方式設置鋰金屬層106與離子擴散層108,其態樣係如第2圖所示。 As shown in Fig. 1, it is a schematic cross-sectional view showing a lithium metal plate disclosed in the present invention. The illustrated lithium metal plate 10a includes a collector layer 102, a porous electrically insulating layer 104, at least one ion diffusion layer 108, and a lithium metal layer 106, and the porous electrically insulating layer 104 includes an insulating structure. The layer 104a and a porous suppression layer 104b; wherein the insulating structure layer 104a of the porous electrically insulating layer 104 is disposed on a surface of the collector layer 102, since the insulating structure layer 104a has at least one first through hole H1, Part of the surface of the collector layer 102 can be exposed by the first through hole H1. On the exposed surface, the position of the lithium metal layer 106 is set. In the first through hole H1, in addition to the current collecting. Outside the lithium metal layer 106 on the surface of the layer 102, an ion diffusion layer 108 is disposed inside the first through hole H1, which may be in direct or indirect contact with the lithium metal layer 106, or may not be in contact with the lithium metal layer 106. The ion diffusion layer 108 may be completely filled in the first through hole H1 or partially filled in the first through hole H1, but does not exceed the insulating structure layer 104a at all, and therefore does not penetrate into the porous suppression layer 104b, nor does it penetrate at all. The second perforation that will be filled into the porous suppression layer 104b Within H2. Of course, the insulating structure layer 104a may further have a plurality of first through holes H1. Therefore, in each of the first through holes H1, the lithium metal layer 106 and the ion diffusion layer 108 are disposed according to the above structure, and the aspect is as follows. Figure 2 shows.

而就材料與結構而言,集電層102的材料可為金屬或任何導電的材質所構成者,一般常見的有銅、鎳、鋼,或其組合合金,在結構上,集電層102可以為實心的層狀結構,也可以為多孔的層狀結構。基於電容量的要求與設計,鋰金屬層106的厚度可介於0.3~5微米之間。多孔電性絕緣層104則至少必須為其表面不具電子導電性的材質所構成的結構,所述的多孔電性絕緣層104包含了絕緣結構層104a與多孔抑制層104b,因此,就結構上而言,當絕緣結構層104a及/或多孔抑制層104b為單層結構體時,其構成的材料則係為絕緣材料,可例如為絕緣高分子材料、絕緣陶瓷材料、絕緣玻璃材料、絕緣玻璃纖維材料、或上述材料之任意組合, 其中絕緣高分子材料可為聚醯亞胺、聚乙烯對苯二甲酸酯、聚胺酯、聚丙烯酸、環氧樹脂或矽膠,絕緣玻璃纖維材料可為FR4等級的玻璃纖維材料,常見的材料可為FR4環氧樹脂玻璃纖維材料,而當絕緣結構層104a及/或多孔抑制層104b為多層結構體時,其構成的材料除了上述的絕緣材料之外,亦可為包覆有上述材料的任何材質,或是覆蓋有上述絕緣材料的任何材質。 In terms of materials and structures, the material of the collector layer 102 may be composed of metal or any conductive material. Generally, copper, nickel, steel, or a combination alloy thereof is generally used. In structure, the collector layer 102 may be The solid layered structure may also be a porous layered structure. Based on the capacitance requirements and design, the thickness of the lithium metal layer 106 can be between 0.3 and 5 microns. The porous electrically insulating layer 104 must have at least a structure composed of a material having no electron conductivity on its surface, and the porous electrically insulating layer 104 includes the insulating structural layer 104a and the porous suppression layer 104b, and thus, structurally When the insulating structure layer 104a and/or the porous suppression layer 104b are a single-layer structure, the material formed by the insulating structure layer 104a and/or the porous suppression layer 104b is an insulating material, and may be, for example, an insulating polymer material, an insulating ceramic material, an insulating glass material, or an insulating glass fiber. The material, or any combination of the above materials, wherein the insulating polymer material may be polyimide, polyethylene terephthalate, polyurethane, polyacrylic acid, epoxy resin or silicone rubber, and the insulating glass fiber material may be FR4 grade A glass fiber material, a common material may be an FR4 epoxy fiberglass material, and when the insulating structure layer 104a and/or the porous suppression layer 104b is a multilayer structure, the material formed may be in addition to the above-mentioned insulating material. Any material covered with the above materials, or any material covered with the above insulating materials.

另外,離子擴散層108的結構為多孔的結構,其係可為高分子材料、陶瓷材料、玻璃材料、纖維材料或上述材料之組合所構成,離子擴散層108的的多孔結構係可為粒子堆積所構成的孔洞、或纖維狀材料所構成的孔洞,其中粒子狀材料係可為陶瓷顆粒,高分子顆粒與玻璃顆粒,纖維狀結構材料可為高分子纖維材料或玻璃纖維材料,且更可將離子擴散層108的顆粒狀與纖維狀結構材料之表面改質為帶有正或負電荷的表面,舉例來說,帶有正電荷的離子擴散層108表面,係可有效減少表面電雙層產生,因此可減少鋰離子在遷移時所產生的極化現象,而帶有負電荷的離子擴散層108表面則可使鋰離子分布更為均勻。 In addition, the structure of the ion diffusion layer 108 is a porous structure, which may be composed of a polymer material, a ceramic material, a glass material, a fiber material or a combination of the above materials, and the porous structure of the ion diffusion layer 108 may be a particle stack. a hole formed by the hole or the fibrous material, wherein the particulate material may be ceramic particles, polymer particles and glass particles, and the fibrous structural material may be a polymer fiber material or a glass fiber material, and more The surface of the ion-diffusion layer 108 and the surface of the fibrous structural material are modified to have positive or negatively charged surfaces, for example, the surface of the positively charged ion diffusion layer 108, which can effectively reduce surface electric double layer generation. Therefore, the polarization phenomenon of lithium ions during migration can be reduced, and the surface of the negatively charged ion diffusion layer 108 can make the lithium ion distribution more uniform.

請同時參閱第2圖與第3圖所示,在第2圖中,鋰金屬極板10b的第一穿孔H1與第二穿孔H2的孔徑可分別為一致的,換言之,所有的第一穿孔H1的孔徑可以為單一尺寸,所有的第二穿孔H2的孔徑可為單一尺寸,其態樣如第2圖所示,或者是第一穿孔H1與第二穿孔H2的孔徑可分別為不同的,換言之,第一穿孔H1的孔徑可以是多種尺寸的,第二穿孔H2的孔徑可以是多種尺寸的,所述的鋰金屬極板10c的態樣則如第3圖所示,而在實際的應用上,具有單一尺寸的第一穿孔H1的絕緣結構層104a,係可搭配具有單一尺寸的第二穿孔H2的多孔抑制層104b,也可搭配具有不同尺寸的第二穿孔H2的多孔抑制層104b,反之,對於具有不同尺寸的第一穿孔H1的絕緣結構層104a也可依照不同的電池設計需求,而搭配不同結構的多孔抑制層104b,但無論上述何種結構的組合,所述的第二穿孔H2的孔徑係必須小於第一穿孔H1的孔徑。對絕緣結構層104a來說,當其僅具有一個第一穿孔H1時,第一穿孔 H1的尺寸係不大於電池有效的活性區域,而當絕緣結構層104a具有多個的第一穿孔H1時,無論第一穿孔H1的孔徑為單一尺寸或非單一尺寸時,孔徑尺寸的分布範圍係不小於50微米,對多孔抑制層104b來說,當第二穿孔H2的孔徑為單一尺寸時,由於鋰金屬述之結晶的尺寸係大於1微米,孔徑尺寸的分布範圍係不大於1微米,當第二穿孔H2的孔徑非為單一尺寸時,孔徑尺寸的分布範圍係不大於1微米。 Please refer to FIG. 2 and FIG. 3 at the same time. In FIG. 2, the apertures of the first through hole H1 and the second through hole H2 of the lithium metal plate 10b may be respectively identical, in other words, all the first through holes H1. The apertures may be of a single size, and the apertures of all the second through holes H2 may be a single size, the aspect of which is as shown in FIG. 2, or the apertures of the first through hole H1 and the second through hole H2 may be different, in other words, The aperture of the first through hole H1 may be of various sizes, the aperture of the second through hole H2 may be of various sizes, and the aspect of the lithium metal plate 10c is as shown in FIG. 3, but in practical applications. The insulating structure layer 104a having a single size of the first perforation H1 may be combined with the porous suppression layer 104b having a second perforation H2 of a single size, or may be combined with the porous suppression layer 104b having a second perforation H2 of a different size, and vice versa. For the insulating structure layer 104a having the first perforations H1 of different sizes, the porous suppression layer 104b of different structures may be matched according to different battery design requirements, but regardless of the combination of the above structures, the second perforation H2 Aperture system It must be smaller than the first aperture H1 perforations. For the insulating structure layer 104a, when it has only one first through hole H1, the size of the first through hole H1 is not larger than the effective active area of the battery, and when the insulating structure layer 104a has the plurality of first through holes H1, Regardless of whether the aperture of the first perforation H1 is a single size or a non-single size, the distribution of the aperture size is not less than 50 μm, and for the porous suppression layer 104b, when the aperture of the second perforation H2 is a single size, due to the lithium metal The size of the crystal is greater than 1 micrometer, the pore size is distributed by no more than 1 micrometer, and when the pore diameter of the second perforation H2 is not a single size, the pore size distribution is not more than 1 micrometer.

另外,除了上述的孔徑尺寸外,絕緣結構層104a的開孔率係介於40%~99.5%之間,其中所述的高開孔率態樣的實現必須搭配相當具有細窄封裝邊緣的鋰金屬極板(未顯示此態樣),多孔抑制層104b的開孔率係介於25%~80%之間,且絕緣結構層104a的厚度係介於15~40um之間,多孔抑制層104b的厚度係介於1~25微米之間,而整體的多孔電性絕緣層104的厚度係介於16~65微米之間。 In addition, in addition to the aperture size described above, the aperture ratio of the insulating structure layer 104a is between 40% and 99.5%, wherein the implementation of the high aperture ratio pattern must be matched with lithium having a narrow package edge. Metal plate (not shown), the porosity of the porous suppression layer 104b is between 25% and 80%, and the thickness of the insulating structure layer 104a is between 15 and 40 um, and the porous suppression layer 104b The thickness is between 1 and 25 microns, and the thickness of the overall porous electrically insulating layer 104 is between 16 and 65 microns.

再請同時參照第4圖與第5圖所示,係為本發明所揭露之鋰金屬極板的截面結構示意圖。與上述態樣不同的是,在第4圖的鋰金屬極板10d中,集電層102與多孔電性絕緣層104中的絕緣結構層104a之間,設置有第一黏著層AD1,其因在於集電層102與多孔電性絕緣層104係屬異質性的介面,因此第一黏著層AD1在材料上的選取係可選自於熱固型高分子材料、熱塑型高分子材料或兩者之組合的材料,其中,熱固型高分子材料可選自於矽膠、環氧樹脂、壓克力樹脂及上述材料之組合,熱塑型高分子材料則可選自於聚乙烯、聚丙烯、熱塑性聚醯亞胺、熱塑型聚氨酯...等材料,同時,若採用液態或膠態電解液系統,則此所述的第一黏著層AD1最好是不被電解液影響而減少黏著力的材料,例如矽膠、聚乙烯、聚丙烯、熱塑性聚醯亞胺...等,俾以可在長時間接觸液態或膠態電解液系統的情況下,仍可將金屬的集電層102與非金屬的絕緣結構層104a緊密地黏著;此外,若絕緣結構層104a與多孔抑制層104b非一體成型之結構者,其鋰金屬極板10e的態樣則係如第5圖所示,在絕緣結構層104a與多孔抑制層104b之間,更可藉由 第二黏著層AD2以將絕緣結構層104a與多孔抑制層104b彼此黏合,所述的第二黏著層AD2的材質係可與第一黏著層AD1的材質相同。當然,上述的第一黏著層AD1與第二黏著層AD2亦可同時採用,但其材質雖然都可以是以上的候選材料,但不一定需要相同,然而,為了達到薄化的目的,第一黏著層AD1的厚度應盡量控制在1~30微米之間,第二黏著層AD2的厚度則應盡量控制在1~30微米之間,以避免增加離子在鋰金屬極板10d、10e中遷移的距離,同時維持整體電池能量密度。相似於上述,在液態電解質系統或膠態電解質系統中,第二黏著層AD2在材料的選取上亦傾向於選取不與電解液(尤其是極性有機溶劑)反應的材質,例如但不限於矽膠、聚乙烯、聚丙烯、熱塑性聚醯亞胺...等,避免因為與電解液長時間的接觸而發生溶解、膨潤裂化等反應。 Please refer to FIG. 4 and FIG. 5 at the same time, which is a schematic cross-sectional structure of the lithium metal plate disclosed in the present invention. Different from the above, in the lithium metal plate 10d of FIG. 4, the first adhesive layer AD1 is disposed between the collector layer 102 and the insulating structural layer 104a in the porous electrically insulating layer 104, because The collector layer 102 and the porous electrically insulating layer 104 are heterogeneous interfaces. Therefore, the first adhesive layer AD1 may be selected from a thermosetting polymer material, a thermoplastic polymer material or two. The material of the combination, wherein the thermosetting polymer material may be selected from the group consisting of silicone rubber, epoxy resin, acrylic resin and a combination of the above materials, and the thermoplastic polymer material may be selected from polyethylene and polypropylene. Materials such as thermoplastic polyimine, thermoplastic polyurethane, etc., and if a liquid or colloidal electrolyte system is used, the first adhesive layer AD1 is preferably not affected by the electrolyte to reduce adhesion. Force materials, such as silicone, polyethylene, polypropylene, thermoplastic polyimide, etc., can still be used to contact the liquid or colloidal electrolyte system for a long time, the metal collector layer 102 can still be Adherently adhered to the non-metallic insulating structural layer 104a; The structure in which the edge structure layer 104a and the porous suppression layer 104b are not integrally formed, the lithium metal plate 10e is as shown in Fig. 5, and between the insulating structure layer 104a and the porous suppression layer 104b, The insulating layer 104a and the porous suppressing layer 104b are bonded to each other by the second adhesive layer AD2, and the material of the second adhesive layer AD2 is the same as that of the first adhesive layer AD1. Of course, the first adhesive layer AD1 and the second adhesive layer AD2 may be simultaneously used, but the materials may be the above candidate materials, but they do not necessarily need to be the same. However, for the purpose of thinning, the first adhesive The thickness of the layer AD1 should be controlled as much as possible between 1 and 30 microns, and the thickness of the second adhesive layer AD2 should be controlled as much as possible between 1 and 30 microns to avoid increasing the distance of ions in the lithium metal plates 10d, 10e. While maintaining the overall battery energy density. Similar to the above, in the liquid electrolyte system or the colloidal electrolyte system, the second adhesive layer AD2 also tends to select a material that does not react with the electrolyte (especially a polar organic solvent), such as but not limited to silicone rubber. Polyethylene, polypropylene, thermoplastic polyimine, etc., to avoid reactions such as dissolution, swelling and cracking due to prolonged contact with the electrolyte.

接續,在第6圖中係顯示本發明所揭露之鋰金屬電池的截面結構示意圖。鋰金屬電池50係包含鋰金屬極板10b、正極極板30(包含第二集電層302及正極活性材料層304)、電性絕緣層20與封裝膠框40,鋰金屬極板10b與正極極板30對應設置,電性絕緣層20則係夾設在正極極板30與鋰金屬極板10b之間,封裝膠框40環設在鋰金屬極板10b的第一集電層102與正極極板30的第二集電層302內側表面的周緣,俾使完全密封鋰金屬電池50,且大部分的封裝膠框40在正投影方向上,係不超過鋰金屬極板10b及/或正極極板30的邊緣,也就是說,大部分的封裝膠框40係設置在鋰金屬極板10b的第一集電層102及/或正極極板30的第二集電層302的邊緣內側,而非外露於第一集電層102及/或第二集電層302的邊緣。上述的說明係指大部分的封裝膠框40的態樣,舉例來說,在特定的態樣下,由於第一集電層102與第二集電層302的尺寸並不相同,例如可為第一集電層102稍微大於第二集電層302的態樣,因此仍會有部分的封裝膠框40外露於第一集電層102及/或第二集電層302的邊緣。 Next, in Fig. 6, a schematic cross-sectional view of the lithium metal battery disclosed in the present invention is shown. The lithium metal battery 50 includes a lithium metal plate 10b, a positive electrode plate 30 (including the second collector layer 302 and the positive electrode active material layer 304), an electrical insulating layer 20 and a package plastic frame 40, and a lithium metal plate 10b and a positive electrode. The pole plate 30 is correspondingly disposed, and the electrical insulating layer 20 is interposed between the positive electrode plate 30 and the lithium metal plate 10b, and the package rubber frame 40 is annularly disposed on the first collector layer 102 of the lithium metal plate 10b. The periphery of the inner surface of the second collector layer 302 of the pole plate 30 is such that the lithium metal battery 50 is completely sealed, and most of the package frame 40 does not exceed the lithium metal plate 10b and/or is positive in the forward projection direction. The edge of the pole plate 30, that is, the majority of the package bead frame 40 is disposed inside the edge of the first collector layer 102 of the lithium metal plate 10b and/or the second collector layer 302 of the positive electrode plate 30, Rather than being exposed at the edges of the first collector layer 102 and/or the second collector layer 302. The above description refers to the aspect of most of the encapsulation frame 40. For example, in a specific aspect, since the sizes of the first collector layer 102 and the second collector layer 302 are not the same, for example, The first collector layer 102 is slightly larger than the second collector layer 302, so that some of the package frame 40 is still exposed at the edge of the first collector layer 102 and/or the second collector layer 302.

其中,電性絕緣層20必須具有離子導通的能力,且係可為高分子隔離層、具有塗層的高分子隔離層、陶瓷隔離層或 為固態電解質。當鋰金屬電池50為液態電解質系統、膠態電解質系統或混合式的電解質系統時,所述的電性絕緣層20可為高分子隔離層、具有塗層的高分子隔離層或陶瓷隔離層,當鋰金屬電池50為固態電解質系統時,則電性絕緣層20係直接為固態電解質層。 The electrically insulating layer 20 must have the ability to conduct ions, and may be a polymer isolation layer, a coated polymer isolation layer, a ceramic isolation layer, or a solid electrolyte. When the lithium metal battery 50 is a liquid electrolyte system, a colloidal electrolyte system or a hybrid electrolyte system, the electrical insulating layer 20 may be a polymer isolation layer, a coated polymer isolation layer or a ceramic isolation layer. When the lithium metal battery 50 is a solid electrolyte system, the electrically insulating layer 20 is directly a solid electrolyte layer.

上述係為本發明所揭露的主要結構特徵,以下則係說明本發明的反應機制。首先,由於鋰金屬極板中的集電層上依序設置有絕緣結構層與多孔抑制層,且鋰金屬層係設置於絕緣結構層中第一穿孔的底部,也就是外露於第一穿孔的集電層表面上,同時,在第一穿孔中因設置有離子擴散層,故,當鋰離子要進入到鋰金屬極板時,充滿有液態或膠態的電解質的多孔抑制層的第二穿孔,會將鋰離子傳導至離子擴散層的區域,在離子擴散層的區域內有顆粒狀結構或纖維狀結構材料與孔洞分布,其中鋰金屬電池中的鋰金屬可以在離子擴散層的孔洞內進行沈積與剝離,同時沈積過程中鋰金屬更可以依附於離子擴散層的顆粒狀結構或纖維狀結構形成保護鋰金屬表面的固態電解質界面(SEI),由於鋰金屬沈積與剝離的尺寸變化(15~20um)相對於固態電解質界面的厚度(10~50nm)差別太大,若無支撐則每次沈積與剝離都會相當的破壞固態電解質界面,而破壞固態電解質界面則需要損耗可逆容量(鋰離子濃度),因此本發明設計離子擴散層內的顆粒狀結構或纖維狀結構材料成為支撐(SEI)在鋰金屬沈積與剝離的結構材料,或是更甚者,部分顆粒狀或纖維結構材料直接參與此(SEI)的形成,進而支撐(SEI),並使鋰金屬沈積(plating)與剝離(striping)過程減少持續生成(SEI)進而減少可逆容量的損失,同時藉由電解液與離子擴散層的顆粒狀與纖維狀材料結構表面的依附性(表面張力),可將液態或膠態電解質均勻且連續地引導到位於絕緣結構層底部的鋰金屬層,俾使離子交換的效率能夠提升,且因為離子擴散層的表面更可經過表面處理以使其帶有電荷(正或負都可),因此除了可有助於電解質的分布外,離子絕緣層中顆粒狀材料結構或纖維狀結構若其上多帶正電荷則可以協助減少集電層表面因電雙層而產生之鋰離子遷移極化,其若多帶負電荷則會使鋰離子 分布更為均勻,同時也有利於鋰金屬不定向地生長。 The above are the main structural features disclosed in the present invention, and the following is a description of the reaction mechanism of the present invention. First, an insulating structure layer and a porous suppression layer are sequentially disposed on the collector layer in the lithium metal plate, and the lithium metal layer is disposed on the bottom of the first perforation in the insulating structure layer, that is, exposed to the first perforation. On the surface of the collector layer, at the same time, because the ion diffusion layer is disposed in the first perforation, when the lithium ions enter the lithium metal plate, the second perforation of the porous suppression layer filled with the liquid or colloidal electrolyte Lithium ions are conducted to the region of the ion diffusion layer, and there are granular structures or fibrous structural materials and pore distributions in the region of the ion diffusion layer, wherein the lithium metal in the lithium metal battery can be carried in the pores of the ion diffusion layer. Deposition and stripping, while the lithium metal can be attached to the granular structure or fibrous structure of the ion diffusion layer to form a solid electrolyte interface (SEI) for protecting the surface of the lithium metal, due to the dimensional change of lithium metal deposition and stripping (15~ 20um) is too different from the thickness of the solid electrolyte interface (10~50nm). If there is no support, each deposition and peeling will destroy the solid electrolyte interface. The bad solid electrolyte interface requires a lossy reversible capacity (lithium ion concentration), so the granular structure or fibrous structural material in the ion diffusion layer of the present invention is designed to support (SEI) in the deposition and stripping of lithium metal, or In addition, some of the granular or fibrous structural materials directly participate in the formation of this (SEI), which in turn supports (SEI), and reduces the continuous deposition (SEI) of lithium metal deposition and stripping processes to reduce the reversible capacity. Loss, and at the same time, the liquid or colloidal electrolyte can be uniformly and continuously guided to the lithium metal layer at the bottom of the insulating structure layer by the dependence of the electrolyte and the ion diffusion layer on the surface structure of the fibrous material structure (surface tension). , the efficiency of ion exchange can be improved, and because the surface of the ion diffusion layer can be surface treated to have a charge (positive or negative), in addition to contributing to the distribution of the electrolyte, the ion insulating layer The medium-grained material structure or the fibrous structure, if it is positively charged, can help reduce the lithium ion migration polarization generated by the electric double layer on the surface of the collector layer. If it is negatively charged, it will make the lithium ion distribution more uniform, and it will also facilitate the non-directional growth of lithium metal.

另外,由於絕緣結構層與多孔抑制層的孔徑設計,俾使鋰金屬可完全在絕緣結構層的第一穿孔內成長,換言之,當鋰金屬析出時,一般而言係沿著垂直方向生長出類似於樹枝狀結晶的鋰金屬,但因為多孔抑制層的第二穿孔孔徑小於鋰突觸的結晶尺寸,因而析出的鋰金屬無法持續往垂直方向生長,進而改向水平方向進行結晶,且同時因為離子擴散層提供良好的結晶條件,故使得鋰金屬更傾向在第一穿孔中析出並沉積,故不易導致刺穿電性絕緣層的問題。 In addition, due to the pore size design of the insulating structure layer and the porous suppression layer, the lithium metal can be completely grown in the first perforation of the insulating structure layer, in other words, when the lithium metal is precipitated, generally, the growth is similar in the vertical direction. Lithium metal in dendritic crystal, but because the second pore diameter of the porous inhibiting layer is smaller than the crystal size of the lithium synapse, the precipitated lithium metal cannot continue to grow in the vertical direction, and then is redirected to the horizontal direction for crystallization, and at the same time because of the ion The diffusion layer provides good crystallization conditions, so that the lithium metal tends to precipitate and deposit in the first perforation, so that it is less likely to cause the problem of piercing the electrically insulating layer.

綜上所述可知,絕緣結構層與多孔抑制層由於要能夠提供一定的限制鋰金屬生長方向的能力,故其機械障礙力必須達到一定的強度,也因此,更必須選取具有較高楊氏模數的材料。此外,上述絕緣結構層的第一穿孔的分布密度若提高,則可有助於提高整體鋰金屬電池的結構強度,反之,若絕緣結構層的第一穿孔分布密度較低,則可使得鋰金屬電池整體的結構變得較為柔軟。 In summary, it can be seen that the insulating structural layer and the porous inhibiting layer must be capable of providing a certain limit to the growth direction of the lithium metal, so the mechanical barrier force must reach a certain strength, and therefore, it is necessary to select a higher Young's modulus. Number of materials. In addition, if the distribution density of the first perforations of the insulating structural layer is increased, the structural strength of the overall lithium metal battery can be improved, and if the first perforated distribution density of the insulating structural layer is low, the lithium metal can be made. The overall structure of the battery becomes softer.

與習知技術相比,本發明揭露的鋰金屬極板及其應用之鋰金屬電池,係可藉由不導電的多孔結構層,俾以有效地限制鋰金屬析出的方向與區域,進而可避免鋰金屬電池容易發生鋰析出刺穿的情形,有效提高鋰金屬電池的安全性。 Compared with the prior art, the lithium metal plate disclosed in the present invention and the lithium metal battery for the same can be used to effectively limit the direction and region of lithium metal precipitation by using a non-conductive porous structure layer, thereby avoiding Lithium metal batteries are prone to lithium deposition and puncture, which effectively improves the safety of lithium metal batteries.

唯以上所述者,僅為本發明之較佳實施例而已,並非用來限定本發明實施之範圍。故即凡依本發明申請範圍所述之特徵及精神所為之均等變化或修飾,均應包括於本發明之申請專利範圍內。 The above is only the preferred embodiment of the present invention and is not intended to limit the scope of the present invention. Therefore, any changes or modifications of the features and spirits of the present invention should be included in the scope of the present invention.

Claims (27)

一種鋰金屬極板,其係包含:一集電層;一多孔電性絕緣層,係鄰設於該集電層,該多孔電性絕緣層包含:一絕緣結構層,設置於該集電層的一表面,該絕緣結構層具有至少一第一穿孔,俾使該集電層的部分該表面由該第一穿孔露出,該表面的其餘部分則被該絕緣結構層覆蓋;以及一多孔抑制層,鄰設於該絕緣結構層,該多孔抑制層具有複數個第二穿孔,該第二穿孔的孔徑係小於該第一穿孔的孔徑;至少一離子擴散層,其係為多孔性的且設置於該絕緣結構層的該第一穿孔內,且完全位於該多孔抑制層的下方而未突出於該些第二穿孔;以及一鋰金屬層,係設置於該集電層露出於該第一穿孔的部分該表面上。  A lithium metal plate comprising: a collector layer; a porous electrically insulating layer disposed adjacent to the collector layer, the porous electrically insulating layer comprising: an insulating structure layer disposed on the collector a surface of the layer, the insulating structure layer having at least one first through hole, such that a portion of the surface of the collector layer is exposed by the first through hole, the remaining portion of the surface is covered by the insulating structure layer; and a porous a suppression layer adjacent to the insulating structure layer, the porous suppression layer having a plurality of second perforations, the second perforation having a smaller pore size than the first perforation; and at least one ion diffusion layer being porous Provided in the first through hole of the insulating structure layer, and completely under the porous suppression layer without protruding from the second through holes; and a lithium metal layer disposed on the collector layer exposed to the first The perforated portion is on the surface.   如請求項1所述之鋰金屬極板,其中該集電層可為實心結構或多孔結構。  The lithium metal plate according to claim 1, wherein the collector layer may be a solid structure or a porous structure.   如請求項1所述之鋰金屬極板,其中該絕緣結構層及/或該多孔抑制層係為單層結構或多層結構。  The lithium metal plate according to claim 1, wherein the insulating structural layer and/or the porous inhibiting layer is a single layer structure or a multilayer structure.   如請求項3所述之鋰金屬極板,其中該絕緣結構層及/或該多孔抑制層的材質係選自於絕緣高分子材料、絕緣陶瓷材料、絕緣玻璃材料、絕緣玻璃纖維材料及上述材料之組合。  The lithium metal plate according to claim 3, wherein the insulating structural layer and/or the material of the porous inhibiting layer is selected from the group consisting of an insulating polymer material, an insulating ceramic material, an insulating glass material, an insulating glass fiber material, and the like. The combination.   如請求項4所述之鋰金屬極板,其中該絕緣高分子材料的材質係為聚醯亞胺、聚乙烯對苯二甲酸酯、聚胺酯、聚丙烯酸、環氧樹脂或矽膠,且該絕緣玻璃纖維材料係為FR4環氧樹脂玻璃纖維材料。  The lithium metal plate according to claim 4, wherein the insulating polymer material is made of polyimide, polyethylene terephthalate, polyurethane, polyacrylic acid, epoxy resin or silicone, and the insulation The glass fiber material is an FR4 epoxy glass fiber material.   如請求項1所述之鋰金屬極板,其中該絕緣結構層的開孔率係介於40%~99.5%。  The lithium metal plate according to claim 1, wherein the insulating structure layer has an opening ratio of 40% to 99.5%.   如請求項1所述之鋰金屬極板,其中該絕緣結構層具有複數個該些第一穿孔。  The lithium metal plate of claim 1, wherein the insulating structural layer has a plurality of the first perforations.   如請求項7所述之鋰金屬極板,其中該絕緣結構層的該些第一穿孔係具有相同的孔徑或不同的孔徑。  The lithium metal plate of claim 7, wherein the first perforations of the insulating structural layer have the same pore size or different pore sizes.   如請求項8所述之鋰金屬極板,其中該些第一穿孔的孔徑係不小於50微米。  The lithium metal plate according to claim 8, wherein the first perforations have a pore size of not less than 50 μm.   如請求項1所述之鋰金屬極板,其中該多孔抑制層的開孔率係介於25%~80%。  The lithium metal plate according to claim 1, wherein the porosity of the porous suppression layer is between 25% and 80%.   如請求項1所述之鋰金屬極板,其中該多孔抑制層的開些第二穿孔係具有相同的孔徑或不同的孔徑。  The lithium metal plate according to claim 1, wherein the second perforation of the porous suppression layer has the same pore diameter or a different pore diameter.   如請求項11所述之鋰金屬極板,其中該些第二穿孔的孔徑係不大於1微米。  The lithium metal plate of claim 11, wherein the second perforations have a pore size of no more than 1 micron.   如請求項1所述之鋰金屬極板,其中該多孔電性絕緣層的厚度係介於16~65微米。  The lithium metal plate according to claim 1, wherein the porous electrically insulating layer has a thickness of 16 to 65 μm.   如請求項1所述之鋰金屬極板,其中該絕緣結構層的厚度係介於15~40微米。  The lithium metal plate according to claim 1, wherein the insulating structural layer has a thickness of 15 to 40 μm.   如請求項1所述之鋰金屬極板,其中該多孔抑制層的厚度係介於1~25微米。  The lithium metal plate according to claim 1, wherein the porous suppression layer has a thickness of 1 to 25 μm.   如請求項1所述之鋰金屬極板,其中該鋰金屬層的厚度係介於0.3~5微米之間。  The lithium metal plate according to claim 1, wherein the lithium metal layer has a thickness of between 0.3 and 5 micrometers.   如請求項1所述之鋰金屬極板,其中該集電層與該絕緣結構層更藉由一第一黏著層以黏著。  The lithium metal plate according to claim 1, wherein the collector layer and the insulating structure layer are adhered by a first adhesive layer.   如請求項17所述之鋰金屬極板,其中該第一黏著層的材質係選自於熱固型高分子材料、熱塑型高分子材料及上述材料之組合,且該熱固型高分子材料係選自於矽膠、環氧樹脂、壓克力樹脂及上述材料之組合,且該熱塑型高分子材料係選自於聚乙烯、聚丙烯、熱塑性聚醯亞胺、熱塑型聚氨酯或上述材料之組合。  The lithium metal plate according to claim 17, wherein the material of the first adhesive layer is selected from the group consisting of a thermosetting polymer material, a thermoplastic polymer material, and a combination of the above materials, and the thermosetting polymer The material is selected from the group consisting of silicone rubber, epoxy resin, acrylic resin and a combination of the above materials, and the thermoplastic polymer material is selected from the group consisting of polyethylene, polypropylene, thermoplastic polyimide, thermoplastic polyurethane or A combination of the above materials.   如請求項17所述之鋰金屬極板,其中該第一黏著層的厚度係介於1~30微米。  The lithium metal plate according to claim 17, wherein the first adhesive layer has a thickness of 1 to 30 μm.   如請求項1所述之鋰金屬極板,其中該絕緣結構層與該多孔抑制層更藉由一第二黏著層以黏著。  The lithium metal plate according to claim 1, wherein the insulating structural layer and the porous inhibiting layer are adhered by a second adhesive layer.   如請求項20所述之鋰金屬極板,其中該第二黏著層的材質係選自於熱固型高分子材料、熱塑型高分子材料及上述材料之組合,且該熱固型高分子材料係選自於矽膠、環氧樹脂、壓克力樹脂及上述材料之組合,且該熱塑型高分子材料係選自於聚乙烯、聚丙烯、熱塑性聚醯亞胺、熱塑型聚氨酯或上述材料之組合。  The lithium metal plate according to claim 20, wherein the material of the second adhesive layer is selected from the group consisting of a thermosetting polymer material, a thermoplastic polymer material, and a combination of the above materials, and the thermosetting polymer The material is selected from the group consisting of silicone rubber, epoxy resin, acrylic resin and a combination of the above materials, and the thermoplastic polymer material is selected from the group consisting of polyethylene, polypropylene, thermoplastic polyimide, thermoplastic polyurethane or A combination of the above materials.   如請求項20所述之鋰金屬極板,其中該第二黏著層的厚度係介於1~30微米。  The lithium metal plate of claim 20, wherein the thickness of the second adhesive layer is between 1 and 30 microns.   如請求項1所述之鋰金屬極板,其中該離子擴散層的材質係選自於高分子材料、陶瓷材料、玻璃材料、纖維材料或上述材料之組合。  The lithium metal plate according to claim 1, wherein the material of the ion diffusion layer is selected from the group consisting of a polymer material, a ceramic material, a glass material, a fiber material, or a combination thereof.   如請求項1所述之鋰金屬極板,其中該離子擴散層更經過表面處理使其帶電,且該離子擴散層的表面更帶有正電荷或負電荷。  The lithium metal plate according to claim 1, wherein the ion diffusion layer is surface-treated to be charged, and the surface of the ion diffusion layer is more positively or negatively charged.   一種鋰金屬電池,其係包含:一鋰金屬極板,其係包含:一第一集電層;一多孔電性絕緣層,係鄰設於該第一集電層,且該多孔電性絕緣層係包含:一絕緣結構層,設置於該第一集電層的一表面,該第一多孔層結構具有至少一第一穿孔,俾使該第一集電層的部分該表面由該第一穿孔露出,該表面的其餘部分則被該絕緣結構層覆蓋;以及一多孔抑制層,鄰設於該絕緣結構層,該多孔抑制層具有複數個第二穿孔,該第二穿孔的孔徑係小於該第一穿孔的孔徑;至少一離子擴散層,其係為多孔性的且設置於該絕緣結構層的該第一穿孔內,且完全位於該多孔抑制層的下方而未突出於該些第二穿孔;以及一鋰金屬層,係設置於該第一集電層露出於該第一穿孔的部分該表面上; 一正極極板,其係包含一第二集電層及一正極活性材料層,該正極極板與該鋰金屬極板對應設置;一電性絕緣層,其係夾設於該正極極板與該鋰金屬極板之間,該電性絕緣層係具有至少一種電解質;以及一封裝膠框,其係環設於該鋰金屬極板的該第一集電層與該正極極板的該第二集電層內側表面周緣以構成密封。  A lithium metal battery comprising: a lithium metal plate comprising: a first collector layer; a porous electrically insulating layer disposed adjacent to the first collector layer, and the porous electrical property The insulating layer includes: an insulating structural layer disposed on a surface of the first collector layer, the first porous layer structure having at least one first through hole, wherein a portion of the surface of the first collector layer is The first perforation is exposed, the remaining portion of the surface is covered by the insulating structural layer; and a porous suppression layer is disposed adjacent to the insulating structural layer, the porous suppression layer has a plurality of second perforations, and the second perforated aperture a pore smaller than the first perforation; at least one ion diffusion layer which is porous and disposed in the first perforation of the insulating structural layer and completely under the porous inhibition layer without protruding from the a second through hole; and a lithium metal layer disposed on the surface of the portion of the first collector layer exposed on the first through hole; a positive electrode plate comprising a second collector layer and a positive active material Layer, the positive electrode plate and the lithium metal plate Corresponding arrangement; an electrical insulating layer is sandwiched between the positive electrode plate and the lithium metal plate, the electrical insulating layer has at least one electrolyte; and a package plastic frame, the ring is disposed on the The first collector layer of the lithium metal plate and the periphery of the inner surface of the second collector layer of the positive electrode plate constitute a seal.   如請求項25所述之鋰金屬電池,其中該電性絕緣層係為離子導通的,且該電性絕緣層係為高分子隔離層、具有塗層的高分子隔離層、陶瓷隔離層或固態電解質。  The lithium metal battery according to claim 25, wherein the electrically insulating layer is ion-conducting, and the electrically insulating layer is a polymer isolation layer, a coated polymer isolation layer, a ceramic isolation layer or a solid state Electrolyte.   如請求項25所述之鋰金屬電池,其中大部分的該封裝膠框在正投影方向上係不超過於該鋰金屬極板及/或該正極極板的邊緣。  The lithium metal battery according to claim 25, wherein a majority of the package plastic frame does not exceed an edge of the lithium metal plate and/or the positive electrode plate in a right projection direction.  
TW106134904A 2017-10-12 2017-10-12 Lithium metal electrode and its related lithium metal battery TWI633696B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106134904A TWI633696B (en) 2017-10-12 2017-10-12 Lithium metal electrode and its related lithium metal battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106134904A TWI633696B (en) 2017-10-12 2017-10-12 Lithium metal electrode and its related lithium metal battery

Publications (2)

Publication Number Publication Date
TWI633696B TWI633696B (en) 2018-08-21
TW201916434A true TW201916434A (en) 2019-04-16

Family

ID=63960057

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106134904A TWI633696B (en) 2017-10-12 2017-10-12 Lithium metal electrode and its related lithium metal battery

Country Status (1)

Country Link
TW (1) TWI633696B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112448023B (en) * 2019-08-28 2022-02-18 宁德时代新能源科技股份有限公司 Solid electrolyte membrane and solid lithium metal battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120122674A (en) * 2011-04-29 2012-11-07 삼성전자주식회사 Negative electrode for lithium secondary battery, method of preparing the same, and lithium secondary battery employing the same

Also Published As

Publication number Publication date
TWI633696B (en) 2018-08-21

Similar Documents

Publication Publication Date Title
CN107946543B (en) Lithium metal polar plate and lithium metal battery using same
CN107946541B (en) Lithium metal polar plate and lithium metal battery using same
US11621459B2 (en) Batteries utilizing anode coatings directly on nanoporous separators
TW201605110A (en) Anode electrode
US20240136596A1 (en) Lithium battery structure and electrode layer thereof
KR20160050403A (en) Current collector for secondary battery, electrode for secondary battery and secondary battery using the same
TWI633696B (en) Lithium metal electrode and its related lithium metal battery
TWI631751B (en) Lithium metal electrode and its related lithium metal battery
TWI725654B (en) Lithium battery structure and electrode layer thereof
US9570728B2 (en) Electricity supply element and ceramic separator thereof
KR20210026302A (en) Cathode for secondary battery, Method for making the same, and secondary battery using the same
US11862801B1 (en) Metallized current collector for stacked battery
CN209544536U (en) A kind of stack type lithium ion battery