TW201916383A - Miniature gas sensor structure - Google Patents

Miniature gas sensor structure Download PDF

Info

Publication number
TW201916383A
TW201916383A TW106131587A TW106131587A TW201916383A TW 201916383 A TW201916383 A TW 201916383A TW 106131587 A TW106131587 A TW 106131587A TW 106131587 A TW106131587 A TW 106131587A TW 201916383 A TW201916383 A TW 201916383A
Authority
TW
Taiwan
Prior art keywords
layer
gas sensor
micro gas
sensing
metal oxide
Prior art date
Application number
TW106131587A
Other languages
Chinese (zh)
Other versions
TWI706571B (en
Inventor
薛丁仁
蕭育仁
林育德
李彥希
陳永祥
謝嘉民
Original Assignee
財團法人國家實驗研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人國家實驗研究院 filed Critical 財團法人國家實驗研究院
Priority to TW106131587A priority Critical patent/TWI706571B/en
Publication of TW201916383A publication Critical patent/TW201916383A/en
Application granted granted Critical
Publication of TWI706571B publication Critical patent/TWI706571B/en

Links

Abstract

The present invention provides a gas sensor comprising a gas sensing chip. A back of a sensing layer is a hollow structure. An insulating layer is set below the sensing layer. A micro heater is disposed surrounding the sensing layer. The sensing layer is adhered to two sensing electrode layers. The sensing layer is a complex structure including two metal oxide semiconductors, and further has a roughness surface. An interfacial layer is set between the two metal oxide layers for improving the gas sensing efficiency. The gas sensor according to the present invention provides the goal that a suspended gas sensing structure can be fabricated on a silicon substrate and the size of the gas sensing chip can be minimized.

Description

氣體感測器之結構Gas sensor structure

本發明係關於一種氣體感測器及其製造方法,特別是指一種微型之氣體感測器及其製造方法。The present invention relates to a gas sensor and a method of manufacturing the same, and more particularly to a miniature gas sensor and a method of manufacturing the same.

隨著社會商業化及工業化的演進,越來越多的室內空間被闢建以及越來越多的載具被使用,提供了人們休憩、工作及通勤之所需,然而,當人們處於該些密閉之室內空間時,該些空間往往會因為空氣的不流通而導致有害氣體的濃度累積,輕則影響該空間內人們的生活品質,重則可能直接對人體造成危害,一般而言,室內二氧化碳濃度在1,000ppm以下時一般係認定為正常且通風良好之濃度值,當室內二氧化碳濃度提升到1,000ppm~2,000ppm時則可能導致氧氣不足、令人困倦、足以引起煩躁之情況,當室內二氧化碳濃度進一步提升到2,000ppm~5,000ppm時,則會開始造成人體的不適,包含頭痛、嗜睡,並伴有精力不集中、注意力下降、心跳加速和輕微噁心的現象,而在室內二氧化碳濃度大於5,000 ppm時,暴露在其中可能會嚴重缺氧,導致永久性腦損傷、昏迷甚至死亡。而在日常生活實際測量中,人們日常活動的空間會因室內空調的換氣效果不足或空間中人數過多等因素,使二氧化碳濃度的實測值能達到2,000ppm~3,000ppm左右,已是會讓人開始嗜睡並造成些許之微微不適的情況,此時若無進一步的對室內二氧化碳濃度進行管控,則可能會導致室內二氧化碳濃度之繼續攀升,使空間內的人們暴露於危險之中,With the evolution of social commercialization and industrialization, more and more indoor spaces have been built and more and more vehicles have been used, providing people with the need for rest, work and commuting. However, when people are in the airtight In the indoor space, these spaces tend to accumulate the concentration of harmful gases due to the non-circulation of air, which may affect the quality of life of people in the space, and may directly cause harm to the human body. Generally, the indoor carbon dioxide concentration is Below 1,000 ppm, it is generally considered to be a normal and well ventilated concentration. When the indoor carbon dioxide concentration is raised to 1,000 ppm to 2,000 ppm, it may cause insufficient oxygen, drowsiness, and irritability. When the indoor carbon dioxide concentration is further increased. When it reaches 2,000ppm~5,000ppm, it will start to cause discomfort, including headache, lethargy, accompanied by lack of concentration, loss of attention, rapid heartbeat and mild nausea. When the indoor carbon dioxide concentration is greater than 5,000 ppm, Exposure to it can cause severe hypoxia, leading to permanent brain damage, coma, and even death. In the actual measurement of daily life, the space for people's daily activities may be due to insufficient ventilation effect of indoor air conditioners or too many people in the space, so that the measured value of carbon dioxide concentration can reach 2,000ppm~3,000ppm, which will make people When you start to sleep and cause some slight discomfort, if you do not further control the indoor carbon dioxide concentration, it may cause the indoor carbon dioxide concentration to continue to rise, making people in the space exposed to danger.

另一方面,一氧化碳亦係為人們日常生活中需要多加留意管控其濃度之氣體,由於一氧化碳係為一種無色無味且經由含碳物質的燃燒不完全所生成的化學物質,因此於我們的生活當中所發生之天然氣瓦斯燃燒的不完全或機車排氣燃燒的不完全等等情況,皆仍使我們於生活環境中接觸到一氧化碳,有相當密切的關係。而一氧化碳由於與人體的血紅蛋白的親和力較氧氣與血紅蛋白的親和力高出兩三百倍之多,因此當人體吸入一氧化碳時,一氧化碳將會與人體內的氧氣競爭結合於血紅蛋白上的機會,取代氧氣與血紅蛋白結合,造成人體血液的含氧量降低,使人們在察覺不到異狀的情況下,逐漸喪失意識、昏迷進而因心臟及腦受損導致死亡,有鑑於一氧化碳中毒對性命造成危害,密閉空間對於一氧化碳濃度升高的早期發現是相當重要的一個關鍵。On the other hand, carbon monoxide is also a gas that people need to pay more attention to in their daily life. Since carbon monoxide is a colorless, odorless chemical produced by incomplete combustion of carbonaceous materials, it is in our lives. The incomplete combustion of natural gas gas or the incomplete combustion of locomotive exhaust gas still make us have a close relationship with carbon monoxide in our living environment. Carbon monoxide has two or three times more affinity for hemoglobin than human body, and when carbon monoxide is inhaled, carbon monoxide will compete with oxygen in the human body for hemoglobin, replacing oxygen and The combination of hemoglobin causes the oxygen content of the human blood to decrease, causing people to gradually lose consciousness, coma and death due to heart and brain damage when they are not aware of the abnormalities. In view of the harm caused by carbon monoxide poisoning, confined space Early detection of elevated carbon monoxide concentrations is a key issue.

目前一般坊間所使用的氣體感測器,主要係為紅外線式類型之氣體感測器,其係以紅外線提供能量激發氣體,以產生溫度、位移或頻率等變化,藉由紅外線被氣體吸收的程度,並檢測特徵吸收峰位置的吸收情況,以判斷氣體的種類及濃度。藉由紅外線感測氣體,雖然測量結果準確率高,但其相當容易受到周圍溫度之影響,且體積大、價格高、不易微型化,在使用推廣上造成一定程度的困難。At present, the gas sensors used in general workshops are mainly infrared type gas sensors, which provide energy to excite gases by infrared rays to generate changes in temperature, displacement or frequency, and the extent to which infrared rays are absorbed by the gas. And detecting the absorption of the characteristic absorption peak position to determine the type and concentration of the gas. The infrared sensing gas has a high accuracy rate, but it is quite susceptible to the surrounding temperature, and is bulky, expensive, and not easily miniaturized, which causes a certain degree of difficulty in use promotion.

另外,另有一種氣體感測器係以半導體形式進行氣體之偵測,其係將金屬氧化材料燒結為半導體,利用發熱器保持高溫的狀態下,使半導體金屬氧化物與可燃性氣體接觸,以期望電阻變化與氣體濃度呈現一定關係以達到一氧化碳氣體偵測之效果,經由此一方式進行監測,雖然裝置簡單,但其仍容易受溫度及濕度影響其線路,且易受到半導體的熱電效應影響,干擾偵測器的準確率。In addition, another gas sensor performs gas detection in a semiconductor form, which sinters a metal oxide material into a semiconductor, and contacts the flammable gas with a heater to maintain a high temperature. It is expected that the resistance change has a certain relationship with the gas concentration to achieve the effect of detecting carbon monoxide gas. Monitoring by this method, although the device is simple, it is still susceptible to temperature and humidity, and is susceptible to the thermoelectric effect of the semiconductor. Interference detector accuracy.

基於上述內容,可以了解到氣體濃度探測對於室內空間的安全性有極大的關聯,但目前坊間的氣體感測器都有其使用上的限制,因此,如何提供一種微型且準確的氣體感測器,即成為此領域亟欲突破之技術門檻。Based on the above, it can be understood that gas concentration detection has a great correlation with the safety of indoor space. However, the current gas sensors have limitations in their use, so how to provide a miniature and accurate gas sensor That is the technical threshold for breaking through in this field.

本發明之主要目的,係提供一種微型氣體感測器,該微型氣體感測器體積小,偵測反應靈敏,可廣泛利用於各種密閉空間、攜帶裝置或載具等,利用性高。The main object of the present invention is to provide a micro gas sensor which is small in size, sensitive in detection, and widely applicable to various confined spaces, carrying devices or vehicles, and has high usability.

本發明之另一目的,係提供一種微型氣體感測器,該微型氣體感測器使用之感測材料靈敏度高,可有效降低感測層進行感測時所需要之溫度,避免熱能對於在感測過程中帶來之不良影響。Another object of the present invention is to provide a micro gas sensor, which uses a sensing material with high sensitivity, can effectively reduce the temperature required for sensing layer sensing, and avoid heat energy. The adverse effects brought about by the measurement process.

本發明之再一目的,係提供一種微型氣體感測器的製造方法,利用此一方法,可將感測材料披覆於基材上,並使該感測材料具良好附著性與厚度控制。It is still another object of the present invention to provide a method of fabricating a micro gas sensor by which a sensing material can be applied to a substrate and the sensing material has good adhesion and thickness control.

為了達到上述之目的,本發明揭示了一種微型氣體感測器,其包含一基板,該基板上設置有一介電層,其中該介電層包含一加熱元件及二電極,另外提供一感測層,其係設置於該加熱元件之上並與該二電極相連接,且該感測材料層係為一金屬氧化物層及一反應層所組成,其中該反應層係設置於該金屬氧化物層之上,該反應層之表面為一粗糙面。In order to achieve the above object, the present invention discloses a micro gas sensor comprising a substrate, the substrate is provided with a dielectric layer, wherein the dielectric layer comprises a heating element and two electrodes, and a sensing layer is additionally provided. Provided on the heating element and connected to the two electrodes, and the sensing material layer is composed of a metal oxide layer and a reaction layer, wherein the reaction layer is disposed on the metal oxide layer Above, the surface of the reaction layer is a rough surface.

本發明之一實施例中,其亦揭露該加熱裝置及該二電極可進一步設置於該介電層之上。In an embodiment of the invention, it is also disclosed that the heating device and the two electrodes may be further disposed on the dielectric layer.

本發明之一實施例中,其亦揭露該基板係為不連續結構,使該介電層係架空於該基板之上,產生未與該基板直接接觸之一散熱區域。In an embodiment of the invention, it is also disclosed that the substrate is a discontinuous structure, and the dielectric layer is overhead on the substrate to generate a heat dissipation region that is not in direct contact with the substrate.

本發明之一實施例中,其亦揭露該反應層之材料係為選自於碳酸鑭及奈米金所構成之組合中之一者。In one embodiment of the present invention, it is also disclosed that the material of the reaction layer is one selected from the group consisting of strontium carbonate and nano gold.

本發明之一實施例中,其亦揭露該金屬氧化物層之材料係為選自於氧化鎢、氧化鋅及氧化錫所構成之組合中之一者。In an embodiment of the invention, it is also disclosed that the material of the metal oxide layer is one selected from the group consisting of tungsten oxide, zinc oxide and tin oxide.

本發明之一實施例中,其亦揭露該加熱元件之材料係為選自於鈦、鉑、銀及鉭所構成之組合中之一者。In an embodiment of the invention, it is also disclosed that the material of the heating element is one selected from the group consisting of titanium, platinum, silver and rhodium.

本發明之一實施例中,其亦揭露該介電層之材料係為選自於氮化矽、氧化矽或氮氧化矽所構成之組合中之一者及其任意之組合。In one embodiment of the present invention, it is also disclosed that the material of the dielectric layer is one selected from the group consisting of tantalum nitride, hafnium oxide or hafnium oxynitride, and any combination thereof.

為了達到上述之目的,本發明另外揭示了一種微型氣體感測器,其係為一半導體式之氣體感測器,包含一基板、一介電層一加熱元件、二電極及一感測層,其係設置於該加熱元件之上並與該二電極相連接,且該感測層具有一第一金屬氧化物層及一第二金屬氧化物層,其中該第二金屬氧化物層係設置於該第一金屬氧化物層之上,該第一金屬氧化物層以及該第二金屬氧化物層之材料分別為氧化錫及氧化鎢。In order to achieve the above object, the present invention further discloses a micro gas sensor, which is a semiconductor gas sensor, comprising a substrate, a dielectric layer, a heating element, two electrodes and a sensing layer. The method is disposed on the heating element and connected to the two electrodes, and the sensing layer has a first metal oxide layer and a second metal oxide layer, wherein the second metal oxide layer is disposed on Above the first metal oxide layer, the materials of the first metal oxide layer and the second metal oxide layer are tin oxide and tungsten oxide, respectively.

本發明之一實施例中,其亦揭露該第二金屬氧化物層之表面為一粗糙面。In an embodiment of the invention, it is also disclosed that the surface of the second metal oxide layer is a rough surface.

本發明之一實施例中,其亦揭露該加熱元件及該二電極可進一步設置於該介電層之上,其中該加熱元件之材料係為選自於鈦、金、鉑、銀及鉭所構成之組合中之一者。In an embodiment of the invention, the heating element and the two electrodes may be further disposed on the dielectric layer, wherein the heating element is selected from the group consisting of titanium, gold, platinum, silver, and tantalum. One of the combinations.

本發明之一實施例中,其亦揭露該基板係為不連續結構,使該介電層係架空於該基板之上,產生未與該基板直接接觸之一散熱區域。In an embodiment of the invention, it is also disclosed that the substrate is a discontinuous structure, and the dielectric layer is overhead on the substrate to generate a heat dissipation region that is not in direct contact with the substrate.

本發明之一實施例中,其亦揭露該感測層上更設置一反應層。In an embodiment of the invention, it is also disclosed that a reflective layer is further disposed on the sensing layer.

本發明之一實施例中,其亦揭露該加熱元件及該二電極可進一步設置於該介電層之上。In an embodiment of the invention, it is also disclosed that the heating element and the two electrodes may be further disposed on the dielectric layer.

本發明之一實施例中,其亦揭露該介電層之材料係為選自於氮化矽、氧化矽或氮氧化矽所構成之組合中之一者及其任意之組合。In one embodiment of the present invention, it is also disclosed that the material of the dielectric layer is one selected from the group consisting of tantalum nitride, hafnium oxide or hafnium oxynitride, and any combination thereof.

本發明之一實施例中,其亦揭露該第一氧化物金屬層之表面更包含一奈米金屬層,該奈米金屬層係設置於該第一金屬氧化物層之表面上。In an embodiment of the invention, it is also disclosed that the surface of the first oxide metal layer further comprises a nano metal layer disposed on a surface of the first metal oxide layer.

本發明之一實施例中,其亦揭露該第一氧化物金屬層與該第二金屬氧化物層之間具有一界面層。In an embodiment of the invention, it is also disclosed that the first oxide metal layer and the second metal oxide layer have an interface layer.

本發明之一實施例中,其亦揭露該界面層係經由該第一金屬氧化層與該第二金屬氧化層之氧化鎢與氧化鋅之熱擴散與相變化反應後,而形成具有氧化鎢與氧化鋅之混合材料。In an embodiment of the present invention, the interface layer is further formed by reacting the first metal oxide layer with the thermal diffusion and phase change of the tungsten oxide and the zinc oxide of the second metal oxide layer to form tungsten oxide and A mixed material of zinc oxide.

為了達到上述之目的,本發明另外揭示了一種微型氣體感測器,其係為一半導體式之氣體感測器,其包含一基板,至少一介電層,該介電層係設置於該基板之上並包含一加熱元件及二電極,以及一感測層,其係設置於該加熱元件之上並與該二電極相連接,且該感測層係為至少為一第一金屬氧化物層所組成,且該介電層之應力係介於1MPa至20MPa。In order to achieve the above object, the present invention further discloses a micro gas sensor, which is a semiconductor gas sensor, comprising a substrate, at least one dielectric layer, the dielectric layer being disposed on the substrate And a heating element and a second electrode, and a sensing layer disposed on the heating element and connected to the two electrodes, and the sensing layer is at least a first metal oxide layer The composition is such that the stress of the dielectric layer is between 1 MPa and 20 MPa.

本發明之一實施例中,其亦揭露該感測層之材料為氧化鋅或氧化鎢之材料。In an embodiment of the invention, the material of the sensing layer is also a material of zinc oxide or tungsten oxide.

本發明之一實施例中,其亦揭露該介電層係之材料為選自於氮化矽、氧化矽或氮氧化矽所構成之組合中之一者及其任意之組合。In one embodiment of the present invention, it is also disclosed that the material of the dielectric layer is one selected from the group consisting of tantalum nitride, hafnium oxide or hafnium oxynitride, and any combination thereof.

本發明之一實施例中,其亦揭露該第一金屬氧化物層之表面為粗糙之表面。In an embodiment of the invention, it is also disclosed that the surface of the first metal oxide layer is a rough surface.

本發明之一實施例中,其亦揭露該第一氧化物金屬層之表面更包含一奈米金屬層,該奈米金屬層係設置於該第一金屬氧化物層之表面上。In an embodiment of the invention, it is also disclosed that the surface of the first oxide metal layer further comprises a nano metal layer disposed on a surface of the first metal oxide layer.

本發明之一實施例中,其亦揭露該奈米金屬層之材料為鈦、金、鉑、銀、鈀及鉭所構成之組合中之一者。In an embodiment of the invention, it is also disclosed that the material of the nano metal layer is one of a combination of titanium, gold, platinum, silver, palladium and rhodium.

本發明之一實施例中,其亦揭露該介電層之厚度介於2000埃至25000埃之間。In an embodiment of the invention, it is also disclosed that the dielectric layer has a thickness between 2000 Å and 25,000 Å.

為使 貴審查委員對本發明之特徵及所達成之功效有更進一步之瞭解與認識,謹佐以較佳之實施例及配合詳細之說明,說明如後:In order to provide a better understanding and understanding of the features and the efficacies of the present invention, the preferred embodiment and the detailed description are as follows:

在本發明中,針對目前氣體感測器體積大、價格高、不易微型化且準確率不足的情況,提供一種新穎的微型氣體感測器結構。利用半導體式結構作為該微型氣體感測器之基礎,可有效的縮減氣體感測器所需之體積,增加其應用性,此外,藉由設置反應層,其材料為碳酸鑭或奈米金作為半導體式氣體感測器之感測材料或者設置二金屬氧化層,其材料為氧化鋅或氧化鎢作為半導體式氣體感測器之感測材料,以針對不同氣體做感測,亦能有效提高氣體感測器之感測靈敏度,提高該氣體感測器之準確度。In the present invention, a novel micro gas sensor structure is provided in view of the fact that current gas sensors are bulky, expensive, difficult to miniaturize, and have insufficient accuracy. By using the semiconductor structure as the basis of the micro gas sensor, the volume required for the gas sensor can be effectively reduced, and the applicability thereof can be effectively improved. Further, by providing the reaction layer, the material is cesium carbonate or nano gold. The sensing material of the semiconductor gas sensor or the two metal oxide layer is made of zinc oxide or tungsten oxide as a sensing material of the semiconductor gas sensor to sense different gases, and can effectively improve the gas. The sensing sensitivity of the sensor improves the accuracy of the gas sensor.

因此,本發明提供一新穎之微型氣體感測器結構,係以半導體式氣體感測器結構為基礎,該半導體結構包含有一加熱感測元件,設置一感測材料層於該加熱元件之上時,該感測層之反應層具有碳酸鑭或奈米金可藉由與氣體接觸並發生反應後產生游離電子,由於碳酸鑭或奈米金與氣體接觸的反應相當敏感,因此其產生的電位變化容易被加熱感測元件接量測,且藉由其電阻值的變化推估氣體濃度,達到高靈敏度的檢測目的。Accordingly, the present invention provides a novel micro gas sensor structure based on a semiconductor gas sensor structure including a heating sensing element disposed with a layer of sensing material over the heating element The reaction layer of the sensing layer has cesium carbonate or nano gold which can generate free electrons by contacting with a gas and reacting with a gas. Since the reaction of strontium carbonate or nano gold in contact with a gas is relatively sensitive, the potential change thereof is generated. It is easy to be measured by the heating sensing element, and the gas concentration is estimated by the change of the resistance value, thereby achieving the purpose of high sensitivity detection.

下針對本發明之微型氣體感測器所包含之元件以及性質進行進一步之說明:Further description of the components and properties of the micro gas sensor of the present invention is provided below:

請參閱第一圖,其係為本發明之第一實施例之微型氣體感測器之側視分解圖。如圖所示,本發明提供一基板10以及ㄧ介電層20,該介電層20係設置於該基板10之上,其中,該介電層20包含有一加熱元件30及二電極40,接著,設置一感測層50於該加熱元件30之上,且該感測層50係與該二電極40相連接,該感測層50係為一第一金屬氧化物層510及一反應層520所組成,其中該反應層520係設置於該第一金屬氧化物層510之上,且該反應層520之表面為一粗糙之表面515,其係為了增加檢測氣體之接觸面積,增加反應效率。Please refer to the first figure, which is a side exploded view of the micro gas sensor of the first embodiment of the present invention. As shown in the figure, the present invention provides a substrate 10 and a germanium dielectric layer 20. The dielectric layer 20 is disposed on the substrate 10. The dielectric layer 20 includes a heating element 30 and two electrodes 40. A sensing layer 50 is disposed on the heating element 30, and the sensing layer 50 is connected to the second electrode 40. The sensing layer 50 is a first metal oxide layer 510 and a reactive layer 520. The composition of the reaction layer 520 is disposed on the first metal oxide layer 510, and the surface of the reaction layer 520 is a rough surface 515, which increases the reaction efficiency in order to increase the contact area of the detection gas.

基於上述之感測器結構,本發明所提供之氣體感測器可藉由提供不同的反應層材料,而可對不同的氣體進行感測,以下將一一進行說明。Based on the above-described sensor structure, the gas sensor provided by the present invention can sense different gases by providing different reaction layer materials, which will be described below.

本發明所提供之微型氣體感測器,當該反應層520之材料係為碳酸鑭時,可用以針對二氧化碳氣體進行偵測,其係因為當空氣中的氧離子(O2- )與高濃度的二氧化碳進行反應時會形成碳酸根離子(CO3 2- )(如式一所示),此時,該碳酸根離子將會與該反應層之碳酸鑭接觸並進行反應,生成碳酸鑭、氧氣、二氧化碳及游離電子(如式二所示),此時,所分離的游離電子將使該感測層50之表面導電性增加進而使電阻率下降,同時該電阻值具有隨環境中二氧化碳濃度的增加而下降的現象,藉由此一變化推估環境中二氧化碳之濃度,進而達到本發明氣體感測器之設置目的。另外,當空氣中的二氧化碳濃度下降時,環境中游離的碳酸根離子含量將不足以與該反應層之碳酸鑭進行反應產生電子,此時,於感測過程中游離至該感測層50之游離電子將回到該反應層,而感測器之電阻值將回復至起始之狀態,用以準備進行下一次的氣體濃度感測。 CO2 +O2 → CO3 2 (式一) La2 O2 CO3 +CO3 2 →La2 O2 CO3 +1/2 O2 +CO2 +2 e (式二)The micro gas sensor provided by the present invention can be used for detecting carbon dioxide gas when the material of the reaction layer 520 is barium carbonate, because the oxygen ion (O 2- ) and the high concentration in the air are used. When the carbon dioxide reacts, carbonate ions (CO 3 2- ) are formed (as shown in Formula 1). At this time, the carbonate ions will contact with the cerium carbonate of the reaction layer and react to form cesium carbonate and oxygen. Carbon dioxide and free electrons (as shown in Formula 2). At this time, the separated free electrons will increase the surface conductivity of the sensing layer 50 and thereby decrease the resistivity, and the resistance value has a concentration of carbon dioxide in the environment. The phenomenon of increasing and decreasing, by which the concentration of carbon dioxide in the environment is estimated, thereby achieving the purpose of setting the gas sensor of the present invention. In addition, when the concentration of carbon dioxide in the air decreases, the free carbonate ion content in the environment will not be sufficient to react with the lanthanum carbonate of the reaction layer to generate electrons, and at this time, it is released to the sensing layer 50 during the sensing process. The free electrons will return to the reaction layer and the resistance of the sensor will return to the initial state for preparation for the next gas concentration sensing. CO 2 +O 2 → CO 3 2 (Formula 1) La 2 O 2 CO 3 +CO 3 2 →La 2 O 2 CO 3 +1/2 O 2 +CO 2 +2 e (Formula 2)

另外,當本發明所提供之微型氣體感測器,當該反應層520之材料係為奈米金時,則係可用以針對一氧化碳氣體進行偵測。當通入一氧化碳氣體並隨著溫度上升時,一氧化碳會分解成二氧化碳及游離電子(如式四所示),所分離的游離電子亦會使該感測層50之表面導電性增加進而使電阻率下降,同樣產生電阻值具有隨濃度的增加而下降的現象,進而有效檢測環境中一氧化碳之濃度。 CO + O2 → CO2 + 2 e (式四)In addition, when the micro gas sensor provided by the present invention, when the material of the reaction layer 520 is nano gold, it can be used for detecting carbon monoxide gas. When carbon monoxide gas is introduced and the temperature rises, carbon monoxide decomposes into carbon dioxide and free electrons (as shown in Equation 4), and the separated free electrons also increase the surface conductivity of the sensing layer 50 to make the resistivity. The decrease also causes the resistance value to decrease as the concentration increases, thereby effectively detecting the concentration of carbon monoxide in the environment. CO + O 2 → CO 2 + 2 e (Formula 4)

如前所述之微型氣體感測器,其中,本發明所提供之該基板10係用以承載該半導體式微型氣體感測器,為使晶片於製備過程中維持基板材料之基本物理性質,不因製備過程中之高溫而改變,係選用於高溫操作環境下具有充分穩定性之基板材料進行製備。同時,為避免基板材料影響整體晶片結構之導電性,進而誤導氣體感測結合後之導電表現,因此該基板材料應不具導電性,基於上述之性質,本發明所提供之基板10可進一步選自於玻璃、矽及石英所組成之群組中之一者或為其任意之組合。The micro gas sensor as described above, wherein the substrate 10 provided by the present invention is used to carry the semiconductor micro gas sensor, so that the basic physical properties of the substrate material are maintained during the preparation of the wafer, Due to the high temperature during the preparation process, it is selected for use in substrate materials with sufficient stability in a high temperature operating environment for preparation. At the same time, in order to prevent the substrate material from affecting the conductivity of the overall wafer structure and thereby misleading the gas sensing and the conductive performance after bonding, the substrate material should have no conductivity. Based on the above properties, the substrate 10 provided by the present invention may be further selected from the group consisting of In one of the group consisting of glass, tantalum and quartz or any combination thereof.

如前所述之微型氣體感測器,其中,本發明所揭露之該介電層20係用以作為半導體之多層結構之電氣隔離之用,以提高該微型氣體感測器之感測效率,該介電層20之材料在大部分情況下係為絕緣體,當存在外加電場時,其所包含的電子、離子、或分子會因而產生極化,藉以增加該微型氣體感測器之電容量。基於上述之性質,本發明所提供之介電層20可進一步選自氮化矽、氧化矽或氮氧化矽中之一者及其任意之組合。較佳者,係使用氮化矽及氧化矽,且該氮化矽材料係披覆於該氧化矽材料之上。The micro gas sensor as described above, wherein the dielectric layer 20 disclosed in the present invention is used for electrical isolation of a multilayer structure of a semiconductor to improve the sensing efficiency of the micro gas sensor. The material of the dielectric layer 20 is in most cases an insulator, and when an applied electric field is present, the electrons, ions, or molecules contained therein are thus polarized, thereby increasing the capacitance of the micro gas sensor. Based on the above properties, the dielectric layer 20 provided by the present invention may further be selected from one of tantalum nitride, hafnium oxide or hafnium oxynitride and any combination thereof. Preferably, tantalum nitride and tantalum oxide are used, and the tantalum nitride material is coated on the tantalum oxide material.

承續上段所述,本發明所揭露之該介電層20包含有一加熱元件30及二電極40,該加熱元件30及該二電極40係可埋設於該介電層20之中,亦可直接設置於該介電層20之上,該加熱元件30係與一電源相連接,用以接收該電源之電能並將其轉換成熱能,以提供本發明之氣體感測器檢測氣體之用,而為使其提供之熱能穩定,本發明所提供之該加熱元件30之材料係以貴金屬為首選,基於上述之性質,該加熱元件30之材料係選自於鈦、鉑、金、銀及鉭所構成之組合中之一者。另外,該二電極40係與該加熱元件30以電性隔離之方式進行設置,且該二電極40係與該感測層50相連接,以量測該感測層50經由反應所產生之電流及電位變化量,以進行環境中氣體濃度含量之判斷。The dielectric layer 20 of the present invention includes a heating element 30 and two electrodes 40. The heating element 30 and the two electrodes 40 can be embedded in the dielectric layer 20, or directly Disposed on the dielectric layer 20, the heating element 30 is connected to a power source for receiving the electrical energy of the power source and converting it into thermal energy to provide the gas sensor of the present invention for detecting gas, and In order to stabilize the thermal energy provided by the present invention, the material of the heating element 30 provided by the present invention is preferably a noble metal. Based on the above properties, the material of the heating element 30 is selected from the group consisting of titanium, platinum, gold, silver and strontium. One of the combinations. In addition, the two electrodes 40 are electrically isolated from the heating element 30, and the two electrodes 40 are connected to the sensing layer 50 to measure the current generated by the sensing layer 50 via the reaction. And the amount of potential change to determine the concentration of gas in the environment.

如前所述之微型氣體感測器,其中,本發明所提供之該感測層50係用以接觸監測環境中的目標氣體並進行反應,當目標氣體與該感測層50之材料接觸並進行反應時,會產生游離電子造成該感測層50之電位變化並產生電流,再經由與該感測層50連接之該二電極40進行量測以達到氣體感測之目標。該感測層50包含有一第一金屬氧化物層510及一反應層520,其中該反應層520之材料及其與目標氣體之反應過程皆已於前述內容提供,於此不再贅述;此外,本發明所提供之該第一金屬氧化物層510,係作為導體用以傳遞電子之用,為使其傳遞電子的功能更為迅速及敏銳,本發明所提供之該金屬氧化物層510係使用單一物質進行設置,基於上述之內容,本發明所提供之該第一金屬氧化物層510係選自氧化鎢、、氧化鋅 及氧化錫所構成之組合中之一者及其任意之組合,其中氧化鎢材料可為三氧化鎢(WO3 ),氧化錫材料可為二氧化錫(SnO2 )。The micro gas sensor as described above, wherein the sensing layer 50 provided by the present invention is used to contact a target gas in a monitoring environment and react when the target gas is in contact with the material of the sensing layer 50. When the reaction is performed, free electrons are generated to cause a potential change of the sensing layer 50 and a current is generated, and then the two electrodes 40 connected to the sensing layer 50 are measured to achieve the target of gas sensing. The sensing layer 50 includes a first metal oxide layer 510 and a reactive layer 520. The material of the reactive layer 520 and its reaction with the target gas are provided in the foregoing, and are not described herein again. The first metal oxide layer 510 provided by the present invention is used as a conductor for transmitting electrons, and the function of transferring electrons is more rapid and sensitive. The metal oxide layer 510 provided by the present invention is used. The first metal oxide layer 510 provided by the present invention is selected from one of a combination of tungsten oxide, zinc oxide, and tin oxide, and any combination thereof, wherein the single material is disposed. The tungsten oxide material may be tungsten trioxide (WO 3 ), and the tin oxide material may be tin dioxide (SnO 2 ).

請參閱本發明圖示之第二圖,其係為於本發明所提供之另一較佳實施例,如圖所示,該氣體感測器之該基板10係為不連續之結構,藉由此一設計,該介電層20係架空於該基板10之上,產生未與該基板10直接接觸之一散熱區域201,藉由該散熱區域201之設置,使該介電層20於進行氣體感測之作用時,得以有效調節因該加熱元件30所產生之熱能,使該氣體感測器整體溫度不至於過高,如此一來不僅可以減少熱電效應之產生,增加氣體感測器的量測穩定度及準確度。Referring to the second embodiment of the present invention, which is another preferred embodiment of the present invention, as shown, the substrate 10 of the gas sensor is a discontinuous structure. In this design, the dielectric layer 20 is overhead on the substrate 10, and a heat dissipation region 201 is formed which is not in direct contact with the substrate 10. The dielectric layer 20 is made to conduct gas by the arrangement of the heat dissipation region 201. When the sensing function is performed, the heat energy generated by the heating element 30 can be effectively adjusted, so that the overall temperature of the gas sensor is not too high, so that the thermoelectric effect can be reduced and the amount of the gas sensor can be increased. Measure stability and accuracy.

以下,以具體實施之範例作為此發明之組織技術內容、特徵及成果之闡述之用,並可據以實施,但本發明之保護範圍並不以此為限。In the following, the specific examples of the embodiments are used for the description of the technical contents, features and results of the invention, and may be implemented according to the embodiments, but the scope of protection of the present invention is not limited thereto.

[實施例1]含鑭化合物 微型 氣體感測器 結構 性質測試 [Example 1] Structural property test of bismuth- containing compound micro gas sensor

請參照第三A圖,其係為本發明所提供之含鑭化合物微型氣體感測器進行二氧化碳氣體感測時,其感測時間及電阻變化之示意圖,如圖所示,前120秒時,感測環境中的二氧化碳濃度係為600ppm,在接下來的十分鐘內,依每次增加400ppm二氧化碳的方式提高感測環境中的二氧化碳濃度七次,並觀察含鑭化合物微型氣體感測器之電阻值變化;從圖中可以觀察到,每提高一次感測環境中的二氧化碳濃度,該氣體感測器的電阻值即會快速下降到達一穩定值,並維持於該穩定值直到下一次提高感測環境中的二氧化碳濃度,且起始電阻值與最終電阻值之差異可達六萬歐姆,顯見該氣體感測器其氣體感測能力之穩定及感測範圍之寬廣;最後,當將二氧化碳氣體停止供應,使感測環境中的二氧化碳濃度回復起始狀態時,該氣體感測器之電阻值亦能在很短的時間內回復至初始值,且其電阻值與感測開始前之電阻值差異不大,足見此一氣體感測器之高量測穩定度。Please refer to FIG. 3A, which is a schematic diagram of sensing time and resistance change when the carbon dioxide gas sensing device of the cerium-containing compound provided by the present invention performs carbon dioxide gas sensing, as shown in the figure, in the first 120 seconds, The concentration of carbon dioxide in the sensing environment is 600 ppm. In the next ten minutes, the concentration of carbon dioxide in the sensing environment is increased by seven times in increments of 400 ppm of carbon dioxide, and the resistance of the micro gas sensor containing the cerium compound is observed. The value changes; it can be observed from the figure that for every increase in the concentration of carbon dioxide in the sensing environment, the resistance value of the gas sensor will rapidly drop to a stable value and remain at the stable value until the next improvement in sensing. The concentration of carbon dioxide in the environment, and the difference between the initial resistance value and the final resistance value can reach 60,000 ohms. It is obvious that the gas sensing capability of the gas sensor is stable and the sensing range is wide; finally, when the carbon dioxide gas is stopped Supply, when the concentration of carbon dioxide in the sensing environment returns to the initial state, the resistance value of the gas sensor can also be restored to the initial time in a short time. The initial value, and the difference between the resistance value and the resistance value before the start of sensing is small, which shows the high measurement stability of the gas sensor.

請參照第三B圖,其係為本案所提供之含鑭化合物微型氣體感測器與現有技術下之二氧化碳感測器之量測結果比較圖,方形點之數據係為目前市售之二氧化碳氣體感測器所測得之內容,圓形點的則係本發明所提供之含鑭化合物微型氣體感測器所測得之內容,如圖所示,本發明所提供之氣體感測器,其不僅能在較大的二氧化碳濃度範圍下進行感測,且更能準確的反應出環境中實際的二氧化碳濃度,顯見本發明所提供之含鑭化合物微型氣體感測器確實能突破現有技術的技術門檻,提供更為靈敏且有效的二氧化碳氣體感測器。Please refer to the third B diagram, which is a comparison chart of the measurement results of the bismuth-containing compound micro gas sensor provided in the present case and the prior art carbon dioxide sensor. The data of the square point is the currently commercially available carbon dioxide gas. The content measured by the sensor, the circular point is measured by the cerium-containing compound micro gas sensor provided by the present invention, as shown in the figure, the gas sensor provided by the present invention, Not only can the sensing be carried out in a large range of carbon dioxide concentration, but also the actual carbon dioxide concentration in the environment can be more accurately reflected. It is obvious that the micro-gas sensor containing the antimony compound provided by the invention can break through the technical threshold of the prior art. Provides a more sensitive and effective carbon dioxide gas sensor.

[實施例2]奈米金 微型 氣體感測器 結構 性質測試 [Example 2] Nanogold micro gas sensor structural property test

請參照第三C圖,其係為本發明所提供之奈米金微型氣體感測器於不同退火時間條件下,其於一氧化碳環境中,微型氣體感測器功率與靈敏度變化之趨勢圖,如圖所示,當該含金金屬層未經由退火步驟(即秒數為零)處理時,由於該含金金屬層不會形成奈米金點,故當微型氣體感測器進行操作(即感測器加熱功率上升)時,其感測氣體之能力並不會隨之提升;另外,其他經由不同退火時間所製備而成之氣體感測器,雖然不同條件下所製備之氣體感測器皆具有相類似的電阻率改變趨勢,但經退火步驟處理時間30秒所製備之微型氣體感測器不僅具有最大的靈敏度(~35%),且變化趨勢也較退火步驟處理時間15秒及60秒之組別更為穩定,顯見其奈米金點之分布係最為完整適當,得以吸附較多一氧化碳,並於量測範圍中得到最高且最準確之數值。Please refer to the third C diagram, which is a trend diagram of the power and sensitivity of the micro gas sensor in the carbon monoxide environment under the different annealing time conditions of the nano gold micro gas sensor provided by the invention. As shown in the figure, when the gold-containing metal layer is not processed through the annealing step (ie, the number of seconds is zero), since the gold-containing metal layer does not form a nano gold dot, when the micro gas sensor operates (ie, the sense When the heating power of the detector rises, the ability to sense the gas does not increase; in addition, other gas sensors prepared through different annealing times, although the gas sensors prepared under different conditions are There is a similar trend of resistivity change, but the micro gas sensor prepared by the annealing step processing time of 30 seconds has not only the maximum sensitivity (~35%), but also the change trend is 15 seconds and 60 seconds compared with the annealing step processing time. The group is more stable, and it is obvious that the distribution of its nano gold dots is the most complete and appropriate, so that it can adsorb more carbon monoxide and obtain the highest and most accurate value in the measurement range.

接著,請參閱第四圖,其係為本發明之第二實施例之微型氣體感測器之側視分解圖。如圖所示,本發明提供一基板10以及ㄧ介電層20,該介電層20係設置於該基板10之上,其中,該介電層20包含有一加熱元件30及二電極40,接著,設置一感測層50於該加熱元件30之上,且該感測層50係與該二電極40相連接,該感測層50係為一第一金屬氧化物層510及一第二金屬氧化物層530所組成,且該第一金屬氧化物層510係設置於該第二金屬氧化物層530之上,其中該第一金屬氧化物層510與該第二金屬氧化物層530之間,更具有一界面層535(interface layer),該界面層535係將該第一金屬氧化物層510與該第二金屬氧化物層530進行400-600度退火後,經由熱處理之熱擴散反應以及相變化反應的關係,將該第一金屬氧化層510及該第二金屬氧化層530間之接合面透過熱處理之方式,而形成該界面層535於該第一金屬氧化物層510與該第二金屬氧化物層530之間,其厚度約為20-80奈米(nm)。Next, please refer to the fourth figure, which is a side exploded view of the micro gas sensor of the second embodiment of the present invention. As shown in the figure, the present invention provides a substrate 10 and a germanium dielectric layer 20. The dielectric layer 20 is disposed on the substrate 10. The dielectric layer 20 includes a heating element 30 and two electrodes 40. A sensing layer 50 is disposed on the heating element 30, and the sensing layer 50 is connected to the second electrode 40. The sensing layer 50 is a first metal oxide layer 510 and a second metal. An oxide layer 530 is formed, and the first metal oxide layer 510 is disposed on the second metal oxide layer 530, wherein the first metal oxide layer 510 and the second metal oxide layer 530 are Further, there is an interface layer 535, which is a thermal diffusion reaction after heat treatment of the first metal oxide layer 510 and the second metal oxide layer 530 after annealing at 400-600 degrees. The relationship between the phase change reaction, the bonding surface between the first metal oxide layer 510 and the second metal oxide layer 530 is heat treated to form the interface layer 535 on the first metal oxide layer 510 and the second The metal oxide layer 530 has a thickness of about 20-80 nanometers (nm).

其中,該第一金屬氧化物層510之材料為氧化鎢,該第二金屬氧化物層530之材料為氧化錫,其中該第一金屬氧化物層以及該第二金屬氧化物層之材料係可選自於氧化鎢、氧化鋅及氧化錫所構成之組合中之一者,其中氧化鎢材料可為三氧化鎢(WO3 ),氧化錫材料可為二氧化錫(SnO2 )該第一金屬氧化物層510之表面為一粗糙之表面515,其係為了增加感測器之感測氣體之面積,增加感測效率。該第一金屬氧化物層510及該第二金屬氧化物層530形成該感測層50,該感測層50之厚度0.1-2um,經由上述二層金屬氧化物層之結構,其係用來偵測氨氣之濃度,其中更可再加上一奈米金屬層60催化在該感測層50之表面,增加其反應效率。或者,於該第二金屬氧化物層530更設置該反應層520,增加其對氣體之偵測效率,其中該反應層520之材料係為碳酸鑭時,可用以針對二氧化碳氣體進行偵測,其係因為當空氣中的氧離子(O2- )與高濃度的二氧化碳進行反應時會形成碳酸根離子(CO3 2- ),此時,該碳酸根離子將會與該反應層之碳酸鑭接觸並進行反應,生成碳酸鑭、氧氣、二氧化碳及游離電子,此時,所分離的游離電子將使該感測層50之表面導電性增加進而使電阻率下降,同時該電阻值具有隨環境中二氧化碳濃度的增加而下降的現象,藉由此一變化推估環境中二氧化碳之濃度,進而達到本發明氣體感測器之設置目的,此外,本實施例之該界面層535將該第一金屬氧化層510為氧化鎢以及該第二金屬氧化物層530為氧化錫其經由熱處理之方式,於該第一金屬氧化層510與該第二金屬氧化物層530間產生該界面層535,經由二次離子譜分析(SIMS)對該第一金屬氧化層與該第二金屬氧化層間之縱深元素分析,驗證其存在一層具有二化合物之該界面層535,其中該二化合物為氧化鎢及氧化錫,其厚度約為20-80nm,經由該界面層535其有助於該第一金屬氧化物層510與該第二金屬氧化物層530之間更緊密地結合,並有助於電子的傳導至底層之該電極40,經由該界面層535之傳導,能夠更有效地偵測氨氣的濃度。。The material of the first metal oxide layer 510 is tungsten oxide, and the material of the second metal oxide layer 530 is tin oxide, wherein the material of the first metal oxide layer and the second metal oxide layer can be Or one of a combination of tungsten oxide, zinc oxide and tin oxide, wherein the tungsten oxide material may be tungsten trioxide (WO 3 ), and the tin oxide material may be tin dioxide (SnO 2 ) the first metal The surface of the oxide layer 510 is a rough surface 515 which increases the sensing efficiency in order to increase the area of the sensing gas of the sensor. The first metal oxide layer 510 and the second metal oxide layer 530 form the sensing layer 50. The sensing layer 50 has a thickness of 0.1-2 um, and is used for the structure of the two-layer metal oxide layer. The concentration of the ammonia gas is detected, wherein a nanometer metal layer 60 is further catalyzed on the surface of the sensing layer 50 to increase the reaction efficiency. Alternatively, the reaction layer 520 is further disposed on the second metal oxide layer 530 to increase the detection efficiency of the gas. When the material of the reaction layer 520 is cesium carbonate, it can be used for detecting carbon dioxide gas. Because carbonate ions (CO 3 2- ) are formed when oxygen ions (O 2− ) in the air react with high concentrations of carbon dioxide, at which time the carbonate ions will contact the cerium carbonate of the reaction layer. And reacting to form cesium carbonate, oxygen, carbon dioxide and free electrons. At this time, the separated free electrons will increase the surface conductivity of the sensing layer 50 and thereby decrease the resistivity, and the resistance value has carbon dioxide in the environment. The phenomenon that the concentration is decreased and the concentration of carbon dioxide in the environment is estimated by the change, thereby achieving the purpose of setting the gas sensor of the present invention. In addition, the interface layer 535 of the embodiment has the first metal oxide layer. 510 is tungsten oxide and the second metal oxide layer 530 is tin oxide. The heat is generated by the first metal oxide layer 510 and the second metal oxide layer 530. The interface layer 535 analyzes the depth element between the first metal oxide layer and the second metal oxide layer by secondary ion spectrum analysis (SIMS), and verify that the interface layer 535 has a two compound, wherein the two compounds are Tungsten oxide and tin oxide having a thickness of about 20-80 nm, which facilitates tighter bonding between the first metal oxide layer 510 and the second metal oxide layer 530 via the interfacial layer 535, and helps The electrode 40, which is conducted to the bottom layer by electrons, can be more effectively detected by the conduction of the interface layer 535. .

承上所述,本發明所提供之該基板10係用以承載該半導體式微型氣體感測器,為使晶片於製備過程中維持基板材料之基本物理性質,不因製備過程中之高溫而改變,係選用於高溫操作環境下具有充分穩定性之基板材料進行製備。同時,為避免基板材料影響整體晶片結構之導電性,進而誤導氣體感測結合後之導電表現,因此該基板10材料應不具導電性,基於上述之性質,本發明所提供之該基板10可進一步選自於玻璃、矽及石英所組成之群組中之一者或為其任意之組合。As described above, the substrate 10 provided by the present invention is used to carry the semiconductor micro gas sensor, so that the basic physical properties of the substrate material are maintained during the preparation process of the wafer, and are not changed by the high temperature during the preparation process. It is selected for use in substrate materials with sufficient stability in high temperature operating environments for preparation. At the same time, in order to prevent the substrate material from affecting the conductivity of the overall wafer structure and thereby misleading the gas sensing and the conductive performance after bonding, the substrate 10 material should have no conductivity. Based on the above properties, the substrate 10 provided by the present invention can further It is selected from one of the group consisting of glass, enamel and quartz or any combination thereof.

如前所述之微型氣體感測器,其中,本發明所揭露之該介電層20係用以作為半導體之多層結構之電氣隔離之用,以提高該微型氣體感測器之感測效率,該介電層20之材料在大部分情況下係為絕緣體,當存在外加電場時,其所包含的電子、離子、或分子會因而產生極化,藉以增加該微型氣體感測器之電容量。基於上述之性質,本發明所提供之介電層20可進一步選自氮化矽、氧化矽或氮氧化矽中之一者及其任意之組合。較佳者,係使用氮化矽及氧化矽,且該氮化矽材料係披覆於該氧化矽材料之上。The micro gas sensor as described above, wherein the dielectric layer 20 disclosed in the present invention is used for electrical isolation of a multilayer structure of a semiconductor to improve the sensing efficiency of the micro gas sensor. The material of the dielectric layer 20 is in most cases an insulator, and when an applied electric field is present, the electrons, ions, or molecules contained therein are thus polarized, thereby increasing the capacitance of the micro gas sensor. Based on the above properties, the dielectric layer 20 provided by the present invention may further be selected from one of tantalum nitride, hafnium oxide or hafnium oxynitride and any combination thereof. Preferably, tantalum nitride and tantalum oxide are used, and the tantalum nitride material is coated on the tantalum oxide material.

承上所述,本發明所揭露之該介電層20包含有一加熱元件30及二電極40,該加熱元件30及該二電極40係可埋設於該介電層20之中,亦可直接設置於該介電層20之上,該加熱元件30係與一電源相連接,用以接收該電源之電能並將其轉換成熱能,以提供本發明之氣體感測器檢測氣體之用,而為使其提供之熱能穩定,本發明所提供之該加熱元件30之材料係以貴金屬為首選,基於上述之性質,該加熱元件30之材料係選自於鈦、鉑、金、銀及鉭所構成之組合中之一者。另外,該二電極40係與該加熱元件30以電性隔離之方式進行設置,且該二電極40係與該感測層50相連接,以量測該感測層50經由反應所產生之電流及電位變化量,以進行環境中氣體濃度含量之判斷。As described above, the dielectric layer 20 of the present invention includes a heating element 30 and two electrodes 40. The heating element 30 and the two electrodes 40 can be embedded in the dielectric layer 20, or can be directly disposed. Above the dielectric layer 20, the heating element 30 is connected to a power source for receiving the electrical energy of the power source and converting it into thermal energy to provide the gas sensor of the present invention for detecting gas. The heat element provided by the present invention is stabilized. The material of the heating element 30 provided by the present invention is preferably a noble metal. Based on the above properties, the material of the heating element 30 is selected from the group consisting of titanium, platinum, gold, silver and rhodium. One of the combinations. In addition, the two electrodes 40 are electrically isolated from the heating element 30, and the two electrodes 40 are connected to the sensing layer 50 to measure the current generated by the sensing layer 50 via the reaction. And the amount of potential change to determine the concentration of gas in the environment.

承上所述之微型氣體感測器結構,該感測層50係用以接觸監測環境中的目標氣體並進行反應,當目標氣體與該感測層50之材料接觸並進行反應時,會產生游離電子造成該感測層50之電位變化並產生電流,再經由與該感測層50連接之該二電極40進行量測以達到氣體感測之目標。該感測層50包含有該第一金屬氧化物層510及該第二金屬氧化物層530,其中該第二金屬氧化物層530之材料及其與目標氣體之反應過程皆已於前述內容提供,於此不再贅述;此外,本發明所提供之該第一金屬氧化物層510,係作為導體用以傳遞電子之用,為使其傳遞電子的功能更為迅速及敏銳,本發明所提供之該第一金屬氧化物層510係使用單一物質進行設置,基於上述之內容,本發明所提供之該第一金屬氧化物層510係選自氧化鎢、氧化鋅及氧化錫所構成之組合中之一者及其任意之組合,且氧化鎢材料可為三氧化鎢(WO3 ),氧化錫材料可為二氧化錫(SnO2 )。According to the micro gas sensor structure, the sensing layer 50 is used to contact and monitor the target gas in the environment, and when the target gas contacts the material of the sensing layer 50 and reacts, The free electrons cause the potential of the sensing layer 50 to change and generate a current, and then the two electrodes 40 connected to the sensing layer 50 are measured to achieve the target of gas sensing. The sensing layer 50 includes the first metal oxide layer 510 and the second metal oxide layer 530, wherein the material of the second metal oxide layer 530 and its reaction with the target gas are provided in the foregoing Therefore, the first metal oxide layer 510 provided by the present invention is used as a conductor for transmitting electrons, and the function for transmitting electrons is more rapid and sharp, and the present invention provides The first metal oxide layer 510 is disposed using a single substance. Based on the above, the first metal oxide layer 510 provided by the present invention is selected from the group consisting of tungsten oxide, zinc oxide and tin oxide. One of them and any combination thereof, and the tungsten oxide material may be tungsten trioxide (WO 3 ), and the tin oxide material may be tin dioxide (SnO 2 ).

請參閱本發明圖示之第五圖,其係為於本發明所提供之第二實施例,如圖所示,該氣體感測器之該基板10係為不連續之結構,藉由此一設計,該介電層20係架空於該基板10之上,產生未與該基板10直接接觸之一散熱區域201,藉由該散熱區域201之設置,使該介電層20於進行氣體感測之作用時,得以有效調節因該加熱元件30所產生之熱能,使該氣體感測器整體溫度不至於過高,如此一來不僅可以減少熱電效應之產生,增加氣體感測器的量測穩定度及準確度。Please refer to the fifth embodiment of the present invention, which is a second embodiment provided by the present invention. As shown in the figure, the substrate 10 of the gas sensor is a discontinuous structure. The dielectric layer 20 is overlaid on the substrate 10 to form a heat dissipation region 201 that is not in direct contact with the substrate 10. The dielectric layer 20 is subjected to gas sensing by the arrangement of the heat dissipation region 201. When the action is taken, the heat energy generated by the heating element 30 can be effectively adjusted, so that the overall temperature of the gas sensor is not too high, so that the thermoelectric effect can be reduced and the measurement of the gas sensor can be increased. Degree and accuracy.

以下,以具體實施之範例作為此發明之組織技術內容、特徵及成果之闡述之用,並可據以實施,但本發明之保護範圍並不以此為限。In the following, the specific examples of the embodiments are used for the description of the technical contents, features and results of the invention, and may be implemented according to the embodiments, but the scope of protection of the present invention is not limited thereto.

[實施例3]二金屬氧化層之氣體感測器 結構 性質測試 [Example 3] Gas sensor structural property test of two metal oxide layer

請參照第六圖,其係為本發明所提供之含有該第一金屬氧化物層510以及該第二金屬氧化物層530之微型氣體感測器進行氨氣氣體感測時,其感測時間及電流變化之示意圖,如圖所示,前100秒時,感測環境中的氨氣濃度係為50ppb,在接下來的500秒內,依每次增加100ppb氨氣的方式提高感測環境中的氨氣三次,並觀察該第一金屬氧化物層510以及該第二金屬氧化物層530之微型氣體感測器之電流值變化;從圖中可以觀察到,每提高一次感測環境中的氨氣濃度,該氣體感測器的電流值即會快速上升到達一穩定值,並維持於該穩定值直到下一次提高感測環境中的氨氣濃度,且起始電流值與最終電流值之差異可達0.000001安培,顯見該氣體感測器其氣體感測能力之穩定及感測範圍之寬廣 。Please refer to the sixth figure, which is the sensing time of the micro gas sensor including the first metal oxide layer 510 and the second metal oxide layer 530 provided by the present invention for ammonia gas sensing. And the current change diagram, as shown in the figure, in the first 100 seconds, the ammonia concentration in the sensing environment is 50ppb, and in the next 500 seconds, the sensing environment is increased by adding 100ppb ammonia gas each time. The ammonia gas is three times, and the current value changes of the first metal oxide layer 510 and the micro gas sensor of the second metal oxide layer 530 are observed; as can be observed from the figure, each time the sensing environment is raised The concentration of ammonia gas, the current value of the gas sensor will rise rapidly to a stable value, and maintained at the stable value until the next increase in the ammonia concentration in the sensing environment, and the initial current value and the final current value The difference can reach 0.000001 amps, which shows that the gas sensor has stable gas sensing capability and wide sensing range.

請繼續參閱第七圖,其係為本發明之第三實施例之微型氣體感測器之剖視圖。如圖所示,本發明提供一基板10、至少一介電層20,該介電層20係設置於該基板10之上,其中,該介電層20上包含有一加熱元件30及二電極40,接著,設置一感測層50於該加熱元件30之上,且該感測層50係與該二電極40相連接,該感測層50係至少為一第一金屬氧化物層510所組成,此外,該介電層之厚度介於2000埃至25000埃之間,該介電層之應力係介於1MPa至20MPa之間。Please refer to the seventh figure, which is a cross-sectional view of the micro gas sensor of the third embodiment of the present invention. As shown in the figure, the present invention provides a substrate 10, at least one dielectric layer 20, and the dielectric layer 20 is disposed on the substrate 10. The dielectric layer 20 includes a heating element 30 and two electrodes 40. Next, a sensing layer 50 is disposed on the heating element 30, and the sensing layer 50 is connected to the second electrode 40. The sensing layer 50 is composed of at least a first metal oxide layer 510. In addition, the thickness of the dielectric layer is between 2000 Å and 25,000 Å, and the stress of the dielectric layer is between 1 MPa and 20 MPa.

其中,該感測層50之材料為氧化鎢、氧化錫或氧化鋅,其中該氧化鎢材料可為三氧化鎢(WO3 ),氧化錫材料可為二氧化錫(SnO2 ),且該感測層50之表面為一粗糙之表面515,其係為了增加感測器之感測氣體之面積,且該感測層50之表面更包含一奈米金屬層60,該奈米金屬層60係設置於該感測層50之表面上,且該奈米金屬層60之材料為鈦、金、鉑、鈀、銀及鉭所構成之組合中之一者。經由上述感測層之結構,其可用來偵測氨氣之濃度,並藉由該感測層50之該第一金屬層510之該粗糙之表面515以及該奈米金屬層60之結構,增加其偵測氨氣之感測效率。The material of the sensing layer 50 is tungsten oxide, tin oxide or zinc oxide, wherein the tungsten oxide material may be tungsten trioxide (WO 3 ), and the tin oxide material may be tin dioxide (SnO 2 ), and the feeling The surface of the measuring layer 50 is a rough surface 515 for increasing the area of the sensing gas of the sensor, and the surface of the sensing layer 50 further comprises a nano metal layer 60, the nano metal layer 60 The material of the nano metal layer 60 is one of a combination of titanium, gold, platinum, palladium, silver and rhodium. Through the structure of the sensing layer, it can be used to detect the concentration of ammonia gas, and is increased by the rough surface 515 of the first metal layer 510 of the sensing layer 50 and the structure of the nano metal layer 60. It detects the sensing efficiency of ammonia.

承上所述,該介電層20係用以作為半導體之多層結構之電氣隔離之用,以提高該微型氣體感測器之感測效率,該介電層20之材料在大部分情況下係為絕緣體,當存在外加電場時,其所包含的電子、離子、或分子會因而產生極化,藉以增加該微型氣體感測器之電容量。基於上述之性質,本發明所提供之介電層20可進一步選自氮化矽、氧化矽或氮氧化矽。較佳者,係使用氮化矽及/或氧化矽,且該氮化矽材料係披覆於該氧化矽材料之上,其中該基板10上設置該介電層20能夠使該介電層20上之該感測層50不易破裂,此外,該基板10係為不連續之結構,藉由此一設計,該介電層20係架空於該基板10之上,產生未與該基板10直接接觸之一散熱區域201,且藉由該架空之結構,使其不會產生皺摺或加熱不均的問題,其中,該介電層20為二層以上之結構時,該介電層20所受到壓縮應力以及伸張應力,能夠藉由雙層之該介電層20之結構產生應力平衡,使得雙層之該介電層20之殘留應力會小於單層之該介電層20之殘留應力。As described above, the dielectric layer 20 is used for electrical isolation of a multilayer structure of a semiconductor to improve the sensing efficiency of the micro gas sensor. The material of the dielectric layer 20 is in most cases As an insulator, when an applied electric field is present, the electrons, ions, or molecules contained therein are thus polarized, thereby increasing the capacitance of the micro gas sensor. Based on the above properties, the dielectric layer 20 provided by the present invention may be further selected from the group consisting of tantalum nitride, hafnium oxide or hafnium oxynitride. Preferably, tantalum nitride and/or tantalum oxide are used, and the tantalum nitride material is coated on the tantalum oxide material, wherein the dielectric layer 20 is disposed on the substrate 10 to enable the dielectric layer 20 The sensing layer 50 is not easily broken. In addition, the substrate 10 is a discontinuous structure. By this design, the dielectric layer 20 is overhead on the substrate 10, and the substrate 10 is not directly contacted. One of the heat dissipating regions 201, and the overhead structure is such that there is no problem of wrinkles or uneven heating. When the dielectric layer 20 has a structure of two or more layers, the dielectric layer 20 is subjected to The compressive stress and the tensile stress can be balanced by the structure of the dielectric layer 20 of the double layer, so that the residual stress of the dielectric layer 20 of the double layer is smaller than the residual stress of the dielectric layer 20 of the single layer.

綜上所述,本發明確實提供一具高度穩定度之微型氣體感測器及其製備方法,藉由於半導體結構上設置不同材料之感測層,得以有效地針對感測環境內的不同氣體進行監測,本發明揭示以碳酸鑭以偵測二氧化碳,以奈米金偵測一氧化碳,透過本發明之氣體感測器結構利用半導體製程技術,藉此縮小氣體感測器之體積,解決目前氣體感測器,特別是二氧化碳氣體感測器,其體積大、價格高、不易微型化的情況,可有效的縮減氣體感測器所需之體積,增加其應用性,以提供一種新穎的微型氣體感測器結構。此外,利用氧化鎢(WO3 )、氧化錫及氧化鋅作為半導體式氣體感測器之感測材料,最為感測氨氣,如同實施例所示,確實亦有效提高氣體感測器之感測靈敏度及其準確度。鑑此,本案所提供之發明確實具有相較於現有技術更為卓越精進之功效,符合專利申請所需之要求。In summary, the present invention does provide a highly stable micro gas sensor and a method for fabricating the same, which can effectively perform different gases in a sensing environment by providing sensing layers of different materials on a semiconductor structure. Monitoring, the present invention discloses detecting cesium carbonate with carbon dioxide, detecting carbon monoxide with nano gold, and utilizing semiconductor process technology through the gas sensor structure of the present invention, thereby reducing the volume of the gas sensor and solving the current gas sensing. The device, especially the carbon dioxide gas sensor, is large in size, high in price, and not easy to be miniaturized, which can effectively reduce the volume required by the gas sensor and increase its applicability to provide a novel micro gas sensing. Structure. In addition, tungsten oxide (WO 3 ), tin oxide and zinc oxide are used as the sensing materials of the semiconductor gas sensor, and the ammonia gas is most sensed. As shown in the embodiment, the sensing of the gas sensor is also effectively improved. Sensitivity and its accuracy. In view of this, the invention provided in this case does have a superior and superior effect compared to the prior art, and meets the requirements for patent applications.

惟以上所述者,僅為本發明之較佳實施例而已,並非用來限定本發明實施之範圍,舉凡依本發明申請專利範圍所述之形狀、構造、特徵及精神所為之均等變化與修飾,均應包括於本發明之申請專利範圍內。The above is only the preferred embodiment of the present invention, and is not intended to limit the scope of the present invention, and the variations, modifications, and modifications of the shapes, structures, features, and spirits described in the claims of the present invention. All should be included in the scope of the patent application of the present invention.

10‧‧‧基板10‧‧‧Substrate

20‧‧‧介電層20‧‧‧Dielectric layer

30‧‧‧加熱元件30‧‧‧heating elements

40‧‧‧電極40‧‧‧Electrode

50‧‧‧感測層50‧‧‧Sensor layer

510‧‧‧第一金屬氧化物層510‧‧‧First metal oxide layer

515‧‧‧粗糙之表面515‧‧‧Rough surface

520‧‧‧反應層520‧‧‧Reaction layer

530‧‧‧第二金屬氧化物層530‧‧‧Second metal oxide layer

535‧‧‧界面層535‧‧‧Interface layer

60‧‧‧奈米金屬層60‧‧•nano metal layer

第一圖:其係為本發明之一較佳實施例之側視分解圖; 第二圖:其係為本發明之另一較佳實施例之剖視圖; 第三A圖至第三C圖:其係為本發明之一較佳實施例之氣體偵測功效示意圖。 第四圖:其係為本發明之第二實施例之側視分解圖; 第五圖:其係為本發明之第二實施例之剖視圖; 第六圖:其係為本發明之第二實施例之氣體偵測功效示意圖;以及 第七圖:其係為本發明之第三實施例之剖視圖。1 is a side elevational view of a preferred embodiment of the present invention; FIG. 2 is a cross-sectional view of another preferred embodiment of the present invention; and FIGS. 3A to 3C: It is a schematic diagram of gas detection efficiency according to a preferred embodiment of the present invention. Figure 4 is a side elevational view of a second embodiment of the present invention; Figure 5 is a cross-sectional view of a second embodiment of the present invention; Figure 6 is a second embodiment of the present invention A schematic diagram of gas detection efficiency; and a seventh diagram: it is a cross-sectional view of a third embodiment of the present invention.

Claims (24)

一種微型氣體感測器,其包含一基板,一介電層,該介電層係設置於該基板之上並包含一加熱元件及二電極,以及一感測層,其係設置於該加熱元件之上並與該二電極相連接,其特徵在於: 該感測層係為一第一金屬氧化物層及一反應層所組成,其中該反應層係設置於該第一金屬氧化物層之上,且該反應層之表面為粗糙之表面。A micro gas sensor comprising a substrate, a dielectric layer disposed on the substrate and comprising a heating element and two electrodes, and a sensing layer disposed on the heating element And connected to the two electrodes, wherein: the sensing layer is composed of a first metal oxide layer and a reaction layer, wherein the reaction layer is disposed on the first metal oxide layer And the surface of the reaction layer is a rough surface. 如申請專利範圍第1項所述之微型氣體感測器,其中該加熱元件及該二電極可進一步設置於該介電層之上。The micro gas sensor of claim 1, wherein the heating element and the two electrodes are further disposed on the dielectric layer. 如申請專利範圍第1項所述之微型氣體感測器,其中該基板係為不連續結構,使該介電層係架空於該基板之上,產生未與該基板直接接觸之一散熱區域。The micro gas sensor according to claim 1, wherein the substrate is a discontinuous structure, and the dielectric layer is overhead on the substrate to generate a heat dissipation region that is not in direct contact with the substrate. 如申請專利範圍第1項所述之微型氣體感測器,其中該反應層之材料係為選自於碳酸鑭及奈米金所構成之組合中之一者。The micro gas sensor according to claim 1, wherein the material of the reaction layer is one selected from the group consisting of strontium carbonate and nano gold. 如申請專利範圍第1項所述之微型氣體感測器,其中該第一金屬氧化物層之材料係為選自於氧化鎢、、氧化鋅及氧化錫所構成之組合中之一者,且氧化鎢材料可為三氧化鎢,氧化錫材料可為二氧化錫。The micro gas sensor according to claim 1, wherein the material of the first metal oxide layer is one selected from the group consisting of tungsten oxide, zinc oxide and tin oxide, and The tungsten oxide material may be tungsten trioxide, and the tin oxide material may be tin dioxide. 如申請專利範圍第1項所述之微型氣體感測器,其中該加熱元件之材料係為選自於鈦、金、鉑、銀及鉭所構成之組合中之一者。The micro gas sensor according to claim 1, wherein the material of the heating element is one selected from the group consisting of titanium, gold, platinum, silver and rhodium. 如申請專利範圍第1項所述之微型氣體感測器,其中該介電層之材料係為選自於氮化矽、氧化矽或氮氧化矽所構成之組合中之一者及其任意之組合。The micro gas sensor according to claim 1, wherein the material of the dielectric layer is one selected from the group consisting of tantalum nitride, hafnium oxide or hafnium oxynitride and any one thereof. combination. 一種微型氣體感測器,其包含一基板,一介電層,該介電層係設置於該基板之上並包含一加熱元件及二電極,以及一感測層,其係設置於該加熱元件之上並與該二電極相連接,其特徵在於: 該感測層係為一第一金屬氧化物層及一第二金屬氧化物層所組成,其中該第一金屬氧化物層係設置於該第二金屬氧化物層之上,且該第一金屬氧化物層以及該第二金屬氧化物層之材料分別為氧化鋅、氧化鎢及氧化錫所構成之組合中之一者,且氧化鎢材料可為三氧化鎢,氧化錫材料可為二氧化錫。A micro gas sensor comprising a substrate, a dielectric layer disposed on the substrate and comprising a heating element and two electrodes, and a sensing layer disposed on the heating element And connected to the two electrodes, wherein: the sensing layer is composed of a first metal oxide layer and a second metal oxide layer, wherein the first metal oxide layer is disposed on the Above the second metal oxide layer, and the materials of the first metal oxide layer and the second metal oxide layer are respectively one of a combination of zinc oxide, tungsten oxide and tin oxide, and the tungsten oxide material It may be tungsten trioxide, and the tin oxide material may be tin dioxide. 如申請專利範圍第8項所述之微型氣體感測器,其中該第一金屬氧化物層之表面為粗糙之表面。The micro gas sensor of claim 8, wherein the surface of the first metal oxide layer is a rough surface. 如申請專利範圍第8項所述之微型氣體感測器,其中該感測層上更設置一反應層。The micro gas sensor of claim 8, wherein a further reaction layer is disposed on the sensing layer. 如申請專利範圍第8項所述之微型氣體感測器,其中該加熱元件及該二電極可進一步設置於該介電層之上。The micro gas sensor of claim 8, wherein the heating element and the two electrodes are further disposed on the dielectric layer. 如申請專利範圍第8項所述之微型氣體感測器,其中該基板係為不連續結構,使該介電層係架空於該基板之上,產生未與該基板直接接觸之一散熱區域。The micro gas sensor according to claim 8, wherein the substrate is a discontinuous structure, and the dielectric layer is overhead on the substrate to generate a heat dissipation region that is not in direct contact with the substrate. 如申請專利範圍第8項所述之微型氣體感測器,其中該加熱元件之材料係為選自於鈦、金、鉑、銀及鉭所構成之組合中之一者。The micro gas sensor according to claim 8, wherein the material of the heating element is one selected from the group consisting of titanium, gold, platinum, silver and rhodium. 如申請專利範圍第8項所述之微型氣體感測器,其中該介電層之材料係為選自於氮化矽、氧化矽或氮氧化矽所構成之組合中之一者及其任意之組合。The micro gas sensor according to claim 8, wherein the material of the dielectric layer is one selected from the group consisting of tantalum nitride, tantalum oxide or niobium oxynitride and any one thereof. combination. 如申請專利範圍第8項所述之微型氣體感測器,其中該第一氧化物金屬層之表面更包含一奈米金屬層,該奈米金屬層係設置於該第一金屬氧化物層之表面上。The micro gas sensor of claim 8, wherein the surface of the first oxide metal layer further comprises a nano metal layer, and the nano metal layer is disposed on the first metal oxide layer. On the surface. 如申請專利範圍第8項所述之微型氣體感測器,其中該第一氧化物金屬層與該第二金屬氧化物層之間具有一界面層。The micro gas sensor of claim 8, wherein the first oxide metal layer and the second metal oxide layer have an interfacial layer. 如申請專利範圍第16項所述之微型氣體感測器,其中該界面層係經由該第一金屬氧化層與該第二金屬氧化層之氧化鎢與氧化錫之熱擴散與相變化反應後所形成。The micro gas sensor according to claim 16, wherein the interface layer is thermally reacted with the phase change of the tungsten oxide and the tin oxide of the first metal oxide layer and the second metal oxide layer. form. 一種微型氣體感測器,其包含一基板,至少一介電層,該介電層係設置於該基板之上並包含一加熱元件及二電極,以及一感測層,其係設置於該加熱元件之上並與該二電極相連接,其特徵在於: 該感測層係為至少為一第一金屬氧化物層所組成,且該介電層之應力係介於1MPa至20MPa。A micro gas sensor comprising a substrate, at least one dielectric layer disposed on the substrate and comprising a heating element and two electrodes, and a sensing layer disposed on the heating The sensing layer is composed of at least one first metal oxide layer, and the stress of the dielectric layer is between 1 MPa and 20 MPa. 如申請專利範圍第18項所述之微型氣體感測器,其中該感測層之材料為氧化錫或氧化鎢之材料,且氧化鎢材料可為三氧化鎢,氧化錫材料可為二氧化錫。The micro gas sensor according to claim 18, wherein the material of the sensing layer is a material of tin oxide or tungsten oxide, and the tungsten oxide material may be tungsten trioxide, and the tin oxide material may be tin dioxide. . 如申請專利範圍第18項所述之微型氣體感測器,其中該介電層係之材料為選自於氮化矽、氧化矽或氮氧化矽所構成之組合中之一者及其任意之組合。The micro gas sensor according to claim 18, wherein the material of the dielectric layer is one selected from the group consisting of tantalum nitride, cerium oxide or cerium oxynitride and any of them. combination. 如申請專利範圍第18項所述之微型氣體感測器,其中該第一金屬氧化物層之表面為粗糙之表面。The micro gas sensor of claim 18, wherein the surface of the first metal oxide layer is a rough surface. 如申請專利範圍第18項所述之微型氣體感測器,其中該第一氧化物金屬層之表面更包含一奈米金屬層,該奈米金屬層係設置於該第一金屬氧化物層之表面上。The micro gas sensor according to claim 18, wherein the surface of the first oxide metal layer further comprises a nano metal layer, and the nano metal layer is disposed on the first metal oxide layer. On the surface. 如申請專利範圍第22項所述之微型氣體感測器,其中該奈米金屬層之材料為鈦、金、鉑、銀、鈀及鉭所構成之組合中之一者。The micro gas sensor according to claim 22, wherein the material of the nano metal layer is one of a combination of titanium, gold, platinum, silver, palladium and rhodium. 如申請專利範圍第18項所述之微型氣體感測器,其中該介電層之厚度介於2000埃至25000埃之間。The micro gas sensor of claim 18, wherein the dielectric layer has a thickness of between 2,000 angstroms and 25,000 angstroms.
TW106131587A 2017-09-14 2017-09-14 Miniature gas sensor structure TWI706571B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106131587A TWI706571B (en) 2017-09-14 2017-09-14 Miniature gas sensor structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106131587A TWI706571B (en) 2017-09-14 2017-09-14 Miniature gas sensor structure

Publications (2)

Publication Number Publication Date
TW201916383A true TW201916383A (en) 2019-04-16
TWI706571B TWI706571B (en) 2020-10-01

Family

ID=66991816

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106131587A TWI706571B (en) 2017-09-14 2017-09-14 Miniature gas sensor structure

Country Status (1)

Country Link
TW (1) TWI706571B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110887873A (en) * 2018-09-11 2020-03-17 萧育仁 Structure of gas sensor
CN114324492A (en) * 2020-09-30 2022-04-12 新唐科技股份有限公司 Gas sensing structure
TWI816058B (en) * 2019-11-04 2023-09-21 美商哈尼威爾分析公司 Sensor assembly and disk assembly

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100332742B1 (en) * 1994-10-26 2002-11-23 엘지전자주식회사 Method for manufacturing gas sensor
US20020142478A1 (en) * 2001-03-28 2002-10-03 Hiroyuki Wado Gas sensor and method of fabricating a gas sensor
JP4136811B2 (en) * 2003-06-30 2008-08-20 富士電機ホールディングス株式会社 Thin film gas sensor and manufacturing method thereof
TW587165B (en) * 2003-08-27 2004-05-11 Ind Tech Res Inst Gas sensor and the manufacturing method thereof
KR20050040714A (en) * 2003-10-28 2005-05-03 티디케이가부시기가이샤 A porous functional membrane, a sensor, a method for manufacturing a porous functional membrane, a method for manufacturing a porous metal membrane and a method for manufacturing a sensor
TWI433270B (en) * 2010-03-24 2014-04-01 Univ Feng Chia Gas sensor manufacturing method and its structure (a)
TWI434037B (en) * 2010-12-03 2014-04-11 Ind Tech Res Inst Gas sensor and fabricating method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110887873A (en) * 2018-09-11 2020-03-17 萧育仁 Structure of gas sensor
CN110887873B (en) * 2018-09-11 2022-08-09 萧育仁 Structure of gas sensor
TWI816058B (en) * 2019-11-04 2023-09-21 美商哈尼威爾分析公司 Sensor assembly and disk assembly
CN114324492A (en) * 2020-09-30 2022-04-12 新唐科技股份有限公司 Gas sensing structure
TWI769542B (en) * 2020-09-30 2022-07-01 新唐科技股份有限公司 Gas detecting structure
CN114324492B (en) * 2020-09-30 2023-12-15 新唐科技股份有限公司 Gas sensing structure

Also Published As

Publication number Publication date
TWI706571B (en) 2020-10-01

Similar Documents

Publication Publication Date Title
TWI603080B (en) Micro gas sensor and its manufacturing method
US8501101B2 (en) Gas sensor
Yuan et al. Ag2Te nanowires for humidity-resistant trace-level NO2 detection at room temperature
EP2845009B1 (en) A sensor composition for acetone detection in breath
TW201916383A (en) Miniature gas sensor structure
EP1693667B1 (en) Gas sensor
US9395324B2 (en) Thin film micromachined gas sensor
US20110138882A1 (en) Semiconductor gas sensor having low power consumption
US20190178860A1 (en) Miniature gas sensor
Aroutiounian et al. Nanostructured sensors for detection of hydrogen peroxide vapours
JP4743375B2 (en) Flammable gas concentration measurement method
KR20110066849A (en) Semiconductor gas sensor with low power consumption
JP2006513403A5 (en)
CN110887873B (en) Structure of gas sensor
KR102378133B1 (en) A semiconductor gas sensor
TWI386644B (en) Ion sensing field effect transistor and ion sensing electrode having the ion sensing field effect transistor
Cho et al. Highly sensitive breath sensor based on sonochemically synthesized cobalt-doped zinc oxide spherical beads
CN109580724A (en) Mini type gas sensor and its manufacturing method
TWI580971B (en) Chip structure for detecting carbon monoxide concentration and method of manufacturing the same
TW202122791A (en) Gas sensor having excellent detection sensitivity for gases such as acetone
JP2002031619A (en) Nitrous oxide gas sensor
EP4102217A1 (en) Hydrogen gas sensor assembly
Lin et al. Selective Deposition of PdO Nanoparticles on Si Nanodevices for Hydrogen Sensing
RU91763U1 (en) DIFFERENTIAL GAS SENSOR
Kakoty et al. Effect of annealing and operating substrate temperature on methanol gas sensing properties of sno2 thin films