TW201903159A - Primer for identification of crude drugs and identification method of crude drug using same - Google Patents

Primer for identification of crude drugs and identification method of crude drug using same Download PDF

Info

Publication number
TW201903159A
TW201903159A TW107118687A TW107118687A TW201903159A TW 201903159 A TW201903159 A TW 201903159A TW 107118687 A TW107118687 A TW 107118687A TW 107118687 A TW107118687 A TW 107118687A TW 201903159 A TW201903159 A TW 201903159A
Authority
TW
Taiwan
Prior art keywords
sequence
base
plant
nucleic acid
sequence numbers
Prior art date
Application number
TW107118687A
Other languages
Chinese (zh)
Inventor
司馬真央
山路弘樹
曽根美佳子
鶴岡聡子
Original Assignee
日商津村股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商津村股份有限公司 filed Critical 日商津村股份有限公司
Publication of TW201903159A publication Critical patent/TW201903159A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Immunology (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Botany (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The present invention develops and provides a mechanism: for accurately identifying whether a plant to be tested which is a processed as a crude drug candidate is a primordial plant, and identifying the crude drug as a candidate for a target crude drug; and an identification method using the same. The present invention is to design the following primer for each of crude drugs, the primer can stably acquire base sequence information from the tested plant to be processed, and can augment a specific region in the genomic DNA or chloroplast DNA of the primordial plant having specific base sequences. The present invention provides primers and a method for identifying a crude drug using the same.

Description

生藥鑑別用引子組及使用其之生藥鑑別方法Primer set for identification of crude drugs and method for identifying crude drugs using the same

本發明係關於一種可確認各種生藥試樣為日本藥典或日本藥典外生藥規格所規定之基原植物的核酸擴增反應引子組、及使用該引子組之生藥鑑別方法。The present invention relates to a nucleic acid amplification reaction primer set capable of confirming that various crude drug samples are based on a Japanese pharmacopoeia or a pharmacopoeia exogenous drug specification, and a method for identifying a crude drug using the same.

生藥係於日本藥典第十七修訂版或日本藥典外生藥規格2015中規定基原植物。基原植物係成為某一生藥之原料之植物(原植物),每一種生藥以種為單位進行規定。例如生藥「牡丹根」之基原植物為芍藥(Paeonia lactiflora),除此以外之植物種即便為同屬近緣種,原則上亦不被認定為「牡丹根」。但是,一般而言,生藥係以對基原植物實施加熱、乾燥等各種加工處理後之狀態流通。因此,許多情況下,外觀上無法區分以外觀與基原植物類似之植物種(類似種)作為原料之假生藥、及以基原植物作為原料之生藥。大部分假生藥多數情況下無法期待生藥原本之藥效,又,價格亦廉價。因此,準確地確認流通之生藥是否以原本之基原植物作為原料係較為重要之作業。通常,藉由提取生藥候補之植物中所包含之核酸,確定種特異性區域之鹼基序列,可鑑定作為檢查對象之受檢植物是否為對象生藥之基原植物(非專利文獻1)。但是,如上所述,生藥大部分被加工處理,又,因長期之保存而遭受經時變化,因而多數情況下試樣中之DNA發生損傷及/或片段化,或者混入源自黴菌或蘑菇等菌類之DNA。因此,自生藥採集之核酸之鹼基序列之確定本身較為困難,迄今為止無法進行原植物之準確之鑑定。Biopharmaceuticals are based on the seventeenth revised edition of the Japanese Pharmacopoeia or the Japanese Pharmacopoeia External Drug Specification 2015. Primitive plants are plants (original plants) that become the raw material of a certain crude drug, and each crude drug is regulated by species. For example, Paeonia lactiflora is the base plant of the crude drug "Peony Root". In addition, other plant species are not related to "Peony Root" in principle even if they are related species. However, in general, crude drugs are circulated after being subjected to various processing treatments such as heating and drying of the original plants. Therefore, in many cases, it is impossible to distinguish between a pseudo-physiological substance using a plant species (analogous species) having a similar appearance to the primordial plant as a raw material and a crude drug using the primordial plant as a raw material. Most fake biopharmaceuticals cannot, in most cases, expect the original efficacy of the crude drugs, and they are also cheap. Therefore, it is more important to accurately determine whether the circulating crude drugs use the original plant as the raw material. In general, by extracting nucleic acids contained in a candidate plant for a crude drug, and determining the base sequence of a species-specific region, it is possible to identify whether the test plant to be tested is a basic plant of the target crude drug (Non-Patent Document 1). However, as mentioned above, most of the crude drugs are processed and subjected to changes over time due to long-term storage. Therefore, in most cases, DNA in the sample is damaged and / or fragmented, or mixed with mold or mushroom origin. Fungus DNA. Therefore, the determination of the nucleotide sequence of the nucleic acid collected from the crude drug is difficult in itself, and it has not been possible to accurately identify the original plant.

因此,業界期望一種藉由自經過加熱等加工處理之生藥候補之受檢植物穩定且準確地獲取鹼基序列資訊,準確地鑑定該受檢植物是否為基原植物,且確認為未混入或置換有異種植物之正確之生藥的技術。 [先前技術文獻] [非專利文獻]Therefore, the industry expects a stable and accurate acquisition of base sequence information from a test plant that is a candidate for a crude drug that has undergone processing such as heating, accurately identifying whether the test plant is a primordial plant, and confirming that it is not mixed or replaced There is a proper crude drug technology for different plants. [Prior Art Literature] [Non-Patent Literature]

[非專利文獻1]丸山卓郎等人,2013年,特產種苗,16:70-76[Non-Patent Document 1] Maruyama Sauro and others, 2013, Specialty Seedlings, 16: 70-76

[發明所欲解決之問題][Problems to be solved by the invention]

本發明之課題在於開發並提供一種可準確地確認經加工處理之生藥候補之受檢植物是否為目標生藥之基原植物,且鑑別該生藥候補為目標生藥之機構;及使用其之鑑別方法。 [解決問題之技術手段]The object of the present invention is to develop and provide a mechanism capable of accurately confirming whether or not a tested plant of a processed crude drug candidate is a target plant of a target crude drug, and identifying the candidate drug as a target crude drug; and an identification method using the same. [Technical means to solve the problem]

本發明者等人網羅性地調查各種生藥之基原植物中之基因組DNA或葉綠體DNA,結果發現對各生藥之基原植物具特異性之鹼基序列存在於特定區域,又,該區域亦可自經加工處理之受檢植物穩定地獲取鹼基序列資訊。基於該等見解,成功開發出一種可擴增上述特定區域之引子組,且成功開發出一種可使用其準確地鑑定生藥候補之受檢植物是否為基原植物,而鑑別生藥候補為目標生藥之方法。於本說明書中,基於作為該鑑別機構之引子組、及使用其之生藥鑑別方法,提供以下之發明。The present inventors thoroughly investigated the genomic DNA or chloroplast DNA in the base plants of various crude drugs, and found that a base sequence specific to the base plants of each crude drug exists in a specific region, and the region may also be Stable base sequence information is obtained from processed test plants. Based on these insights, a primer set that can amplify the above specific region has been successfully developed, and a test plant that can accurately identify a candidate for a crude drug is a basic plant, and has identified a candidate for a target drug method. In this specification, the following inventions are provided based on a primer set serving as the identification mechanism and a method for identifying a crude drug using the same.

(1)一種生藥之鑑別用引子組,上述生藥係選自由半夏/天南星、牡丹根/牡丹皮、桂皮、當歸、蒼術/白術、柴胡、天冬、山茱萸、百合、紅蔘、天麻、黃芩、人蔘、升麻、豬苓、附子、辛夷、丁香、鉤藤、香附子、黃連、生薑/乾薑、山梔子、黃柏、厚樸、澤瀉、纈草、樸樕、連翹、良薑、蓮子、紅花及蘇木所組成之群中,關於上述引子組,於為半夏/天南星時,為包含序列編號1及2所示之鹼基序列之多核苷酸,於為牡丹根/牡丹皮時,為包含序列編號3及4、序列編號5及6、或序列編號3及229所示之鹼基序列之多核苷酸,於為桂皮時,為包含序列編號7及8所示之鹼基序列之多核苷酸,於為當歸時,為包含序列編號9及10、或序列編號11及12所示之鹼基序列之多核苷酸,於為蒼術/白術時,為包含序列編號13及14所示之鹼基序列之多核苷酸,於為柴胡時,為包含序列編號15及16所示之鹼基序列之多核苷酸,於為天冬時,為包含序列編號17及18所示之鹼基序列之多核苷酸,於為山茱萸時,為包含序列編號19及20所示之鹼基序列之多核苷酸,於為百合時,為包含序列編號21及22、或序列編號23及24所示之鹼基序列之多核苷酸,於為紅蔘時,為包含序列編號25及26、或序列編號27及28所示之鹼基序列之多核苷酸,於為天麻時,為包含序列編號29及4、或序列編號30及31所示之鹼基序列之多核苷酸,於為黃芩時,為包含序列編號9及32、或序列編號11及33所示之鹼基序列之多核苷酸,於為人蔘時,為包含序列編號9及34、或序列編號35及36所示之鹼基序列之多核苷酸,於為升麻時,為包含序列編號37及38、序列編號11及39、序列編號37及40、或序列編號41及39所示之鹼基序列之多核苷酸,於為豬苓時,為包含序列編號42及43所示之鹼基序列之多核苷酸,於為附子時,為包含序列編號44及36、序列編號45及4、或序列編號46及4所示之鹼基序列之多核苷酸,於為辛夷時,為包含序列編號47及48、序列編號49及50、序列編號230及231、或序列編號232及50所示之鹼基序列之多核苷酸,於為丁香時,為包含序列編號51及52所示之鹼基序列之多核苷酸,於為鉤藤時,為包含序列編號53及54、序列編號55及56、序列編號57及54、或序列編號58及56所示之鹼基序列之多核苷酸,於為香附子時,為包含序列編號59及60、或序列編號41及61所示之鹼基序列之多核苷酸,於為黃連時,為包含序列編號62及63、或序列編號64及65所示之鹼基序列之多核苷酸,於為生薑/乾薑時,為包含序列編號66及67所示之鹼基序列之多核苷酸,於為山梔子時,為包含序列編號11及68所示之鹼基序列之多核苷酸,於為黃柏時,為包含序列編號69及70所示之鹼基序列之多核苷酸,於為厚朴時,為包含序列編號71及72、序列編號71及73、或序列編號74及72所示之鹼基序列之多核苷酸,於為澤瀉時,為包含序列編號75及76、序列編號77及78、序列編號75及79、或序列編號77及80所示之鹼基序列之多核苷酸,於為纈草時,為包含序列編號81及82所示之鹼基序列之多核苷酸,於為朴樕時,為包含序列編號83及84、序列編號83及85、或序列編號86及87所示之鹼基序列之多核苷酸,於為連翹時,為包含序列編號88及89、或序列編號90及91所示之鹼基序列之多核苷酸,於為良薑時,為包含序列編號92及93、或序列編號66及94所示之鹼基序列之多核苷酸,於為蓮子時,為包含序列編號95及4、或序列編號96及36所示之鹼基序列之多核苷酸,於為紅花時,為包含序列編號97及4、或序列編號44及36所示之鹼基序列之多核苷酸,及於為蘇木時,為包含序列編號98及99所示之鹼基序列之多核苷酸,為包含上述引子組所示之鹼基序列之多核苷酸。(1) A primer set for identifying a crude drug selected from the group consisting of Pinellia terecum / Tiannanxing, Peony Root / Peony Bark, Cinnamon, Angelica, Atractylodes chinensis / Atractylodes, Bupleurum, Asparagus, Dogwood, Lily, Red Radix, Gastrodia, Scutellaria baicalensis, Scutellaria baicalensis, Cimicifuga, Potentilla, Aconite, Xinyi, Cloves, Uncaria, Aconite, Coptis, Ginger / Dried Ginger, Mangosteen, Cork, Magnolia, Alisma, Valerian, Parkberry, Forsythia, Liang In the group consisting of ginger, lotus seeds, safflower, and hematoxylin, the above primer set is a polynucleotide comprising a base sequence shown in SEQ ID NOs. 1 and 2 when it is Pinellia terrestrial / Austria, and is a peony root / In the case of peony skin, it is a polynucleotide comprising the base sequences shown in sequence numbers 3 and 4, sequence numbers 5 and 6, or in sequence numbers 3 and 229. In the case of cinnamon, it includes polynucleotides shown in sequence numbers 7 and 8. Polynucleotide of base sequence, when it is Angelica sinensis, is a polynucleotide containing the base sequences shown in SEQ ID NOS: 9 and 10, or SEQ ID NOs: 11 and 12, and it contains SEQ ID NO: 13 And the nucleotide sequence of the base sequence shown in 14 is the containing sequence in the case of Chaihu The polynucleotides having the base sequences shown in Nos. 15 and 16 are polynucleotides containing the base sequences shown in SEQ ID Nos. 17 and 18 in the winter season, and the dogwoods include sequence numbers 19 and 19 in the case of dogwood. The polynucleotide having the base sequence shown in 20 is a polynucleotide including the base sequences shown in SEQ ID NOS: 21 and 22 or the sequence numbers 23 and 24 when it is a lily. The polynucleotides having the base sequences shown in sequence numbers 25 and 26 or the sequence numbers 27 and 28 are polynuclei containing the base sequences shown in sequence numbers 29 and 4 or the sequence numbers 30 and 31 in the case of Gastrodia elata. In the case of Scutellaria baicalensis, the nucleotides are polynucleotides containing the base sequences shown in SEQ ID NOS: 9 and 32, or SEQ ID Nos. 11 and 33, and in the case of human lacquer, include SEQ ID Nos. 9 and 34, or sequence number Polynucleotides of the base sequences shown by 35 and 36 are bases shown by sequence numbers 37 and 38, sequence numbers 11 and 39, sequence numbers 37 and 40, or sequence numbers 41 and 39 in the case of Cimicifuga. Polynucleotide of base sequence, in the case of Poria cocos, contains as many base sequences as shown in SEQ ID NOs: 42 and 43 In the case of aconite, the nucleotides are polynucleotides comprising the base sequences shown in SEQ ID NOs: 44 and 36, SEQ ID NOs: 45 and 4, or SEQ ID Nos. 46 and 4, and in the case of Xinyi, they include SEQ ID NOs: 47 and 48. The polynucleotides having the base sequences shown in sequence numbers 49 and 50, the sequence numbers 230 and 231, or the sequence numbers 232 and 50, in the case of clove, are those containing the base sequences shown in sequence numbers 51 and 52. Polynucleotides, in the case of Uncaria, are polynucleotides comprising the base sequences shown in SEQ ID NOs: 53 and 54, SEQ ID NOs: 55 and 56, SEQ ID NOs: 57 and 54, or SEQ ID NOs: 58 and 56. In the case of aconite, it is a polynucleotide comprising the base sequences shown in SEQ ID NOs: 59 and 60, or SEQ ID Nos. 41 and 61. In the case of Coptis chinensis, it is a polynucleotide consisting of SEQ ID NOs: 62 and 63, or SEQ ID NOs: 64 and 65. Polynucleotides with base sequences, in the case of ginger / dried ginger, are polynucleotides containing the base sequences shown in SEQ ID NOs: 66 and 67; Polynucleotide of base sequence, in the case of cork, includes bases represented by sequence numbers 69 and 70 The sequence polynucleotide, when it is Magnolia, is a polynucleotide comprising the base sequences shown in SEQ ID NOs: 71 and 72, SEQ ID NOs: 71 and 73, or SEQ ID NOs: 74 and 72. Polynucleotides comprising the base sequences shown in sequence numbers 75 and 76, sequence numbers 77 and 78, sequence numbers 75 and 79, or sequence numbers 77 and 80. In the case of valerian, the polynucleotides include sequence numbers 81 and 82. The polynucleotide shown in the base sequence is a polynucleotide comprising the base sequences shown in SEQ ID NOs: 83 and 84, SEQ ID Nos. 83 and 85, or SEQ ID Nos. 86 and 87, and In this case, it is a polynucleotide comprising the base sequences shown in SEQ ID NOs: 88 and 89 or SEQ ID NOs: 90 and 91. In the case of ginger, it is a polynucleotide comprising SEQ ID NO: 92 and 93 or SEQ ID NO: 66 and 94. Polynucleotides with base sequences are those containing the base sequences shown in SEQ ID NOS: 95 and 4 or SEQ ID NOs: 96 and 36 in the case of lotus seeds, and those containing sequence numbers 97 and 4 in the case of safflower Or the polynucleotides of the base sequences shown in SEQ ID NOs: 44 and 36, and in the case of hematoxylin, it contains the sequence No. 98 and the nucleotide sequence of the polynucleotide shown in FIG. 99, as shown in the above-described primer comprising the nucleotide sequence of a polynucleotide group.

(2)一種生藥鑑別套組,其包含選自由如(1)記載之生藥之鑑別用引子組所組成之群中之1種以上。(2) A crude drug identification kit comprising one or more members selected from the group consisting of a primer set for identifying a crude drug according to (1).

(3)如(2)記載之生藥鑑別套組,其包含鹼基序列表,該鹼基序列表記載有以由生藥之基原植物製備之核酸作為模板,使用該生藥之鑑別用引子進行核酸擴增反應所獲得之擴增產物之鹼基序列資訊。(3) The biopharmaceutical identification kit according to (2), which includes a base sequence table, which contains a nucleic acid prepared from a crude plant based on a crude drug as a template, and the nucleic acid is identified using primers for the discrimination of the crude drug. Base sequence information of the amplified product obtained from the amplification reaction.

(4)一種半夏/天南星之鑑別方法,其包括如下步驟:自半夏/天南星候補之受檢植物提取核酸;以提取之核酸作為模板,使用包含序列編號1及2所示之鹼基序列之引子組擴增核糖體DNA之ITS區域;確定擴增產物之鹼基序列;及將擴增產物之鹼基序列與序列編號100或101所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為半夏/天南星之基原植物,上述半夏/天南星候補為半夏/天南星。(4) A method for identifying pinellia terrestrial / Aurora star, comprising the steps of extracting nucleic acid from a candidate plant of Pinellia terrestrial / Aurora star candidate; using the extracted nucleic acid as a template, using a base sequence including sequence numbers 1 and 2 The primer set amplifies the ITS region of ribosomal DNA; determines the base sequence of the amplified product; and compares the base sequence of the amplified product with the base sequence shown in sequence number 100 or 101, and the base of the two When the base sequences are consistent, it is identified that the above-mentioned test plant is a primordial plant of Pinellia terrestrial / Australium, and the candidate of the above Pinellia terrestrial / Australium is Pinellia terrestrial / Australium.

(5)一種牡丹根/牡丹皮之鑑別方法,其包括如下步驟:自牡丹根或牡丹皮候補之受檢植物提取核酸;以提取之核酸作為模板,使用包含序列編號3及4、序列編號5及6、或序列編號3及229所示之鹼基序列之引子組擴增核糖體DNA之ITS區域;確定擴增產物之鹼基序列;及將使用包含序列編號3及4所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號102或211所示之鹼基序列、使用包含序列編號5及6所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號103或221所示之鹼基序列、或使用包含序列編號3及229所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號244或245所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為牡丹根或牡丹皮之基原植物,上述牡丹根或牡丹皮之候補為牡丹根或牡丹皮。(5) A method for identifying peony roots / peony skins, comprising the steps of: extracting nucleic acid from a peony root or peony skin candidate candidate plant; using the extracted nucleic acid as a template, including sequence numbers 3 and 4, and sequence number 5 And 6, or primer sets of the base sequences shown in sequence numbers 3 and 229 amplify the ITS region of ribosomal DNA; determine the base sequence of the amplified product; and the bases containing sequence numbers 3 and 4 will be used The base sequence of the amplified product in the case of the primer set of the sequence and the base sequence shown in the sequence number 102 or 211, and the base of the amplified product when the primer set containing the base sequence shown in the sequence number 5 and 6 is used Sequence and base sequence shown in SEQ ID NO: 103 or 221, or base sequence of the amplified product when using a primer set including the base sequence shown in SEQ ID NO: 3 and 229 and base shown in SEQ ID NO: 244 or 245 The base sequences are compared. When the base sequences of the two are consistent, it is identified that the test plant is a primordial plant of peony root or peony skin, and the candidate of the peony root or peony skin is peony root or peony skin.

(6)一種桂皮之鑑別方法,其包括如下步驟:自桂皮候補之受檢植物提取核酸;以提取之核酸作為模板,使用包含序列編號7及8所示之鹼基序列之引子組擴增核糖體DNA之ITS區域;確定擴增產物之鹼基序列;及將擴增產物之鹼基序列與序列編號104所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為桂皮之基原植物,上述桂皮候補為桂皮。(6) A method for identifying cinnamon, comprising the steps of extracting nucleic acid from a candidate plant of cinnamon and using the extracted nucleic acid as a template to amplify ribose using a primer set including the base sequences shown in sequence numbers 7 and 8. ITS region of somatic DNA; determining the base sequence of the amplified product; and comparing the base sequence of the amplified product with the base sequence shown in SEQ ID NO: 104, and identifying the two as the above when the base sequences are the same The tested plant is the original plant of cinnamon, and the above candidate cinnamon is cinnamon.

(7)一種當歸之鑑別方法,其包括如下步驟:自當歸候補之受檢植物提取核酸;以提取之核酸作為模板,使用包含序列編號9及10、或序列編號11及12所示之鹼基序列之引子組擴增核糖體DNA之ITS區域;確定擴增產物之鹼基序列;及將使用包含序列編號9及10所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號105所示之鹼基序列、或使用包含序列編號11及12所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號106所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為當歸之基原植物,上述當歸候補為當歸。(7) A method for identifying angelica sinensis, comprising the steps of extracting nucleic acid from a candidate plant of angelica sinensis; using the extracted nucleic acid as a template, using bases including sequence numbers 9 and 10, or sequence numbers 11 and 12 The primer set of the sequence amplifies the ITS region of ribosomal DNA; determines the base sequence of the amplified product; and the base sequence of the amplified product when the primer set including the base sequences shown in sequence numbers 9 and 10 is used The base sequence shown in SEQ ID NO: 105, or the base sequence of the amplified product when the primer set including the base sequences shown in SEQ ID Nos. 11 and 12 is used is compared with the base sequence shown in SEQ ID NO: 106, and When the base sequences of the two are the same, the above-mentioned test plant is identified as the original plant of Angelica sinensis, and the above-mentioned candidate of Angelica sinensis is Angelica sinensis.

(8)一種蒼術/白術之鑑別方法,其包括如下步驟:自蒼術/白術候補之受檢植物提取核酸;以提取之核酸作為模板,使用包含序列編號13及14所示之鹼基序列之引子組擴增核糖體DNA之ITS區域;確定擴增產物之鹼基序列;及將擴增產物之鹼基序列與序列編號107~110及289~291中之任一者所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為蒼術/白術之基原植物,上述蒼術/白術候補為蒼術/白術。(8) A method for identifying Atractylodes chinensis / Atractylodes chinensis, comprising the steps of: extracting nucleic acid from a candidate plant of Atractylodes chinensis / Atractylodes chinensis; using the extracted nucleic acid as a template, using primers including the base sequences shown in sequence numbers 13 and 14 Group amplification of the ITS region of ribosomal DNA; determining the base sequence of the amplified product; and performing the base sequence of the amplified product with the base sequence shown in any one of sequence numbers 107-110 and 289-291 In comparison, when the base sequences of the two are the same, it is identified that the above-mentioned test plant is a primordial plant of Atractylodes chinensis / Atractylodes chinensis, and the above-mentioned candidate for Atractylodes chinensis / Atractylodes chinensis / Atractylodes chinensis.

(9)一種柴胡之鑑別方法,其包括如下步驟:自柴胡候補之受檢植物提取核酸;以提取之核酸作為模板,使用包含序列編號15及16所示之鹼基序列之引子組擴增核糖體DNA之ITS區域;確定擴增產物之鹼基序列;及將擴增產物之鹼基序列與序列編號111或294所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為柴胡之基原植物,上述柴胡候補為柴胡。(9) A method for identifying Bupleurum chinense comprising the steps of extracting nucleic acid from a test plant candidate for Bupleurum chinense; using the extracted nucleic acid as a template, and using a primer set including base sequences shown in sequence numbers 15 and 16 to expand ITS region of ribosome DNA; determining the base sequence of the amplified product; and comparing the base sequence of the amplified product with the base sequence shown by sequence number 111 or 294, when the base sequences of the two are consistent It was identified that the above-mentioned tested plant was the original plant of Bupleurum, and the candidate for Bupleurum was Bupleurum.

(10)一種天冬之鑑別方法,其包括如下步驟:自天冬候補之受檢植物提取核酸;以提取之核酸作為模板,使用包含序列編號17及18所示之鹼基序列之引子組擴增核糖體DNA之ITS區域;確定擴增產物之鹼基序列;及將擴增產物之鹼基序列與序列編號112~115及299中之任一者所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為天冬之基原植物,上述天冬候補為天冬。(10) A method for identifying Asparagus, comprising the steps of extracting nucleic acid from a candidate plant candidate for Asparagus; using the extracted nucleic acid as a template, and using a primer set including base sequences shown in SEQ ID NOs: 17 and 18 to expand ITS region of ribosomal DNA; determining the base sequence of the amplified product; and comparing the base sequence of the amplified product with the base sequence shown in any one of sequence numbers 112 to 115 and 299, in two When the base sequences of the subjects are the same, it is identified that the above-mentioned test plant is a basal original plant of Asparagus, and the above-mentioned candidate of Asparagus is Asparagus.

(11)一種山茱萸之鑑別方法,其包括如下步驟:自山茱萸候補之受檢植物提取核酸;以提取之核酸作為模板,使用包含序列編號19及20所示之鹼基序列之引子組擴增核糖體DNA之ITS區域;確定擴增產物之鹼基序列;及將擴增產物之鹼基序列與序列編號116所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為山茱萸之基原植物,上述山茱萸候補為山茱萸。(11) A method for identifying dogwood, comprising the steps of: extracting nucleic acid from a candidate plant of dogwood candidate; and using the extracted nucleic acid as a template to amplify ribose using a primer set including the base sequences shown in sequence numbers 19 and 20 ITS region of somatic DNA; determining the base sequence of the amplified product; and comparing the base sequence of the amplified product with the base sequence shown in SEQ ID NO: 116, and identifying them as the above when the base sequences of the two are identical The tested plant is the original plant of dogwood, and the above candidate dogwood is dogwood.

(12)一種百合之鑑別方法,其包括如下步驟:自百合候補之受檢植物提取核酸;以提取之核酸作為模板,使用包含序列編號21及22、或序列編號23及24所示之鹼基序列之引子組擴增核糖體DNA之ITS區域;確定擴增產物之鹼基序列;及將使用包含序列編號21及22所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號117及311~314中之任一者所示之鹼基序列、或使用包含序列編號23及24所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號118及324~326中之任一者所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為百合之基原植物,上述百合候補為百合。(12) A method for identifying a lily, comprising the steps of: extracting nucleic acid from a candidate plant of a lily candidate; and using the extracted nucleic acid as a template, using the bases shown in sequence numbers 21 and 22, or sequence numbers 23 and 24 The primer set of the sequence amplifies the ITS region of ribosomal DNA; determines the base sequence of the amplified product; and the base sequence of the amplified product when the primer set including the base sequences shown in sequence numbers 21 and 22 is used The base sequence shown in any one of sequence numbers 117 and 311 to 314, or the base sequence of the amplified product when using a primer set including the base sequence shown in sequence numbers 23 and 24 and sequence numbers 118 and The base sequences shown in any one of 324 to 326 are compared. When the base sequences of the two are consistent, it is identified that the test plant is a primordial plant of lily, and the candidate of lily is lily.

(13)一種紅蔘之鑑別方法,其包括如下步驟:自紅蔘候補之受檢植物提取核酸;以提取之核酸作為模板,使用包含序列編號25及26、或序列編號27及28所示之鹼基序列之引子組擴增核糖體DNA之ITS區域;確定擴增產物之鹼基序列;及將使用包含序列編號25及26所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號119所示之鹼基序列、或使用包含序列編號27及28所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號120所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為紅蔘之基原植物,上述紅蔘候補為紅蔘。(13) A method for identifying red carp, comprising the steps of: extracting nucleic acids from a candidate plant of red carp; using the extracted nucleic acid as a template, and using the ones shown in SEQ ID NOs: 25 and 26, or SEQ ID NOs: 27 and 28; Primer set of base sequence to amplify the ITS region of ribosomal DNA; determine the base sequence of the amplified product; and bases of the amplified product when the primer set containing the base sequences shown in sequence numbers 25 and 26 will be used The sequence is compared with the base sequence shown in sequence number 119, or the base sequence of the amplified product when the primer set including the base sequences shown in sequence numbers 27 and 28 is used, and the base sequence shown in sequence number 120 is compared. When the base sequences of the two are the same, it is identified that the test plant is a primordial plant of red carp and the candidate of red carp is red carp.

(14)一種天麻之鑑別方法,其包括如下步驟:自天麻候補之受檢植物提取核酸;以提取之核酸作為模板,使用包含序列編號29及4、或序列編號30及31所示之鹼基序列之引子組擴增核糖體DNA之ITS區域;確定擴增產物之鹼基序列;及將使用包含序列編號29及4所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號121所示之鹼基序列、或使用包含序列編號30及31所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號122所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為天麻之基原植物,上述天麻候補為天麻。(14) A method for identifying Gastrodia elata, including the steps of extracting nucleic acid from a candidate plant of Gastrodia elata; using the extracted nucleic acid as a template, using the bases shown in sequence numbers 29 and 4, or sequence numbers 30 and 31 The primer set of the sequence amplifies the ITS region of ribosomal DNA; determines the base sequence of the amplified product; and the base sequence of the amplified product when the primer set including the base sequences shown in sequence numbers 29 and 4 is used The base sequence shown in SEQ ID NO: 121, or the base sequence of the amplified product when the primer set containing the base sequences shown in SEQ ID NOs: 30 and 31 is used is compared with the base sequence shown in SEQ ID NO: 122, and When the base sequences of the two are the same, it is identified that the above-mentioned test plant is the original plant of Gastrodia elata and the candidate of Gastrodia elata is Gastrodia elata.

(15)一種黃芩之鑑別方法,其包括如下步驟:自黃芩候補之受檢植物提取核酸;以提取之核酸作為模板,使用包含序列編號9及32、或序列編號11及33所示之鹼基序列之引子組擴增核糖體DNA之ITS區域;確定擴增產物之鹼基序列;及將使用包含序列編號9及32所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號123或391所示之鹼基序列、或使用包含序列編號11及33所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號124所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為黃芩之基原植物,上述黃芩候補為黃芩。(15) A method for identifying Scutellaria baicalensis, comprising the steps of: extracting nucleic acid from a candidate plant of Scutellaria baicalensis; using the extracted nucleic acid as a template, using the bases shown in sequence numbers 9 and 32, or sequence numbers 11 and 33 The primer set of the sequence amplifies the ITS region of ribosomal DNA; determines the base sequence of the amplified product; and the base sequence of the amplified product when the primer set including the base sequences shown in sequence numbers 9 and 32 is used; The base sequence shown in SEQ ID NO: 123 or 391, or the base sequence of the amplified product when the primer set including the base sequences shown in SEQ ID NOS: 11 and 33 is compared with the base sequence shown in SEQ ID NO: 124 When the base sequences of the two are consistent, it is identified that the test plant is a primordial plant of Scutellaria baicalensis, and the candidate of Scutellaria baicalensis is Scutellaria baicalensis.

(16)一種人蔘之鑑別方法,其包括如下步驟:自人蔘候補之受檢植物提取核酸;以提取之核酸作為模板,使用包含序列編號9及34、或序列編號35及36所示之鹼基序列之引子組擴增核糖體DNA之ITS區域;確定擴增產物之鹼基序列;及將使用包含序列編號9及34所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號125所示之鹼基序列、或使用包含序列編號35及36所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號126所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為人蔘之基原植物,上述人蔘候補為人蔘。(16) A method for identifying human beings, comprising the steps of: extracting nucleic acids from a candidate plant candidate for human beings; using the extracted nucleic acid as a template, using a sequence containing sequence numbers 9 and 34, or sequence numbers 35 and 36; Primer set of base sequence to amplify the ITS region of ribosomal DNA; determine the base sequence of the amplified product; and bases of the amplified product when a primer set containing the base sequences shown in sequence numbers 9 and 34 will be used The sequence is compared with the base sequence shown in SEQ ID NO: 125, or the base sequence of the amplified product when the primer set containing the base sequences shown in SEQ ID NO: 35 and 36 is used, and the base sequence shown in SEQ ID NO: 126 is compared. When the base sequences of the two are the same, it is identified that the test plant is a human primitive plant, and the human candidate is a human plant.

(17)一種升麻之鑑別方法,其包括如下步驟:自升麻候補之受檢植物提取核酸;以提取之核酸作為模板,使用包含序列編號37及38、序列編號11及39、序列編號37及40、或序列編號41及39所示之鹼基序列之引子組擴增核糖體DNA之ITS區域;確定擴增產物之鹼基序列;及將使用包含序列編號37及38所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號127~130及401中之任一者所示之鹼基序列、使用包含序列編號11及39所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號131~134及409中之任一者所示之鹼基序列、使用包含序列編號37及40所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號135~138及415~416中之任一者所示之鹼基序列、或使用包含序列編號41及39所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號139~142中之任一者所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為升麻之基原植物,上述升麻候補為升麻。(17) A method for identifying Cimicifuga, comprising the steps of: extracting nucleic acid from a test plant candidate for Cimicifuga; using the extracted nucleic acid as a template, using sequence numbers 37 and 38, sequence numbers 11 and 39, and sequence number 37 And primer sets of the base sequences shown in sequence numbers 40 and 39, or the ITS region of ribosomal DNA; determining the base sequence of the amplified product; and the bases containing sequence numbers 37 and 38 will be used When the primer set of the sequence is the base sequence of the amplified product and the base sequence shown in any one of sequence numbers 127 to 130 and 401, when the primer set containing the base sequence shown in sequence numbers 11 and 39 is used The base sequence of the amplified product and the base sequence shown in any one of sequence numbers 131 to 134 and 409, and the amplified product when a primer set including the base sequence shown in sequence numbers 37 and 40 is used Base sequence and base sequence shown in any one of sequence numbers 135 to 138 and 415 to 416, or bases of amplification products when a primer set including the base sequence shown in sequence numbers 41 and 39 is used The base shown in any one of the sequence and the sequence numbers 139 to 142 Sequences were compared, to coincide with both the nucleotide sequence, identified as the base of the original plant is Cimicifuga subject plant above the candidate is Cimicifuga Cimicifuga.

(18)一種豬苓之鑑別方法,其包括如下步驟:自豬苓候補之受檢植物提取核酸;以提取之核酸作為模板,使用包含序列編號42及43所示之鹼基序列之引子組擴增核糖體DNA之ITS區域;確定擴增產物之鹼基序列;及將擴增產物之鹼基序列與序列編號143及430~432中之任一者所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為豬苓之基原植物,上述豬苓候補為豬苓。(18) A method for identifying Poria cocos, which includes the steps of extracting nucleic acids from a candidate plant of Poria cocos; using the extracted nucleic acid as a template, and using primer sets including base sequences shown in SEQ ID NOs: 42 and 43 to expand ITS region of ribosomal DNA; determining the base sequence of the amplified product; and comparing the base sequence of the amplified product with the base sequence shown in any one of sequence numbers 143 and 430 to 432, in two When the base sequences of the two are the same, it is identified that the above-mentioned test plant is a basic plant of Poria columba, and the above-mentioned Poria cocoa candidate is Poria columba.

(19)一種附子之鑑別方法,其包括如下步驟:自附子候補之受檢植物提取核酸;以提取之核酸作為模板,使用包含序列編號44及36、序列編號45及4、或序列編號46及4所示之鹼基序列之引子組擴增核糖體DNA之ITS區域;確定擴增產物之鹼基序列;及將使用包含序列編號44及36所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號144、145及433~434中之任一者所示之鹼基序列、使用包含序列編號45及4所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號146、147及439~440中之任一者所示之鹼基序列、或使用包含序列編號46及4所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號148或149所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為附子之基原植物,上述附子候補為附子。(19) A method for identifying aconite, comprising the steps of extracting nucleic acid from a test plant candidate for aconite; using the extracted nucleic acid as a template, using sequence numbers 44 and 36, sequence numbers 45 and 4, or sequence numbers 46 and The primer set of the base sequence shown in 4 amplifies the ITS region of ribosomal DNA; the base sequence of the amplified product is determined; and the amplification when a primer set containing the base sequences shown in sequence numbers 44 and 36 will be used The base sequence of the product and the base sequence shown in any one of sequence numbers 144, 145, and 433 to 434, and the base of the amplification product when a primer set including the base sequence shown in sequence numbers 45 and 4 is used The base sequence and the base sequence shown in any of sequence numbers 146, 147, and 439 to 440, or the base sequence of an amplification product when a primer set including the base sequences shown in sequence numbers 46 and 4 is used Compared with the base sequence shown in SEQ ID NO: 148 or 149, when the base sequences of the two are consistent, it is identified that the test plant is a basal plant of aconite and the aconite candidate is aconite.

(20)一種辛夷之鑑別方法,其包括如下步驟:自辛夷候補之受檢植物提取核酸;以提取之核酸作為模板,使用包含序列編號47及48、序列編號49及50、序列編號230及231、或序列編號232及50所示之鹼基序列之引子組擴增葉綠體DNA之trnL內含子區域;確定擴增產物之鹼基序列;及將使用包含序列編號47及48所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號150及678~681中之任一者所示之鹼基序列、使用包含序列編號49及50所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號151及693~696中之任一者所示之鹼基序列、使用包含序列編號230及231所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號450~454中之任一者所示之鹼基序列、或使用包含序列編號232及50所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號465~469中之任一者所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為辛夷之基原植物,上述辛夷候補為辛夷。(20) A method for identifying Xinyi, comprising the steps of: extracting nucleic acid from a candidate plant of Xinyi; using the extracted nucleic acid as a template, using sequence numbers 47 and 48, sequence numbers 49 and 50, and sequence numbers 230 and 231 Or primer sets of base sequences shown in sequence numbers 232 and 50 to amplify the trnL intron region of chloroplast DNA; determine the base sequence of the amplified product; and the bases containing sequence numbers 47 and 48 will be used When the primer set of the sequence is the base sequence of the amplified product and the base sequence shown in any one of sequence numbers 150 and 678 to 681, when the primer set containing the base sequence shown in sequence numbers 49 and 50 is used The base sequence of the amplified product and the base sequence shown in any one of sequence numbers 151 and 693 to 696, and the amplified product when a primer set including the base sequences shown in sequence numbers 230 and 231 is used Base sequence and base sequence shown in any one of sequence numbers 450 to 454, or base sequence and sequence number of an amplified product when a primer set including the base sequence shown in sequence numbers 232 and 50 is used Any of 465 to 469 The base sequences are compared. When the base sequences of the two are consistent, it is identified that the test plant is a basic plant of Xinyi, and the candidate of Xinyi is Xinyi.

(21)一種丁香之鑑別方法,其包括如下步驟:自丁香候補之受檢植物提取核酸;以提取之核酸作為模板,使用包含序列編號51及52所示之鹼基序列之引子組擴增核糖體DNA之ITS區域;確定擴增產物之鹼基序列;及將擴增產物之鹼基序列與序列編號152所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為丁香之基原植物,上述丁香候補為丁香。(21) A method for identifying cloves, comprising the steps of: extracting nucleic acid from a candidate plant of clove candidates; and using the extracted nucleic acid as a template to amplify ribose using a primer set including the base sequences shown in sequence numbers 51 and 52 ITS region of somatic DNA; determining the base sequence of the amplified product; and comparing the base sequence of the amplified product with the base sequence shown in SEQ ID NO: 152, and when the base sequences of the two are consistent, it is identified as the above The tested plant is the original plant of clove, and the candidate for clove is clove.

(22)一種鉤藤之鑑別方法,其包括如下步驟:自鉤藤候補之受檢植物提取核酸;以提取之核酸作為模板,使用包含序列編號53及54、序列編號55及56、序列編號57及54、或序列編號58及56所示之鹼基序列之引子組擴增核糖體DNA之ITS區域;確定擴增產物之鹼基序列;及將使用包含序列編號53及54所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號153所示之鹼基序列、使用包含序列編號55及56所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號154所示之鹼基序列、使用包含序列編號57及54所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號155所示之鹼基序列、或使用包含序列編號58及56所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號156所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為鉤藤之基原植物,上述鉤藤候補為鉤藤。(22) A method for identifying Uncaria chinensis, comprising the steps of extracting nucleic acid from a test plant candidate for Uncaria vine; using the extracted nucleic acid as a template, using sequence numbers 53 and 54, sequence numbers 55 and 56, and sequence number 57 And the primer set of base sequences shown in SEQ ID NOs: 58 and 56 amplifies the ITS region of ribosomal DNA; determines the base sequence of the amplified product; and will use the bases containing SEQ ID NOs: 53 and 54 The base sequence of the amplification product in the case of the primer set of the sequence and the base sequence shown in sequence number 153, and the base sequence of the amplification product in the case of using the primer set including the base sequences shown in sequence numbers 55 and 56. The base sequence shown in SEQ ID NO: 154, the base sequence of the amplified product when the primer set including the base sequences shown in SEQ ID NOs: 57 and 54 is used, the base sequence shown in SEQ ID NO: 155, or the containing sequence is used. The base sequence of the amplified product at the time of the primer set of the base sequences shown in numbers 58 and 56 is compared with the base sequence shown in sequence number 156. When the base sequences of the two are the same, it is identified as the above-mentioned test. Uncaria spp The candidate of Uncaria Uncaria.

(23)一種香附子之鑑別方法,其包括如下步驟:自香附子候補之受檢植物提取核酸;以提取之核酸作為模板,使用包含序列編號59及60、或序列編號41及61所示之鹼基序列之引子組擴增核糖體DNA之ITS區域;確定擴增產物之鹼基序列;及將使用包含序列編號59及60所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號157所示之鹼基序列、或使用包含序列編號41及61所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號158所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為香附子之基原植物,上述香附子候補為香附子。(23) A method for identifying aconite seedlings, comprising the steps of: extracting nucleic acid from a test plant candidate for aconite seedlings; using the extracted nucleic acid as a template, using the sequence number 59 and 60, or the sequence numbers 41 and 61 Primer set of base sequence to amplify the ITS region of ribosomal DNA; determine the base sequence of the amplified product; and bases of the amplified product when the primer set containing the base sequence shown in sequence numbers 59 and 60 will be used The sequence is compared with the base sequence shown in sequence number 157, or the base sequence of the amplified product when the primer set including the base sequences shown in sequence numbers 41 and 61 is used, and the base sequence shown in sequence number 158 is compared. When the base sequences of the two are the same, it is identified that the above-mentioned test plant is a primordial plant of the aconite, and the candidate of the aconite is the aconite.

(24)一種黃連之鑑別方法,其包括如下步驟:自黃連候補之受檢植物提取核酸;以提取之核酸作為模板,使用包含序列編號62及63、或序列編號64及65所示之鹼基序列之引子組擴增葉綠體DNA之rbcL區域;確定擴增產物之鹼基序列;及將使用包含序列編號62及63所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號159~162中之任一者所示之鹼基序列、或使用包含序列編號64及65所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號163~166中之任一者所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為黃連之基原植物,上述黃連候補為黃連。(24) A method for identifying Coptis chinensis, comprising the steps of: extracting nucleic acid from a test plant candidate of Coptis chinensis; using the extracted nucleic acid as a template, and using the bases represented by sequence numbers 62 and 63, or sequence numbers 64 and 65 The primer set of the sequence amplifies the rbcL region of chloroplast DNA; determines the base sequence of the amplified product; and the base sequence and sequence of the amplified product when a primer set containing the base sequences shown in sequence numbers 62 and 63 will be used The base sequence shown in any one of the numbers 159 to 162, or the base sequence of the amplification product when the primer set including the base sequences shown in sequence numbers 64 and 65 is used, and the base sequence shown in sequence numbers 163 to 166 The base sequences shown in any one were compared, and when the base sequences of the two were consistent, it was identified that the test plant was the original plant of Pistacia chinensis, and the candidate of Pistacia chinensis was P. chinensis.

(25)一種生薑/乾薑之鑑別方法,其包括如下步驟:自生薑/乾薑候補之受檢植物提取核酸;以提取之核酸作為模板,使用包含序列編號66及67所示之鹼基序列之引子組擴增葉綠體DNA之matK區域;確定擴增產物之鹼基序列;及將擴增產物之鹼基序列與序列編號167所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為生薑/乾薑之基原植物,上述生薑/乾薑候補為生薑/乾薑。(25) A method for identifying ginger / dried ginger, comprising the steps of: extracting nucleic acid from a test plant candidate for ginger / dried ginger; using the extracted nucleic acid as a template, using the bases shown in sequence numbers 66 and 67 The primer set of the sequence amplifies the matK region of chloroplast DNA; determines the base sequence of the amplified product; and compares the base sequence of the amplified product with the base sequence shown by sequence number 167, and the base sequences of the two When they are consistent, it is identified that the above-mentioned test plant is a ginger / dried ginger-based original plant, and the above-mentioned ginger / dried ginger candidate is ginger / dried ginger.

(26)一種山梔子之鑑別方法,其包括如下步驟:自山梔子候補之受檢植物提取核酸;以提取之核酸作為模板,使用包含序列編號11及68所示之鹼基序列之引子組擴增核糖體DNA之ITS區域;確定擴增產物之鹼基序列;及將擴增產物之鹼基序列與序列編號168所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為山梔子之基原植物,上述山梔子候補為山梔子。(26) A method for identifying Mandrillia mandshurica, comprising the steps of: extracting nucleic acids from a candidate plant of Mandrillia mandshurica; and using the extracted nucleic acid as a template to amplify ribose using a primer set including the base sequences shown in SEQ ID NOs: 11 and 68 ITS region of somatic DNA; determining the base sequence of the amplified product; and comparing the base sequence of the amplified product with the base sequence shown in SEQ ID NO: 168, and when the base sequences of the two are consistent, it is identified as the above The tested plant is the original plant of Mandrillia mandshurica, and the candidate for Mandrillia mandshurica is Mandrillia mandshurica.

(27)一種黃柏之鑑別方法,其包括如下步驟:自黃柏候補之受檢植物提取核酸;以提取之核酸作為模板,使用包含序列編號69及70所示之鹼基序列之引子組擴增核糖體DNA之ITS區域;確定擴增產物之鹼基序列;及將擴增產物之鹼基序列與序列編號169所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為黃柏之基原植物,上述黃柏候補為黃柏。(27) A method for identifying a cork comprising the steps of extracting nucleic acid from a candidate plant of a cork candidate; using the extracted nucleic acid as a template, and using a primer set including the base sequences shown in sequence numbers 69 and 70 to amplify ribose ITS region of somatic DNA; determining the base sequence of the amplified product; and comparing the base sequence of the amplified product with the base sequence shown in SEQ ID NO: 169, and when the base sequences of the two are consistent, it is identified as the above The tested plant is the original plant of Cork, and the candidate of Cork is Cork.

(28)一種厚樸之鑑別方法,其包括如下步驟:自厚樸候補之受檢植物提取核酸;以提取之核酸作為模板,使用包含序列編號71及72、序列編號71及73、或序列編號74及72所示之鹼基序列之引子組擴增葉綠體DNA之rpl16內含子區域;確定擴增產物之鹼基序列;及將使用包含序列編號71及72所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號170~172中之任一者所示之鹼基序列、使用包含序列編號71及73所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號173~175中之任一者所示之鹼基序列、或使用包含序列編號74及72所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號176~178中之任一者所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為厚朴之基原植物,上述厚樸候補為厚樸。(28) A method of identifying Magnolia officinalis comprising the steps of extracting nucleic acids from a candidate plant of Magnolia officinalis; using the extracted nucleic acid as a template, using sequence numbers 71 and 72, sequence numbers 71 and 73, or sequence numbers The primer set of base sequences shown in 74 and 72 amplifies the rpl16 intron region of chloroplast DNA; determining the base sequence of the amplified product; and a primer set containing the base sequence shown in sequence numbers 71 and 72 will be used The base sequence of the amplified product and the base sequence shown in any one of sequence numbers 170 to 172, and the base of the amplified product when a primer set including the base sequences shown in sequence numbers 71 and 73 are used Base sequence and base sequence shown in any one of sequence numbers 173 to 175, or base sequence and sequence number 176 of an amplification product when a primer set including the base sequence shown in sequence numbers 74 and 72 is used The base sequences shown in any one of -178 are compared, and when the base sequences of the two are consistent, the test plant is identified as the original plant of Magnolia officinalis and the candidate of Magnolia officinalis is Magnolia officinalis.

(29)一種澤瀉之鑑別方法,其包括如下步驟:自澤瀉候補之受檢植物提取核酸;以提取之核酸作為模板,使用包含序列編號75及76、序列編號77及78、或序列編號75及79、或序列編號77及80所示之鹼基序列之引子組擴增核糖體DNA之ITS區域;確定擴增產物之鹼基序列;及將使用包含序列編號75及76所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號179或180所示之鹼基序列、使用包含序列編號77及78所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號181或182所示之鹼基序列、使用包含序列編號75及79所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號183或184所示之鹼基序列、或使用包含序列編號77及80所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號185或186所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為澤瀉之基原植物,上述澤瀉候補為澤瀉。(29) A method for identifying Alisma orientalis, comprising the steps of extracting nucleic acids from a candidate plant of Alisma orientalis; using the extracted nucleic acid as a template, using sequence numbers 75 and 76, sequence numbers 77 and 78, or sequence numbers 75 and 79, or primer sets of base sequences shown in sequence numbers 77 and 80 to amplify the ITS region of ribosomal DNA; determine the base sequence of the amplified product; and the bases containing sequence numbers 75 and 76 will be used The base sequence of the amplified product in the primer set of the base sequence and the base sequence shown in sequence number 179 or 180, and the base of the amplified product in the case of using the primer set containing the base sequence shown in sequence number 77 and 78 The base sequence and the base sequence shown in SEQ ID NO: 181 or 182, the base sequence of the amplified product when using the primer set including the base sequences shown in SEQ ID NO: 75 and 79, and the base shown in SEQ ID NO: 183 or 184 The base sequence, or the base sequence of the amplified product when using a primer set containing the base sequences shown in SEQ ID NOs: 77 and 80 is compared with the base sequence shown in SEQ ID NO: 185 or 186, When the sequences are consistent, it is identified as the above test The original plant was Alisma group, as described above Alisma Alisma candidate.

(30)一種纈草之鑑別方法,其包括如下步驟:自纈草候補之受檢植物提取核酸;以提取之核酸作為模板,使用包含序列編號81及82所示之鹼基序列之引子組擴增核糖體DNA之ITS區域;確定擴增產物之鹼基序列;及將擴增產物之鹼基序列與序列編號187所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為纈草之基原植物,上述纈草候補為纈草。(30) A method for identifying valerian, comprising the steps of: extracting nucleic acid from a test plant candidate for valerian; using the extracted nucleic acid as a template, using a primer set expansion comprising a base sequence shown in sequence numbers 81 and 82 ITS region of ribosomal DNA; determining the base sequence of the amplified product; and comparing the base sequence of the amplified product with the base sequence shown in SEQ ID NO: 187, and identifying the base sequences when they are identical The above-mentioned test plant is a primordial plant of valerian, and the valerian candidate is valerian.

(31)一種樸樕之鑑別方法,其包括如下步驟:自樸樕候補之受檢植物提取核酸;以提取之核酸作為模板,使用包含序列編號83及84、序列編號83及85、或序列編號86及87所示之鹼基序列之引子組擴增核糖體DNA之ITS區域;確定擴增產物之鹼基序列;及將使用包含序列編號83及84所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號188~191及593~594中之任一者所示之鹼基序列、使用包含序列編號83及85所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號192~195及601~602中之任一者所示之鹼基序列、或使用包含序列編號86及87所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號196~199及609~612中之任一者所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為樸樕之基原植物,上述樸樕候補為樸樕。(31) A method for identifying Park Ye, comprising the steps of extracting nucleic acid from a candidate plant of Park Ye; using the extracted nucleic acid as a template, using sequence numbers 83 and 84, sequence numbers 83 and 85, or a sequence number The primer set of the base sequences shown in 86 and 87 amplifies the ITS region of ribosomal DNA; the base sequence of the amplified product is determined; and when the primer set containing the base sequences shown in sequence numbers 83 and 84 will be used Amplified product base sequence and base sequence shown in any one of sequence numbers 188 to 191 and 593 to 594, and amplified product when using a primer set including the base sequence shown in sequence numbers 83 and 85 The base sequence and the base sequence shown in any one of sequence numbers 192 to 195 and 601 to 602, or the base of an amplification product when a primer set including the base sequence shown in sequence numbers 86 and 87 is used The base sequence is compared with the base sequence shown in any one of sequence numbers 196 to 199 and 609 to 612, and when the base sequences of the two are consistent, it is identified that the above-mentioned test plant is a basal original plant. The above-mentioned candidate for Park Ye is Park Ye.

(32)一種連翹之鑑別方法,其包括如下步驟:自連翹候補之受檢植物提取核酸;以提取之核酸作為模板,使用包含序列編號88及89、或序列編號90及91所示之鹼基序列之引子組擴增核糖體DNA之ITS區域;確定擴增產物之鹼基序列;及將使用包含序列編號88及89所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號200所示之鹼基序列、或使用包含序列編號90及91所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號201所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為連翹之基原植物,上述連翹候補為連翹。(32) A method for identifying forsythia, comprising the steps of: extracting nucleic acid from a test plant candidate for forsythia; using the extracted nucleic acid as a template, using the bases shown in sequence numbers 88 and 89 or sequence numbers 90 and 91 The primer set of the sequence amplifies the ITS region of ribosomal DNA; determines the base sequence of the amplified product; and the base sequence of the amplified product when the primer set including the base sequences shown in sequence numbers 88 and 89 is used The base sequence shown in SEQ ID NO: 200, or the base sequence of the amplified product when the primer set including the base sequences shown in SEQ ID NO: 90 and 91 is used is compared with the base sequence shown in SEQ ID NO: 201, and When the base sequences of the two are the same, it is identified that the test plant is a basal plant of forsythia, and the candidate of forsythia is forsythia.

(33)一種良薑之鑑別方法,其包括如下步驟:自良薑候補之受檢植物提取核酸;以提取之核酸作為模板,使用包含序列編號92及93、或序列編號66及94所示之鹼基序列之引子組擴增葉綠體DNA之matK區域;確定擴增產物之鹼基序列;及將使用包含序列編號92及93所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號202或633所示之鹼基序列、或使用包含序列編號66及94所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號203或638所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為良薑之基原植物,上述良薑候補為良薑。(33) A method for identifying ginger, comprising the steps of: extracting nucleic acid from a candidate plant for candidate ginger; using the extracted nucleic acid as a template, and using the sequence shown in SEQ ID Nos. 92 and 93, or SEQ ID Nos. 66 and 94; Primer set of base sequence to amplify the matK region of chloroplast DNA; determine the base sequence of the amplified product; and base sequence of the amplified product when a primer set containing the base sequences shown in sequence numbers 92 and 93 will be used The base sequence shown in SEQ ID NO: 202 or 633, or the base sequence shown in SEQ ID NO: 203 or 638, or the amplified product when the primer set including the base sequences shown in SEQ ID NO: 66 or 94 is used. The sequences were compared, and when the base sequences of the two were consistent, it was identified that the above-mentioned test plant was the original plant of the ginger, and the candidate of the above-mentioned ginger was the ginger.

(34)一種蓮子之鑑別方法,其包括如下步驟:自蓮子候補之受檢植物提取核酸;以提取之核酸作為模板,使用包含序列編號95及4、或序列編號96及36所示之鹼基序列之引子組擴增核糖體DNA之ITS區域;確定擴增產物之鹼基序列;及將使用包含序列編號95及4所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號204所示之鹼基序列、或使用包含序列編號96及36所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號205或646所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為蓮子之基原植物,上述蓮子候補為蓮子。(34) A method for identifying lotus seeds, comprising the steps of: extracting nucleic acid from a candidate plant of candidate lotus seeds; using the extracted nucleic acid as a template, using the bases shown in sequence numbers 95 and 4, or sequence numbers 96 and 36 The primer set of the sequence amplifies the ITS region of ribosomal DNA; determines the base sequence of the amplified product; and the base sequence of the amplified product when the primer set containing the base sequences shown in sequence numbers 95 and 4 is used The base sequence shown in SEQ ID NO: 204, or the base sequence of the amplified product when the primer set including the base sequences shown in SEQ ID Nos. 96 and 36 is used is compared with the base sequence shown in SEQ ID NO: 205 or 646 When the base sequences of the two are consistent, it is identified that the test plant is a primordial plant of lotus seed, and the candidate of the lotus seed is lotus seed.

(35)一種紅花之鑑別方法,其包括如下步驟:自紅花候補之受檢植物提取核酸;以提取之核酸作為模板,使用包含序列編號97及4、或序列編號44及36所示之鹼基序列之引子組擴增核糖體DNA之ITS區域;確定擴增產物之鹼基序列;及將使用包含序列編號97及4所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號206所示之鹼基序列、或使用包含序列編號44及36所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號207所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為紅花之基原植物,上述紅花候補為紅花。(35) A method for identifying safflower, comprising the steps of: extracting nucleic acid from a candidate plant of safflower; using the extracted nucleic acid as a template, using the bases shown in sequence numbers 97 and 4, or sequence numbers 44 and 36 The primer set of the sequence amplifies the ITS region of ribosomal DNA; determines the base sequence of the amplified product; and the base sequence of the amplified product when the primer set including the base sequence shown in sequence numbers 97 and 4 is used; The base sequence shown in SEQ ID NO: 206 or the base sequence of the amplified product when the primer set including the base sequences shown in SEQ ID NO: 44 and 36 is used is compared with the base sequence shown in SEQ ID NO: 207. When the base sequences of the two are the same, it is identified that the test plant is a safflower-based original plant, and the safflower candidate is a safflower.

(36)一種蘇木之鑑別方法,其包括如下步驟:自蘇木候補之受檢植物提取核酸;以提取之核酸作為模板,使用包含序列編號98及99所示之鹼基序列之引子組擴增核糖體DNA之ITS區域;確定擴增產物之鹼基序列;及將擴增產物之鹼基序列與序列編號208所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為蘇木之基原植物,上述蘇木候補為蘇木。(36) A method for identifying hematoxylin, comprising the steps of: extracting nucleic acid from a candidate plant of hematoxylin; using the extracted nucleic acid as a template, using a primer set including base sequences shown in sequence numbers 98 and 99 to expand ITS region of ribosome DNA; determining the base sequence of the amplified product; and comparing the base sequence of the amplified product with the base sequence shown in SEQ ID NO: 208, and identifying the base sequences when they are identical The above-mentioned tested plant is an original plant of hematoxylin, and the above-mentioned candidate of hematoxylin is hematoxylin.

本說明書包含成為本案之優先權之基礎之日本專利申請案編號2017-108803號的揭示內容。 [發明之效果]This specification contains the disclosure of Japanese Patent Application No. 2017-108803, which is the basis of the priority of this application. [Effect of the invention]

藉由使用本發明之生藥鑑別用引子組,進行本發明之生藥鑑別方法,即便為經生藥加工處理之植物,亦可準確地鑑定該植物是否為日本藥典、日本藥典外生藥規格所認定之生藥之基原植物,藉此,可確實地防止異種植物之混入等。 根據本發明之生藥鑑別用套組,可容易地實施本發明之生藥鑑別方法,可簡便地鑑別各種生藥。By using the primer set for identification of a crude drug of the present invention and performing the crude drug identification method of the present invention, it is possible to accurately identify whether the plant is a crude drug recognized by the Japanese Pharmacopoeia or the Japanese Pharmacopoeia external drug standard even if it is a processed plant As a result, the original plant can reliably prevent the incorporation of heterogeneous plants. According to the kit for identifying a crude drug of the present invention, the method for identifying a crude drug of the present invention can be easily implemented, and various crude drugs can be easily identified.

1.生藥鑑別用引子組 1-1.概要 本發明之第1態樣係一種生藥鑑別用引子組。本態樣之引子組包含核酸,用作用以於下述第2態樣中所記載之生藥鑑別方法中鑑定受檢植物是否為目標生藥之基原植物之機構。1. Primer set for identification of crude drugs 1-1. Overview The first aspect of the present invention is a primer set for identification of crude drugs. The primer set of this aspect contains a nucleic acid, and is used as a mechanism for identifying whether a test plant is a base plant of a target crude drug in the method of identifying a crude drug described in the second aspect below.

1-2.定義 以下,對本說明書中經常使用之用語進行定義。 於本說明書中,「生藥」係指可成為中藥之原料之具有藥理效果之源自天然物之物質,包含動物、植物或菌類之全部或一部分、及礦物。於本說明書中,尤其是日本藥典第十七修訂版(2016年3月7日厚生勞動省告示第64號)、日本藥典外生藥規格2015(2015年12月25日藥生審查發佈1225第1號厚生勞動省醫藥、生活衛生局審查管理科長通知)所規定之源自植物及菌類之以下之生藥符合。具體而言,為半夏、天南星、牡丹根、牡丹皮、桂皮、當歸、蒼術、白術、柴胡、天冬、山茱萸、百合、紅蔘、天麻、黃芩、人蔘、升麻、豬苓、附子、辛夷、丁香、鉤藤、香附子、黃連、生薑/乾薑、山梔子、黃柏、厚樸、澤瀉、纈草、樸樕、連翹、良薑、蓮子、紅花及蘇木。1-2. Definitions The terms often used in this manual are defined below. In this specification, "raw medicine" refers to a substance derived from natural materials that has a pharmacological effect and can be used as a raw material for traditional Chinese medicine, including all or part of animals, plants or fungi, and minerals. In this manual, in particular, the seventeenth revised edition of the Japanese Pharmacopoeia (No. 64 of the Ministry of Health, Labour and Welfare Notice No. 64 on March 7, 2016) and the specifications of the crude drug outside the Japanese Pharmacopoeia 2015 (the Pharmacopoeia Review issued on December 25, 2015 1225 No. The Ministry of Health, Labour, and Welfare Bureau of Medicine and Life Health Bureau's Inspection and Management Section has notified that the following raw medicines derived from plants and fungi meet the requirements. Specifically, Pinellia ternata, Tiannanxing, Peony Root, Peony Bark, Cinnamon, Angelica, Atractylodes, Atractylodes, Bupleurum, Asparagus, Dogwood, Lily, Red Coriander, Gastrodia, Scutellaria baicalensis, Rhizoma Coptus, Cimicifuga, Poria Aconite, Xinyi, Lilac, Uncaria, Aconite, Coptis, Ginger / Dried Ginger, Mangosteen, Cork, Magnolia, Alisma, Valerian, Park, Forsythia, Ginger, Lotus Seed, Safflower and Hemu.

再者,分類學上,菌類不為植物,但於本說明書中,為方便起見,於植物中包含菌類。因此,只要未特別說明,則於本說明書中,於記載為「植物」之情形時,係指「植物及/或菌類」。例如於本說明書中,於記載為「基原植物」之情形時,意指「基原植物及/或基原菌類」。Furthermore, in terms of taxonomy, fungi are not plants, but in this specification, for convenience, fungi are included in plants. Therefore, unless otherwise specified, the term "plant" in this specification means "plant and / or fungus". For example, in the present description, when it is described as a "primitive plant", it means a "primitive plant and / or a fundamental fungus".

生藥之「基原」係表示成為生藥之原料之植物、動物、或礦物及其用部、及加工方法的用語。例如包含成為某一生藥之原料之植物之種類、該生藥所使用之植物之部位及製成生藥時之加工方法。其中,將成為生藥之原料之植物、即生藥之原植物稱為「基原植物」。「原植物」意指成為原料之植物。基原植物原則上針對每一種生藥進行規定。例如關於上述生藥,若為半夏,則半夏(Pinellia ternata)成為基原植物,若為天南星,則異葉天南星(Arisaema heterophyllum)、一把傘南星(A. erubescens)、東北南星(A. amurense)或天南星(Arisaema)屬之近緣種成為基原植物,若為牡丹根,則芍藥成為基原植物,若為牡丹皮,則牡丹(Paeonia suffruticosa)(牡丹皮(Paeonia moutan))成為基原植物,若為桂皮,則肉桂(Cinnamomum cassia)成為基原植物,若為當歸,則東當歸(Angelica acutiloba)或北海當歸(A. acutiloba var. sugiyamae)成為基原植物,若為蒼術,則蒼術(Atractylodes lancea)、北蒼術(A. chinensis)或該等之雜交種成為基原植物,若為白術,則關蒼術(Atractylodes japonica)或白術(A. macrocephala)成為基原植物,若為柴胡,則銀柴胡(Bupleurum falcatum)成為基原植物,若為天冬,則天門冬(Asparagus cochinchinensis)成為基原植物,若為山茱萸,則山茱萸(Cornus officinalis)成為基原植物,若為百合,則卷丹百合(Lilium lancifolium)、白花百合(L. brownii var. colchesteri)、野百合(L. brownii)或山丹(L. pumilum)成為基原植物,若為紅蔘,則人蔘(Panax ginseng)(P. schinseng)成為基原植物,若為天麻,則天麻(Gastrodia elata)成為基原植物,若為黃芩,則黃芩(Scutellaria baicalensis)成為基原植物,若為人蔘,則人蔘(P. schinseng)成為基原植物,若為升麻,則單穗升麻(Cimicifuga simplex)、興安升麻(C. dahurica)、升麻(C. foetida)或大三葉升麻(C. heracleifolia)成為基原植物,若為豬苓,則豬苓(Polyporus umbellatus)成為基原植物,若為附子,則烏頭(Aconitum carmichaeli)或日本烏頭(Aconitum japonicum)成為基原植物,若為辛夷,則柳葉木蘭(Magnolia salicifolia)、日本辛夷(M. kobus)、望春玉蘭(M. biondii)、武當木蘭(M. sprengeri)或白玉蘭(M. heptapeta)(玉蘭(M. denudata))成為基原植物,若為丁香,則丁香(Syzygium aromaticum)(Eugenia caryophyllata)成為基原植物,若為鉤藤,則鉤藤(Uncaria rhynchophylla)、華鉤藤(U. sinensis)或大葉鉤藤(U. macrophylla)成為基原植物,若為香附子,則香附子(Cyperus rotundus)成為基原植物,若為黃連,則日本黃連(Coptis japonica)、黃連(C. chinensis)、三角葉黃連(C. deltoidea)或雲南黃連(C. teeta)成為基原植物,若為生薑/乾薑,則薑(Zingiber officinale)成為基原植物,若為山梔子,則梔子(Gardenia jasminoides)成為基原植物,若為黃柏,則黃柏(Phellodendron amurense)或川黃檗(P. chinense)成為基原植物,若為厚樸,則日本厚樸(Magnolia obovata)(M. hypoleuca)、厚樸(M. officinalis)或凹葉厚樸(M. officinalis var. biloba)成為基原植物,若為澤瀉,則東方澤瀉(Alisma orientale)成為基原植物,若為纈草,則闊葉纈草(Valeriana fauriei)成為基原植物,若為樸樕,則麻櫟(Quercus acutissima)、枹櫟(Q. serrata)、蒙古櫟(Q. mongolica var. crispula)或栓皮櫟(Q. variabilis)成為基原植物,若為連翹,則連翹(Forsythia suspensa)成為基原植物,若為良薑,則良薑(Alpinia officinarum)成為基原植物,若為蓮子,則蓮(Nelumbo nucifera)成為基原植物,若為紅花,則紅花(Carthamus tinctorius)成為基原植物,而且,若為蘇木,則蘇木(Caesalpinia sappan)成為基原植物。若各生藥之基原植物亦有僅為1種之情形,則亦有包含同屬近緣之數種,可為其任一種之情形。The "base" of a crude drug is a term used to indicate the plant, animal, or mineral, its parts, and processing methods that are the raw materials of the crude drug. For example, it includes the type of plant that becomes the raw material of a certain crude drug, the part of the plant used in the crude drug, and the processing method when the crude drug is made. Among them, the plant that becomes the raw material of the crude drug, that is, the original plant of the crude drug is called a "primitive plant". "Original plant" means the plant that becomes the raw material. Primitive plants are regulated in principle for each crude drug. For example, regarding the above-mentioned crude drugs, if it is Pinellia ternate, Pinellia ternata becomes a primitive plant. If it is Celestial star, Arisaema heterophyllum, A. erubescens, and A. erubescens. Amurense or a close relative of the genus Arisaema becomes the primordial plant. If it is a peony root, the peony becomes a primordial plant. If it is a peony bark, the peony (Paeonia suffruticosa) (Paeonia moutan) becomes a basal plant. The original plant, if it is cinnamon, cinnamon (Cinnamomum cassia) becomes the primitive plant, if it is angelica, then East Angelica (Angelica acutiloba) or North Sea Angelica (A. acutiloba var. Sugiyamae) becomes the primitive plant, if it is Atractylodes, then Atractylodes lancea, A. chinensis, or a hybrid of these becomes a primitive plant. If it is Atractylodes, Atractylodes japonica or A. macrocephala becomes a primitive plant, if it is firewood. Hu, then Bupleurum falcatum becomes a primitive plant. If it is Asparagus, Asparagus cochinchinensis becomes a primitive plant. If it is dogwood, Cornus officinalis becomes The original plant, if it is a lily, then Lilium lancifolium, L. brownii var. Colchesteri, wild lily (L. brownii), or L. pumilum become the primitive plant, if it is red蔘, then Panax ginseng (P. schinseng) becomes the primitive plant, if it is Gastrodia, Gastrodia elata becomes the primitive plant, if it is Scutellaria, Scutellaria baicalensis becomes the primitive plant, if For humans, P. schinseng becomes a primitive plant. If it is Cimicifuga, Cimicifuga simplex, C. dahurica, C. foetida, or large C. heracleifolia becomes a primitive plant. If it is Poria, Polyporus umbellatus becomes a primitive plant. If it is aconite, Aconitum carmichaeli or Aconitum japonicum becomes a basic plant. Original plant, if it is Xinyi, Magnolia salicifolia, M. kobus, M. biondii, M. sprengeri, or M. heptapeta (玉兰 ( M. denudata)) becomes a primitive plant, if it is lilac, Syzygium a romaticum (Eugenia caryophyllata) becomes a primitive plant. If it is a hook vine, Uncaria rhynchophylla, U. sinensis, or U. macrophylla becomes a primitive plant. If it is aconite , Then Cyperus rotundus becomes the primitive plant, if it is Coptis chinensis, then Coptis japonica, Coptis chinensis, C. deltoidea or C. teeta from Yunnan The original plant, if it is ginger / dried ginger, Zingiber officinale becomes a primitive plant, if it is a mandarin gardenia, Gardenia jasminoides becomes a primitive plant, if it is a cork, then Phellodendron amurense or Sichuan P. chinense becomes the original plant. If it is Magnolia, then Magnolia obovata (M. hypoleuca), M. officinalis, or M. officinalis var. Biloba becomes the base. If the original plant is Alisma orientalis, Alisma orientale becomes a primitive plant; if it is valerian, Valeriana fauriei becomes a primitive plant; if it is Parker, then Quercus acutissima), Q. serrata, Quercus mongolica (Q. serrata) mongolica var. crispula) or Q. variabilis becomes a primitive plant. If it is forsythia, Forsythia suspensa becomes a primitive plant. If it is alpinia, Alpinia officinarum becomes a primitive plant. As a lotus seed, the lotus (Nelumbo nucifera) becomes a primitive plant, if it is a safflower, Carthamus tinctorius becomes a primitive plant, and if it is a hematoxylin, Caesalpinia sappan becomes a primitive plant. If there is only one kind of the original plant of each crude drug, there may be a case where it includes several kinds of the same related species, which may be any one of them.

生藥根據其形態,分為原生藥、切斷生藥或粉末生藥。「原生藥」係對作為其藥用之植物體或其一部分進行乾燥,及/或進行簡單之加工而成者。作為此處所謂之「簡單之加工」,可列舉:切斷、(高壓)蒸汽處理、加熱、浸漬於溶液等。「切斷生藥」係將原生藥切斷或破碎為小片或小塊而成者、或進行粗切、中切或細切而成者。「粉末生藥」係將原生藥或切斷生藥製成粗粉末、中粉末、細粉末或微粉末而成者。本說明書中之生藥可為任一形態。較佳為原生藥或切斷生藥。According to their forms, crude drugs are classified into native drugs, cut-off drugs or powdered drugs. A "native drug" is one obtained by drying a plant body or a part thereof for medicinal purposes and / or simply processing it. Examples of the "simple processing" herein include cutting, (high-pressure) steam treatment, heating, and immersion in a solution. "Cut raw medicine" refers to those obtained by cutting or crushing the native medicine into small pieces or small pieces, or rough cutting, middle cutting or fine cutting. "Powder crude drug" refers to a crude powder, medium powder, fine powder, or fine powder made from a crude drug or cut crude drug. The crude drug in this specification may be in any form. It is preferably a native drug or a cut-off raw drug.

如上述基原之定義中所述,於生藥包含植物之一部分之情形時,其係基原植物之任一部分,或者作為其藥用之部分係針對每一種生藥進行規定。例如若為天南星,則上述異葉天南星、一把傘南星、東北南星或天南星屬之近緣種之球莖作為設為藥用之部分而用於生藥,若為桂皮,則肉桂之樹皮作為設為藥用之部分而用於生藥。作為各生藥之藥用之部分係於該領域中周知,例如記載於日本藥典第十七修訂版(已述)。As described in the above definition of Motohara, where a crude drug contains a part of a plant, it is either part of a Motohara plant, or as a medicinal part, it is specified for each crude drug. For example, if it is Celestial, then the bulbs of the heterophyllan Celestial, a Umbrella Southern Star, the Northeast Celestial, or a related species of the Celanthus are used as a medicinal part for crude medicine, and if it is cinnamon, the bark of cinnamon is set as The medicinal part is used for crude medicine. As a medicinal part of each crude drug, it is well known in the art, and is described in, for example, the seventeenth revised edition (already described) of the Japanese Pharmacopoeia.

於本說明書中,「假生藥」係指於特定之生藥中,以基原植物以外之植物種(例如同屬近緣種)等作為原料,使用與該特定之生藥相同之部位,進行相同之加工處理所獲得之產物。例如以與作為牡丹根之基原植物之芍藥同屬之川赤芍(P. veitchii)作為原料,以與芍藥相同之方式使其根部乾燥而成的產物成為牡丹根之假生藥。假生藥多數情況下外觀等與生藥類似,故而多數情況下難以與生藥辨別。但是,如上所述,於各生藥中,以基原植物以外之植物種作為原料之產物即便其植物種為基原植物之近緣種,又,即便具有與生藥相同之藥理作用,原則上亦不被認定為該生藥。In this specification, "fake biopharmaceutical" refers to a specific biopharmaceutical that uses a plant species (such as a related species) other than the primordial plant as a raw material, and uses the same parts as the specific biopharmaceutical to perform the same Product obtained by processing. For example, P. veitchii, which belongs to the same peony as the original plant of the peony root, is used as a raw material, and the product obtained by drying the root of the peony root in the same manner as the peony root becomes a fake raw medicine of the peony root. In most cases, fake biopharmaceuticals are similar in appearance to biopharmaceuticals, so in most cases it is difficult to distinguish them from biopharmaceuticals. However, as described above, in each crude drug, a product using a plant species other than the primitive plant as a raw material, even if the plant species is a related species of the primitive plant, and even if it has the same pharmacological effect as the crude medicine, in principle, Not recognized as this crude drug.

於本說明書中,「鑑別」係指藉由鑑定生藥候補之受檢植物是否為目標生藥之基原植物,分辨該生藥候補為真生藥還是假生藥,或者分辨生藥中之源自異種植物之假生藥混入之有無。In this specification, "identification" refers to identifying whether the candidate plant of the crude drug candidate is the original plant of the target crude drug, distinguishing whether the crude drug candidate is a real crude drug or a fake crude drug, or distinguishing a false origin of a heterogeneous plant in the crude drug. The presence of crude drugs.

於本說明書中,「生藥候補」係指雖外觀或加工狀態與特定之生藥類似,但其原植物是否為基原植物不明者。生藥候補可包含真生藥、假生藥、或該等之混合物。例如市場流通之生藥中未保證源自其基原植物者符合本發明之生藥候補。In this specification, "raw medicine candidate" refers to a person whose appearance or processing state is similar to a specific raw medicine, but whether the original plant is a basic original plant is unknown. The crude drug candidates may include real crude drugs, fake crude drugs, or a mixture of these. For example, there is no guarantee in the marketed crude drug that the source of the original plant is in conformity with the crude drug candidate of the present invention.

於本說明書中,「受檢植物」係生藥候補之原植物,係指供於下述第3態樣中所記載之生藥鑑別方法之檢查對象植物。於本說明書中,構成生藥候補之植物組織可成為第2態樣中所記載之生藥鑑別方法之檢查對象。例如可列舉:葉、莖、芽、葉鞘、葉柄、球芽、地下莖(包含球莖、鱗莖/球根、根莖、塊莖等)、根(包含塊根、氣根等)、種子、胚軸、果實等。In this specification, the "tested plant" refers to the original plant that is a candidate for a crude drug, and refers to a plant to be tested for the crude drug identification method described in the third aspect described below. In this specification, the plant tissue constituting a candidate for a crude drug may be an inspection target of the method for identifying a crude drug described in the second aspect. Examples include leaves, stems, buds, sheaths, petioles, bulbs, underground stems (including bulbs, bulbs / bulbs, rhizomes, tubers, etc.), roots (including tubers, air roots, etc.), seeds, hypocotyls, fruits, and the like.

於本說明書中,「核酸(分子)」係指原則上以核苷酸作為結構單元,該等經磷酸二酯鍵連結而成之生物高分子。通常包含DNA、RNA等天然核酸。於DNA之情形時,除基因組DNA、線粒體DNA、葉綠體DNA等可存在於細胞內之所有DNA分子以外,亦包含藉由反轉錄反應自mRNA製備之cDNA。又,於RNA之情形時,包含mRNA、rRNA、tRNA、snRNA、snoRNA、tmRNA、miRNA等可存在於細胞內之所有RNA分子。除此以外,於如本態樣之生藥鑑別用引子般人工合成之核酸分子之情形時,不僅包含天然核酸,亦可包含化學修飾核酸或近似核酸。作為化學修飾核酸或近似核酸,例如可列舉:肽核酸(PNA:Peptide Nucleic Acid)、具有磷酸基之肽核酸(PHONA)、交聯化核酸(BNA/LNA:Bridged Nucleic Acid/Locked Nucleic Acid)、啉核酸等。可列舉:膦酸甲酯型DNA/RNA、硫代磷酸酯型DNA/RNA、胺基磷酸酯型DNA/RNA、2'-O-甲基型DNA/RNA等。In the present specification, "nucleic acid (molecule)" refers to a biological polymer which, in principle, uses nucleotides as structural units, which are linked by phosphodiester bonds. Usually contains natural nucleic acids such as DNA and RNA. In the case of DNA, in addition to genomic DNA, mitochondrial DNA, chloroplast DNA, etc., all DNA molecules that may be present in the cell, it also includes cDNA prepared from mRNA by a reverse transcription reaction. Moreover, in the case of RNA, all RNA molecules including mRNA, rRNA, tRNA, snRNA, snoRNA, tmRNA, miRNA, etc., which may exist in the cell. In addition, in the case of a nucleic acid molecule artificially synthesized like a primer for identification of a crude drug in this aspect, it may include not only a natural nucleic acid but also a chemically modified nucleic acid or an approximate nucleic acid. Examples of the chemically modified nucleic acid or approximate nucleic acid include peptide nucleic acid (PNA: Peptide Nucleic Acid), peptide nucleic acid (PHONA) having a phosphate group, bridged nucleic acid (BNA / LNA: Bridged Nucleic Acid / Locked Nucleic Acid), Phosphoric acid and so on. Examples thereof include methyl phosphonate type DNA / RNA, phosphorothioate type DNA / RNA, amino phosphonate type DNA / RNA, 2'-O-methyl type DNA / RNA, and the like.

1-3.構成 於本說明書中,「生藥鑑別用引子」(於本說明書中,經常簡稱為「引子」。因此,只要未特別說明,則本說明書中之引子意指生藥鑑別用引子)係下述生藥鑑別方法中所使用之核酸擴增用引子,含有包含19個鹼基~23個鹼基之核酸分子(寡核苷酸)。較佳為包含天然核酸(DNA及/或RNA)。就穩定性較高,容易合成且較為廉價之方面而言,尤佳為包含DNA之引子。視需要,可於構成引子之鹼基序列之全部或一部分包含化學修飾核酸或近似核酸。進而,引子可經標記物質及/或修飾物質修飾。標記物質並無特別限定。例如可利用螢光物質及/或猝滅物質、或放射性同位素(例如32 P、33 P、35 S)等。作為螢光物質之具體例,可列舉:FITC(fluorescein isothiocyanate,螢光異硫氰酸鹽)、DIG(digoxin,地高辛)、Texas、Cy3、Cy5、Cy7、花青(Cyanine)3、花青5、花青7、FAM、HEX、VIC、熒胺及其衍生物、及若丹明及其衍生物等。又,作為猝滅物質之具體例,可列舉:TAMRA(carboxy tetramethyl rhoda mine,羧基四甲基若丹明)、DABCYL、BHQ-1、BHQ-2或BHQ-3等。修飾物質亦無特別限定。例如可列舉:生物素及抗生物素蛋白、抗生蛋白鏈菌素或中性抗生物素蛋白、或磁珠等。標記物質或修飾物質可使用由各製造商銷售之市售者。1-3. In this specification, "primer for identification of crude drugs" (often referred to as "primer" in this specification. Therefore, unless otherwise specified, primers in this specification means primers for identification of crude drugs) The primer for nucleic acid amplification used in the following method for identifying a drug contains a nucleic acid molecule (oligonucleotide) containing 19 to 23 bases. It is preferred to include natural nucleic acids (DNA and / or RNA). In terms of higher stability, easier synthesis, and cheaper, primers containing DNA are particularly preferred. Optionally, chemically modified nucleic acids or approximate nucleic acids may be included in all or part of the base sequence constituting the primer. Furthermore, the primer may be modified with a labeling substance and / or a modifying substance. The labeling substance is not particularly limited. For example, a fluorescent substance and / or a quenching substance, or a radioisotope (for example, 32 P, 33 P, 35 S) can be used. Specific examples of the fluorescent substance include FITC (fluorescein isothiocyanate), DIG (digoxin, digoxin), Texas, Cy3, Cy5, Cy7, cyanine 3, and flowers Cyan 5, Cyan 7, FAM, HEX, VIC, fluoramine and its derivatives, and rhodamine and its derivatives. Specific examples of the quenching substance include TAMRA (carboxy tetramethyl rhoda mine), DABCYL, BHQ-1, BHQ-2, and BHQ-3. The modifier is not particularly limited. Examples include biotin and avidin, streptavidin, neutral avidin, or magnetic beads. As the labeling substance or modifying substance, a commercially available one sold by each manufacturer can be used.

引子鹼基序列上之標記物質或修飾物質之修飾位置並無特別限定。只要根據使用之標記物質或修飾物質之特性或目的適當決定即可。若為標記物質,則通常多數情況下於5'或3'末端部進行修飾,當然並不限於此。又,亦可藉由一種以上之標記物質或修飾物質修飾一個引子。標記物質或修飾物質對引子之修飾方法只要藉由公知之方法進行即可。The modification position of the labeling substance or modifying substance on the primer base sequence is not particularly limited. It is only necessary to appropriately determine according to the characteristics or purpose of the marking substance or the modification substance to be used. If it is a labeling substance, it is usually modified at the 5 'or 3' end, but it is not limited to this. In addition, one primer may be modified by more than one labeling substance or modifying substance. A method for modifying a primer by a labeling substance or a modifying substance may be performed by a known method.

於本說明書中,「生藥鑑別用引子組」係包含正向引子及反向引子之生藥鑑別用引子之1個組。本態樣之生藥鑑別用引子組係如表1所示,對各生藥設計1組以上。再者,半夏與天南星、及蒼術與白術係分別基原植物不同之不同之生藥,但多數情況下兩者經常被混淆,又,進行混合處理,故而基於提高實用上之便利性及通用性之目的,以分別可使用1種引子組之方式設計。In the present specification, the "primer set for identification of crude drugs" refers to one group of the primers for identification of crude drugs including a forward primer and a reverse primer. The primer set for identification of the crude drug in this aspect is shown in Table 1, and more than one group is designed for each crude drug. In addition, Pinellia and Tiannanxing, and Atractylodes and Atractylodes are different raw medicines with different basic plants. However, in most cases, the two are often confused and mixed. Therefore, it is based on improving practical convenience and versatility. The purpose is to design so that each type of primer set can be used.

[表1] [Table 1]

具體而言,關於正向引子及反向引子,若為半夏/天南星,則分別為包含序列編號1及2所示之鹼基序列之多核苷酸,若為牡丹根/牡丹皮,則分別為包含序列編號3及4、序列編號5及6、或序列編號3及229所示之鹼基序列之多核苷酸,若為桂皮,則分別為包含序列編號7及8所示之鹼基序列之多核苷酸,若為當歸,則分別為包含序列編號9及10、或序列編號11及12所示之鹼基序列之多核苷酸,若為蒼術/白術,則分別為包含序列編號13及14所示之鹼基序列之多核苷酸,若為柴胡,則分別為包含序列編號15及16所示之鹼基序列之多核苷酸,若為天冬,則分別為包含序列編號17及18所示之鹼基序列之多核苷酸,若為山茱萸,則分別為包含序列編號19及20所示之鹼基序列之多核苷酸,若為百合,則分別為包含序列編號21及22、或序列編號23及24所示之鹼基序列之多核苷酸,若為紅蔘,則分別為包含序列編號25及26、或序列編號27及28所示之鹼基序列之多核苷酸,若為天麻,則分別為包含序列編號29及4、或序列編號30及31所示之鹼基序列之多核苷酸,若為黃芩,則分別為包含序列編號9及32、或序列編號11及33所示之鹼基序列之多核苷酸,若為人蔘,則分別為包含序列編號9及34、或序列編號35及36所示之鹼基序列之多核苷酸,若為升麻,則分別為包含序列編號37及38、序列編號11及39、序列編號37及40、或序列編號41及39所示之鹼基序列之多核苷酸,若為豬苓,則分別為包含序列編號42及43所示之鹼基序列之多核苷酸,若為附子,則分別為包含序列編號44及36、序列編號45及4、或序列編號46及4所示之鹼基序列之多核苷酸,若為辛夷,則分別為包含序列編號47及48、序列編號49及50、序列編號230及231、或序列編號232及50所示之鹼基序列之多核苷酸,若為丁香,則分別為包含序列編號51及52所示之鹼基序列之多核苷酸,若為鉤藤,則分別為包含序列編號53及54、序列編號55及56、序列編號57及54、或序列編號58及56所示之鹼基序列之多核苷酸,若為香附子,則分別為包含序列編號59及60、或序列編號41及61所示之鹼基序列之多核苷酸,若為黃連,則分別為包含序列編號62及63、或序列編號64及65所示之鹼基序列之多核苷酸,若為生薑/乾薑,則分別為包含序列編號66及67所示之鹼基序列之多核苷酸,若為山梔子,則分別為包含序列編號11及68所示之鹼基序列之多核苷酸,若為黃柏,則分別為包含序列編號69及70所示之鹼基序列之多核苷酸,若為厚樸,則分別為包含序列編號71及72、序列編號71及73、或序列編號74及72所示之鹼基序列之多核苷酸,若為澤瀉,則分別為包含序列編號75及76、序列編號77及78、序列編號75及79、或序列編號77及80所示之鹼基序列之多核苷酸,若為纈草,則分別為包含序列編號81及82所示之鹼基序列之多核苷酸,若為樸樕,則分別為包含序列編號83及84、序列編號83及85、或序列編號86及87所示之鹼基序列之多核苷酸,若為連翹,則分別為包含序列編號88及89、或序列編號90及91所示之鹼基序列之多核苷酸,若為良薑,則分別為包含序列編號92及93、或序列編號66及94所示之鹼基序列之多核苷酸,若為蓮子,則分別為包含序列編號95及4、或序列編號96及36所示之鹼基序列之多核苷酸,若為紅花,則分別為包含序列編號97及4、或序列編號44及36所示之鹼基序列之多核苷酸,且若為蘇木,則分別為包含序列編號98及99所示之鹼基序列之多核苷酸。Specifically, if the forward primer and the reverse primer are Pinellia terrestrial / Acetera, they are polynucleotides containing the base sequences shown in sequence numbers 1 and 2, respectively, and if they are peony root / peony bark, they are respectively Polynucleotides containing the base sequences shown in SEQ ID NOS: 3 and 4, SEQ ID NOs: 5 and 6, or SEQ ID NO: 3 and 229. If it is cinnamon, it contains the base sequences shown in SEQ ID NOs: 7 and 8 respectively. The polynucleotide, if it is Angelica sinensis, is a polynucleotide comprising the base sequences shown in sequence numbers 9 and 10, or the sequence numbers 11 and 12, respectively. The polynucleotide of the base sequence shown in 14 is a polynucleotide containing the base sequences shown in sequence numbers 15 and 16 if it is Chaihu. If it is Asparagus, it is a sequence of 17 and The polynucleotide of the base sequence shown in 18, if it is dogwood, is a polynucleotide containing the base sequences shown in sequence numbers 19 and 20, and the lily contains the sequence numbers of 21 and 22, respectively. Or the polynucleotide of the base sequence shown in sequence numbers 23 and 24, if it is red蔘, it is a polynucleotide containing the base sequences shown in sequence numbers 25 and 26, or sequence numbers 27 and 28, respectively. If it is Gastrodia, it is a sequence containing sequence numbers 29 and 4, or sequence numbers 30 and 31, respectively. The polynucleotide shown in the base sequence is a polynucleotide containing the base sequences shown in SEQ ID NOS: 9 and 32, or the sequence numbers of 11 and 33 if it is a bacon, and it is The polynucleotides of the base sequences shown in SEQ ID NOS: 9 and 34 or SEQ ID NO: 35 and 36, if they are Cimicifuga, include polynucleotides of SEQ ID NOs: 37 and 38, SEQ ID NOs: 11 and 39, SEQ ID NOs: 37 and 40, Or, the polynucleotides with the base sequences shown in sequence numbers 41 and 39, if it is Hodgkin, are the polynucleotides containing the base sequences shown in sequence numbers 42 and 43, respectively. The polynucleotides of SEQ ID NOs: 44 and 36, SEQ ID NOs: 45 and 4, or SEQ ID NOs: 46 and 4 are base sequences containing SEQ ID Nos. 47 and 48, SEQ ID Nos. 49 and 50, and sequences, respectively. Polynucleotides of the base sequences shown in SEQ ID NOs: 230 and 231, or SEQ ID NOs: 232 and 50 If it is clove, it is a polynucleotide containing the base sequences shown in sequence numbers 51 and 52, respectively. If it is Uncaria, it contains sequence numbers 53 and 54, sequence numbers 55 and 56, and sequence numbers 57 and 54. Or the polynucleotides having the base sequences shown in SEQ ID NOs: 58 and 56, if they are fragrant aconite, the polynucleotides include the base sequences shown in SEQ ID Nos. 59 and 60, or the SEQ ID Nos. 41 and 61, If it is Coptis chinensis, it is a polynucleotide containing the base sequences shown by sequence numbers 62 and 63, or sequence numbers 64 and 65, respectively. If it is ginger / dried ginger, it is shown by sequence numbers 66 and 67, respectively. The base sequence of the polynucleotide, if it is a mangosteen, is a polynucleotide containing the base sequence shown in sequence numbers 11 and 68, respectively, if the cork, it contains the base shown in sequence numbers 69 and 70, respectively If the polynucleotide of the base sequence is Magnolia officinalis, it is a polynucleotide comprising the base sequences shown by sequence numbers 71 and 72, sequence numbers 71 and 73, or sequence numbers 74 and 72, respectively. Contains sequence numbers 75 and 76, sequence numbers 77 and 78, and sequence number 75, respectively. And 79, or the polynucleotides having the base sequences shown in sequence numbers 77 and 80. If they are valerian, they are the polynucleotides containing the base sequences shown in sequence numbers 81 and 82, respectively. Then it is a polynucleotide comprising the base sequences shown by sequence numbers 83 and 84, sequence numbers 83 and 85, or sequence numbers 86 and 87, respectively. If it is forsythia, it contains sequence numbers 88 and 89, or sequence numbers, respectively. The polynucleotides of the base sequences shown in 90 and 91, if they are ginger, are the polynucleotides containing the base sequences shown in sequence numbers 92 and 93, or the sequence numbers of 66 and 94, respectively. If they are lotus seeds, It is a polynucleotide containing the base sequences shown in sequence numbers 95 and 4, or sequence numbers 96 and 36, respectively. If it is a safflower, it is a polynucleotide containing sequence numbers 97 and 4, or sequence numbers 44 and 36, respectively. A polynucleotide having a base sequence, and if it is hematoxylin, it is a polynucleotide comprising the base sequences shown in sequence numbers 98 and 99, respectively.

本態樣之生藥鑑別用引子組可藉由核酸擴增法擴增受檢植物中之特定之核酸區域。於本說明書中,「特定之核酸區域」係於各生藥中之基原植物之核酸分子中具有特異性之鹼基序列的區域。選擇為特定之核酸區域之區域必須為於構成基原植物之原植物種與不包含於基原植物之近緣種之間鹼基序列不同的區域。然而,一般於近緣種、尤其是同屬近緣種內,多數情況下基因之鹼基序列中之一致性較高,對基原植物具特異性之特定之核酸區域受到限定。另一方面,若基原植物特異性較高,且於與近緣種之間鹼基序列之差異過大,則引子僅可與基原植物雜交,故而難以進行引子設計。因此,特定之核酸區域必須為保存於基原植物與近緣種之間之區域,且為兩者之鹼基序列具有某一程度之差異之區域。此種特定之核酸區域係由各生藥決定。具體而言,若為半夏/天南星、牡丹根/牡丹皮、桂皮、當歸、蒼術/白術、柴胡、天冬、山茱萸、百合、紅蔘、天麻、黃芩、人蔘、升麻、豬苓、附子、丁香、鉤藤、香附子、山梔子、黃柏、澤瀉、纈草、樸樕、連翹、蓮子、紅花及蘇木,則核基因組中之核糖體DNA之ITS區域符合,若為辛夷,則葉綠體DNA之trnL內含子區域符合,若為黃連,則葉綠體DNA之rbcL區域符合,若為生薑/乾薑及良薑,則葉綠體DNA之matK區域符合,而且,若為厚樸,則葉綠體DNA之rpl16內含子區域符合。The primer set for identification of a crude drug in this aspect can amplify a specific nucleic acid region in a test plant by a nucleic acid amplification method. In the present specification, the "specific nucleic acid region" refers to a region having a specific base sequence in a nucleic acid molecule of a primitive plant in each crude drug. The region selected as the specific nucleic acid region must be a region having a different base sequence between the original plant species constituting the primitive plant and the related species not included in the primitive plant. However, generally in the related species, especially in the same related species, in most cases the identity of the base sequence of the gene is high, and the specific nucleic acid region specific to the primitive plant is limited. On the other hand, if the base plant has high specificity and the base sequence difference between the base plant and the relative species is too large, the primer can only cross the base plant, so it is difficult to design the primer. Therefore, the specific nucleic acid region must be a region preserved between the primordial plant and the related species, and a region in which the base sequences of the two differ to some extent. This specific nucleic acid region is determined by each crude drug. Specifically, if it is Pinellia ternate / Tiannanxing, Peony Root / Peony Bark, Cinnamon, Angelica, Atractylodes / Atractylodes, Bupleurum, Asparagus, Dogwood, Lily, Red Coriander, Gastrodia, Scutellaria baicalensis, Scutellaria baicalensis, Cimicifuga, Poria , Aconite, clove, vine, fragrant aconite, mandrill, cork, diarrhea, valerian, pupae, forsythia, lotus seed, safflower and hematoxylin, the ITS region of ribosomal DNA in the nuclear genome matches, if it is Xinyi The trnL intron region of the chloroplast DNA matches. If it is Coptis chinensis, the rbcL region of the chloroplast DNA matches. If it is ginger / dried ginger and good ginger, then the matK region of the chloroplast DNA matches, and if it is Magnolia officinalis, then The rpl16 intron region of chloroplast DNA conforms.

「核糖體DNA」(於本說明書中,經常記載為「rDNA」)係指編碼參與蛋白質合成之核糖體RNA(於本說明書中,經常記載為「rRNA」)之基因。真核生物之rRNA不論其種類,已知有18S rRNA、5.8S rRNA及28S rRNA 3種,編碼各者之18S rDNA、5.8S rDNA、28S rDNA連續存在於基因組上,重複數百至數萬次複製之重複序列。「ITS(Internal Transcribed Spacer,內轉錄間隔區)」係存在於18S rDNA與5.8S rDNA之間、及5.8S rDNA與28S rDNA之間之序列,分別稱為ITS1及ITS2。一般,rDNA之鹼基序列係自酵母至高等植物或哺乳動物,於種間廣泛保存,但由於ITS1及ITS2於處理之過程中被去除,故而可期待變異之累積。於本說明書中,將上述2個ITS、及存在於其之間之5.8s rDNA統稱為「ITS區域」。"Ribosomal DNA" (in this specification, often referred to as "rDNA") refers to a gene that encodes ribosomal RNA (in this specification, often referred to as "rRNA") involved in protein synthesis. Regardless of the type of eukaryotic rRNA, three types of 18S rRNA, 5.8S rRNA, and 28S rRNA are known. The 18S rDNA, 5.8S rDNA, and 28S rDNA encoding each exist continuously on the genome and are repeated hundreds to tens of thousands of times. Duplicated sequences. "ITS (Internal Transcribed Spacer)" is a sequence existing between 18S rDNA and 5.8S rDNA and between 5.8S rDNA and 28S rDNA, and is called ITS1 and ITS2, respectively. Generally, the base sequence of rDNA is from yeast to higher plants or mammals, and is widely stored among species. However, since ITS1 and ITS2 are removed during processing, accumulation of mutations can be expected. In the present specification, the two ITSs and the 5.8s rDNA existing between them are collectively referred to as "ITS regions".

「trnL」係存在於葉綠體DNA上,編碼tRNA(Leu)UAA(transfer RNA-Leucine,轉移RNA-白胺酸(UAA))之基因,「trnL內含子區域」係指trnL基因之內含子區域。一般,tRNA之鹼基序列係於生物種間高程度地保存,但由於內含子區域於剪切之過程中被去除,故而可期待變異之累積。"TrnL" is a gene that is present in chloroplast DNA and encodes tRNA (Leu) UAA (transfer RNA-Leucine). "TrnL intron region" refers to the intron of the trnL gene region. Generally, the base sequence of tRNA is preserved to a high degree among biological species, but since the intron region is removed during the process of shearing, accumulation of variation can be expected.

於本說明書中,「rbcL」係構成核酮糖1,5-二磷酸羧化酶/加氧酶(rbc:ribulose 1,5-bisphosphate carboxylase)之L次單元(Large subunit,大次單元)。rbc存在於具有還原性戊糖磷酸循環之所有原核、真核光合成生物及化學合成細菌,於種間高程度地保存。「rbcL區域」係指存在於葉綠體DNA上,編碼rbcL之rbcL基因之局部區域。In this specification, "rbcL" refers to the L subunit (Large subunit) of ribulose 1,5-bisphosphate carboxylase / oxygenase (rbc: ribulose 1,5-bisphosphate carboxylase). rbc exists in all prokaryotic, eukaryotic photosynthetic organisms and chemically synthesized bacteria with a reducing pentose phosphate cycle, and is preserved to a high degree among species. "RbcL region" refers to a local region of rbcL gene that is present on chloroplast DNA and encodes rbcL.

「matK」係存在於葉綠體DNA上,編碼參與mRNA剪切之成熟酶(maturase)之基因。「matK區域」係指matK基因之局部區域。"MatK" is a gene that is present on chloroplast DNA and encodes a maturase that participates in mRNA splicing. "MatK region" refers to a local region of the matK gene.

「rpl16」係編碼作為構成核糖體蛋白質之大次單元(Large subunit)之蛋白質之一之RPL16的基因,存在於葉綠體DNA上。「rpl16內含子區域」係指rpl16基因之內含子區域。與trnL內含子區域同樣地,核糖體蛋白質基因之鹼基序列係於生物種間高程度地保存,但由於內含子區域於剪切之過程中被去除,故而可期待變異之累積。"Rpl16" is a gene encoding RPL16 which is one of proteins constituting a large subunit of a ribosomal protein, and is present on chloroplast DNA. "Rpl16 intron region" refers to the intron region of the rpl16 gene. Like the trnL intron region, the base sequence of the ribosomal protein gene is highly preserved between species in the organism, but since the intron region is removed during the splicing process, the accumulation of variation can be expected.

關於經各生藥鑑別用引子組擴增之特定之核酸區域之鹼基序列,以生藥之基原植物之核酸分子(基因組DNA或葉綠體DNA)作為模板時之鹼基序列成為該生藥之「生藥標準序列」。每1組引子之生藥標準序列數係每一生藥而不同。其原因在於在各生藥中,基原植物之原植物數或特定之核酸區域數不同。例如於為蒼術/白術之情形時,作為蒼術之基原植物,可列舉:蒼術、北蒼術及其雜交種(蒼術×北蒼術),又,作為白術之基原植物,可列舉關蒼術。此處,於使用蒼術/白術鑑別用引子組(005-1F/1R)擴增特定之核酸區域之情形時,所獲得之擴增產物之鹼基序列、即蒼術/白術標準序列係每一種而不同。具體而言,若為蒼術,則成為序列編號107,若為北蒼術,則成為序列編號108,若為其雜交種,則成為序列編號109,而且,若為關蒼術,則成為序列編號110。因此,於為蒼術/白術之情形時,序列編號107~110所示之4個成為生藥標準序列。又,於為鉤藤之情形時,存在4處特定之核酸區域,故而對可擴增各者之4組鑑別用引子組(019-1F/1R、019-2F/2R、019-3F/1R及019-4F/2R)而言存在序列編號153~156所示之4個生藥標準序列。將與各生藥鑑別用引子組對應之標準序列之序列編號示於表2。Regarding the base sequence of a specific nucleic acid region amplified by the primer set of each biopharmaceutical, the base sequence of the nucleic acid molecule (genomic DNA or chloroplast DNA) of the original plant based on the biopharmaceutical becomes the "biopharmaceutical standard of that biopharmaceutical" sequence". The number of standard sequences of crude drugs per one set of primers is different for each crude drug. The reason for this is that the number of original plants or the number of specific nucleic acid regions of the base plants differ in each crude drug. For example, in the case of Atractylodes sibiricum / Atractylodes sibiricum, examples of Atractylodes sibiricum and Atractylodes sibiricum and their hybrids (Atractylodes sibiricum × Atractylodes sibiricum) can be cited as examples of Atractylodes sibiricum. Here, in the case where the specific nucleic acid region is amplified using the Atractylodes chinensis / Atractylodes chinensis identification primer set (005-1F / 1R), the base sequence of the amplification product obtained, that is, the standard sequence of Atractylodes chinensis / Atractylodes chinensis is each different. Specifically, it is sequence number 107 if it is Atractylodes, sequence number 108 if it is Atractylodes, sequence number 109 if it is a hybrid, and sequence number 110 if it is Guan Cang. Therefore, in the case of Atractylodes macrocephala / Atractylodes macrocephala, four of the serial numbers 107 to 110 become the standard sequence of crude drugs. In the case of Uncaria, there are four specific nucleic acid regions, so four sets of identification primer sets (019-1F / 1R, 019-2F / 2R, 019-3F / 1R) that can amplify each And 019-4F / 2R), there are four crude drug standard sequences shown by sequence numbers 153 to 156. The sequence numbers of the standard sequences corresponding to the primer sets for identification of each crude drug are shown in Table 2.

[表2] [Table 2]

具體而言,使用序列編號1及2所示之半夏/天南星鑑別用引子組時之半夏/天南星標準序列成為序列編號100或101,使用序列編號3及4所示之牡丹根/牡丹皮鑑別用引子組時之牡丹根/牡丹皮標準序列成為序列編號102或211,使用序列編號5及6所示之牡丹根/牡丹皮鑑別用引子組時之牡丹根標準序列成為序列編號103或221,使用序列編號3及229所示之牡丹根/牡丹皮鑑別用引子組時之牡丹根/牡丹皮標準序列成為序列編號244或245,使用序列編號7及8所示之桂皮鑑別用引子組時之桂皮標準序列成為序列編號104,使用序列編號9及10所示之當歸鑑別用引子組時之當歸標準序列成為序列編號105,使用序列編號11及12所示之當歸鑑別用引子組時之當歸標準序列成為序列編號106,使用序列編號13及14所示之蒼術/白術鑑別用引子組時之蒼術/白術標準序列成為序列編號107~110或289~291,使用序列編號15及16所示之柴胡鑑別用引子組時之柴胡標準序列成為序列編號111或294,使用序列編號17及18所示之天冬鑑別用引子組時之天冬標準序列成為序列編號112~115或299,使用序列編號19及20所示之山茱萸鑑別用引子組時之山茱萸標準序列成為序列編號116,使用序列編號21及22所示之百合鑑別用引子組時之百合標準序列成為序列編號117或311~314,使用序列編號23及24所示之百合鑑別用引子組時之百合標準序列成為序列編號118或324~326,使用序列編號25及26所示之紅蔘鑑別用引子組時之紅蔘標準序列成為序列編號119,使用序列編號27及28所示之紅蔘鑑別用引子組時之紅蔘標準序列成為序列編號120,使用序列編號29及4所示之天麻鑑別用引子組時之天麻標準序列成為序列編號121,使用序列編號30及31所示之天麻鑑別用引子組時之天麻標準序列成為序列編號122,使用序列編號9及32所示之黃芩鑑別用引子組時之黃芩標準序列成為序列編號123或391,使用序列編號11及33所示之黃芩鑑別用引子組時之黃芩標準序列成為序列編號124,使用序列編號9及34所示之人蔘鑑別用引子組時之人蔘標準序列成為序列編號125,使用序列編號35及36所示之人蔘鑑別用引子組時之人蔘標準序列成為序列編號126,使用序列編號37及38所示之升麻鑑別用引子組時之升麻標準序列成為序列編號127~130或401,使用序列編號11及39所示之升麻鑑別用引子組時之升麻標準序列成為序列編號131~134或409,使用序列編號37及40所示之升麻鑑別用引子組時之升麻標準序列成為序列編號135~138或415~416,使用序列編號41及39所示之升麻鑑別用引子組時之升麻標準序列成為序列編號139~142,使用序列編號42及43所示之豬苓鑑別用引子組時之豬苓標準序列成為序列編號143或430~432,使用序列編號44及36所示之附子鑑別用引子組時之附子標準序列成為序列編號144或145或433~434,使用序列編號45及4所示之附子鑑別用引子組時之附子標準序列成為序列編號146或147或439~440,使用序列編號46及4所示之附子鑑別用引子組時之附子標準序列成為序列編號148或149,使用序列編號47及48所示之辛夷鑑別用引子組時之辛夷標準序列成為序列編號150或678~681,使用序列編號49及50所示之辛夷鑑別用引子組時之辛夷標準序列成為序列編號151或693~696,使用序列編號230及231所示之辛夷鑑別用引子組時之辛夷標準序列成為序列編號450~454,使用序列編號232及50所示之辛夷鑑別用引子組時之辛夷標準序列成為序列編號465~469,使用序列編號51及52所示之丁香鑑別用引子組時之丁香標準序列成為序列編號152,使用序列編號53及54所示之鉤藤鑑別用引子組時之鉤藤標準序列成為序列編號153,使用序列編號55及56所示之鉤藤鑑別用引子組時之鉤藤標準序列成為序列編號154,使用序列編號57及54所示之鉤藤鑑別用引子組時之鉤藤標準序列成為序列編號155,使用序列編號58及56所示之鉤藤鑑別用引子組時之鉤藤標準序列成為序列編號156,使用序列編號59及60所示之香附子鑑別用引子組時之香附子標準序列成為序列編號157,使用序列編號41及61所示之香附子鑑別用引子組時之香附子標準序列成為序列編號158,使用序列編號62及63所示之黃連鑑別用引子組時之黃連標準序列成為序列編號159~162,使用序列編號64及65所示之黃連鑑別用引子組時之黃連標準序列成為序列編號163~166,使用序列編號66及67所示之生薑/乾薑鑑別用引子組時之生薑/乾薑標準序列成為序列編號167,使用序列編號11及68所示之山梔子鑑別用引子組時之山梔子標準序列成為序列編號168,使用序列編號69及70所示之黃柏鑑別用引子組時之黃柏標準序列成為序列編號169,使用序列編號71及72所示之厚樸鑑別用引子組時之厚朴標準序列成為序列編號170~172,使用序列編號71及73所示之厚樸鑑別用引子組時之厚朴標準序列成為序列編號173~175,使用序列編號74及72所示之厚樸鑑別用引子組時之厚朴標準序列成為序列編號176~178,使用序列編號75及76所示之澤瀉鑑別用引子組時之澤瀉標準序列成為序列編號179或180,使用序列編號77及78所示之澤瀉鑑別用引子組時之澤瀉標準序列成為序列編號181或182,使用序列編號75及79所示之澤瀉鑑別用引子組時之澤瀉標準序列成為序列編號183或184,使用序列編號77及80所示之澤瀉鑑別用引子組時之澤瀉標準序列成為序列編號185或186,使用序列編號81及82所示之纈草鑑別用引子組時之纈草標準序列成為序列編號187,使用序列編號83及84所示之樸樕鑑別用引子組時之樸樕標準序列成為序列編號188~191或593~594,使用序列編號83及85所示之樸樕鑑別用引子組時之樸樕標準序列成為序列編號192~195或601~602,使用序列編號86及87所示之樸樕鑑別用引子組時之樸樕標準序列成為序列編號196~199或609~612,使用序列編號88及89所示之連翹鑑別用引子組時之連翹標準序列成為序列編號200,使用序列編號90及91所示之連翹鑑別用引子組時之連翹標準序列成為序列編號201,使用序列編號92及93所示之良薑鑑別用引子組時之良薑標準序列成為序列編號202或633,使用序列編號66及94所示之良薑鑑別用引子組時之良薑標準序列成為序列編號203或638,使用序列編號95及4所示之蓮子鑑別用引子組時之蓮子標準序列成為序列編號204,使用序列編號96及36所示之蓮子鑑別用引子組時之蓮子標準序列成為序列編號205或646,使用序列編號97及4所示之紅花鑑別用引子組時之紅花標準序列成為序列編號206,使用序列編號44及36所示之紅花鑑別用引子組時之紅花標準序列成為序列編號207,而且,使用序列編號98及99所示之蘇木鑑別用引子組時之蘇木標準序列成為序列編號208。Specifically, the standard Pinellia ternata / Austria chinensis when using the Pinellia ternata / Australium identification primer set shown in sequence numbers 1 and 2 becomes the sequence number 100 or 101, and the peony root / peony bark shown in sequence numbers 3 and 4 is used. The standard sequence of peony root / peony skin when used for identification primer set becomes sequence number 102 or 211, and the standard sequence of peony root when used for peony root / peony skin identification set shown in sequence numbers 5 and 6 becomes sequence number 103 or 221. When using the peony root / peony bark primer set shown in sequence numbers 3 and 229, the standard sequence of peony root / peony bark becomes sequence number 244 or 245, and when using the cassia bartify primer set shown in sequence numbers 7 and 8 The standard cinnamon sequence is sequence number 104, the standard sequence of angelica when using the primer set for identification of angelica as shown in sequence numbers 9 and 10 is sequence number 105, and the angelica when using the primer set for identification of angelica as shown in sequence numbers 11 and 12. The standard sequence is sequence number 106, and the standard sequence of Atractylodes chinensis / Atractylodes chinensis when the Atractylodes chinensis / Atractylodes cerevisiae primer set shown in sequence numbers 13 and 14 is used, and the sequence number is 107 to 110 or 289 to 291. The standard sequence of Bupleurum when using the primer set for identification of Bupleurum as shown in sequence numbers 15 and 16 becomes sequence number 111 or 294, and the standard sequence of Asparagus when using the primer set for identification of Asparagus as shown in sequence numbers 17 and 18 becomes Sequence number 112 to 115 or 299. The standard dogwood sequence using the dogwood identification primer set shown in sequence numbers 19 and 20 becomes sequence number 116, and the lily standard using the primer set for lily identification shown in sequence numbers 21 and 22. The sequence becomes sequence number 117 or 311 to 314, and the standard sequence of lily when using the primer set for lily identification shown in sequence numbers 23 and 24 becomes sequence number 118 or 324 to 326, and the red spot identification shown in sequence numbers 25 and 26 is used. The standard sequence of red cricket when using a primer set becomes sequence number 119, and the standard sequence of red cricket when using a primer set for identification of red iris shown by sequence numbers 27 and 28 is sequence number 120, and Gastrodia elata as shown in sequence numbers 29 and 4. The standard sequence of Gastrodia at the time of the primer set for identification becomes sequence number 121, and the standard sequence of the Gastrodia at the time of using the primer set for identification of Gastrodia as sequence numbers 30 and 31 becomes sequence number 122. The standard sequence of Scutellaria baicalensis when using the primer set for identification of Scutellaria baicalensis represented by sequence numbers 9 and 32 becomes sequence number 123 or 391, and the standard sequence of Scutellaria baicalensis when using the primer set for identification of Scutellaria Baicalensis identified by sequence numbers 11 and 33 becomes sequence number 124 The standard sequence of the person when using the human / identification primer set shown in sequence numbers 9 and 34 is sequence number 125, and the standard sequence of the person when using the human / identification primer set shown by sequence numbers 35 and 36 is sequence number. 126. The standard sequence of Cimicifugae using the Cimicifugae primer set shown in sequence numbers 37 and 38 becomes sequence number 127 to 130 or 401. The cimicifugae using the Cimicifugae set primers shown in Sequence Numbers 11 and 39 is used. The standard sequence of hemp is 131 to 134 or 409, and the standard sequence of cimicifuga when using the primer set for identification of cimicaria identified by sequence numbers 37 and 40 is sequence number 135 to 138 or 415 to 416, and sequence numbers 41 and 39 are used. The standard sequence of Cimicifuga for the primer set for identification of Cimicifuga is shown as SEQ ID NOS: 139 to 142, and the standard sequence of Polyporia for the identification of primer set for identification of Potentillae shown in SEQ ID NOs: 42 and 43 is SEQ ID NO: 1 43 or 430 to 432, the standard sequence of aconite when using the aconite identification primer set shown in sequence numbers 44 and 36 becomes sequence number 144 or 145 or 433 to 434, and the aconite identification set shown in sequence numbers 45 and 4 is used The standard sequence of aconite at this time is sequence number 146 or 147 or 439 to 440. The standard sequence of aconite when the primer set for identification of aconite shown by sequence numbers 46 and 4 is sequence number 148 or 149, and shown by sequence numbers 47 and 48. The standard sequence of Xinyi when using the primer set for identification of Xinyi is sequence number 150 or 678-681, and the standard sequence of Xinyi when using the primer set for identification of Xinyi shown by sequence numbers 49 and 50 is sequence number 151 or 693-696. The standard sequence of Xinyi when using the primer set for identification of Xinyi shown by numbers 230 and 231 becomes sequence numbers 450 to 454, and the standard sequence of Xinyi when using the primer set for identification of Xinyi shown by sequence numbers 232 and 50 becomes sequence numbers 465-469. The standard sequence of syringa when using the syringe identification primer set shown in sequence numbers 51 and 52 becomes sequence number 152, and the syringa identification primer shown in sequence numbers 53 and 54 is used The standard sequence of Uncaria spp. At this time is sequence number 153, and the standard sequence of Uncaria spp. When using the primer set for identification of Uncaria spp. 55 and 56 is used as identification number 154. The standard sequence of Uncaria chinensis at the time of primer set becomes sequence number 155, and the standard sequence of Uncaria chinensis when the primer set for identification of Uncaria spp. Shown in sequence numbers 58 and 56 is used is sequence number 156, and the aconite used in sequence numbers 59 and 60 is used. The standard sequence of Aconite in the case of the primer set for identification becomes sequence number 157, and the standard sequence of the Aconite in the case of the primer set for identification of Aconite in sequence number 41 and 61 becomes sequence number 158, and the sequence shown in sequence numbers 62 and 63 is used. The standard sequence of Coptis chinensis in the case of primer set for identification of Coptis chinensis is sequence numbers 159 to 162, and the standard sequence of Coptis chinensis in use of the group of primers for identification of Coptis chinensis as shown in sequence numbers 64 and 65 becomes sequence numbers 163 to 166. The standard sequence of ginger / dried ginger shown in the ginger / dried ginger identification primer set is SEQ ID NO: 167. When using the primer set for identification of mandarin ginger shown in sequence numbers 11 and 68 The standard sequence of Zanthoxylum bungeanum becomes sequence number 168, and the standard sequence of Corkia chinensis when using the primer set for identification of cork spp. Shown in sequence numbers 69 and 70 becomes sequence number 169, and when using the primer set for identification of magnolia spp. Shown in sequence numbers 71 and 72. Magnolia standard sequences become sequence numbers 170 to 172, and Magnolia standard sequences when using the primer set for Magnolia identification shown in sequence numbers 71 and 73 become sequence numbers 173 to 175, and Magnolia shown in sequence numbers 74 and 72. The standard magnolia sequence when using the primer set for identification becomes sequence numbers 176 to 178, and the standard sequence for using the Alis case when identifying the primer set for sequence identification 75 and 76 is sequence number 179 or 180, using sequence numbers 77 and The standard sequence of Alisma orientalis when using the primer set for identification of Alisma as shown in 78 is sequence number 181 or 182, and the standard sequence of Alisena orientalis when using the primer set for identification of Alisma as serial numbers 75 and 79 is sequence number 183 or 184. The standard sequence of Alisma orientalis when using the Alisma orientalis primer set shown in sequence numbers 77 and 80 is SEQ ID NO: 185 or 186, and the primer set for valerian identification The Valerian standard sequence becomes sequence number 187, and the Park standard sequence when using the Parker identification primer set shown in sequence numbers 83 and 84 becomes sequence number 188 to 191 or 593 to 594, and the ones shown in sequence numbers 83 and 85 are used. The Parker standard sequence when using the primer set for Parker identification becomes sequence numbers 192 to 195 or 601 to 602, and the parker standard sequence when using the primer set for Parker identification as shown in sequence numbers 86 and 87 is sequence numbering 196 to 199. Or 609 to 612, the forsythia standard sequence when using the forsythia identification primer set shown in sequence numbers 88 and 89 becomes sequence number 200, and the forsythia standard sequence when using the forsythia identifying primer set shown in sequence numbers 90 and 91 becomes sequence No. 201, the standard sequence of the ginger when using the ginger identification primer set shown in sequence numbers 92 and 93 becomes sequence number 202 or 633, and the ginger when using the primer set for ginger identification shown in sequence numbers 66 and 94 The standard sequence becomes sequence number 203 or 638. The standard sequence of lotus seeds when using the primer set for lotus seed identification shown in sequence numbers 95 and 4 becomes sequence number 204, and the lotus seed identification shown in sequence numbers 96 and 36 is used. The standard sequence of the lotus seeds when the primer set is not used is sequence number 205 or 646, and the standard sequence of the safflower when the primer set is identified by sequence numbers 97 and 4 is sequence number 206. The safflower shown by sequence numbers 44 and 36 is used The safflower standard sequence when the primer set for identification is sequence number 207, and the standard sequence for hematoxylin when the primer set for hematoxylin identification shown in sequence numbers 98 and 99 is used is sequence number 208.

各生藥鑑定用引子可於5'末端側視需要包含標籤序列、條碼序列、接頭序列等。Each biopharmaceutical identification primer may include a tag sequence, a barcode sequence, a linker sequence, and the like at the 5 'end side.

引子較佳為藉由化學合成法合成。只要基於上述生藥之鑑定用引子組中之正向引子及反向引子之鹼基序列資訊進行合成即可。合成亦可利用核酸合成寄存服務。The primer is preferably synthesized by a chemical synthesis method. It only needs to be synthesized based on the base sequence information of the forward primer and the reverse primer in the primer set for identification of the above-mentioned crude drug. Synthesis can also take advantage of nucleic acid synthesis hosting services.

2.生藥鑑別套組 2-1.概要 本發明之第2態樣係一種生藥鑑別套組。本態樣之生藥鑑別套組包含實施鑑別受驗植物是否為生藥之基原植物之第3態樣中所記載之生藥鑑別方法所需的要素作為構成要素。藉由於本態樣中使用生藥鑑別套組,可簡便地進行受驗植物之生藥鑑別。2. Drug identification kit 2-1. Overview The second aspect of the present invention is a drug identification kit. The biopharmaceutical identification kit according to this aspect includes, as constituent elements, the elements required to implement the biopharmaceutical identification method described in the third aspect of identifying whether the test plant is a base plant of the crude drug. By using the crude drug identification kit in this aspect, the crude drug identification of the test plant can be easily performed.

2-2.構成 本態樣之生藥鑑別套組包含第1態樣中所記載之生藥鑑別用引子組作為必需之構成要素。於本態樣之生藥鑑別套組中,針對一種生藥之鑑別用引子組可包含2組以上。例如於為牡丹根鑑別用引子組之情形時,可單獨包含序列編號3及4之1組引子組,亦可包含序列編號3及4以及序列編號5及6之2組引子組。又,一個套組中所包含之生藥之種類可為2種以上。例如可於1個套組中包含辛夷及厚樸之各者之生藥鑑別用引子組。2-2. Composition The biopharmaceutical identification kit of this aspect includes the primer set for biopharmaceutical identification described in the first aspect as an essential constituent element. In the biopharmaceutical identification kit of this aspect, the primer set for identification of one biopharmaceutical may include two or more groups. For example, in the case of the peony root identification primer set, one set of primer sets of sequence numbers 3 and 4 may be separately included, and two set of primer sets of sequence numbers 3 and 4 may also be included. The number of types of crude drugs included in one set may be two or more. For example, one set can include a primer set for identification of each of Xinyi and Magnolia.

生藥鑑別套組可包含各生藥之標準序列資訊作為選擇構成要素。「各生藥之標準序列資訊」係以由各生藥之基原植物製備之核酸作為模板,使用該生藥之鑑別用引子進行核酸擴增反應所獲得之擴增產物之鹼基序列資訊。例如使用序列編號1及2所示之半夏/天南星鑑別用引子組時之半夏標準序列係序列編號100所示之鹼基序列,又,天南星標準序列成為序列編號101所示之鹼基序列。於生藥鑑別套組中,可於記錄於紙介質或CD-ROM(compact disc read only memory,唯讀光碟)等電子介質等資訊傳遞介質之狀態下,或者以經由網際網路提供資訊之URL(uniform resource locator,統一資源定位符)之形式包含與所包含之生藥鑑別用引子組對應之標準序列資訊。The crude drug identification kit may include standard sequence information of each crude drug as a selection constituent element. The "standard sequence information of each crude drug" refers to the base sequence information of the amplified product obtained by using the nucleic acid prepared from the original plant of each crude drug as a template and using the primers for nucleic acid amplification reaction for identification of the crude drug. For example, the Pinellia ternata / Aurora star identification primer set shown in sequence numbers 1 and 2 is used as the base sequence shown in sequence number 100, and the Aurora standard sequence is the base sequence shown in sequence number 101. . In the biopharmaceutical identification kit, it can be recorded on a paper medium or an information transmission medium such as a compact disc read only memory (CD-ROM) or an electronic medium, or a URL (information provided via the Internet) The form of uniform resource locator contains standard sequence information corresponding to the contained primer set for identification of crude drugs.

此外,生藥鑑別套組可包含用以自受驗植物提取核酸分子之試劑(例如苄基氯、界面活性劑等)、用以使用生藥鑑別用引子進行核酸擴增反應之試劑(耐熱性DNA聚合酶、dNTP、Mg2+ 等)、及/或使用說明書等。In addition, the biopharmaceutical identification kit may include reagents (e.g. benzyl chloride, surfactant, etc.) for extracting nucleic acid molecules from the test plant, and reagents (heat-resistant DNA polymerization) for nucleic acid amplification reactions using primers for biopharmaceutical identification. Enzymes, dNTPs, Mg 2+, etc.), and / or instructions for use.

3.生藥鑑別方法 3-1.概要 本發明之第3態樣係一種生藥鑑別方法。本態樣之生藥鑑別方法係藉由使用第1態樣中所記載之生藥鑑別用引子組準確地鑑定生藥候補之受檢植物是否為目標生藥之基原植物,而鑑別該生藥候補為目標生藥之方法。藉由使用本態樣之方法,可簡便且準確地鑑別生藥。3. Identification method of crude drug 3-1. Overview The third aspect of the present invention is a identification method of crude drug. The biological drug identification method of this aspect uses the primer set for identification of the biological drug described in the first aspect to accurately identify whether the candidate plant of the biological drug candidate is the basic plant of the target crude drug, and to identify the biological drug candidate as the target crude drug. method. By using this method, the crude drug can be easily and accurately identified.

3-2.方法 本態樣之生藥鑑別方法包括核酸提取步驟、核酸擴增步驟、鹼基序列確定步驟及比較鑑別步驟作為必需步驟。以下,對各步驟具體地進行說明。3-2. Method The method for identifying a crude drug in this aspect includes a nucleic acid extraction step, a nucleic acid amplification step, a base sequence determination step, and a comparison identification step as necessary steps. Each step will be specifically described below.

(1)核酸提取步驟 「核酸提取步驟」係自生藥候補之受檢植物提取核酸分子之步驟。於本方法中,對成為檢查對象之受檢植物多數情況下實施蒸汽處理、加熱、乾燥、溶液浸漬等加工處理。因此,只要採集經該等加工處理之受檢植物之一部分,藉由該領域中之常規方法提取核酸分子即可。核酸提取方法只要根據應提取之核酸分子之種類使用較佳之方法即可。例如於提取DNA之情形時,可利用CTAB(Cetyl trimethyl ammonium bromide,十六烷基三甲基溴化銨)法、苄基氯法等。又,可列舉AGPC(acid guanidinium thiocyanate-phenol-chloroform,酸性硫氰酸胍-苯酚-氯仿)法。關於該等之具體之順序等,只要參照該領域之操作說明即可。作為操作說明,例如可列舉Green, MR and Sambrook, J, (2012)Molecular Cloning: A Laboratory Manual Fourth Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York。進而,自植物體提取各種核酸分子之套組係由Qiagen公司、Takara Bio公司、TOYOBO公司、Thermo Fisher Scientific公司、Promega公司等各生命科學製造商市售,亦可利用該等。(1) Nucleic acid extraction step The "nucleic acid extraction step" is a step of extracting a nucleic acid molecule from a test plant candidate for a crude drug. In this method, in many cases, the test plants to be inspected are subjected to processing treatments such as steam treatment, heating, drying, and solution impregnation. Therefore, it is only necessary to collect a part of the test plant that has undergone such processing and extract the nucleic acid molecule by a conventional method in the field. The nucleic acid extraction method may be any method as long as it is based on the type of nucleic acid molecule to be extracted. For example, in the case of DNA extraction, the CTAB (Cetyl trimethyl ammonium bromide) method, the benzyl chloride method, or the like can be used. In addition, the AGPC (acid guanidinium thiocyanate-phenol-chloroform) method can be mentioned. Regarding the specific order of these, it is sufficient to refer to the operation instructions in the field. Examples of operations include Green, MR and Sambrook, J, (2012) Molecular Cloning: A Laboratory Manual Fourth Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York. Furthermore, kits for extracting various nucleic acid molecules from plants are commercially available from various life science manufacturers such as Qiagen, Takara Bio, TOYOBO, Thermo Fisher Scientific, and Promega, and these can also be used.

(2)核酸擴增步驟 「核酸擴增步驟」係以上述核酸提取步驟中所獲得之受檢植物之核酸分子作為模板,使用第1態樣中所記載之生藥鑑定用引子組使特定之核酸區域擴增之步驟。(2) Nucleic acid amplification step The "nucleic acid amplification step" uses a nucleic acid molecule of a test plant obtained in the above-mentioned nucleic acid extraction step as a template, and uses the primer set for biopharmaceutical identification described in the first aspect to make a specific nucleic acid. Steps for regional amplification.

於本說明書中,「核酸擴增法」係指使用引子,藉由核酸聚合酶使靶核酸擴增之方法。例如可列舉:PCR(polymerase chain reaction,聚合酶鏈反應)法(包含RT-PCR(reverse transcription-polymerase chain reaction,反轉錄-聚合酶鏈反應)法)、NASBA(Nucleic Acid Sequence-Based Amplification,基於核酸序列之擴增)法、ICAN(Isothermal and Chimeric primer-initiated Amplification of Nucleic acids,由等溫嵌合引子引發之核酸擴增)法、LAMP(Loop-Mediated Isothermal Amplification,環介導等溫擴增)(註冊商標)法(包含RT-LAMP(reverse transcription loop-mediated isothermal amplification,反轉錄-環介導等溫擴增)法)。本發明中使用之核酸擴增法並無限定,較佳為PCR法。又,於用作模板之核酸分子為mRNA之情形時,具體而言,於為rbcL mRNA或matK mRNA之情形時,核酸擴增步驟使用NASBA法之類之RNA擴增法,或者如RT-PCR法或RT-LAMP法般,藉由反轉錄反應將mRNA製備為cDNA後使用DNA擴增法。In the present specification, the "nucleic acid amplification method" refers to a method in which a target nucleic acid is amplified by a nucleic acid polymerase using a primer. Examples include: PCR (polymerase chain reaction) method (including reverse transcription-polymerase chain reaction (RT-PCR) method), NASBA (Nucleic Acid Sequence-Based Amplification, based on Nucleic acid sequence amplification) method, ICAN (Isothermal and Chimeric primer-initiated Amplification of Nucleic acids) method, LAMP (Loop-Mediated Isothermal Amplification, loop-mediated isothermal amplification ) (Registered trademark) method (including RT-LAMP (reverse transcription loop-mediated isothermal amplification) method). The nucleic acid amplification method used in the present invention is not limited, and the PCR method is preferred. In the case where the nucleic acid molecule used as a template is mRNA, specifically, in the case where it is rbcL mRNA or matK mRNA, the nucleic acid amplification step uses an RNA amplification method such as NASBA method, or RT-PCR Like the RT-LAMP method, mRNA is prepared as cDNA by a reverse transcription reaction and then the DNA amplification method is used.

本步驟中使用之生藥鑑定用引子組係生藥候補設為鑑別對象之目標生藥之基原植物用引子組。例如,若生藥候補設為鑑別對象之目標生藥為半夏,則使用序列編號1及2所示之半夏/天南星鑑別用引子組。又,若生藥候補設為鑑別對象之目標生藥為牡丹根,則使用序列編號3及4、及/或序列編號5及6所示之牡丹根鑑別用引子組。The primer set for identification of a crude drug used in this step is a primer set for a primitive plant of a target crude drug set as a candidate for identification. For example, if the target biopharmaceutical candidate for which the biopharmaceutical candidate is to be identified is Pinellia ternata, the Pinellia terrestrial / Astralis discrimination primer set shown in sequence numbers 1 and 2 is used. In addition, if the target biopharmaceutical candidate for which the biopharmaceutical candidate is to be identified is peony root, a peony root identification primer set shown in sequence numbers 3 and 4 and / or sequence numbers 5 and 6 is used.

關於各核酸擴增方法,於該領域中為公知,只要以各種操作說明中所記載之條件作為參考進行即可。作為操作說明集之例,可列舉上述Green, MR and Sambrook, J, (2012), Domingues L. (2017) PCR: Methods and Protocols, Methods in Molecular Biology, Humana Press或Park DJ, (2010) PCR Protocols, Methods in Molecular Biology, Third Edition, Humana Press等。再者,若於本步驟中,於合成模板之互補鏈時出現G-C鹼基對或A-T鹼基對以外之錯誤,則於下述比較鑑別步驟中,於驗證鹼基序列與標準序列之差異時,可能會帶來錯誤之比較結果,故而鑑別精度明顯降低。因此,核酸擴增反應中使用之聚合酶較佳為使用互補鏈合成時之錯誤率較低之高保真聚合酶(例如Pfu DNA聚合酶)。Each nucleic acid amplification method is well known in the art, and may be performed with reference to the conditions described in various operating instructions. As an example of the instruction set, Green, MR and Sambrook, J, (2012), Domingues L. (2017) PCR: Methods and Protocols, Methods in Molecular Biology, Humana Press or Park DJ, (2010) PCR Protocols , Methods in Molecular Biology, Third Edition, Humana Press, etc. Furthermore, if in this step, errors other than GC base pairs or AT base pairs occur when synthesizing the complementary strands of the template, in the following comparison and identification step, when verifying the difference between the base sequence and the standard sequence, , May lead to erroneous comparison results, so the discrimination accuracy is significantly reduced. Therefore, the polymerase used in the nucleic acid amplification reaction is preferably a high-fidelity polymerase (such as Pfu DNA polymerase) with a lower error rate in the synthesis of complementary strands.

核酸擴增用套組係由如上所述之各生命科學製造商市售,亦可利用該等。於此情形時,關於核酸擴增方法之條件等,只要按照隨附或各製造商推薦之操作說明即可。Nucleic acid amplification kits are commercially available from various life science manufacturers as described above, and these can also be used. In this case, as for the conditions and the like of the nucleic acid amplification method, it is only necessary to follow the operation instructions attached or recommended by each manufacturer.

(3)鹼基序列確定步驟 「鹼基序列確定步驟」係確定上述核酸擴增步驟中所獲得之擴增產物之鹼基序列之步驟。 核酸擴增步驟後獲得之擴增產物係受檢植物中之特定之核酸區域。確定該擴增產物之鹼基序列。(3) Base sequence determination step The "base sequence determination step" is a step of determining a base sequence of an amplification product obtained in the aforementioned nucleic acid amplification step. The amplified product obtained after the nucleic acid amplification step is a specific nucleic acid region in the test plant. The base sequence of the amplified product is determined.

擴增產物亦可於確定鹼基序列之前,視需要進行精製及/或選殖。擴增產物之精製可利用該領域中公知之各種核酸精製法。例如可列舉:藉由凝膠電泳之分離提取方法、使用二氧化矽基質或二氧化矽膜等之吸附精製方法等。關於核酸之精製方法,可以各種操作說明集中所記載之方法作為參考。例如可列舉上述Green, MR and Sambrook, J, (2012), Domingues L. (2017)或Park DJ, (2010)等。進而,核酸精製套組多數亦由如上所述之各生命科學製造商市售,亦可利用該等。於此情形時,關於核酸精製方法之具體之條件等,只要按照隨附或各製造商推薦之操作說明即可。The amplified products can also be purified and / or selected as necessary before the base sequence is determined. The purification of the amplification product can be performed by various nucleic acid purification methods known in the art. Examples include a separation and extraction method by gel electrophoresis, an adsorption purification method using a silicon dioxide matrix, a silicon dioxide film, or the like. Regarding the method for purifying nucleic acids, the methods described in various operating instructions can be used as reference. For example, Green, MR and Sambrook, J, (2012), Domingues L. (2017) or Park DJ, (2010) can be cited. Furthermore, many nucleic acid purification kits are also commercially available from various life science manufacturers as described above, and these can also be used. In this case, the specific conditions and the like of the nucleic acid purification method can be as long as they follow the operation instructions attached or recommended by each manufacturer.

擴增產物之選殖可藉由將所獲得之擴增產物引入至質體等,導入至大腸桿菌等宿主內,自其轉形體回收而達成。關於擴增產物之選殖法,亦於該領域中為公知,只要按照上述操作說明集等中所記載之方法進行即可。關於該擴增產物之選殖,各生命科學製造商亦市售各種選殖用套組。例如若為擴增產物之選殖用,則可列舉Mighty TA-cloning Kit(Takara Bio公司)等。若利用該等市售之套組,則較為便利。The selection of the amplification product can be achieved by introducing the obtained amplification product into a plastid or the like, introducing it into a host such as Escherichia coli, and recovering the transformant. The colony selection method for amplification products is also known in the art, and may be performed according to the methods described in the above-mentioned operation instruction set and the like. Regarding the selection of the amplified product, various life science manufacturers also sell various selection kits for selection. For example, for breeding of amplification products, Mighty TA-cloning Kit (Takara Bio) can be cited. It is more convenient to use these commercially available sets.

擴增產物之鹼基序列確定法只要藉由該領域中之公知之鹼基序列確定法實施即可。例如除一般之桑格法(雙脫氧法)以外,亦可列舉:焦磷酸定序法(Roche公司)、合成定序法(Illumina公司)、結紮定序法(Thermo Fisher Scientific公司)、離子半導體定序法(Thermo Fisher Scientific公司)等下一代定序法。該等方法係於該領域中為公知,除各種操作說明集以外,亦可以各公司網站所揭示之方法作為參考。The method for determining the base sequence of an amplification product may be performed by a method known in the art for base sequence determination. For example, in addition to the general Sanger method (dideoxy method), pyrophosphate sequencing method (Roche), synthetic sequencing method (Illumina), ligation sequencing method (Thermo Fisher Scientific), and ion semiconductor Sequencing method (Thermo Fisher Scientific) and other next-generation sequencing methods. These methods are well known in the field. In addition to various operation instruction sets, the methods disclosed on the websites of various companies can also be used as a reference.

藉由本步驟確定之擴增產物之鹼基序列之準確性就本發明之主旨而言較為重要。因此,較佳為桑格法之類之序列讀取之錯誤率較低之鹼基序列確定法。The accuracy of the base sequence of the amplification product determined by this step is important for the purpose of the present invention. Therefore, a base sequence determination method with a low error rate for sequence reads such as the Sanger method is preferred.

(4)比較鑑別步驟 「比較鑑別步驟」係如下步驟:將藉由上述鹼基序列確定步驟所確定之受檢植物中之特定之核酸區域之鹼基序列與目標生藥之基原植物中之標準序列進行比較,於兩者之鹼基序列一致時,鑑別為該受檢植物為其基原植物,上述生藥候補為目標生藥。(4) Comparative identification step The "comparative identification step" is a step of comparing the base sequence of the specific nucleic acid region in the test plant determined by the above-mentioned base sequence determination step with the standard in the original plant of the target crude drug The sequences are compared, and when the base sequences of the two are the same, the test plant is identified as the primordial plant, and the above-mentioned crude drug candidate is the target crude drug.

基原植物之標準序列係於與受檢植物相同之條件下,對基原植物進行核酸提取步驟、核酸擴增步驟及鹼基序列確定步驟所獲得之特定之核酸區域之鹼基序列。該標準序列具有對基原植物具特異性之序列,即便為基原植物之同屬近緣種或類似種,原則上其一部分鹼基亦不同。The standard sequence of the base plant is the base sequence of a specific nucleic acid region obtained by performing a nucleic acid extraction step, a nucleic acid amplification step, and a base sequence determination step on the base plant under the same conditions as the test plant. This standard sequence has a sequence specific to the primitive plant. Even if it is a close relative or similar species of the primitive plant, in principle, some of its bases are different.

因此,將受檢植物中之特定之核酸區域之鹼基序列與基原植物之標準序列進行比較,若其序列完全一致,則可準確地鑑定為受檢植物為基原植物。若受檢植物為目標生藥之基原植物,則可鑑別為該生藥候補為目標生藥。另一方面,於受檢植物中之特定之核酸區域之鹼基序列與目標生藥之基原植物之標準序列不一致的情形時,認定為受檢植物不為基原植物,或者混合存在不為基原植物之植物種。因此,可鑑別為生藥候補不為目標生藥。Therefore, the base sequence of a specific nucleic acid region in the test plant is compared with the standard sequence of the base plant. If the sequences are completely identical, the test plant can be accurately identified as the base plant. If the tested plant is the original plant of the target crude drug, it can be identified as the candidate crude drug as the target crude drug. On the other hand, when the base sequence of a specific nucleic acid region in the test plant is not consistent with the standard sequence of the target plant of the original drug, it is determined that the test plant is not a base plant or a mixture of non-base plants Plant species of the original plant. Therefore, it can be identified that the candidate drug is not the target drug.

以下,對於各生藥中準確地鑑定受檢植物是否為目標生藥之基原植物,基於其結果鑑別生藥之具體之步驟進行說明。In the following, specific steps for accurately identifying whether a test plant is a basic plant of a target crude drug in each crude drug and identifying the crude drug based on the result are described.

(半夏/天南星之鑑別方法) 自半夏或天南星候補之受檢植物提取核酸,以該核酸作為模板,使用包含序列編號1及2所示之鹼基序列之引子組擴增核糖體DNA之ITS區域後,確定擴增產物之鹼基序列。其後,將擴增產物之鹼基序列與作為半夏之標準序列之序列編號100所示之鹼基序列或作為天南星之標準序列之序列編號101所示之鹼基序列進行比較,於兩者之鹼基序列任一者一致時,鑑別為上述受檢植物為半夏或天南星之基原植物,上述半夏或天南星候補為半夏或天南星。例如於擴增產物之鹼基序列與序列編號100所示之鹼基序列完全一致之情形時,可鑑別為該生藥候補為半夏。(Identification method of Pinellia terrestrial / Austria star) Nucleic acid is extracted from a candidate plant candidate for Pinellia terrestrial or Araceae, and the nucleic acid is used as a template to amplify ribosomal DNA using a primer set containing the base sequences shown in sequence numbers 1 and 2. After the ITS region, the base sequence of the amplified product is determined. Thereafter, the base sequence of the amplified product is compared with the base sequence shown by sequence number 100 as the standard sequence of Pinellia ternata or the base sequence shown by sequence number 101 as the standard sequence of Tiannanxing. When any of the base sequences are consistent, it is identified that the above-mentioned test plant is a primordial plant of Pinellia ternata or Araceae, and the candidate of the above-mentioned Pinellia ternata or Araceae is Pinellia ternata or Araceae. For example, when the base sequence of the amplified product completely matches the base sequence shown in SEQ ID NO: 100, it can be identified as Pinellia ternata.

(牡丹根/牡丹皮之鑑別方法) 自牡丹根或牡丹皮候補之受檢植物提取核酸,以該核酸作為模板,使用包含序列編號3及4、序列編號5及6、或序列編號3及229所示之鹼基序列之引子組擴增核糖體DNA之ITS區域後,確定擴增產物之鹼基序列。其後,例如將使用包含序列編號3及4所示之鹼基序列之引子組時之擴增產物之鹼基序列與作為牡丹根之標準序列之序列編號102或作為牡丹皮之標準序列之序列編號211所示之鹼基序列、使用包含序列編號5及6所示之鹼基序列之引子組時之擴增產物之鹼基序列與作為牡丹根之標準序列之序列編號103或作為牡丹皮之標準序列之序列編號221所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為牡丹根或牡丹皮之基原植物,上述牡丹根或牡丹皮候補為牡丹根或牡丹皮。(Identification method of peony root / peony bark) A nucleic acid is extracted from a peony root or peony bark candidate plant, and using the nucleic acid as a template, the sequence numbers 3 and 4, sequence numbers 5 and 6, or sequence numbers 3 and 229 are used. The primer set of the base sequence shown amplifies the ITS region of ribosomal DNA and determines the base sequence of the amplified product. Thereafter, for example, the base sequence of the amplified product when the primer set including the base sequences shown in sequence numbers 3 and 4 is used and the sequence number 102 as the standard sequence of the peony root or the sequence as the standard sequence of the peony skin The base sequence shown by number 211, the base sequence of the amplification product when the primer set including the base sequences shown by sequence numbers 5 and 6 is used, and the sequence number 103 as a standard sequence of peony root or as a peony skin The base sequence shown in sequence number 221 of the standard sequence is compared. When the base sequences of the two are consistent, it is identified that the above-mentioned test plant is a peony root or peony bark original plant, and the above-mentioned peony root or peony bark candidate is Peony root or peony skin.

(桂皮之鑑別方法) 自桂皮候補之受檢植物提取核酸,以該核酸作為模板,使用包含序列編號7及8所示之鹼基序列之引子組擴增核糖體DNA之ITS區域後,確定擴增產物之鹼基序列。其後,將擴增產物之鹼基序列與作為桂皮之標準序列之序列編號104所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為桂皮之基原植物,上述桂皮候補為桂皮。(Cinnamon identification method) A nucleic acid is extracted from a test plant candidate for cinnamon, and the nucleic acid is used as a template, and the ITS region of ribosomal DNA is amplified using a primer set including the base sequences shown in sequence numbers 7 and 8, and the amplification is determined. The base sequence of the product. Thereafter, the base sequence of the amplified product was compared with the base sequence shown by sequence number 104, which is the standard sequence of cinnamon, and when the base sequences of the two were consistent, it was identified that the above-mentioned test plant was the base of cinnamon. For the original plant, the above cinnamon candidates are cinnamon.

(當歸之鑑別方法) 自當歸候補之受檢植物提取核酸,以該核酸作為模板,使用包含序列編號9及10、或序列編號11及12所示之鹼基序列之引子組擴增核糖體DNA之ITS區域後,確定擴增產物之鹼基序列。其後,將使用包含序列編號9及10所示之鹼基序列之引子組時之擴增產物之鹼基序列與作為當歸之標準序列之序列編號105所示之鹼基序列、或使用包含序列編號11及12所示之鹼基序列之引子組時之擴增產物之鹼基序列與作為當歸之標準序列之序列編號106所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為當歸之基原植物,上述當歸候補為當歸。(Identification method of Angelica sinensis) A nucleic acid is extracted from a candidate plant of Angelica sinensis, and the nucleic acid is used as a template, and ribosomal DNA is amplified using a primer set including the base sequences shown in SEQ ID NOS: 9 and 10 or SEQ ID NO: 11 and 12. After the ITS region, the base sequence of the amplified product is determined. Thereafter, the base sequence of the amplified product when the primer set including the base sequences shown in sequence numbers 9 and 10 is used and the base sequence shown in sequence number 105 as the standard sequence of Angelica sinensis, or the containing sequence is used The base sequence of the amplified product at the time of the primer set of the base sequences shown in numbers 11 and 12 is compared with the base sequence shown in sequence number 106, which is the standard sequence of Angelica sinensis. It was identified that the above-mentioned tested plant was the original plant of Angelica sinensis, and the above-mentioned candidate of Angelica sinensis was Angelica sinensis.

(蒼術/白術之鑑別方法) 自蒼術或白術候補之受檢植物提取核酸,以該核酸作為模板,使用包含序列編號13及14所示之鹼基序列之引子組擴增核糖體DNA之ITS區域後,確定擴增產物之鹼基序列。其後,將擴增產物之鹼基序列與作為蒼術標準序列之序列編號107~109中之任一者所示之鹼基序列、或作為白術之標準序列之序列編號110及289~291中之任一者所示之鹼基序列進行比較,於兩者之鹼基序列任一者一致時,鑑別為上述受檢植物為蒼術或白術之基原植物,上述蒼術或白術候補為蒼術或白術。(Identification method of Atractylodes chinensis / Atractylodes chinensis) A nucleic acid is extracted from a test plant candidate for Atractylodes chinensis or Atractylodes chinensis, and the ITS region of ribosomal DNA is amplified using the nucleic acid as a template and a primer set including the base sequences shown in SEQ ID NOs: 13 and 14. Then, the base sequence of the amplified product is determined. Thereafter, the base sequence of the amplified product and the base sequence shown in any one of sequence numbers 107 to 109 as the standard sequence of Atractylodes spp. Or the sequence numbers 110 and 289 to 291 as the standard sequence of Atractylodes spp. The base sequences shown in any one are compared, and when either of the base sequences is consistent, it is identified that the above-mentioned test plant is a primitive plant of Atractylodes or Atractylodes, and the candidate of Atractylodes or Atractylodes is Atractylodes or Atractylodes.

(柴胡之鑑別方法) 自柴胡候補之受檢植物提取核酸,以該核酸作為模板,使用包含序列編號15及16所示之鹼基序列之引子組擴增核糖體DNA之ITS區域後,確定擴增產物之鹼基序列。其後,將擴增產物之鹼基序列與作為柴胡之標準序列之序列編號111或294所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為柴胡之基原植物,上述柴胡候補為柴胡。(Identification method of Bupleurum) A nucleic acid was extracted from a candidate plant of Bupleurum chinense, and using the nucleic acid as a template, the ITS region of ribosomal DNA was amplified using a primer set including the base sequences shown in sequence numbers 15 and 16, Determine the base sequence of the amplified product. Then, the base sequence of the amplified product was compared with the base sequence shown by sequence number 111 or 294 as the standard sequence of Bupleurum. When the base sequences of the two were consistent, it was identified that the test plant was The original plant of Bupleurum, the candidate for the aforementioned Bupleurum is Bupleurum.

(天冬之鑑別方法) 自天冬候補之受檢植物提取核酸,以該核酸作為模板,使用包含序列編號17及18所示之鹼基序列之引子組擴增核糖體DNA之ITS區域後,確定擴增產物之鹼基序列。其後,將擴增產物之鹼基序列與作為天冬之標準序列之序列編號112~115及299中之任一者所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為天冬之基原植物,上述天冬候補為天冬。(Asparagus identification method) After extracting a nucleic acid from a candidate plant candidate for Asparagus and using the nucleic acid as a template, the ITS region of ribosomal DNA is amplified using a primer set including the base sequences shown in SEQ ID NOs: 17 and 18, Determine the base sequence of the amplified product. Then, the base sequence of the amplified product is compared with the base sequence shown in any one of sequence numbers 112 to 115 and 299 as the standard sequence of Asparagus, and when the base sequences of the two are the same, It was identified that the above-mentioned test plant was the original plant of Asparagus, and the above-mentioned candidate for Asparagus was Asparagus.

(山茱萸之鑑別方法) 自山茱萸候補之受檢植物提取核酸,以該核酸作為模板,使用包含序列編號19及20所示之鹼基序列之引子組擴增核糖體DNA之ITS區域後,確定擴增產物之鹼基序列。其後,將擴增產物之鹼基序列與作為山茱萸之標準序列之序列編號116所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為山茱萸之基原植物,上述山茱萸候補為山茱萸。(Method for identification of dogwood) A nucleic acid is extracted from a candidate plant of dogwood candidate, and using this nucleic acid as a template, the ITS region of ribosomal DNA is amplified using a primer set containing the base sequences shown in sequence numbers 19 and 20, and the expansion is determined. The base sequence of the product. Then, the base sequence of the amplified product was compared with the base sequence shown in SEQ ID NO: 116, which is the standard sequence of dogwood, and when the base sequences of the two were consistent, it was identified that the test plant was a base of dogwood Original plant, the above dogwood candidate is dogwood.

(百合之鑑別方法) 自百合候補之受檢植物提取核酸,以該核酸作為模板,使用包含序列編號21及22、或序列編號23及24所示之鹼基序列之引子組擴增核糖體DNA之ITS區域後,確定擴增產物之鹼基序列。其後,將使用包含序列編號21及22所示之鹼基序列之引子組時之擴增產物之鹼基序列與作為百合之標準序列之序列編號117及311~314中之任一者所示之鹼基序列、或使用包含序列編號23及24所示之鹼基序列之引子組時之擴增產物之鹼基序列與作為百合之標準序列之序列編號118及324~326中之任一者所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為百合之基原植物,上述百合候補為百合。(Lily identification method) A nucleic acid is extracted from a candidate plant of a lily candidate, and the nucleic acid is used as a template, and ribosomal DNA is amplified using a primer set including the base sequences shown in SEQ ID NOS: 21 and 22, or SEQ ID NOs: 23 and 24. After the ITS region, the base sequence of the amplified product is determined. Thereafter, the base sequence of the amplified product when using the primer set including the base sequences shown in sequence numbers 21 and 22 and any of sequence numbers 117 and 311 to 314 as the standard sequence of lily is shown. Any one of the base sequence of the base sequence of the amplified product when using the primer set including the base sequences shown in sequence numbers 23 and 24 and the sequence number of the lily sequence 118 and 324 to 326 The base sequences shown are compared. When the base sequences of the two are identical, it is identified that the test plant is a primordial plant of the lily, and the candidate of the lily is a lily.

(紅蔘之鑑別方法) 自紅蔘候補之受檢植物提取核酸,以該核酸作為模板,使用包含序列編號25及26、或序列編號27及28所示之鹼基序列之引子組擴增核糖體DNA之ITS區域後,確定擴增產物之鹼基序列。其後,將使用包含序列編號25及26所示之鹼基序列之引子組時之擴增產物之鹼基序列與作為紅蔘之標準序列之序列編號119所示之鹼基序列、或使用包含序列編號27及28所示之鹼基序列之引子組時之擴增產物之鹼基序列與作為紅蔘之標準序列之序列編號120所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為紅蔘之基原植物,上述紅蔘候補為紅蔘。(Identification method of Hung Hom) A nucleic acid is extracted from a candidate plant of Hung Hom. Using this nucleic acid as a template, ribose is amplified using a primer set including the base sequences shown in SEQ ID NOS: 25 and 26, or SEQ ID NOs: 27 and 28. After the ITS region of somatic DNA, the base sequence of the amplified product is determined. Thereafter, the base sequence of the amplification product when the primer set including the base sequences shown in SEQ ID NOS: 25 and 26 is used, and the base sequence shown in SEQ ID NO: 119, which is the standard sequence of 蔘, is used, or The base sequence of the amplified product at the time of the primer set of the base sequences shown in SEQ ID NOs: 27 and 28 is compared with the base sequence shown in SEQ ID NO: 120 which is the standard sequence of 蔘, and the base sequences of the two are When they are the same, it is identified that the above-mentioned test plant is a primordial plant of the red pupa, and the candidate of the red pupa is the red pupa.

(天麻之鑑別方法) 自天麻候補之受檢植物提取核酸,以該核酸作為模板,使用包含序列編號29及4、或序列編號30及31所示之鹼基序列之引子組擴增核糖體DNA之ITS區域後,確定擴增產物之鹼基序列。其後,將使用包含序列編號29及4所示之鹼基序列之引子組時之擴增產物之鹼基序列與作為天麻之標準序列之序列編號121所示之鹼基序列、或使用包含序列編號30及31所示之鹼基序列之引子組時之擴增產物之鹼基序列與作為天麻之標準序列之序列編號122所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為天麻之基原植物,上述天麻候補為天麻。(Method for identifying Gastrodia elata) A nucleic acid is extracted from a candidate plant of Gastrodia elata, and the nucleic acid is used as a template, and ribosomal DNA is amplified using a primer set including the base sequences shown in SEQ ID NOS: 29 and 4, or SEQ ID NO: 30 and 31. After the ITS region, the base sequence of the amplified product is determined. Thereafter, the base sequence of the amplified product when the primer set including the base sequences shown in SEQ ID NOs: 29 and 4 is used, and the base sequence shown in SEQ ID NO: 121 as the standard sequence of Gastrodia, or the containing sequence is used. The base sequence of the amplified product at the time of the primer set of the base sequences shown in numbers 30 and 31 is compared with the base sequence shown in sequence number 122, which is the standard sequence of Gastrodia, and when the base sequences of the two are the same It was identified that the above-mentioned tested plant was the original plant of Gastrodia elata, and the above-mentioned candidate of Gastrodia elata was Gastrodia elata.

(黃芩之鑑別方法) 自黃芩候補之受檢植物提取核酸,以該核酸作為模板,使用包含序列編號9及32、或序列編號11及33所示之鹼基序列之引子組擴增核糖體DNA之ITS區域後,確定擴增產物之鹼基序列。其後,將使用包含序列編號9及32所示之鹼基序列之引子組時之擴增產物之鹼基序列與作為黃芩之標準序列之序列編號123或391所示之鹼基序列、或使用包含序列編號11及33所示之鹼基序列之引子組時之擴增產物之鹼基序列與作為黃芩之標準序列之序列編號124所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為黃芩之基原植物,上述黃芩候補為黃芩。(Identification method of Scutellaria baicalensis) A nucleic acid is extracted from a candidate plant of Scutellaria baicalensis, and the nucleic acid is used as a template, and ribosomal DNA is amplified using a primer set including the base sequences shown in sequence numbers 9 and 32, or sequence numbers 11 and 33. After the ITS region, the base sequence of the amplified product is determined. Thereafter, the base sequence of the amplified product when the primer set including the base sequences shown in sequence numbers 9 and 32 is used and the base sequence shown in sequence number 123 or 391 as the standard sequence of Scutellaria baicalensis, or The base sequence of the amplification product when the primer set including the base sequence shown in sequence numbers 11 and 33 is compared with the base sequence shown in sequence number 124 as the standard sequence of Scutellaria baicalensis. When they agree, it is identified that the above-mentioned tested plant is the original plant of Scutellaria baicalensis, and the candidate of S. baicalensis is Scutellaria baicalensis.

(人蔘之鑑別方法) 自人蔘候補之受檢植物提取核酸,以該核酸作為模板,使用包含序列編號9及34、或序列編號35及36所示之鹼基序列之引子組擴增核糖體DNA之ITS區域後,確定擴增產物之鹼基序列。其後,將使用包含序列編號9及34所示之鹼基序列之引子組時之擴增產物之鹼基序列與作為人蔘之標準序列之序列編號125所示之鹼基序列、或使用包含序列編號35及36所示之鹼基序列之引子組時之擴增產物之鹼基序列與作為人蔘之標準序列之序列編號126所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為人蔘之基原植物,上述人蔘候補為人蔘。(Identification method of human salamander) A nucleic acid is extracted from a candidate plant of human salamander, and the nucleic acid is used as a template, and ribose is amplified using a primer set including the base sequences shown in sequence numbers 9 and 34 or sequence numbers 35 and 36. After the ITS region of somatic DNA, the base sequence of the amplified product is determined. Thereafter, the base sequence of the amplification product when the primer set including the base sequences shown in sequence numbers 9 and 34 is used and the base sequence shown in sequence number 125 which is the standard sequence of human pupae, or The base sequence of the amplified product at the time of the primer set of the base sequences shown in sequence numbers 35 and 36 is compared with the base sequence shown in sequence number 126 which is the standard sequence of the human pupae. When they are the same, it is identified that the above-mentioned tested plant is a basic plant of human salamander, and the candidate of the human salamander is human salamander.

(升麻之鑑別方法) 自升麻候補之受檢植物提取核酸,以該核酸作為模板,使用包含序列編號37及38、序列編號11及39、序列編號37及40、或序列編號41及39所示之鹼基序列之引子組擴增核糖體DNA之ITS區域後,確定擴增產物之鹼基序列。其後,將使用包含序列編號37及38所示之鹼基序列之引子組時之擴增產物之鹼基序列與作為升麻之標準序列之序列編號127~130及401中之任一者所示之鹼基序列、使用包含序列編號11及39所示之鹼基序列之引子組時之擴增產物之鹼基序列與作為升麻之標準序列之序列編號131~134及409中之任一者所示之鹼基序列、使用包含序列編號37及40所示之鹼基序列之引子組時之擴增產物之鹼基序列與作為升麻之標準序列之序列編號135~138及415~416中之任一者所示之鹼基序列、以及使用包含序列編號41及39所示之鹼基序列之引子組時之擴增產物之鹼基序列與作為升麻之標準序列之序列編號139~142中之任一者所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為升麻之基原植物,上述升麻候補為升麻。(Identification method of Cimicifugae) Nucleic acid is extracted from a candidate plant of Cimicifugae. Using the nucleic acid as a template, sequence numbers 37 and 38, sequence numbers 11 and 39, sequence numbers 37 and 40, or sequence numbers 41 and 39 are used. The primer set of the base sequence shown amplifies the ITS region of ribosomal DNA and determines the base sequence of the amplified product. Thereafter, the base sequence of the amplification product when the primer set including the base sequences shown in SEQ ID NOs: 37 and 38 is used, and any one of SEQ ID NOS: 127 to 130 and 401, which is the standard sequence of Cimicifuga, is used. Any one of the base sequence shown in the figure, the base sequence of the amplification product when the primer set including the base sequences shown in sequence numbers 11 and 39 is used, and sequence numbers 131 to 134 and 409 as the standard sequence of cimicifuga The base sequence shown below, the base sequence of the amplified product when using the primer set including the base sequences shown in sequence numbers 37 and 40, and the sequence numbers of 135-138 and 415-416 as the standard sequence of Cimicifuga The base sequence shown in any one, and the base sequence of the amplification product when the primer set including the base sequences shown in sequence numbers 41 and 39 is used, and the sequence number of cimicifugae is 139 to The base sequences shown in any one of 142 are compared. When the base sequences of the two are consistent, it is identified that the test plant is a primal plant of Cimicifuga, and the candidate of Cimicifuga is Cimicifuga.

(豬苓之鑑別方法) 自豬苓候補之受檢植物提取核酸,以該核酸作為模板,使用包含序列編號42及43所示之鹼基序列之引子組擴增核糖體DNA之ITS區域後,確定擴增產物之鹼基序列。其後,將擴增產物之鹼基序列與作為豬苓之標準序列之序列編號143及430~432中之任一者所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為豬苓之基原植物,上述豬苓候補為豬苓。(Identification method of Polyporia umbellatus) A nucleic acid is extracted from a candidate plant of Polyporia umbellatus, and the nucleic acid is used as a template, and the ITS region of ribosomal DNA is amplified using a primer set containing the base sequences shown in SEQ ID NOs: 42 and 43. Determine the base sequence of the amplified product. Thereafter, the base sequence of the amplified product is compared with the base sequence shown in any one of sequence numbers 143 and 430 to 432, which is the standard sequence of Hogling, and when the base sequences of the two are the same, It was identified that the above-mentioned tested plant was a basic plant of Hog Poria, and the above Hog-Poly candidate was Hog.

(附子之鑑別方法) 自附子候補之受檢植物提取核酸,以該核酸作為模板,使用包含序列編號44及36、序列編號45及4、或序列編號46及4所示之鹼基序列之引子組擴增核糖體DNA之ITS區域後,確定擴增產物之鹼基序列。其後,將使用包含序列編號44及36所示之鹼基序列之引子組時之擴增產物之鹼基序列與作為附子之標準序列之序列編號144、145及433~434中之任一者所示之鹼基序列、使用包含序列編號45及4所示之鹼基序列之引子組時之擴增產物之鹼基序列與作為附子之標準序列之序列編號146、147及439~440中之任一者所示之鹼基序列、以及使用包含序列編號46及4所示之鹼基序列之引子組時之擴增產物之鹼基序列與作為附子之標準序列之序列編號148或149所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為附子之基原植物,上述附子候補為附子。(Identification method of aconite) A nucleic acid is extracted from a test plant candidate for aconite, and using the nucleic acid as a template, primers including the base sequences shown in sequence numbers 44 and 36, sequence numbers 45 and 4, or sequence numbers 46 and 4 are used. After the ITS region of the ribosomal DNA is amplified, the base sequence of the amplified product is determined. Thereafter, any one of the base sequence of the amplification product when the primer set including the base sequences shown in sequence numbers 44 and 36 and the sequence number of the aconite sequence number 144, 145, and 433 to 434 will be used. Among the base sequences shown, the base sequence of the amplification product when the primer set including the base sequences shown in sequence numbers 45 and 4 is used, and the sequence number of the aconite standard sequence numbers 146, 147, and 439 to 440 The base sequence shown in any one, and the base sequence of the amplification product when the primer set including the base sequences shown in sequence numbers 46 and 4 is used, and the sequence number of the aconite sequence number is 148 or 149. The base sequences of the two are compared. When the base sequences of the two are the same, it is identified that the test plant is a basic plant of aconite and the aconite candidate is aconite.

(辛夷之鑑別方法) 自辛夷候補之受檢植物提取核酸,以該核酸作為模板,使用包含序列編號47及48、序列編號49及50、序列編號230及231、以及序列編號232及50所示之鹼基序列之引子組擴增葉綠體DNA之trnL內含子區域後,確定擴增產物之鹼基序列。其後,將使用包含序列編號47及48所示之鹼基序列之引子組時之擴增產物之鹼基序列與作為辛夷之標準序列之序列編號150及678~681中之任一者所示之鹼基序列、使用包含序列編號49及50所示之鹼基序列之引子組時之擴增產物之鹼基序列與作為辛夷之標準序列之序列編號151及693~696中之任一者所示之鹼基序列、使用包含序列編號230及231所示之鹼基序列之引子組時之擴增產物之鹼基序列與作為辛夷之標準序列之序列編號450~454中之任一者所示之鹼基序列、或使用包含序列編號232及50所示之鹼基序列之引子組時之擴增產物之鹼基序列與作為辛夷之標準序列之序列編號465~469中之任一者所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為辛夷之基原植物,上述辛夷候補為辛夷。(Xinyi identification method) Nucleic acid is extracted from a candidate plant of Xinyi, and the nucleic acid is used as a template, and the sequence numbers are 47 and 48, 49 and 50, 230 and 231, and 232 and 50. After the primer set of the base sequence is used to amplify the trnL intron region of the chloroplast DNA, the base sequence of the amplified product is determined. Thereafter, the base sequence of the amplified product when the primer set including the base sequences shown in sequence numbers 47 and 48 is used, and any one of sequence numbers 150 and 678 to 681, which is a standard sequence, is shown. Any one of the base sequence, the base sequence of the amplification product when the primer set including the base sequences shown in sequence numbers 49 and 50, and the sequence numbers 151 and 693 to 696, which are standard sequences, are used. Any one of the base sequence shown in the figure, the base sequence of the amplification product when the primer set including the base sequences shown in sequence numbers 230 and 231 is used, and the sequence numbers 450 to 454 as the standard sequence of Xinyi are shown. Any one of the base sequence or the base sequence of the amplification product when the primer set including the base sequences shown in sequence numbers 232 and 50 is used, and any one of sequence numbers 465 to 469 as a standard sequence The base sequences of the two are compared. When the base sequences of the two are consistent, it is identified that the test plant is a basic plant of Xinyi, and the candidate of Xinyi is Xinyi.

(丁香之鑑別方法) 自丁香候補之受檢植物提取核酸,以該核酸作為模板,使用包含序列編號51及52所示之鹼基序列之引子組擴增核糖體DNA之ITS區域後,確定擴增產物之鹼基序列。其後,將擴增產物之鹼基序列與作為丁香之標準序列之序列編號152所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為丁香之基原植物,上述丁香候補為丁香。(Identification method of cloves) A nucleic acid is extracted from a candidate plant of clove candidates, the nucleic acid is used as a template, and the ITS region of ribosomal DNA is amplified using a primer set containing base sequences shown in sequence numbers 51 and 52. The base sequence of the product. Thereafter, the base sequence of the amplified product is compared with the base sequence shown in sequence number 152 as the standard sequence of clove, and when the base sequences of the two are identical, it is identified that the above-mentioned test plant is a base of clove. Original plant, the above-mentioned lilac candidate is lilac.

(鉤藤之鑑別方法) 自鉤藤候補之受檢植物提取核酸,以該核酸作為模板,使用包含序列編號53及54、序列編號55及56、序列編號57及54、或序列編號58及56所示之鹼基序列之引子組擴增核糖體DNA之ITS區域後,確定擴增產物之鹼基序列。其後,將使用包含序列編號53及54所示之鹼基序列之引子組時之擴增產物之鹼基序列與作為鉤藤之標準序列之序列編號153所示之鹼基序列、使用包含序列編號55及56所示之鹼基序列之引子組時之擴增產物之鹼基序列與作為鉤藤之標準序列之序列編號154所示之鹼基序列、使用包含序列編號57及54所示之鹼基序列之引子組時之擴增產物之鹼基序列與作為鉤藤之標準序列之序列編號155所示之鹼基序列、以及使用包含序列編號58及56所示之鹼基序列之引子組時之擴增產物之鹼基序列與作為鉤藤之標準序列之序列編號156所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為鉤藤之基原植物,上述鉤藤候補為鉤藤。(Identification method of Uncaria chinensis) Nucleic acid is extracted from a test plant candidate for Uncaria chinensis, and the nucleic acid is used as a template to include sequence numbers 53 and 54, sequence numbers 55 and 56, sequence numbers 57 and 54, or sequence numbers 58 and 56. The primer set of the base sequence shown amplifies the ITS region of ribosomal DNA and determines the base sequence of the amplified product. Thereafter, the base sequence of the amplification product when the primer set including the base sequences shown in sequence numbers 53 and 54 is used, the base sequence shown in sequence number 153 as the standard sequence of Uncaria, and the containing sequence is used. The base sequence of the amplification product in the primer set of the base sequence shown in numbers 55 and 56 and the base sequence shown in sequence number 154 which is the standard sequence of Uncaria spp. Includes the base sequence shown in sequence numbers 57 and 54. The base sequence of the amplified product at the time of the primer set of the base sequence and the base sequence shown by the sequence number 155 as the standard sequence of Uncaria, and the primer set including the base sequences shown by the sequence numbers 58 and 56 are used The base sequence of the amplified product was compared with the base sequence shown in SEQ ID No. 156, which is the standard sequence of Uncaria, and when the base sequences of the two were identical, it was identified that the above-mentioned test plant was an uncaria For the original plant, the above-mentioned candidate for Uncaria is Uncaria.

(香附子之鑑別方法) 自香附子候補之受檢植物提取核酸,以該核酸作為模板,使用包含序列編號59及60、或序列編號41及61所示之鹼基序列之引子組擴增核糖體DNA之ITS區域後,確定擴增產物之鹼基序列。其後,將使用包含序列編號59及60所示之鹼基序列之引子組時之擴增產物之鹼基序列與作為香附子之標準序列之序列編號157所示之鹼基序列、或使用包含序列編號41及61所示之鹼基序列之引子組時之擴增產物之鹼基序列與作為香附子之標準序列之序列編號158所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為香附子之基原植物,上述香附子候補為香附子。(Identification method of fragrant aconite) A nucleic acid is extracted from a test plant candidate for fragrant aconite, and the nucleic acid is used as a template to amplify ribose using a primer set including the base sequences shown in sequence numbers 59 and 60 or sequence numbers 41 and 61. After the ITS region of somatic DNA, the base sequence of the amplified product is determined. Thereafter, the base sequence of the amplified product when the primer set including the base sequences shown in SEQ ID NOs: 59 and 60 is used, and the base sequence shown in SEQ ID NO: 157, which is the standard sequence of Aconite, is used, or The base sequence of the amplified product at the time of the primer set of the base sequence shown in sequence numbers 41 and 61 is compared with the base sequence shown in sequence number 158 which is the standard sequence of fragrant aconite. When they are the same, it is identified that the above-mentioned test plant is the primordial plant of Aconite, and the candidate of the above-mentioned Aconite is Aconite.

(黃連之鑑別方法) 自黃連候補之受檢植物提取核酸,以該核酸作為模板,使用包含序列編號62及63、或序列編號64及65所示之鹼基序列之引子組擴增葉綠體DNA之rbcL區域後,確定擴增產物之鹼基序列。其後,將使用包含序列編號62及63所示之鹼基序列之引子組時之擴增產物之鹼基序列與作為黃連之標準序列之序列編號159~162中之任一者所示之鹼基序列、或使用包含序列編號64及65所示之鹼基序列之引子組時之擴增產物之鹼基序列與作為黃連之標準序列之序列編號163~166中之任一者所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為黃連之基原植物,上述黃連候補為黃連。(Identification method of Coptis chinensis) A nucleic acid is extracted from a test plant candidate of Coptis chinensis, and the nucleic acid is used as a template to amplify chloroplast DNA using a primer set containing the base sequences shown in SEQ ID NOS: 62 and 63 or SEQ ID NOs: 64 and 65. After the rbcL region, the base sequence of the amplified product is determined. Thereafter, the base sequence of the amplified product when the primer set including the base sequences shown in sequence numbers 62 and 63 is used, and the base shown in any one of sequence numbers 159 to 162 as the standard sequence of Coptis chinensis will be used. Base sequence, or the base sequence of any one of the amplification products when the primer set including the base sequences shown in sequence numbers 64 and 65 is used, and the base shown in any one of sequence numbers 163 to 166 as the standard sequence of Coptis chinensis The base sequences were compared, and when the base sequences of the two were consistent, it was identified that the above-mentioned test plant was the original plant of Coptis chinensis, and the candidate of Coptis chinensis was Coptis chinensis.

(生薑/乾薑之鑑別方法) 自生薑/乾薑候補之受檢植物提取核酸,以該核酸作為模板,使用包含序列編號66及67所示之鹼基序列之引子組擴增葉綠體DNA之matK區域後,確定擴增產物之鹼基序列。其後,將擴增產物之鹼基序列與作為生薑/乾薑之標準序列之序列編號167所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為生薑/乾薑之基原植物,上述生薑/乾薑候補為生薑/乾薑。(Ginger / Dried Ginger Identification Method) A nucleic acid is extracted from a candidate plant of Ginger / Dried Ginger, and the nucleic acid is used as a template to amplify chloroplast DNA using a primer set containing the base sequences shown in SEQ ID NOs: 66 and 67. After matK region, determine the base sequence of the amplified product. Thereafter, the base sequence of the amplified product was compared with the base sequence shown by sequence number 167, which is a standard sequence of ginger / dried ginger, and when the base sequences of the two were consistent, the plant was identified as the above-mentioned test plant. Ginger / Dried Ginger is the original plant. The above-mentioned ginger / Dried Ginger candidate is Ginger / Dried Ginger.

(山梔子之鑑別方法) 自山梔子候補之受檢植物提取核酸,以該核酸作為模板,使用包含序列編號11及68所示之鹼基序列之引子組擴增核糖體DNA之ITS區域後,確定擴增產物之鹼基序列。其後,將擴增產物之鹼基序列與作為山梔子之標準序列之序列編號168所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為山梔子之基原植物,上述山梔子候補為山梔子。(Identification method of Mandrillia mandshurica) A nucleic acid is extracted from a candidate plant of Mandrillia mandshurica. Using the nucleic acid as a template, the ITS region of ribosomal DNA is amplified using a primer set containing the base sequences shown in sequence numbers 11 and 68. The base sequence of the product. Then, the base sequence of the amplified product was compared with the base sequence shown in SEQ ID NO: 168, which is the standard sequence of mandrill seed. When the base sequences of the two were consistent, it was identified that the above-mentioned test plant was the base of mandrill. The original plant, the above-mentioned mandrill candidate is mandrill.

(黃柏之鑑別方法) 自黃柏候補之受檢植物提取核酸,以該核酸作為模板,使用包含序列編號69及70所示之鹼基序列之引子組擴增核糖體DNA之ITS區域後,確定擴增產物之鹼基序列。其後,將擴增產物之鹼基序列與作為黃柏之標準序列之序列編號169所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為黃柏之基原植物,上述黃柏候補為黃柏。(Identification method of Phellodendron angustifolia) A nucleic acid is extracted from a candidate plant of Phellodendron angustifolia. Using this nucleic acid as a template, the ITS region of ribosomal DNA is amplified using a primer set containing the base sequences shown in sequence numbers 69 and 70. The base sequence of the product. Thereafter, the base sequence of the amplified product is compared with the base sequence shown in SEQ ID NO: 169, which is the standard sequence of Cork. When the base sequences of the two are the same, it is identified that the test plant is a Cork group. Original plants, the above-mentioned cork candidates are cork.

(厚樸之鑑別方法) 自厚樸候補之受檢植物提取核酸,以該核酸作為模板,使用包含序列編號71及72、序列編號71及73、或序列編號74及72所示之鹼基序列之引子組擴增葉綠體DNA之rpl16內含子區域後,確定擴增產物之鹼基序列。其後,將使用包含序列編號71及72所示之鹼基序列之引子組時之擴增產物之鹼基序列與作為厚樸之標準序列之序列編號170~172中之任一者所示之鹼基序列、使用包含序列編號71及73所示之鹼基序列之引子組時之擴增產物之鹼基序列與作為厚樸之標準序列之序列編號173~175中之任一者所示之鹼基序列、以及使用包含序列編號74及72所示之鹼基序列之引子組時之擴增產物之鹼基序列與作為厚樸之標準序列之序列編號176~178中之任一者所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為厚朴之基原植物,上述厚樸候補為厚樸。(Identification of Magnolia officinalis) A nucleic acid is extracted from a candidate plant of Magnolia officinalis, and the nucleic acid is used as a template, and a base sequence including sequence numbers 71 and 72, sequence numbers 71 and 73, or sequence numbers 74 and 72 is used. The primer set amplified the rpl16 intron region of chloroplast DNA and determined the base sequence of the amplified product. Thereafter, the base sequence of the amplified product when the primer set including the base sequences shown in sequence numbers 71 and 72 is used, and any one of sequence numbers 170 to 172 as the standard sequence of Magnolia is shown. Any one of the base sequence, the base sequence of an amplification product when a primer set including the base sequences shown in sequence numbers 71 and 73 is used, and the base sequence of Magnolia spp. 173 to 175 Any one of the base sequence and the base sequence of the amplified product when the primer set including the base sequences shown in sequence numbers 74 and 72 and the sequence numbers 176 to 178 of Magnolia are used are shown. The base sequences of the two are compared. When the base sequences of the two are the same, it is identified that the test plant is the original plant of Magnolia, and the candidate of Magnolia is Magnolia.

(澤瀉之鑑別方法) 自澤瀉候補之受檢植物提取核酸,以該核酸作為模板,使用包含序列編號75及76、序列編號77及78、或序列編號75及79、或序列編號77及80所示之鹼基序列之引子組擴增核糖體DNA之ITS區域後,確定擴增產物之鹼基序列。其後,將使用包含序列編號75及76所示之鹼基序列之引子組時之擴增產物之鹼基序列與作為澤瀉之標準序列之序列編號179或180所示之鹼基序列、使用包含序列編號77及78所示之鹼基序列之引子組時之擴增產物之鹼基序列與作為澤瀉之標準序列之序列編號181或182所示之鹼基序列、使用包含序列編號75及79所示之鹼基序列之引子組時之擴增產物之鹼基序列與作為澤瀉之標準序列之序列編號183或184所示之鹼基序列、以及使用包含序列編號77及80所示之鹼基序列之引子組時之擴增產物之鹼基序列與作為澤瀉之標準序列之序列編號185或186所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為澤瀉之基原植物,上述澤瀉候補為澤瀉。(Identification method of Alisma orientalis) A nucleic acid is extracted from a candidate plant of Alisma orientalis, and the nucleic acid is used as a template. Sequences 75 and 76, 77 and 78, 75 and 79, or 77 and 79 are used. The primer set of the base sequence shown in 80 amplifies the ITS region of ribosomal DNA, and then determines the base sequence of the amplified product. Thereafter, the base sequence of the amplified product when the primer set including the base sequences shown in sequence numbers 75 and 76 is used and the base sequence shown in sequence number 179 or 180 as the standard sequence of Alisawa, are used, The base sequence of the amplification product when the primer set including the base sequence shown in sequence numbers 77 and 78 and the base sequence shown in sequence number 181 or 182 as the standard sequence of Alisawa are used. The base sequence of the amplification product at the time of the primer set of the base sequence shown in 79 and the base sequence shown in sequence number 183 or 184 which is the standard sequence of Alisma, and the base sequence shown in sequence numbers 77 and 80 are used. The base sequence of the amplified product at the time of the primer set of the base sequence is compared with the base sequence shown by sequence number 185 or 186 which is the standard sequence of Alisma, and when the base sequences of the two are consistent, it is identified as the above. The tested plants are the original plants of Alisma orientale, and the above-mentioned candidate for Alisma orientale is Alisma orientale.

(纈草之鑑別方法) 自纈草候補之受檢植物提取核酸,以該核酸作為模板,使用包含序列編號81及82所示之鹼基序列之引子組擴增核糖體DNA之ITS區域後,確定擴增產物之鹼基序列。其後,將擴增產物之鹼基序列與作為纈草之標準序列之序列編號187所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為纈草之基原植物,上述纈草候補為纈草。(Identification method of valerian) A nucleic acid is extracted from a test plant candidate for valerian, and using the nucleic acid as a template, the ITS region of ribosomal DNA is amplified using a primer set including the base sequences shown in sequence numbers 81 and 82. Determine the base sequence of the amplified product. Thereafter, the base sequence of the amplified product was compared with the base sequence shown in SEQ ID No. 187, which is the standard sequence of valerian. When the base sequences of the two are consistent, it is identified that the test plant is valerian. Based on the original plant, the valerian candidate is valerian.

(樸樕之鑑別方法) 自樸樕候補之受檢植物提取核酸,以該核酸作為模板,使用包含序列編號83及84、序列編號83及85、序列編號86及87所示之鹼基序列之引子組擴增核糖體DNA之ITS區域後,確定擴增產物之鹼基序列。其後,將使用包含序列編號83及84所示之鹼基序列之引子組時之擴增產物之鹼基序列與作為樸樕之標準序列之序列編號188~191及593~594中之任一者所示之鹼基序列、或使用包含序列編號83及85所示之鹼基序列之引子組時之擴增產物之鹼基序列與作為樸樕之標準序列之序列編號192~195及601~602中之任一者所示之鹼基序列進行比較,而且,將使用包含序列編號86及87所示之鹼基序列之引子組時之擴增產物之鹼基序列與作為樸樕之標準序列之序列編號196~199及609~612中之任一者所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為樸樕之基原植物,上述樸樕候補為樸樕。(Identification method of Park Ye) A nucleic acid is extracted from a candidate plant of Park Ye, using the nucleic acid as a template, and a base sequence including SEQ ID Nos. 83 and 84, SEQ ID Nos. 83 and 85, and SEQ ID Nos. 86 and 87 is used. After the primer set amplifies the ITS region of ribosomal DNA, the base sequence of the amplified product is determined. Thereafter, the base sequence of the amplification product when the primer set including the base sequences shown in sequence numbers 83 and 84 is used, and any one of sequence numbers 188 to 191 and 593 to 594 as the standard sequence of Park Ye The base sequence shown below, or the base sequence of the amplification product when the primer set including the base sequences shown in sequence numbers 83 and 85 is used, and the sequence numbers 192 to 195 and 601 to 樕The base sequences shown in any of 602 are compared, and the base sequence of the amplified product when the primer set including the base sequences shown in sequence numbers 86 and 87 is used is compared with the standard sequence of Park. The base sequences shown in any one of sequence numbers 196 to 199 and 609 to 612 are compared. When the base sequences of the two are consistent, it is identified that the test plant is a basic plant of Parkin, and the park樕 Candidate is Park Ye.

(連翹之鑑別方法) 自連翹候補之受檢植物提取核酸,以該核酸作為模板,使用包含序列編號88及89、或序列編號90及91所示之鹼基序列之引子組擴增核糖體DNA之ITS區域後,確定擴增產物之鹼基序列。其後,將使用包含序列編號88及89所示之鹼基序列之引子組時之擴增產物之鹼基序列與作為連翹之標準序列之序列編號200所示之鹼基序列、或使用包含序列編號90及91所示之鹼基序列之引子組時之擴增產物之鹼基序列與作為連翹之標準序列之序列編號201所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為連翹之基原植物,上述連翹候補為連翹。(Identification method of Forsythia Suspension) Nucleic acid is extracted from a test plant candidate of Forsythia suspense, and the nucleic acid is used as a template, and ribosomal DNA is amplified using a primer set including the base sequences shown in SEQ ID NOs: 88 and 89, or SEQ ID NOs: 90 and 91. After the ITS region, the base sequence of the amplified product is determined. Thereafter, the base sequence of the amplified product when the primer set including the base sequences shown in sequence numbers 88 and 89 is used and the base sequence shown in sequence number 200 as the standard sequence of forsythia, or the containing sequence is used The base sequence of the amplified product when the primer set of the base sequences shown in numbers 90 and 91 is compared with the base sequence shown in sequence number 201, which is the standard sequence of Forsythia, and when the base sequences of the two are the same It was identified that the above-mentioned tested plant was a basic plant of forsythia, and the above-mentioned forsythia candidate was forsythia.

(良薑之鑑別方法) 自良薑候補之受檢植物提取核酸,以該核酸作為模板,使用包含序列編號92及93、或序列編號66及94所示之鹼基序列之引子組擴增葉綠體DNA之matK區域後,確定擴增產物之鹼基序列。其後,將使用包含序列編號92及93所示之鹼基序列之引子組時之擴增產物之鹼基序列與作為良薑之標準序列之序列編號202或633所示之鹼基序列、或使用包含序列編號66及94所示之鹼基序列之引子組時之擴增產物之鹼基序列與作為良薑之標準序列之序列編號203或638所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為良薑之基原植物,上述良薑候補為良薑。(Identification method of Alpinia zingiberensis) A nucleic acid is extracted from a candidate plant of Alpinia zingiberensis, and the nucleic acid is used as a template to amplify chloroplasts using primer sets containing the base sequences shown in SEQ ID NOS: 92 and 93 or SEQ ID NOs: 66 and 94. After the matK region of the DNA, the base sequence of the amplified product is determined. Thereafter, the base sequence of the amplified product when using the primer set including the base sequences shown in sequence numbers 92 and 93 and the base sequence shown in sequence number 202 or 633 as the standard sequence of ginger, or The base sequence of the amplified product when the primer set containing the base sequence shown in sequence numbers 66 and 94 is used is compared with the base sequence shown in sequence number 203 or 638 as the standard sequence of the ginger. When the base sequences are the same, it is identified that the test plant is an original plant of Alpinia, and the above-mentioned candidate of Alpinia is Alpinia.

(蓮子之鑑別方法) 自蓮子候補之受檢植物提取核酸,以該核酸作為模板,使用包含序列編號95及4、或序列編號96及36所示之鹼基序列之引子組擴增核糖體DNA之ITS區域後,確定擴增產物之鹼基序列。其後,將使用包含序列編號92及4所示之鹼基序列之引子組時之擴增產物之鹼基序列與作為蓮子之標準序列之序列編號204所示之鹼基序列、或使用包含序列編號96及36所示之鹼基序列之引子組時之擴增產物之鹼基序列與作為蓮子之標準序列之序列編號205或646所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為蓮子之基原植物,上述蓮子候補為蓮子。(Identification method of lotus seeds) A nucleic acid is extracted from a candidate plant of a lotus seed candidate, and the nucleic acid is used as a template, and ribosomal DNA is amplified using a primer set including the base sequences shown in sequence numbers 95 and 4, or sequence numbers 96 and 36. After the ITS region, the base sequence of the amplified product is determined. Thereafter, the base sequence of the amplified product when the primer set including the base sequences shown in sequence numbers 92 and 4 is used, and the base sequence shown in sequence number 204 as the standard sequence of the lotus seed, or the containing sequence is used The base sequence of the amplified product when the primer set of the base sequences shown in numbers 96 and 36 is compared with the base sequence shown in sequence number 205 or 646 as the standard sequence of lotus seeds, and the base sequences of the two When they are the same, it is identified that the above-mentioned test plant is a primordial plant of the lotus seed, and the candidate of the lotus seed is a lotus seed.

(紅花之鑑別方法) 自紅花候補之受檢植物提取核酸,以該核酸作為模板,使用包含序列編號97及4、或序列編號44及36所示之鹼基序列之引子組擴增核糖體DNA之ITS區域後,確定擴增產物之鹼基序列。其後,將使用包含序列編號97及4所示之鹼基序列之引子組時之擴增產物之鹼基序列與作為紅花之標準序列之序列編號206所示之鹼基序列、或使用包含序列編號44及36所示之鹼基序列之引子組時之擴增產物之鹼基序列與作為紅花之標準序列之序列編號207所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為紅花之基原植物,上述紅花候補為紅花。(Identification method of safflower) A nucleic acid is extracted from a safflower candidate plant, and the nucleic acid is used as a template, and ribosomal DNA is amplified using a primer set including the base sequences shown in sequence numbers 97 and 4, or sequence numbers 44 and 36. After the ITS region, the base sequence of the amplified product is determined. Thereafter, the base sequence of the amplified product when the primer set including the base sequences shown in sequence numbers 97 and 4 is used and the base sequence shown in sequence number 206 as the standard sequence of safflower, or the containing sequence is used The base sequence of the amplified product at the time of the primer set of the base sequences shown in numbers 44 and 36 is compared with the base sequence shown in sequence number 207 which is the standard sequence of safflower, and when the base sequences of the two are the same It was identified that the above-mentioned test plant was a safflower-based original plant, and the above-mentioned safflower candidate was a safflower.

(蘇木之鑑別方法) 自蘇木候補之受檢植物提取核酸,以該核酸作為模板,使用包含序列編號98及99所示之鹼基序列之引子組擴增核糖體DNA之ITS區域後,確定擴增產物之鹼基序列。其後,將擴增產物之鹼基序列與作為蘇木之標準序列之序列編號208所示之鹼基序列進行比較,於兩者之鹼基序列完全一致時,鑑別為上述受檢植物為蘇木之基原植物,上述蘇木候補為蘇木。 [實施例](Identification method of hematoxylin) A nucleic acid is extracted from a candidate plant of hematoxylin, and the nucleic acid is used as a template, and the ITS region of ribosomal DNA is amplified using a primer set including the base sequences shown in sequence numbers 98 and 99. Determine the base sequence of the amplified product. Thereafter, the base sequence of the amplified product was compared with the base sequence shown in SEQ ID No. 208, which is the standard sequence of hematoxylin. When the base sequences of the two were completely identical, it was identified that the above-mentioned test plant was thaliana. Original woody plant, the above-mentioned hemu candidate is hemu. [Example]

<實施例1:牡丹根及牡丹皮之鑑別方法> 於日本藥典第十七修訂版中,牡丹根之基原植物規定為牡丹根,又,牡丹皮之基原植物規定為牡丹。但是,兩者為近緣而類似,故而可能會相互混淆,除此以外,供於市場或園藝之種苗有作為該等之近緣他種之川赤芍或荷蘭芍藥(P. officinalis),為了確保醫藥品之品質,避免該等之誤用、混用較為重要。 因此,以下,示出牡丹根及牡丹皮之鑑別方法中之一例。<Example 1: Identification method of peony root and peony skin> In the seventeenth revised edition of the Japanese Pharmacopoeia, the original plant of the peony root was specified as peony root, and the original plant of the peony skin was specified as peony. However, the two are closely related, so they may be confused with each other. In addition, the seedlings for market or horticulture have Chuanxiong or P. officinalis as other related species. It is important to ensure the quality of pharmaceutical products and avoid such misuse and mixing. Therefore, an example of a method for identifying a peony root and a peony bark is shown below.

1.核酸提取方法 模板DNA係採集生藥、或作為生藥加工前之基原植物之牡丹根及牡丹皮之一部分,又,對牡丹根近緣種之川赤芍、細葉芍藥(P. tenuifolia)、新疆芍藥(P. sinjiangensis)採集其乾葉標本之一部分,使用市售之DNeasy(註冊商標)Plant Mini Kit(QIAGEN公司),按照隨附之操作說明進行提取。關於作為其他近緣種之窄葉芍藥(P. anomala)、矮芍藥(P. officinalis ssp. microcarpa)、羅得島芍藥(P. rhodia)、伊比利亞芍藥(P. broteri)、羊角芍藥(P. arietina)及巴納特芍藥(P. banatica),自GenBank(https://www.ncbi.nlm.nih.gov/nuccore/)獲得同源序列。1. Nucleic acid extraction method. Template DNA is used to collect raw medicine, or the peony root and peony skin of the original plant before the processing of the raw medicine, and the peony root and peony (P. tenuifolia) 1. Xinjiang Paeonia lactiflora (P. sinjiangensis) collected a part of its dried leaf specimen, and used a commercially available DNeasy (registered trademark) Plant Mini Kit (QIAGEN) to extract it according to the attached operating instructions. About P. anomala, P. officinalis ssp. Microcarpa, Rhode Island peony (P. rhodia), Iberian peony (P. broteri), and shofar peony P. arietina) and P. banatica, homologous sequences were obtained from GenBank (https://www.ncbi.nlm.nih.gov/nuccore/).

2.核酸擴增方法 使用提取之模板DNA,藉由PCR擴增特定之核酸區域。核酸擴增反應條件可對每一生藥鑑別用引子適當決定適當之條件。2. Nucleic acid amplification method Using the extracted template DNA, a specific nucleic acid region is amplified by PCR. The conditions for the nucleic acid amplification reaction can be appropriately determined for each of the primers for identifying a crude drug.

(PCR反應液1:ITS1擴增用#1) D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子:002-1F(序列編號3)(10 pmol/μL)1 μL、反向引子:002-1R(White T.J., et al. 1990, Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M. A., Gelfand D. H., Sninsky J. J. and White T. J. (eds.), PCR Protocols, A Guide to Methods and Applications. pp. 315-322. Academic Press, San Diego記載之通用引子ITS2:序列編號4)(10 pmol/μL)1 μL、模板DNA 1 μL (PCR反應液2:ITS2擴增用) D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子:002-2F(序列編號5)(10 pmol/μL)1 μL、反向引子:002-2R(序列編號6)(10 pmol/μL)1 μL、模板DNA 1 μL (PCR反應液3:ITS1擴增用#2) D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子:002-1F(序列編號3)(10 pmol/μL)1 μL、反向引子:002-3R(序列編號229)(10 pmol/μL)1 μL、模板DNA 1 μL(PCR reaction solution 1: ITS1 amplification # 1) DW 17.02 μL, 10 × gene Taq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, gene Taq (NipponGene) 0.14 μL 1. Forward primer: 002-1F (sequence number 3) (10 pmol / μL) 1 μL. Reverse primer: 002-1R (White TJ, et al. 1990, Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ and White TJ (eds.), PCR Protocols, A Guide to Methods and Applications. Pp. 315-322. Academic Press, San Diego Generic Primer ITS2: Sequence Number 4) ( 10 pmol / μL) 1 μL, template DNA 1 μL (PCR reaction solution 2: for ITS2 amplification) DW 17.02 μL, 10 × gene Taq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, gene Taq (NipponGene) 0.14 μL, forward primer: 002-2F (sequence number 5) (10 pmol / μL) 1 μL, reverse primer: 002-2R (sequence number 6) (10 pmol / μL) 1 μL, template DNA 1 μL (PCR reaction solution 3: ITS1 amplification # 2) DW 17.02 μL, 10 × gene T aq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, gene Taq (NipponGene) 0.14 μL, forward primer: 002-1F (SEQ ID NO: 3) (10 pmol / μL) 1 μL, reverse primer: 002-3R (SEQ ID NO: 229) (10 pmol / μL) 1 μL, template DNA 1 μL

・PCR循環條件 PCR係將上述各模板DNA與PCR反應液1~3一起放入至0.2 mL微型管中,於Step Down法、即(94℃、4 min)×1個循環、(95℃、30 sec;70℃、15 sec;72℃、15 sec)×3個循環、(95℃、30 sec;66℃、15 sec;72℃、15 sec)×3個循環、(95℃、30 sec;62℃、15 sec;72℃、15 sec)×3個循環、(95℃、30 sec;58℃、15 sec;72℃、15 sec)×3個循環、(95℃、30 sec;54℃、15 sec;72℃、15 sec)×3個循環、(95℃、30 sec;48℃、1.5 min;72℃、2.5 min)×20個循環、以及(72℃、7 min.)×1個循環之條件下,使用GeneAmp 9700(Thermo Fisher Scientific公司)等溫控循環機進行。・ PCR cycle conditions PCR is to place each of the above template DNA together with PCR reaction solutions 1 to 3 into 0.2 mL microtubes, and use the Step Down method, that is (94 ° C, 4 min) × 1 cycle, (95 ° C, 30 sec; 70 ° C, 15 sec; 72 ° C, 15 sec) × 3 cycles, (95 ° C, 30 sec; 66 ° C, 15 sec; 72 ° C, 15 sec) × 3 cycles, (95 ° C, 30 sec ; 62 ° C, 15 sec; 72 ° C, 15 sec) × 3 cycles, (95 ° C, 30 sec; 58 ° C, 15 sec; 72 ° C, 15 sec) × 3 cycles, (95 ° C, 30 sec; 54 ℃, 15 sec; 72 ℃, 15 sec) × 3 cycles, (95 ℃, 30 sec; 48 ℃, 1.5 min; 72 ℃, 2.5 min) × 20 cycles, and (72 ℃, 7 min.) × One cycle was performed using a GeneAmp 9700 (Thermo Fisher Scientific) isothermal controlled cycler.

・藉由凝膠電泳之擴增產物之確認及凝膠提取 於PCR後,藉由凝膠電泳法確認目標特定之核酸區域之擴增產物,並將其單離。具體而言,於PCR後之反應液中添加2 μL之藍色汁液(Blue Juice)製備樣本溶液。將合計2% NuSieve+SeaKEM(Takara Bio公司)+1×TAE之凝膠浸漬於填充至Mupid EX-U(Mupid公司)之1×TAE緩衝液中,於孔中裝載樣本溶液15 μL後,於100 V×約30分鐘之條件下進行電泳。目標PCR產物之負載量係藉由15 μL LED 500 nm透照箱LB-16BG(Nippon Genetics公司)+凝膠拍攝裝置Printgraph AE-6931 FXCF(ATTO公司)進行確認,進行圖像拍攝(未圖示)。 繼而,自目標擴增產物藉由一次性手術刀切割出預想之尺寸之帶,使用illustra GFX PCR Purification Kit(GE Healthcare Japan公司)進行提取後,藉由同套組中之Type4 buffer 20 μL溶出。・ Confirmation of amplification products by gel electrophoresis and gel extraction After PCR, confirm the amplification products of specific nucleic acid regions of the target by gel electrophoresis and isolate them. Specifically, 2 μL of Blue Juice was added to the reaction solution after PCR to prepare a sample solution. A total of 2% NuSieve + SeaKEM (Takara Bio) + 1 × TAE gel was immersed in a 1 × TAE buffer filled with Mupid EX-U (Mupid), and 15 μL of the sample solution was loaded into the wells, and then 100 V × The electrophoresis was performed under about 30 minutes. The load of the target PCR product was confirmed with a 15 μL LED 500 nm transilluminator LB-16BG (Nippon Genetics) + gel imaging device Printgraph AE-6931 FXCF (ATTO), and image capture was performed (not shown) ). Then, a band of an expected size was cut out from the target amplification product with a disposable scalpel, and extracted with an illustra GFX PCR Purification Kit (GE Healthcare Japan), and then dissolved in 20 μL of Type4 buffer in the same set.

・擴增產物之鹼基序列確定 為了使循環序列反應最佳化,使用Nanodrop 2000C(Biomedical Science公司)進行擴增產物之濃度測定,以成為適當濃度之方式藉由TE進行稀釋。將BigDye Ter minator v.3.1溶液(Thermo Fisher Scientific公司)0.8 μL、5×Buffer(Thermo Fisher Scientific公司)0.4 μL、D.W. 0.8 μL、引子(002-2F/2R)(1 pmol/μL)1 μL、精製擴增產物1 μL進行混合,藉由96孔板於BigDye Terminator v.3.1手冊所指定之條件下對GeneAmp 9700(Thermo Fisher Scientific公司)+200 μL進行循環定序。反應後,藉由BigDye Terminator v.3.1手冊中所指定之EDTA(ethylenediamine tetraacetic acid,四乙酸乙二胺)乙醇沈澱法,獲得精製擴增產物。藉由ABI PRISM(註冊商標)3500xL Genetic Analyzer(Thermo Fisher Scientific公司),使用50 cm毛細管、POP7,按照同機器之手冊,確定擴增產物之鹼基序列。其後,藉由VerctorNTI 9.0 for Windows(Thermo Fisher Scientific公司)中之ContigExpress,將PCR反應液1及PCR反應液2之各者之各種擴增產物之正向序列及反向序列進行比較,確定可靠性較高之序列。藉由BioEdit v7.2.5 for Windows(Tom Hall 2013)驗證作為基原植物之牡丹根或牡丹皮之標準序列與牡丹根/牡丹皮近緣種之特定之核酸區域之鹼基序列的差異。 將結果示於表3。・ Determining the base sequence of the amplified product In order to optimize the cyclic sequence reaction, the concentration of the amplified product was measured using Nanodrop 2000C (Biomedical Science), and diluted with TE so as to have an appropriate concentration. BigDye Ter minator v.3.1 solution (Thermo Fisher Scientific) 0.8 μL, 5 × Buffer (Thermo Fisher Scientific) 0.4 μL, DW 0.8 μL, Primer (002-2F / 2R) (1 pmol / μL) 1 μL, 1 μL of the purified amplification product was mixed, and a 96-well plate was subjected to a cycle sequencing of GeneAmp 9700 (Thermo Fisher Scientific) + 200 μL under the conditions specified in the BigDye Terminator v.3.1 manual. After the reaction, a purified amplified product was obtained by an EDTA (ethylenediamine tetraacetic acid) ethanol precipitation method specified in the BigDye Terminator v.3.1 manual. Using ABI PRISM (registered trademark) 3500xL Genetic Analyzer (Thermo Fisher Scientific), using a 50 cm capillary and POP7, the base sequence of the amplified product was determined in accordance with the manual of the same machine. Thereafter, by using ContigExpress in VerctorNTI 9.0 for Windows (Thermo Fisher Scientific), the forward sequence and reverse sequence of various amplification products of each of PCR reaction solution 1 and PCR reaction solution 2 were compared to determine the reliability. More sexual sequences. BioEdit v7.2.5 for Windows (Tom Hall 2013) was used to verify the difference between the standard sequence of the peony root or peony bark as the base plant and the specific nucleotide region of the peony root / peony bark relative species. The results are shown in Table 3.

[表3] [table 3]

表中,特定之核酸區域中之鹼基序列之下劃線部相當於正向引子(5'側)及反向引子之互補鏈(3'側)的鹼基序列(以下相同)。In the table, the underlined portion of the base sequence in a specific nucleic acid region corresponds to the base sequence of the forward primer (5 'side) and the complementary strand (3' side) of the reverse primer (the same applies hereinafter).

可知牡丹根於作為特定之核酸區域之核糖體DNA之ITS區域中,具有與經驗證之10種同屬近緣種不同之固有之鹼基序列。因此,可知藉由使用引子組002-1F/002-1R、002-2F/002-2R或002-1F/002-3R擴增核糖體DNA之ITS區域,確定其鹼基序列,可鑑別牡丹根候補之經生藥加工處理之受檢植物為牡丹根(芍藥)或牡丹皮(牡丹)還是其他近緣種。It can be seen that the peony root has a unique base sequence in the ITS region of ribosomal DNA, which is a specific nucleic acid region, which is different from the verified 10 species of the same related species. Therefore, it was found that by using primer sets 002-1F / 002-1R, 002-2F / 002-2R, or 002-1F / 002-3R to amplify the ITS region of ribosomal DNA and determine its base sequence, peony roots can be identified Candidate tested plants that are processed by crude drugs are peony root (peony) or peony bark (peony) or other related species.

又,於使用PCR反應液#3中所使用之引子組002-1F/002-3R擴增核糖體DNA之ITS1區域之情形時,48位成為T(胸腺嘧啶)者僅為牡丹根,32位及61位分別成為G(鳥嘌呤)及C(胞嘧啶)者僅為牡丹。因此,可基於該等2個部位,鑑別牡丹根及牡丹與其他近緣種。可知關於28位、53位、67位、76位、87位、117位、118位,藉由各者之鹼基序列無法鑑別牡丹根及牡丹與其他近緣種,但藉由組合複數個上述部位之鹼基序列資訊而變得可能。In addition, when the ITS1 region of ribosomal DNA was amplified using the primer set 002-1F / 002-3R used in the PCR reaction solution # 3, the 48th person who became T (thymine) was only the peony root, and the 32nd And 61 people who became G (guanine) and C (cytosine) were only peony. Therefore, based on these two parts, peony roots and peony and other related species can be identified. It can be seen that the peony roots, peony, and other related species cannot be identified by the base sequence of each of the 28-, 53-, 67-, 76-, 87-, 117-, and 118-positions, but by combining a plurality of the above Site base sequence information becomes possible.

<實施例2:半夏/天南星之鑑別方法> 於日本藥典第十七修訂版中,關於半夏/天南星之基原植物,半夏為半夏Pinellia ternata,天南星規定為異葉天南星、一把傘南星、東北南星或其他同屬之近緣植物(天南星科(Araceae))。但是,可能會於市場流通作為近緣種之虎掌(P. pedatisecta)等,為了確保醫藥品之品質,避免該等之誤用、混用較為重要。 因此,以下,示出半夏/天南星之鑑別方法中之一例。由於基本順序與實施例1中所記載之牡丹根及牡丹皮之鑑別方法相同,故而此處僅對與實施例1不同之方面進行記載。<Example 2: Identification method of Pinellia ternata / Araucaria> In the seventeenth revised edition of the Japanese Pharmacopoeia, Pinellia ternata is Pinellia pinellia ternata, and Acerium is specified as Heterophyll astrosperma Umbrella, Northeast or other related plants of the same genus (Araceae). However, P. pedatisecta, which is a close relative, may circulate in the market. In order to ensure the quality of pharmaceutical products, it is important to avoid such misuse and mixing. Therefore, an example of the method for identifying Pinellia terrestrial / Australium is shown below. Since the basic sequence is the same as the method for identifying the peony root and peony bark described in Example 1, only the points different from Example 1 will be described here.

1.核酸提取方法 模板DNA係自生藥、或作為生藥加工前之半夏之基原植物之半夏、及作為天南星之基原植物之異葉天南星、一把傘南星、東北南星及該等之同屬近緣植物之一部分進行提取。又,關於近緣種中之鷂落坪半夏(P. yaolupingensis),自GenBank獲得同源序列。1. Nucleic acid extraction method: The template DNA is from the crude drug, Pinellia ternata, which is the base plant of Pinellia ternata before the processing of the crude drug, and the heterophyllous celestial star, a pair of umbrella south star, northeast south star, and the like that are the base original plant of astral star. Part of the same related plants was extracted. Also, regarding the related species P. yaolupingensis, homologous sequences were obtained from GenBank.

2.核酸擴增方法 使用提取之模板DNA,藉由PCR擴增核核糖體DNA中之ITS區域。核酸擴增反應中所使用之PCR反應液之組成如下所述。 (PCR反應液:ITS擴增用) D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子:001-1F(序列編號1)(10 pmol/μL)1 μL、反向引子:001-1R(序列編號2)(10 pmol/μL)1 μL、模板DNA 1 μL 將結果示於表4。2. Nucleic acid amplification method Using the extracted template DNA, the ITS region in ribosomal DNA is amplified by PCR. The composition of the PCR reaction solution used in the nucleic acid amplification reaction is as follows. (PCR reaction solution: for ITS amplification) DW 17.02 μL, 10 × gene Taq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, gene Taq (NipponGene) 0.14 μL, forward Primer: 001-1F (sequence number 1) (10 pmol / μL) 1 μL, reverse primer: 001-1R (sequence number 2) (10 pmol / μL) 1 μL, template DNA 1 μL The results are shown in Table 4 .

[表4] [Table 4]

於經擴增之ITS區域之核酸片段中,不存在半夏P. Breitenbach固有之鹼基序列,但根據經擴增之鹼基序列中之不同之部位,可進行與近緣種之鑑別。例如與半夏最近緣之鷂落坪半夏可僅藉由88位之鹼基進行鑑別。又,亦未見3種天南星基原植物(異葉天南星、一把傘南星、東北南星)共通之變異,但藉由組合複數個2種共通之變異部位,可鑑別該等基原植物與近緣種。因此,可知藉由使用引子組001-1F/001-1R擴增ITS區域,確定其鹼基序列,可鑑別受驗植物為半夏、異葉天南星還是其他近緣種。Among the amplified ITS region nucleic acid fragments, there is no inherent base sequence of P. Breitenbach, but it can be identified from related species based on different parts in the amplified base sequence. For example, Luoluoping Pinellia, which is closest to Pinellia, can be identified only by the 88-position base. Also, there are no common variations among the three species of Astragalus primordial plants (Heterophylla aurantium, Umbrella Southern Star, Northeast South Star). Fate species. Therefore, it is known that by using the primer set 001-1F / 001-1R to amplify the ITS region and determine its base sequence, it is possible to identify whether the test plant is Pinellia ternate, Heteroptera heterophylla or other related species.

<實施例3:桂皮之鑑別方法> 於日本藥典第十七修訂版中,桂皮之基原植物規定為肉桂。但是,可能會於市場流通作為近緣種之爪哇肉桂(C. javanicum)等,為了確保醫藥品之品質,避免該等之誤用、混用較為重要。 因此,以下,示出桂皮之鑑別方法中之一例。由於基本順序與實施例1中所記載之牡丹根及牡丹皮之鑑別方法相同,故而此處僅對與實施例1不同之方面進行記載。<Example 3: Identification method of cinnamon bark> In the seventeenth revised edition of the Japanese Pharmacopoeia, the original plant of cinnamon bark was specified as cinnamon. However, C. javanicum, which is a closely related species, may be distributed in the market. In order to ensure the quality of pharmaceutical products, it is important to avoid such misuse and mixing. Therefore, an example of the identification method of cinnamon is shown below. Since the basic sequence is the same as the method for identifying the peony root and peony bark described in Example 1, only the points different from Example 1 will be described here.

1.核酸提取方法 模板DNA係對生藥、或作為生藥加工前之桂皮之基原植物之肉桂之一部分、及桂皮近緣種中之日本肉桂(C. sieboldii)、陰香(C. burmanii)、錫蘭肉桂(C. zeylanicum)分別採集乾葉標本之一部分,使用市售之DNeasy(註冊商標)Plant Mini Kit(QIAGEN公司),按照隨附之操作說明進行提取。又,關於土樟(C. reticulatum)、山肉桂(C. insularimontanum)及天竺桂(C. japonicum),自GenBank獲得同源序列。1. Nucleic acid extraction method. Template DNA is for crude medicine, or a part of cinnamon that is the original plant of cinnamon bark before raw medicine processing, and Japanese cinnamon (C. sieboldii), Cinnamon (C. burmanii), Ceylon cinnamon (C. zeylanicum) was collected from a part of dried leaf specimens, and was extracted using a commercially available DNeasy (registered trademark) Plant Mini Kit (QIAGEN) according to the attached operating instructions. Regarding C. reticulatum, C. insularimontanum, and C. japonicum, homologous sequences were obtained from GenBank.

2.核酸擴增方法 使用提取之模板DNA,藉由PCR擴增核核糖體DNA中之ITS區域。核酸擴增反應中所使用之PCR反應液之組成如下所述。 (PCR反應液:ITS擴增用) D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子:003-1F(序列編號7)(10 pmol/μL)1 μL、反向引子:003-1R(序列編號8)(10 pmol/μL)1 μL、模板DNA 1 μL 將結果示於表5。2. Nucleic acid amplification method Using the extracted template DNA, the ITS region in ribosomal DNA is amplified by PCR. The composition of the PCR reaction solution used in the nucleic acid amplification reaction is as follows. (PCR reaction solution: for ITS amplification) DW 17.02 μL, 10 × gene Taq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, gene Taq (NipponGene) 0.14 μL, forward Primer: 003-1F (sequence number 7) (10 pmol / μL) 1 μL, reverse primer: 003-1R (sequence number 8) (10 pmol / μL) 1 μL, template DNA 1 μL The results are shown in Table 5 .

[表5] [table 5]

可知於經擴增之ITS區域之核酸片段中,8位成為C(胞嘧啶)且93位成為A(腺嘌呤)者僅為肉桂,可基於該等部位之鹼基鑑別肉桂與其他近緣種。又,可知關於經擴增之核酸片段中之21位、33位、36位、57位、59位、65位、66位、68位、72位、92位、108位及109位12個部位,藉由各部位單獨之鹼基資訊無法鑑別肉桂與近緣種,但藉由組合選自由該等部位所組成之群中之2個以上之部位的鹼基資訊而可鑑別。 為了鑑別肉桂與近緣種,8位及93位之鑑定為必需條件,為了進行精度更高之鑑別,較佳為鑑定包括上述12個部位在內之14個部位之鹼基。It can be seen that among the nucleic acid fragments of the amplified ITS region, 8 is C (cytosine) and 93 (A adenine) is only cinnamon. Cinnamon can be distinguished from other related species based on the bases in these parts. . In addition, it can be seen that there are 12 positions of the amplified nucleic acid fragments at positions 21, 33, 36, 57, 59, 65, 66, 68, 72, 92, 108, and 109. Cinnamon and related species cannot be identified by the base information of each part alone, but can be identified by combining the base information of two or more parts selected from the group consisting of these parts. In order to identify cinnamon and related species, the 8th and 93th positions are necessary. For more accurate identification, it is preferable to identify bases in 14 positions including the 12 positions.

<實施例4:當歸之鑑別方法> 於日本藥典第十七修訂版中,當歸之基原植物規定為東當歸或北海當歸。但是,可能會於市場流通作為近緣種之當歸(A. sinensis)等,為了確保醫藥品之品質,避免該等之誤用、混用較為重要。 因此,以下,示出當歸之鑑別方法中之一例。由於基本順序與實施例1中所記載之牡丹根及牡丹皮之鑑別方法相同,故而此處僅對與實施例1不同之方面進行記載。<Example 4: Identification method of Angelica sinensis> In the seventeenth revised edition of the Japanese Pharmacopoeia, the original plant of Angelica sinensis was prescribed as East Angelica or North Sea Angelica. However, Angelica sinensis (A. sinensis), which is a close relative, may circulate in the market. In order to ensure the quality of pharmaceutical products, it is important to avoid such misuse and mixing. Therefore, an example of the identification method of angelica is shown below. Since the basic sequence is the same as the method for identifying the peony root and peony bark described in Example 1, only the points different from Example 1 will be described here.

1.核酸提取方法 模板DNA係採集生藥、或作為生藥加工前之當歸之基原植物之東當歸及北海當歸之一部分,又,對近緣種中之當歸採集所收集之乾葉標本之一部分,使用市售之DNeasy(註冊商標)Plant Mini Kit(QIAGEN公司),按照隨附之操作說明進行提取。又,關於近緣種中之臺灣獨活(A. dahurica var. formosana)、川獨活(A. pubescens)、朝鮮當歸(A. gigas)、Perissocoeleum barclayae、Niphogeton josei,自GenBank獲得同源序列。1. Nucleic acid extraction method. Template DNA is used to collect crude drugs, or part of Dong Angelica and North Sea Angelica, which are the original plants of Angelica before processing of crude drugs, and part of dried leaf samples collected from Angelica in related species. Use a commercially available DNeasy (registered trademark) Plant Mini Kit (QIAGEN) and follow the instructions provided with the extraction. Also, regarding the related species Taiwan A. dahurica var. Formosana, A. pubescens, A. gigas, Perissocoeleum barclayae, Niphogeton josei, homologous sequences were obtained from GenBank.

2.核酸擴增方法 使用提取之模板DNA,藉由PCR擴增核核糖體DNA中之ITS區域。核酸擴增反應中所使用之PCR反應液之組成如下所述。 (PCR反應液1:ITS1擴增用) D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子:004-1F(序列編號9;White et al. 1990,已述)(10 pmol/μL)1 μL、反向引子:004-1R(序列編號10)(10 pmol/μL)1 μL、模板DNA 1 μL (PCR反應液2:ITS2擴增用) D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子:004-2F(序列編號11;White et al. 1990,已述)(10 pmol/μL)1 μL、反向引子:004-2R(序列編號12)(10 pmol/μL)1 μL、模板DNA 1 μL 將結果示於表6。2. Nucleic acid amplification method Using the extracted template DNA, the ITS region in ribosomal DNA is amplified by PCR. The composition of the PCR reaction solution used in the nucleic acid amplification reaction is as follows. (PCR reaction solution 1: for ITS1 amplification) DW 17.02 μL, 10 × gene Taq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, gene Taq (NipponGene) 0.14 μL, positive Forward primer: 004-1F (sequence number 9; White et al. 1990, already described) (10 pmol / μL) 1 μL, reverse primer: 004-1R (sequence number 10) (10 pmol / μL) 1 μL, Template DNA 1 μL (PCR reaction solution 2: for ITS2 amplification) DW 17.02 μL, 10 × gene Taq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, gene Taq (NipponGene) 0.14 μL, forward primer: 004-2F (sequence number 11; White et al. 1990, already described) (10 pmol / μL) 1 μL, reverse primer: 004-2R (sequence number 12) (10 pmol / μL ) 1 μL, template DNA 1 μL The results are shown in Table 6.

[表6] [TABLE 6]

經作為基原植物之東當歸及北海當歸擴增之ITS1區域係同一序列。因此,以下,以東當歸為基準進行說明。可知於ITS1區域中,關於70位、75位、83位、188位及229位5個部位,藉由單獨之鹼基資訊無法鑑別東當歸與近緣種,但藉由組合複數個部位之鹼基資訊而可鑑別。The ITS1 region amplified by Dong Angelica and North Sea Angelica, which are the original plants, is the same sequence. Therefore, the following description is based on East Angelica. It can be seen that in the ITS1 region, for the five positions of 70, 75, 83, 188, and 229, East Angelica and related species cannot be identified by separate base information, but by combining bases in a plurality of positions Based on information and can be identified.

作為基原植物之東當歸與北海當歸之ITS2區域亦為同一序列。因此,以下,以東當歸為基準進行說明。可知於ITS2區域中,經擴增之核酸片段之270位成為T(胸腺嘧啶)者僅為東當歸,可基於該等部位之鹼基鑑別當歸與其他近緣種。又,亦可知關於116位、133位、171位、203位、248位5個部位,藉由各部位單獨之鹼基資訊無法鑑別當歸與近緣種,但藉由組合複數個部位之鹼基資訊而可鑑別。Eastern Angelica and North Sea Angelica's ITS2 region, which are the primitive plants, also have the same sequence. Therefore, the following description is based on East Angelica. It can be known that in the ITS2 region, the 270th of the amplified nucleic acid fragment that becomes T (thymine) is only Angelica sinensis, and Angelica sinensis can be identified from other related species based on the bases at these positions. It is also known that Angelica and related species cannot be identified from the base information of each of the five positions at positions 116, 133, 171, 203, and 248, but by combining bases at multiple positions Information and can be identified.

為了鑑別東當歸及北海當歸與其近緣種,進行270位之鑑定即可,但為了進行精度更高之鑑別,較佳為鑑定包括上述5個部位在內之6個部位之鹼基,進而,為了進行高精度之鑑別,較佳為鑑定包含ITS2區域之5個部位之共計11個部位之鹼基而進行評價。In order to identify East Angelica and North Sea Angelica and related species, 270-bit identification is sufficient, but for higher accuracy identification, it is preferable to identify bases in 6 positions including the above 5 positions, and further, For high-precision identification, it is preferable to identify and evaluate bases in a total of 11 positions including 5 positions in the ITS2 region.

<實施例5:蒼術/白術之鑑別方法> 於日本藥典第十七修訂版中,蒼術之基原植物規定為蒼術、北蒼術或該等之雜種(Compositae),又,白術之基原植物規定為關蒼術(日本白術)或白術(Atractylodes ovata)。但是,可能會於市場白術作為蒼術流通,又,蒼術作為白術流通,為了確保醫藥品之品質,避免該等之誤用、混用較為重要。 因此,以下,示出蒼術/白術之鑑別方法中之一例。由於基本順序與實施例1中所記載之牡丹根及牡丹皮之鑑別方法相同,故而此處僅對與實施例1不同之方面進行記載。<Example 5: Identification method of Atractylodes chinensis / Atractylodes chinensis> In the seventeenth revised edition of the Japanese Pharmacopoeia, the original plants of Atractylodes lancea, Atractylodes lancea or their hybrids (Compositae), and the original plants of Atractylodes chinensis It is Guan Cangzhu (Japanese Atractylodes) or Atractylodes ovata. However, it may be distributed in the market as Atractylodes, and Atractylodes as Atractylodes. In order to ensure the quality of pharmaceuticals, it is important to avoid such misuse and mixing. Therefore, an example of the identification method of Atractylodes and Atractylodes will be shown below. Since the basic sequence is the same as the method for identifying the peony root and peony bark described in Example 1, only the points different from Example 1 will be described here.

1.核酸提取方法 模板DNA係採集生藥、或蒼術及白術之基原植物全種之乾葉標本之一部分,使用市售之DNeasy(註冊商標)Plant Mini Kit(QIAGEN公司),按照隨附之操作說明進行提取。1. Nucleic acid extraction method: The template DNA is a part of the dried leaf specimens of the original species of the original plant of Atractylodes or Atractylodes and Atractylodes. The commercially available DNeasy (registered trademark) Plant Mini Kit (QIAGEN) is used. Follow the attached operation. Instructions for extraction.

2.核酸擴增方法 使用提取之模板DNA,藉由PCR擴增核核糖體DNA中之ITS區域。核酸擴增反應中所使用之PCR反應液之組成如下所述。 (PCR反應液:ITS擴增用) D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子:005-1F(序列編號13)(10 pmol/μL)1 μL、反向引子:005-1R(序列編號14)(10 pmol/μL)1 μL、模板DNA 1 μL 將結果示於表7。2. Nucleic acid amplification method Using the extracted template DNA, the ITS region in ribosomal DNA is amplified by PCR. The composition of the PCR reaction solution used in the nucleic acid amplification reaction is as follows. (PCR reaction solution: for ITS amplification) DW 17.02 μL, 10 × gene Taq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, gene Taq (NipponGene) 0.14 μL, forward Primer: 005-1F (SEQ ID NO: 13) (10 pmol / μL) 1 μL, reverse primer: 005-1R (SEQ ID NO: 14) (10 pmol / μL) 1 μL, template DNA 1 μL The results are shown in Table 7 .

[表7] [TABLE 7]

可知關於經擴增之ITS區域之核酸片段中檢測之22位、24位、34位、57位、70位、74位、81位、94位、102位、110位、123位、130位、175位、179位、212位及232位16個部位,藉由各部位單獨之鹼基資訊相互無法鑑別蒼術與白術之基原植物,但藉由選自該等之群中之2個以上之組合,可鑑別各者之種類。It can be seen that the detected 22, 24, 34, 57, 70, 74, 81, 94, 102, 110, 123, 130, There are 16 positions of 175, 179, 212, and 232. The base plants of Atractylodes and Atractylodes cannot be distinguished from each other based on the base information of each part, but by using two or more selected from these groups The combination can identify each type.

<實施例6:柴胡之鑑別方法> 於日本藥典第十七修訂版中,柴胡之基原植物規定為銀柴胡。但是,可能會於市場流通作為近緣種之B. ranunculoides等,為了確保醫藥品之品質,避免該等之誤用、混用較為重要。 因此,以下,示出柴胡之鑑別方法中之一例。由於基本順序與實施例1中所記載之牡丹根及牡丹皮之鑑別方法相同,故而此處僅對與實施例1不同之方面進行記載。<Example 6: Identification method of Bupleurum chinensis> In the seventeenth revised edition of the Japanese Pharmacopoeia, the original plant of Bupleurum chinensis was specified as silver Bupleurum. However, B. ranunculoides and other related species may be circulated in the market. In order to ensure the quality of pharmaceutical products, it is important to avoid such misuse and mixing. Therefore, an example of the identification method of Bupleurum is shown below. Since the basic sequence is the same as the method for identifying the peony root and peony bark described in Example 1, only the points different from Example 1 will be described here.

1.核酸提取方法 模板DNA係採集生藥、或作為生藥加工前之基原植物之銀柴胡之一部分,使用市售之DNeasy(註冊商標)Plant Mini Kit(QIAGEN公司),按照隨附之操作說明進行提取。再者,於銀柴胡種內包含複數個系統,有染色體數不同者(2n=26及2n=20)、或於中國視為別種(紅柴胡、北柴胡)者,序列分別不同。又,關於近緣種之B. ranunculoides、錐葉柴胡(B. bicaule)、黑柴胡(B. smithii),自GenBank獲得同源序列。1. Nucleic acid extraction method Template DNA is used to collect crude drugs or part of silver Bupleurum as the original plant before the processing of crude drugs. Use the commercially available DNeasy (registered trademark) Plant Mini Kit (QIAGEN) and follow the instructions provided. Perform extraction. Furthermore, there are multiple systems in the species of Yinchaihu, including those with different chromosome numbers (2n = 26 and 2n = 20), or those regarded as different species in China (Hongchaihu, Beichaihu), with different sequences. Further, regarding the related species B. ranunculoides, B. bicaule, and B. smithii, homologous sequences were obtained from GenBank.

2.核酸擴增方法 使用提取之模板DNA,藉由PCR擴增核核糖體DNA中之ITS區域。核酸擴增反應中所使用之PCR反應液之組成如下所述。 (PCR反應液:ITS擴增用) D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子:006-1F(序列編號15)(10 pmol/μL)1 μL、反向引子:006-1R(序列編號16)(10 pmol/μL)1 μL、模板DNA 1 μL 將結果示於表8。2. Nucleic acid amplification method Using the extracted template DNA, the ITS region in ribosomal DNA is amplified by PCR. The composition of the PCR reaction solution used in the nucleic acid amplification reaction is as follows. (PCR reaction solution: for ITS amplification) DW 17.02 μL, 10 × gene Taq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, gene Taq (NipponGene) 0.14 μL, forward Primer: 006-1F (sequence number 15) (10 pmol / μL) 1 μL, reverse primer: 006-1R (sequence number 16) (10 pmol / μL) 1 μL, template DNA 1 μL The results are shown in Table 8. .

[表8] [TABLE 8]

可知關於經擴增之ITS區域之核酸片段中檢測之4位、20位、26位、43位、48位、75位、128位、146位、161位、168位、181位及182位12個部位,藉由各部位單獨之鹼基資訊無法鑑別柴胡與近緣種,但藉由選自該等之群中之2個以上之組合,可鑑別柴胡。It can be known that the detected nucleic acid fragments of the amplified ITS region are 4, 20, 26, 43, 48, 75, 128, 146, 161, 168, 181, and 182. In each part, the Bupleurum and related species cannot be identified by the base information of each part alone, but the Bupleurum can be identified by a combination of two or more selected from the group.

<實施例7:天冬之鑑別方法> 於日本藥典第十七修訂版中,天冬之基原植物規定為天門冬。但是,可能會於市場流通作為近緣種之密齒天門冬(A. meioclados)等,為了確保醫藥品之品質,避免該等之誤用、混用較為重要。 因此,以下,示出天冬之鑑別方法中之一例。由於基本順序與實施例1中所記載之牡丹根及牡丹皮之鑑別方法相同,故而此處僅對與實施例1不同之方面進行記載。<Example 7: Identification method of Asparagus> In the seventeenth revised edition of the Japanese Pharmacopoeia, the original plant of Asparagus was specified as Asparagus. However, A. meioclados, which are closely related species, may circulate in the market. In order to ensure the quality of pharmaceutical products, it is important to avoid such misuse and mixing. Therefore, an example of the identification method of Asparagus is shown below. Since the basic sequence is the same as the method for identifying the peony root and peony bark described in Example 1, only the points different from Example 1 will be described here.

1.核酸提取方法 模板DNA係採集生藥、或作為生藥加工前之天冬之基原植物之天門冬之一部分,又,對近緣種中之密齒天門冬、短梗天門冬(A. lycopodineus)及蘆筍(A. officinalis)採集乾葉標本之一部分,使用市售之DNeasy(註冊商標)Plant Mini Kit(QIAGEN公司),按照隨附之操作說明進行提取。關於作為其他近緣種之總序天冬(A. racemosus)及龍鬚菜(A. schoberioides),自GenBank獲得同源序列。1. Nucleic acid extraction method. Template DNA is used to collect crude drugs or part of asparagus that is the original plant of Asparagus before the processing of crude drugs. In addition, the closely related species Asparagus and Asparagus (A. lycopodineus) ) And asparagus (A. officinalis) to collect a part of the dried leaf specimens, use a commercially available DNeasy (registered trademark) Plant Mini Kit (QIAGEN), and extract according to the attached operating instructions. Regarding A. racemosus and A. schoberioides as other related species, homologous sequences were obtained from GenBank.

2.核酸擴增方法 使用提取之模板DNA,藉由PCR擴增核核糖體DNA中之ITS區域。核酸擴增反應中所使用之PCR反應液之組成如下所述。 (PCR反應液:ITS擴增用) D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子:007-1F(序列編號17)(10 pmol/μL)1 μL、反向引子:007-1R(序列編號18)(10 pmol/μL)1 μL、模板DNA 1 μL 將結果示於表9。2. Nucleic acid amplification method Using the extracted template DNA, the ITS region in ribosomal DNA is amplified by PCR. The composition of the PCR reaction solution used in the nucleic acid amplification reaction is as follows. (PCR reaction solution: for ITS amplification) DW 17.02 μL, 10 × gene Taq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, gene Taq (NipponGene) 0.14 μL, forward Primer: 007-1F (SEQ ID NO: 17) (10 pmol / μL) 1 μL, reverse primer: 007-1R (SEQ ID NO: 18) (10 pmol / μL) 1 μL, template DNA 1 μL The results are shown in Table 9 .

[表9] [TABLE 9]

由於作為天冬之基原植物之天門冬可見種內多形,故而於表9中,以天門冬1及天門冬2分別表示經擴增之ITS區域。可知未見可藉由單獨之鹼基資訊鑑別天門冬之2型與近緣種之部位,但藉由選自由5位、16位、18位、24位、25位、41位及45位7個部位所組成之群中之2個以上之組合,可鑑別天冬。As Asparagus, the original plant that is the basis of Asparagus, has polymorphism in the species, so in Table 9, Aspartame 1 and Asparagus 2 are used to denote the amplified ITS regions. It can be seen that the type 2 and related species of Asparagus can not be identified by separate base information, but by selecting from 5th, 16th, 18th, 24th, 25th, 41th, and 45th 7 The combination of two or more in the group composed of each part can identify Asparagus.

<實施例8:山茱萸之鑑別方法> 於日本藥典第十七修訂版中,山茱萸之基原植物規定為山茱萸。但是,可能會於市場流通作為近緣種之大果山茱萸(C. mas)等,為了確保醫藥品之品質,避免該等之誤用、混用較為重要。 因此,以下,示出山茱萸之鑑別方法中之一例。由於基本順序與實施例1中所記載之牡丹根及牡丹皮之鑑別方法相同,故而此處僅對與實施例1不同之方面進行記載。<Example 8: Identification method of dogwood> In the seventeenth revised edition of the Japanese Pharmacopoeia, the original plant of dogwood was specified as dogwood. However, C. mas, which is a related species, may be distributed in the market. In order to ensure the quality of pharmaceutical products, it is important to avoid such misuse and mixing. Therefore, an example of the method for identifying dogwood is shown below. Since the basic sequence is the same as the method for identifying the peony root and peony bark described in Example 1, only the points different from Example 1 will be described here.

1.核酸提取方法 模板DNA係採集生藥、或作為生藥加工前之基原植物之山茱萸之一部分,使用市售之DNeasy(註冊商標)Plant Mini Kit(QIAGEN公司),按照隨附之操作說明進行提取。又,關於近緣種之大果山茱萸、雲南山茱萸(C. eydeana)、川鄂山茱萸(C. chinensis)及密毛棶木(C. stracheyi),自GenBank獲得同源序列。1. Nucleic acid extraction method. Template DNA is used to collect crude drugs or part of dogwood which is the original plant before the processing of crude drugs. Use commercially available DNeasy (registered trademark) Plant Mini Kit (QIAGEN) and follow the instructions provided. . In addition, the homologous sequences were obtained from the related species of Fructus Corni, C. eydeana, C. chinensis, and C. stracheyi from GenBank.

2.核酸擴增方法 使用提取之模板DNA,藉由PCR擴增核核糖體DNA中之ITS區域。核酸擴增反應中所使用之PCR反應液之組成如下所述。 (PCR反應液:ITS擴增用) D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子:008-1F(序列編號19)(10 pmol/μL)1 μL、反向引子:008-1R(序列編號20)(10 pmol/μL)1 μL、模板DNA 1 μL 將結果示於表10。2. Nucleic acid amplification method Using the extracted template DNA, the ITS region in ribosomal DNA is amplified by PCR. The composition of the PCR reaction solution used in the nucleic acid amplification reaction is as follows. (PCR reaction solution: for ITS amplification) DW 17.02 μL, 10 × gene Taq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, gene Taq (NipponGene) 0.14 μL, forward Primer: 008-1F (SEQ ID NO: 19) (10 pmol / μL) 1 μL, reverse primer: 008-1R (SEQ ID NO: 20) (10 pmol / μL) 1 μL, template DNA 1 μL The results are shown in Table 10 .

[表10] [TABLE 10]

可知關於經擴增之ITS區域之核酸片段中檢測之31位、35位、77位及87位4個部位,藉由各部位單獨之鹼基資訊無法鑑別山茱萸與近緣種,但藉由選自該等之群中之2個以上之組合,可鑑別山茱萸。It can be seen that the detected 31, 35, 77, and 87 positions in the amplified ITS region nucleic acid fragments can not be distinguished from dogwood and related species by the base information of each part alone, but by selecting Dogwood can be identified from a combination of two or more of these groups.

<實施例9:百合之鑑別方法> 於日本藥典第十七修訂版中,百合之基原植物規定為卷丹百合、白花百合、野百合或山丹。但是,可能會於市場流通作為近緣種之渥丹(L. concolor)等,為了確保醫藥品之品質,避免該等之誤用、混用較為重要。 因此,以下,示出百合之鑑別方法中之一例。由於基本順序與實施例1中所記載之牡丹根及牡丹皮之鑑別方法相同,故而此處僅對與實施例1不同之方面進行記載。<Example 9: Identification method of lily> In the seventeenth revised edition of the Japanese Pharmacopoeia, the original plant of the lily was prescribed as a lily of the valley, white lily, wild lily or mandshurium. However, L. concolor, which is a closely related species, may be distributed in the market. In order to ensure the quality of pharmaceutical products, it is important to avoid such misuse and mixing. Therefore, an example of the identification method of a lily is shown below. Since the basic sequence is the same as the method for identifying the peony root and peony bark described in Example 1, only the points different from Example 1 will be described here.

1.核酸提取方法 模板DNA係採集生藥、或作為生藥加工前之百合之基原植物之卷丹百合之一部分,使用市售之DNeasy(註冊商標)Plant Mini Kit(QIAGEN公司),按照隨附之操作說明進行提取。又,關於近緣種,自GenBank獲得同源序列。1. Nucleic acid extraction method Template DNA is used to collect crude drugs, or part of the lily of the valley that is the original plant of the lily before the processing of crude drugs. Use the commercially available DNeasy (registered trademark) Plant Mini Kit (QIAGEN) according to the attached Instructions for extraction. For related species, homologous sequences were obtained from GenBank.

2.核酸擴增方法 使用提取之模板DNA,藉由PCR擴增核核糖體DNA中之ITS區域。核酸擴增反應中所使用之PCR反應液之組成如下所述。 (PCR反應液1:ITS1擴增用#1) D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子:009-1F(序列編號21)(10 pmol/μL)1 μL、反向引子:009-1R(序列編號22)(10 pmol/μL)1 μL、模板DNA 1 μL (PCR反應液2:ITS1擴增用#2) D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子:009-2F(序列編號23)(10 pmol/μL)1 μL、反向引子:009-2R(序列編號24)(10 pmol/μL)1 μL、模板DNA 1 μL 將結果示於表11。2. Nucleic acid amplification method Using the extracted template DNA, the ITS region in ribosomal DNA is amplified by PCR. The composition of the PCR reaction solution used in the nucleic acid amplification reaction is as follows. (PCR reaction solution 1: # 1 for ITS1 amplification) DW 17.02 μL, 10 × gene Taq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, gene Taq (NipponGene) 0.14 μL 1, forward primer: 009-1F (SEQ ID NO: 21) (10 pmol / μL) 1 μL, reverse primer: 009-1R (SEQ ID NO: 22) (10 pmol / μL) 1 μL, template DNA 1 μL (PCR reaction Solution 2: ITS1 amplification # 2) DW 17.02 μL, 10 × gene Taq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, gene Taq (NipponGene) 0.14 μL, forward Primer: 009-2F (SEQ ID NO: 23) (10 pmol / μL) 1 μL, reverse primer: 009-2R (SEQ ID NO: 24) (10 pmol / μL) 1 μL, template DNA 1 μL The results are shown in Table 11 .

[表11] [TABLE 11]

可知關於ITS區域#1之核酸片段中檢測之18位、37位、50位、54位、58位、90位、95位、102位、124位及150位10個部位,藉由各部位單獨之鹼基資訊無法鑑別百合之基原植物與近緣種,但藉由選自由該等部位所組成之群中之2個以上之部位之鹼基資訊的組合,可鑑別百合。It can be seen that there are 10 positions of 18, 37, 50, 54, 58, 90, 95, 102, 124, and 150 positions detected in the nucleic acid fragment of ITS region # 1. The base information cannot identify the base plant and related species of the lily, but the combination of base information of two or more parts selected from the group consisting of these parts can be used to identify the lily.

又,可知關於ITS1區域#2之核酸片段中檢測之6位、18位、20位、25位、32位、42位、46位、54位、107位及126位10個部位,藉由各部位單獨之鹼基資訊無法鑑別百合之基原植物與近緣種,但藉由選自由該等部位所組成之群中之2個以上之部位之鹼基資訊的組合,可鑑別百合。In addition, it can be seen that there are 10 positions of 6th, 18th, 20th, 25th, 32th, 42th, 46th, 54th, 107th, and 126th positions detected in the nucleic acid fragment of ITS1 region # 2. The base information of the individual parts cannot distinguish the primordial plant and related species of the lily, but the combination of the base information of two or more parts selected from the group consisting of these parts can be used to identify the lily.

<實施例10:人蔘/紅蔘之鑑別方法> 於日本藥典第十七修訂版中,人蔘/紅蔘之基原植物規定為人蔘。但是,可能會於市場流通作為近緣種之花旗參(P. quinquefolius)等,為了確保醫藥品之品質,避免該等之誤用、混用較為重要。 因此,以下,示出人蔘/紅蔘之鑑別方法中之一例。由於基本順序與實施例1中所記載之牡丹根及牡丹皮之鑑別方法相同,故而此處僅對與實施例1不同之方面進行記載。<Example 10: Identification method of human salamander / red salamander> In the seventeenth revised edition of the Japanese Pharmacopoeia, the original plant of human salamander / red salamander was specified as human salamander. However, P. quinquefolius, which is a related species, may be distributed in the market. In order to ensure the quality of pharmaceutical products, it is important to avoid such misuse and mixing. Therefore, an example of the method for identifying human beings / red beasts is shown below. Since the basic sequence is the same as the method for identifying the peony root and peony bark described in Example 1, only the points different from Example 1 will be described here.

1.核酸提取方法 模板DNA係採集生藥、或作為生藥加工前之人蔘/紅蔘之基原植物之人蔘之一部分,使用市售之DNeasy(註冊商標)Plant Mini Kit(QIAGEN公司),按照隨附之操作說明進行提取。又,關於近緣種,自GenBank獲得同源序列。1. Nucleic acid extraction method Template DNA is used to collect crude drugs, or as part of human pupae / red pupae-based original plant human pupae before processing of crude drugs, using the commercially available DNeasy (registered trademark) Plant Mini Kit (QIAGEN) according to Extraction with attached operating instructions. For related species, homologous sequences were obtained from GenBank.

2.核酸擴增方法 使用提取之模板DNA,藉由PCR擴增核核糖體DNA中之ITS區域。核酸擴增反應中所使用之PCR反應液之組成如下所述。 (PCR反應液1:ITS1擴增用#1) D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子:013-1F(序列編號9;White et al. 1990,已述)(10 pmol/μL)1 μL、反向引子:013-1R(序列編號34)(10 pmol/μL)1 μL、模板DNA 1 μL (PCR反應液2:ITS2擴增用#1) D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子:013-2F(序列編號35)(10 pmol/μL)1 μL、反向引子:013-2R(序列編號36;White et al. 1990,已述)(10 pmol/μL)1 μL、模板DNA 1 μL (PCR反應液3:ITS1擴增用#2) D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子:010-1F(序列編號25)(10 pmol/μL)1 μL、反向引子:010-1R(序列編號26)(10 pmol/μL)1 μL、模板DNA 1 μL (PCR反應液4:ITS2擴增用#2) D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子:010-2F(序列編號27)(10 pmol/μL)1 μL、反向引子:010-2R(序列編號28)(10 pmol/μL)1 μL、模板DNA 1 μL 將結果示於表12。2. Nucleic acid amplification method Using the extracted template DNA, the ITS region in ribosomal DNA is amplified by PCR. The composition of the PCR reaction solution used in the nucleic acid amplification reaction is as follows. (PCR reaction solution 1: # 1 for ITS1 amplification) DW 17.02 μL, 10 × gene Taq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, gene Taq (NipponGene) 0.14 μL 1. Forward primer: 013-1F (sequence number 9; White et al. 1990, already described) (10 pmol / μL) 1 μL, reverse primer: 013-1R (sequence number 34) (10 pmol / μL) 1 μL, template DNA 1 μL (PCR reaction solution 2: ITS2 amplification # 1) DW 17.02 μL, 10 × gene Taq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, gene Taq (NipponGene) 0.14 μL, forward primer: 013-2F (sequence number 35) (10 pmol / μL) 1 μL, reverse primer: 013-2R (sequence number 36; White et al. 1990, already described) ( 10 pmol / μL) 1 μL, template DNA 1 μL (PCR reaction solution 3: ITS1 amplification # 2) DW 17.02 μL, 10 × gene Taq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, gene Taq (NipponGene) 0.14 μL, forward primer: 010-1F (sequence number 25) (10 pmol / μL) 1 μL, reverse primer: 010-1R (sequence number 26) (10 pmol / μL ) 1 μL, template DNA 1 μL (PCR reaction solution 4: ITS2 amplification # 2) DW 17.02 μL, 10 × gene Taq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, Gene Taq (NipponGene) 0.14 μL, forward primer: 010-2F (SEQ ID NO: 27) (10 pmol / μL) 1 μL, reverse primer: 010-2R (SEQ ID NO: 28) (10 pmol / μL) 1 μL The results are shown in Table 12 with 1 μL of template DNA.

[表12] [TABLE 12]

PCR反應液1與3及反應液2與4係分別擴增同一鑑別區域,於PCR反應液1與3及反應液2與4中,擴增之片段之長度不同。一般,擴增片段越短則擴增成功率越高,另一方面,所獲得之鑑別部位之資訊數越少,越難以藉由自動測序儀確定序列。以下,於本說明書之實施例中使用之各引子組中相同。The PCR reaction solutions 1 and 3 and the reaction solutions 2 and 4 respectively amplify the same identification region. In the PCR reaction solutions 1 and 3 and the reaction solutions 2 and 4, the amplified fragments have different lengths. Generally, the shorter the amplified fragment, the higher the success rate of amplification. On the other hand, the less the information of the identified site is obtained, the more difficult it is to determine the sequence by an automatic sequencer. Hereinafter, each primer set used in the examples of this specification is the same.

於本方法中,嘗試藉由PCR反應液1及2之擴增片段之序列確定,於序列確定之成功率不足夠高之情形時,實施藉由PCR反應液3及4再次進行擴增及序列確定之二階段之試驗。藉此,可降低成本,且應對與樣本之DNA品質之差異。再者,關於紅蔘,藉由PCR反應液1及PCR反應液2序列確定之成功率較低,故而有效的是自最初起使用PCR反應液3及4之試驗。In this method, try to determine the sequence of the amplified fragments by PCR reaction solutions 1 and 2. When the success rate of sequence determination is not high enough, perform the amplification and sequence by PCR reaction solutions 3 and 4. The second phase of the test is determined. This can reduce costs and cope with differences in DNA quality from the sample. In addition, as for the red pupa, the success rate determined by the sequence of the PCR reaction solution 1 and the PCR reaction solution 2 is low, so it is effective to use the experiments of the PCR reaction solutions 3 and 4 from the beginning.

可知於ITS1區域#1中,147位成為A(腺嘌呤)者僅為人蔘,可基於該部位之鹼基鑑別人蔘與其他近緣種。可知關於45位、73位及206位3個部位,僅藉由各部位單獨之鹼基資訊無法鑑別人蔘與近緣種,但藉由組合複數個部位之鹼基資訊而可鑑別。為了鑑別人蔘與近緣種,進行147位之鑑定即可,但為了進行精度更高之鑑別,較佳為鑑定包括上述3處在內之4個部位之鹼基。It can be seen that in the ITS1 region # 1, the 147th person who becomes A (adenine) is only human salamander, and human salamander and other related species can be identified based on the bases at this site. It can be seen that for 45 positions, 73 positions, and 206 positions, the human salamander and related species cannot be identified only by the base information of each part alone, but can be identified by combining the base information of a plurality of positions. In order to identify human salamander and related species, identification at position 147 is sufficient, but for more accurate identification, it is preferable to identify bases at 4 positions including the above 3 positions.

可知於ITS2區域#1中,於106位成為T(胸腺嘧啶)者僅為人蔘,可基於該部位之鹼基鑑別人蔘與其他近緣種。可知關於85位、97位、146位、162位、203位、270位及281位7個部位,僅藉由各部位單獨之鹼基資訊無法鑑別人蔘與近緣種,但藉由組合複數個部位之鹼基資訊而可鑑別。為了鑑別人蔘與近緣種,進行106位之鑑定即可,但為了進行精度更高之鑑別,較佳為鑑定包括上述7個部位在內之8個部位之鹼基。It can be seen that in the ITS2 region # 1, the person who becomes T (thymine) at 106 positions is only human salamander, and human salamander and other related species can be identified based on the bases at this site. It can be seen that for the 85, 97, 146, 162, 203, 270, and 281 positions, only human bases and related species cannot be identified based on the base information of each part alone, but by combining plural numbers The base information of each part can be identified. In order to identify human salamander and related species, 106-bit identification is sufficient, but for more accurate identification, it is preferable to identify bases in 8 positions including the above 7 positions.

可知於ITS1區域#2中,於80位成為A(腺嘌呤)者僅為人蔘,可基於該部位之鹼基鑑別人蔘與其他近緣種。可知關於6位、21位及32位3個部位,僅藉由各部位單獨之鹼基資訊無法鑑別人蔘與近緣種,但藉由組合複數個部位之鹼基資訊而可鑑別。即,為了鑑別人蔘與近緣種,進行80位之鑑定即可,但為了進行精度更高之鑑別,較佳為鑑定包括上述3個部位在內之4個部位之鹼基。It can be seen that in the ITS1 region # 2, those who become A (adenine) at the 80th position are only human salamanders, and human salamanders and other related species can be identified based on the bases at this site. It can be seen that, for the 6-, 21-, and 32-bit 3 positions, the human salamander and related species cannot be identified by only the base information of each part alone, but can be identified by combining the base information of a plurality of positions. That is, in order to identify human salamander and related species, identification at 80 positions may be performed, but for higher accuracy identification, it is preferable to identify bases at 4 positions including the 3 positions described above.

可知於ITS2區域#2中,於78位成為T(胸腺嘧啶)者僅為人蔘,可基於該部位之鹼基鑑別人蔘與其他近緣種。可知關於64位、75位及115位3個部位,僅藉由各部位單獨之鹼基資訊無法鑑別人蔘與近緣種,但藉由組合複數個部位之鹼基資訊而可鑑別。為了鑑別人蔘與近緣種,進行78位之鑑定即可,但為了進行精度更高之鑑別,較佳為鑑定包括上述3個部位在內之4個部位之鹼基。It can be seen that in the ITS2 region # 2, those who become T (thymine) at position 78 are only human salamanders, and human salamanders and other related species can be identified based on the bases at this site. It can be seen that, for the three sites of 64, 75 and 115 positions, the human salamander and related species cannot be distinguished only by the base information of each site alone, but can be identified by combining the base information of a plurality of sites. In order to identify human salamander and related species, identification at position 78 is sufficient, but for more accurate identification, it is preferable to identify bases at 4 positions including the above 3 positions.

於藉由PCR反應液1及2可進行擴增及序列確定之情形時、以及藉由PCR反應液3及4可進行擴增及序列確定之情形時,如上所述可使用之鑑別部位之數量不同。為了進行精度更高之鑑別,有效的是藉由具有更多之鑑別部位數之PCR反應液1及2進行擴增及序列確定,但於PCR反應液3及4中,亦可滿足用以鑑別近緣種之必需要件。In the case where amplification and sequence determination can be performed by PCR reaction solutions 1 and 2, and in the case where amplification and sequence determination can be performed by PCR reaction solutions 3 and 4, the number of identification sites that can be used as described above different. For more accurate identification, it is effective to use PCR reaction solutions 1 and 2 with more identification sites for amplification and sequence determination, but in PCR reaction solutions 3 and 4, it can also be used for identification. Related species are necessary.

<實施例11:天麻之鑑別方法> 於日本藥典第十七修訂版中,天麻之基原植物規定為天麻。但是,可能會於市場流通作為近緣種之冬赤箭(G. pubilabiata)等,為了確保醫藥品之品質,避免該等之誤用、混用較為重要。 因此,以下,示出天麻之鑑別方法中之一例。由於基本順序與實施例1中所記載之牡丹根及牡丹皮之鑑別方法相同,故而此處僅對與實施例1不同之方面進行記載。<Example 11: Identification method of Gastrodia elata> In the seventeenth revised edition of the Japanese Pharmacopoeia, the original plant of Gastrodia elata was specified as Gastrodia elata. However, G. pubilabiata, which is a closely related species, may circulate in the market. In order to ensure the quality of pharmaceutical products, it is important to avoid such misuse and mixing. Therefore, an example of the identification method of Gastrodia is shown below. Since the basic sequence is the same as the method for identifying the peony root and peony bark described in Example 1, only the points different from Example 1 will be described here.

1.核酸提取方法 模板DNA係採集生藥、或作為生藥加工前之天麻之基原植物之天麻之一部分,使用市售之DNeasy(註冊商標)Plant Mini Kit(QIAGEN公司),按照隨附之操作說明進行提取。又,關於近緣種,自GenBank獲得同源序列。1. Nucleic acid extraction method Template DNA is used to collect crude drugs or Gastrodia elata which is the original plant of Gastrodia before crude drug processing. Use the commercially available DNeasy (registered trademark) Plant Mini Kit (QIAGEN) according to the attached operating instructions. Perform extraction. For related species, homologous sequences were obtained from GenBank.

2.核酸擴增方法 使用提取之模板DNA,藉由PCR擴增核核糖體DNA中之ITS區域。核酸擴增反應中所使用之PCR反應液之組成如下所述。 (PCR反應液1:ITS1擴增用) D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子:011-1F(序列編號29)(10 pmol/μL)1 μL、反向引子:011-1R(序列編號4)(10 pmol/μL)1 μL、模板DNA 1 μL (PCR反應液2:ITS2擴增用) D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子:011-2F(序列編號30)(10 pmol/μL)1 μL、反向引子:011-2R(序列編號31)(10 pmol/μL)1 μL、模板DNA 1 μL 將結果示於表13。2. Nucleic acid amplification method Using the extracted template DNA, the ITS region in ribosomal DNA is amplified by PCR. The composition of the PCR reaction solution used in the nucleic acid amplification reaction is as follows. (PCR reaction solution 1: for ITS1 amplification) DW 17.02 μL, 10 × gene Taq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, gene Taq (NipponGene) 0.14 μL, positive Forward primer: 011-1F (SEQ ID NO: 29) (10 pmol / μL) 1 μL, reverse primer: 011-1R (SEQ ID NO: 4) (10 pmol / μL) 1 μL, template DNA 1 μL (PCR reaction solution 2) : For ITS2 amplification) DW 17.02 μL, 10 × gene Taq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, gene Taq (NipponGene) 0.14 μL, forward primer: 011- 2F (SEQ ID NO: 30) (10 pmol / μL) 1 μL, reverse primer: 011-2R (SEQ ID NO: 31) (10 pmol / μL) 1 μL, and template DNA 1 μL. The results are shown in Table 13.

[表13] [TABLE 13]

經擴增之ITS1區域之核酸片段中檢測之38位、54位及83位3個部位分別成為G、A及C者僅為天麻。因此,可知可基於該等任一部位之鹼基資訊鑑別作為天麻之基原種之天麻與其他近緣種。於天麻之鑑別中,藉由上述3個部位中之任一者之鹼基資訊進行即可,但為了進行精度更高之鑑別,更佳為組合2個以上之鹼基資訊。Among the amplified ITS1 region nucleic acid fragments, the 38, 54 and 83 positions detected as G, A and C, respectively, are only Gastrodia elata. Therefore, it can be seen that Gastrodia elata and other related species can be identified based on the base information of any of these parts. In the identification of Gastrodia elata, the base information of any one of the three positions described above may be used. However, for more accurate identification, it is more preferable to combine two or more base information.

於ITS2區域中,2位、20位、56位、84位、91位、103位、104位、122位、126位9個部位分別成為C、A、C、C、C、C、T、T及A者僅為天麻。因此,可知可基於該等部位之鹼基資訊鑑別作為天麻之基原種之天麻與其他近緣種。於天麻之鑑別中,藉由上述9個部位中之任一者之鹼基資訊進行即可,但為了進行精度更高之鑑別,更佳為組合2個以上之鹼基資訊。In the ITS2 area, 2 positions, 20 positions, 56 positions, 84 positions, 91 positions, 103 positions, 104 positions, 122 positions, and 126 positions are respectively C, A, C, C, C, C, T, T and A are only Gastrodia. Therefore, it can be seen that Gastrodia elata and other related species can be identified based on the base information of these parts. In the identification of Gastrodia elata, the base information of any of the above 9 positions may be used, but for more accurate identification, it is more preferable to combine two or more base information.

<實施例12:黃芩之鑑別方法> 於日本藥典第十七修訂版中,黃芩之基原植物規定為黃芩。但是,可能會於市場流通作為近緣種之滇黃芩(S. amoena)等,為了確保醫藥品之品質,避免該等之誤用、混用較為重要。 因此,以下,示出黃芩之鑑別方法中之一例。由於基本順序與實施例1中所記載之牡丹根及牡丹皮之鑑別方法相同,故而此處僅對與實施例1不同之方面進行記載。<Example 12: Identification method of Scutellaria baicalensis> In the seventeenth revised edition of the Japanese Pharmacopoeia, the original plant of Scutellaria baicalensis was defined as Scutellaria baicalensis. However, S. amoena, which is a close relative, may circulate in the market. In order to ensure the quality of pharmaceutical products, it is important to avoid such misuse and mixing. Therefore, an example of the identification method of Scutellariae is shown below. Since the basic sequence is the same as the method for identifying the peony root and peony bark described in Example 1, only the points different from Example 1 will be described here.

1.核酸提取方法 模板DNA係採集生藥、或作為生藥加工前之黃芩之基原植物之黃芩之一部分,又,對近緣種中之滇黃芩採集所收集之乾葉標本之一部分,使用市售之DNeasy(註冊商標)Plant Mini Kit(QIAGEN公司),按照隨附之操作說明進行提取。又,關於作為其他近緣種之印度黃苓(S. indica)及京黃芩(S. pekinensis),自GenBank獲得同源序列。1. Nucleic acid extraction method. Template DNA is used to collect crude drugs, or part of Scutellaria baicalensis, which is the original plant of Scutellaria baicalensis before processing of crude drugs. In addition, a portion of dried leaf specimens collected from Scutellaria baicalensis collected from related species is used commercially Extract DNeasy (registered trademark) Plant Mini Kit (QIAGEN) according to the attached operating instructions. In addition, as for other related species, S. indica and S. pekinensis, homologous sequences were obtained from GenBank.

2.核酸擴增方法 使用提取之模板DNA,藉由PCR擴增核核糖體DNA中之ITS區域。核酸擴增反應中所使用之PCR反應液之組成如下所述。 (PCR反應液1:ITS1擴增用) D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子:012-1F(序列編號9)(10 pmol/μL)1 μL、反向引子:012-1R(序列編號32)(10 pmol/μL)1 μL、模板DNA 1 μL (PCR反應液2:ITS2擴增用) D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子:012-2F(序列編號11)(10 pmol/μL)1 μL、反向引子:012-2R(序列編號33)(10 pmol/μL)1 μL、模板DNA 1 μL 將結果示於表14。2. Nucleic acid amplification method Using the extracted template DNA, the ITS region in ribosomal DNA is amplified by PCR. The composition of the PCR reaction solution used in the nucleic acid amplification reaction is as follows. (PCR reaction solution 1: for ITS1 amplification) DW 17.02 μL, 10 × gene Taq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, gene Taq (NipponGene) 0.14 μL, positive Forward primer: 012-1F (sequence number 9) (10 pmol / μL) 1 μL, reverse primer: 012-1R (sequence number 32) (10 pmol / μL) 1 μL, template DNA 1 μL (PCR reaction solution 2 : For ITS2 amplification) DW 17.02 μL, 10 × gene Taq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, gene Taq (NipponGene) 0.14 μL, forward primer: 012- 2F (SEQ ID NO: 11) (10 pmol / μL) 1 μL, reverse primer: 012-2R (SEQ ID NO: 33) (10 pmol / μL) 1 μL, and template DNA 1 μL. The results are shown in Table 14.

[表14] [TABLE 14]

可知關於經擴增之ITS1區域之核酸片段中檢測之193位、137位、154位、155位、162位、182位、212位、241位及258位9個部位,藉由各部位單獨之鹼基資訊無法鑑別黃芩之基原植物黃芩與近緣種,但藉由選自由該等部位所組成之群中之2個以上之部位之鹼基資訊的組合,可鑑別黃芩。It can be known that the 193, 137, 154, 155, 162, 182, 212, 241, and 258 positions of the nucleic acid fragments of the amplified ITS1 region were detected, and each part was independently The base information cannot identify the base plant of Scutellaria baicalensis and related species, but the combination of base information of two or more parts selected from the group consisting of these parts can identify the Scutellaria baicalensis.

又,經擴增之ITS2區域中之核酸片段中檢測之187位為C(胞嘧啶)者僅為黃芩。因此,可知可基於該部位之鹼基資訊鑑別黃芩之基原植物黃芩與其他近緣種。另一方面,可知藉由93位、118位、119位、168位、176位及191位6個部位中之各部位單獨之鹼基資訊無法鑑別黃芩與近緣種,但藉由選自由該等部位所組成之群中之2個以上之部位之鹼基資訊的組合,可鑑別黃芩。In addition, the 187th detected C (cytosine) in the nucleic acid fragment in the amplified ITS2 region was only Scutellaria baicalensis. Therefore, it can be seen that the base plant of Scutellaria baicalensis and other related species can be identified based on the base information of the site. On the other hand, it can be seen that the scutellaria baicalensis and related species cannot be identified by the base information of each of the six positions of 93, 118, 119, 168, 176, and 191, but by selecting from The combination of base information of two or more parts in a group of equal parts can identify Scutellaria baicalensis.

於黃芩之鑑別中,藉由ITS2區域之187位之鹼基資訊進行即可,但為了進行精度更高之鑑別,除此以外,更佳為組合選自由ITS1區域之上述9個部位及ITS2區域之上述6個部位之合計15個部位所組成之群中的鹼基資訊。In the identification of Scutellaria baicalensis, it may be performed by using the base information of the 187th position of the ITS2 region. However, for more accurate identification, in addition, it is more preferable to combine the above 9 positions selected from the ITS1 region and the ITS2 region. The base information in the group consisting of a total of 15 positions among the above 6 positions.

<實施例13:升麻之鑑別方法> 於日本藥典第十七修訂版中,升麻之基原植物規定為單穗升麻、興安升麻、升麻或大三葉升麻。但是,可能會於市場流通作為近緣種之黑升麻(C. racemosa)等,為了確保醫藥品之品質,避免該等之誤用、混用較為重要。 因此,以下,示出升麻之鑑別方法中之一例。由於基本順序與實施例1中所記載之牡丹根及牡丹皮之鑑別方法相同,故而此處僅對與實施例1不同之方面進行記載。<Example 13: Identification method of Cimicifuga> In the seventeenth revised edition of the Japanese Pharmacopoeia, the original plant of Cimicifuga was specified to be Cimicifuga, Xing'an Cimicifuga, Cimicifuga or Cimicifuga. However, black cohosh (C. racemosa), which is a closely related species, may be distributed in the market. In order to ensure the quality of pharmaceutical products, it is important to avoid such misuse and mixing. Therefore, an example of the identification method of Cimicifuga is shown below. Since the basic sequence is the same as the method for identifying the peony root and peony bark described in Example 1, only the points different from Example 1 will be described here.

1.核酸提取方法 模板DNA係採集生藥、或作為生藥加工前之升麻之基原植物之單穗升麻、興安升麻、升麻及大三葉升麻之一部分,使用市售之DNeasy(註冊商標)Plant Mini Kit(QIAGEN公司),按照隨附之操作說明進行提取。又,關於近緣種美類葉升麻(Actaea racemosa)(=黑升麻)、小升麻(C. acerina)、日本升麻(A. japonica)(=C. japonica),自GenBank獲得同源序列。1. Nucleic acid extraction method. Template DNA is used to collect crude drugs, or parts of single-headed Cimicifuga, Xing'an Cimicifuga, Cimicifuga and Cimicifuga major, which are the base plants of Cimicifuga before crude drug processing. Use commercially available DNeasy ( (Registered trademark) Plant Mini Kit (QIAGEN), and extract it according to the attached operating instructions. In addition, Actaea racemosa (= black cohosh), C. acerina, and A. japonica (= C. Japonica) were obtained from GenBank. Source sequence.

2.核酸擴增方法 使用提取之模板DNA,藉由PCR擴增核核糖體DNA中之ITS區域。核酸擴增反應中所使用之PCR反應液之組成如下所述。 (PCR反應液1:ITS1擴增用#1) D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子:014-1F(序列編號37)(10 pmol/μL)1 μL、反向引子:014-1R(序列編號38)(10 pmol/μL)1 μL、模板DNA 1 μL (PCR反應液2:ITS2擴增用#1) D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子:014-2F(序列編號11)(10 pmol/μL)1 μL、反向引子:014-2R(序列編號39)(10 pmol/μL)1 μL、模板DNA 1 μL (PCR反應液3:ITS1擴增用#2) D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子:014-1F(序列編號37)(10 pmol/μL)1 μL、反向引子:014-3R(序列編號40)(10 pmol/μL)1 μL、模板DNA 1 μL (PCR反應液4:ITS2擴增用#2) D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子:014-3F(序列編號41)(10 pmol/μL)1 μL、反向引子:014-2R(序列編號39)(10 pmol/μL)1 μL、模板DNA 1 μL 將結果示於表15。2. Nucleic acid amplification method Using the extracted template DNA, the ITS region in ribosomal DNA is amplified by PCR. The composition of the PCR reaction solution used in the nucleic acid amplification reaction is as follows. (PCR reaction solution 1: # 1 for ITS1 amplification) DW 17.02 μL, 10 × gene Taq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, gene Taq (NipponGene) 0.14 μL 1. Forward primer: 014-1F (SEQ ID NO: 37) (10 pmol / μL) 1 μL, Reverse primer: 014-1R (SEQ ID NO: 38) (10 pmol / μL) 1 μL, template DNA 1 μL (PCR reaction) Solution 2: ITS2 amplification # 1) DW 17.02 μL, 10 × gene Taq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, gene Taq (NipponGene) 0.14 μL, forward Primer: 014-2F (SEQ ID NO: 11) (10 pmol / μL) 1 μL, reverse primer: 014-2R (SEQ ID NO: 39) (10 pmol / μL) 1 μL, template DNA 1 μL (PCR reaction solution 3: # 2 for ITS1 amplification DW 17.02 μL, 10 × gene Taq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, gene Taq (NipponGene) 0.14 μL, forward primer: 014 -1F (SEQ ID NO: 37) (10 pmol / μL) 1 μL, reverse primer: 014-3R (SEQ ID NO: 40) (10 pmol / μL) 1 μL, template DNA 1 μL (PCR reaction solution 4: ITS2 amplification use# 2) DW 17.02 μL, 10 × gene Taq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, gene Taq (NipponGene) 0.14 μL, forward primer: 014-3F (sequence number 41) (10 pmol / μL) 1 μL, reverse primer: 014-2R (SEQ ID NO: 39) (10 pmol / μL) 1 μL, and template DNA 1 μL The results are shown in Table 15.

[表15] [Table 15]

藉由PCR反應液1及3所獲得之ITS1區域中之鑑別區域相同。PCR反應液1與3之不同僅為擴增片段長度之不同。於經擴增之ITS1區域之核酸片段中,100位為T(胸腺嘧啶)者僅為興安升麻。因此,可知可基於該部位之鹼基資訊鑑別作為升麻之基原植物之一之興安升麻與其他近緣種。可知於ITS1區域之核酸片段中,關於14位、37位、59位、60位、67位、69位、85位、87位及111位9個部位,藉由各部位單獨之鹼基資訊無法鑑別興安升麻與近緣種,但藉由選自由該等部位所組成之群中之2個以上之部位之鹼基資訊的組合,可鑑別興安升麻。The identification regions in the ITS1 region obtained by the PCR reaction solutions 1 and 3 are the same. The PCR reaction solutions 1 and 3 differ only in the length of the amplified fragments. Among the nucleic acid fragments in the amplified ITS1 region, those with T (thymine) of 100 are only Cimicifuga. Therefore, it can be known that Hing'an Cimicifuga and other related species, which is one of the original plants of Cimicifuga, can be identified based on the base information of the site. It can be seen that among the nucleic acid fragments in the ITS1 region, there are 9 positions of 14, 14, 37, 60, 67, 69, 85, 87, and 111 positions, and the base information of each position alone cannot be used. Identification of Xing'an Cimicifuga and related species, but by combination of base information of two or more positions selected from the group consisting of these parts, Xing'an Cimicifuga can be identified.

藉由PCR反應液2及4所獲得之ITS2區域中之鑑別區域相同。PCR反應液2與4之不同僅為擴增片段長度之不同。可知於經擴增之ITS2區域之核酸片段中,藉由113位、117位、121位、125位、136位、140位及153位7個部位中之各部位單獨之鹼基資訊無法鑑別興安升麻與近緣種,但藉由選自由該等部位所組成之群中之2個以上之部位之鹼基資訊的組合,可鑑別興安升麻。The identification regions in the ITS2 region obtained by the PCR reaction solutions 2 and 4 are the same. The PCR reaction solutions 2 and 4 differ only in the length of the amplified fragments. It can be seen that among the nucleic acid fragments of the amplified ITS2 region, Xing'an cannot be identified by the individual base information of the 7 positions of 113 positions, 117 positions, 121 positions, 125 positions, 136 positions, 140 positions, and 153 positions. Cimicifuga and related species, but Xing'an Cimicifugae can be identified by a combination of base information of two or more sites selected from the group consisting of these sites.

於興安升麻之鑑別中,藉由ITS1區域之100位之鹼基資訊進行即可,但為了進行精度更高之鑑別,除此以外,更佳為組合選自由ITS1區域之上述9個部位及ITS2區域之上述7個部位所組成之群中的鹼基資訊。In the identification of Cimicifuga from Xing'an, it can be performed by using the base 100 information of the ITS1 region. However, for more accurate identification, in addition, it is more preferable to combine the above 9 positions selected from the ITS1 region and Base information in a group consisting of the above 7 sites in the ITS2 region.

<實施例14:豬苓之鑑別方法> 於日本藥典第十七修訂版中,豬苓之基原植物規定為豬苓。但是,可能會於市場流通作為近緣種之木蹄層孔菌(F. fomentarius)等,為了確保醫藥品之品質,避免該等之誤用、混用較為重要。 因此,以下,示出豬苓之鑑別方法中之一例。由於基本順序與實施例1中所記載之牡丹根及牡丹皮之鑑別方法相同,故而此處僅對與實施例1不同之方面進行記載。<Example 14: Identification method of Polyporia spp.> In the seventeenth revised edition of the Japanese Pharmacopoeia, the basic plant of Polyporia spp. Was specified as Polyporia spp. However, F. fomentarius, which is a close relative, may circulate in the market. In order to ensure the quality of pharmaceutical products, it is important to avoid such misuse and mixing. Therefore, an example of the identification method of polyporia is shown below. Since the basic sequence is the same as the method for identifying the peony root and peony bark described in Example 1, only the points different from Example 1 will be described here.

1.核酸提取方法 模板DNA係採集生藥、或作為生藥加工前之豬苓之基原植物之豬苓之一部分,使用市售之DNeasy(註冊商標)Plant Mini Kit(QIAGEN公司),按照隨附之操作說明進行提取。又,關於近緣種木蹄層孔菌及紅木色孔菌(Tinctoporellus epimiltinus),自GenBank獲得同源序列。1. Nucleic acid extraction method The template DNA is used to collect crude drugs or part of the pork plant that is the original plant of the pork plant before processing of crude drugs. Use the commercially available DNeasy (registered trademark) Plant Mini Kit (QIAGEN) according to the attached Instructions for extraction. In addition, homologous sequences were obtained from the closely related species Woodpocket Fungus and Tincotoporellus epimiltinus from GenBank.

2.核酸擴增方法 使用提取之模板DNA,藉由PCR擴增核核糖體DNA中之ITS區域。核酸擴增反應中所使用之PCR反應液之組成如下所述。 (PCR反應液:ITS擴增用) D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子:015-1F(序列編號42)(10 pmol/μL)1 μL、反向引子:015-1R(序列編號43)(10 pmol/μL)1 μL、模板DNA 1 μL 將結果示於表16。2. Nucleic acid amplification method Using the extracted template DNA, the ITS region in ribosomal DNA is amplified by PCR. The composition of the PCR reaction solution used in the nucleic acid amplification reaction is as follows. (PCR reaction solution: for ITS amplification) DW 17.02 μL, 10 × gene Taq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, gene Taq (NipponGene) 0.14 μL, forward Primer: 015-1F (SEQ ID NO: 42) (10 pmol / μL) 1 μL, reverse primer: 015-1R (SEQ ID NO: 43) (10 pmol / μL) 1 μL, template DNA 1 μL The results are shown in Table 16. .

[表16] [TABLE 16]

豬苓可見種內多形。於經擴增之ITS區域之核酸片段中,15位成為C(胞嘧啶)者僅為豬苓。因此,可知可基於該部位之鹼基資訊鑑別豬苓之基原植物豬苓與其他近緣種。又,可知藉由ITS1區域之66位、108位、119位、122位、140位及150位6個部位中之各部位單獨之鹼基資訊無法鑑別豬苓與近緣種,但藉由選自由該等部位所組成之群中之2個以上之部位之鹼基資訊的組合,可鑑別豬苓。 為了區分豬苓與近緣他種,進行15位之鑑定即可,但為了進行精度更高之鑑別,更佳為除此以外,亦組合選自由ITS1區域之上述6個部位所組成之群中之鹼基資訊。Polyporus can be seen within the species. Among the nucleic acid fragments of the amplified ITS region, the 15 who became C (cytosine) were only Poria cocos. Therefore, it can be known that the basic plant Polyporus umbellatus and other related species can be identified based on the base information of the part. In addition, it can be seen that the individual base information of 6 positions of 66 positions, 108 positions, 119 positions, 122 positions, 140 positions, and 150 positions in the ITS1 region cannot distinguish between Poling and related species, but by selecting The combination of the base information of two or more parts in a group composed of these parts can be used to identify Hogling. In order to distinguish Poria cocos from other closely related species, 15 identifications are sufficient, but for more accurate identification, it is better to select from the group consisting of the above 6 parts of the ITS1 region. Base information.

<實施例15:附子之鑑別方法> 於日本藥典第十七修訂版中,附子之基原植物規定為烏頭或日本烏頭。但是,可能會於市場流通作為近緣種之瓜葉烏頭(A. hemsleyanum)等,為了確保醫藥品之品質,避免該等之誤用、混用較為重要。 因此,以下,示出附子之鑑別方法中之一例。由於基本順序與實施例1中所記載之牡丹根及牡丹皮之鑑別方法相同,故而此處僅對與實施例1不同之方面進行記載。<Example 15: Identification method of aconite> In the seventeenth revised edition of the Japanese Pharmacopoeia, the original plant of aconite was specified as aconite or aconite. However, A. hemsleyanum, which is a close relative, may circulate in the market. In order to ensure the quality of pharmaceutical products, it is important to avoid such misuse and mixing. Therefore, an example of the identification method of aconite is shown below. Since the basic sequence is the same as the method for identifying the peony root and peony bark described in Example 1, only the points different from Example 1 will be described here.

1.核酸提取方法 模板DNA係採集生藥、或作為生藥加工前之附子之基原植物之烏頭及日本烏頭之一部分,使用市售之DNeasy(註冊商標)Plant Mini Kit(QIAGEN公司),按照隨附之操作說明進行提取。又,關於近緣種之瓜葉烏頭、彎喙烏頭(A. campylorrhynchum)、滇南草烏(A. austroyunnanense)及A. bucovinense,自GenBank獲得同源序列。1. Nucleic acid extraction method Template DNA is a part of aconite and Japanese aconite that is used to collect crude drugs or aconite-based plants before processing of crude drugs. Use the commercially available DNeasy (registered trademark) Plant Mini Kit (QIAGEN) according to the attached Follow the instructions for extraction. In addition, homologous sequences were obtained from the related species of Aconitum carmichaeli, A. campylorrhynchum, A. austroyunnanense, and A. bucovinense from GenBank.

2.核酸擴增方法 使用提取之模板DNA,藉由PCR擴增核核糖體DNA中之ITS1區域及ITS2區域。核酸擴增反應中所使用之PCR反應液之組成如下所述。 (PCR反應液1:ITS2擴增用) D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子:016-1F(序列編號44)(10 pmol/μL)1 μL、反向引子:016-1R(序列編號36)(10 pmol/μL)1 μL、模板DNA 1 μL (PCR反應液2:ITS1擴增用#1) D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子:016-2F(序列編號45)(10 pmol/μL)1 μL、反向引子:016-2R(序列編號4)(10 pmol/μL)1 μL、模板DNA 1 μL (PCR反應液3:ITS1擴增用#2) D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子:016-3F(序列編號46)(10 pmol/μL)1 μL、反向引子:016-3R(序列編號4)(10 pmol/μL)1 μL、模板DNA 1 μL 將結果示於表17。2. Nucleic acid amplification method Using the extracted template DNA, the ITS1 region and ITS2 region in ribosomal DNA are amplified by PCR. The composition of the PCR reaction solution used in the nucleic acid amplification reaction is as follows. (PCR reaction solution 1: for ITS2 amplification) DW 17.02 μL, 10 × gene Taq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, gene Taq (NipponGene) 0.14 μL, positive Forward primer: 016-1F (SEQ ID NO: 44) (10 pmol / μL) 1 μL, reverse primer: 016-1R (SEQ ID NO: 36) (10 pmol / μL) 1 μL, template DNA 1 μL (PCR reaction solution 2) : ITS1 amplification # 1) DW 17.02 μL, 10 × gene Taq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, gene Taq (NipponGene) 0.14 μL, forward primer: 016-2F (SEQ ID NO: 45) (10 pmol / μL) 1 μL, reverse primer: 016-2R (SEQ ID NO: 4) (10 pmol / μL) 1 μL, template DNA 1 μL (PCR reaction solution 3: ITS1 amplification Addition # 2) DW 17.02 μL, 10 × gene Taq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, gene Taq (NipponGene) 0.14 μL, forward primer: 016-3F (SEQ ID NO: 46) (10 pmol / μL) 1 μL, reverse primer: 016-3R (SEQ ID NO: 4) (10 pmol / μL) 1 μL, and template DNA 1 μL. The results are shown in Table 17.

[表17] [TABLE 17]

於藉由使用PCR反應液1之PCR所獲得之ITS2區域之核酸片段中,關於111位、129位、140位、175位、200位及212位6個部位,藉由各部位單獨之鹼基資訊無法鑑別作為附子之基原植物之烏頭及日本烏頭與其近緣種。但是,可知藉由選自由該等部位所組成之群中之2個以上之部位之鹼基資訊的組合,可鑑別烏頭及日本烏頭與其他近緣種。Among the nucleic acid fragments of the ITS2 region obtained by PCR using the PCR reaction solution 1, there are 6 positions at positions 111, 129, 140, 175, 200, and 212, and the bases are separated by each position. The information cannot identify the aconite, the Japanese aconite and its related species, which are the basic plants of the aconite. However, it can be seen that a combination of base information of two or more sites selected from the group consisting of these sites allows identification of aconite, aconite, and other related species.

藉由PCR反應液2及PCR反應液3所獲得之ITS1區域中之兩者之鑑別區域相同。PCR反應液2與3之不同僅為擴增片段長度之不同。The identification regions of the two ITS1 regions obtained by the PCR reaction solution 2 and the PCR reaction solution 3 are the same. The difference between PCR reaction solutions 2 and 3 is only the difference in the length of the amplified fragments.

可知於經擴增之ITS1區域#1之核酸片段中,關於25位、83位、103位、133位、154位、195位、200位及218位8個部位,僅藉由各部位單獨之鹼基資訊無法鑑別作為附子之基原植物之烏頭及日本烏頭與其近緣種,但藉由選自由該等8個部位所組成之群中之2個以上之部位之鹼基資訊的組合,可鑑別烏頭及日本烏頭。It can be seen that in the amplified nucleic acid fragment of ITS1 region # 1, there are 8 positions at positions 25, 83, 103, 133, 154, 195, 200, and 218, and only by each part The base information cannot identify aconite, Japanese aconite, and related species which are the basic plants of the aconite, but by combining the base information of two or more parts selected from the group consisting of these eight parts, Identify aconite and Japanese aconite.

可知於經擴增之ITS1區域#2之核酸片段中,關於18位、59位、64位及82位4個部位,藉由各部位單獨之鹼基資訊,無法鑑別作為附子之基原植物之烏頭及日本烏頭與其近緣種,但藉由選自由該等4個部位所組成之群中之2個以上之部位之鹼基資訊的組合,可鑑別烏頭及日本烏頭。It can be seen that among the amplified nucleic acid fragment of ITS1 region # 2, there are four positions at positions 18, 59, 64, and 82. The base information of each part alone cannot identify the original plant of the aconite. Aconitum and Japanese aconite and related species, but a combination of base information selected from two or more sites in a group consisting of these four sites can identify aconite and Japanese aconite.

於作為附子之基原植物之烏頭及日本烏頭之鑑別中,為了進行精度更高之鑑別,更佳為組合選自由ITS2區域之上述6個部位、ITS1區域#1之上述8個部位及ITS1區域#2之上述4個部位之合計18個部位所組成之群中之2個以上的鹼基資訊。In the identification of aconite and Japanese aconite which are the basic plants of aconite, in order to identify more accurately, it is better to select from the above 6 parts from the ITS2 area, the above 8 parts from the ITS1 area # 1, and the ITS1 area. # 2 of the above-mentioned four sites, a total of two or more bases in a group of 18 sites.

<實施例16:辛夷之鑑別方法> 於日本藥典第十七修訂版中,辛夷之基原植物規定為柳葉木蘭、日本辛夷、望春玉蘭、武當玉蘭或白玉蘭(M. denudata)。但是,可能會於市場流通作為近緣種之大葉木蘭(M. macrophylla)等,為了確保醫藥品之品質,避免該等之誤用、混用較為重要。 因此,以下,示出辛夷之鑑別方法中之一例。由於基本順序與實施例1中所記載之牡丹根及牡丹皮之鑑別方法相同,故而此處僅對與實施例1不同之方面進行記載。<Example 16: Identification method of Xinyi> In the seventeenth revised edition of the Japanese Pharmacopoeia, the original plants of Xinyi were specified as willow magnolia, Japanese Xinyi, Magnolia magnolia, Wudang magnolia or M. denudata. However, M. macrophylla, which is a close relative, may be distributed in the market. In order to ensure the quality of pharmaceutical products, it is important to avoid such misuse and mixing. Therefore, an example of the identification method of Xinyi is shown below. Since the basic sequence is the same as the method for identifying the peony root and peony bark described in Example 1, only the points different from Example 1 will be described here.

1.核酸提取方法 模板DNA係採集生藥、或作為生藥加工前之辛夷之基原植物之柳葉木蘭、日本辛夷、望春玉蘭、武當玉蘭或白玉蘭(M. denudata)之一部分,使用市售之DNeasy(註冊商標)Plant Mini Kit(QIAGEN公司),按照隨附之操作說明進行提取。又,關於近緣種,自GenBank獲得同源序列。1. Nucleic acid extraction method: The template DNA is a part of the collection of crude drugs, or willow magnolia, Xinyi, Magnolia magnolia, Wudang magnolia, or white magnolia (M. denudata), which is the original plant of Xinyi before processing. DNeasy (registered trademark) Plant Mini Kit (QIAGEN), extract it according to the attached operating instructions. For related species, homologous sequences were obtained from GenBank.

2.核酸擴增方法 使用提取之模板DNA,藉由PCR擴增葉綠體DNA中之trnL內含子區域。核酸擴增反應中所使用之PCR反應液之組成如下所述。 (PCR反應液1:trnL內含子區域#1擴增用) D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子:017-3F(序列編號230)(10 pmol/μL)1 μL、反向引子:017-3R(序列編號231)(10 pmol/μL)1 μL、模板DNA 1 μL (PCR反應液2:trnL內含子區域#2擴增用) D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子:017-4F(序列編號232)(10 pmol/μL)1 μL、反向引子:017-2R(序列編號50)(10 pmol/μL)1 μL、模板DNA 1 μL 將結果示於表18。2. Nucleic acid amplification method Using the extracted template DNA, the trnL intron region in chloroplast DNA is amplified by PCR. The composition of the PCR reaction solution used in the nucleic acid amplification reaction is as follows. (PCR reaction solution 1: trnL intron region # 1 amplification) DW 17.02 μL, 10 × gene Taq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, gene Taq (NipponGene Company) 0.14 μL, forward primer: 017-3F (sequence number 230) (10 pmol / μL) 1 μL, reverse primer: 017-3R (sequence number 231) (10 pmol / μL) 1 μL, template DNA 1 μL (PCR reaction solution 2: trnL intron region # 2 amplification) DW 17.02 μL, 10 × gene Taq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, gene Taq ( NipponGene) 0.14 μL, forward primer: 017-4F (sequence number 232) (10 pmol / μL) 1 μL, reverse primer: 017-2R (sequence number 50) (10 pmol / μL) 1 μL, template DNA The results are shown in Table 18 at 1 μL.

[表18] [TABLE 18]

於經擴增之trnL內含子區域#1之核酸片段中,124位成為A(腺嘌呤)者僅為柳葉木蘭、日本辛夷、望春玉蘭、武當玉蘭及白玉蘭。因此,可知可基於該部位之鹼基資訊鑑別辛夷之基原植物柳葉木蘭、日本辛夷、望春玉蘭、武當玉蘭及白玉蘭與其他近緣種。又,可知關於trnL內含子區域#1之核酸片段中檢測之73位、115位、136位、145位4個部位,藉由各部位單獨之鹼基資訊無法鑑別辛夷之基原植物與近緣種,但藉由選自由該等部位所組成之群中之2個以上之部位之鹼基資訊的組合,可鑑別辛夷基原植物。Among the amplified nucleic acid fragments of trnL intron region # 1, 124 who became A (adenine) were only the willow magnolia, Japanese Xinyi, Magnolia magnolia, Wudang magnolia and white magnolia. Therefore, it is known that the original plants of Willow magnolia, Willow magnolia, Magnolia magnolia, Magnolia wudang and Magnolia magnolia and other related species can be identified based on the base information of the part. In addition, it can be seen that the 73, 115, 136, and 145 positions detected in the nucleic acid fragment of the trnL intron region # 1, and the base information of each part alone cannot distinguish the original plant of Xinyi Familiar species, but by combining base information of two or more sites selected from the group consisting of these sites, the original plant of Xinyi base can be identified.

於經擴增之trnL內含子區域#2之核酸片段中,69位及70位成為AA(腺嘌呤、腺嘌呤)者僅為上述5種基原植物。因此,可知可基於該部位之鹼基資訊鑑別辛夷之5種基原植物與其他近緣種。又,可知關於trnL內含子區域#2之核酸片段中檢測之15位、53位及99位3個部位,藉由各部位單獨之鹼基資訊無法鑑別辛夷之5種基原植物與近緣種,但藉由選自由該等部位所組成之群中之2個以上之部位之鹼基資訊的組合,可鑑別辛夷基原植物。Among the amplified nucleic acid fragments of trnL intron region # 2, the 69th and 70th positions that became AA (adenine, adenine) are only the above-mentioned five kinds of primitive plants. Therefore, it can be seen that the five basic primitive plants of Xinyi and other related species can be identified based on the base information of the part. In addition, it can be seen that the 15 positions, 53 positions, and 99 positions of the nucleic acid fragment of the trnL intron region # 2 can not be identified by the base information of each part. Species, but a combination of base information of two or more sites selected from the group consisting of these sites can be used to identify the original Xinyi plant.

為了鑑別辛夷之5種基原植物與近緣種,藉由trnL內含子區域#1之核酸片段中之124位、或trnL內含子區域#2之核酸片段中之69位及70位中之任一者之鹼基資訊進行即可,但為了以更高之精度進行鑑別,更佳為除上述2個區域中之3個部位以外,亦組合選自由包含trnL內含子區域#1之上述4個部位及trnL內含子區域#2之上述3個部位之合計7個部位所組成之群中之2個以上的鹼基資訊。In order to identify the five basic protozoa and related species of Xinyi, position 124 of the nucleic acid fragment of trnL intron region # 1, or position 69 and 70 of the nucleic acid fragment of trnL intron region # 2 The base information of any of them can be performed, but in order to identify with higher accuracy, it is more preferable to select from the three regions including the trnL intron region # 1 in addition to the three regions in the above two regions. Information on two or more bases in a group consisting of a total of 7 positions of the above 4 positions and the above 3 positions of trnL intron region # 2.

<實施例17:丁香之鑑別方法> 於日本藥典第十七修訂版中,丁香之基原植物規定為丁香(Eugenia caryophyllata)。但是,可能會於市場流通作為近緣種之蒲桃(S. jambos)等,為了確保醫藥品之品質,避免該等之誤用、混用較為重要。 因此,以下,示出丁香之鑑別方法中之一例。由於基本順序與實施例1中所記載之牡丹根及牡丹皮之鑑別方法相同,故而此處僅對與實施例1不同之方面進行記載。<Example 17: Identification method of cloves> In the seventeenth revised edition of the Japanese Pharmacopoeia, the original plant of cloves was defined as Eugenia caryophyllata. However, S. jambos, which is a close relative, may circulate in the market. In order to ensure the quality of pharmaceutical products, it is important to avoid such misuse and mixing. Therefore, an example of the identification method of cloves is shown below. Since the basic sequence is the same as the method for identifying the peony root and peony bark described in Example 1, only the points different from Example 1 will be described here.

1.核酸提取方法 模板DNA係採集生藥、或作為生藥加工前之基原植物之丁香之一部分,使用市售之DNeasy(註冊商標)Plant Mini Kit(QIAGEN公司),按照隨附之操作說明進行提取。又,關於其他近緣種,自GenBank獲得同源序列。1. Nucleic acid extraction method. Template DNA is used to collect crude drugs, or cloves that are the original plants before the processing of crude drugs. Use commercially available DNeasy (registered trademark) Plant Mini Kit (QIAGEN) and follow the instructions provided. . For other related species, homologous sequences were obtained from GenBank.

2.核酸擴增方法 使用提取之模板DNA,藉由PCR擴增核核糖體DNA中之ITS區域。核酸擴增反應中所使用之PCR反應液之組成如下所述。 (PCR反應液:ITS擴增用) D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子:018-1F(序列編號51)(10 pmol/μL)1 μL、反向引子:018-1R(序列編號52)(10 pmol/μL)1 μL、模板DNA 1 μL 將結果示於表19。2. Nucleic acid amplification method Using the extracted template DNA, the ITS region in ribosomal DNA is amplified by PCR. The composition of the PCR reaction solution used in the nucleic acid amplification reaction is as follows. (PCR reaction solution: for ITS amplification) DW 17.02 μL, 10 × gene Taq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, gene Taq (NipponGene) 0.14 μL, forward Primer: 018-1F (SEQ ID NO: 51) (10 pmol / μL) 1 μL, reverse primer: 018-1R (SEQ ID NO: 52) (10 pmol / μL) 1 μL, template DNA 1 μL The results are shown in Table 19 .

[表19] [TABLE 19]

於經擴增之ITS區域之核酸片段中,16位成為T(胸腺嘧啶)者僅為丁香。因此,可基於該部位鑑別丁香與其他近緣種。又,可知關於ITS區域之核酸片段中檢測之13位、32位、34位及57位4個部位,藉由各部位單獨之鹼基資訊無法鑑別丁香與近緣種,但藉由選自該等之群中之2個以上之組合,可鑑別丁香。Among the nucleic acid fragments in the amplified ITS region, the 16 who became T (thymine) were only clove. Therefore, cloves can be distinguished from other related species based on this part. In addition, it can be seen that the 13 positions, 32 positions, 34 positions, and 57 positions in the nucleic acid fragments of the ITS region cannot be distinguished from cloves and related species by the base information of each part alone, but by selecting from The combination of two or more in the group can identify cloves.

為了鑑別丁香與其他近緣種,藉由ITS區域之16位之鹼基資訊進行即可,但為了以更高之精度進行鑑別,更佳為除16位以外,亦組合選自由ITS區域之上述4個部位所組成之群中之2個以上的鹼基資訊。In order to identify cloves and other related species, it is only necessary to use the 16-bit base information of the ITS region, but in order to identify with higher accuracy, it is more preferable to combine the above from the ITS region in addition to the 16-bit Information on two or more bases in a group of four sites.

<實施例18:鉤藤之鑑別方法> 於日本藥典第十七修訂版中,鉤藤之基原植物規定為鉤藤、華鉤藤或大葉鉤藤。但是,可能會於市場流通作為近緣種之攀莖鉤藤(U. scandens)等,為了確保醫藥品之品質,避免該等之誤用、混用較為重要。 因此,以下,示出鉤藤之鑑別方法中之一例。由於基本順序與實施例1中所記載之牡丹根及牡丹皮之鑑別方法相同,故而此處僅對與實施例1不同之方面進行記載。<Example 18: Identification method of Uncaria chinensis> In the seventeenth revised edition of the Japanese Pharmacopoeia, the original plant of Uncaria chinensis was specified as Uncaria vine, Uncaria serrata or Uncaria macrophylla. However, U. scandens, etc., which are related species in the market, may be distributed in the market. In order to ensure the quality of pharmaceutical products, it is important to avoid such misuse and mixing. Therefore, an example of the identification method of Uncaria is shown below. Since the basic sequence is the same as the method for identifying the peony root and peony bark described in Example 1, only the points different from Example 1 will be described here.

1.核酸提取方法 模板DNA係採集生藥、或作為生藥加工前之鉤藤之基原植物之鉤藤、華鉤藤及大葉鉤藤之一部分,又,對近緣種之毛鉤藤(U. hirsuta)、白鉤藤(U. sessilifructus)、平滑鉤藤(U. laevigata)採集乾葉標本之一部分,使用市售之DNeasy(註冊商標)Plant Mini Kit(QIAGEN公司),按照隨附之操作說明進行提取。又,關於作為其他近緣種之攀莖鉤藤及倒掛金鉤(U. lancifolia),自GenBank獲得同源序列。1. Nucleic acid extraction method Template DNA is used to collect crude drugs, or parts of the original plant Uncaria, Uncaria, and Uncaria macrophylla that are the basis of Uncaria spp. Before crude drug processing. ), U. sessilifructus, U. laevigata to collect a part of dried leaf specimens, use the commercially available DNeasy (registered trademark) Plant Mini Kit (QIAGEN), and follow the attached operating instructions extract. In addition, as for other closely related species, U. lancifolia, a homologous sequence was obtained from GenBank.

2.核酸擴增方法 使用提取之模板DNA,藉由PCR擴增核核糖體DNA中之ITS區域。核酸擴增反應中所使用之PCR反應液之組成如下所述。 (PCR反應液:ITS擴增用) D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子:019-4F(序列編號58)(10 pmol/μL)1 μL、反向引子:019-4R(序列編號56)(10 pmol/μL)1 μL、模板DNA 1 μL 將結果示於表20。2. Nucleic acid amplification method Using the extracted template DNA, the ITS region in ribosomal DNA is amplified by PCR. The composition of the PCR reaction solution used in the nucleic acid amplification reaction is as follows. (PCR reaction solution: for ITS amplification) DW 17.02 μL, 10 × gene Taq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, gene Taq (NipponGene) 0.14 μL, forward Primer: 019-4F (SEQ ID NO: 58) (10 pmol / μL) 1 μL, reverse primer: 019-4R (SEQ ID NO: 56) (10 pmol / μL) 1 μL, template DNA 1 μL The results are shown in Table 20 .

[表20] [TABLE 20]

關於經擴增之ITS區域之核酸片段中檢測之18位、19位、21位、52位、53位、67位、143位、160位及190位9個部位,不存在可藉由各部位單獨之鹼基資訊鑑別3種基原植物與其他近緣種之部位。但是,可知藉由選自由該等部位所組成之群中之2個以上之部位之鹼基資訊的組合,可將鉤藤之基原植物與其他近緣種進行鑑別。Regarding the nucleic acid fragments of the amplified ITS region, there are nine positions of 18, 19, 21, 52, 53, 67, 143, 160, and 190, and there are no available sites. Separate base information identifies the three primitive plants and other closely related species. However, it can be seen that a combination of base information of two or more sites selected from the group consisting of these sites can distinguish the original plant of Uncaria and other related species.

<實施例19:香附子之鑑別方法> 於日本藥典第十七修訂版中,香附子之基原植物規定為香附子。但是,可能會於市場流通作為近緣種之節莎草(C. articulatus)等,為了確保醫藥品之品質,避免該等之誤用、混用較為重要。 因此,以下,示出香附子之鑑別方法中之一例。由於基本順序與實施例1中所記載之牡丹根及牡丹皮之鑑別方法相同,故而此處僅對與實施例1不同之方面進行記載。<Example 19: Identification method of incense aconite> In the seventeenth revised edition of the Japanese Pharmacopoeia, the original plant of incense aconite was specified as aconite. However, C. articulatus, which is a closely related species, may circulate in the market. In order to ensure the quality of pharmaceutical products, it is important to avoid such misuse and mixing. Therefore, an example of the identification method of the aconite is shown below. Since the basic sequence is the same as the method for identifying the peony root and peony bark described in Example 1, only the points different from Example 1 will be described here.

1.核酸提取方法 模板DNA係採集生藥、或作為生藥加工前之香附子之基原植物之香附子之一部分,使用市售之DNeasy(註冊商標)Plant Mini Kit(QIAGEN公司),按照隨附之操作說明進行提取。又,關於近緣種之節莎草、C. insularis、C. ustulatus及C. corymbosus,自GenBank獲得同源序列。1. Nucleic acid extraction method Template DNA is used to collect crude drugs, or a part of the original aconite of the fragrant aconite before processing of the crude drug. Use the commercially available DNeasy (registered trademark) Plant Mini Kit (QIAGEN) according to the attached Instructions for extraction. Regarding the related species, Sedge, C. insularis, C. ustulatus, and C. corymbosus, homologous sequences were obtained from GenBank.

2.核酸擴增方法 使用提取之模板DNA,藉由PCR擴增核核糖體DNA中之ITS區域。核酸擴增反應中所使用之PCR反應液之組成如下所述。 (PCR反應液1:ITS1擴增用) D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子:020-1F(序列編號59)(10 pmol/μL)1 μL、反向引子:020-1R(序列編號60)(10 pmol/μL)1 μL、模板DNA 1 μL (PCR反應液2:ITS2擴增用) D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子:020-2F(序列編號41)(10 pmol/μL)1 μL、反向引子:020-2R(序列編號61)(10 pmol/μL)1 μL、模板DNA 1 μL 將結果示於表21。2. Nucleic acid amplification method Using the extracted template DNA, the ITS region in ribosomal DNA is amplified by PCR. The composition of the PCR reaction solution used in the nucleic acid amplification reaction is as follows. (PCR reaction solution 1: for ITS1 amplification) DW 17.02 μL, 10 × gene Taq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, gene Taq (NipponGene) 0.14 μL, positive Forward primer: 020-1F (SEQ ID NO: 59) (10 pmol / μL) 1 μL, reverse primer: 020-1R (SEQ ID NO: 60) (10 pmol / μL) 1 μL, template DNA 1 μL (PCR reaction solution 2) : For ITS2 amplification) DW 17.02 μL, 10 × gene Taq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, gene Taq (NipponGene) 0.14 μL, forward primer: 020- 2F (SEQ ID NO: 41) (10 pmol / μL) 1 μL, reverse primer: 020-2R (SEQ ID NO: 61) (10 pmol / μL) 1 μL, and template DNA 1 μL. The results are shown in Table 21.

[表21] [TABLE 21]

於可用作香附子之香附子種內具有複數個基因型,可使用任一種。There are multiple genotypes in the aconite species which can be used as the aconite, and any one can be used.

關於經擴增之ITS1區域之核酸片段中檢測之36位、71位、73位、87位、126位、127位、133位、134位、145位、146位、157位及162位12個部位,不存在可藉由各部位單獨之鹼基資訊鑑別香附子與其他近緣種之部位。但是,可知藉由選自由該等部位所組成之群中之2個以上之部位之鹼基資訊的組合,可將香附子與其他近緣種進行鑑別。About the detected 36, 71, 73, 87, 126, 127, 133, 134, 145, 146, 157, and 162 of the nucleic acid fragments of the amplified ITS1 region There are no parts that can be identified by the base information of each part separately. However, it can be seen that the combination of base information of two or more sites selected from the group consisting of these sites allows identification of Aconite and other related species.

於經擴增之ITS2區域之核酸片段中,134位成為C(胞嘧啶)或163位成為G(鳥嘌呤)者僅為香附子。因此,該等部位可藉由單獨之鹼基資訊,鑑別香附子與其他近緣種。又,可知關於ITS2區域之核酸片段中檢測之77位、109位及125位3個部位,藉由各部位單獨之鹼基資訊無法鑑別香附子與近緣種,但藉由選自該等之群中之2個以上之組合,可鑑別香附子。Among the nucleic acid fragments of the amplified ITS2 region, those with 134 becoming C (cytosine) or 163 with G (guanine) are only aconite. Therefore, these parts can be used to identify fragrant aconite and other related species through separate base information. In addition, it can be seen that the 77, 109, and 125 positions of the nucleic acid fragments in the ITS2 region cannot be distinguished from aconite and related species by the base information of each part alone, but by selecting from these The combination of two or more in the group can identify the aconite.

為了鑑別香附子與其他近緣種,藉由ITS2區域之134位或163位中之任一者之鹼基資訊進行即可,但為了以更高之精度進行鑑別,更佳為除該等以外,亦組合選自由ITS1區域之上述12個部位及ITS2區域之上述3個部位所組成之群中之2個以上的鹼基資訊。In order to identify the aconite and other related species, the base information of any of 134 or 163 of the ITS2 region may be used, but in order to identify with higher accuracy, it is more preferable to , And also combine two or more base information selected from the group consisting of the above 12 positions in the ITS1 region and the above 3 positions in the ITS2 region.

<實施例20:黃連之鑑別方法> 於日本藥典第十七修訂版中,黃連之基原植物規定為日本黃連、黃連、三角葉黃連或雲南黃連。但是,可能會於市場流通作為近緣種之五裂黃連(C. quinquesecta)等,為了確保醫藥品之品質,避免該等之誤用、混用較為重要。 因此,以下,示出黃連之鑑別方法中之一例。由於基本順序與實施例1中所記載之牡丹根及牡丹皮之鑑別方法相同,故而此處僅對與實施例1不同之方面進行記載。<Example 20: Identification method of Coptis chinensis> In the seventeenth revised edition of the Japanese Pharmacopoeia, the original plant of Coptis chinensis was specified to be Coptis chinensis, Coptis chinensis, Coptis chinensis, or Coptis yunnanensis. However, C. quinquesecta, which is a close relative, may circulate in the market. In order to ensure the quality of pharmaceutical products, it is important to avoid such misuse and mixing. Therefore, an example of the identification method of Coptis chinensis is shown below. Since the basic sequence is the same as the method for identifying the peony root and peony bark described in Example 1, only the points different from Example 1 will be described here.

1.核酸提取方法 模板DNA係採集生藥、或作為生藥加工前之黃連之基原植物之日本黃連、黃連、三角葉黃連或雲南黃連之一部分,使用市售之DNeasy(註冊商標)Plant Mini Kit(QIAGEN公司),按照隨附之操作說明進行提取。又,關於作為其他近緣種之峨眉黃連(C. omeiensis)及五裂黃連,自GenBank獲得同源序列。1. Nucleic acid extraction method. The template DNA is a part of Japanese crude pupae, Japanese puppies, Pistacia chinensis, or P. yunnanensis which is used as the original plant of Pistacia chinensis before processing of the crude drug. The commercially available DNeasy (registered trademark) Plant Mini Kit ( QIAGEN), and follow the instructions provided. Regarding C. omeiensis and P. pentata, which are other related species, homologous sequences were obtained from GenBank.

2.核酸擴增方法 使用提取之模板DNA,藉由PCR擴增葉綠體DNA中之rbcL區域。核酸擴增反應中所使用之PCR反應液之組成如下所述。 (PCR反應液1:rbcL區域1擴增用) D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子:021-1F(序列編號62)(10 pmol/μL)1 μL、反向引子:021-1R(序列編號63)(10 pmol/μL)1 μL、模板DNA 1 μL (PCR反應液2:rbcL區域2擴增用) D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子:021-2F(序列編號64)(10 pmol/μL)1 μL、反向引子:021-2R(序列編號65)(10 pmol/μL)1 μL、模板DNA 1 μL 將結果示於表22。2. Nucleic acid amplification method Using the extracted template DNA, the rbcL region in chloroplast DNA is amplified by PCR. The composition of the PCR reaction solution used in the nucleic acid amplification reaction is as follows. (PCR reaction solution 1: rbcL region 1 for amplification) DW 17.02 μL, 10 × gene Taq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, gene Taq (NipponGene) 0.14 μL 1. Forward primer: 211-1F (SEQ ID NO: 62) (10 pmol / μL) 1 μL, reverse primer: 021-1R (SEQ ID NO: 63) (10 pmol / μL) 1 μL, template DNA 1 μL (PCR reaction) Solution 2: rbcL region 2 amplification) DW 17.02 μL, 10 × gene Taq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, gene Taq (NipponGene) 0.14 μL, forward Primer: 021-2F (sequence number 64) (10 pmol / μL) 1 μL, reverse primer: 021-2R (sequence number 65) (10 pmol / μL) 1 μL, template DNA 1 μL The results are shown in Table 22 .

[表22] [TABLE 22]

於經擴增之rbcL區域1之核酸片段中,97位成為G(鳥嘌呤)者僅為日本黃連,127位成為A(腺嘌呤)者僅為黃連,157位成為A(腺嘌呤)者僅為三角葉黃連。因此,該等部位可藉由單獨之鹼基資訊,分別鑑別日本黃連、黃連及三角葉黃連與其他近緣種。但是,於PCR反應液1中,無法鑑別雲南黃連與其他近緣種。Among the amplified rbcL region 1 nucleic acid fragments, 97 people who became G (guanine) were only Japanese Coptis, 127 people who became A (Adenine) were only Coptis chinensis, and 157 people who became A (Adenine) were only For triangular leaf Coptis. Therefore, these parts can be used to identify the Japanese Pistacia, Coptis chinensis and Pseudomonas sclerophylla and other related species by separate base information. However, in PCR reaction solution 1, it was not possible to identify Yunnan pistacia and other related species.

另一方面,於經擴增之rbcL區域2之核酸片段中,158位成為T(胸腺嘧啶)者僅為雲南黃連。因此,該部位可藉由單獨之鹼基資訊,鑑別雲南黃連與其他近緣種。On the other hand, among the amplified nucleic acid fragments of rbcL region 2, 158 people who became T (thymine) were only Yunnan Coptis chinensis. Therefore, this site can be used to identify Yunnan Coptis chinensis and other related species by using separate base information.

根據以上,可知日本黃連、黃連或三角葉黃連之鑑別只要進行rbcL區域1之核酸片段中之上述各部位的分析即可,雲南黃連之鑑別只要進行rbcL區域2之核酸片段中之158位的分析即可。為了進行更高之準確度之鑑別,更佳為除上述部位以外,亦組合選自於rbcL區域2中無法藉由單獨之鹼基資訊進行與近緣種之鑑別之15位、26位及53位中之2個以上。Based on the above, it can be seen that the identification of Japanese Pistacia, Coptis chinensis, or Pseudomonas deltoides can be performed only by analyzing the above-mentioned parts of the nucleic acid fragment of rbcL region 1, and the identification of Yunnan Coptis chinensis requires only analysis of position 158 of the nucleic acid fragment of rbcL region 2. Just fine. In order to identify with higher accuracy, it is more preferable to combine 15 positions, 26 positions, and 53 positions in the rbcL region 2 that cannot be identified with related species by separate base information in addition to the above parts. Two or more of the bits.

<實施例21:生薑/乾薑之鑑別方法> 於日本藥典第十七修訂版中,生薑/乾薑之基原植物規定為薑。但是,可能會於市場流通作為近緣種之卡薩蒙納薑(Z. montanum)等,為了確保醫藥品之品質,避免該等之誤用、混用較為重要。 因此,以下,示出生薑/乾薑之鑑別方法中之一例。由於基本順序與實施例1中所記載之牡丹根及牡丹皮之鑑別方法相同,故而此處僅對與實施例1不同之方面進行記載。<Example 21: Identification method of ginger / dried ginger> In the seventeenth revised edition of the Japanese Pharmacopoeia, the original plant of ginger / dried ginger was specified as ginger. However, Z. montanum, which is a related species, may be distributed in the market. In order to ensure the quality of pharmaceutical products, it is important to avoid such misuse and mixing. Therefore, an example of the method for identifying ginger / dried ginger is shown below. Since the basic sequence is the same as the method for identifying the peony root and peony bark described in Example 1, only the points different from Example 1 will be described here.

1.核酸提取方法 模板DNA係採集生藥、或作為生藥加工前之生薑/乾薑之基原植物之薑之一部分,又,對近緣種之卡薩蒙納薑,採集所收集之乾葉標本之一部分,使用市售之DNeasy(註冊商標)Plant Mini Kit(QIAGEN公司),按照隨附之操作說明進行提取。關於作為其他近緣種之多毛薑(Z. densissimum)、圓瓣薑(Z. orbiculatum)、紅薑(Z. rubens)、Z. sulphureum、珊瑚薑(Z. corallinum)、紅球薑(Z. zerumbet)及Z. engganoensis,自GenBank獲得同源序列。1. Nucleic acid extraction method. Template DNA is used to collect crude drugs or part of ginger that is a ginger / dried ginger-based original plant before crude drug processing. Also, for related species of Casamona ginger, the collected dried leaves are collected. A part of the specimen was extracted using a commercially available DNeasy (registered trademark) Plant Mini Kit (QIAGEN) according to the attached operating instructions. About Z. densissimum, Z. orbiculatum, Z. rubens, Z. sulphureum, Z. corallinum, and Z. ginger as other related species zerumbet) and Z. engganoensis, homologous sequences were obtained from GenBank.

2.核酸擴增方法 使用提取之模板DNA,藉由PCR擴增葉綠體DNA中之matK區域。核酸擴增反應中所使用之PCR反應液之組成如下所述。 (PCR反應液:matK區域擴增用) D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子:022-1F(序列編號66)(10 pmol/μL)1 μL、反向引子:022-1R(序列編號67)(10 pmol/μL)1 μL、模板DNA 1 μL 將結果示於表23。2. Nucleic acid amplification method Using the extracted template DNA, the matK region in chloroplast DNA is amplified by PCR. The composition of the PCR reaction solution used in the nucleic acid amplification reaction is as follows. (PCR reaction solution: for matK region amplification) DW 17.02 μL, 10 × gene Taq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, gene Taq (NipponGene) 0.14 μL, positive Forward primer: 022-1F (SEQ ID NO: 66) (10 pmol / μL) 1 μL, reverse primer: 022-1R (SEQ ID NO: 67) (10 pmol / μL) 1 μL, template DNA 1 μL The results are shown in the table. twenty three.

[表23] [TABLE 23]

於經擴增之matK區域之核酸片段中,39位成為A(腺嘌呤)者僅為薑。因此,該部位可藉由單獨之鹼基資訊鑑別薑與其他近緣種。又,關於matK區域之核酸片段中檢測之29位、32位、104位及115位4個部位,不存在可藉由各部位單獨之鹼基資訊鑑別薑與其他近緣種之部位。但是,可知藉由選自由該等部位所組成之群中之2個以上之部位之鹼基資訊的組合,可將薑與其他近緣種進行鑑別。Among the amplified nucleic acid fragments of the matK region, the 39 who became A (adenine) were only ginger. Therefore, this site can identify ginger and other related species by separate base information. In addition, the 29, 32, 104, and 115 positions detected in the nucleic acid fragment of the matK region do not exist, and ginger and other related species can be identified by the base information of each part alone. However, it can be seen that ginger can be distinguished from other related species by a combination of base information selected from two or more sites in a group consisting of these sites.

於薑與其他近緣種之鑑別中,藉由matK區域之39位單獨之鹼基資訊進行即可,但為了進行更高之準確度之鑑別,更佳為除此以外,亦組合選自上述4個部位中之2個以上。In the identification of ginger and other related species, it is only necessary to use 39 base information in the matK region, but in order to identify with higher accuracy, it is better to select from the above in combination Two or more of the four parts.

<實施例22:山梔子之鑑別方法> 於日本藥典第十七修訂版中,山梔子之基原植物規定為梔子。但是,可能會於市場流通作為近緣種之南非梔子(G. thunbergia)等,為了確保醫藥品之品質,避免該等之誤用、混用較為重要。 因此,以下,示出山梔子之鑑別方法中之一例。由於基本順序與實施例1中所記載之牡丹根及牡丹皮之鑑別方法相同,故而此處僅對與實施例1不同之方面進行記載。<Example 22: Identification method of mangosteen> In the seventeenth revised edition of the Japanese Pharmacopoeia, the original plant of mangosteen was defined as gardenia. However, G. thunbergia, which is a closely related species, may circulate in the market. In order to ensure the quality of pharmaceutical products, it is important to avoid such misuse and mixing. Therefore, an example of a method for identifying mountain cricket is shown below. Since the basic sequence is the same as the method for identifying the peony root and peony bark described in Example 1, only the points different from Example 1 will be described here.

1.核酸提取方法 模板DNA係採集生藥、或作為生藥加工前之山梔子之基原植物之梔子之一部分,使用市售之DNeasy(註冊商標)Plant Mini Kit(QIAGEN公司),按照隨附之操作說明進行提取。又,關於近緣種,自GenBank獲得同源序列。1. Nucleic acid extraction method Template DNA is used to collect crude drugs, or as part of the original plants of the wild plant before processing of crude drugs. Use the commercially available DNeasy (registered trademark) Plant Mini Kit (QIAGEN) according to the attached operation. Instructions for extraction. For related species, homologous sequences were obtained from GenBank.

2.核酸擴增方法 使用提取之模板DNA,藉由PCR擴增核核糖體DNA中之ITS區域。核酸擴增反應中所使用之PCR反應液之組成如下所述。 (PCR反應液:ITS區域擴增用) D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子:023-1F(序列編號11)(10 pmol/μL)1 μL、反向引子:023-1R(序列編號68)(10 pmol/μL)1 μL、模板DNA 1 μL 將結果示於表24。2. Nucleic acid amplification method Using the extracted template DNA, the ITS region in ribosomal DNA is amplified by PCR. The composition of the PCR reaction solution used in the nucleic acid amplification reaction is as follows. (PCR reaction solution: for ITS region amplification) DW 17.02 μL, 10 × gene Taq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, gene Taq (NipponGene) 0.14 μL, positive Forward primer: 023-1F (sequence number 11) (10 pmol / μL) 1 μL, reverse primer: 023-1R (sequence number 68) (10 pmol / μL) 1 μL, template DNA 1 μL The results are shown in the table. twenty four.

[表24] [TABLE 24]

可知關於經擴增之ITS區域之核酸片段中檢測之33位、45位、140位、167位、187位、263位、269位及295位8個部位,不存在可藉由各部位單獨之鹼基資訊鑑別梔子與其他近緣種之部位,但藉由選自由該等部位所組成之群中之2個以上之部位之鹼基資訊的組合,可將梔子與其他近緣種進行鑑別。It can be seen that there are 8 positions of the 33, 45, 140, 167, 187, 263, 269, and 295 positions detected in the nucleic acid fragments of the amplified ITS region. The base information identifies parts of gardenia and other related species, but by combining the base information of two or more positions selected from the group consisting of these parts, gardenia can be performed with other related species Identification.

<實施例23:黃柏之鑑別方法> 於日本藥典第十七修訂版中,黃柏之基原植物規定為黃柏或川黃檗。但是,可能會於市場流通作為近緣種之賊仔樹(Tetradium glabrifolium)等,為了確保醫藥品之品質,避免該等之誤用、混用較為重要。 因此,以下,示出黃柏之鑑別方法中之一例。由於基本順序與實施例1中所記載之牡丹根及牡丹皮之鑑別方法相同,故而此處僅對與實施例1不同之方面進行記載。<Example 23: Identification method of Phellodendron chinensis> In the seventeenth revised edition of the Japanese Pharmacopoeia, the original plant of Phellodendri chinensis was specified as Phellodendri chinensis or Scutellaria baicalensis. However, Tetradium glabrifolium, which is a related species, may be distributed in the market. In order to ensure the quality of pharmaceutical products, it is important to avoid such misuse and mixing. Therefore, an example of the identification method of cork is shown below. Since the basic sequence is the same as the method for identifying the peony root and peony bark described in Example 1, only the points different from Example 1 will be described here.

1.核酸提取方法 模板DNA係採集生藥、或作為生藥加工前之黃柏之基原植物之黃柏或川黃檗之一部分,使用市售之DNeasy(註冊商標)Plant Mini Kit(QIAGEN公司),按照隨附之操作說明進行提取。又,關於近緣種之賊仔樹及青花椒(Zanthoxylum schinifolium),自GenBank獲得同源序列。1. Nucleic acid extraction method. Template DNA is used to collect crude drugs, or as part of the original plant of Phellodendron chinensis or Scutellaria baicalensis, which is the original plant of Phellodendron chinensis before processing of crude drugs. Use the commercially available DNeasy (registered trademark) Plant Mini Kit (QIAGEN) according to the attached Follow the instructions for extraction. In addition, homologous sequences were obtained from GenBank about Zanthoxylum schinifolium and Zanthoxylum schinifolium.

2.核酸擴增方法 使用提取之模板DNA,藉由PCR擴增核核糖體DNA中之ITS區域。核酸擴增反應中所使用之PCR反應液之組成如下所述。 (PCR反應液:ITS區域擴增用) D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子:024-1F(序列編號69)(10 pmol/μL)1 μL、反向引子:024-1R(序列編號70)(10 pmol/μL)1 μL、模板DNA 1 μL 將結果示於表25。2. Nucleic acid amplification method Using the extracted template DNA, the ITS region in ribosomal DNA is amplified by PCR. The composition of the PCR reaction solution used in the nucleic acid amplification reaction is as follows. (PCR reaction solution: for ITS region amplification) DW 17.02 μL, 10 × gene Taq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, gene Taq (NipponGene) 0.14 μL, positive Forward primer: 024-1F (sequence number 69) (10 pmol / μL) 1 μL, reverse primer: 024-1R (sequence number 70) (10 pmol / μL) 1 μL, template DNA 1 μL The results are shown in the table. 25.

[表25] [TABLE 25]

於經擴增之ITS區域之核酸片段中,67位及88位成為C(胞嘧啶)者僅為黃柏及川黃檗。因此,該等部位可藉由單獨之鹼基資訊將黃柏及川黃檗與其他近緣種進行鑑別。但是,為了進行更高之精度之鑑別,更佳為組合2個部位。Among the nucleic acid fragments in the amplified ITS region, those that became C (cytosine) at positions 67 and 88 were only Phellodendron and Scutellaria baicalensis. Therefore, these parts can be used to identify P. chinensis and P. chuanxiong from other related species through separate base information. However, for more accurate discrimination, it is more preferable to combine two parts.

<實施例24:厚樸之鑑別方法> 於日本藥典第十七修訂版中,厚朴之基原植物規定為日本厚樸(M. hypoleuca)、厚朴或凹葉厚樸。但是,可能會於市場流通作為近緣種之三瓣木蘭(M. tripetala)等,為了確保醫藥品之品質,避免該等之誤用、混用較為重要。 因此,以下,示出厚樸之鑑別方法中之一例。由於基本順序與實施例1中所記載之牡丹根及牡丹皮之鑑別方法相同,故而此處僅對與實施例1不同之方面進行記載。<Example 24: Identification method of Magnolia officinalis> In the seventeenth revised edition of the Japanese Pharmacopoeia, the original plant of Magnolia officinalis was specified as M. hypoleuca, Magnolia officinalis or Magnolia officinalis. However, M. tripetala, which is a closely related species, may circulate in the market. In order to ensure the quality of pharmaceutical products, it is important to avoid such misuse and mixing. Therefore, an example of the identification method of Magnolia is shown below. Since the basic sequence is the same as the method for identifying the peony root and peony bark described in Example 1, only the points different from Example 1 will be described here.

1.核酸提取方法 模板DNA係採集生藥、或作為生藥加工前之厚朴之基原植物之日本厚朴、厚朴或凹葉厚樸之一部分,使用市售之DNeasy(註冊商標)Plant Mini Kit(QIAGEN公司),按照隨附之操作說明進行提取。又,關於其他近緣種,自GenBank獲得同源序列。1. Nucleic acid extraction method Template DNA is used to collect crude drugs, or parts of Magnolia officinalis, Magnolia officinalis, or Magnolia officinalis, which are the original plants of Magnolia officinalis before crude drug processing, using commercially available DNeasy (registered trademark) Plant Mini Kit (QIAGEN Company) and follow the instructions provided. For other related species, homologous sequences were obtained from GenBank.

2.核酸擴增方法 使用提取之模板DNA,藉由PCR擴增葉綠體DNA中之rpl16內含子區域。核酸擴增反應中所使用之PCR反應液之組成如下所述。 (PCR反應液1:rpl16內含子區域1擴增用) D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子:025-1F(序列編號71)(10 pmol/μL)1 μL、反向引子:025-1R(序列編號72)(10 pmol/μL)1 μL、模板DNA 1 μL (PCR反應液2:rpl16內含子區域2擴增用) D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子:025-1F(序列編號71)(10 pmol/μL)1 μL、反向引子:025-2R(序列編號73)(10 pmol/μL)1 μL、模板DNA 1 μL (PCR反應液3:rpl16內含子區域3擴增用) D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子:025-2F(序列編號74)(10 pmol/μL)1 μL、反向引子:025-1R(序列編號72)(10 pmol/μL)1 μL、模板DNA 1 μL 將結果示於表26。2. Nucleic acid amplification method Using the extracted template DNA, the rpl16 intron region in chloroplast DNA is amplified by PCR. The composition of the PCR reaction solution used in the nucleic acid amplification reaction is as follows. (PCR reaction solution 1: rpl16 intron region 1 for amplification) DW 17.02 μL, 10 × gene Taq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, gene Taq (NipponGene) ) 0.14 μL, forward primer: 025-1F (SEQ ID NO: 71) (10 pmol / μL) 1 μL, reverse primer: 025-1R (SEQ ID NO: 72) (10 pmol / μL) 1 μL, template DNA 1 μL (PCR reaction solution 2: rpl16 intron region 2 amplification) DW 17.02 μL, 10 × gene Taq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, gene Taq (NipponGene) ) 0.14 μL, forward primer: 025-1F (SEQ ID NO: 71) (10 pmol / μL) 1 μL, reverse primer: 025-2R (SEQ ID NO: 73) (10 pmol / μL) 1 μL, template DNA 1 μL (PCR reaction solution 3: rpl16 intron region 3 amplification) DW 17.02 μL, 10 × gene Taq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, gene Taq (NipponGene) ) 0.14 μL, forward primer: 025-2F (sequence number 74) (10 pmol / μL) 1 μL, reverse primer: 025-1R (sequence number 72) (10 pmol / μL) 1 μL, model 1 μL of plate DNA is shown in Table 26.

[表26] [TABLE 26]

經PCR反應液1、2及3擴增之鑑別區域相同,不同為擴增片段之長度。於本方法中,於進行藉由PCT反應液1之序列確定,無法進行鑑別之情形時,實行進行PCR反應液2及3之2個階段之鑑別方法,藉此可使成本降低,且應對樣本之DNA品質之差異。The identified regions amplified by the PCR reaction solutions 1, 2 and 3 are the same, the difference is the length of the amplified fragments. In this method, when the determination of the sequence of the PCT reaction solution 1 cannot be performed, the two-stage identification method of the PCR reaction solutions 2 and 3 is implemented, thereby reducing the cost and responding to the sample. Differences in DNA quality.

於經擴增之rpl16內含子區域1之核酸片段中檢測之32位、42位、44位、85位、148位及158位6個部位中,不存在可藉由各部位單獨之鹼基資訊鑑別日本厚朴、厚朴或凹葉厚樸與其他近緣種之部位。但是,可知藉由選自由該等部位所組成之群中之2個以上之部位之鹼基資訊的組合,可將日本厚朴、厚朴及凹葉厚樸與其他近緣種進行鑑別。There are no bases in each of the six positions 32, 42, 44, 85, 148, and 158 detected in the amplified nucleic acid fragment of intron region 1 of rpl16. Information identifies parts of Magnolia officinalis, Magnolia officinalis or Magnolia officinalis and other related species. However, it can be seen that Magnolia officinalis, Magnolia officinalis and Magnolia officinalis can be distinguished from other related species by a combination of base information selected from two or more positions in a group consisting of these parts.

<實施例25:澤瀉之鑑別方法> 於日本藥典第十七修訂版中,澤瀉之基原植物規定為東方澤瀉。但是,可能會於市場流通作為近緣種之窄葉澤瀉(A. canaliculatum)等,為了確保醫藥品之品質,避免該等之誤用、混用較為重要。 因此,以下,示出澤瀉之鑑別方法中之一例。由於基本順序與實施例1中所記載之牡丹根及牡丹皮之鑑別方法相同,故而此處僅對與實施例1不同之方面進行記載。<Example 25: Identification method of Alisma orientalis> In the seventeenth revised edition of the Japanese Pharmacopoeia, the original plant of Alisma orientalis was defined as Oriental Alisma orientalis. However, A. canaliculatum, which is a close relative, may circulate in the market. In order to ensure the quality of pharmaceutical products, it is important to avoid such misuse and mixing. Therefore, an example of the identification method of Alisma is shown below. Since the basic sequence is the same as the method for identifying the peony root and peony bark described in Example 1, only the points different from Example 1 will be described here.

1.核酸提取方法 模板DNA係採集生藥、或作為生藥加工前之澤瀉之基原植物之東方澤瀉之一部分,使用市售之DNeasy(註冊商標)Plant Mini Kit(QIAGEN公司),按照隨附之操作說明進行提取。又,關於近緣種,自GenBank獲得同源序列。1. Nucleic acid extraction method. The template DNA is used to collect crude drugs, or part of Orient oriental diarrhea, which is the original plant of diarrhea before processing, using the commercially available DNeasy (registered trademark) Plant Mini Kit (QIAGEN). Follow the instructions for extraction. For related species, homologous sequences were obtained from GenBank.

2.核酸擴增方法 使用提取之模板DNA,藉由PCR擴增核核糖體DNA中之ITS區域。核酸擴增反應中所使用之PCR反應液之組成如下所述。 (PCR反應液1:ITS1區域#1擴增用) D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子:026-1F(序列編號75)(10 pmol/μL)1 μL、反向引子:026-1R(序列編號76)(10 pmol/μL)1 μL、模板DNA 1 μL (PCR反應液2:ITS2區域#1擴增用) D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子:026-2F(序列編號77)(10 pmol/μL)1 μL、反向引子:026-2R(序列編號78)(10 pmol/μL)1 μL、模板DNA 1 μL (PCR反應液3:ITS1區域#2擴增用) D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子:026-1F(序列編號75)(10 pmol/μL)1 μL、反向引子:026-3R(序列編號79)(10 pmol/μL)1 μL、模板DNA 1 μL (PCR反應液4:ITS2區域#2擴增用) D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子:026-1F(序列編號77)(10 pmol/μL)1 μL、反向引子:026-4R(序列編號80)(10 pmol/μL)1 μL、模板DNA 1 μL 將結果示於表27。2. Nucleic acid amplification method Using the extracted template DNA, the ITS region in ribosomal DNA is amplified by PCR. The composition of the PCR reaction solution used in the nucleic acid amplification reaction is as follows. (PCR reaction solution 1: ITS1 region # 1 for amplification) DW 17.02 μL, 10 × gene Taq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, gene Taq (NipponGene) 0.14 μL, forward primer: 026-1F (SEQ ID NO: 75) (10 pmol / μL) 1 μL, reverse primer: 026-1R (SEQ ID NO: 76) (10 pmol / μL) 1 μL, template DNA 1 μL (PCR Reaction solution 2: ITS2 region # 1 for amplification) DW 17.02 μL, 10 × gene Taq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, gene Taq (NipponGene) 0.14 μL, Forward primer: 026-2F (SEQ ID NO: 77) (10 pmol / μL) 1 μL, reverse primer: 026-2R (SEQ ID NO: 78) (10 pmol / μL) 1 μL, template DNA 1 μL (PCR reaction solution) 3: For ITS1 region # 2 amplification) DW 17.02 μL, 10 × gene Taq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, gene Taq (NipponGene) 0.14 μL, forward Primer: 026-1F (SEQ ID NO: 75) (10 pmol / μL) 1 μL, reverse primer: 026-3R (SEQ ID NO: 79) (10 pmol / μL) 1 μL, template DNA 1 μL (PCR reaction solution) 4: ITS2 region # 2 amplification) DW 17.02 μL, 10 × gene Taq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, gene Taq (NipponGene) 0.14 μL, forward Primer: 026-1F (SEQ ID NO: 77) (10 pmol / μL) 1 μL, reverse primer: 026-4R (SEQ ID NO: 80) (10 pmol / μL) 1 μL, template DNA 1 μL The results are shown in Table 27. .

[表27] [TABLE 27]

PCR反應液3之擴增片段包含於PCR反應液1之擴增片段內部,同樣地PCR反應液4之擴增片段包含於PCR反應液2之擴增片段內部。於本方法中,於進行藉由PCR反應液1及2之序列確定,無法進行鑑別之情形時,實行進行PCR反應液3及4之2個階段之鑑別方法,藉此可應對樣本之DNA品質之差異。The amplified fragment of the PCR reaction solution 3 is contained in the amplified fragment of the PCR reaction solution 1, and the amplified fragment of the PCR reaction solution 4 is also contained in the amplified fragment of the PCR reaction solution 2. In this method, when the identification of the sequences of the PCR reaction solutions 1 and 2 cannot be performed, the two-stage identification method of the PCR reaction solutions 3 and 4 is implemented, so that the DNA quality of the sample can be dealt with. Difference.

關於經擴增之ITS1區域#1之核酸片段中檢測之10處鑑別部位、17位、22位、44位、72位、89位、93位、111位、118位、145位及154位,不存在可藉由各部位單獨之鹼基資訊鑑別東方澤瀉與其他近緣種之部位。但是,可知藉由選自由該等部位所組成之群中之2個以上之部位之鹼基資訊的組合,可將東方澤瀉與其他近緣種進行鑑別。Regarding the 10 identified sites, 17, 22, 44, 72, 89, 93, 111, 118, 145, and 154 in the nucleic acid fragment of amplified ITS1 region # 1, There are no sites that can identify Orientia asiatica and other closely related species by using separate base information for each site. However, it can be seen that the combination of base information of two or more sites selected from the group consisting of these sites allows discrimination between Orientia purpurea and other related species.

關於經擴增之ITS2區域#1之核酸片段中檢測之8處鑑別部位、15位、16位、48位、50位、53位、77位、85位及111位,不存在可藉由各部位單獨之鹼基資訊鑑別東方澤瀉與其他近緣種之部位。但是,可知藉由選自由該等部位所組成之群中之2個以上之部位之鹼基資訊的組合,可將東方澤瀉與其他近緣種進行鑑別。Regarding the 8 identification sites, 15th, 16th, 48th, 50th, 53th, 77th, 85th, and 111th positions detected in the amplified ITS2 region # 1 nucleic acid fragment, there are no Site-specific base information identifies parts of Orientia orientale and other related species. However, it can be seen that the combination of base information of two or more sites selected from the group consisting of these sites allows discrimination between Orientia purpurea and other related species.

於經擴增之ITS1區域#2之核酸片段中檢測之8處鑑別部位、17位、22位、28位、37位、44位、49位、72位及89位中,不存在可藉由各部位單獨之鹼基資訊鑑別東方澤瀉與其他近緣種之部位。但是,可知藉由選自由該等部位所組成之群中之2個以上之部位之鹼基資訊的組合,可將東方澤瀉與其他近緣種進行鑑別。Among the 8 identification sites, 17, 22, 28, 37, 44, 49, 72, and 89 detected in the amplified ITS1 region # 2 nucleic acid fragment, there are no The individual base information of each part identifies the parts of Orientia asiatica and other related species. However, it can be seen that the combination of base information of two or more sites selected from the group consisting of these sites allows discrimination between Orientia purpurea and other related species.

於經擴增之ITS2區域#2之核酸片段中檢測之7處鑑別部位、5位、16位、48位、50位、53位、77位及85位中,不存在可藉由各部位單獨之鹼基資訊鑑別東方澤瀉與其他近緣種之部位。但是,可知藉由選自由該等部位所組成之群中之2個以上之部位之鹼基資訊的組合,可將東方澤瀉與其他近緣種進行鑑別。Among the 7 identified sites, 5th, 16th, 48th, 50th, 53th, 77th, and 85th positions detected in the nucleic acid fragment of the amplified ITS2 region # 2, there are no separate sites. The base information identifies the parts of Oriental Alisma and other related species. However, it can be seen that the combination of base information of two or more sites selected from the group consisting of these sites allows discrimination between Orientia purpurea and other related species.

<實施例26:纈草之鑑別方法> 於日本藥典第十七修訂版中,纈草之基原植物規定為闊葉纈草。但是,可能會於市場流通作為近緣種之纈草(V. officinalis)等,為了確保醫藥品之品質,避免該等之誤用、混用較為重要。 因此,以下,示出纈草之鑑別方法中之一例。由於基本順序與實施例1中所記載之牡丹根及牡丹皮之鑑別方法相同,故而此處僅對與實施例1不同之方面進行記載。<Example 26: Identification method of valerian> In the seventeenth revised edition of the Japanese Pharmacopoeia, the original plant of valerian was specified as broadleaf valerian. However, valerian (V. officinalis) and other related species may be distributed in the market. In order to ensure the quality of pharmaceutical products, it is important to avoid such misuse and mixing. Therefore, an example of the identification method of valerian is shown below. Since the basic sequence is the same as the method for identifying the peony root and peony bark described in Example 1, only the points different from Example 1 will be described here.

1.核酸提取方法 模板DNA係採集生藥、或作為生藥加工前之纈草之基原植物之闊葉纈草之一部分,又,對近緣種中之纈草、蜘蛛香(V. jatamansi)及黑水纈草(V. amurensis),採集所收集之乾葉標本之一部分,使用市售之DNeasy(註冊商標)Plant Mini Kit(QIAGEN公司),按照隨附之操作說明進行提取。又,關於近緣種中之川纈草(V. sichuanica)、窄裂纈草(V. stenoptera)及小花纈草(V. minutiflora),自GenBank獲得同源序列。1. Nucleic acid extraction method. Template DNA is used to collect crude drugs or a part of broad-leaved valerian that is the original plant of valerian before processing of crude drugs. In addition, the related species of valerian, spider fragrant (V. jatamansi) and Blackwater Valerian (V. amurensis), a part of the collected dried leaf specimens was collected, and a commercially available DNeasy (registered trademark) Plant Mini Kit (QIAGEN) was used for extraction according to the attached operating instructions. Moreover, about the related species V. sichuanica, V. stenoptera, and V. minutiflora, homologous sequences were obtained from GenBank.

2.核酸擴增方法 使用提取之模板DNA,藉由PCR擴增核核糖體DNA中之ITS區域。核酸擴增反應中所使用之PCR反應液之組成如下所述。 (PCR反應液:ITS區域擴增用) D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子:027-1F(序列編號81)(10 pmol/μL)1 μL、反向引子:027-1R(序列編號82)(10 pmol/μL)1 μL、模板DNA 1 μL 將結果示於表28。2. Nucleic acid amplification method Using the extracted template DNA, the ITS region in ribosomal DNA is amplified by PCR. The composition of the PCR reaction solution used in the nucleic acid amplification reaction is as follows. (PCR reaction solution: for ITS region amplification) DW 17.02 μL, 10 × gene Taq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, gene Taq (NipponGene) 0.14 μL, positive Forward primer: 027-1F (SEQ ID NO: 81) (10 pmol / μL) 1 μL, reverse primer: 027-1R (SEQ ID NO: 82) (10 pmol / μL) 1 μL, template DNA 1 μL. The results are shown in the table. 28.

[表28] [TABLE 28]

可知於經擴增之ITS區域之核酸片段中檢測之7處鑑別部位、45位、54位、151位、179位、199位、213位及218位中,不存在可藉由各部位單獨之鹼基資訊鑑別闊葉纈草與其他近緣種之部位,但藉由選自由該等部位所組成之群中之2個以上之部位之鹼基資訊的組合,可將闊葉纈草與其他近緣種進行鑑別。It can be seen that among the 7 identified sites, 45, 54, 151, 179, 199, 213, and 218 in the nucleic acid fragments of the amplified ITS region, there are no separate sites that can be identified by each site. Base information identifies parts of Valeriana latifolia and other related species, but by combining base information of two or more parts selected from the group consisting of these parts, broadleaf valerian and other Relative species are identified.

<實施例27:樸樕之鑑別方法> 於日本藥典第十七修訂版中,樸樕之基原植物規定為麻櫟、枹櫟、蒙古櫟或栓皮櫟。但是,可能會於市場流通作為近緣種之馬其頓櫟(Q. trojana)等,為了確保醫藥品之品質,避免該等之誤用、混用較為重要。 因此,以下,示出樸樕之鑑別方法中之一例。由於基本順序與實施例1中所記載之牡丹根及牡丹皮之鑑別方法相同,故而此處僅對與實施例1不同之方面進行記載。<Example 27: Identification method of Parkiae> In the seventeenth revised edition of the Japanese Pharmacopoeia, the original plant of Parkiae was specified to be Quercus oak, Quercus oak, Mongolian oak, or Quercus variabilis. However, Q. trojana, which is a closely related species, may circulate in the market. In order to ensure the quality of pharmaceutical products, it is important to avoid such misuse and mixing. Therefore, an example of the identification method of Park Ye is shown below. Since the basic sequence is the same as the method for identifying the peony root and peony bark described in Example 1, only the points different from Example 1 will be described here.

1.核酸提取方法 模板DNA係採集生藥、或作為生藥加工前之樸樕之基原植物之麻櫟、枹櫟、蒙古櫟或栓皮櫟之一部分,使用市售之DNeasy(註冊商標)Plant Mini Kit(QIAGEN公司),按照隨附之操作說明進行提取。又,關於近緣種之馬其頓櫟、冬青櫟(Q. ilex)及圓葉櫟(Q. rotundifolia)、西班牙栓皮櫟(Q. suber),自GenBank獲得同源序列。1. Nucleic acid extraction method. The template DNA is used to collect crude drugs, or as part of the original plant of Quercus serrata, Quercus serrata, Quercus mongolica, or Quercus variabilis before the processing of the crude drug. Commercially available DNeasy (registered trademark) Plant Mini Kit (QIAGEN), follow the instructions provided. In addition, homologous sequences were obtained from the related species Macedonian oak, Q. ilex, Q. rotundifolia, and Q. suber from GenBank.

2.核酸擴增方法 使用提取之模板DNA,藉由PCR擴增核核糖體DNA中之ITS區域。核酸擴增反應中所使用之PCR反應液之組成如下所述。 (PCR反應液1:ITS1區域#1擴增用) D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子:028-1F(序列編號83)(10 pmol/μL)1 μL、反向引子:028-1R(序列編號84)(10 pmol/μL)1 μL、模板DNA 1 μL (PCR反應液2:ITS1區域#2擴增用) D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子:028-1F(序列編號83)(10 pmol/μL)1 μL、反向引子:028-2R(序列編號85)(10 pmol/μL)1 μL、模板DNA 1 μL (PCR反應液3:ITS2區域擴增用) D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子:028-2F(序列編號86)(10 pmol/μL)1 μL、反向引子:028-3R(序列編號87)(10 pmol/μL)1 μL、模板DNA 1 μL 將結果示於表29。2. Nucleic acid amplification method Using the extracted template DNA, the ITS region in ribosomal DNA is amplified by PCR. The composition of the PCR reaction solution used in the nucleic acid amplification reaction is as follows. (PCR reaction solution 1: ITS1 region # 1 for amplification) DW 17.02 μL, 10 × gene Taq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, gene Taq (NipponGene) 0.14 μL, forward primer: 028-1F (SEQ ID NO: 83) (10 pmol / μL) 1 μL, reverse primer: 028-1R (SEQ ID NO: 84) (10 pmol / μL) 1 μL, template DNA 1 μL (PCR Reaction solution 2: ITS1 region # 2 for amplification) DW 17.02 μL, 10 × gene Taq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, gene Taq (NipponGene) 0.14 μL, Forward primer: 028-1F (SEQ ID NO: 83) (10 pmol / μL) 1 μL, reverse primer: 028-2R (SEQ ID NO: 85) (10 pmol / μL) 1 μL, template DNA 1 μL (PCR reaction solution 3: For ITS2 region amplification) DW 17.02 μL, 10 × gene Taq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, gene Taq (NipponGene) 0.14 μL, forward primer: 028-2F (SEQ ID NO: 86) (10 pmol / μL) 1 μL, reverse primer: 028-3R (SEQ ID NO: 87) (10 pmol / μL) 1 μL, template DNA 1 μL The results are shown in Table 29.

[表29] [TABLE 29]

藉由PCR反應液1及2所獲得之鑑別區域相同。 於經擴增之ITS1區域#1之核酸片段中,121位成為C(胞嘧啶)者僅為麻櫟、枹櫟、蒙古櫟及栓皮櫟。因此,該等部位可藉由單獨之鹼基資訊將4種樸樕之基原植物與其他近緣種進行鑑別。又,關於ITS1區域#1之核酸片段中檢測之6處鑑別部位、1位、16位、19位、44位、61位及70位,不存在可藉由各部位單獨之鹼基資訊鑑別4種樸樕之基原植物與其他近緣種之部位。但是,可知藉由選自由該等部位所組成之群中之2個以上之部位之鹼基資訊的組合,可將4種朴樕基原植物與其他近緣種進行鑑別。The identification regions obtained by the PCR reaction solutions 1 and 2 are the same. Among the amplified ITS1 region # 1 nucleic acid fragments, 121 who became C (cytosine) were only Quercus oak, Quercus mongolica, Quercus mongolica, and Quercus variabilis. Therefore, these parts can be used to identify four kinds of Puyuan primordial plants from other related species through separate base information. In addition, regarding the 6 identification sites, 1, 16, 19, 44, 61 and 70 positions detected in the nucleic acid fragment of the ITS1 region # 1, there is no base information that can be identified by each site 4 This is the location of the original plant and other related species. However, it can be seen that the combination of base information of two or more sites selected from the group consisting of these sites allows identification of four types of Parkin's original plants from other related species.

關於經擴增之ITS1區域#2之核酸片段中檢測之6處鑑別部位1位、16位、19位、44位、61位及70位,不存在可藉由各部位單獨之鹼基資訊鑑別4種樸樕之基原植物與其他近緣種之部位。但是,可知藉由選自由該等部位所組成之群中之2個以上之部位之鹼基資訊的組合,可將4種朴樕基原植物與其他近緣種進行鑑別。Regarding the 6 identified sites in the amplified ITS1 region # 2 nucleic acid fragment, 1, 16, 16, 19, and 70, there is no base information that can be identified by each site Locations of 4 kinds of Puyuanji original plants and other related species. However, it can be seen that the combination of base information of two or more sites selected from the group consisting of these sites allows identification of four types of Parkin's original plants from other related species.

關於經擴增之ITS2區域之核酸片段中檢測之13處鑑別部位、52位、120位、121位、122位、134位、144位、161位、162位、163位、164位、185位、193位及196位,不存在可藉由各部位單獨之鹼基資訊鑑別4種樸樕之基原植物與其他近緣種之部位。但是,可知藉由選自由該等部位所組成之群中之2個以上之部位之鹼基資訊的組合,可將樸樕之基原植物與其他近緣種進行鑑別。About 13 identified sites in the amplified ITS2 region nucleic acid fragments, 52, 120, 121, 122, 134, 144, 161, 162, 163, 164, 185 Positions 193, 196, and 196 do not exist, which can be used to identify four kinds of Puyuan primordial plants and other related species based on the individual base information of each part. However, it can be seen that the combination of the base information of two or more sites selected from the group consisting of these sites allows the identification of the original plant of Parkia and other related species.

<實施例28:連翹之鑑別方法> 於日本藥典第十七修訂版中,連翹之基原植物規定為連翹。但是,可能會於市場流通作為近緣種之金鐘花(F. viridissima)等,為了確保醫藥品之品質,避免該等之誤用、混用較為重要。 因此,以下,示出連翹之鑑別方法中之一例。由於基本順序與實施例1中所記載之牡丹根及牡丹皮之鑑別方法相同,故而此處僅對與實施例1不同之方面進行記載。<Example 28: Identification method of forsythia> In the seventeenth revised edition of the Japanese Pharmacopoeia, the original plant of forsythia is specified as forsythia. However, F. viridissima, which is a close relative, may circulate in the market. In order to ensure the quality of pharmaceutical products, it is important to avoid such misuse and mixing. Therefore, an example of the method of identifying forsythia is shown below. Since the basic sequence is the same as the method for identifying the peony root and peony bark described in Example 1, only the points different from Example 1 will be described here.

1.核酸提取方法 模板DNA係採集生藥、或作為生藥加工前之基原植物之連翹之一部分,使用市售之DNeasy(註冊商標)Plant Mini Kit(QIAGEN公司),按照隨附之操作說明進行提取。又,關於近緣種,自GenBank獲得同源序列。1. Nucleic acid extraction method Template DNA is used to collect crude drugs or part of the forsythia which is the original plant before the processing of crude drugs. Use the commercially available DNeasy (registered trademark) Plant Mini Kit (QIAGEN) and follow the attached operating instructions for extraction. . For related species, homologous sequences were obtained from GenBank.

2.核酸擴增方法 使用提取之模板DNA,藉由PCR擴增核核糖體DNA中之ITS區域。核酸擴增反應中所使用之PCR反應液之組成如下所述。 (PCR反應液1:ITS1區域擴增用) D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子:029-1F(序列編號88)(10 pmol/μL)1 μL、反向引子:029-1R(序列編號89)(10 pmol/μL)1 μL、模板DNA 1 μL (PCR反應液2:ITS2區域擴增用) D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子:029-2F(序列編號90)(10 pmol/μL)1 μL、反向引子:029-2R(序列編號91)(10 pmol/μL)1 μL、模板DNA 1 μL 將結果示於表30。2. Nucleic acid amplification method Using the extracted template DNA, the ITS region in ribosomal DNA is amplified by PCR. The composition of the PCR reaction solution used in the nucleic acid amplification reaction is as follows. (PCR reaction solution 1: ITS1 region amplification) DW 17.02 μL, 10 × gene Taq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, gene Taq (NipponGene) 0.14 μL, Forward primer: 029-1F (SEQ ID NO: 88) (10 pmol / μL) 1 μL, reverse primer: 029-1R (SEQ ID NO: 89) (10 pmol / μL) 1 μL, template DNA 1 μL (PCR reaction solution 2: For ITS2 region amplification) DW 17.02 μL, 10 × gene Taq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, gene Taq (NipponGene) 0.14 μL, forward primer: 029-2F (SEQ ID NO: 90) (10 pmol / μL) 1 μL, reverse primer: 029-2R (SEQ ID NO: 91) (10 pmol / μL) 1 μL, and template DNA 1 μL The results are shown in Table 30.

[表30] [TABLE 30]

藉由PCR反應液1及2所獲得之鑑別區域相同。 於經擴增之ITS1區域之核酸片段中,2位成為T(胸腺嘧啶),52位成為C(胞嘧啶)者僅為連翹。因此,該等部位可藉由單獨之鹼基資訊將連翹與其他近緣種進行鑑別。 又,於經擴增之ITS2區域之核酸片段中,55位及60位成為C(胞嘧啶)者僅為連翹。因此,該部位可藉由單獨之鹼基資訊將連翹與其他近緣種進行鑑別。 為了將連翹與其他近緣種進行鑑別,可藉由上述各部位單獨之鹼基資訊進行,但為了以更高之精度進行鑑別,較佳為分析所有4個部位。The identification regions obtained by the PCR reaction solutions 1 and 2 are the same. Among the nucleic acid fragments in the amplified ITS1 region, the 2 position becomes T (thymine) and the 52 position becomes C (cytosine) only forsythia. Therefore, these parts can be used to identify forsythia and other related species by separate base information. Among the nucleic acid fragments in the amplified ITS2 region, those at positions 55 and 60 which are C (cytosine) are forsythia. Therefore, this site can be used to identify forsythia from other related species by using separate base information. In order to distinguish forsythia from other related species, the base information of each part can be used for identification. However, in order to identify with higher accuracy, it is better to analyze all 4 parts.

<實施例29:良薑之鑑別方法> 於日本藥典第十七修訂版中,良薑之基原植物規定為良薑。但是,可能會於市場流通作為近緣種之距花山薑(A. calcarata)等,為了確保醫藥品之品質,避免該等之誤用、混用較為重要。 因此,以下,示出良薑之鑑別方法中之一例。由於基本順序與實施例1中所記載之牡丹根及牡丹皮之鑑別方法相同,故而此處僅對與實施例1不同之方面進行記載。<Example 29: Identification method of good ginger> In the seventeenth revised edition of the Japanese Pharmacopoeia, the original plant of good ginger was defined as good ginger. However, A. calcarata, which is a close relative, may circulate in the market. In order to ensure the quality of pharmaceutical products, it is important to avoid such misuse and mixing. Therefore, an example of a method for identifying ginger is shown below. Since the basic sequence is the same as the method for identifying the peony root and peony bark described in Example 1, only the points different from Example 1 will be described here.

1.核酸提取方法 模板DNA係採集生藥、或作為生藥加工前之良薑之基原植物之良薑之一部分,使用市售之DNeasy(註冊商標)Plant Mini Kit(QIAGEN公司),按照隨附之操作說明進行提取。又,關於作為近緣種之距花山薑、美山薑(A. formosana)、大花山薑(A. uraiensis)及密穗山薑(A. shimadae),自GenBank獲得同源序列。1. Nucleic acid extraction method The template DNA is used to collect crude drugs, or as a part of the original ginger of the original plant of the ginger before the crude drug processing, using the commercially available DNeasy (registered trademark) Plant Mini Kit (QIAGEN company), according to the attached Instructions for extraction. In addition, homologous sequences were obtained from GenBank, A. formosana, A. uraiensis, and A. shimadae, which are closely related species.

2.核酸擴增方法 使用提取之模板DNA,藉由PCR擴增葉綠體DNA中之matK區域。核酸擴增反應中所使用之PCR反應液之組成如下所述。 (PCR反應液1:matK區域#1擴增用) D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子:030-1F(序列編號92)(10 pmol/μL)1 μL、反向引子:030-1R(序列編號93)(10 pmol/μL)1 μL、模板DNA 1 μL (PCR反應液2:matK區域#2擴增用) D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子:030-1F(序列編號66)(10 pmol/μL)1 μL、反向引子:030-1R(序列編號94)(10 pmol/μL)1 μL、模板DNA 1 μL 將結果示於表31。2. Nucleic acid amplification method Using the extracted template DNA, the matK region in chloroplast DNA is amplified by PCR. The composition of the PCR reaction solution used in the nucleic acid amplification reaction is as follows. (PCR reaction solution 1: matK region # 1 for amplification) DW 17.02 μL, 10 × gene Taq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, gene Taq (NipponGene) 0.14 μL, forward primer: 030-1F (SEQ ID NO: 92) (10 pmol / μL) 1 μL, reverse primer: 030-1R (SEQ ID NO: 93) (10 pmol / μL) 1 μL, template DNA 1 μL (PCR Reaction solution 2: matK region # 2 for amplification) DW 17.02 μL, 10 × gene Taq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, gene Taq (NipponGene) 0.14 μL, Forward primer: 030-1F (SEQ ID NO: 66) (10 pmol / μL) 1 μL, reverse primer: 030-1R (SEQ ID NO: 94) (10 pmol / μL) 1 μL, template DNA 1 μL Table 31.

[表31] [TABLE 31]

於經擴增之matK區域#1之核酸片段中,44位成為A(腺嘌呤)者僅為良薑。因此,該部位可藉由單獨之鹼基資訊鑑別良薑與其他近緣種。 又,於經擴增之matK區域#2之核酸片段中,115位成為A(腺嘌呤)者僅為良薑。因此,該部位可藉由單獨之鹼基資訊鑑別良薑與其他近緣種。 於良薑與其他近緣種之鑑別中,藉由上述2個matK區域中之2個部位中之任一者之鹼基資訊進行即可,但為了進行更高之準確度之鑑別,較佳為分析兩個區域。Among the amplified nucleic acid fragments of matK region # 1, 44 who became A (adenine) were only ginger. Therefore, this site can distinguish ginger and other related species by separate base information. In the amplified nucleic acid fragment of matK region # 2, the 115 persons who became A (adenine) were only ginger. Therefore, this site can distinguish ginger and other related species by separate base information. In the identification of good ginger and other related species, the base information of any one of the two positions in the two matK regions can be used, but it is better to identify with higher accuracy. To analyze two areas.

<實施例30:蓮子之鑑別方法> 於日本藥典第十七修訂版中,蓮子之基原植物規定為蓮。但是,可能會於市場流通作為近緣種之美洲黃蓮(N. lutea)等,為了確保醫藥品之品質,避免該等之誤用、混用較為重要。 因此,以下,示出蓮子之鑑別方法中之一例。由於基本順序與實施例1中所記載之牡丹根及牡丹皮之鑑別方法相同,故而此處僅對與實施例1不同之方面進行記載。<Example 30: Identification method of lotus seeds> In the seventeenth revised edition of the Japanese Pharmacopoeia, the original plant of lotus seeds was defined as lotus. However, N. lutea, which is a closely related species, may circulate in the market. In order to ensure the quality of pharmaceutical products, it is important to avoid such misuse and mixing. Therefore, an example of the method of identifying lotus seeds is shown below. Since the basic sequence is the same as the method for identifying the peony root and peony bark described in Example 1, only the points different from Example 1 will be described here.

1.核酸提取方法 模板DNA係採集生藥、或作為生藥加工前之基原植物之蓮之一部分,使用市售之DNeasy(註冊商標)Plant Mini Kit(QIAGEN公司),按照隨附之操作說明進行提取。又,關於近緣種之美洲黃蓮及五瓣蓮(N. pentapetala),自GenBank獲得同源序列。1. Nucleic acid extraction method Template DNA is used to collect crude drugs, or a part of the original plant lotus before the processing of crude drugs, using a commercially available DNeasy (registered trademark) Plant Mini Kit (QIAGEN), and extract them according to the attached operating instructions . Also, regarding the closely related species Americana and N. pentapetala, homologous sequences were obtained from GenBank.

2.核酸擴增方法 使用提取之模板DNA,藉由PCR擴增核核糖體DNA中之ITS區域。核酸擴增反應中所使用之PCR反應液之組成如下所述。 (PCR反應液1:ITS1區域擴增用) D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子:031-1F(序列編號95)(10 pmol/μL)1 μL、反向引子:031-1R(序列編號4)(10 pmol/μL)1 μL、模板DNA 1 μL (PCR反應液2:ITS2區域擴增用) D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子:031-2F(序列編號96)(10 pmol/μL)1 μL、反向引子:031-2R(序列編號36)(10 pmol/μL)1 μL、模板DNA 1 μL 將結果示於表32。2. Nucleic acid amplification method Using the extracted template DNA, the ITS region in ribosomal DNA is amplified by PCR. The composition of the PCR reaction solution used in the nucleic acid amplification reaction is as follows. (PCR reaction solution 1: ITS1 region amplification) DW 17.02 μL, 10 × gene Taq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, gene Taq (NipponGene) 0.14 μL, Forward primer: 031-1F (SEQ ID NO: 95) (10 pmol / μL) 1 μL, reverse primer: 031-1R (SEQ ID NO: 4) (10 pmol / μL) 1 μL, template DNA 1 μL (PCR reaction solution) 2: For ITS2 region amplification) DW 17.02 μL, 10 × gene Taq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, gene Taq (NipponGene) 0.14 μL, forward primer: 031-2F (SEQ ID NO: 96) (10 pmol / μL) 1 μL, reverse primer: 031-2R (SEQ ID NO: 36) (10 pmol / μL) 1 μL, and template DNA 1 μL The results are shown in Table 32.

[表32] [TABLE 32]

於經擴增之ITS1區域之核酸片段中,61位成為A(腺嘌呤)且85位成為T(胸腺嘧啶)者僅為蓮。因此,該等部位可藉由單獨之鹼基資訊將蓮與其他近緣種進行鑑別。 又,於經擴增之ITS2區域之核酸片段中,69位成為C(胞嘧啶)且111位成為G(鳥嘌呤)者僅為蓮。因此,該部位可藉由單獨之鹼基資訊將蓮與其他近緣種進行鑑別。 為了將蓮與其他近緣種進行鑑別,可藉由上述藉由各部位單獨之鹼基資訊進行,但為了以更高之精度進行鑑別,較佳為分析所有4個部位。Among the nucleic acid fragments of the amplified ITS1 region, 61 (A) and 85 (T) are the only lotus species. Therefore, these parts can be distinguished from other related species by separate base information. Among the nucleic acid fragments of the amplified ITS2 region, 69 (C) and 111 (G) are the only lotus species. Therefore, this part can be distinguished from other related species by the base information alone. In order to distinguish lotus from other related species, the above can be performed by using the base information of each part separately, but in order to identify with higher accuracy, it is preferable to analyze all 4 parts.

<實施例31:紅花之鑑別方法> 於日本藥典第十七修訂版中,紅花之基原植物規定為紅花。但是,可能會於市場流通作為近緣種之蒼白紅花(C. glaucus)等,為了確保醫藥品之品質,避免該等之誤用、混用較為重要。 因此,以下,示出紅花之鑑別方法中之一例。由於基本順序與實施例1中所記載之牡丹根及牡丹皮之鑑別方法相同,故而此處僅對與實施例1不同之方面進行記載。<Example 31: Identification method of safflower> In the seventeenth revised edition of the Japanese Pharmacopoeia, the original plant of safflower was specified as safflower. However, C. glaucus, which is a close relative, may circulate in the market. In order to ensure the quality of pharmaceutical products, it is important to avoid such misuse and mixing. Therefore, an example of a method for identifying a safflower is shown below. Since the basic sequence is the same as the method for identifying the peony root and peony bark described in Example 1, only the points different from Example 1 will be described here.

1.核酸提取方法 模板DNA係採集生藥、或作為生藥加工前之基原植物之紅花之一部分,使用市售之DNeasy(註冊商標)Plant Mini Kit(QIAGEN公司),按照隨附之操作說明進行提取。又,關於近緣種,自GenBank獲得同源序列。1. Nucleic acid extraction method Template DNA is used to collect crude drugs or a part of the safflower that is the original plant before the processing of crude drugs. Use the commercially available DNeasy (registered trademark) Plant Mini Kit (QIAGEN) and follow the instructions provided. . For related species, homologous sequences were obtained from GenBank.

2.核酸擴增方法 使用提取之模板DNA,藉由PCR擴增核核糖體DNA中之ITS區域。核酸擴增反應中所使用之PCR反應液之組成如下所述。 (PCR反應液1:ITS1區域擴增用) D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子:032-1F(序列編號97)(10 pmol/μL)1 μL、反向引子:032-1R(序列編號4)(10 pmol/μL)1 μL、模板DNA 1 μL (PCR反應液2:ITS2區域擴增用) D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子:032-2F(序列編號44)(10 pmol/μL)1 μL、反向引子:032-2R(序列編號36)(10 pmol/μL)1 μL、模板DNA 1 μL 將結果示於表33。2. Nucleic acid amplification method Using the extracted template DNA, the ITS region in ribosomal DNA is amplified by PCR. The composition of the PCR reaction solution used in the nucleic acid amplification reaction is as follows. (PCR reaction solution 1: ITS1 region amplification) DW 17.02 μL, 10 × gene Taq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, gene Taq (NipponGene) 0.14 μL, Forward primer: 032-1F (SEQ ID NO: 97) (10 pmol / μL) 1 μL, reverse primer: 032-1R (SEQ ID NO: 4) (10 pmol / μL) 1 μL, template DNA 1 μL (PCR reaction solution) 2: For ITS2 region amplification) DW 17.02 μL, 10 × gene Taq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, gene Taq (NipponGene) 0.14 μL, forward primer: 032-2F (SEQ ID NO: 44) (10 pmol / μL) 1 μL, reverse primer: 032-2R (SEQ ID NO: 36) (10 pmol / μL) 1 μL, and template DNA 1 μL The results are shown in Table 33.

[表33] [TABLE 33]

於經擴增之ITS1區域之核酸片段中,69位成為T(胸腺嘧啶),114位成為C(胞嘧啶)且199位成為G(鳥嘌呤)者僅為紅花。因此,該等部位可藉由單獨之鹼基資訊將紅花與其他近緣種進行鑑別。又,關於經擴增之ITS1區域之核酸片段中檢測之5處鑑別部位、30位、47位、178位、184位及235位,不存在可藉由各部位單獨之鹼基資訊鑑別紅花與其他近緣種之部位。但是,可知藉由選自由該等部位所組成之群中之2個以上之部位之鹼基資訊的組合,可將紅花與其他近緣種進行鑑別。為了將紅花與其他近緣種進行鑑別,可藉由上述3個部位單獨之鹼基資訊進行,但為了以更高之精度進行鑑別,較佳為分析所有下述5個部位。 又,關於經擴增之ITS2區域之核酸片段中檢測之7處鑑別部位、79位、114位、130位、167位、247位、270位及315位,藉由各部位單獨之鹼基資訊無法鑑別紅花與其他近緣種。但是,可知藉由選自由該等部位所組成之群中之2個以上之部位之鹼基資訊的組合,可將紅花與其他近緣種進行鑑別。Among the amplified nucleic acid fragments of the ITS1 region, 69 became T (thymine), 114 became C (cytosine), and 199 became G (guanine). Therefore, these parts can be used to identify safflower from other related species through separate base information. In addition, regarding the five identified positions, 30th, 47th, 178th, 184th, and 235th of the nucleic acid fragments of the amplified ITS1 region, there is no base information that can be used to identify safflower and Location of other related species. However, it was found that safflower can be distinguished from other related species by a combination of base information of two or more sites selected from the group consisting of these sites. In order to distinguish safflower from other related species, the base information of the three positions above can be used for identification, but in order to identify with higher accuracy, it is preferable to analyze all five positions described below. In addition, regarding the 7 identified sites, 79, 114, 130, 167, 247, 270, and 315 of the nucleic acid fragments in the amplified ITS2 region, the base information of each site is independent. Safflower cannot be distinguished from other related species. However, it was found that safflower can be distinguished from other related species by a combination of base information of two or more sites selected from the group consisting of these sites.

<實施例32:蘇木之鑑別方法> 於日本藥典第十七修訂版中,蘇木之基原植物規定為蘇木。但是,可能會於市場流通作為近緣種之C. angulata等,為了確保醫藥品之品質,避免該等之誤用、混用較為重要。 因此,以下,示出蘇木之鑑別方法中之一例。由於基本順序與實施例1中所記載之牡丹根及牡丹皮之鑑別方法相同,故而此處僅對與實施例1不同之方面進行記載。<Example 32: Identification method of hematoxylin> In the seventeenth revised edition of the Japanese Pharmacopoeia, the original plant of hematoxylin was specified as hematoxylin. However, C. angulata and other related species may be distributed in the market. In order to ensure the quality of pharmaceutical products, it is important to avoid such misuse and mixing. Therefore, an example of the method for identifying hematoxylin is shown below. Since the basic sequence is the same as the method for identifying the peony root and peony bark described in Example 1, only the points different from Example 1 will be described here.

1.核酸提取方法 模板DNA係採集生藥、或作為生藥加工前之基原植物之蘇木之一部分,使用市售之DNeasy(註冊商標)Plant Mini Kit(QIAGEN公司),按照隨附之操作說明進行提取。又,關於近緣種,自GenBank獲得同源序列。1. Nucleic acid extraction method Template DNA is used to collect crude drugs or a part of the hematoxylin which is the original plant before the processing of crude drugs. Use the commercially available DNeasy (registered trademark) Plant Mini Kit (QIAGEN) and follow the instructions provided. extract. For related species, homologous sequences were obtained from GenBank.

2.核酸擴增方法 使用提取之模板DNA,藉由PCR擴增核核糖體DNA中之ITS區域。核酸擴增反應中所使用之PCR反應液之組成如下所述。 (PCR反應液:ITS區域擴增用) D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子:033-1F(序列編號98)(10 pmol/μL)1 μL、反向引子:033-1R(序列編號99)(10 pmol/μL)1 μL、模板DNA 1 μL 將結果示於表34。2. Nucleic acid amplification method Using the extracted template DNA, the ITS region in ribosomal DNA is amplified by PCR. The composition of the PCR reaction solution used in the nucleic acid amplification reaction is as follows. (PCR reaction solution: for ITS region amplification) DW 17.02 μL, 10 × gene Taq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, gene Taq (NipponGene) 0.14 μL, positive Forward primer: 033-1F (SEQ ID NO: 98) (10 pmol / μL) 1 μL, reverse primer: 033-1R (SEQ ID NO: 99) (10 pmol / μL) 1 μL, template DNA 1 μL The results are shown in the table. 34.

[表34] [TABLE 34]

於經擴增之ITS1區域之核酸片段中,21位成為G(鳥嘌呤)者僅為蘇木。因此,該部位可藉由單獨之鹼基資訊,將蘇木與其他近緣種進行鑑別。又,可知於經擴增之ITS區域之核酸片段中檢測之9處鑑別部位、43位、47位、52位、55位、100位、108位、124位、227位及238位中,不存在可藉由各部位單獨之鹼基資訊鑑別蘇木與其他近緣種之部位,但藉由選自由該等部位所組成之群中之2個以上之部位之鹼基資訊的組合,可將蘇木與其他近緣種進行鑑別。 為了將蘇木與其他近緣種進行鑑別,可藉由上述21位單獨之鹼基資訊進行,但為了以更高之精度進行鑑別,較佳為分析所有下述9個部位。Among the nucleic acid fragments in the amplified ITS1 region, the 21 who became G (guanine) was only hematoxylin. Therefore, this site can be used to identify hematoxylin and other related species through separate base information. In addition, it can be seen that among the 9 identification positions, 43 positions, 47 positions, 52 positions, 55 positions, 100 positions, 108 positions, 124 positions, 227 positions, and 238 positions detected in the nucleic acid fragments of the amplified ITS region, There are parts that can identify hematoxylin and other closely related species by using separate base information of each part, but by combining the base information of two or more parts selected from the group consisting of these parts, Hematology is identified from other related species. In order to identify hematoxylin and other related species, the above 21 individual base information can be used for identification, but in order to identify with higher accuracy, it is preferable to analyze all the following 9 parts.

<實施例33:鑑別用引子之生藥特異性之確認> (目的) 藉由本發明之生藥鑑別用引子組,確認僅擴增日本藥典第十七修訂版中所規定之生藥之基原植物及其近緣種,未擴增遠緣之植物種。<Example 33: Confirmation of the specificity of the biopharmaceutical primers> (Objective) The primer set for the biopharmaceutical identification of the present invention was used to confirm that only the base plants of the biopharmaceuticals specified in the seventeenth revised edition of the Japanese Pharmacopoeia and their bases were amplified. Closely related species, distantly related plant species not expanded.

(方法) 1.核酸提取方法 模板DNA係採集受驗對象植物之一部分,使用市售之DNeasy(註冊商標)Plant Mini Kit(QIAGEN公司),按照隨附之操作說明進行提取。 作為受驗對象植物,使用作為牡丹根之基原植物之牡丹根、及為其近緣種且為牡丹皮之基原植物之牡丹、作為桂皮之基原植物之肉桂、作為澤瀉之基原植物之東方澤瀉、以及作為鉤藤之基原植物之鉤藤。(Methods) 1. Method for extracting nucleic acid Template DNA was collected from a part of a plant to be tested, and a commercially available DNeasy (registered trademark) Plant Mini Kit (QIAGEN) was used for extraction according to the attached operating instructions. As subject plants, peony roots, which are the base plants of the peony roots, peony, which is a related species and which are the base plants of the peony skin, cinnamon, which is the base plant of the cinnamon, and basal plants, which are the bases of the diarrhea, are used. Orientia serrata, the plant, and Uncaria as the original plant of Uncaria.

2.核酸擴增方法 使用提取之模板DNA進行PCR。所使用之PCR反應液之組成如下所述。 D.W. 17.02 μL、10×gene Taq Buffer(NipponGene公司)2.80 μL、dNTP Mix(NipponGene公司)2.24 μL、DMSO 2.80 μL、gene Taq(NipponGene公司)0.14 μL、正向引子(10 pmol/μL)1 μL、反向引子:(10 pmol/μL)1 μL、模板DNA 1 μL 再者,作為包含正向引子及反向引子之引子組,使用以下之4組。 (引子組#1)002-1F & 002-1R:牡丹根用引子組 (引子組#2)003-1F & 003-1R:桂皮用引子組 (引子組#3)026-1F & 026-1R:澤瀉用引子組 (引子組#4)019-4F & 019-2R:鉤藤用引子組 將包含引子組#1~#4之PCR反應液分別設為PCR反應液#1~#4。2. Nucleic acid amplification method PCR was performed using the extracted template DNA. The composition of the PCR reaction solution used is as follows. DW 17.02 μL, 10 × gene Taq Buffer (NipponGene) 2.80 μL, dNTP Mix (NipponGene) 2.24 μL, DMSO 2.80 μL, gene Taq (NipponGene) 0.14 μL, forward primer (10 pmol / μL) 1 μL, Reverse primers: (10 pmol / μL) 1 μL, template DNA 1 μL. Furthermore, as primer sets containing forward primers and reverse primers, the following four groups were used. (Introduction group # 1) 002-1F & 002-1R: Introduced group of peony roots (introduced group # 2) 003-1F & 003-1R: Introduced group of cassia (introduced group # 3) 026-1F & 026-1R : Primer set for Alisawa (primer set # 4) 019-4F & 019-2R: Primer set for Uncaria spp. PCR reaction solutions containing primer groups # 1 to # 4 were set to PCR reaction solutions # 1 to # 4, respectively.

3. PCR循環條件 PCR係將上述各模板DNA與PCR反應液#1~#4一起放入至0.2 mL微型管中,於Step Down法、即(94℃、4 min)×1個循環、(95℃、30 sec;70℃、15 sec;72℃、15 sec)×3個循環、(95℃、30 sec;66℃、15 sec;72℃、15 sec)×3個循環、(95℃、30 sec;62℃、15 sec;72℃、15 sec)×3個循環、(95℃、30 sec;58℃、15 sec;72℃、15 sec)×3個循環、(95℃、30 sec;54℃、15 sec;72℃、15 sec)×3個循環、(95℃、30 sec;48℃、1.5 min;72℃、2.5 min)×20個循環、以及(72℃、7 min)×1個循環之條件下,使用溫控循環機Tprofessional Thermocycler 070-951(Biometra公司)進行。3. PCR cycle conditions PCR is to place each of the above template DNA and PCR reaction solutions # 1 ~ # 4 into 0.2 mL microtubes, and use the Step Down method, that is (94 ° C, 4 min) × 1 cycle, ( 95 ° C, 30 sec; 70 ° C, 15 sec; 72 ° C, 15 sec) × 3 cycles, (95 ° C, 30 sec; 66 ° C, 15 sec; 72 ° C, 15 sec) × 3 cycles, (95 ° C , 30 sec; 62 ℃, 15 sec; 72 ℃, 15 sec) × 3 cycles, (95 ℃, 30 sec; 58 ℃, 15 sec; 72 ℃, 15 sec) × 3 cycles, (95 ℃, 30 sec; 54 ° C, 15 sec; 72 ° C, 15 sec) × 3 cycles, (95 ° C, 30 sec; 48 ° C, 1.5 min; 72 ° C, 2.5 min) × 20 cycles, and (72 ° C, 7 min ) × 1 cycle, using a temperature-controlled cycler Tprofessional Thermocycler 070-951 (Biometra).

4.藉由凝膠電泳之擴增產物之確認及凝膠提取 於PCR後,利用凝膠電泳法,藉由2% Ex-Gel iBase(Thermo Fisher Scientifics公司)+程式7使反應液20 μL泳動,藉由LED 500 nm透照箱LB-16BG(Nippon Genetics公司)+凝膠拍攝裝置Printgraph AE-6931 FXCF(ATTO)確認目標PCR產物,進行圖像拍攝。4. Confirmation of amplification products by gel electrophoresis and gel extraction After PCR, use gel electrophoresis to run 20 μL of the reaction solution by 2% Ex-Gel iBase (Thermo Fisher Scientifics) + Formula 7 The target PCR product was confirmed by an LED 500 nm transilluminator LB-16BG (Nippon Genetics) + gel imaging device Printgraph AE-6931 FXCF (ATTO), and an image was captured.

(結果) 將結果示於圖1~4。圖1係包含引子組#1之PCR反應液#1(牡丹根用),圖2係包含引子組#2之PCR反應液#2(桂皮用),圖3係包含引子組#3之PCR反應液#3(澤瀉用),而且,圖4係包含引子組#4之PCR反應液#4(鉤藤用)。(Results) The results are shown in FIGS. 1 to 4. Figure 1 shows the PCR reaction solution # 1 (for peony root) containing primer set # 1, Figure 2 shows the PCR reaction solution # 2 (for cinnamon) containing primer set # 2, and Figure 3 shows the PCR reaction containing primer set # 3 Liquid # 3 (for Sasagane), and FIG. 4 is a PCR reaction solution # 4 (for Uncaria) containing primer set # 4.

根據圖1,於引子組#1中,於牡丹根、及作為其近緣種之牡丹中確認到擴增片段,但於肉桂、東方澤瀉及鉤藤中無法確認到擴增片段。According to FIG. 1, in the primer set # 1, amplified fragments were confirmed in peony roots and peony as a related species, but amplified fragments were not confirmed in cinnamon, oriental diarrhea, and Uncaria.

根據圖2,於引子組#2中,於肉桂中確認到擴增片段,但於牡丹根、作為其近緣種之牡丹、東方澤瀉及鉤藤中無法確認到擴增片段。According to FIG. 2, in the primer set # 2, the amplified fragment was confirmed in cinnamon, but the amplified fragment could not be confirmed in peony root, peony as its related species, Oriental diarrhea, and Uncaria.

根據圖3,於引子組#3中,於東方澤瀉中確認到擴增片段,但於牡丹根、作為其近緣種之牡丹、肉桂及鉤藤中無法確認到擴增片段。According to FIG. 3, in the primer set # 3, an amplified fragment was confirmed in Orientia orientale, but an amplified fragment could not be confirmed in peony root, peony, cinnamon, and Uncaria, which are related species.

根據圖4,於引子組#4中,於鉤藤中確認到擴增片段,但於牡丹根、作為其近緣種之牡丹、肉桂及東方澤瀉中無法確認到擴增片段。According to FIG. 4, in the primer set # 4, the amplified fragment was confirmed in Uncaria, but the amplified fragment could not be confirmed in the peony root, peony, cinnamon, and oriental diarrhea, which are related species.

根據以上之結果,確認到根據本發明之生藥之鑑別引子組,僅於生藥之基原植物及其近緣植物中擴增目標核酸片段,於與對象生藥之基原植物遠緣之植物中未擴增核酸片段。Based on the above results, it was confirmed that the identification primer set of the crude drug according to the present invention amplifies the target nucleic acid fragment only in the original plant of the crude drug and its related plants, but not in the plant distant from the original plant of the target crude drug Amplify a nucleic acid fragment.

再者,根據本發明之生藥之鑑別引子組,如上所述,與基原植物近緣之植物種亦以與基原植物相同之方式擴增核酸片段,但於該等之鑑別中,只要基於上述實施例所示之鑑別部位進行鑑別即可。Furthermore, according to the identification primer set of the crude drug of the present invention, as described above, the plant species closely related to the primitive plants also amplify the nucleic acid fragments in the same manner as the primitive plants. It is sufficient to perform the identification at the identification site shown in the above embodiment.

圖1係表示於實施例33中使用牡丹根/牡丹皮鑑別用引子組#1進行PCR後之反應液之電泳圖。區帶1表示標記物,區帶2表示源自牡丹根(牡丹根基原植物)之DNA,區帶3表示源自肉桂(桂皮基原植物)之DNA,區帶4表示源自牡丹(牡丹皮基原植物)之DNA,區帶5表示源自東方澤瀉(澤瀉基原植物)之DNA,區帶6表示源自鉤藤(鉤藤基原植物)之DNA,且區帶7表示不加入模板核酸之空白對照(Mock)。 圖2係表示於實施例33中使用桂皮鑑別用引子組#2進行PCR後之反應液之電泳圖。各區帶之說明係與圖1相同。 圖3係表示於實施例33中使用澤瀉鑑別用引子組#3進行PCR後之反應液之電泳圖。各區帶之說明係與圖1相同。 圖4係表示於實施例33中使用鉤藤鑑別用引子組#4進行PCR後之反應液之電泳圖。各區帶之說明係與圖1相同。FIG. 1 is an electrophoresis diagram of a reaction solution after performing PCR using the peony root / peony skin identification primer set # 1 in Example 33. FIG. Band 1 indicates markers, band 2 indicates DNA derived from peony root (original peony root plant), band 3 indicates DNA derived from cinnamon (original cassia root plant), and band 4 indicates source from peony (peony bark). DNA), band 5 indicates DNA derived from Orientia serrata (Azadaki original plant), band 6 indicates DNA derived from Uncaria rhynchophylla (Uncaria radiata), and band 7 indicates no A blank control (Mock) of template nucleic acid was added. FIG. 2 is an electrophoresis diagram of the reaction solution after the PCR was performed using the cinnamon identification primer set # 2 in Example 33. FIG. The description of each zone is the same as that of FIG. FIG. 3 is an electrophoresis diagram of a reaction solution after performing PCR using the Alisma identification primer set # 3 in Example 33. FIG. The description of each zone is the same as that of FIG. FIG. 4 is an electrophoresis diagram of the reaction solution after performing PCR using Uncaria variabilis primer set # 4 in Example 33. FIG. The description of each zone is the same as that of FIG.

Claims (14)

一種生藥之鑑別用引子組, 上述生藥係選自由半夏/天南星、牡丹根/牡丹皮、桂皮、當歸、蒼術/白術、柴胡、天冬、山茱萸、百合、紅蔘、天麻、黃芩、人蔘、升麻、豬苓、附子、辛夷、丁香、鉤藤、香附子、黃連、生薑/乾薑、山梔子、黃柏、厚樸、澤瀉、纈草、樸樕、連翹、良薑、蓮子、紅花及蘇木所組成之群中, 關於上述引子組, 於為半夏/天南星時,為包含序列編號1及2所示之鹼基序列之多核苷酸, 於為牡丹根/牡丹皮時,為包含序列編號3及4、序列編號5及6、或序列編號3及229所示之鹼基序列之多核苷酸, 於為桂皮時,為包含序列編號7及8所示之鹼基序列之多核苷酸, 於為當歸時,為包含序列編號9及10、或序列編號11及12所示之鹼基序列之多核苷酸, 於為蒼術/白術時,為包含序列編號13及14所示之鹼基序列之多核苷酸, 於為柴胡時,為包含序列編號15及16所示之鹼基序列之多核苷酸, 於為天冬時,為包含序列編號17及18所示之鹼基序列之多核苷酸, 於為山茱萸時,為包含序列編號19及20所示之鹼基序列之多核苷酸, 於為百合時,為包含序列編號21及22、或序列編號23及24所示之鹼基序列之多核苷酸, 於為紅蔘時,為包含序列編號25及26、或序列編號27及28所示之鹼基序列之多核苷酸, 於為天麻時,為包含序列編號29及4、或序列編號30及31所示之鹼基序列之多核苷酸, 於為黃芩時,為包含序列編號9及32、或序列編號11及33所示之鹼基序列之多核苷酸, 於為人蔘時,為包含序列編號9及34、或序列編號35及36所示之鹼基序列之多核苷酸, 於為升麻時,為包含序列編號37及38、序列編號11及39、序列編號37及40、或序列編號41及39所示之鹼基序列之多核苷酸, 於為豬苓時,為包含序列編號42及43所示之鹼基序列之多核苷酸, 於為附子時,為包含序列編號44及36、序列編號45及4、或序列編號46及4所示之鹼基序列之多核苷酸, 於為辛夷時,為包含序列編號47及48、序列編號49及50、序列編號230及231、或序列編號232及50所示之鹼基序列之多核苷酸, 於為丁香時,為包含序列編號51及52所示之鹼基序列之多核苷酸, 於為鉤藤時,為包含序列編號53及54、序列編號55及56、序列編號57及54、或序列編號58及56所示之鹼基序列之多核苷酸, 於為香附子時,為包含序列編號59及60、或序列編號41及61所示之鹼基序列之多核苷酸, 於為黃連時,為包含序列編號62及63、或序列編號64及65所示之鹼基序列之多核苷酸, 於為生薑/乾薑時,為包含序列編號66及67所示之鹼基序列之多核苷酸, 於為山梔子時,為包含序列編號11及68所示之鹼基序列之多核苷酸, 於為黃柏時,為包含序列編號69及70所示之鹼基序列之多核苷酸, 於為厚朴時,為包含序列編號71及72、序列編號71及73、或序列編號74及72所示之鹼基序列之多核苷酸, 於為澤瀉時,為包含序列編號75及76、序列編號77及78、序列編號75及79、或序列編號77及80所示之鹼基序列之多核苷酸, 於為纈草時,為包含序列編號81及82所示之鹼基序列之多核苷酸, 於為朴樕時,為包含序列編號83及84、序列編號83及85、或序列編號86及87所示之鹼基序列之多核苷酸, 於為連翹時,為包含序列編號88及89、或序列編號90及91所示之鹼基序列之多核苷酸, 於為良薑時,為包含序列編號92及93、或序列編號66及94所示之鹼基序列之多核苷酸, 於為蓮子時,為包含序列編號95及4、或序列編號96及36所示之鹼基序列之多核苷酸, 於為紅花時,為包含序列編號97及4、或序列編號44及36所示之鹼基序列之多核苷酸,及 於為蘇木時,為包含序列編號98及99所示之鹼基序列之多核苷酸。A primer set for identifying a crude drug, the aforementioned crude drug is selected from the group consisting of Pinellia terrestrial / Tiannanxing, peony root / peony bark, cinnamon, angelica, Atractylodes chinensis / Atractylodes chinensis, Bupleurum, Asparagus, Dogwood, Lily, Red Radix, Gastrodia elata, Huangpi Loquat, Cimicifuga, Poria, Aconite, Aconite, Clove, Uncaria, Fragrant Aconite, Coptis chinensis, Ginger / Dried Ginger, Mangosteen, Cork, Magnolia, Alisma, Valerian, Parkberry, Forsythia, Almond, Lotus In the group consisting of safflower, hematoxylin and hematoxylin, the above primer set is a polynucleotide comprising a base sequence shown in SEQ ID NOs: 1 and 2 when it is Pinellia terrestrial / Austria, and is a peony root / peony skin Is a polynucleotide comprising the base sequences shown in sequence numbers 3 and 4, sequence numbers 5 and 6, or sequence numbers 3 and 229. In the case of cinnamon, it includes the base sequences shown in sequence numbers 7 and 8. When it is Angelica sinensis, it is a polynucleotide comprising the base sequences shown in SEQ ID Nos. 9 and 10 or SEQ ID Nos. 11 and 12; The polynucleotide shown in the base sequence is The polynucleotide comprising the base sequences shown in sequence numbers 15 and 16 is a polynucleotide containing the base sequences shown in sequence numbers 17 and 18 in the case of winter, and the dogwood includes a sequence number in the case of dogwood The polynucleotides of the base sequences shown in 19 and 20 are, in the case of lily, the polynucleotides including the base sequences shown in sequence numbers 21 and 22, or the sequence numbers of 23 and 24. Polynucleotides containing the base sequences shown in SEQ ID NOs: 25 and 26, or SEQ ID NOs: 27 and 28; and in the case of Gastrodia, they include the base sequences shown in SEQ ID NOs: 29 and 4, or SEQ ID NO: 30 and 31 The polynucleotide, in the case of Scutellaria baicalensis, is a polynucleotide comprising the base sequences shown in SEQ ID NOS: 9 and 32, or the sequence numbers of 11 and 33, and in the case of human salvia, contains a sequence number of 9 and 34, or In the case of cimicifuga, the polynucleotide having the base sequences shown in SEQ ID NO: 35 and 36 includes SEQ ID NO: 37 and 38, SEQ ID NO: 11 and 39, SEQ ID NO: 37 and 40, or SEQ ID NO: 41 and 39. Polynucleotide of base sequence, in the case of Poria coccinea, contains the sequence number 42 and In the case of aconite, the polynucleotide having the base sequence shown in 43 is a polynucleotide comprising the base sequences shown in sequence numbers 44 and 36, sequence numbers 45 and 4, or sequence numbers 46 and 4, so that In the case of Xinyi, it is a polynucleotide including the base sequences shown in SEQ ID NOs: 47 and 48, SEQ ID NOs: 49 and 50, SEQ ID NOs: 230 and 231, or SEQ ID NOs: 232 and 50. In the case of clove, it includes SEQ ID NO: 51. The polynucleotide of the base sequence shown in 52 and 52, in the case of Uncaria, includes the bases shown in sequence numbers 53 and 54, sequence numbers 55 and 56, sequence numbers 57 and 54, or sequence numbers 58 and 56. The sequence polynucleotide is a polynucleotide comprising sequence numbers 59 and 60, or the base sequences shown in sequence numbers 41 and 61 in the case of fragrant aconite, and is a sequence including sequence numbers 62 and 63 in the case of Coptis chinensis. Or the polynucleotide of the base sequence shown in sequence numbers 64 and 65. In the case of ginger / dried ginger, it is a polynucleotide containing the base sequence shown in sequence numbers 66 and 67. The polynucleotide comprising the base sequences shown in SEQ ID NOs: 11 and 68 is In this case, it is a polynucleotide containing the base sequences shown in sequence numbers 69 and 70. In the case of Magnolia, it is a base containing sequence numbers 71 and 72, sequence numbers 71 and 73, or sequence numbers 74 and 72. The base sequence polynucleotide is a polynucleotide comprising the base sequences shown by sequence numbers 75 and 76, sequence numbers 77 and 78, sequence numbers 75 and 79, or sequence numbers 77 and 80. In the case of valerian, it is a polynucleotide comprising the base sequences shown in SEQ ID NOs: 81 and 82, and in the case of Parkin, it includes sequence numbers 83 and 84, sequence numbers 83 and 85, or sequence numbers 86 and 87. The polynucleotide of the base sequence shown is a polynucleotide containing the base sequences shown in SEQ ID Nos. 88 and 89, or the sequence numbers of 90 and 91 in the case of Forsythia, and the sequence containing the same in the case of ginger. The polynucleotides having the base sequences shown in SEQ ID NOs: 92 and 93, or SEQ ID NOs: 66 and 94, in the case of lotus seeds, are polynucleotides containing the base sequences shown in SEQ ID NOs: 95 and 4, or SEQ ID NOs: 96 and 36. Acid, in the case of safflower, contains the sequence numbers 97 and 4, or the sequence numbers 44 and 36. The polynucleotide having a base sequence and, in the case of hematoxylin, a polynucleotide comprising the base sequences shown in sequence numbers 98 and 99. 一種生藥鑑別套組,其包含選自由如請求項1之生藥之鑑別用引子組所組成之群中之1種以上。A crude drug identification kit comprising one or more members selected from the group consisting of a primer set for identification of a crude drug according to claim 1. 如請求項2之生藥鑑別套組,其包含鹼基序列表,該鹼基序列表記載有以由生藥之基原植物製備之核酸作為模板,使用該生藥之鑑別用引子進行核酸擴增反應所獲得之擴增產物之鹼基序列資訊。For example, the biopharmaceutical identification kit of claim 2, which includes a base sequence table, which records a nucleic acid prepared from a crude plant based on a crude drug as a template, and uses a primer for identifying the crude drug to perform a nucleic acid amplification reaction. Base sequence information of the obtained amplified product. 一種半夏/天南星之鑑別方法,其包括如下步驟: 自半夏/天南星候補之受檢植物提取核酸; 以提取之核酸作為模板,使用包含序列編號1及2所示之鹼基序列之引子組擴增核糖體DNA之ITS區域; 確定擴增產物之鹼基序列;及 將擴增產物之鹼基序列與序列編號100或101所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為半夏/天南星之基原植物,上述半夏/天南星候補為半夏/天南星。A method for identifying Pinellia terrestrial / Australium star comprises the following steps: extracting nucleic acid from a candidate plant candidate for Pinellia terrestrial / Austria star; using the extracted nucleic acid as a template, using a primer set comprising the base sequences shown in sequence numbers 1 and 2 Amplify the ITS region of ribosomal DNA; determine the base sequence of the amplified product; and compare the base sequence of the amplified product with the base sequence shown in sequence number 100 or 101, and the base sequences of the two are consistent At this time, it was identified that the above-mentioned tested plant was a Pinus ternata / Arabic star original plant, and the above-mentioned Pinellia / Arabic star candidate was Pinellia / Arabic star. 一種牡丹根/牡丹皮之鑑別方法,其包括如下步驟: 自牡丹根/牡丹皮候補之受檢植物提取核酸; 以提取之核酸作為模板,使用包含序列編號3及4、序列編號5及6、或序列編號3及229所示之鹼基序列之引子組擴增核糖體DNA之ITS區域; 確定擴增產物之鹼基序列;及 將使用包含序列編號3及4所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號102或211所示之鹼基序列、使用包含序列編號5及6所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號103或221所示之鹼基序列、或使用包含序列編號3及229所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號244或245所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為牡丹根/牡丹皮之基原植物,上述牡丹根/牡丹皮候補為牡丹根或牡丹皮。A method for identifying peony root / peony bark, comprising the steps of: extracting nucleic acid from a test plant candidate of peony root / peony bark; using the extracted nucleic acid as a template, including sequence numbers 3 and 4, sequence numbers 5 and 6, Or primer sets of base sequences shown in sequence numbers 3 and 229 to amplify the ITS region of ribosomal DNA; determine the base sequence of the amplified product; and primers containing the base sequences shown in sequence numbers 3 and 4 will be used The base sequence of the amplified product at the time of grouping and the base sequence shown by sequence number 102 or 211, and the base sequence and sequence of the amplification product when the primer set containing the base sequence shown by sequence numbers 5 and 6 is used The base sequence shown in number 103 or 221, or the base sequence shown in SEQ ID NO: 244 or 245 using the base sequence of the amplified product when the primer set including the base sequence shown in sequence numbers 3 and 229 is used In comparison, when the base sequences of the two are the same, it is identified that the above-mentioned test plant is a primordial plant of peony root / peony bark, and the candidate of peony root / peony bark is peony root or peony bark. 一種桂皮之鑑別方法,其包括如下步驟: 自桂皮候補之受檢植物提取核酸; 以提取之核酸作為模板,使用包含序列編號7及8所示之鹼基序列之引子組擴增核糖體DNA之ITS區域; 確定擴增產物之鹼基序列;及 將擴增產物之鹼基序列與序列編號104所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為桂皮之基原植物,上述桂皮候補為桂皮。A method for identifying cinnamon, comprising the steps of: extracting nucleic acid from a candidate plant of cinnamon and using the extracted nucleic acid as a template to amplify ribosomal DNA using a primer set comprising the base sequences shown in sequence numbers 7 and 8. ITS region; determining the base sequence of the amplified product; and comparing the base sequence of the amplified product with the base sequence shown in SEQ ID NO: 104, and when the base sequences of the two are consistent, it is identified as the above-mentioned test plant It is the original plant of cinnamon, and the above-mentioned candidate for cinnamon is cinnamon. 一種當歸之鑑別方法,其包括如下步驟: 自當歸候補之受檢植物提取核酸; 以提取之核酸作為模板,使用包含序列編號9及10、或序列編號11及12所示之鹼基序列之引子組擴增核糖體DNA之ITS區域; 確定擴增產物之鹼基序列;及 將使用包含序列編號9及10所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號105所示之鹼基序列、或使用包含序列編號11及12所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號106所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為當歸之基原植物,上述當歸候補為當歸。A method for identifying angelica sinensis, comprising the steps of: extracting nucleic acid from a candidate plant of angelica sinensis; using the extracted nucleic acid as a template, using primers including the base sequences shown in sequence numbers 9 and 10, or sequence numbers 11 and 12 Group amplification of the ITS region of ribosomal DNA; determination of the base sequence of the amplified product; and base sequence and sequence number 105 of the amplified product when a primer set containing the base sequences shown in sequence numbers 9 and 10 will be used The base sequence shown or the base sequence of the amplified product when the primer set containing the base sequences shown in sequence numbers 11 and 12 is used is compared with the base sequence shown in sequence number 106, When the base sequences are consistent, the test plant is identified as the original plant of Angelica sinensis, and the candidate of Angelica sinensis is Angelica sinensis. 一種蒼術/白術之鑑別方法,其包括如下步驟: 自蒼術/白術候補之受檢植物提取核酸; 以提取之核酸作為模板,使用包含序列編號13及14所示之鹼基序列之引子組擴增核糖體DNA之ITS區域; 確定擴增產物之鹼基序列;及 將擴增產物之鹼基序列與序列編號107~110及289~291中之任一者所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為蒼術/白術之基原植物,上述蒼術/白術候補為蒼術/白術。A method for identifying Atractylodes chinensis / Atractylodes chinensis, comprising the steps of: extracting nucleic acids from a candidate plant of Atractylodes chinensis / Atractylodes chinensis; using the extracted nucleic acid as a template, and using a primer set comprising the base sequences shown in SEQ ID NOs: 13 and 14 to amplify ITS region of ribosomal DNA; determining the base sequence of the amplified product; and comparing the base sequence of the amplified product with the base sequence shown in any one of sequence numbers 107 to 110 and 289 to 291, in When the base sequences of the two are the same, it is identified that the above-mentioned test plant is a primordial plant of Atractylodes chinensis / Atractylodes chinensis, and the candidate for Atractylodes chinensis / Atractylodes chinensis is Atractylodes chinensis / Atractylodes chinensis. 一種柴胡之鑑別方法,其包括如下步驟: 自柴胡候補之受檢植物提取核酸; 以提取之核酸作為模板,使用包含序列編號15及16所示之鹼基序列之引子組擴增核糖體DNA之ITS區域; 確定擴增產物之鹼基序列;及 將擴增產物之鹼基序列與序列編號111或294所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為柴胡之基原植物,上述柴胡候補為柴胡。A method for identifying Bupleurum chinense comprises the following steps: extracting nucleic acid from a candidate plant of Bupleurum chinense; using the extracted nucleic acid as a template, and using a primer set comprising the base sequences shown in SEQ ID NOs: 15 and 16 to amplify ribosomes; ITS region of DNA; determining the base sequence of the amplified product; and comparing the base sequence of the amplified product with the base sequence shown by sequence number 111 or 294, and when the base sequences of the two are consistent, it is identified as The tested plant is the original plant of Bupleurum, and the candidate for Bupleurum is Bupleurum. 一種天冬之鑑別方法,其包括如下步驟: 自天冬候補之受檢植物提取核酸; 以提取之核酸作為模板,使用包含序列編號17及18所示之鹼基序列之引子組擴增核糖體DNA之ITS區域; 確定擴增產物之鹼基序列;及 將擴增產物之鹼基序列與序列編號112~115及299中之任一者所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為天冬之基原植物,上述天冬候補為天冬。A method for identifying Asparagus comprises the steps of: extracting nucleic acid from a candidate plant candidate for Asparagus; using the extracted nucleic acid as a template to amplify ribosomes using a primer set comprising the base sequences shown in SEQ ID NOs: 17 and 18; ITS region of DNA; determining the base sequence of the amplified product; and comparing the base sequence of the amplified product with the base sequence shown in any one of sequence numbers 112 to 115 and 299, When the base sequences are consistent, it is identified that the above-mentioned test plant is a basic plant of Asparagus, and the above-mentioned candidate for Asparagus is Asparagus. 一種山茱萸之鑑別方法,其包括如下步驟: 自山茱萸候補之受檢植物提取核酸; 以提取之核酸作為模板,使用包含序列編號19及20所示之鹼基序列之引子組擴增核糖體DNA之ITS區域; 確定擴增產物之鹼基序列;及 將擴增產物之鹼基序列與序列編號116所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為山茱萸之基原植物,上述山茱萸候補為山茱萸。A method for identifying dogwood, comprising the steps of: extracting nucleic acid from a candidate plant of dogwood candidate; and using the extracted nucleic acid as a template to amplify ribosomal DNA using a primer set comprising the base sequences shown in sequence numbers 19 and 20 ITS region; determining the base sequence of the amplified product; and comparing the base sequence of the amplified product with the base sequence shown in SEQ ID NO: 116, and identifying the plants as the test plants when the base sequences of the two are consistent It is the base plant of dogwood, and the above dogwood candidate is dogwood. 一種百合之鑑別方法,其包括如下步驟: 自百合候補之受檢植物提取核酸; 以提取之核酸作為模板,使用包含序列編號21及22、或序列編號23及24所示之鹼基序列之引子組擴增核糖體DNA之ITS區域; 確定擴增產物之鹼基序列;及 將使用包含序列編號21及22所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號117及311~314中之任一者所示之鹼基序列、或使用包含序列編號23及24所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號118及324~326中之任一者所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為百合之基原植物,上述百合候補為百合。A method for identifying lily, comprising the steps of: extracting nucleic acid from a candidate plant candidate for lily; using the extracted nucleic acid as a template, using primers including the base sequences shown in sequence numbers 21 and 22, or sequence numbers 23 and 24 Group amplification of the ITS region of ribosomal DNA; determining the base sequence of the amplified product; and base sequence and sequence number 117 of the amplified product when a primer set containing the base sequences shown in sequence numbers 21 and 22 will be used And the base sequence shown in any of 311 to 314, or the base sequence and sequence numbers of the amplified product when using the primer set including the base sequence shown in sequence numbers 23 and 24 and sequence numbers 118 and 324 to 326 The base sequences shown in any one of them are compared, and when the base sequences of the two are identical, it is identified that the test plant is a primordial plant of lily, and the candidate of lily is lily. 一種紅蔘之鑑別方法,其包括如下步驟: 自紅蔘候補之受檢植物提取核酸; 以提取之核酸作為模板,使用包含序列編號25及26、或序列編號27及28所示之鹼基序列之引子組擴增核糖體DNA之ITS區域; 確定擴增產物之鹼基序列;及 將使用包含序列編號25及26所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號119所示之鹼基序列、或使用包含序列編號27及28所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號120所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為紅蔘之基原植物,上述紅蔘候補為紅蔘。A method for identifying red pupa, including the following steps: extracting nucleic acid from a candidate plant of pupa, using the extracted nucleic acid as a template, and using a base sequence including sequence numbers 25 and 26, or sequence numbers 27 and 28 Primer set to amplify the ITS region of ribosomal DNA; determine the base sequence of the amplified product; and the base sequence and sequence of the amplified product when a primer set containing the base sequences shown in sequence numbers 25 and 26 will be used The base sequence shown in number 119, or the base sequence of the amplified product when the primer set containing the base sequences shown in sequence numbers 27 and 28 is used is compared with the base sequence shown in sequence number 120, and When the base sequences of the subjects are the same, it is identified that the test plant is a primordial plant of red carp, and the candidate of red carp is red carp. 一種天麻之鑑別方法,其包括如下步驟: 自天麻候補之受檢植物提取核酸; 以提取之核酸作為模板,使用包含序列編號29及4、或序列編號30及31所示之鹼基序列之引子組擴增核糖體DNA之ITS區域; 確定擴增產物之鹼基序列;及 將使用包含序列編號29及4所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號121所示之鹼基序列、或使用包含序列編號30及31所示之鹼基序列之引子組時之擴增產物之鹼基序列與序列編號122所示之鹼基序列進行比較,於兩者之鹼基序列一致時,鑑別為上述受檢植物為天麻之基原植物,上述天麻候補為天麻。A method for identifying Gastrodia elata includes the following steps: extracting nucleic acid from a candidate plant of Gastrodia elata; using the extracted nucleic acid as a template, using primers including the base sequences shown in SEQ ID NOS: 29 and 4, or SEQ ID NO: 30 and 31; Group amplification of the ITS region of ribosomal DNA; determination of the base sequence of the amplified product; and base sequence and sequence number 121 of the amplified product when a primer set containing the base sequences shown in sequence numbers 29 and 4 will be used The base sequence shown or the base sequence of the amplified product when the primer set including the base sequences shown in sequence numbers 30 and 31 is used is compared with the base sequence shown in sequence number 122. When the base sequences are the same, it is identified that the test plant is a primal plant of Gastrodia elata, and the candidate of Gastrodia elata is Gastrodia elata.
TW107118687A 2017-05-31 2018-05-31 Primer for identification of crude drugs and identification method of crude drug using same TW201903159A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017108803 2017-05-31
JP2017-108803 2017-05-31

Publications (1)

Publication Number Publication Date
TW201903159A true TW201903159A (en) 2019-01-16

Family

ID=64542354

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107118687A TW201903159A (en) 2017-05-31 2018-05-31 Primer for identification of crude drugs and identification method of crude drug using same

Country Status (3)

Country Link
JP (1) JP7131086B2 (en)
CN (1) CN108977559A (en)
TW (1) TW201903159A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111378777A (en) * 2018-12-27 2020-07-07 株式会社津村 Primer set for identifying crude drug and crude drug identification method using the same
CN110106276B (en) * 2019-05-10 2023-01-17 河北中医学院 Kit and method for identifying angelica sinensis
CN110452959B (en) * 2019-07-01 2023-06-16 昆明理工大学 Screening method of wild aconite root real-time quantitative PCR reference genes
CN112410450B (en) * 2019-08-22 2024-05-14 河北省中药材质量检验检测研究中心有限公司 Identification method of traditional Chinese medicine pinellia ternate and easy-to-mix product thereof
CN114258298B (en) * 2019-08-30 2024-04-19 株式会社Lg生活健康 Composition comprising extract of lilium martagon
CN110628939B (en) * 2019-11-04 2022-04-22 中国检验检疫科学研究院 Primer probe, method and kit for detecting camellia oleifera derived components
CN113151538A (en) * 2021-03-09 2021-07-23 贵州大学 Candidate DNA bar code, primer and method for identifying cordyceps fungus
CN113621729B (en) * 2021-08-11 2024-05-28 河北师范大学 MatK primer and method suitable for identifying rhododendron species
CN114438248B (en) * 2022-02-21 2024-04-16 广州白云山光华制药股份有限公司 Method for identifying bupleurum chinense and/or bupleurum tenuifolia based on SCAR molecular marker
CN116162722B (en) * 2022-09-26 2023-11-07 中国中医科学院中药研究所 InDel marker for identifying bupleurum chinense in different producing areas and application thereof

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6803215B1 (en) * 2000-11-03 2004-10-12 The Chinese University Of Hong Kong Sequence characterized amplified region (SCAR) test for the authentication of traditional Chinese medicinal materials
JP4205485B2 (en) 2003-05-15 2009-01-07 ハウス食品株式会社 Method for identifying foreign substance derived from plant and primer set used therefor
JP2007259755A (en) 2006-03-28 2007-10-11 Tsumura & Co Method for determining seed of citrus fruits
JP5499707B2 (en) 2007-07-26 2014-05-21 株式会社ツムラ Species identification of Uncaria species
JP5309520B2 (en) 2007-10-01 2013-10-09 株式会社ツムラ Methods for distinguishing species of the genus Prunus
CN101182572A (en) 2007-11-15 2008-05-21 江苏省中国科学院植物研究所 Molecule identification method of different producing area changium root plants
CN102191318B (en) * 2011-03-04 2013-11-06 广州中医药大学 Application of nucleotide sequence of rDNA (recombinant deoxyribonucleic acid) ITS (internal transcribed spacer)-D3 region in establishment of DNA (deoxyribonucleic acid) bar code identification system for medicinal plants
CN103898204A (en) * 2012-12-28 2014-07-02 财团法人工业技术研究院 Method, database and primer pair for identifying herbal medicinal materials
CN103993009A (en) * 2013-02-17 2014-08-20 中国医学科学院药用植物研究所 PCR primer pair and method for identifying arisaema erubescens by utilizing same
CN104017892A (en) * 2014-06-23 2014-09-03 南京工业大学大丰海洋产业研究院 Method for identifying variety resource of pinellia ternata
KR20160057021A (en) 2014-11-12 2016-05-23 대한민국(농촌진흥청장) HRM Primer sets for discriminating Korean and American ginseng and uses thereof
CN104450905B (en) 2014-12-02 2018-01-19 中国中医科学院中药研究所 A kind of Chinese mesona herb and the DNA identification method of rabdosia lophanthide
CN104673932A (en) 2015-04-01 2015-06-03 广东省微生物研究所 Characteristic nucleotide sequence as well as nucleic acid molecular probe and method for identifying ganoderma leucocontextum
CN106680397B (en) * 2017-01-19 2019-06-11 成都中医药大学 A method of identifying the tuber of pinellia, the tiger palm

Also Published As

Publication number Publication date
JP7131086B2 (en) 2022-09-06
JP2018201501A (en) 2018-12-27
CN108977559A (en) 2018-12-11

Similar Documents

Publication Publication Date Title
TW201903159A (en) Primer for identification of crude drugs and identification method of crude drug using same
CN106591459B (en) SNP marker, kit and method for rapidly identifying Panax traditional Chinese medicines such as radix cynanchi glaucescentis and American ginseng
Villa et al. Exploiting DNA mini-barcodes as molecular markers to authenticate saffron (Crocus sativus L.)
CN106636342B (en) Acquisition method and application of EST-SSR labeled primer group developed based on ligusticum wallichii transcriptome sequence
Misra et al. AFLP markers for identification of Swertia species (Gentianaceae)
CN106191294A (en) A kind of method utilizing DGGE to identify mixing Chinese medicinal powder composition species
CN104450905B (en) A kind of Chinese mesona herb and the DNA identification method of rabdosia lophanthide
KR101811539B1 (en) Method for discrimination of Angelica gigas using InDel marker
Chen et al. DNA barcoding in herbal medicine: Retrospective and prospective
CN111378777A (en) Primer set for identifying crude drug and crude drug identification method using the same
KR101668112B1 (en) Method and Genetic marker for discriminating of Angelicae Gigantis Radix and Japanese Angelicae Radix by using DNA barcode
CN111133117A (en) Identification of plant DNA isolated from dietary supplements
KR101912933B1 (en) Molecular marker and primer set for discriminating Codonopsis lanceolata and Adenophora triphylla and uses thereof
CN101445827B (en) Nucleotide sequence and method for identifying radix cyathulae genunie medicinal materials
CN105543373B (en) Glycyrrhiza Uralensis, glycyrrhiza glabra, swollen fruit Radix and its Hybrid rapid molecular identification method
CN104830969A (en) Panax notoginseng molecule ID and identification method
CN109750093B (en) Method for identifying or assisting in identifying liquorice
Li et al. Molecular identification of traditional medicinal materials
CN104894265A (en) Seahorse identification method
KR101948389B1 (en) Discriminating method of Codonopsis lanceolata and Adenophora triphylla using SSR marker
CN108998554B (en) Fluorescent PCR detection kit for identifying 3 medicinal dendrobe in pharmacopoeia and application
CN109929943B (en) Liquorice ISSR fluorescent molecular marker primer and application thereof
Zhokhova et al. Current state and prospects of DNA barcoding and DNA fingerprinting in the analysis of the quality of plant raw materials and plant-derived drugs
KR102135173B1 (en) Method for identification of Koelreuteria paniculata genotypes using microsatellite markers
CN109735644B (en) Primer pair for identifying or assisting in identifying liquorice and application thereof