TW201839462A - Stereo display device - Google Patents

Stereo display device Download PDF

Info

Publication number
TW201839462A
TW201839462A TW106113705A TW106113705A TW201839462A TW 201839462 A TW201839462 A TW 201839462A TW 106113705 A TW106113705 A TW 106113705A TW 106113705 A TW106113705 A TW 106113705A TW 201839462 A TW201839462 A TW 201839462A
Authority
TW
Taiwan
Prior art keywords
light
display device
lenticular lens
lens array
stereoscopic display
Prior art date
Application number
TW106113705A
Other languages
Chinese (zh)
Other versions
TWI620959B (en
Inventor
黃俊杰
Original Assignee
台達電子工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台達電子工業股份有限公司 filed Critical 台達電子工業股份有限公司
Priority to TW106113705A priority Critical patent/TWI620959B/en
Application granted granted Critical
Publication of TWI620959B publication Critical patent/TWI620959B/en
Publication of TW201839462A publication Critical patent/TW201839462A/en

Links

Landscapes

  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

A stereo display device includes a light guide plate, a plurality of light sources, a display module, and first, second, and third lenticular lens. The light guide plate has an incident surface and an emitting surface. The light sources emit light toward the incident surface. The first lenticular lens transforms the light emitted by the light source into directional lights. The light guide plate reflects the received directional lights out of the emitting surface. The display module includes a plurality of pixels each including sub-pixels arranged along a first direction. The second lenticular lens focuses the reflected directional lights at a plurality of elongated regions on the display module. The elongated regions are parallel to the first direction. The display module transforms the focused directional lights into a plurality of sets of pixel light. The third lenticular lens directs the sets of pixel light to a plurality of views.

Description

立體顯示裝置Stereoscopic display device

本發明是有關於一種立體顯示裝置。The present invention relates to a stereoscopic display device.

因為左眼和右眼位置不同,所以各自觀察到的景象也有細微的差異,這種差異是產生立體感的根本原因,3D立體顯示器便是利用了眼晴的視覺特性來產生立體感。Because the positions of the left eye and the right eye are different, there are subtle differences in the observed scenes. This difference is the root cause of the stereoscopic effect. The 3D stereoscopic display utilizes the visual characteristics of the eye to create a three-dimensional effect.

傳統上達成立體感的方法為利用空間多工法,即在螢幕上的畫素分配多個視域(View)資訊,透過透鏡的分光效果在觀賞距離下會聚,產生多個視域(View),觀察者對應於其中兩個視域,使兩眼對應到不同影像達成3D視覺效果。The traditional method of achieving stereoscopic effect is to use spatial multiplexing method, that is, to assign multiple view information to the pixels on the screen, and to converge at the viewing distance through the spectroscopic effect of the lens to generate multiple views. The observer corresponds to two of the fields of view, so that the two eyes correspond to different images to achieve a 3D visual effect.

為了進一步改善3D立體顯示器的各項特性,相關領域莫不費盡心思開發。如何能提供一種具有較佳顯示效果的3D立體顯示器,實屬當前重要研發課題之一,亦成爲當前相關領域亟需改進的目標。In order to further improve the various characteristics of the 3D stereoscopic display, the related fields are not exhaustively developed. How to provide a 3D stereoscopic display with better display effect is one of the current important research and development topics, and it has become an urgent target for improvement in related fields.

有鑑於此,本發明之一目的在於提出一種可精確地反應溫度的立體顯示裝置以及用應其之立體顯示裝置。In view of the above, it is an object of the present invention to provide a stereoscopic display device capable of accurately reflecting temperature and a stereoscopic display device therewith.

為了達到上述目的,依據本發明之一實施方式,一種立體顯示裝置包含導光板、複數個光源、第一柱狀透鏡陣列、顯示模組、第二柱狀透鏡陣列以及第三柱狀透鏡陣列。導光板具有入光面以及出光面。光源配置以朝向入光面發光。第一柱狀透鏡陣列光學耦合於光源與入光面之間,並配置以將光源所發射之光轉換為複數個指向性光線。導光板配置以將所接收之指向性光線反射離開出光面。顯示模組相對於出光面設置,並包含複數個畫素。每一畫素包含沿著第一方向排列之複數個子畫素。第二柱狀透鏡陣列設置於出光面與顯示模組之間,並配置以將經反射之指向性光線聚焦於顯示模組上的複數個長條區域。長條區域平行於第一方向。顯示模組配置以將經聚焦之指向性光線轉換為複數組畫素光線。第三柱狀透鏡陣列設置於顯示模組遠離導光板的一側,並配置以將畫素光線分別導引至複數個視域。In order to achieve the above object, in accordance with an embodiment of the present invention, a stereoscopic display device includes a light guide plate, a plurality of light sources, a first lenticular lens array, a display module, a second lenticular lens array, and a third lenticular lens array. The light guide plate has a light incident surface and a light exit surface. The light source is configured to illuminate toward the light incident surface. The first lenticular lens array is optically coupled between the light source and the light incident surface and configured to convert the light emitted by the light source into a plurality of directional light rays. The light guide plate is configured to reflect the received directional light away from the illuminating surface. The display module is set relative to the illuminating surface and includes a plurality of pixels. Each pixel contains a plurality of sub-pixels arranged along the first direction. The second lenticular lens array is disposed between the light emitting surface and the display module, and is configured to focus the reflected directional light onto the plurality of strip regions on the display module. The strip area is parallel to the first direction. The display module is configured to convert the focused directional light into a complex array of illuminating rays. The third lenticular lens array is disposed on a side of the display module away from the light guide plate, and is configured to respectively guide the pixel light to the plurality of fields of view.

於本發明的一或多個實施方式中,上述之畫素沿著垂直於第一方向之第二方向排列成複數個畫素排。各長條區域分別對應通過各畫素排。In one or more embodiments of the present invention, the pixels are arranged in a plurality of pixel rows along a second direction perpendicular to the first direction. Each strip area corresponds to each pixel row.

於本發明的一或多個實施方式中,上述之第一柱狀透鏡陣列具有複數個第一柱狀子透鏡。第一柱狀子透鏡沿著垂直於第一方向之第二方向排列,並與第一方向垂直設置。In one or more embodiments of the present invention, the first lenticular lens array has a plurality of first cylindrical sub-lenses. The first cylindrical sub-lenses are arranged in a second direction perpendicular to the first direction and disposed perpendicular to the first direction.

於本發明的一或多個實施方式中,上述之每一第一柱狀子透鏡在第一方向上對應S個光源,S為大於1之自然數。In one or more embodiments of the present invention, each of the first columnar sub-lenses corresponds to S light sources in a first direction, and S is a natural number greater than one.

於本發明的一或多個實施方式中,上述之每一第一柱狀子透鏡在第二方向上具有第一節距。第一柱狀透鏡陣列還具有複數個第二柱狀子透鏡。第二柱狀子透鏡沿著第二方向排列,並與第一方向垂直設置。每一第二柱狀子透鏡在第二方向上具有第二節距,且第一節距為第二節距的S倍。立體顯示裝置還包含移動模組,配置以移動第一柱狀透鏡陣列,致使第一柱狀子透鏡與第二柱狀子透鏡中之一群選擇性地光學耦合於光源與入光面之間。In one or more embodiments of the present invention, each of the first cylindrical sub-lenses has a first pitch in the second direction. The first lenticular lens array also has a plurality of second cylindrical sub-lenses. The second columnar sub-lenses are arranged along the second direction and disposed perpendicular to the first direction. Each of the second cylindrical sub-lenses has a second pitch in the second direction, and the first pitch is S times the second pitch. The stereoscopic display device further includes a moving module configured to move the first lenticular lens array such that one of the first cylindrical sub-lens and the second cylindrical sub-lens is selectively optically coupled between the light source and the light incident surface.

於本發明的一或多個實施方式中,上述之第二柱狀透鏡陣列具有複數個第二柱狀透鏡。第二柱狀透鏡相對第一方向為平行設置。In one or more embodiments of the present invention, the second lenticular lens array has a plurality of second lenticular lenses. The second lenticular lens is disposed in parallel with respect to the first direction.

於本發明的一或多個實施方式中,上述之第三柱狀透鏡陣列具有複數個第三柱狀透鏡。第三柱狀透鏡相對第一方向為傾斜設置。In one or more embodiments of the present invention, the third lenticular lens array has a plurality of third lenticular lenses. The third lenticular lens is disposed obliquely with respect to the first direction.

於本發明的一或多個實施方式中,上述之畫素沿著相互垂直之第一方向與第二方向排列。每一第三柱狀透鏡在第二方向上的寬度係小於等於每一畫素在第二方向上的寬度。In one or more embodiments of the present invention, the pixels are arranged along a first direction and a second direction that are perpendicular to each other. The width of each of the third lenticular lenses in the second direction is less than or equal to the width of each pixel in the second direction.

於本發明的一或多個實施方式中,上述之第三柱狀透鏡相對第一方向具有傾斜角θ。傾斜角θ實質上滿足: θ = tan-1 (1/N) 其中N為大於1之自然數。In one or more embodiments of the present invention, the third lenticular lens has an inclination angle θ with respect to the first direction. The tilt angle θ substantially satisfies: θ = tan -1 (1/N) where N is a natural number greater than one.

於本發明的一或多個實施方式中,上述之N的範圍為2至8。In one or more embodiments of the present invention, the above N ranges from 2 to 8.

於本發明的一或多個實施方式中,上述之畫素沿著相互垂直之第一方向與第二方向排列。每一長條區域在第二方向上的寬度係小於等於每一畫素在第二方向上的寬度的1/(3N)倍。In one or more embodiments of the present invention, the pixels are arranged along a first direction and a second direction that are perpendicular to each other. The width of each strip in the second direction is less than or equal to 1/(3N) times the width of each pixel in the second direction.

於本發明的一或多個實施方式中,上述之光源位於第一柱狀透鏡陣列的焦面上。In one or more embodiments of the present invention, the light source is located on a focal plane of the first lenticular lens array.

於本發明的一或多個實施方式中,上述之顯示模組位於第二柱狀透鏡陣列的焦面與第三柱狀透鏡陣列的焦面上。In one or more embodiments of the present invention, the display module is located on a focal plane of the second lenticular lens array and a focal plane of the third lenticular lens array.

綜上所述,在使用本發明的立體顯示裝置時,可調整立體顯示裝置的擺設方位而使每一畫素的子畫素在鉛直方向上排列。而在此擺設方位之下,本發明的立體顯示裝置可藉由第一柱狀透鏡陣列、第二柱狀透鏡陣列與第三柱狀透鏡陣列依據前述配置而達到將畫素光線分別導引至水平方向上的複數個視域的目的。除此之外,於本發明的立體顯示裝置中,第一柱狀透鏡陣列具有節距較大之第一柱狀子透鏡與節距較小之第二柱狀子透鏡。藉此,立體顯示裝置可選擇將第一柱狀子透鏡與光源光學耦合而供3D模式使用,或選擇將第二柱狀子透鏡與光源光學耦合而供2D模式使用,且此模式下可恢復解析度。As described above, when the stereoscopic display device of the present invention is used, the orientation of the stereoscopic display device can be adjusted such that the sub-pixels of each pixel are arranged in the vertical direction. Under the orientation of the present invention, the stereoscopic display device of the present invention can guide the pixel light to the first lenticular lens array, the second lenticular lens array and the third lenticular lens array according to the foregoing configuration. The purpose of a plurality of views in the horizontal direction. In addition, in the stereoscopic display device of the present invention, the first lenticular lens array has a first columnar sub-lens having a large pitch and a second columnar sub-lens having a small pitch. Thereby, the stereoscopic display device can selectively use the first cylindrical sub-lens to be optically coupled to the light source for use in the 3D mode, or selectively couple the second cylindrical sub-lens to the light source for use in the 2D mode, and the resolution can be restored in this mode. .

以上所述僅係用以闡述本發明所欲解決的問題、解決問題的技術手段、及其產生的功效等等,本發明之具體細節將在下文的實施方式及相關圖式中詳細介紹。The above description is only for explaining the problems to be solved by the present invention, the technical means for solving the problems, the effects thereof, and the like, and the specific details of the present invention will be described in detail in the following embodiments and related drawings.

以下將以圖式揭露本發明之複數個實施方式,為明確說明起見,許多實務上的細節將在以下敘述中一併說明。然而,應瞭解到,這些實務上的細節不應用以限制本發明。也就是說,在本發明部分實施方式中,這些實務上的細節是非必要的。此外,為簡化圖式起見,一些習知慣用的結構與元件在圖式中將以簡單示意的方式繪示之。The embodiments of the present invention are disclosed in the following drawings, and the details of However, it should be understood that these practical details are not intended to limit the invention. That is, in some embodiments of the invention, these practical details are not necessary. In addition, some of the conventional structures and elements are shown in the drawings in a simplified schematic manner in order to simplify the drawings.

請參照第1圖、第2A圖以及第2B圖。第1圖為繪示本發明一實施方式之立體顯示裝置100的立體示意圖。第2A圖為繪示第1圖中之發光模組110、第一柱狀透鏡陣列120與導光板130的上視示意圖。第2B圖為繪示第2A圖中之元件的側視剖面示意圖。如第1圖至第2B圖所示,立體顯示裝置100包含導光板130、發光模組110、第一柱狀透鏡陣列120、顯示模組140、第二柱狀透鏡陣列150以及第三柱狀透鏡陣列160。以下陸續詳細介紹立體顯示裝置100的各個元件的結構、功能與各元件之間的連接關係。Please refer to FIG. 1 , FIG. 2A and FIG. 2B . FIG. 1 is a perspective view showing a stereoscopic display device 100 according to an embodiment of the present invention. FIG. 2A is a top view showing the light emitting module 110, the first lenticular lens array 120, and the light guide plate 130 in FIG. 2B is a side cross-sectional view showing the element in FIG. 2A. As shown in FIGS. 1 to 2B , the stereoscopic display device 100 includes a light guide plate 130 , a light emitting module 110 , a first lenticular lens array 120 , a display module 140 , a second lenticular lens array 150 , and a third column shape. Lens array 160. Hereinafter, the structure, function, and connection relationship between the respective elements of the stereoscopic display device 100 will be described in detail.

如第1圖至第2B圖所示,於本實施方式中,導光板130具有入光面131、出光面132以及底面133。入光面131與出光面132相鄰設置。出光面132與底面133相對設置。發光模組110包含電路板111與複數個光源112。光源112設置於電路板111上,並配置以朝向導光板130的入光面131發光。第一柱狀透鏡陣列120光學耦合於光源112與導光板130的入光面131之間,並配置以將光源112所發射之光轉換為複數個指向性光線。換言之,第一柱狀透鏡陣列120於第一方向D1上具有光學能力,使來自光源112的光轉換成在多個方向(如第2A圖所示)上具有指向性的指向性光光線。為了達到將光源112所發射之光轉換為指向性光線之目的,本實施方式係使光源112位於第一柱狀透鏡陣列120的焦面上。導光板130包含至少一微結構134,設置於底面133。微結構134配置以將進入導光板130內部的指向性光線朝向出光面132反射。如此一來,導光板130即可將所接收之指向性光線反射離開出光面132。As shown in FIGS. 1 to 2B , in the present embodiment, the light guide plate 130 has a light incident surface 131 , a light exit surface 132 , and a bottom surface 133 . The light incident surface 131 is disposed adjacent to the light exit surface 132. The light emitting surface 132 is disposed opposite to the bottom surface 133. The light emitting module 110 includes a circuit board 111 and a plurality of light sources 112. The light source 112 is disposed on the circuit board 111 and configured to emit light toward the light incident surface 131 of the light guide plate 130. The first lenticular lens array 120 is optically coupled between the light source 112 and the light incident surface 131 of the light guide plate 130, and is configured to convert the light emitted by the light source 112 into a plurality of directional light rays. In other words, the first lenticular lens array 120 has an optical capability in the first direction D1 to convert light from the light source 112 into directional light rays having directivity in a plurality of directions (as shown in FIG. 2A). In order to achieve the purpose of converting the light emitted by the light source 112 into directional light, the present embodiment places the light source 112 on the focal plane of the first lenticular lens array 120. The light guide plate 130 includes at least one microstructure 134 disposed on the bottom surface 133. The microstructures 134 are configured to reflect directional light entering the interior of the light guide plate 130 toward the light exit surface 132. In this way, the light guide plate 130 can reflect the received directional light away from the light exit surface 132.

於一些實施方式中,微結構134可以是反射鏡。舉例而言,微結構134可以是由反射材料所組成,例如銀、鋁、銅。或者。於其他實施方式中,微結構134可以是形成於導光板130的底面133上的微型稜型凹槽,其可供反射層設置,而微型稜型凹槽的其餘部分可填有適當填充材料。In some embodiments, the microstructures 134 can be mirrors. For example, microstructure 134 can be composed of a reflective material such as silver, aluminum, copper. or. In other embodiments, the microstructures 134 may be micro-ribular grooves formed on the bottom surface 133 of the light guide plate 130, which may be provided for the reflective layer, while the remainder of the micro-ribular grooves may be filled with a suitable filling material.

請參照第3圖以及第4圖。第3圖為繪示第1圖中之導光板130、第二柱狀透鏡陣列150、顯示模組140與第三柱狀透鏡陣列160的側視示意圖。第4圖為繪示本發明一實施方式之顯示模組140與第三柱狀透鏡陣列160的部分平面示意圖。如第1圖、第3圖與第4圖所示,於本實施方式中,顯示模組140相對於導光板130的出光面132設置,並包含複數個畫素141。複數個畫素141沿著相互垂直的第一方向D1與第二方向D2排列,且每一畫素141包含沿著第一方向D1排列之複數個子畫素141R、141G、141B。Please refer to Figure 3 and Figure 4. FIG. 3 is a side view showing the light guide plate 130, the second lenticular lens array 150, the display module 140, and the third lenticular lens array 160 in FIG. FIG. 4 is a partial plan view showing a display module 140 and a third lenticular lens array 160 according to an embodiment of the present invention. As shown in FIGS. 1 , 3 , and 4 , in the present embodiment, the display module 140 is disposed on the light-emitting surface 132 of the light guide plate 130 and includes a plurality of pixels 141 . The plurality of pixels 141 are arranged along the first direction D1 and the second direction D2 which are perpendicular to each other, and each of the pixels 141 includes a plurality of sub-pixels 141R, 141G, and 141B arranged along the first direction D1.

需要說明的是,一般的顯示裝置在使用時,其每一畫素的子畫素是在水平方向上排列的。而在使用本實施方式之立體顯示裝置100時,可調整立體顯示裝置100的擺設方位而使第一方向D1平行於鉛直方向,並使第二方向D2平行於水平方向。也就是說,在本實施方式的立體顯示裝置100中,每一畫素141的子畫素141R、141G、141B是在鉛直方向上排列的。It should be noted that when a general display device is used, the sub-pixels of each pixel are arranged in the horizontal direction. On the other hand, when the stereoscopic display device 100 of the present embodiment is used, the orientation of the stereoscopic display device 100 can be adjusted such that the first direction D1 is parallel to the vertical direction and the second direction D2 is parallel to the horizontal direction. That is, in the stereoscopic display device 100 of the present embodiment, the sub-pixels 141R, 141G, and 141B of each pixel 141 are arranged in the vertical direction.

第二柱狀透鏡陣列150設置於導光板130的出光面132與顯示模組140之間,並配置以將經反射之指向性光線(即離開出光面132之指向性光線)聚焦於顯示模組140上的複數個長條區域142。每一長條區域142係平行於第一方向D1。顯示模組140配置以將經聚焦之指向性光線轉換為複數組畫素光線。換言之,第二柱狀透鏡陣列150於第二方向D2上具有光學能力,以使經反射之指向性光線聚焦至沿第二方向D2排列之長條區域142。為了達到將經反射之指向性光線聚焦於長條區域142之目的,本實施方式係使顯示模組140位於第二柱狀透鏡陣列150的焦面上,且第二柱狀透鏡陣列150具有複數個第二柱狀透鏡151,複數個第二柱狀透鏡151相對第一方向D1為平行設置。The second lenticular lens array 150 is disposed between the light-emitting surface 132 of the light guide plate 130 and the display module 140, and is configured to focus the reflected directional light (ie, the directional light leaving the light-emitting surface 132) on the display module. A plurality of strip regions 142 on 140. Each strip region 142 is parallel to the first direction D1. Display module 140 is configured to convert the focused directional light into a complex array of pixel light. In other words, the second lenticular lens array 150 has an optical capability in the second direction D2 to focus the reflected directional light rays to the elongated regions 142 arranged in the second direction D2. In order to achieve the purpose of focusing the reflected directional light on the strip region 142, the present embodiment is such that the display module 140 is located on the focal plane of the second lenticular lens array 150, and the second lenticular lens array 150 has a plurality of The second lenticular lenses 151 and the plurality of second lenticular lenses 151 are disposed in parallel with respect to the first direction D1.

進一步來說,複數個畫素141沿著垂直於第一方向D1之第二方向D2排列成複數個畫素排(及第4圖所示之縱向排)。各長條區域142分別對應通過各畫素排。因此,每一畫素141的所有子畫素141R、141G、141B都會有部分之指向性光線通過。Further, the plurality of pixels 141 are arranged in a plurality of pixel rows (and the vertical rows shown in FIG. 4) along a second direction D2 perpendicular to the first direction D1. Each strip area 142 corresponds to each pixel row. Therefore, all of the sub-pixels 141R, 141G, and 141B of each pixel 141 have a part of the directional light passing therethrough.

第三柱狀透鏡陣列160設置於顯示模組140遠離導光板130的一側,並配置以將畫素光線分別導引至複數個視域。為了達到將畫素光線分別導引至複數個視域之目的,本實施方式係使顯示模組140位於第三柱狀透鏡陣列160的焦面上,且第三柱狀透鏡陣列160具有複數個第三柱狀透鏡161,複數個第三柱狀透鏡161相對於第一方向D1為傾斜設置,如第4圖所示。如前所述,若在每一畫素141的子畫素141R、141G、141B是在鉛直方向上排列的情況之下使用本實施方式之立體顯示裝置100,則第三柱狀透鏡陣列160可將畫素光線分別導引至水平方向上的複數個視域。The third lenticular lens array 160 is disposed on a side of the display module 140 away from the light guide plate 130, and is configured to guide the pixel light to a plurality of fields of view. In order to achieve the purpose of guiding the pixel light to a plurality of fields of view, the present embodiment is such that the display module 140 is located on the focal plane of the third lenticular lens array 160, and the third lenticular lens array 160 has a plurality of The third lenticular lens 161 has a plurality of third lenticular lenses 161 which are inclined with respect to the first direction D1 as shown in FIG. As described above, if the stereoscopic display device 100 of the present embodiment is used in the case where the sub-pixels 141R, 141G, and 141B of each pixel 141 are arranged in the vertical direction, the third lenticular lens array 160 can be used. The pixel light is separately directed to a plurality of fields of view in the horizontal direction.

於一些實施方式中,第三柱狀透鏡161相對第一方向D1具有傾斜角θ。傾斜角θ實質上滿足: θ = tan-1 (1/N) 其中N為大於1之自然數。In some embodiments, the third lenticular lens 161 has an oblique angle θ with respect to the first direction D1. The tilt angle θ substantially satisfies: θ = tan -1 (1/N) where N is a natural number greater than one.

於一些實施方式中,上述之N可以是2、3、4、5、6、7或8,但本發明並不以此為限。In some embodiments, the above N may be 2, 3, 4, 5, 6, 7, or 8, but the invention is not limited thereto.

舉例來說,請參照第2A圖與第4圖,於本實施方式中,為了製作出可提供五視域的立體顯示裝置100,可設計使第一柱狀透鏡陣列120的每一第一柱狀子透鏡121在第一方向D1上對應五個光源112(見第2A圖)。因此,每一第一柱狀子透鏡121可將五個光源112的光轉換成五個指向性光線。For example, referring to FIG. 2A and FIG. 4 , in the present embodiment, in order to create a stereoscopic display device 100 that can provide five viewing fields, each first column of the first lenticular lens array 120 can be designed. The sub-lens 121 corresponds to five light sources 112 in the first direction D1 (see FIG. 2A). Therefore, each of the first cylindrical sub-lenses 121 can convert the light of the five light sources 112 into five directional light rays.

進一步,可設計使每一長條區域142在第二方向D2上的寬度小於等於每一畫素141在第二方向D2上的寬度。舉例來說,如第4圖所示,可設計使每一長條區域142與子畫素141R重合的區域在第二方向D2上的寬度佔據每一畫素141在第二方向D2上的寬度的1/6倍,而每一長條區域142與子畫素141R重合的區域在第一方向D1上的寬度佔據每一畫素141在第一方向D1上的寬度的1/3(因每一畫素被三等分)。因此,在本實施方式中,第三柱狀透鏡161相對第一方向D1所具有傾斜角θ即可藉由每一長條區域142與子畫素141R重合的區域在第一方向D1與第二方向D2上的寬度計算而獲得。具體來說,依據上述θ = tan-1 (1/N)之公式,其中,N=(1/3)÷(1/6),故本實施方式所計算出之傾斜角θ = tan-1 (1/2)。故換句話說,每一長條區域142在第二方向D2上的寬度係等於每一畫素141在第二方向D2上的寬度的1/(3N)倍。Further, the width of each strip region 142 in the second direction D2 may be designed to be less than or equal to the width of each pixel 141 in the second direction D2. For example, as shown in FIG. 4, the width of the region in which the each of the elongated regions 142 and the sub-pixels 141R coincide in the second direction D2 can be designed to occupy the width of each of the pixels 141 in the second direction D2. 1/6 times, and the width of the region where each of the strip regions 142 coincides with the subpixel 141R in the first direction D1 occupies 1/3 of the width of each pixel 141 in the first direction D1 (because each A pixel is divided into three equal parts). Therefore, in the present embodiment, the third lenticular lens 161 has an inclination angle θ with respect to the first direction D1, and the region where each of the elongated regions 142 coincides with the sub-pixel 141R is in the first direction D1 and the second. Obtained from the width calculation in direction D2. Specifically, according to the above formula of θ = tan -1 (1/N), where N = (1/3) ÷ (1/6), the tilt angle θ = tan -1 calculated in the present embodiment (1/2). In other words, the width of each strip region 142 in the second direction D2 is equal to 1/(3N) times the width of each pixel 141 in the second direction D2.

需要說明的是,在第三柱狀子透鏡的排列方向上,每一第三柱狀子透鏡可對應地虛擬分為五個部分,且此五部分可將顯示模組140所轉換而來的畫素光線分別導引至五個視域,而相鄰之第三柱狀子透鏡再重複此五個視域。It should be noted that, in the direction in which the third columnar sub-lens is arranged, each of the third columnar sub-lenses can be correspondingly virtually divided into five parts, and the five parts can convert the pixels converted by the display module 140. The rays are directed to five fields of view, respectively, and the adjacent third columnar sub-lens repeats the five fields of view.

再進一步,可設計使每一第三柱狀透鏡161在第二方向D2上的寬度等於每一畫素141在第二方向D2上的寬度的5/6倍(見第4圖)。在此述結構配置之下,由第4圖來看,位於最左上方之畫素141的子畫素141R的畫素光線可被第三柱狀透鏡161導引至第一視域(圖中標示1),而右方相鄰之畫素141與下方相鄰之畫素141中的子畫素141R的畫素光線可被第三柱狀透鏡161分別導引至第二視域(圖中標示2)與第四視域(圖中標示4)。第4圖中的其他6個畫素141中的子畫素141R的畫素光線所對應之視域在此不再贅述,可直接參看第4圖的標示。Still further, the width of each of the third lenticular lenses 161 in the second direction D2 may be designed to be equal to 5/6 times the width of each of the pixels 141 in the second direction D2 (see FIG. 4). Under the structural configuration described herein, as seen from FIG. 4, the pixel ray of the sub-pixel 141R of the pixel 141 located at the upper left side can be guided to the first field of view by the third lenticular lens 161 (in the figure) Marked 1), and the pixel ray of the adjacent pixel 141 on the right and the sub-pixel 141R in the pixel 141 adjacent thereto can be respectively guided by the third lenticular lens 161 to the second field of view (marked 2 in the figure) ) and the fourth field of view (marked 4 in the figure). The field of view corresponding to the pixel ray of the sub-pixel 141R in the other six pixels 141 in FIG. 4 will not be described here, and the indication of FIG. 4 can be directly referred to.

請參照第5圖,其為繪示採用第4圖之光學配置之立體顯示裝置100中之一種子畫素所對應之視域圖。如第5圖所示,所有斜線的交點所在之畫素141中的一種子畫素(例如,第4圖所示之子畫素141R)的畫素光線皆對應至(被第三柱狀透鏡161導引至)第一視域。也就是說,位於第一視域的觀賞者可在所有斜線的交點所在之畫素141的位置觀看到此種子畫素的畫素光線。而位於其他四個視域的觀賞者依據同樣原理可分別在其他畫素141的位置觀看到此種子畫素的畫素光線,在此恕不贅述。Please refer to FIG. 5, which is a view of a field corresponding to one of the seed pixels in the stereoscopic display device 100 of the optical arrangement of FIG. 4. As shown in FIG. 5, the pixel light of one of the sub-pixels (for example, the sub-pixel 141R shown in FIG. 4) of the pixel 141 where the intersection of all the oblique lines is located corresponds to (by the third cylindrical lens 161). Guided to the first field of view. That is to say, the viewer in the first viewing zone can view the pixel light of the seed pixel at the position of the pixel 141 where the intersection of all the diagonal lines is located. The viewers in the other four fields of view can view the pixel light of the seed pixel at the position of the other pixels 141 according to the same principle, and will not be described here.

請參照6圖,其為繪示本發明另一實施方式之顯示模組140與第三柱狀透鏡陣列160的部分平面示意圖。於本實施方式中,為了製作出可提供七視域的立體顯示裝置100,可設計使第一柱狀透鏡陣列120的每一第一柱狀子透鏡121在第一方向D1上對應七個光源112。因此,每一第一柱狀子透鏡121可將七個光源112的光轉換成七個指向性光線。Please refer to FIG. 6 , which is a partial plan view showing a display module 140 and a third lenticular lens array 160 according to another embodiment of the present invention. In the present embodiment, in order to fabricate the stereoscopic display device 100 capable of providing seven fields of view, each of the first columnar sub-lenses 121 of the first lenticular lens array 120 may be designed to correspond to the seven light sources 112 in the first direction D1. . Therefore, each of the first cylindrical sub-lenses 121 can convert the light of the seven light sources 112 into seven directional light rays.

進一步,如第6圖所示,可設計使每一長條區域142與子畫素141R重合的區域在第二方向D2上的寬度佔據每一畫素141在第二方向D2上的寬度的1/9倍,而每一長條區域142與子畫素141R重合的區域在第一方向D1上的寬度佔據每一畫素141在第一方向D1上的寬度的1/3(因每一畫素141被三等分)。因此,在本實施方式中,第三柱狀透鏡161相對第一方向D1所具有傾斜角θ即可藉由每一長條區域142與子畫素141R重合的區域在第一方向D1與第二方向D2上的寬度計算而獲得。具體來說,依據上述θ = tan-1 (1/N)之公式,其中,N=(1/3)÷(1/9),故本實施方式所計算出之傾斜角θ = tan-1 (1/3)。Further, as shown in FIG. 6, the width of the region in which the each of the elongated regions 142 and the sub-pixels 141R coincide in the second direction D2 can be designed to occupy the width of each of the pixels 141 in the second direction D2. /9 times, and the width of the area where each strip area 142 coincides with the sub-pixel 141R in the first direction D1 occupies 1/3 of the width of each pixel 141 in the first direction D1 (due to each picture) Prime 141 is divided into three equal parts). Therefore, in the present embodiment, the third lenticular lens 161 has an inclination angle θ with respect to the first direction D1, and the region where each of the elongated regions 142 coincides with the sub-pixel 141R is in the first direction D1 and the second. Obtained from the width calculation in direction D2. Specifically, according to the above formula of θ = tan -1 (1/N), where N = (1/3) ÷ (1/9), the tilt angle θ = tan -1 calculated in the present embodiment (1/3).

需要說明的是,在第三柱狀子透鏡的排列方向上,每一第三柱狀子透鏡可對應地虛擬分為七個部分,且此七部分可將顯示模組140所轉換而來的畫素光線分別導引至七個視域,而相鄰之第三柱狀子透鏡再重複此七個視域。It should be noted that, in the direction in which the third columnar sub-lens is arranged, each of the third columnar sub-lenses can be correspondingly virtually divided into seven parts, and the seven parts can convert the pixels converted by the display module 140. The rays are directed to seven fields of view, respectively, and the adjacent third columnar sub-lens repeats the seven fields of view.

再進一步,可設計使每一第三柱狀透鏡161在第二方向D2上的寬度等於每一畫素141在第二方向D2上的寬度的7/9倍(見第6圖)。在此述結構配置之下,由第6圖來看,位於最左上方之畫素141的子畫素141R的畫素光線可被第三柱狀透鏡161導引至第一視域(圖中標示1),而右方相鄰之畫素141與下方相鄰之畫素141中的子畫素141R的畫素光線可被第三柱狀透鏡161分別導引至第三視域(圖中標示3)與第四視域(圖中標示4)。第6圖中的其他6個畫素141中的子畫素141R的畫素光線所對應之視域在此不再贅述,可直接參看第6圖的標示。Still further, the width of each of the third lenticular lenses 161 in the second direction D2 may be designed to be 7/9 times the width of each of the pixels 141 in the second direction D2 (see Fig. 6). Under the structural configuration described herein, as seen from FIG. 6, the pixel ray of the sub-pixel 141R of the pixel 141 located at the upper left side can be guided to the first field of view by the third lenticular lens 161 (in the figure) Marked 1), and the pixel ray of the neighboring pixel 141 and the sub-pixel 141R in the pixel 141 adjacent to the lower side can be respectively guided by the third lenticular lens 161 to the third field of view (marked 3 in the figure) ) and the fourth field of view (marked 4 in the figure). The field of view corresponding to the pixel ray of the sub-pixel 141R in the other six pixels 141 in FIG. 6 will not be described here, and the indication of FIG. 6 can be directly referred to.

請參照第7圖,其為繪示採用第6圖之光學配置之立體顯示裝置100中之一種子畫素所對應之視域圖。如第7圖所示,所有斜線的交點所在之畫素141中的一種子畫素(例如,第6圖所示之子畫素141R)的畫素光線皆對應至(被第三柱狀透鏡161導引至)第一視域。也就是說,位於第一視域的觀賞者可在所有斜線的交點所在之畫素141的位置觀看到此種子畫素的畫素光線。而位於其他六個視域的觀賞者依據同樣原理可分別在其他畫素141的位置觀看到此種子畫素的畫素光線,在此恕不贅述。Please refer to FIG. 7 , which is a view of a field corresponding to one of the seed pixels in the stereoscopic display device 100 of the optical arrangement of FIG. 6 . As shown in FIG. 7, the pixel light of one of the sub-pixels (for example, the sub-pixel 141R shown in FIG. 6) of the pixel 141 where the intersection of all the oblique lines is located corresponds to (by the third cylindrical lens 161). Guided to the first field of view. That is to say, the viewer in the first viewing zone can view the pixel light of the seed pixel at the position of the pixel 141 where the intersection of all the diagonal lines is located. The viewers in the other six fields of view can view the pixel light of the seed pixel at the position of the other pixels 141 according to the same principle, and will not be described here.

請參照第8圖,其為繪示本發明另一實施方式之顯示模組140與第三柱狀透鏡陣列160的部分平面示意圖。於本實施方式中,為了製作出可提供十視域的立體顯示裝置100,可設計使第一柱狀透鏡陣列120的每一第一柱狀子透鏡121在第一方向D1上對應十個光源112。因此,每一第一柱狀子透鏡121可將十個光源112的光轉換成十個指向性光線。Please refer to FIG. 8 , which is a partial plan view showing a display module 140 and a third lenticular lens array 160 according to another embodiment of the present invention. In the present embodiment, in order to create the stereoscopic display device 100 capable of providing ten fields of view, each of the first columnar sub-lenses 121 of the first lenticular lens array 120 may be designed to correspond to ten light sources 112 in the first direction D1. . Therefore, each of the first cylindrical sub-lenses 121 can convert the light of ten light sources 112 into ten directional light rays.

進一步,如第8圖所示,可設計使每一長條區域142與子畫素141R重合的區域在第二方向D2上的寬度佔據每一畫素141在第二方向D2上的寬度的1/12倍,而每一長條區域142與子畫素141R重合的區域在第一方向D1上的寬度佔據每一畫素141在第一方向D1上的寬度的1/3(因每一畫素141被三等分)。因此,在本實施方式中,第三柱狀透鏡161相對第一方向D1所具有傾斜角θ即可藉由每一長條區域142與子畫素141R重合的區域在第一方向D1與第二方向D2上的寬度計算而獲得。具體來說,依據上述θ = tan-1 (1/N)之公式,其中,N=(1/3)÷(1/12),故本實施方式所計算出之傾斜角θ = tan-1 (1/4)。Further, as shown in FIG. 8, the width of the region in which the each of the elongated regions 142 and the sub-pixels 141R coincide in the second direction D2 can be designed to occupy the width of each of the pixels 141 in the second direction D2. /12 times, and the width of the area where each strip area 142 coincides with the sub-pixel 141R in the first direction D1 occupies 1/3 of the width of each pixel 141 in the first direction D1 (due to each picture) Prime 141 is divided into three equal parts). Therefore, in the present embodiment, the third lenticular lens 161 has an inclination angle θ with respect to the first direction D1, and the region where each of the elongated regions 142 coincides with the sub-pixel 141R is in the first direction D1 and the second. Obtained from the width calculation in direction D2. Specifically, according to the above formula of θ = tan -1 (1/N), where N = (1/3) ÷ (1/12), the tilt angle θ = tan -1 calculated in the present embodiment (1/4).

需要說明的是,在第三柱狀子透鏡的排列方向上,每一第三柱狀子透鏡可對應地虛擬分為十個部分,且此十部分可將顯示模組140所轉換而來的畫素光線分別導引至十個視域,而相鄰之第三柱狀子透鏡再重複此十個視域。It should be noted that, in the direction in which the third columnar sub-lens is arranged, each of the third columnar sub-lenses can be correspondingly virtually divided into ten parts, and the ten parts can convert the pixels converted by the display module 140. The rays are directed to ten fields of view, respectively, and the adjacent third columnar sub-lens repeats the ten fields of view.

再進一步,可設計使每一第三柱狀透鏡161在第二方向D2上的寬度等於每一畫素141在第二方向D2上的寬度的10/12倍(見第8圖)。在此述結構配置之下,由第8圖來看,位於最左上方之畫素141的子畫素141R的畫素光線可被第三柱狀透鏡161導引至第一視域(圖中標示1),而右方相鄰之畫素141與下方相鄰之畫素141中的子畫素141R的畫素光線可被第三柱狀透鏡161分別導引至第三視域(圖中標示3)與第四視域(圖中標示4)。第8圖中的其他6個畫素141中的子畫素141R的畫素光線所對應之視域在此不再贅述,可直接參看第8圖的標示。Still further, the width of each of the third lenticular lenses 161 in the second direction D2 may be designed to be equal to 10/12 times the width of each of the pixels 141 in the second direction D2 (see Fig. 8). Under the structural configuration described herein, as seen from FIG. 8, the pixel ray of the sub-pixel 141R of the pixel 141 located at the uppermost left direction can be guided to the first field of view by the third lenticular lens 161 (in the figure) Marked 1), and the pixel ray of the neighboring pixel 141 and the sub-pixel 141R in the pixel 141 adjacent to the lower side can be respectively guided by the third lenticular lens 161 to the third field of view (marked 3 in the figure) ) and the fourth field of view (marked 4 in the figure). The field of view corresponding to the pixel ray of the sub-pixel 141R in the other six pixels 141 in FIG. 8 will not be described here, and the label of FIG. 8 can be directly referred to.

請參照第9圖,其為繪示採用第8圖之光學配置之立體顯示裝置100中之一種子畫素所對應之視域圖。如第9圖所示,所有斜線的交點所在之畫素141中的一種子畫素(例如,第8圖所示之子畫素141R)的畫素光線皆對應至(被第三柱狀透鏡161導引至)第一視域。也就是說,位於第一視域的觀賞者可在所有斜線的交點所在之畫素141的位置觀看到此種子畫素的畫素光線。而位於其他九個視域的觀賞者依據同樣原理可分別在其他畫素141的位置觀看到此種子畫素的畫素光線,在此恕不贅述。Please refer to FIG. 9 , which is a view of a field corresponding to one of the seed pixels in the stereoscopic display device 100 of the optical configuration of FIG. 8 . As shown in FIG. 9, the pixel light of one of the sub-pixels (for example, the sub-pixel 141R shown in FIG. 8) of the pixel 141 where the intersection of all the oblique lines is located corresponds to (by the third cylindrical lens 161). Guided to the first field of view. That is to say, the viewer in the first viewing zone can view the pixel light of the seed pixel at the position of the pixel 141 where the intersection of all the diagonal lines is located. The viewers in the other nine fields of view can view the pixel light of the seed pixel at the position of the other pixels 141 according to the same principle, and will not be described here.

然而,對於採用第4圖之光學配置之立體顯示裝置100來說,每一視域的解析度會降為1/5倍。為了解決此問題,請參照第10圖,其為繪示本發明一實施方式之第一柱狀透鏡陣列120與移動模組170的正視圖。如第1圖至第2B圖與第10圖所示,於本實施方式中,每一第一柱狀子透鏡121在第二方向D2上具有第一節距P1。第一柱狀透鏡陣列120還具有複數個第二柱狀子透鏡122。第二柱狀子透鏡122沿著第二方向D2排列,並與第一方向D1垂直設置。每一第二柱狀子透鏡122在第二方向D2上具有第二節距P2,且第一節距P1為第二節距P2的5倍。也就是說,當第二柱狀子透鏡122光學耦合於光源112與入光面131之間時,每一第二柱狀子透鏡122可對應一個光源112,且經過第二柱狀子透鏡122的光線皆為正向光線,這將造成光線後續不會被導引至複數個視域,因此可使立體顯示裝置100恢復為原本的解析度。However, for the stereoscopic display device 100 using the optical configuration of FIG. 4, the resolution per field of view is reduced by a factor of one-fifth. In order to solve this problem, please refer to FIG. 10, which is a front view showing the first lenticular lens array 120 and the moving module 170 according to an embodiment of the present invention. As shown in FIGS. 1 to 2B and FIG. 10, in the present embodiment, each of the first columnar sub-lenses 121 has a first pitch P1 in the second direction D2. The first lenticular lens array 120 also has a plurality of second columnar sub-lenses 122. The second columnar sub-lenses 122 are arranged along the second direction D2 and are disposed perpendicular to the first direction D1. Each of the second columnar sub-lenses 122 has a second pitch P2 in the second direction D2, and the first pitch P1 is five times the second pitch P2. That is, when the second cylindrical sub-lens 122 is optically coupled between the light source 112 and the light incident surface 131, each of the second cylindrical sub-lenses 122 may correspond to one light source 112, and the light passing through the second cylindrical sub-lens 122 For forward ray, this will cause the ray to be subsequently not directed to a plurality of fields of view, thus allowing the stereoscopic display device 100 to return to its original resolution.

立體顯示裝置100還包含移動模組170,配置以移動第一柱狀透鏡陣列120,致使第一柱狀子透鏡121與第二柱狀子透鏡122中之一群選擇性地光學耦合於光源112與入光面131之間。藉此,立體顯示裝置100可藉由移動模組170而移動第一柱狀透鏡陣列120,致使第一柱狀子透鏡121光學耦合於光源112與入光面131之間,進而可供3D模式使用。可選地,立體顯示裝置100可藉由移動模組170而移動第一柱狀透鏡陣列120,致使第二柱狀子透鏡122光學耦合於光源112與入光面131之間,進而可供2D模式使用。The stereoscopic display device 100 further includes a moving module 170 configured to move the first lenticular lens array 120 such that one of the first cylindrical sub-lens 121 and the second cylindrical sub-lens 122 is selectively optically coupled to the light source 112 and the light entering the light. Between faces 131. Therefore, the stereoscopic display device 100 can move the first lenticular lens array 120 by moving the module 170, so that the first cylindrical sub-lens 121 is optically coupled between the light source 112 and the light incident surface 131, thereby being used in the 3D mode. . Optionally, the stereoscopic display device 100 can move the first lenticular lens array 120 by moving the module 170, so that the second cylindrical sub-lens 122 is optically coupled between the light source 112 and the light incident surface 131, thereby being available for 2D mode. use.

對於採用第6圖與第8圖之光學配置之立體顯示裝置100來說,每一視域的解析度分別會降為1/7倍與1/10倍。為了解決前述解析度下降的問題,依照前述相同原理,可將前述第二柱狀子透鏡122之第二節距P2分別修改為第一柱狀子透鏡121之第一節距P1的1/7倍與1/10倍。For the stereoscopic display device 100 using the optical configurations of FIGS. 6 and 8, the resolution of each field of view is reduced by 1/7 times and 1/10 times, respectively. In order to solve the problem of the aforementioned resolution reduction, according to the same principle as described above, the second pitch P2 of the second columnar sub-lens 122 can be modified to be 1/7 times of the first pitch P1 of the first columnar sub-lens 121, respectively. 1/10 times.

由以上對於本發明之具體實施方式之詳述,可以明顯地看出,在使用本發明的立體顯示裝置時,可調整立體顯示裝置的擺設方位而使每一畫素的子畫素在鉛直方向上排列。而在此擺設方位之下,本發明的立體顯示裝置可藉由第一柱狀透鏡陣列、第二柱狀透鏡陣列與第三柱狀透鏡陣列依據前述配置而達到將畫素光線分別導引至水平方向上的複數個視域的目的。除此之外,於本發明的立體顯示裝置中,第一柱狀透鏡陣列具有節距較大之第一柱狀子透鏡與節距較小之第二柱狀子透鏡。藉此,立體顯示裝置可選擇將第一柱狀子透鏡與光源光學耦合而供3D模式使用,或選擇將第二柱狀子透鏡與光源光學耦合而供2D模式使用,且此模式下可恢復解析度。From the above detailed description of the specific embodiments of the present invention, it can be clearly seen that when the stereoscopic display device of the present invention is used, the orientation of the stereoscopic display device can be adjusted such that the sub-pixels of each pixel are in the vertical direction. Arranged on top. Under the orientation of the present invention, the stereoscopic display device of the present invention can guide the pixel light to the first lenticular lens array, the second lenticular lens array and the third lenticular lens array according to the foregoing configuration. The purpose of a plurality of views in the horizontal direction. In addition, in the stereoscopic display device of the present invention, the first lenticular lens array has a first columnar sub-lens having a large pitch and a second columnar sub-lens having a small pitch. Thereby, the stereoscopic display device can selectively use the first cylindrical sub-lens to be optically coupled to the light source for use in the 3D mode, or selectively couple the second cylindrical sub-lens to the light source for use in the 2D mode, and the resolution can be restored in this mode. .

雖然本發明已以實施方式揭露如上,然其並不用以限定本發明,任何熟習此技藝者,在不脫離本發明的精神和範圍內,當可作各種的更動與潤飾,因此本發明的保護範圍當視後附的申請專利範圍所界定者為準。The present invention has been disclosed in the above embodiments, and is not intended to limit the scope of the present invention, and the invention may be modified and modified in various ways without departing from the spirit and scope of the invention. The scope is subject to the definition of the scope of the patent application.

100‧‧‧立體顯示裝置100‧‧‧ Stereo display device

110‧‧‧發光模組110‧‧‧Lighting module

111‧‧‧電路板111‧‧‧Circuit board

112‧‧‧光源112‧‧‧Light source

120‧‧‧第一柱狀透鏡陣列120‧‧‧First cylindrical lens array

121‧‧‧第一柱狀子透鏡121‧‧‧First cylindrical lens

122‧‧‧第二柱狀子透鏡122‧‧‧Second cylindrical lens

130‧‧‧導光板130‧‧‧Light guide plate

131‧‧‧入光面131‧‧‧Into the glossy surface

132‧‧‧出光面132‧‧‧Glossy

133‧‧‧底面133‧‧‧ bottom

134‧‧‧微結構134‧‧‧Microstructure

140‧‧‧顯示模組140‧‧‧ display module

141‧‧‧畫素141‧‧ ‧ pixels

141R、141G、141B‧‧‧子畫素141R, 141G, 141B‧‧‧ sub-pixels

142‧‧‧長條區域142‧‧ ‧ strip area

150‧‧‧第二柱狀透鏡陣列150‧‧‧Second lenticular lens array

151‧‧‧第二柱狀透鏡151‧‧‧Second lenticular lens

160‧‧‧第三柱狀透鏡陣列160‧‧‧third lenticular lens array

161‧‧‧第三柱狀透鏡161‧‧‧third cylindrical lens

170‧‧‧移動模組170‧‧‧Mobile Module

P1‧‧‧第一節距P1‧‧‧ first pitch

P2‧‧‧第二節距P2‧‧‧Second pitch

θ‧‧‧傾斜角θ‧‧‧Tilt angle

D1‧‧‧第一方向D1‧‧‧ first direction

D2‧‧‧第二方向D2‧‧‧ second direction

為讓本發明之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下: 第1圖為繪示本發明一實施方式之立體顯示裝置的立體示意圖。 第2A圖為繪示第1圖中之發光模組、第一柱狀透鏡陣列與導光板的上視示意圖。 第2B圖為繪示第2A圖中之元件的側視剖面示意圖。 第3圖為繪示第1圖中之導光板、第二柱狀透鏡陣列、顯示模組與第三柱狀透鏡陣列的側視示意圖。 第4圖為繪示本發明一實施方式之顯示模組與第三柱狀透鏡陣列的部分平面示意圖。 第5圖為繪示採用第4圖之光學配置之立體顯示裝置中之一種子畫素所對應之視域圖。 第6圖為繪示本發明另一實施方式之顯示模組與第三柱狀透鏡陣列的部分平面示意圖。 第7圖為繪示採用第6圖之光學配置之立體顯示裝置中之一種子畫素所對應之視域圖。 第8圖為繪示本發明另一實施方式之顯示模組與第三柱狀透鏡陣列的部分平面示意圖。 第9圖為繪示採用第8圖之光學配置之立體顯示裝置中之一種子畫素所對應之視域圖。 第10圖為繪示本發明一實施方式之第一柱狀透鏡陣列與移動模組的正視圖。The above and other objects, features, advantages and embodiments of the present invention will become more <RTIgt; FIG. 2A is a top view showing the light emitting module, the first lenticular lens array and the light guide plate in FIG. 1 . 2B is a side cross-sectional view showing the element in FIG. 2A. FIG. 3 is a side view showing the light guide plate, the second lenticular lens array, the display module, and the third lenticular lens array in FIG. 1 . 4 is a partial plan view showing a display module and a third lenticular lens array according to an embodiment of the present invention. Fig. 5 is a view showing a field of view corresponding to one of the seed pixels in the stereoscopic display device using the optical arrangement of Fig. 4. FIG. 6 is a partial plan view showing a display module and a third lenticular lens array according to another embodiment of the present invention. Fig. 7 is a view showing a field of view corresponding to one of the seed pixels in the stereoscopic display device using the optical arrangement of Fig. 6. FIG. 8 is a partial plan view showing a display module and a third lenticular lens array according to another embodiment of the present invention. Fig. 9 is a view showing a field of view corresponding to one of the seed pixels in the stereoscopic display device of the optical arrangement of Fig. 8. FIG. 10 is a front elevational view showing a first lenticular lens array and a moving module according to an embodiment of the present invention.

Claims (13)

一種立體顯示裝置,包含: 一導光板,具有一入光面以及一出光面; 複數個光源,配置以朝向該入光面發光; 一第一柱狀透鏡陣列,光學耦合於該些光源與該入光面之間,並配置以將該些光源所發射之光轉換為複數個指向性光線,其中該導光板配置以將所接收之該些指向性光線反射離開該出光面; 一顯示模組,相對於該出光面設置,並包含複數個畫素,每一該些畫素包含沿著一第一方向排列之複數個子畫素; 一第二柱狀透鏡陣列,設置於該出光面與該顯示模組之間,並配置以將經反射之該些指向性光線聚焦於該顯示模組上的複數個長條區域,該些長條區域平行於該第一方向,其中該顯示模組配置以將經聚焦之該些指向性光線轉換為複數組畫素光線;以及 一第三柱狀透鏡陣列,設置於該顯示模組遠離該導光板的一側,並配置以將該些畫素光線分別導引至複數個視域。A stereoscopic display device comprising: a light guide plate having a light incident surface and a light exit surface; a plurality of light sources configured to emit light toward the light incident surface; a first lenticular lens array optically coupled to the light source and the light source Between the light incident surfaces, and configured to convert the light emitted by the light sources into a plurality of directional light rays, wherein the light guide plate is configured to reflect the received directional light rays away from the light exiting surface; Provided with respect to the light-emitting surface, and including a plurality of pixels, each of the pixels includes a plurality of sub-pixels arranged along a first direction; a second lenticular lens array disposed on the light-emitting surface Between the display modules, and configured to focus the reflected directional light onto the plurality of strips on the display module, the strip regions being parallel to the first direction, wherein the display module is configured Converting the focused directional light into a complex array of illuminating light; and a third lenticular lens array disposed on a side of the display module away from the light guide plate, and configured to use the pixel light Minute Guided to a plurality of viewing zone. 如請求項第1項所述之立體顯示裝置,其中該些畫素沿著垂直於該第一方向之一第二方向排列成複數個畫素排,並且各該長條區域分別對應通過各該畫素排。The stereoscopic display device of claim 1, wherein the pixels are arranged in a plurality of pixel rows along a second direction perpendicular to the first direction, and each of the strip regions respectively passes through the respective pixels. Picture line. 如請求項第1項所述之立體顯示裝置,其中該第一柱狀透鏡陣列具有複數個第一柱狀子透鏡,該些第一柱狀子透鏡沿著垂直於該第一方向之一第二方向排列,並與該第一方向與垂直設置。The stereoscopic display device of claim 1, wherein the first lenticular lens array has a plurality of first cylindrical sub-lenses, and the first cylindrical sub-lenses are along a second direction perpendicular to the first direction Arrange and set with the first direction and vertical. 如請求項第3項所述之立體顯示裝置,其中每一該些第一柱狀子透鏡在該第一方向上對應S個光源,S為大於1之自然數。The stereoscopic display device of claim 3, wherein each of the first columnar sub-lenses corresponds to S light sources in the first direction, and S is a natural number greater than 1. 如請求項第4項所述之立體顯示裝置,其中每一該些第一柱狀子透鏡在該第二方向上具有一第一節距,該第一柱狀透鏡陣列還具有複數個第二柱狀子透鏡,該些第二柱狀子透鏡沿著該第二方向排列,並與該第一方向垂直設置,每一該些第二柱狀子透鏡在該第二方向上具有一第二節距,且該第一節距為該第二節距的S倍,該立體顯示裝置還包含: 一移動模組,配置以移動該第一柱狀透鏡陣列,致使該些第一柱狀子透鏡與該些第二柱狀子透鏡中之一群選擇性地光學耦合於該些光源與該入光面之間。The stereoscopic display device of claim 4, wherein each of the first columnar sub-lenses has a first pitch in the second direction, and the first lenticular lens array further has a plurality of second columns a second sub-lens arranged along the second direction and disposed perpendicular to the first direction, each of the second cylindrical sub-lenses having a second pitch in the second direction, and The first pitch is S times the second pitch, and the stereoscopic display device further includes: a moving module configured to move the first lenticular lens array, such that the first cylindrical sub-lenses and the first One of the two columnar sub-lenses is selectively optically coupled between the light sources and the light incident surface. 如請求項第1項所述之立體顯示裝置,其中該第二柱狀透鏡陣列具有複數個第二柱狀透鏡,且該些第二柱狀透鏡相對該第一方向為平行設置。The stereoscopic display device of claim 1, wherein the second lenticular lens array has a plurality of second lenticular lenses, and the second lenticular lenses are disposed in parallel with respect to the first direction. 如請求項第1項所述之立體顯示裝置,其中該第三柱狀透鏡陣列具有複數個第三柱狀透鏡,且該些第三柱狀透鏡相對該第一方向為傾斜設置。The stereoscopic display device of claim 1, wherein the third lenticular lens array has a plurality of third lenticular lenses, and the third lenticular lenses are disposed obliquely with respect to the first direction. 如請求項第7項所述之立體顯示裝置,其中該些畫素沿著相互垂直之該第一方向與一第二方向排列,並且每一該些第三柱狀透鏡在該第二方向上的寬度係小於等於每一該些畫素在該第二方向上的寬度。The stereoscopic display device of claim 7, wherein the pixels are arranged along the first direction and the second direction perpendicular to each other, and each of the third lenticular lenses is in the second direction The width is less than or equal to the width of each of the pixels in the second direction. 如請求項第7項所述之立體顯示裝置,其中該些第三柱狀透鏡相對該第一方向具有一傾斜角θ,並且該傾斜角θ實質上滿足: θ = tan-1 (1/N) 其中N為大於1之自然數。The stereoscopic display device of claim 7, wherein the third lenticular lenses have an inclination angle θ with respect to the first direction, and the inclination angle θ substantially satisfies: θ = tan -1 (1/N Where N is a natural number greater than one. 如請求項第9項所述之立體顯示裝置,其中N的範圍為2至8。The stereoscopic display device of claim 9, wherein N ranges from 2 to 8. 如請求項第9項所述之立體顯示裝置,其中該些畫素沿著相互垂直之該第一方向與一第二方向排列,並且每一該些長條區域在該第二方向上的寬度係小於等於每一該些畫素在該第二方向上的寬度的1/(3N)倍。The stereoscopic display device of claim 9, wherein the pixels are arranged along the first direction and the second direction perpendicular to each other, and the width of each of the plurality of strips in the second direction It is less than or equal to 1/(3N) times the width of each of the pixels in the second direction. 如請求項第1項所述之立體顯示裝置,其中該些光源位於該第一柱狀透鏡陣列的焦面上。The stereoscopic display device of claim 1, wherein the light sources are located on a focal plane of the first lenticular lens array. 如請求項第1項所述之立體顯示裝置,其中該顯示模組位於該第二柱狀透鏡陣列的焦面與該第三柱狀透鏡陣列的焦面上。The stereoscopic display device of claim 1, wherein the display module is located on a focal plane of the second lenticular lens array and a focal plane of the third lenticular lens array.
TW106113705A 2017-04-25 2017-04-25 Stereo display device TWI620959B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106113705A TWI620959B (en) 2017-04-25 2017-04-25 Stereo display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106113705A TWI620959B (en) 2017-04-25 2017-04-25 Stereo display device

Publications (2)

Publication Number Publication Date
TWI620959B TWI620959B (en) 2018-04-11
TW201839462A true TW201839462A (en) 2018-11-01

Family

ID=62639881

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106113705A TWI620959B (en) 2017-04-25 2017-04-25 Stereo display device

Country Status (1)

Country Link
TW (1) TWI620959B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI796704B (en) * 2021-06-08 2023-03-21 宏碁股份有限公司 Stereoscopic display

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6710920B1 (en) * 1998-03-27 2004-03-23 Sanyo Electric Co., Ltd Stereoscopic display
JP2008134617A (en) * 2006-10-23 2008-06-12 Nec Lcd Technologies Ltd Display device, terminal device, display panel, and optical member
KR101780420B1 (en) * 2011-03-24 2017-09-22 삼성디스플레이 주식회사 Back-light unit and 3-dimensional image display device having the same
WO2013187032A1 (en) * 2012-06-11 2013-12-19 パナソニック株式会社 Three-dimensional image display device and three-dimensional image display method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI796704B (en) * 2021-06-08 2023-03-21 宏碁股份有限公司 Stereoscopic display
US11700363B2 (en) 2021-06-08 2023-07-11 Acer Incorporated Stereoscopic display

Also Published As

Publication number Publication date
TWI620959B (en) 2018-04-11

Similar Documents

Publication Publication Date Title
US9538165B2 (en) Image display apparatus
US10451886B2 (en) Stereoscopic display device
US20110216407A1 (en) Lighting device for an autostereoscopic display
TWI608254B (en) Image display device
TWI688255B (en) Multiview camera array, multiview system, and method having camera sub-arrays with a shared camera
JP5777177B2 (en) 3D display
JP2010237416A (en) Stereoscopic display device
US20140028807A1 (en) Optical imaging system and 3d display apparatus
US11054661B2 (en) Near-eye display device and near-eye display method
JP5943747B2 (en) 3D image display device
WO2022030538A1 (en) Spatial floating image information display system and light source device used therefor
TWI594020B (en) Stereo display device
TWI620959B (en) Stereo display device
JP2008139524A (en) Naked eye stereoscopic viewing system
US9992485B2 (en) Backlighting for head tracking and time multiplexed displays
TWI621877B (en) Stereo display device
CN108802888B (en) Backlight module and stereoscopic display device using same
US20230156175A1 (en) Autostereoscopic display device and method
TWI597532B (en) Backlight module and stereo display device using the same
CN107144973B (en) Compact cylindrical lens grating type naked eye 3D display panel
WO2022080117A1 (en) Space-floating video image display apparatus and light source device
CN108732773B (en) Stereoscopic display device
JP2017142438A (en) Optical image formation device and method
US20230359063A1 (en) Integrated stereoscopic image display device
US10174906B2 (en) LED luminaire tiling with a lens array containing a plurality of lenslets

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees