TW201835520A - Heat dissipation fin set - Google Patents

Heat dissipation fin set Download PDF

Info

Publication number
TW201835520A
TW201835520A TW106110057A TW106110057A TW201835520A TW 201835520 A TW201835520 A TW 201835520A TW 106110057 A TW106110057 A TW 106110057A TW 106110057 A TW106110057 A TW 106110057A TW 201835520 A TW201835520 A TW 201835520A
Authority
TW
Taiwan
Prior art keywords
heat dissipation
hollow
columns
heat
hollow heat
Prior art date
Application number
TW106110057A
Other languages
Chinese (zh)
Inventor
黃江城
Original Assignee
鴻進科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鴻進科技股份有限公司 filed Critical 鴻進科技股份有限公司
Priority to TW106110057A priority Critical patent/TW201835520A/en
Publication of TW201835520A publication Critical patent/TW201835520A/en

Links

Abstract

The heat dissipation fin set includes a base and multiple hollow heat dissipation columns. The base has a first surface, a second surface and multiple assembly holes. The hollow heat dissipation columns are embedded in the assembly holes. Each of the hollow heat dissipation columns has a heat dissipation channel, and the heat dissipation channels connect with the assembly holes respectively. Since the hollow heat dissipation columns connecting with the assembly holes respectively are provided in the heat dissipation fin set, the heat dissipation area and the heat dissipation path are increased. Therefore, the heat dissipation rate is raised.

Description

散熱鰭片組  Heat sink fin set  

本發明係關於一種散熱鰭片組,且特別是有關於一種具空心散熱柱的散熱鰭片組。 The present invention relates to a heat sink fin set, and more particularly to a heat sink fin set having a hollow heat sink.

隨著電子科技的發展,電子元件的效能相對提高。伴隨而來的是電子元件在單位時間內所發出的熱量越來越多。因此,為了避免電子元件溫度過高而導致電子元件的效能降低或當機,常見之散熱方式乃是加裝一散熱器於電子元件上方。如此一來,可藉由散熱器將電子元件發出的熱量散出,進而降低電子元件的溫度。 With the development of electronic technology, the performance of electronic components has increased relatively. It is accompanied by an increase in the amount of heat emitted by electronic components per unit of time. Therefore, in order to prevent the electronic component from being degraded or down when the temperature of the electronic component is too high, a common heat dissipation method is to install a heat sink over the electronic component. In this way, the heat emitted by the electronic component can be dissipated by the heat sink, thereby lowering the temperature of the electronic component.

傳統之散熱器主要分為主動式散熱與被動式散熱。主動式散熱一般包含風扇與散熱鰭片。散熱鰭片貼附於電子元件上,使電子元件發出的熱量能夠傳導至散熱鰭片。當風扇運轉時,風扇引導氣流吹向散熱鰭片,以將傳導至散熱鰭片的熱量帶走,進而達到散熱的效果。被動式散熱一般僅藉由散熱鰭片貼附於電子元件上,並透過自然對流的方式將傳導至散熱鰭片的熱量帶走。然而,因為傳統散熱器採用實心之散熱鰭片,僅散熱鰭片的外部單一散熱途徑能夠進行散熱,故傳統散熱器應用於高發熱量之電子元件時,其散熱效能恐跟不上高發熱量之電子元件的熱量產生速度。 Traditional radiators are mainly divided into active heat dissipation and passive heat dissipation. Active cooling typically includes fans and heat sink fins. The heat sink fins are attached to the electronic components so that the heat generated by the electronic components can be conducted to the heat sink fins. When the fan is running, the fan directs the airflow to the heat sink fins to remove the heat conducted to the heat sink fins, thereby achieving the heat dissipation effect. Passive heat dissipation is generally attached to the electronic component only by the heat dissipation fins, and the heat conducted to the heat dissipation fins is carried away by natural convection. However, because the traditional heat sink uses solid heat sink fins, only the external heat dissipation path of the heat sink fins can dissipate heat. Therefore, when the conventional heat sink is applied to electronic components with high heat generation, the heat dissipation performance may not keep up with the high heat generation electrons. The heat generation rate of the component.

本發明在於提供一種散熱鰭片組,藉以解決實心散熱鰭片散熱方向單一,以至於散熱器之散熱效率跟不上電子元件發熱效能的問題。 The invention provides a heat dissipation fin group, so as to solve the problem that the solid heat dissipation fin has a single heat dissipation direction, so that the heat dissipation efficiency of the heat sink cannot keep up with the heat generation performance of the electronic component.

本發明提出一種散熱鰭片組。此散熱鰭片組包括一基部以及多個空心散熱柱。基部具有一第一表面、一第二表面及多個組裝孔。第一表面與第二表面相對。組裝孔自第一表面延伸至第二表面。各空心散熱柱分別嵌設於基部之組裝孔。每一空心散熱柱具有一散熱通道。散熱通道分別連通組裝孔。 The invention provides a heat sink fin set. The heat sink fin set includes a base and a plurality of hollow heat dissipation columns. The base has a first surface, a second surface and a plurality of assembly holes. The first surface is opposite the second surface. The assembly aperture extends from the first surface to the second surface. Each of the hollow heat dissipating columns is respectively embedded in the assembly hole of the base. Each hollow heat sink has a heat dissipation channel. The heat dissipation channels respectively communicate with the assembly holes.

本發明之散熱鰭片組採用了空心散熱柱取代習知的實心散熱鰭片,且空心散熱柱的散熱通道與基部的組裝孔連通,因此散熱氣流除了可流經空心散熱柱之外部空間,亦可流經空心散熱柱內部的散熱通道,以透過雙重散熱途徑上的散熱氣流將傳導至空心散熱柱之熱量排出,藉以提升散熱鰭片組散熱速率。 The heat dissipation fin group of the invention adopts a hollow heat dissipation column to replace the conventional solid heat dissipation fin, and the heat dissipation channel of the hollow heat dissipation column communicates with the assembly hole of the base, so that the heat dissipation airflow can flow through the outer space of the hollow heat dissipation column. The heat dissipation channel flowing through the inside of the hollow heat dissipation column can discharge the heat conducted to the hollow heat dissipation column through the heat dissipation airflow on the double heat dissipation path, thereby improving the heat dissipation rate of the heat dissipation fin group.

以上關於本發明內容的說明及以下實施方式的說明係用以示範與解釋本發明的原理,並且提供本發明的專利申請範圍更進一步的解釋。 The above description of the present invention and the following description of the embodiments are intended to illustrate and explain the principles of the invention, and to provide a further explanation of the scope of the invention.

10a、10b、10c、10d‧‧‧散熱鰭片組 10a, 10b, 10c, 10d‧‧‧ heat sink fin set

20‧‧‧電子元件 20‧‧‧Electronic components

100‧‧‧基部 100‧‧‧ base

101‧‧‧第一表面 101‧‧‧ first surface

102‧‧‧第二表面 102‧‧‧ second surface

104‧‧‧側表面 104‧‧‧ side surface

110‧‧‧組裝孔 110‧‧‧Assembled holes

120‧‧‧側連接道 120‧‧‧ side connection

200‧‧‧空心散熱柱 200‧‧‧hollow heat sink

201‧‧‧第一端 201‧‧‧ first end

202‧‧‧第二端 202‧‧‧ second end

203‧‧‧第一端面 203‧‧‧ first end face

204‧‧‧第二端面 204‧‧‧second end face

210‧‧‧散熱通道 210‧‧‧heating channel

圖1為根據本發明之第一實施例所述之散熱鰭片組的立體示意圖。 1 is a perspective view of a heat sink fin set according to a first embodiment of the present invention.

圖2a為圖1之散熱鰭片組與電子元件貼附方式的剖面示意圖。 2a is a cross-sectional view showing the manner in which the heat sink fin group and the electronic component of FIG. 1 are attached.

圖2b為圖1之散熱鰭片組與電子元件另一貼附方式的剖面示意圖。 FIG. 2b is a cross-sectional view showing another attachment manner of the heat dissipation fin group and the electronic component of FIG. 1. FIG.

圖3為利用圖1之散熱鰭片組搭配風扇對電子元件進行散熱而測得的電子元件的溫度時間曲線示意圖。 FIG. 3 is a schematic diagram showing the temperature time curve of the electronic component measured by using the heat sink fin set of FIG. 1 and the fan to dissipate heat from the electronic component.

圖4為根據本發明之第二實施例所述之散熱鰭片組的剖面示意圖。 4 is a cross-sectional view showing a heat dissipating fin set according to a second embodiment of the present invention.

圖5為根據本發明之第三實施例所述之散熱鰭片組的剖面示意圖。 FIG. 5 is a cross-sectional view showing a heat dissipating fin set according to a third embodiment of the present invention.

圖6為根據本發明之第四實施例所述之散熱鰭片組的剖面示意圖。 FIG. 6 is a cross-sectional view showing a heat dissipating fin set according to a fourth embodiment of the present invention.

請參閱圖1。圖1為根據本發明之第一實施例所述之散熱鰭片組的立體示意圖。本實施例之散熱鰭片組10a包含一基部100與多個空心散熱柱200。其中基部100具有一第一表面101、一第二表面102及複數個組裝孔110。第二表面102相對於第一表面101。組裝孔110自第一表面101延伸至第二表面102。空心散熱柱200分別嵌設於基部100之組裝孔110。每一空心散熱柱200具有一散熱通道210。散熱通道210分別連通組裝孔110。每一空心散熱柱200具有一第一端201與相對之第二端202,兩者分別對應有一第一端面203與一第二端面204。在本實施例中,空心散熱柱200之第一端201凸出於基部100之第一表面101。空心散熱柱200之第二端面204與基部100之第二表面102切齊。 Please refer to Figure 1. 1 is a perspective view of a heat sink fin set according to a first embodiment of the present invention. The heat dissipation fin set 10a of the present embodiment includes a base portion 100 and a plurality of hollow heat dissipation columns 200. The base 100 has a first surface 101, a second surface 102, and a plurality of assembly holes 110. The second surface 102 is opposite the first surface 101. The assembly aperture 110 extends from the first surface 101 to the second surface 102. The hollow heat dissipation columns 200 are respectively embedded in the assembly holes 110 of the base 100. Each of the hollow heat dissipation columns 200 has a heat dissipation passage 210. The heat dissipation channels 210 respectively communicate with the assembly holes 110. Each of the hollow heat dissipation columns 200 has a first end 201 and an opposite second end 202. The two have a first end surface 203 and a second end surface 204, respectively. In the present embodiment, the first end 201 of the hollow heat dissipating post 200 protrudes from the first surface 101 of the base 100. The second end face 204 of the hollow heat dissipating post 200 is aligned with the second surface 102 of the base 100.

此實施例中,電子元件20之熱量可經由熱管導送至本散熱鰭片組10a進行散熱,亦可將發熱之電子元件20直接貼附於本散熱鰭片組10a進行散熱。下列以電子元件20直接貼附於本散熱鰭片組10a為例,請參閱圖2a與圖2b。圖2a與圖2b為兩種圖1所示之散熱鰭片組與電子元件20貼附方式的剖面示意圖。如圖2a所述,散熱鰭片組10a 可透過基部100之第二表面102與發熱電子元件20熱接觸。如圖2b所述,散熱鰭片組10a透過空心散熱柱200的第一端面203與發熱電子元件20熱接觸。 In this embodiment, the heat of the electronic component 20 can be transferred to the heat dissipation fin set 10a via the heat pipe for heat dissipation, and the heat-generating electronic component 20 can be directly attached to the heat dissipation fin set 10a for heat dissipation. The following is an example in which the electronic component 20 is directly attached to the heat dissipation fin set 10a, see FIG. 2a and FIG. 2b. 2a and 2b are schematic cross-sectional views showing the manner in which the heat dissipating fin set and the electronic component 20 shown in Fig. 1 are attached. As shown in FIG. 2a, the heat sink fin set 10a is in thermal contact with the heat generating electronic component 20 through the second surface 102 of the base 100. As shown in FIG. 2b, the heat dissipation fin group 10a is in thermal contact with the heat-generating electronic component 20 through the first end surface 203 of the hollow heat dissipation column 200.

另外,此實施例中,由於空心散熱柱200的散熱通道210與基部100的組裝孔110連通,因此除空心散熱柱200外部空間可供熱氣流通外,氣流亦可流經空心散熱柱200內部的散熱通道210,透過雙重散熱途徑的散熱氣流將傳導至空心散熱柱200之熱量排出,達到提升散熱鰭片組10a散熱速率的功效。 In addition, in this embodiment, since the heat dissipation channel 210 of the hollow heat dissipation column 200 communicates with the assembly hole 110 of the base portion 100, the airflow can flow through the interior of the hollow heat dissipation column 200 except for the external space of the hollow heat dissipation column 200 for the hot air flow. The heat dissipation channel 210 discharges the heat conducted to the hollow heat dissipation column 200 through the heat dissipation airflow of the double heat dissipation path, thereby improving the heat dissipation rate of the heat dissipation fin group 10a.

請參閱圖3與下表一。圖3為利用圖1之散熱鰭片組搭配風扇對電子元件進行散熱而測得的電子元件的溫度時間曲線示意圖。下表一為利用圖1之散熱鰭片組搭配風扇對電子元件進行散熱而測得的電子元件溫度隨時間變化的紀錄表。根據圖3與表一所述,傳統之散熱鰭片組之基部並未嵌設空心散熱柱,即如表一之空心散熱柱數量為零個的狀態。當傳統之散熱鰭片組搭配風扇對溫度為攝氏80度的電子元件20進行散熱時,電子元件20的溫度在風扇開啟24分鐘後自攝氏80度降至攝氏62度。 Please refer to Figure 3 and Table 1 below. FIG. 3 is a schematic diagram showing the temperature time curve of the electronic component measured by using the heat sink fin set of FIG. 1 and the fan to dissipate heat from the electronic component. Table 1 below is a record of the temperature of the electronic components measured with time by using the heat sink fin set of Fig. 1 with a fan to dissipate heat from the electronic components. According to FIG. 3 and Table 1, the hollow heat dissipating column is not embedded in the base of the conventional heat dissipating fin set, that is, the number of the hollow heat dissipating columns in Table 1 is zero. When the conventional heat sink fin set is combined with a fan to dissipate the electronic component 20 having a temperature of 80 degrees Celsius, the temperature of the electronic component 20 is reduced from 80 degrees Celsius to 62 degrees Celsius after the fan is turned on for 24 minutes.

此外,在表一中,分別將散熱鰭片組10a分成空心散熱柱200數量為33、57、81根三種狀況。當空心散熱柱200數量為33根之散熱鰭片組10a搭配風扇對溫度為攝氏80度的電子元件20進行散熱時,電子元件20的溫度在風扇開啟24分鐘後自攝氏80度降至攝氏56度。與基部100未嵌設空心散熱柱200相比,基部100嵌設33根空心散熱柱200時,電子元件20的溫度多降低了攝氏6度。 In addition, in Table 1, the heat dissipation fin group 10a is divided into three types of hollow heat dissipation columns 200: 33, 57, and 81. When the number of the heat dissipation fins 200 of the heat dissipation column 200 is 33 and the fan dissipates heat to the electronic component 20 having a temperature of 80 degrees Celsius, the temperature of the electronic component 20 drops from 80 degrees Celsius to 56 degrees Celsius after the fan is turned on for 24 minutes. degree. When the base 100 is embedded with 33 hollow heat dissipation columns 200, the temperature of the electronic component 20 is lowered by 6 degrees Celsius compared to when the base 100 is not embedded with the hollow heat dissipation column 200.

而當空心散熱柱200數量為57之散熱鰭片組10a對溫度為攝氏80度的電子元件20進行散熱時,電子元件20的溫度在風扇開啟24分鐘後自攝氏80度降至攝氏51度,與基部100未嵌設空心散熱柱200相比,基部100嵌設57根空心散熱柱200時,電子元件20的溫度多降低了攝氏11度。 When the heat dissipating fin group 10 of the number of the hollow heat dissipating columns 200 is heat-dissipating the electronic component 20 having a temperature of 80 degrees Celsius, the temperature of the electronic component 20 is reduced from 80 degrees Celsius to 51 degrees Celsius after the fan is turned on for 24 minutes. When the base 100 is embedded with 57 hollow heat dissipating posts 200, the temperature of the electronic component 20 is lowered by 11 degrees Celsius compared to when the base 100 is not embedded with the hollow heat dissipating post 200.

而當空心散熱柱200數量為81之散熱鰭片組10a對溫度為攝氏80度的電子元件20進行散熱時,電子元件20的溫度在風扇開啟24分鐘後自攝氏80度降至攝氏49度,與基部100未嵌設空心散熱柱200相比,基部100嵌設81根空心散熱柱200時,電子元件20的溫度多降低了攝氏13度。 When the heat dissipating fin group 10 of the number of the hollow heat dissipating columns 200 is heat-dissipating the electronic component 20 having a temperature of 80 degrees Celsius, the temperature of the electronic component 20 is reduced from 80 degrees Celsius to 49 degrees Celsius after the fan is turned on for 24 minutes. When the base 100 is embedded with the 81 hollow heat dissipation columns 200, the temperature of the electronic component 20 is lowered by 13 degrees Celsius compared to when the base 100 is not embedded with the hollow heat dissipation column 200.

一般而言,當溫度介於45度至55度時,電子元件20之運作效能最佳。而根據散熱測試結果可知散熱鰭片組10a基部100嵌設空心散熱柱200後進行散熱,電子元件20的降溫速度變快,且可使電子元件20的溫度較快降溫至接近或是落於工作效能較佳之溫度區間。 In general, the electronic component 20 operates optimally when the temperature is between 45 and 55 degrees. According to the heat dissipation test result, it can be known that the heat dissipation fin group 10a is embedded with the hollow heat dissipation column 200, and the heat dissipation speed of the electronic component 20 is increased, and the temperature of the electronic component 20 can be cooled to be close to or fall behind. A temperature range with better performance.

請參閱圖4。圖4為根據本發明之第二實施例所述之散熱鰭片組的剖面示意圖。第二實施例之散熱鰭片組10b包括一基部100與多個空心散熱柱200。其中基部100具有一第一表面101、一第二表面102及複數個組裝孔110。第二表面102相對於第一表面101。組裝孔110自第一表面101延伸至第二表面102。空心散熱柱200分別嵌設於基部100之組裝孔110。每一空心散熱柱200具有一散熱通道210。散熱通道210分別連通組裝孔110。每一空心散熱柱200具有一第一端201與相對之第二端202,兩者分別對應有一第一端面203與一第二端面204。空心散熱柱200之第一端面203與基部100之第一表面101切齊。空心散熱柱200之第二端面204與基部100之第二表面102切齊。 Please refer to Figure 4. 4 is a cross-sectional view showing a heat dissipating fin set according to a second embodiment of the present invention. The heat dissipation fin group 10b of the second embodiment includes a base portion 100 and a plurality of hollow heat dissipation columns 200. The base 100 has a first surface 101, a second surface 102, and a plurality of assembly holes 110. The second surface 102 is opposite the first surface 101. The assembly aperture 110 extends from the first surface 101 to the second surface 102. The hollow heat dissipation columns 200 are respectively embedded in the assembly holes 110 of the base 100. Each of the hollow heat dissipation columns 200 has a heat dissipation passage 210. The heat dissipation channels 210 respectively communicate with the assembly holes 110. Each of the hollow heat dissipation columns 200 has a first end 201 and an opposite second end 202. The two have a first end surface 203 and a second end surface 204, respectively. The first end surface 203 of the hollow heat dissipation column 200 is aligned with the first surface 101 of the base 100. The second end face 204 of the hollow heat dissipating post 200 is aligned with the second surface 102 of the base 100.

請參閱圖5。圖5為根據本發明之第三實施例所述之散熱鰭片組的剖面示意圖。第三實施例之散熱鰭片組10c包括一基部100與多個空心散熱柱200。其中基部100具有一第一表面101、一第二表面102及複數個組裝孔110。第二表面102相對於第一表面101。組裝孔110自第一表面101延伸至第二表面102。空心散熱柱200分別嵌設於基部100之組裝孔110。每一空心散熱柱200具有一散熱通道210。散熱通道210分別連通組裝孔110。每一空心散熱柱200具有一第一端201與相對之第二端202,兩者分別對應有一第一端面203與一第二端面204。空心散熱柱200之第一端201凸出第一表面101。空心散熱柱200之第二端面204介於第一表面101與第二表面102之間。 Please refer to Figure 5. FIG. 5 is a cross-sectional view showing a heat dissipating fin set according to a third embodiment of the present invention. The heat dissipation fin group 10c of the third embodiment includes a base portion 100 and a plurality of hollow heat dissipation columns 200. The base 100 has a first surface 101, a second surface 102, and a plurality of assembly holes 110. The second surface 102 is opposite the first surface 101. The assembly aperture 110 extends from the first surface 101 to the second surface 102. The hollow heat dissipation columns 200 are respectively embedded in the assembly holes 110 of the base 100. Each of the hollow heat dissipation columns 200 has a heat dissipation passage 210. The heat dissipation channels 210 respectively communicate with the assembly holes 110. Each of the hollow heat dissipation columns 200 has a first end 201 and an opposite second end 202. The two have a first end surface 203 and a second end surface 204, respectively. The first end 201 of the hollow heat dissipation column 200 protrudes from the first surface 101. The second end surface 204 of the hollow heat dissipation column 200 is interposed between the first surface 101 and the second surface 102.

另外,請參閱圖1與圖5。第三實施例之散熱鰭片組10c 之基部100更包含有一側表面104與複數個側連接道120。側表面104連接第一表面101與第二表面102。此些側連接道120自側表面104向內延伸連通組裝孔110。除能增加散熱表面積外,亦可使熱量由側方向消散或使空氣由側方向進入將熱量由上方或下方帶離。 In addition, please refer to Figure 1 and Figure 5. The base 100 of the heat dissipation fin set 10c of the third embodiment further includes a side surface 104 and a plurality of side connecting channels 120. The side surface 104 connects the first surface 101 and the second surface 102. The side links 120 extend inwardly from the side surface 104 to communicate with the assembly holes 110. In addition to increasing the heat dissipation surface area, it is also possible to dissipate heat from the side direction or allow air to enter from the side to remove heat from above or below.

請參閱圖6。圖6為根據本發明之第四實施例所述之散熱鰭片組剖面示意圖。第四實施例之散熱鰭片組10d包括一基部100與多個空心散熱柱200。其中基部100具有一第一表面101、一第二表面102及複數個組裝孔110。第二表面102相對於第一表面101。組裝孔110自第一表面101延伸至第二表面102。空心散熱柱200分別嵌設於基部100之組裝孔110。每一空心散熱柱200具有一散熱通道210。散熱通道210分別連通組裝孔110。每一空心散熱柱200具有一第一端201與相對之第二端202,兩者分別對應有一第一端面203與一第二端面204。空心散熱柱200的第一端201凸出第一表面101。空心散熱柱200的第二端202凸出第二表面102。 Please refer to Figure 6. FIG. 6 is a cross-sectional view showing a heat dissipating fin set according to a fourth embodiment of the present invention. The heat dissipation fin group 10d of the fourth embodiment includes a base portion 100 and a plurality of hollow heat dissipation columns 200. The base 100 has a first surface 101, a second surface 102, and a plurality of assembly holes 110. The second surface 102 is opposite the first surface 101. The assembly aperture 110 extends from the first surface 101 to the second surface 102. The hollow heat dissipation columns 200 are respectively embedded in the assembly holes 110 of the base 100. Each of the hollow heat dissipation columns 200 has a heat dissipation passage 210. The heat dissipation channels 210 respectively communicate with the assembly holes 110. Each of the hollow heat dissipation columns 200 has a first end 201 and an opposite second end 202. The two have a first end surface 203 and a second end surface 204, respectively. The first end 201 of the hollow heat dissipation column 200 protrudes from the first surface 101. The second end 202 of the hollow heat dissipation column 200 protrudes from the second surface 102.

再者,本發明之散熱鰭片組10a、10b、10c與10d之基部100與空心散熱柱200之材質可為相同或相異。為加強熱傳導,本散熱鰭片組10可採用導熱係數較大之空心散熱柱200與導熱係數較小之基部100之複合式材質組成。例如:空心散熱柱200採用金屬銅搭配基部100採用金屬鋁。 Furthermore, the materials of the base 100 and the hollow heat dissipation column 200 of the heat dissipation fin sets 10a, 10b, 10c and 10d of the present invention may be the same or different. In order to enhance heat conduction, the heat dissipation fin group 10 can be composed of a composite material of a hollow heat dissipation column 200 having a large thermal conductivity and a base portion 100 having a small thermal conductivity. For example, the hollow heat dissipating column 200 is made of metal copper and the base 100 is made of metal aluminum.

根據上述實施例之散熱鰭片組,由於本發明採用空心散熱柱取代傳統常見的實心散熱鰭片,且將空心散熱柱分別嵌設於基部之組裝孔。空心散熱柱的散熱通道以及側連接道連通基部之組裝孔。因此除 散熱面積增加外,本發明之散熱鰭片組除空心散熱柱外部空間可供熱氣流通外,另氣流亦可流經空心散熱柱內部的散熱通道。使散熱氣流可經由雙重散熱途徑將傳導至空心散熱柱之熱量排出。此外,本發明之散熱鰭片組與熱源接觸之表面可以是凸出之空心散熱柱的一端面或是基部的任一表面。再者,本發明可藉由空心散熱柱與基部的相異材質組成加強熱傳導增強散熱功效。 According to the heat dissipation fin set of the above embodiment, the hollow heat dissipation column is used in the present invention to replace the conventional solid heat dissipation fins, and the hollow heat dissipation columns are respectively embedded in the assembly holes of the base. The heat dissipation channel of the hollow heat dissipation column and the assembly hole of the side connecting channel connecting the base. Therefore, in addition to the increase in the heat dissipating area, the heat dissipating fin group of the present invention can pass through the outer space of the hollow heat dissipating column for the hot air flow, and the air flow can also flow through the heat dissipating channel inside the hollow heat dissipating column. The heat dissipation airflow can discharge heat conducted to the hollow heat dissipation column through a dual heat dissipation path. In addition, the surface of the heat dissipation fin set of the present invention in contact with the heat source may be an end surface of the protruding hollow heat dissipation column or any surface of the base. Furthermore, the invention can enhance the heat conduction and enhance the heat dissipation effect by the different materials of the hollow heat dissipation column and the base.

雖然本發明以前述之較佳實施例揭露如上,然其並非用以限定本發明,任何熟習相像技藝者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之專利保護範圍須視本說明書所附之申請專利範圍所界定者為準。 While the present invention has been described above in terms of the preferred embodiments thereof, it is not intended to limit the invention, and the invention may be modified and modified without departing from the spirit and scope of the invention. The patent protection scope of the invention is subject to the definition of the scope of the patent application attached to the specification.

Claims (9)

一種散熱鰭片組,包括:一基部,該基部具有一第一表面、一第二表面及複數個組裝孔,該第二表面相對於該第一表面,該些組裝孔自該第一表面延伸至該第二表面;以及複數個空心散熱柱,分別嵌設於該基部之該些組裝孔,每一該些空心散熱柱具有一散熱通道,該些散熱通道分別連通該些組裝孔。  A heat dissipation fin assembly includes: a base having a first surface, a second surface, and a plurality of assembly holes, the second surface being opposite to the first surface, the assembly holes extending from the first surface And the plurality of hollow heat dissipating columns are respectively embedded in the assembly holes of the base, and each of the hollow heat dissipating columns has a heat dissipation channel, and the heat dissipation channels respectively communicate with the assembly holes.   如申請專利範圍第1項所述之散熱鰭片組,其中該些空心散熱柱之其中一端面與該第一表面切齊,該些空心散熱柱之相對一端面與該第二表面切齊。  The heat dissipation fin assembly of claim 1, wherein one of the hollow heat dissipation columns is aligned with the first surface, and the opposite end surfaces of the hollow heat dissipation columns are aligned with the second surface.   如申請專利範圍第1項所述之散熱鰭片組,其中該些空心散熱柱之其中一端面與該第一表面切齊,該些空心散熱柱之相對一端凸出該第二表面。  The heat dissipation fin set of claim 1, wherein one of the hollow heat dissipation columns is aligned with the first surface, and the opposite ends of the hollow heat dissipation columns protrude from the second surface.   如申請專利範圍第1項所述之散熱鰭片組,其中該些空心散熱柱之其中一端面介於該第一表面與該第二表面之間,該些空心散熱柱之相對一端凸出該第二表面。  The heat dissipation fin assembly of claim 1, wherein one of the hollow heat dissipation columns is between the first surface and the second surface, and the opposite ends of the hollow heat dissipation columns protrude from the same The second surface.   如申請專利範圍第4項所述之散熱鰭片組,其中該基部具有一側表面,該側表面連接該第一表面與該第二表面,且該基部具有複數個側連接道,該些側連接道自該側表面向內延伸連通該些組裝孔。  The heat sink fin set of claim 4, wherein the base has a side surface that connects the first surface and the second surface, and the base has a plurality of side connecting channels, the sides The connecting passage extends inwardly from the side surface to communicate with the assembly holes.   如申請專利範圍第1項所述之散熱鰭片組,其中該些空心散熱柱之其中一端凸出該第一表面,該些空心散熱柱之相對一端凸出該第二表面。  The heat dissipation fin assembly of claim 1, wherein one of the hollow heat dissipation columns protrudes from the first surface, and the opposite ends of the hollow heat dissipation columns protrude from the second surface.   如申請專利範圍第1項所述之散熱鰭片組,其中該些空心散熱柱之導熱係數與該基板之導熱係數相異。  The heat dissipation fin group of claim 1, wherein the thermal conductivity of the hollow heat dissipation columns is different from the thermal conductivity of the substrate.   如申請專利範圍第7項所述之散熱鰭片組,其中該些空心散熱柱之導熱係數大於該基板之導熱係數。  The heat dissipation fin group of claim 7, wherein the hollow heat dissipation columns have a thermal conductivity greater than a thermal conductivity of the substrate.   如申請專利範圍第1項所述之散熱鰭片組,其中該些空心散熱柱間彼此間隔。  The heat dissipation fin set according to claim 1, wherein the hollow heat dissipation columns are spaced apart from each other.  
TW106110057A 2017-03-24 2017-03-24 Heat dissipation fin set TW201835520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106110057A TW201835520A (en) 2017-03-24 2017-03-24 Heat dissipation fin set

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106110057A TW201835520A (en) 2017-03-24 2017-03-24 Heat dissipation fin set

Publications (1)

Publication Number Publication Date
TW201835520A true TW201835520A (en) 2018-10-01

Family

ID=64797184

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106110057A TW201835520A (en) 2017-03-24 2017-03-24 Heat dissipation fin set

Country Status (1)

Country Link
TW (1) TW201835520A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110446398A (en) * 2019-07-19 2019-11-12 深圳兴奇宏科技有限公司 Radiator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110446398A (en) * 2019-07-19 2019-11-12 深圳兴奇宏科技有限公司 Radiator

Similar Documents

Publication Publication Date Title
US8132615B2 (en) Heat sink and heat dissipation device having the same
TWI633540B (en) Solid-state drive device
WO2017173778A1 (en) Omni-directional, convectional, active heat sink and stage light using same
US20120080177A1 (en) High-power finless heat dissipation module
WO2017117937A1 (en) Heat dissipation device for chip
CN108633217A (en) Radiating fin group
TW201835520A (en) Heat dissipation fin set
TW202045888A (en) Heat dissipation device
TWM638965U (en) Combined radiator structure
TWI588437B (en) Heat dissipator and heat dissipating device
TW202147968A (en) Heat dissipation structure, method and electronic device using the same
TW201433252A (en) Cooling apparatus and heat sink thereof
TW201502459A (en) Heat sink
TW201826259A (en) Server and solid-state storage device thereof
TWI603443B (en) Heat dissipation device
TWI544866B (en) Heat dissipation device
TWI302823B (en) Heat dissipation device
TWM466295U (en) Heat dissipation module
TWI469726B (en) Electronic device
TW201423344A (en) Heat sink
KR102346767B1 (en) Direct contact heat sink
TWI711799B (en) Heat sink
TW201835450A (en) Centrifugal fan module
TW201813489A (en) Heat sink especially for reducing heat resistance for high frequency and high speed electronic components
TWI556088B (en) Radiator structure