TW201820759A - Single-phase isolated power factor adjustment circuit with which the adjustment of the power factor is completed by the power factor adjustment module disposed on the secondary side - Google Patents

Single-phase isolated power factor adjustment circuit with which the adjustment of the power factor is completed by the power factor adjustment module disposed on the secondary side Download PDF

Info

Publication number
TW201820759A
TW201820759A TW105138256A TW105138256A TW201820759A TW 201820759 A TW201820759 A TW 201820759A TW 105138256 A TW105138256 A TW 105138256A TW 105138256 A TW105138256 A TW 105138256A TW 201820759 A TW201820759 A TW 201820759A
Authority
TW
Taiwan
Prior art keywords
coupled
power factor
current
output
switch
Prior art date
Application number
TW105138256A
Other languages
Chinese (zh)
Other versions
TWI630782B (en
Inventor
吳祈陞
鍾智賢
江炫樟
戴滄禮
Original Assignee
國家中山科學研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國家中山科學研究院 filed Critical 國家中山科學研究院
Priority to TW105138256A priority Critical patent/TWI630782B/en
Publication of TW201820759A publication Critical patent/TW201820759A/en
Application granted granted Critical
Publication of TWI630782B publication Critical patent/TWI630782B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)

Abstract

A single-phase isolated power factor adjustment circuit includes a rectifier module, a current conversion module, and a power factor adjustment module. The rectifier module converts an AC power source current inputted from an external AC power source into a first DC current for output. The current conversion module makes use of resonance to convert the first DC current to a second DC current for output. The power factor adjustment module receives the second DC current and adjusts the power factor of the second DC current. In this way, through the aforementioned circuit configuration, the adjustment of the power factor can be completed by the power factor adjustment module disposed on the secondary side, thereby achieving the advantages of less trouble, simple circuit, cost saving, small size, and high conversion efficiency.

Description

單相隔離式功因調整電路Single-phase isolated power factor adjustment circuit

本發明係關於一種功因調整電路,特別關於一種單相隔離式功因調整電路。The invention relates to a power factor adjustment circuit, and more particularly to a single-phase isolated power factor adjustment circuit.

如圖1所示,習知單相高功因之切換式電源供應器1000具有兩級電路架構,前級為非隔離之PFC整流器(rectifier)1100,後級為隔離式之直流轉直流轉換器1200。圖2及圖3亦分別為習知之切換式電源供應器2000, 3000,圖2為 PFC 升壓式AC-DC整流器2100結合全橋式相移DC-DC轉換器2200,圖3為升壓式AC-DC整流器3100結合LLC 諧振式DC-DC轉換器3200,圖2及圖3之切換式電源供應器2000, 3000皆適用於交流電源SAC 及負載Load。As shown in Figure 1, the conventional single-phase high-power-factor switching power supply 1000 has a two-stage circuit architecture. The former stage is a non-isolated PFC rectifier 1100, and the latter stage is an isolated DC-to-DC converter. 1200. Figures 2 and 3 are the conventional switching power supplies 2000 and 3000, respectively. Figure 2 is a PFC step-up AC-DC rectifier 2100 combined with a full-bridge phase-shift DC-DC converter 2200. Figure 3 is a boost type AC-DC rectifier 3100 combined with LLC resonant DC-DC converter 3200. The switching power supplies 2000 and 3000 of Figure 2 and Figure 3 are suitable for AC power S AC and load Load.

然而,習知的PFC電路具有以下缺點:(1)升壓式PFC轉換器由於直流輸出側為大電容,因此交流電壓輸入瞬間對此直流電容充電,容易造成相當高之輸入電流,造成整流子故障或輸出二極體故障,直流電壓亦容易被充電太高而造成主功率元件損毀;(2) PFC的控制在一次側,直流至直流轉換器的控制在二次側,因此控制電路需要一二次側分離,電路較為複雜;(3)高壓直流電容成本高體積大。However, the conventional PFC circuit has the following disadvantages: (1) Because the DC output side of the boost PFC converter is a large capacitor, this DC capacitor is charged instantly by the AC voltage input, which easily causes a relatively high input current and causes a commutator Failure or output diode failure, the DC voltage is also easily damaged due to charging too high; (2) PFC is controlled on the primary side, and the DC to DC converter is controlled on the secondary side, so the control circuit needs a The secondary side is separated, and the circuit is more complicated; (3) The high-voltage DC capacitor has a high cost and a large volume.

因此,需要一種具有隔離之PFC電路架構,其可以解決上述習知PFC電路之缺點。Therefore, a need exists for an isolated PFC circuit architecture that can address the shortcomings of the conventional PFC circuits described above.

為解決上述習知技術的問題,本發明之一目的在於提供一種單相隔離式功因調整電路,其係具有不易故障、電路簡單、節省成本、體積小及高轉換效率等優點。In order to solve the problems of the conventional technology, an object of the present invention is to provide a single-phase isolated power factor adjustment circuit, which has the advantages of not being easy to malfunction, simple circuit, saving cost, small size, high conversion efficiency and the like.

為達上述目的及其他目的,本發明係提供一種單相隔離式功因調整電路,包含一整流器模組、一電流轉換模組及一功因調整模組。To achieve the above and other objectives, the present invention provides a single-phase isolated power factor adjustment circuit including a rectifier module, a current conversion module, and a power factor adjustment module.

該整流器模組耦接於外部之一交流電源,該整流器模組將該交流電源輸入之一交流電源電流轉換為一第一直流電流輸出。The rectifier module is coupled to an external AC power source, and the rectifier module converts an AC power current from an AC power input into a first DC current output.

該電流轉換模組耦接於該整流器模組之輸出端,該電流轉換模組以諧振方式將該第一直流電流轉換為一第二直流電流輸出。The current conversion module is coupled to the output end of the rectifier module. The current conversion module converts the first DC current into a second DC current output in a resonant manner.

該功因調整模組耦接於該電流轉換模組之輸出端,該功因調整模組接收該第二直流電流並調整該第二直流電流的功率因數。The work factor adjustment module is coupled to the output end of the current conversion module. The work factor adjustment module receives the second DC current and adjusts the power factor of the second DC current.

在上述單相隔離式功因調整電路中,該整流器模組包括一第一整流輸入端、一第二整流輸入端、一第一整流輸出端及一第二整流輸出端,該第一整流輸入端耦接於該交流電源的一端;該第二整流輸入端耦接於該交流電源的另一端;以及該第一整流輸出端及第二整流輸出端耦接於該電流轉換模組。In the single-phase isolated power factor adjustment circuit, the rectifier module includes a first rectification input terminal, a second rectification input terminal, a first rectification output terminal, and a second rectification output terminal. The first rectification input The terminal is coupled to one end of the AC power source; the second rectifying input terminal is coupled to the other end of the AC power source; and the first rectifying output terminal and the second rectifying output terminal are coupled to the current conversion module.

在上述單相隔離式功因調整電路中,該電流轉換模組包括一第一次側組件、一第二次側組件及一線圈組件,該第一次側組件之輸入端耦接於該整流器模組,以接收該第一直流電流;該第二次側組件之輸出端耦接於功因調整模組,以輸出該第二直流電流;及一線圈組件耦接於該第一次側組件及該第二次側組件,並將該第一次側組件之直流輸出轉換為該第二次側組件之直流輸入。In the single-phase isolated power factor adjustment circuit, the current conversion module includes a first-side component, a second-side component, and a coil component. The input end of the first-side component is coupled to the rectifier. A module to receive the first DC current; an output end of the second-side component is coupled to a power factor adjustment module to output the second DC current; and a coil component is coupled to the first-side component And the second-side component, and converts the DC output of the first-side component into the DC input of the second-side component.

在上述單相隔離式功因調整電路中,該第一次側組件具有一第一開關、一第二開關、一第一電容及一第二電容,該第一開關之輸入端耦接於該第一整流輸出端,該第一開關之輸出端耦接於該線圈組件之輸入端的一側;該第二開關之輸入端耦接於該第二整流輸出端,該第二開關之輸出端耦接於該線圈組件之輸入端的一側;該第一電容之一端耦接於該第一整流輸出端,該第一電容之另一端耦接於該線圈組件之輸入端的另一側;及該第二電容之一端耦接於該第二整流輸出端,該第二電容之另一端耦接於該線圈組件之輸入端的另一側。In the single-phase isolated power factor adjustment circuit, the first-side component includes a first switch, a second switch, a first capacitor, and a second capacitor, and an input terminal of the first switch is coupled to the first switch. A first rectified output terminal, an output terminal of the first switch is coupled to one side of an input terminal of the coil component; an input terminal of the second switch is coupled to the second rectified output terminal, and an output terminal of the second switch is coupled Connected to one side of the input end of the coil component; one end of the first capacitor is coupled to the first rectified output end, the other end of the first capacitor is coupled to the other side of the input end of the coil component; and the first One terminal of the two capacitors is coupled to the second rectified output terminal, and the other terminal of the second capacitor is coupled to the other side of the input terminal of the coil component.

在上述單相隔離式功因調整電路中,該第一開關及該二開關係以50%責任週期方式交互觸發導通。In the aforementioned single-phase isolated power factor adjustment circuit, the first switch and the two-open relationship alternately trigger conduction in a 50% duty cycle manner.

在上述單相隔離式功因調整電路中,該第二次側組件具有一橋式整流器及一輸出電容,該橋式整流器耦接於該線圈組件之輸出端;該輸出電容耦接於該橋式整流器的兩整流輸出端之間。In the above-mentioned single-phase isolated power factor adjustment circuit, the second-side component has a bridge rectifier and an output capacitor, and the bridge rectifier is coupled to the output end of the coil component; the output capacitor is coupled to the bridge type Between the two rectifier output terminals of the rectifier.

在上述單相隔離式功因調整電路中,該功因調整模組具有一漏電感、一第三開關、一第四開關及一第四電容,該漏電感之一端耦接於該電流轉換模組之輸出端;該第三開關之輸入端耦接於該漏電感之另一端;該第四開關之輸入端耦接於該漏電感之另一端;及該第四電容的兩端分別耦接於該第三開關之輸出端及該第四開關之輸出端。In the single-phase isolated power factor adjustment circuit, the power factor adjustment module has a leakage inductance, a third switch, a fourth switch, and a fourth capacitor. One end of the leakage inductance is coupled to the current conversion mode. The output end of the group; the input end of the third switch is coupled to the other end of the leakage inductance; the input end of the fourth switch is coupled to the other end of the leakage inductance; and the two ends of the fourth capacitor are respectively coupled At the output of the third switch and at the output of the fourth switch.

綜上所述,本發明單相隔離式功因調整電路藉由整體電路配置,功率因數的調整可由位於二次側之功因調整模組來完成,從而達到不易故障、電路簡單、節省成本、體積小及高轉換效率等優點。In summary, the single-phase isolated power factor adjustment circuit of the present invention is configured by the overall circuit, and the adjustment of the power factor can be completed by the power factor adjustment module located on the secondary side, so that it is not easy to malfunction, the circuit is simple, the cost is saved, Small size and high conversion efficiency.

為充分瞭解本發明之目的、特徵及功效,茲藉由下述具體之實施例,並配合所附之圖式,對本發明做一詳細說明,說明如後:In order to fully understand the purpose, features and effects of the present invention, the following specific embodiments are used in conjunction with the accompanying drawings to make a detailed description of the present invention, which will be described later:

請參照圖4,圖4係本發明單相隔離式功因調整電路之一實施例的示意圖。如圖4所示,該單相隔離式功因調整電路包含一整流器模組10、一電流轉換模組20及一功因調整模組30。Please refer to FIG. 4, which is a schematic diagram of an embodiment of a single-phase isolated power factor adjustment circuit according to the present invention. As shown in FIG. 4, the single-phase isolated power factor adjustment circuit includes a rectifier module 10, a current conversion module 20, and a power factor adjustment module 30.

該整流器模組10耦接於外部之一交流電源VS ,該整流器模組將該交流電源VS 輸入之一交流電源電流IS 轉換為一第一直流電流輸出。The rectifier module 10 is coupled to an external AC power source V S , and the rectifier module converts an AC power source current I S inputted from the AC power source V S into a first DC current output.

該電流轉換模組20耦接於該整流器模組10之輸出端,該電流轉換模組20以諧振方式將該第一直流電流轉換為一第二直流電流輸出。The current conversion module 20 is coupled to the output terminal of the rectifier module 10. The current conversion module 20 converts the first DC current into a second DC current output in a resonant manner.

該功因調整模組30耦接於該電流轉換模組20之輸出端,該功因調整模組30接收該第二直流電流並調整該第二直流電流的功率因數。The work factor adjustment module 30 is coupled to the output end of the current conversion module 20. The work factor adjustment module 30 receives the second DC current and adjusts the power factor of the second DC current.

藉由以上電路配置,功率因數的調整可由位於二次側之功因調整模組30來完成,使輸入電流為低失真且輸入功率因數接近一,其輸出電壓亦能被精確維持(例如維持在130Vdc)。With the above circuit configuration, the power factor adjustment can be completed by the power factor adjustment module 30 on the secondary side, so that the input current is low distortion and the input power factor is close to one, and its output voltage can also be accurately maintained (for example, maintained at 130Vdc).

接著,請參照圖5及圖6,圖5係本發明單相隔離式功因調整電路之另一實施例的示意圖,圖6係本發明單相隔離式功因調整電路之再一實施例的示意圖。5 and FIG. 6, FIG. 5 is a schematic diagram of another embodiment of the single-phase isolated power factor adjustment circuit of the present invention, and FIG. 6 is another embodiment of the single-phase isolated power factor adjustment circuit of the present invention. schematic diagram.

該整流器模組10可包括一第一整流輸入端11、一第二整流輸入端12、一第一整流輸出端13及一第二整流輸出端14,該第一整流輸入端11可耦接於該交流電源VS 的正極端;該第二整流輸入端12可耦接於該交流電源VS 的負極端,該第一整流輸出端13及第二整流輸出端14可耦接於該電流轉換模組20。該整流器模組10可為一橋式整流器BR1。The rectifier module 10 may include a first rectifying input terminal 11, a second rectifying input terminal 12, a first rectifying output terminal 13 and a second rectifying output terminal 14. The first rectifying input terminal 11 may be coupled to The positive terminal of the AC power source V S ; the second rectified input terminal 12 may be coupled to the negative terminal of the AC power source V S ; the first rectified output terminal 13 and the second rectified output terminal 14 may be coupled to the current conversion Module 20. The rectifier module 10 may be a bridge rectifier BR1.

該電流轉換模組20可包括一第一次側組件21、一線圈組件22及一第二次側組件23,該第一次側組件21之輸入端耦接於該整流器模組10,以接收該第一直流電流;該第二次側組件23之輸出端耦接於功因調整模組30,以輸出該第二直流電流;該線圈組件22耦接於該第一次側組件21及該第二次側組件23,並將該第一次側組件21之直流輸出轉換為該第二次側組件23之直流輸入。The current conversion module 20 may include a first-side component 21, a coil component 22, and a second-side component 23. An input end of the first-side component 21 is coupled to the rectifier module 10 to receive the rectifier module 10. The first DC current; the output terminal of the second secondary-side component 23 is coupled to the power factor adjustment module 30 to output the second DC current; the coil component 22 is coupled to the first-side component 21 and the The second-side component 23 converts the DC output of the first-side component 21 into the DC input of the second-side component 23.

該第一次側組件21可具有一第一開關Q1、一第二開關Q2、一第一電容C1及一第二電容C2,該第一開關Q1之輸入端耦接於該第一整流輸出端11,該第一開關Q1之輸出端耦接於該線圈組件22之第一線圈N1的一側;該第二開關Q2之輸入端耦接於該第二整流輸出端12,該第二開關Q2之輸出端耦接於該線圈組件22之一第一線圈N1的一側;該第一電容C1之一端耦接於該第一整流輸出端13,該第一電容C1之另一端耦接於該線圈組件22之第一線圈N1的另一側;及該第二電容C2之一端耦接於該第二整流輸出端14,該第二電容C2之另一端耦接於該線圈組件22之第一線圈N1的另一側。The first-side component 21 may have a first switch Q1, a second switch Q2, a first capacitor C1, and a second capacitor C2. An input terminal of the first switch Q1 is coupled to the first rectification output terminal. 11. The output terminal of the first switch Q1 is coupled to one side of the first coil N1 of the coil component 22; the input terminal of the second switch Q2 is coupled to the second rectified output terminal 12, and the second switch Q2 The output terminal is coupled to one side of a first coil N1 of the coil component 22; one terminal of the first capacitor C1 is coupled to the first rectified output terminal 13, and the other terminal of the first capacitor C1 is coupled to the The other end of the first coil N1 of the coil component 22; and one end of the second capacitor C2 is coupled to the second rectified output terminal 14, and the other end of the second capacitor C2 is coupled to the first of the coil component 22; The other side of the coil N1.

理想上,該第一開關Q1及該第二開關Q2可以接近50%責任週期方式交互觸發導通,且該第一開關Q1及該第二開關Q2之間的切換可為零電壓切換。Ideally, the first switch Q1 and the second switch Q2 can be interactively triggered to conduct in a manner close to 50% duty cycle, and the switching between the first switch Q1 and the second switch Q2 can be zero voltage switching.

該線圈組件22可具有該第一線圈N1及一第二線圈N2,該第一線圈N1可為輸入端之線圈,該第二線圈N2可為輸出端之線圈,該第一線圈N1及該第二線圈N2具有不同的線圈匝數,以決定電壓轉換比例。The coil assembly 22 may have the first coil N1 and a second coil N2. The first coil N1 may be a coil at an input terminal, the second coil N2 may be a coil at an output terminal, the first coil N1 and the first coil N1. The two coils N2 have different coil turns to determine the voltage conversion ratio.

該第二次側組件23可具有一橋式整流器BR2及一輸出電容Cr,該橋式整流器BR2可耦接於該線圈組件22之第二線圈N2;該輸出電容Cr可耦接於該橋式整流器BR2的兩整流輸出端之間。The second secondary side component 23 may have a bridge rectifier BR2 and an output capacitor Cr. The bridge rectifier BR2 may be coupled to the second coil N2 of the coil component 22; the output capacitor Cr may be coupled to the bridge rectifier. Between the two rectified output terminals of BR2.

該功因調整模組30可具有一漏電感Lr、一第三開關S1、一第四開關S2及一第四電容C0 ,該漏電感Lr之一端耦接於該電流轉換模組20之輸出端;該第三開關S1之輸入端耦接於該漏電感Lr之另一端;該第四開關S2之輸入端耦接於該漏電感Lr之另一端;該第四電容C0 的兩端及外部之至少一負載R分別耦接於該第三開關S1之輸出端及該第四開關S2之輸出端。The power factor adjustment module 30 may have a leakage inductance Lr, a third switch S1, a fourth switch S2, and a fourth capacitor C 0. One end of the leakage inductance Lr is coupled to the output of the current conversion module 20. The input end of the third switch S1 is coupled to the other end of the leakage inductance Lr; the input end of the fourth switch S2 is coupled to the other end of the leakage inductance Lr; both ends of the fourth capacitor C 0 and At least one external load R is coupled to the output terminal of the third switch S1 and the output terminal of the fourth switch S2, respectively.

接著,請參照圖7,圖7為該電流轉換模組20之一實施例的等校電路,該電流轉換模組20可為高頻諧振式轉換器電路,該功因調整模組30可為半橋式轉換器電路,其中,交流橋式整流後之電壓在單位功因下為半正弦波,因此於一切換週期下,該電流轉換模組20之輸入電壓可以一電壓源Vin來表示。該電流轉換模組20之輸出連接於該功因調整模組30之漏電感Lr,因此可以一電流IL 來代表。該第一開關Q1及該第二開關Q2以接近50%責任週期方式交互觸發導通,使得漏電感Lr與輸出電容Cr形成一電流源諧振式電路,其工作波形如圖8所示。Next, please refer to FIG. 7, which is an equalization circuit of an embodiment of the current conversion module 20. The current conversion module 20 may be a high-frequency resonance converter circuit. The power factor adjustment module 30 may be In a half-bridge converter circuit, the voltage after the AC bridge rectification is a half sine wave under a unit power factor, so in a switching cycle, the input voltage of the current conversion module 20 can be represented by a voltage source Vin. The output of the current conversion module 20 is connected to the leakage inductance Lr of the power factor adjustment module 30, so it can be represented by a current I L. The first switch Q1 and the second switch Q2 alternately trigger conduction in a manner close to 50% of the duty cycle, so that the leakage inductance Lr and the output capacitor Cr form a current source resonant circuit, and its working waveform is shown in FIG. 8.

接著,如圖9A所示,功率因數調整之輸入電流的控制由該功因調整模組30控制其漏電感Lr之電流,其電流命令iLC 乃由電壓迴路產生之調整信號im 與感測之輸入電壓Kv Vin 相乘後產生,利用狀態平均法可得:…(1) 。Next, as shown in FIG. 9A, the input current of the power factor adjustment is controlled by the power factor adjustment module 30 to control the current of its leakage inductance Lr, and its current command i LC is an adjustment signal i m generated by the voltage loop and sensed. It is generated by multiplying the input voltage K v V in . Using the state average method, we can get: …(1) .

忽略Vo 及Vr 之變動,由(1)可得:…(2) 。Ignoring the changes in V o and V r , we can get from (1): …(2) .

考慮電流感測比例Ks以及PWM之增益可得:。…(3) 。Considering the current sensing ratio Ks and the gain of PWM, we get:. … (3).

針對一階之系統,電流誤差放大器(GCA)可以採用二類誤差放大器方式來設計如圖9B所示,由於PWM之控制電壓於一週期內僅能與其鋸齒波信號交會一次,因此電流迴路之最大頻寬(w co )受到Vcon 之上升斜率小於PWM鋸齒波(Vt )之上升斜率之限制,Vcon 之上升斜率可由感測之電感電流下降斜率經由GCA 放大決定,由上述限制可得:…(4) 。For a first-order system, the current error amplifier (GCA) can be designed with a second type of error amplifier as shown in Figure 9B. Since the PWM control voltage can only intersect with its sawtooth wave signal once in a week, the maximum current loop The bandwidth ( w co ) is limited by the rising slope of V con being less than the rising slope of the PWM sawtooth wave (V t ). The rising slope of V con can be determined by the decreasing slope of the sensed inductor current via G CA amplification. : … (4).

(4)重新整理可得:…(5)。(4) Rearrangement can be obtained: ... (5).

由(3)及(5)及利用 可得:…(6)。From (3) and (5) and utilization, we get: ... (6).

(6)重新整理可得:(rad/s) …(7)…(8)。(6) Rearrangement can be obtained: (rad / s)… (7) …(8).

(8)指出若以控制電壓Vcon 上升斜率限制與來設計,理論之最高電流迴路頻寬有可能高於或太接近切換頻率,因此不可能以此值來設定,一般限於雜訊比,頻寬(w co )之選擇可以設定在切換頻率的1/4~1/8。一旦頻寬(w co )選擇後,可以利用K-factor方法使二類誤差放大器之z =w co /K,p =w co /K。(8) It is pointed out that if the design is based on the control slope of the rising slope of the control voltage V con , the theoretical maximum current loop bandwidth may be higher or too close to the switching frequency, so it cannot be set at this value. Generally, it is limited to the noise to noise ratio. The width ( w co ) can be selected from 1/4 to 1/8 of the switching frequency. Once the bandwidth ( w co ) is selected, the K-factor method can be used to make z = w co / K and p = w co / K of the second type error amplifier.

由升降壓式轉換器之輸出側可得:…(9)。From the output side of the buck-boost converter: …(9).

考慮電壓感測比例Kv,利用(9)可得電壓迴路之小信號等校電路如圖10A所示,小信號模型如下:。…(10)。Considering the voltage sensing ratio Kv, the small-signal calibration circuit of the voltage loop using (9) is shown in Figure 10A. The small-signal model is as follows:. ... (10).

針對此一階之系統,電壓誤差放大器(Gv )可以採用二類誤差放大器方式來設計如圖10B所示,其頻寬受限於直流鏈之二次漣波,因此可設計於20Hz處以使電流命令ILC 具較低之二次漣波。For this first-order system, the voltage error amplifier (G v ) can be designed with a second-class error amplifier as shown in Figure 10B. Its bandwidth is limited by the secondary ripple of the DC link, so it can be designed at 20 Hz so that The current command I LC has a lower secondary ripple.

為了驗證上述所提出單相隔離式功因調整電路之原理,圖11設計了一1kW,130Vdc輸出之轉換器,其中,該電流轉換模組20為諧振式轉換器,該功因調整模組30為半橋式轉換器,模擬結果如圖12A至圖13D所示,圖12A~12C顯示PFC部分電路之動作,半橋式轉換器均能使其電流追隨其命令使輸入電流為低失真且輸入功率因數接近一,其輸出電壓亦能被精確維持在130Vdc。圖13A~圖13D所示為諧振式轉換器部分之動作,其顯示開關可達到零電壓切換而二極體電流亦能夠達到零電流切換,使轉換器具備高效率。以上這些模擬結果驗證了上述單相隔離式功因調整電路之原理與設計。In order to verify the principle of the above-mentioned single-phase isolated power factor adjustment circuit, FIG. 11 designs a 1kW, 130Vdc output converter, wherein the current conversion module 20 is a resonant converter, and the power factor adjustment module 30 It is a half-bridge converter. The simulation results are shown in Figures 12A to 13D. Figures 12A to 12C show the operation of some PFC circuits. The half-bridge converter can follow its command to make the input current low distortion and input. The power factor is close to one, and its output voltage can be accurately maintained at 130Vdc. 13A to 13D show the operation of the resonant converter part, which shows that the switch can reach zero voltage switching and the diode current can also reach zero current switching, so that the converter has high efficiency. These simulation results verify the principle and design of the above-mentioned single-phase isolated power factor adjustment circuit.

本發明單相隔離式功因調整電路由於可達柔性切換,因此可操作於相當高之頻率,可以運用於切換式電源供應器、交流充電器等以提高其效率及降低電路體積及降低成本,本發明亦可以當成高壓輸出之單級電源供應電路以降低成本及提升效率。The single-phase isolated power factor adjustment circuit of the present invention can be operated at a relatively high frequency due to flexible switching, and can be applied to switching power supplies, AC chargers, etc. to improve its efficiency, reduce circuit size and reduce costs. The invention can also be used as a single-stage power supply circuit with high voltage output to reduce costs and improve efficiency.

綜上所述,藉由以上電路配置,功率因數的調整可由位於二次側之功因調整模組來完成,從而達到不易故障、電路簡單、節省成本、體積小及高轉換效率等優點。In summary, with the above circuit configuration, the power factor adjustment can be completed by the power factor adjustment module located on the secondary side, thereby achieving the advantages of not being easy to malfunction, simple circuit, cost saving, small size and high conversion efficiency.

本發明在上文中已以較佳實施例揭露,然熟習本項技術者應理解的是,該實施例僅用於描繪本發明,而不應解讀為限制本發明之範圍。應注意的是,舉凡與該實施例等效之變化與置換,均應設為涵蓋於本發明之範疇內。因此,本發明之保護範圍當以申請專利範圍所界定者為準。The present invention has been disclosed in the foregoing with a preferred embodiment, but those skilled in the art should understand that this embodiment is only for describing the present invention, and should not be interpreted as limiting the scope of the present invention. It should be noted that all changes and substitutions equivalent to this embodiment should be included in the scope of the present invention. Therefore, the scope of protection of the present invention shall be defined by the scope of the patent application.

10‧‧‧整流器模組 10‧‧‧ Rectifier Module

11‧‧‧第一整流輸入端 11‧‧‧The first rectifier input

12‧‧‧第二整流輸入端 12‧‧‧second rectifier input

13‧‧‧第一整流輸出端 13‧‧‧first rectified output

14‧‧‧第二整流輸出端 14‧‧‧Second Rectified Output

20‧‧‧電流轉換模組 20‧‧‧Current Conversion Module

21‧‧‧第一次側組件 21‧‧‧First side assembly

22‧‧‧線圈組件 22‧‧‧coil assembly

23‧‧‧第二次側組件 23‧‧‧Second side component

30‧‧‧功因調整模組 30‧‧‧Power factor adjustment module

1000‧‧‧切換式電源供應器 1000‧‧‧ Switching Power Supply

1100‧‧‧PFC整流器 1100‧‧‧PFC Rectifier

1200‧‧‧直流轉直流轉換器 1200‧‧‧DC to DC Converter

2000‧‧‧切換式電源供應器 2000‧‧‧ Switching Power Supply

2100‧‧‧PFC 升壓式AC-DC整流器 2100‧‧‧PFC Step-up AC-DC Rectifier

2200‧‧‧全橋式相移DC-DC轉換器 2200‧‧‧ Full-Bridge Phase-Shift DC-DC Converter

3000‧‧‧切換式電源供應器 3000‧‧‧ Switching Power Supply

3100‧‧‧升壓式AC-DC整流器 3100‧‧‧Boost AC-DC Rectifier

3200‧‧‧LLC 諧振式DC-DC轉換器 3200‧‧‧LLC resonant DC-DC converter

BR1‧‧‧橋式整流器 BR1‧‧‧Bridge Rectifier

BR2‧‧‧橋式整流器 BR2‧‧‧Bridge Rectifier

C0‧‧‧第四電容C 0 ‧‧‧Fourth capacitor

C1‧‧‧第一電容 C1‧‧‧first capacitor

C2‧‧‧第二電容 C2‧‧‧Second capacitor

Cr‧‧‧輸出電容 Cr‧‧‧ output capacitor

R‧‧‧負載 R‧‧‧Load

Load‧‧‧負載 Load‧‧‧Load

Lr‧‧‧漏電感 Lr‧‧‧Leakage inductance

Ir‧‧‧電感電流 Ir‧‧‧ inductor current

Vr‧‧‧輸出電壓 Vr‧‧‧ output voltage

N1‧‧‧第一線圈 N1‧‧‧First coil

N2‧‧‧第二線圈 N2‧‧‧Second Coil

Q1‧‧‧第一開關 Q1‧‧‧The first switch

Q2‧‧‧第二開關 Q2‧‧‧Second switch

S1‧‧‧第三開關 S1‧‧‧Third switch

S2‧‧‧第四開關 S2‧‧‧Fourth switch

SAC‧‧‧交流電源S AC ‧‧‧ AC power

Vin‧‧‧電壓源 Vin‧‧‧ Voltage Source

VS‧‧‧交流電源V S ‧‧‧ AC power

[圖1]係習知切換式電源供應器之一實施例的電路圖。 [圖2]係習知切換式電源供應器之另一實施例的電路圖。 [圖3]係習知切換式電源供應器之再一實施例的電路圖。 [圖4]係本發明單相隔離式功因調整電路之一實施例的示意圖。 [圖5]係本發明單相隔離式功因調整電路之另一實施例的示意圖。 [圖6]係本發明單相隔離式功因調整電路之再一實施例的示意圖。 [圖7]係本發明之電流轉換模組之一實施例的等校電路圖。 [圖8]係本發明之一電流源諧振式電路的工作波形圖。 [圖9A]係本發明單相隔離式功因調整電路調整功率因數之一實施例的控制架構圖。 [圖9B]係本發明單相隔離式功因調整電路調整功率因數之一實施例的控制迴路波德圖。 [圖10A]係一小信號等校電路圖。 [圖10B]係本發明單相隔離式功因調整電路之一實施例的電壓控制迴路波德圖。 [圖11]係本發明單相隔離式功因調整電路之模擬圖。 [圖12A至圖12C]係圖11之模擬結果。 [圖13A至圖13D]係圖11之模擬結果[Fig. 1] is a circuit diagram of an embodiment of a conventional switching power supply. [Fig. 2] is a circuit diagram of another embodiment of a conventional switching power supply. [Fig. 3] is a circuit diagram of still another embodiment of a conventional switching power supply. [FIG. 4] It is a schematic diagram of an embodiment of the single-phase isolated power factor adjustment circuit of the present invention. [FIG. 5] It is a schematic diagram of another embodiment of the single-phase isolated power factor adjustment circuit of the present invention. [FIG. 6] It is a schematic diagram of still another embodiment of the single-phase isolated power factor adjustment circuit of the present invention. [Fig. 7] It is an equalization circuit diagram of an embodiment of the current conversion module of the present invention. [Fig. 8] It is a working waveform diagram of a current source resonant circuit of the present invention. [Fig. 9A] is a control architecture diagram of an embodiment of a single-phase isolated power factor adjustment circuit according to the present invention to adjust a power factor. [Fig. 9B] is a control circuit Bode diagram of an embodiment of a single-phase isolated power factor adjustment circuit according to the present invention to adjust a power factor. [Figure 10A] is a small-signal calibration circuit. [FIG. 10B] A Bode diagram of a voltage control loop of an embodiment of the single-phase isolated power factor adjustment circuit of the present invention. [Figure 11] It is a simulation diagram of the single-phase isolated power factor adjustment circuit of the present invention. [Fig. 12A to Fig. 12C] The simulation results of Fig. 11. [Figures 13A to 13D] are the simulation results of Figure 11

Claims (7)

一種單相隔離式功因調整電路,包含: 一整流器模組,耦接於外部之一交流電源,該整流器模組將該交流電源輸入之一交流電源電流轉換為一第一直流電流輸出; 一電流轉換模組,耦接於該整流器模組之輸出端,該電流轉換模組以諧振方式將該第一直流電流轉換為一第二直流電流輸出;以及 一功因調整模組,耦接於該電流轉換模組之輸出端,該功因調整模組接收該第二直流電流並調整該第二直流電流的功率因數。A single-phase isolated power factor adjustment circuit includes: a rectifier module coupled to an external AC power source, the rectifier module converting an AC power source current inputted by the AC power source into a first DC current output; A current conversion module is coupled to the output end of the rectifier module, the current conversion module converts the first DC current into a second DC current output in a resonant manner; and a power factor adjustment module is coupled to At the output terminal of the current conversion module, the power factor adjustment module receives the second DC current and adjusts the power factor of the second DC current. 如請求項1所述之單相隔離式功因調整電路,其中,該整流器模組包括: 一第一整流輸入端,耦接於該交流電源的一端; 一第二整流輸入端,耦接於該交流電源的另一端; 一第一整流輸出端,耦接於該電流轉換模組;及 一第二整流輸出端,耦接於該電流轉換模組。The single-phase isolated power factor adjustment circuit according to claim 1, wherein the rectifier module includes: a first rectification input terminal coupled to one end of the AC power source; a second rectification input terminal coupled to The other end of the AC power source; a first rectified output terminal coupled to the current conversion module; and a second rectified output terminal coupled to the current conversion module. 如請求項1或2所述之單相隔離式功因調整電路,其中,該電流轉換模組包括: 一第一次側組件,其輸入端耦接於該整流器模組,以接收該第一直流電流; 一第二次側組件,其輸出端耦接於功因調整模組,以輸出該第二直流電流;及 一線圈組件,耦接於該第一次側組件及該第二次側組件,並將該第一次側組件之直流輸出轉換為該第二次側組件之直流輸入。The single-phase isolated power factor adjustment circuit according to claim 1 or 2, wherein the current conversion module includes: a first-side component whose input end is coupled to the rectifier module to receive the first DC current; a second-side component whose output is coupled to a power factor adjustment module to output the second DC current; and a coil component coupled to the first-side component and the second-side component And convert the DC output of the primary-side component to the DC input of the secondary-side component. 如請求項3所述之單相隔離式功因調整電路,其中該第一次側組件具有: 一第一開關,該第一開關之輸入端耦接於該第一整流輸出端,該第一開關之輸出端耦接於該線圈組件之輸入端的一側; 一第二開關,該第二開關之輸入端耦接於該第二整流輸出端,該第二開關之輸出端耦接於該線圈組件之輸入端的一側; 一第一電容,該第一電容之一端耦接於該第一整流輸出端,該第一電容之另一端耦接於該線圈組件之輸入端的另一側;及 一第二電容,該第二電容之一端耦接於該第二整流輸出端,該第二電容之另一端耦接於該線圈組件之輸入端的另一側。The single-phase isolated power factor adjustment circuit according to claim 3, wherein the first-side component includes: a first switch, an input end of the first switch is coupled to the first rectification output end, and the first The output end of the switch is coupled to one side of the input end of the coil component; a second switch, the input end of the second switch is coupled to the second rectified output end, and the output end of the second switch is coupled to the coil One side of the input terminal of the component; a first capacitor, one terminal of the first capacitor is coupled to the first rectified output terminal, and the other terminal of the first capacitor is coupled to the other side of the input terminal of the coil component; and A second capacitor, one terminal of the second capacitor is coupled to the second rectified output terminal, and the other terminal of the second capacitor is coupled to the other side of the input terminal of the coil component. 如請求項4所述之單相隔離式功因調整電路,其中該第一開關及該二開關係以50%責任週期方式交互觸發導通。The single-phase isolated power factor adjustment circuit according to claim 4, wherein the first switch and the two-open relationship alternately trigger conduction in a 50% duty cycle manner. 如請求項3所述之單相隔離式功因調整電路,其中該第二次側組件具有: 一橋式整流器,耦接於該線圈組件之輸出端;及 一輸出電容,耦接於該橋式整流器的兩整流輸出端之間。The single-phase isolated power factor adjustment circuit according to claim 3, wherein the second-side component has: a bridge rectifier coupled to the output end of the coil component; and an output capacitor coupled to the bridge type Between the two rectifier output terminals of the rectifier. 如請求項1所述之單相隔離式功因調整電路,其中該功因調整模組具有: 一漏電感,該漏電感之一端耦接於該電流轉換模組之輸出端; 一第三開關,該第三開關之輸入端耦接於該漏電感之另一端; 一第四開關,該第四開關之輸入端耦接於該漏電感之另一端;及 一第四電容,該第四電容的兩端分別耦接於該第三開關之輸出端及該第四開關之輸出端。The single-phase isolated power factor adjustment circuit according to claim 1, wherein the power factor adjustment module has: a leakage inductance, one end of the leakage inductance is coupled to the output end of the current conversion module; a third switch An input terminal of the third switch is coupled to the other end of the leakage inductance; a fourth switch, an input terminal of the fourth switch is coupled to the other end of the leakage inductance; and a fourth capacitor, the fourth capacitor The two terminals of are respectively coupled to the output terminal of the third switch and the output terminal of the fourth switch.
TW105138256A 2016-11-22 2016-11-22 Single-phase isolated power factor adjustment circuit TWI630782B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105138256A TWI630782B (en) 2016-11-22 2016-11-22 Single-phase isolated power factor adjustment circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105138256A TWI630782B (en) 2016-11-22 2016-11-22 Single-phase isolated power factor adjustment circuit

Publications (2)

Publication Number Publication Date
TW201820759A true TW201820759A (en) 2018-06-01
TWI630782B TWI630782B (en) 2018-07-21

Family

ID=63258237

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105138256A TWI630782B (en) 2016-11-22 2016-11-22 Single-phase isolated power factor adjustment circuit

Country Status (1)

Country Link
TW (1) TWI630782B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110061570A (en) * 2019-05-28 2019-07-26 浙江大学 The radio energy transmission system for realizing PFC is modulated by secondary side

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4797637B2 (en) * 2006-01-16 2011-10-19 サンケン電気株式会社 Resonant switching power supply
TW201230632A (en) * 2011-01-05 2012-07-16 Yujing Technology Co Ltd Circuit device with improved power factor
US8705252B2 (en) * 2011-04-15 2014-04-22 Power Integrations, Inc. Off line resonant converter with merged line rectification and power factor correction
US9001539B2 (en) * 2012-11-19 2015-04-07 Apple Inc. AC-DC resonant converter that provides high efficiency and high power density

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110061570A (en) * 2019-05-28 2019-07-26 浙江大学 The radio energy transmission system for realizing PFC is modulated by secondary side
CN110061570B (en) * 2019-05-28 2020-10-02 浙江大学 Wireless power transmission system for realizing PFC (Power factor correction) through secondary modulation
US11411436B2 (en) 2019-05-28 2022-08-09 Zhejiang University Wireless electric energy transmission system for realizing PFC through secondary side modulation

Also Published As

Publication number Publication date
TWI630782B (en) 2018-07-21

Similar Documents

Publication Publication Date Title
US10243470B2 (en) Power control module for an electronic converter, related integrated circuit, electronic converter and method
US9318960B2 (en) High efficiency and low loss AC-DC power supply circuit and control method
US11011936B2 (en) Single-stage transmitter for wireless power transfer
TWI516010B (en) AC / DC converter
CN108539984B (en) PFWM control system of switching power supply circuit
TWI511435B (en) AC - DC power converter
JP5760143B2 (en) Battery charger for electric vehicles
TWI489762B (en) High efficiency AC - DC voltage conversion circuit
US9071161B2 (en) Single stage PFC power supply
US11396241B2 (en) Power converter controlled capacitor circuits and methods
WO2015106643A1 (en) Bridgeless buck active power factor correction (apfc) circuit
US9130472B2 (en) High efficient single switch single stage power factor correction power supply
US20210091678A1 (en) Control method and control circuit
CN114070083A (en) DC/DC converter and output voltage control method thereof
TW201330474A (en) Active buck power factor correction device
US20150303813A1 (en) Ac-to-dc power converting device
CN111740510B (en) Wireless charging method and system based on phase-shift adjustment control
US11114931B2 (en) AC-DC power converter
TWI551024B (en) Ac-dc power conversion device and control method thereof
TW201820759A (en) Single-phase isolated power factor adjustment circuit with which the adjustment of the power factor is completed by the power factor adjustment module disposed on the secondary side
Huang et al. Analysis and design of a single-stage buck-type AC-DC adaptor
TWI485961B (en) A common-core pfc resonant converter
US11205966B2 (en) AC-DC power converter
TW201131953A (en) Power supply with reduced power consumption
TWI514739B (en) Single-stage high-power-factor flyback converter