TW201816445A - Optical transceiver having alignment module - Google Patents

Optical transceiver having alignment module Download PDF

Info

Publication number
TW201816445A
TW201816445A TW106136903A TW106136903A TW201816445A TW 201816445 A TW201816445 A TW 201816445A TW 106136903 A TW106136903 A TW 106136903A TW 106136903 A TW106136903 A TW 106136903A TW 201816445 A TW201816445 A TW 201816445A
Authority
TW
Taiwan
Prior art keywords
alignment
optical
waveguide
integrated circuit
holder
Prior art date
Application number
TW106136903A
Other languages
Chinese (zh)
Inventor
馬克 伊皮踏克斯
埃里克 斯賓登
喬L 奈特安格勒
Original Assignee
美商山姆科技公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商山姆科技公司 filed Critical 美商山姆科技公司
Publication of TW201816445A publication Critical patent/TW201816445A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4228Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements
    • G02B6/423Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements using guiding surfaces for the alignment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4249Packages, e.g. shape, construction, internal or external details comprising arrays of active devices and fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/3648Supporting carriers of a microbench type, i.e. with micromachined additional mechanical structures
    • G02B6/3652Supporting carriers of a microbench type, i.e. with micromachined additional mechanical structures the additional structures being prepositioning mounting areas, allowing only movement in one dimension, e.g. grooves, trenches or vias in the microbench surface, i.e. self aligning supporting carriers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/3684Mechanical coupling means for mounting fibres to supporting carriers characterised by the manufacturing process of surface profiling of the supporting carrier
    • G02B6/3692Mechanical coupling means for mounting fibres to supporting carriers characterised by the manufacturing process of surface profiling of the supporting carrier with surface micromachining involving etching, e.g. wet or dry etching steps
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

An optical transceiver includes a photonic integrated circuit that is configured to be placed in alignment with an alignment module that is configured to carry a plurality of optical fibers. When the photonic integrated circuit is aligned with the alignment module, the optical fibers are placed in optical alignment with respective waveguides of the photonic integrated circuit.

Description

具有對準模組的光學收發器  Optical transceiver with alignment module  

本發明係關於具有對準模組的光學收發器。 The present invention is directed to an optical transceiver having an alignment module.

2016年10月6日申請的美國專利申請案序號62/405,053係描述根據各種實施例所建構的光學收發器。2016年10月6日申請的美國專利申請案序號62/405,053係藉此如同以其整體在此闡述地被納入作為參考。美國專利申請案序號62/405,053係進一步藉此內含在附錄A,以作為本揭露內容的部分。 U.S. Patent Application Serial No. 62/405,053, filed on Oct. 6, the disclosure of which is incorporated herein by reference. U.S. Patent Application Serial No. 62/405,053, filed on Jan. 6, s. U.S. Patent Application Ser.

光子積體電路(Photonic integrated circuit,PIC)係提供和現代的通訊系統相關的高頻寬的資料傳輸速率以及發送距離。儘管光子積體電路可以產生及處理資料串流,但是被光學地發送的資料一般是首先耦合到光纖中,以用於在通訊網路的各種節點之間的發送。由於相較於多模光,光子積體電路可以更輕易地處理單模光,因此利用單模光纖來耦合光往返於一光子積體電路一般是所期望的。對於普遍使用的在1200到1600nm波長範圍內的發送波長,光纖通常係具有一約9微米的模場直徑。PIC單模波導傾向具有一較小且不對稱的模場尺寸,例如是約0.3×0.4微米。確保光纖核心係適當地與光子積體電路的波導對準是所要的,以便於在該些光纖以 及光子積體電路的波導之間有效率地耦合光。此外,在PIC的波導以及光纖核心之間的光學耦合必須包容不同的模場尺寸,因而不會有由於在該些模尺寸上的不匹配所造成的大的光學損失。 The Photonic Integrated Circuit (PIC) provides high-bandwidth data transmission rates and transmission distances associated with modern communication systems. Although a photonic integrated circuit can generate and process a data stream, the optically transmitted data is typically first coupled into the fiber for transmission between various nodes of the communication network. Since a photonic integrated circuit can process single mode light more easily than multimode light, it is generally desirable to utilize a single mode fiber to couple light back and forth to a photonic integrated circuit. For commonly used transmission wavelengths in the 1200 to 1600 nm wavelength range, the fiber typically has a mode field diameter of about 9 microns. PIC single mode waveguides tend to have a small and asymmetrical mode field size, for example about 0.3 x 0.4 microns. It is desirable to ensure that the fiber core is properly aligned with the waveguide of the photonic integrated circuit to facilitate efficient coupling of light between the fibers and the waveguide of the photonic integrated circuit. In addition, the optical coupling between the PIC's waveguide and the fiber core must accommodate different mode field sizes, so there is no large optical loss due to mismatches in the die sizes.

根據本揭露內容之一特點,一種光學引擎可包含一光子積體電路,其係被配置以藉由一基板來加以支承,該光子積體電路係載有第一對準指示器。該光學引擎可以進一步包含一對準模組,其係具有一被配置以接收一光波導的對準通道,該對準模組係載有被配置以與該第一對準指示器對準的第二對準指示器,其中當該第一及第二對準指示器係與彼此對準並且該對準通道係接收該光波導時,該光波導係與該光子積體電路的一對應的波導光學對準地來和對接耦合(butt coupled)。 In accordance with one aspect of the present disclosure, an optical engine can include a photonic integrated circuit configured to be supported by a substrate, the photonic integrated circuit carrying a first alignment indicator. The optical engine can further include an alignment module having an alignment channel configured to receive an optical waveguide, the alignment module being configured to be aligned with the first alignment indicator a second alignment indicator, wherein when the first and second alignment indicators are aligned with each other and the alignment channel receives the optical waveguide, the optical waveguide corresponds to a corresponding one of the photonic integrated circuits The waveguide is optically aligned and butt coupled.

20‧‧‧光學收發器 20‧‧‧ Optical Transceiver

22‧‧‧光學發送器 22‧‧‧Optical Transmitter

24‧‧‧光學接收器 24‧‧‧Optical Receiver

25‧‧‧調變器的驅動器 25‧‧‧Transformer driver

26‧‧‧基板 26‧‧‧Substrate

26a‧‧‧第一基板表面 26a‧‧‧First substrate surface

26b‧‧‧第二基板表面 26b‧‧‧Second substrate surface

27‧‧‧第二基板 27‧‧‧second substrate

28‧‧‧電性接點 28‧‧‧Electrical contacts

29‧‧‧載體 29‧‧‧ Carrier

29a‧‧‧第一載體表面 29a‧‧‧First carrier surface

29b‧‧‧第二載體表面 29b‧‧‧Second carrier surface

30‧‧‧光學發送器引擎 30‧‧‧Optical Transmitter Engine

31‧‧‧輔助的安裝結構 31‧‧‧Auxiliary mounting structure

32‧‧‧發送PIC(光子積體電路) 32‧‧‧Send PIC (Photonic Integrated Circuit)

32a‧‧‧第一發送PIC表面 32a‧‧‧First send PIC surface

32b‧‧‧第二發送PIC表面 32b‧‧‧Second Send PIC Surface

33‧‧‧電性接點 33‧‧‧Electrical contacts

34‧‧‧光源 34‧‧‧Light source

35‧‧‧耦合邊緣 35‧‧‧Coupling edge

36‧‧‧光學發送波導 36‧‧‧Optical Transmitted Waveguide

37‧‧‧發送波導組件 37‧‧‧Transmission waveguide assembly

38‧‧‧發送波導夾持器 38‧‧‧Transmission waveguide holder

39‧‧‧凹穴 39‧‧‧ Pocket

41‧‧‧光學輸出表面 41‧‧‧Optical output surface

42‧‧‧控制器 42‧‧‧ Controller

60‧‧‧光學接收波導 60‧‧‧Optical receiving waveguide

62‧‧‧光學接收器引擎 62‧‧‧Optical Receiver Engine

63‧‧‧波導 63‧‧‧Band

64‧‧‧接收PIC(光子積體電路) 64‧‧‧Receive PIC (photonic integrated circuit)

64a‧‧‧第一接收PIC表面 64a‧‧‧First receiving PIC surface

64b‧‧‧第二接收PIC表面 64b‧‧‧Second receiving PIC surface

65‧‧‧光學輸入表面 65‧‧‧Optical input surface

66‧‧‧電流至電壓轉換器 66‧‧‧Current to voltage converter

70‧‧‧接收波導組件 70‧‧‧ Receiving waveguide assembly

71‧‧‧線接觸 71‧‧‧Line contact

71a‧‧‧第一線接觸 71a‧‧‧First line contact

71b‧‧‧第二線接觸 71b‧‧‧ second line contact

72‧‧‧接收波導夾持器 72‧‧‧ Receiving waveguide holder

74‧‧‧對準模組 74‧‧‧Alignment module

74a‧‧‧內部的模組表面 74a‧‧‧Internal module surface

74b‧‧‧外部的模組表面 74b‧‧‧External module surface

75‧‧‧底表面 75‧‧‧ bottom surface

76‧‧‧光子積體電路(PIC) 76‧‧‧Photon Integral Circuit (PIC)

76a‧‧‧第一(上)表面 76a‧‧‧first (top) surface

76b‧‧‧第二(下)表面 76b‧‧‧second (lower) surface

77‧‧‧中分面 77‧‧‧中面面

78‧‧‧間隙 78‧‧‧ gap

79‧‧‧光纖核心 79‧‧‧Fiber core

80‧‧‧第一對準指示器 80‧‧‧First alignment indicator

81‧‧‧偏壓構件 81‧‧‧ biasing members

81a‧‧‧傾斜的表面 81a‧‧‧Sloping surface

82‧‧‧第二對準指示器 82‧‧‧Second alignment indicator

83‧‧‧光纖次組件 83‧‧‧Fiber subassembly

84‧‧‧對準通道 84‧‧‧Alignment channel

85‧‧‧光纖 85‧‧‧Fiber

85(1)‧‧‧第一光纖 85(1)‧‧‧First fiber

85(2)‧‧‧第二光纖 85(2)‧‧‧second fiber

85(3)、85(4)、85(5)‧‧‧光纖 85(3), 85(4), 85(5)‧‧‧ fiber

85a‧‧‧端子端 85a‧‧‧Terminal end

85b‧‧‧緩衝層 85b‧‧‧buffer layer

85c‧‧‧包覆層 85c‧‧‧ coating

86‧‧‧波導夾持器(光纖夾持器) 86‧‧‧Wave holder (fiber holder)

86a‧‧‧內部的夾持器表面 86a‧‧‧Internal gripper surface

86b‧‧‧外部的夾持器表面 86b‧‧‧External gripper surface

86c‧‧‧第一夾持器端 86c‧‧‧first gripper end

86d‧‧‧第二夾持器端 86d‧‧‧Second gripper end

86e‧‧‧夾持器主體 86e‧‧‧ gripper body

89‧‧‧凹處 89‧‧‧ recess

90‧‧‧夾持器通道 90‧‧‧ gripper channel

90a‧‧‧第一通道部分(線接觸) 90a‧‧‧first passage section (line contact)

90b‧‧‧第二通道部分 90b‧‧‧Second channel section

91‧‧‧側壁 91‧‧‧ side wall

92‧‧‧止擋表面 92‧‧‧stop surface

93‧‧‧側壁 93‧‧‧ side wall

94‧‧‧凹處 94‧‧‧ recess

96‧‧‧凹穴 96‧‧‧ recess

97‧‧‧基底 97‧‧‧Base

98‧‧‧應變釋放平台 98‧‧‧ strain release platform

99‧‧‧表面線路 99‧‧‧ surface lines

100‧‧‧對準通道 100‧‧‧Alignment channel

102‧‧‧肩部 102‧‧‧ shoulder

103‧‧‧對齊面 103‧‧‧Alignment surface

104‧‧‧輔助的貫孔 104‧‧‧Auxiliary through holes

106‧‧‧PIC貫孔 106‧‧‧ PIC through hole

108‧‧‧電性接點 108‧‧‧Electrical contacts

110‧‧‧第二對準指示器 110‧‧‧Second alignment indicator

112‧‧‧輔助的對準結構 112‧‧‧Auxiliary alignment structure

114‧‧‧對準銷 114‧‧‧ alignment pin

116‧‧‧對齊溝槽 116‧‧‧Aligning the groove

A‧‧‧側向的方向 A‧‧‧ lateral direction

d‧‧‧距離 D‧‧‧distance

F‧‧‧力 F‧‧‧ force

L‧‧‧縱長的方向 L‧‧‧Longitudinal direction

T‧‧‧橫斷的方向 T‧‧‧ transverse direction

w‧‧‧寬度 w‧‧‧Width

以下的詳細說明當結合所附的圖式來閱讀時將會更佳的理解,其中在圖式中係展示有為了說明目的之範例實施例。然而,應該瞭解的是本揭露內容並不限於所展示的精確的配置及設備。在圖式中:圖1是根據本揭露內容的一個例子所建構的一光學收發器的立體圖,其係包含被安裝到一基板之上的一發送器以及一接收器;圖2是在圖1中所描繪的光學收發器的分解立體圖;圖3是在圖2中所描繪的光學收發器的另一分解立體圖,其係展示被安裝到一光纖夾持器的光纖,並且進一步展示一被安裝到一光子積體電路的對準模組;圖4是在圖3中所描繪的光纖夾持器的立體圖; 圖5是一被對準而將會附接至在圖3中所描繪的一對準模組的光子積體電路的立體圖;圖6是在圖5中所描繪的對準模組的放大的立體圖;圖7A是展示複數個被安置在根據一實施例的對準模組中的光纖的概要的立面端視圖;圖7B是展示一被安置在根據另一實施例的波導夾持器以及對準模組中的光纖的概要的立面端視圖;圖7C是展示一被安置在根據另一實施例的對準模組中的光纖的概要的立面端視圖;圖7D是展示一被安置在根據另一實施例的對準模組中的光纖的概要的立面端視圖;圖7E是展示一被安置在根據另一實施例的對準模組中的光纖的概要的立面端視圖;圖7F是展示一被安置在根據另一實施例的對準模組中的光纖的概要的側視圖;圖7G是展示根據一實施例的複數個被安置在該波導夾持器中的光纖、以及相對對準模組而對齊的該波導夾持器的概要的立面端視圖;圖8是在圖2中所描繪的發送器的光子積體電路的立體圖;圖9A是在圖1中所描繪的發送器的一部分的概要的立面側視圖;圖9B是在圖1中所描繪的接收器的一部分的概要的立面側視圖;圖10是一被配置以支承圖1中所描繪的發送器及接收器中的至少一個的載體的側視圖,根據一實施例的該載體係被展示; 圖11是在圖10中所描繪的載體的俯視的平面圖;圖12是一被安置在根據一實施例的在圖10中所描繪的載體的一對準通道中的光纖的概要的端視圖;圖13是一被安置在根據另一實施例的在圖10中所描繪的載體的一對準通道中的光纖的概要的端視圖;圖14是一種被安裝到在圖10中所描繪的載體之上的光學引擎的截面的立面側視圖;圖15是一載體的俯視的平面圖,其係展示與根據一替代實施例的一波導夾持器對準;以及圖16是一對準銷的概要的端視圖,其係展示耦合至圖15中所描繪的載體。 The following detailed description is to be understood as a However, it should be understood that the disclosure is not limited to the precise arrangements and devices shown. In the drawings: FIG. 1 is a perspective view of an optical transceiver constructed according to an example of the present disclosure, which includes a transmitter mounted on a substrate and a receiver; FIG. 2 is in FIG. An exploded perspective view of the optical transceiver depicted in FIG. 3; FIG. 3 is another exploded perspective view of the optical transceiver depicted in FIG. 2 showing the optical fiber mounted to a fiber holder and further showing an installed An alignment module to a photonic integrated circuit; FIG. 4 is a perspective view of the fiber holder depicted in FIG. 3; FIG. 5 is aligned to be attached to the one depicted in FIG. A perspective view of the photonic integrated circuit of the alignment module; FIG. 6 is an enlarged perspective view of the alignment module depicted in FIG. 5; FIG. 7A is a diagram showing a plurality of alignment modules disposed in accordance with an embodiment. A schematic elevational end view of the fiber; FIG. 7B is an elevational end view showing an overview of an optical fiber disposed in a waveguide holder and alignment module in accordance with another embodiment; FIG. 7C is a view showing Overview of an optical fiber disposed in an alignment module in accordance with another embodiment Facade end view; FIG. 7D is an elevational end view showing an outline of an optical fiber disposed in an alignment module according to another embodiment; FIG. 7E is a view showing a pair disposed according to another embodiment A schematic elevational end view of an optical fiber in a quasi-module; FIG. 7F is a side elevational view showing an outline of an optical fiber disposed in an alignment module in accordance with another embodiment; FIG. 7G is a diagram showing an embodiment of an optical fiber according to another embodiment; A schematic elevational end view of a plurality of optical fibers disposed in the waveguide holder and the waveguide holder aligned with respect to the alignment module; FIG. 8 is a photon of the transmitter depicted in FIG. FIG. 9A is an elevational side elevational view of a portion of the transmitter depicted in FIG. 1; FIG. 9B is an elevational elevational side view of a portion of the receiver depicted in FIG. 1; 10 is a side elevational view of a carrier configured to support at least one of the transmitter and receiver depicted in FIG. 1, the carrier being shown in accordance with an embodiment; FIG. 11 is depicted in FIG. a plan view of the carrier; Figure 12 is a An end view of an outline of an optical fiber in an alignment channel of the carrier depicted in FIG. 10; FIG. 13 is an alignment of the carrier disposed in FIG. 10 according to another embodiment. A schematic end view of a fiber in a channel; FIG. 14 is an elevational side view of a section of an optical engine mounted to the carrier depicted in FIG. 10; FIG. 15 is a top plan view of a carrier Shown in alignment with a waveguide holder in accordance with an alternate embodiment; and Figure 16 is an overview of an end view of an alignment pin that is coupled to the carrier depicted in Figure 15.

2016年10月6日申請的美國專利申請案序號62/405,053係描述根據各種實施例所建構的光學收發器。2016年10月6日申請的美國專利申請案序號62/405,053係藉此如同以其整體在此闡述地被納入作為參考。 U.S. Patent Application Serial No. 62/405,053, filed on Oct. 6, the disclosure of which is incorporated herein by reference. U.S. Patent Application Serial No. 62/405,053, filed on Jan. 6, s.

本揭露內容的一特點係體認到光學收發器的光學引擎係利用光子積體電路(Photonic integrated circuit,PIC)來加以建構。尤其,光子積體電路可被配置以從一第一電性構件接收電性信號,轉換該些電性信號成為光學信號,並且輸出該些光學信號至一或多個光波導,該光波導可被配置為光纖,以用於通訊至一第二構件。光子積體電路可進一步被配置以從該第二構件接收光學接收信號,轉換該些接收到的光學信號成為接收到的電性信號,並且該些接收到的電性信號可被傳遞至該第一電性構件。因此, 一光子積體電路可以整合到一光學發送器中。一光子積體電路可進一步被整合到一光學接收器中。在一實施例中,該光學發送器的光子積體電路可以是與該光學接收器的光子積體電路分開的。在其它實施例中,該光學發送器以及該光學接收器可包含同一個單一光子積體電路。 One feature of the present disclosure is that the optical engine of the optical transceiver is constructed using a Photonic Integrated Circuit (PIC). In particular, the photonic integrated circuit can be configured to receive an electrical signal from a first electrical component, convert the electrical signals into optical signals, and output the optical signals to one or more optical waveguides, the optical waveguides It is configured as an optical fiber for communication to a second component. The photonic integrated circuit can be further configured to receive an optically received signal from the second member, convert the received optical signals into received electrical signals, and the received electrical signals can be passed to the first An electrical component. Therefore, a photonic integrated circuit can be integrated into an optical transmitter. A photonic integrated circuit can be further integrated into an optical receiver. In an embodiment, the photonic integrated circuit of the optical transmitter may be separate from the photonic integrated circuit of the optical receiver. In other embodiments, the optical transmitter and the optical receiver can comprise the same single photon integrated circuit.

光子積體電路(PIC)正越來越盛行地被配置為矽光子晶片。PIC通常是利用一矽基板來加以實施,其中波導係利用各種的材料,例如是磷化銦、矽、矽氧化物、以及矽氮化物的連續或圖案化的層,而被形成在該矽基板的表面上。或者是,PIC可被製造在其它的基板中,例如但不限於InP、GaAs、LiNbO3。傳統上,該PIC的波導係利用一主動的對準系統而被設置以與光纖對準。因此,在該些光纖以及該PIC的波導之間的資料信號的發送係被監測,以確保該PIC的波導係與該些光纖適當的光學對準。本揭露內容係提供一種被動的對準系統,其係在該光學引擎的製造期間設置至少一光纖以與一PIC的波導光學對準,而不需要監視在兩者之間的資料信號的發送。 Photonic integrated circuits (PICs) are increasingly being configured as photonic chips. PIC is typically implemented using a germanium substrate in which the waveguide is formed on the germanium substrate using a variety of materials, such as indium phosphide, antimony, antimony oxide, and a continuous or patterned layer of germanium nitride. on the surface. Or, the PIC can be manufactured in other substrates, such as, but not limited to InP, GaAs, LiNbO 3. Traditionally, the PIC's waveguide system is configured to align with the fiber using an active alignment system. Thus, the transmission of the data signals between the fibers and the waveguide of the PIC is monitored to ensure proper optical alignment of the waveguides of the PIC with the fibers. The present disclosure provides a passive alignment system that provides at least one fiber to be optically aligned with a waveguide of a PIC during manufacture of the optical engine without the need to monitor the transmission of data signals between the two.

現在參照圖1,一光學收發器20係被配置以耦合在一第一電性構件以及一第二構件之間。尤其,該光學收發器20係被配置以從該第一電性構件接收電性接收信號,轉換該些電性接收信號成為光學接收信號,並且輸出經轉換的光學接收信號以用於發送至該第二構件。該光學收發器20係被配置以從該第二構件接收光學接收信號,轉換該些光學接收信號成為電性接收信號,並且輸出經轉換的電性接收信號以用於發送至該第一電性構件。因此,應該體認到的是,一電性通訊系統可包含該光學收發器20、該第一電性構件、以及該第二構件。該光學收發器20可以內含在一 主動式光纖纜線中,其係被配置以提供光電轉換以及光學發送。該主動式光纖纜線可以取代一可插拔的電纜線以及與一第一互補電性構件配接的連接器,使得該主動式光纖纜線的形狀因數係反映其所取代的電纜線以及連接器的形狀因數。該光學收發器20亦可被配置以與該第一互補電子構件解除配接,因而其可以視需要地被更換或是維修。該光學收發器20可被裝入該主動式光纖纜線的一殼體中。 Referring now to Figure 1, an optical transceiver 20 is configured to be coupled between a first electrical component and a second component. In particular, the optical transceiver 20 is configured to receive an electrical receive signal from the first electrical component, convert the electrical receive signals into optical receive signals, and output the converted optical receive signals for transmission to the The second component. The optical transceiver 20 is configured to receive an optical receive signal from the second component, convert the optical receive signals into electrical receive signals, and output the converted electrical receive signals for transmission to the first electrical member. Accordingly, it should be appreciated that an electrical communication system can include the optical transceiver 20, the first electrical component, and the second component. The optical transceiver 20 can be embodied in an active fiber optic cable that is configured to provide both photoelectric conversion and optical transmission. The active fiber optic cable can replace a pluggable cable and a connector that mates with a first complementary electrical component such that the form factor of the active fiber optic cable reflects the cable and connection it replaces. The form factor of the device. The optical transceiver 20 can also be configured to be uncoupled from the first complementary electronic component so that it can be replaced or repaired as needed. The optical transceiver 20 can be incorporated into a housing of the active fiber optic cable.

在一例子中,該光學收發器20可包含一光學發送器22、以及一光學接收器24,其係分別耦合在該第一電性構件以及該第二構件之間。該光學發送器22可被配置以從該第一電性構件接收電性接收信號,轉換該些電性接收信號成為光學接收信號,並且輸出經轉換的光學接收信號以用於發送至該第二構件。該光學接收器24可被配置以從該第二構件接收光學接收信號,轉換該些光學接收信號成為電性接收信號,並且輸出經轉換的電性接收信號以用於發送至該第一電性構件。 In one example, the optical transceiver 20 can include an optical transmitter 22 and an optical receiver 24 coupled between the first electrical component and the second component, respectively. The optical transmitter 22 can be configured to receive an electrical receive signal from the first electrical component, convert the electrical receive signals into optical receive signals, and output the converted optical receive signals for transmission to the second member. The optical receiver 24 can be configured to receive an optical receive signal from the second member, convert the optical receive signals into electrical receive signals, and output the converted electrical receive signals for transmission to the first electrical member.

該光學收發器20可被配置以被安裝到一基板26。因此,該光學發送器22以及該光學接收器24兩者都可被安裝至該基板26。或者是,該光學發送器22以及該光學接收器24可被安裝到個別的第一及第二不同的基板26。因此,對於該基板26的參照係欲指該光學發送器22以及該光學接收器24都被安裝到的一共同的基板、以及該光學發送器22以及該光學接收器24中只有一個可被安裝到的一基板。從在以下的說明將會進一步體認到的是,該光學發送器22以及該光學接收器24的一或兩者可包含一載體(參見例如是在圖10及15的載體29),其係接著被安裝至該基板26。在一例子中,該光學發送器22以及該光學接收器24係被安裝到個別的載 體,其係接著被安裝至該基板26。或者是,該光學發送器22以及該光學接收器24可被安裝到一共同的載體,其係接著被安裝至該基板26。 The optical transceiver 20 can be configured to be mounted to a substrate 26. Therefore, both the optical transmitter 22 and the optical receiver 24 can be mounted to the substrate 26. Alternatively, the optical transmitter 22 and the optical receiver 24 can be mounted to individual first and second different substrates 26. Therefore, the reference to the substrate 26 is intended to mean that a common substrate to which the optical transmitter 22 and the optical receiver 24 are mounted, and that only one of the optical transmitter 22 and the optical receiver 24 can be mounted. To a substrate. It will be further appreciated from the following description that one or both of the optical transmitter 22 and the optical receiver 24 can include a carrier (see, for example, the carrier 29 of Figures 10 and 15). It is then mounted to the substrate 26. In one example, the optical transmitter 22 and the optical receiver 24 are mounted to individual carriers that are then mounted to the substrate 26. Alternatively, the optical transmitter 22 and the optical receiver 24 can be mounted to a common carrier that is then mounted to the substrate 26.

根據需要,該基板26可被配置為一印刷電路板。該基板26可被配置以被設置成和該第一電性構件電性連通。譬如,該基板26可以界定複數個電性接點28、以及從該第一複數個電性接點28延伸至該光學發送器22的第一複數個電性導體。該基板可進一步包含第二複數個電性導體,其係從該第二複數個電性接點28延伸至該光學接收器24。該些電性接點28可以用根據需要的任何配置而只包含電性信號接點、或是結合電性接地接點。相鄰的信號接點可以界定差動信號對。或者是,該些電性信號接點可以是單端的。在一替代實施例中,該些電性接點28可以是未指定的。該些電性接點28可包含接觸墊,其係被配置以在該基板26與該第一電性構件配接時,被置放以和該第一電性構件的互補的電性接點電性連通。譬如,該基板26的載有該些接觸墊的邊緣可被***到該第一電性構件的一插座中,以便於將該光學收發器20設置成和該第一電性構件電性連通。 The substrate 26 can be configured as a printed circuit board as needed. The substrate 26 can be configured to be in electrical communication with the first electrical component. For example, the substrate 26 can define a plurality of electrical contacts 28 and a first plurality of electrical conductors extending from the first plurality of electrical contacts 28 to the optical transmitter 22. The substrate can further include a second plurality of electrical conductors extending from the second plurality of electrical contacts 28 to the optical receiver 24. The electrical contacts 28 can include only electrical signal contacts or electrical ground contacts in any configuration as desired. Adjacent signal contacts can define differential signal pairs. Alternatively, the electrical signal contacts can be single ended. In an alternate embodiment, the electrical contacts 28 may be unspecified. The electrical contacts 28 can include contact pads that are configured to be placed with complementary electrical contacts of the first electrical component when the substrate 26 is mated with the first electrical component Electrically connected. For example, the edge of the substrate 26 carrying the contact pads can be inserted into a socket of the first electrical component to facilitate placing the optical transceiver 20 in electrical communication with the first electrical component.

該光學收發器進一步包含複數個光學發送波導36以及光學接收波導60,其分別可以和該第二構件通訊。該些光學接收波導60可以根據需要而被配置為光纖、或是任何適當的波導結構。該些光學發送波導36可以永久地被附加至該光學收發器20,其通常被稱為帶尾纖的(pigtailed)、或者可以是可分離的。類似地,該些光學接收波導60可以永久地被附加至該光學收發器20,其通常被稱為帶尾纖的、或者可以是可分離的。該些光學發送波導36可被配置為光學發送光纖、或是任何適當替代地建構的光波導結構。類似地,該些光學接收波導60可被配置為光學發送光纖、或是任 何適當替代地建構的光波導結構。該些光學發送波導36以及光學接收波導60可以被集束成為一纜線,其係被設置成和該第二構件光學通訊的。因此,該些光學發送波導36以及光學接收波導60中的至少某些個、最高到所有的波導都可被設置成和該第二構件光學通訊。 The optical transceiver further includes a plurality of optical transmit waveguides 36 and optical receive waveguides 60 that are respectively communicable with the second member. The optical receiving waveguides 60 can be configured as an optical fiber, or any suitable waveguide structure, as desired. The optical transmit waveguides 36 may be permanently attached to the optical transceiver 20, which is commonly referred to as pigtailed, or may be separable. Similarly, the optical receiving waveguides 60 can be permanently attached to the optical transceiver 20, which is commonly referred to as pigtailed, or can be detachable. The optical transmit waveguides 36 can be configured as optical transmit fibers, or any suitably alternative optical waveguide structure. Similarly, the optical receiving waveguides 60 can be configured as optical transmitting fibers, or any suitably alternative optical waveguide structures. The optical transmit waveguides 36 and optical receive waveguides 60 can be bundled into a cable that is configured to be in optical communication with the second member. Accordingly, at least some of the optical transmitting waveguides 36 and the optical receiving waveguides 60, up to all of the waveguides, can be configured to be in optical communication with the second member.

該基板26可進一步包含第二複數個電性導體,其係從該些第二複數個電性接點28延伸至該光學接收器24。當該些電性接點28係被設置成和該第一電性構件電性連通時,該第一電性構件係被設置成和該光學發送器22以及該光學接收器24的每一個電性連通。在一例子中,該些電性接點28可被配置為藉由該基板26的一外表面所載有的接觸墊。該些接觸墊可被設置在該基板26的一被配置以藉由該第一電性構件接收的端之處,藉此將該些電性接點28設置成和該第一電性構件電性連通。當然,應該體認到該基板26可以根據需要,而根據任何適當的替代實施例來加以設置成和該第一電性構件電性連通。譬如,該些電性接點28可被配置為電鍍的孔洞,其係被配置以接收該第一電性構件的電性接點的壓入配合的安裝尾端。 The substrate 26 can further include a second plurality of electrical conductors extending from the second plurality of electrical contacts 28 to the optical receiver 24. When the electrical contacts 28 are disposed in electrical communication with the first electrical component, the first electrical component is configured to be electrically coupled to the optical transmitter 22 and the optical receiver 24 Sexual connectivity. In an example, the electrical contacts 28 can be configured to be carried by a contact pad carried by an outer surface of the substrate 26. The contact pads may be disposed at an end of the substrate 26 configured to be received by the first electrical component, whereby the electrical contacts 28 are disposed to be electrically coupled to the first electrical component Sexual connectivity. Of course, it should be appreciated that the substrate 26 can be configured to be in electrical communication with the first electrical component, as desired, in accordance with any suitable alternative embodiment. For example, the electrical contacts 28 can be configured as plated holes that are configured to receive a press-fit mounting tail of the electrical contacts of the first electrical component.

在一例子中,該光學發送器22亦可被稱為一種光學引擎,其可被配置為一光學發送器引擎30。該光學發送器22可包含至少一發送PIC(光子積體電路)32,其係被配置以被設置成和該些光學發送波導36通訊。在一例子中,該發送PIC 32可被配置為一矽光子晶片。該發送PIC 32、以及因此的光學發送器引擎30可以藉由該基板26來加以支承。尤其,該基板26係界定一第一基板表面26a、以及一第二基板表面26b,其係沿著一橫斷的方向T與該第一基板表面26a相對的。類似地,該發送PIC 32係 界定一第一發送PIC表面32a、以及一第二發送PIC表面32b,其係沿著一橫斷的方向T與該第一發送PIC表面32a相對的。該發送PIC 32可被配置以被安裝至該基板26,使得該第二發送PIC表面32b係面對該第一基板表面26a。 In an example, the optical transmitter 22 can also be referred to as an optical engine that can be configured as an optical transmitter engine 30. The optical transmitter 22 can include at least one transmit PIC (photonic integrated circuit) 32 that is configured to be in communication with the optical transmit waveguides 36. In one example, the transmit PIC 32 can be configured as a single photonic wafer. The transmitting PIC 32, and thus the optical transmitter engine 30, can be supported by the substrate 26. In particular, the substrate 26 defines a first substrate surface 26a and a second substrate surface 26b that are opposite the first substrate surface 26a in a transverse direction T. Similarly, the transmit PIC 32 defines a first transmit PIC surface 32a and a second transmit PIC surface 32b that are opposite the first transmit PIC surface 32a in a transverse direction T. The transmit PIC 32 can be configured to be mounted to the substrate 26 such that the second transmit PIC surface 32b faces the first substrate surface 26a.

該發送PIC 32係包含一光子層,其可包含任意數量的光學以及光電元件,例如但不限於調變器、光分歧器、光檢測器、多工器、解多工器、以及雷射。若該發送PIC 32是由矽所形成的,則雷射並不容易被整合到該光子層中,因而一個別的光源可以用在以下更詳細敘述的方式而被安裝到該發送PIC 32之上。該光子層係界定複數個波導,其可以相鄰該發送PIC 32的第二表面32b來加以設置。譬如,相較於該第一PIC表面32a,該發送PIC 32的波導可以沿著該橫斷的方向T而被設置成較靠近該第二表面32b的。在一例子中,相較於一與該第一及第二PIC表面32a及32b等距地間隔開的中分面,該發送PIC 32的波導可被設置成較靠近該第二表面32b的。譬如,在一例子中,該發送PIC 32的波導可以與該發送PIC 32的第二表面32b間隔開不超過約20微米。在另一例子中,該發送PIC 32的波導可以與該發送PIC 32的第二表面32b間隔開不超過約10微米。在又一例子中,該發送PIC 32的波導可以與該發送PIC 32的第二表面32b間隔開不超過約1或是2微米。該第二表面32b可以是藉由該發送PIC 32的一底表面所界定的。該發送PIC 32的第二表面32b可以是該發送PIC 32的面對該基板26的表面。譬如,該第二表面32b可被安裝至該基板26。或者是,如以下更詳細所述的,該發送PIC 32的第二表面32b可被安裝到一載體,其係接著被安裝至該基板26。不論哪種方式,該發送PIC 32的第二表面32b 都可以被稱為藉由該基板26所支承的。因此,該發送PIC 32可以被稱為藉由該基板26所支承的。 The transmit PIC 32 system includes a photonic layer that can include any number of optical and optoelectronic components such as, but not limited to, modulators, optical splitters, photodetectors, multiplexers, demultiplexers, and lasers. If the transmitting PIC 32 is formed by germanium, the laser is not easily integrated into the photonic layer, and thus another light source can be mounted to the transmitting PIC 32 in a manner described in more detail below. . The photonic layer defines a plurality of waveguides that can be disposed adjacent to the second surface 32b of the transmitting PIC 32. For example, the waveguide of the transmitting PIC 32 can be disposed closer to the second surface 32b along the transverse direction T than the first PIC surface 32a. In one example, the waveguide of the transmit PIC 32 can be placed closer to the second surface 32b than a mid-plane that is equally spaced from the first and second PIC surfaces 32a and 32b. For example, in one example, the waveguide transmitting the PIC 32 can be spaced apart from the second surface 32b of the transmit PIC 32 by no more than about 20 microns. In another example, the waveguide transmitting the PIC 32 can be spaced apart from the second surface 32b of the transmit PIC 32 by no more than about 10 microns. In yet another example, the waveguide transmitting the PIC 32 can be spaced apart from the second surface 32b of the transmit PIC 32 by no more than about 1 or 2 microns. The second surface 32b can be defined by a bottom surface of the transmitting PIC 32. The second surface 32b of the transmit PIC 32 may be the surface of the transmit PIC 32 that faces the substrate 26. For example, the second surface 32b can be mounted to the substrate 26. Alternatively, as described in more detail below, the second surface 32b of the transmitting PIC 32 can be mounted to a carrier that is then mounted to the substrate 26. Either way, the second surface 32b of the transmitting PIC 32 can be referred to as being supported by the substrate 26. Therefore, the transmitting PIC 32 can be referred to as being supported by the substrate 26.

該光學發送器22可被安裝至該第一表面26a,以便於將該發送PIC 32設置成和該基板26的該第一複數個電性導體的個別的電性導體電性連通。譬如,例如是一球格陣列、銅柱、或是柱形凸塊的使用的覆晶的技術可被用來將該發送PIC 32以及該調變器的驅動器25安裝至該基板26。該發送PIC 32可包含複數個電性接點33(參見圖8),其係發送電性信號,並且對於該發送PIC 32開啟和關閉電源。該些電性接點33係被配置以用於覆晶的安裝至該基板26。該些電性接點33可被設置在和該光子層相同的第二發送PIC表面32b上。 The optical transmitter 22 can be mounted to the first surface 26a to facilitate placing the transmit PIC 32 in electrical communication with individual electrical conductors of the first plurality of electrical conductors of the substrate 26. For example, a flip chip technique using, for example, a ball grid array, copper posts, or stud bumps can be used to mount the transmit PIC 32 and the driver 25 of the modulator to the substrate 26. The transmit PIC 32 can include a plurality of electrical contacts 33 (see FIG. 8) that transmit electrical signals and turn the power on and off for the transmit PIC 32. The electrical contacts 33 are configured for flip chip mounting to the substrate 26. The electrical contacts 33 can be disposed on the same second transmit PIC surface 32b as the photonic layer.

該發送PIC 32可以界定一耦合邊緣,並且該發送PIC 32的波導可以終端在該耦合邊緣35之處。該耦合邊緣35可以是一拋光的邊緣。該耦合邊緣35可被配置為一光學輸出表面41,使得該些光學發送信號從該輸出表面35行進到該些發送波導36中。在一例子中,該光學輸出表面41可以延伸在該第一發送PIC表面32a以及該第二發送PIC表面32b之間。譬如,該光學輸出表面41可以從該第一發送PIC表面32a延伸到該第二發送PIC表面32b。該光學輸出表面41可以沿著該橫斷的方向T來定向。或者是,該光學輸出表面41可以是相對於該橫斷的方向T傾斜的。該斜率可以是在一相對於該橫斷的方向T介於0度到8度之間的範圍內。譬如,如同在圖9A所描繪的,該光學輸出表面41可以在其從該第一發送PIC表面32a延伸至該第二發送PIC表面32b時,以一角度θ來從該些發送波導36傾斜離開。該角度θ可以是介於0度到8度之間。類似地,當該發送波導 36的輸出端係與該光學輸出表面41對準時,該發送波導36的中心軸可以相對於該縱長的方向L界定一角度α。該角度α可以是介於0度到8度之間。該角度θ可以是等於該角度α。或者是,該角度θ可以是小於該角度α。又或者是,該角度θ可以是大於該角度α。應該體認到的是,該發送波導36的核心在某些實施例中可以是相對於該發送PIC 32的波導呈角度偏移的。此係容許該些發送波導36能夠在它們從該發送PIC 32向後延伸時,從該基板26向上地延伸離開,藉此容許該些光纖能夠被設置在一可被設置在該收發器20的後方的設備之上。以此種方式向上延伸該些波導36可以限制從在該PIC 32以及波導36之間的介面的背向反射的耦合到該PIC的波導中。 The transmit PIC 32 can define a coupling edge and the waveguide that transmits the PIC 32 can terminate at the coupling edge 35. The coupling edge 35 can be a polished edge. The coupling edge 35 can be configured as an optical output surface 41 such that the optical transmit signals travel from the output surface 35 into the transmit waveguides 36. In an example, the optical output surface 41 can extend between the first transmit PIC surface 32a and the second transmit PIC surface 32b. For example, the optical output surface 41 can extend from the first transmit PIC surface 32a to the second transmit PIC surface 32b. The optical output surface 41 can be oriented along the transverse direction T. Alternatively, the optical output surface 41 may be inclined relative to the transverse direction T. The slope may be in a range between 0 and 8 degrees with respect to the transverse direction T. For example, as depicted in FIG. 9A, the optical output surface 41 can be tilted away from the transmit waveguides 36 at an angle θ as it extends from the first transmit PIC surface 32a to the second transmit PIC surface 32b. . The angle θ can be between 0 and 8 degrees. Similarly, when the output of the transmit waveguide 36 is aligned with the optical output surface 41, the central axis of the transmit waveguide 36 can define an angle a with respect to the longitudinal direction L. The angle α can be between 0 and 8 degrees. The angle θ can be equal to the angle α. Alternatively, the angle θ may be less than the angle α. Still alternatively, the angle θ may be greater than the angle α. It should be appreciated that the core of the transmit waveguide 36 may be angularly offset relative to the waveguide of the transmit PIC 32 in some embodiments. This allows the transmit waveguides 36 to extend upwardly from the substrate 26 as they extend rearwardly from the transmit PIC 32, thereby allowing the fibers to be disposed behind the transceiver 20. Above the device. Extending the waveguides 36 in this manner can limit the coupling from the back-reflection of the interface between the PIC 32 and the waveguide 36 into the waveguide of the PIC.

現在參照圖8,該發送PIC 32可被配置以從該第一電性構件接收至少一電性發送信號,轉換該電性發送信號成為一光學發送信號,並且輸出該光學發送信號。該發送PIC 32的波導可以用具有一大致高斯強度分布的一光學發射模式來發射個別的光錐。該光錐並不需要是圓形地對稱的,而是可以在該橫斷的方向T以及一實質垂直於該橫斷的方向T被定向的側向的方向A上具有一不同的直徑,該些直徑分別被表示為2wT以及2wA。該光學發射方向係沿著一實質垂直於該光學輸出表面41的方向。例如,當該光學輸出表面41係沿著該橫斷的方向T以及該側向的方向A延伸時,該光學發射方向可以是沿著一縱長的方向L,其係實質垂直於該橫斷的方向T以及該側向的方向A的每一個方向。在其中垂直於該光學輸出表面41的表面係相對於該縱長的方向L傾斜的情形中,如同由司乃耳定律(Snell's Law)所定義的,該發射方向將會從該縱長的方向L偏離。該光子層 可以選配地包含對準指示器80,其可以有助於該些光波導(可被配置為光纖)的對準至如同在此所述的發送PIC 32的波導。儘管只來自單一波導的光學發射係在圖8中被展示,但應該體認到的是,該發送PIC 32可包含複數個終端在該光學輸出表面41上的波導。在某些實施例中,該光子積體電路可包含終端在該耦合邊緣處的發送波導以及接收波導兩者。 Referring now to Figure 8, the transmit PIC 32 can be configured to receive at least one electrical transmit signal from the first electrical component, convert the electrical transmit signal to an optical transmit signal, and output the optical transmit signal. The waveguide transmitting the PIC 32 can emit individual light cones in an optical emission mode having a substantially Gaussian intensity distribution. The light cone does not need to be circularly symmetrical, but may have a different diameter in the transverse direction T and a lateral direction A oriented substantially perpendicular to the transverse direction T, which these are represented as the diameter 2w T and 2w A. The optical emission direction is along a direction substantially perpendicular to the optical output surface 41. For example, when the optical output surface 41 extends along the transverse direction T and the lateral direction A, the optical emission direction may be along a longitudinal direction L, which is substantially perpendicular to the transverse The direction T and each direction of the lateral direction A. In the case where the surface perpendicular to the optical output surface 41 is inclined with respect to the longitudinal direction L, the emission direction will be from the longitudinal direction as defined by Snell's Law. L deviates. The photonic layer can optionally include an alignment indicator 80 that can facilitate alignment of the optical waveguides (which can be configured as optical fibers) to a waveguide that transmits PIC 32 as described herein. Although an optical transmission system from only a single waveguide is shown in FIG. 8, it should be appreciated that the transmit PIC 32 can include a plurality of waveguides terminated on the optical output surface 41. In some embodiments, the photonic integrated circuit can include both a transmit waveguide and a receive waveguide terminated at the coupling edge.

該光學發送器引擎30以及因此的該光學發送器22可進一步包含至少一光源34(參見圖8),例如是複數個發射光的光源34,其係被耦合到該發送PIC 32中。該基板26可以在該第一基板表面26a中包含一接收該光源34的凹穴39。譬如,該光學發送器22可包含一耦合器,其係使得該光源被導引到該發送PIC 32中。若複數個光源34存在的話,則每一個光源可以運作在一不同的波長。該至少一光源34可被直接安裝在該發送PIC 32上、或是可被安裝在該光學收發器20中的某個其它位置處。若該至少一光源34係被安裝至該發送PIC 32,則該至少一光源34在一例子中可被安裝至該第二發送PIC表面32b。若該光源34係位在該發送PIC 32之外,則該發送器22可包含光波導,其可以從該光源34導引光至該發送PIC 32。若該發送PIC 32係由矽所形成的,則一個別的雷射可被安裝到該發送PIC 32之上。該雷射可以用一穩態的方式來運作,並且耦合光到該光子層中,其中該光係被處理成為一光學資料串流。 The optical transmitter engine 30, and thus the optical transmitter 22, can further include at least one light source 34 (see FIG. 8), such as a plurality of light-emitting sources 34 that are coupled into the transmit PIC 32. The substrate 26 can include a recess 39 in the first substrate surface 26a that receives the light source 34. For example, the optical transmitter 22 can include a coupler that causes the light source to be directed into the transmit PIC 32. If a plurality of light sources 34 are present, each of the light sources can operate at a different wavelength. The at least one light source 34 can be mounted directly on the transmit PIC 32 or can be mounted at some other location in the optical transceiver 20. If the at least one light source 34 is mounted to the transmitting PIC 32, the at least one light source 34 can be mounted to the second transmitting PIC surface 32b in an example. If the source 34 is out of the transmit PIC 32, the transmitter 22 can include an optical waveguide that can direct light from the source 34 to the transmit PIC 32. If the transmitting PIC 32 is formed by 矽, then another laser can be mounted on the transmitting PIC 32. The laser can operate in a steady state manner and couple light into the photonic layer, wherein the light system is processed into an optical data stream.

該發送PIC 32可以從該光源34接收光,並且可以根據該接收到的電性發送信號來調變該光,以便於產生對應於該接收到的電性發送信號的光學發送信號。該發送器22可包含至少一定義一調變協定的調變器的驅動器25,該調變協定係根據從該第一電性構件接收到的電性信號來決 定該光的調變。該發送器22可包含複數個調變器的驅動器25,其中每一個調變器的驅動器係專用於一個別的通道,其係接收該電性發送信號以被轉換成為在該發送PIC 32中的一個別的光學發送信號。該調變器的驅動器可被製造在單一晶粒上。每一個調變器的驅動器25可被配置以提供一電性輸入至適合用於驅動位在該處的光學調變器的發送PIC 32。該至少一光學調變器可以採用許多形式,例如但不限於一電致吸收調變器、一馬赫任德(Mach-Zehnder)調變器、以及一環形共振器調變器。 The transmit PIC 32 can receive light from the light source 34 and can modulate the light based on the received electrical transmit signal to facilitate generating an optical transmit signal corresponding to the received electrical transmit signal. The transmitter 22 can include at least one driver 25 defining a modulator of a modulation protocol that determines the modulation of the light based on an electrical signal received from the first electrical component. The transmitter 22 can include a plurality of modulator drivers 25, wherein the drivers of each of the modulators are dedicated to a separate channel that receives the electrical transmit signal to be converted into the transmit PIC 32. A different optical transmit signal. The driver of the modulator can be fabricated on a single die. The driver 25 of each modulator can be configured to provide an electrical input to a transmit PIC 32 suitable for driving an optical modulator located there. The at least one optical modulator can take many forms such as, but not limited to, an electroabsorption modulator, a Mach-Zehnder modulator, and a ring resonator modulator.

根據所用的光學調變器的類型,該調變器的驅動器25係產生適合用於該調變器的電性信號。例如,為了增大或是最大的調變深度,一用於馬赫任德調變器的驅動信號可包含一固定或是緩慢變化的偏移電壓,以偏壓該兩個調變器臂。應該體認到的是,在某些情形中,一多位準的調變協定(例如PAM4)可被利用以增加資料傳輸速率。因此,該發送PIC 32可被配置以轉換該接收到的電性發送信號成為光學發送信號。在一例子中,該光源可被配置為任何適當的二極體雷射。譬如,該光源可被配置為一雷射,較佳的是發射波長介於1200nm到160nm之間。該雷射可被配置為垂直腔面射型雷射(VCSEL)、一分佈反饋式(DFB)雷射、或是一法布里-博羅(Fabry-Perot)(FP)雷射。在該DFB以及FP雷射的情形中,一耦合結構可以和該雷射整合,因而光係從表面發射,而不是晶粒的邊緣。 Depending on the type of optical modulator used, the driver 25 of the modulator produces an electrical signal suitable for use with the modulator. For example, to increase or maximize the modulation depth, a drive signal for the Machrend modulator can include a fixed or slowly varying offset voltage to bias the two modulator arms. It should be appreciated that in some cases, a multi-level modulation protocol (eg, PAM4) can be utilized to increase the data transfer rate. Accordingly, the transmit PIC 32 can be configured to convert the received electrical transmit signal into an optical transmit signal. In an example, the light source can be configured as any suitable diode laser. For example, the light source can be configured as a laser, preferably with an emission wavelength between 1200 nm and 160 nm. The laser can be configured as a vertical cavity surface-emitting laser (VCSEL), a distributed feedback (DFB) laser, or a Fabry-Perot (FP) laser. In the case of the DFB and FP laser, a coupling structure can be integrated with the laser so that the light system is emitted from the surface rather than the edge of the grain.

該些光學發送信號可以被輸出至該第二構件。譬如,該光學發送器22可包含一發送波導組件37,其可包含複數個與該發送PIC 32光學對準的光學發送波導36。因此,該些光學發送波導36係被配置以接收藉由該發送PIC 32所輸出的光學發送信號,並且將該些光學發送信號載送至 該第二構件。當該些光學發送波導36被配置為光纖時,該發送波導組件37可被稱為一發送光纖組件。該發送波導組件37以及因此的該光學發送器22可進一步包含一發送波導夾持器38,其係被配置以支承該些光學發送波導36,使得該些光學發送波導36的一輸入端係在該發送PIC 32的光學輸出表面41與該發送PIC 32的波導光學對準。因此,該些光學發送波導36的輸入端係被配置以從該發送PIC 32接收該些光學發送信號。當該些光學發送波導36被配置為光纖時,該發送波導夾持器38可被稱為一發送光纖夾持器。該發送波導夾持器38可以是由玻璃、矽、陶瓷、塑膠、或是任何適當的替代的材料所做成的。在一例子中,該發送波導夾持器38可被配置為一模製光學結構(MOS),其係將該基板26耦合至該些光學發送波導36。該發送波導夾持器38可以藉由該基板26來加以支承。 The optical transmit signals can be output to the second component. For example, the optical transmitter 22 can include a transmit waveguide assembly 37 that can include a plurality of optical transmit waveguides 36 that are optically aligned with the transmit PIC 32. Accordingly, the optical transmit waveguides 36 are configured to receive optical transmit signals output by the transmit PIC 32 and carry the optical transmit signals to the second component. When the optical transmitting waveguides 36 are configured as optical fibers, the transmitting waveguide assembly 37 can be referred to as a transmitting fiber optic assembly. The transmit waveguide assembly 37 and thus the optical transmitter 22 can further include a transmit waveguide holder 38 configured to support the optical transmit waveguides 36 such that an input of the optical transmit waveguides 36 is coupled to The optical output surface 41 of the transmit PIC 32 is optically aligned with the waveguide of the transmit PIC 32. Accordingly, the inputs of the optical transmit waveguides 36 are configured to receive the optical transmit signals from the transmit PIC 32. When the optical transmit waveguides 36 are configured as optical fibers, the transmit waveguide holder 38 can be referred to as a transmit fiber holder. The transmit waveguide holder 38 can be made of glass, tantalum, ceramic, plastic, or any suitable alternative material. In one example, the transmit waveguide holder 38 can be configured as a molded optical structure (MOS) that couples the substrate 26 to the optical transmit waveguides 36. The transmission waveguide holder 38 can be supported by the substrate 26.

應該體認到的是,該發送PIC 32可以光學耦合至該些光學發送波導36。在一例子中,該些發送波導36的輸入端可被設置成相鄰(亦即,邊緣耦合至)該發送PIC 32的一邊緣。因此,該發送PIC 32的一邊緣可以界定一光學輸出表面。此類型的耦合係以對接耦合著稱的。於是,在一實施例中,該些光學發送信號可以直接耦合在該發送PIC 32以及光學發送波導36之間,而不通過任何介於中間的結構。因此,從該發送PIC 32至該些光學發送波導36的光學信號傳播可被稱為自由空間傳播。在此實施例中,在該發送PIC 32的波導以及光學發送波導36中的至少一個內做出準備,以模式匹配在該些不同的波導之間的光。 It should be appreciated that the transmit PIC 32 can be optically coupled to the optical transmit waveguides 36. In an example, the inputs of the transmit waveguides 36 can be placed adjacent (i.e., edge coupled) to an edge of the transmit PIC 32. Thus, an edge of the transmit PIC 32 can define an optical output surface. This type of coupling is known for its butt coupling. Thus, in an embodiment, the optical transmit signals may be coupled directly between the transmit PIC 32 and the optical transmit waveguide 36 without passing through any intervening structures. Thus, optical signal propagation from the transmitting PIC 32 to the optical transmitting waveguides 36 can be referred to as free space propagation. In this embodiment, preparation is made in at least one of the waveguide of the transmitting PIC 32 and the optical transmitting waveguide 36 to pattern match the light between the different waveguides.

或者是,一或多個介於中間的光學元件可以是位在該發送PIC 32的波導以及該些光學發送波導36之間,以使得模式匹配變得容易。 這些介於中間的光學元件可包含反射鏡、透鏡、透明的基板、透明的耦合器、以及光波導中的一或多個,其係全體地作用以在該發送PIC 32的波導以及光學發送波導36之間提供一光學路徑。儘管該光學路徑在利用多個光學元件的實施例中是較複雜的,但是它們可以改善模式匹配,並且放鬆在該發送PIC 32以及光學發送波導36之間的對準容限。該高的耦合效率可以有利地在一大的操作溫度範圍上加以維持。該發送PIC 32的波導與該些發送波導36的光學對準係在以下更詳細地加以描述。 Alternatively, one or more intervening optical elements may be positioned between the waveguide of the transmitting PIC 32 and the optical transmitting waveguides 36 to facilitate pattern matching. The intervening optical elements can include one or more of a mirror, a lens, a transparent substrate, a transparent coupler, and an optical waveguide that act integrally to the waveguide of the transmitting PIC 32 and the optical transmitting waveguide An optical path is provided between 36. While this optical path is more complex in embodiments that utilize multiple optical elements, they can improve pattern matching and relax the alignment tolerance between the transmit PIC 32 and the optical transmit waveguide 36. This high coupling efficiency can advantageously be maintained over a large operating temperature range. The optical alignment of the waveguide transmitting the PIC 32 with the transmit waveguides 36 is described in more detail below.

再者,該發送PIC 32可被設置成和一控制器42電性連通,該控制器42可被配置為一微處理器。該控制器42可被安裝至該基板26,並且可被程式化以控制該光學發送器22以及該光學接收器24的任一或兩者的操作。譬如,該控制器42可以控制該調變器的驅動器25的光調變特徵。此種特徵係包含但不限於在一馬赫任德調變器的臂中的高/低的消光比、信號的預先補償、以及平衡相位。 Moreover, the transmit PIC 32 can be configured to be in electrical communication with a controller 42 that can be configured as a microprocessor. The controller 42 can be mounted to the substrate 26 and can be programmed to control the operation of either or both of the optical transmitter 22 and the optical receiver 24. For example, the controller 42 can control the light modulation characteristics of the driver 25 of the modulator. Such features include, but are not limited to, high/low extinction ratios, pre-compensation of signals, and balanced phases in the arms of a Mach Rende modulator.

繼續參考到圖1,該光學接收器24係被配置以從該第二構件接收光學接收信號,轉換該些光學信號成為電性信號,並且在該光學收發器20與該第一電性構件配接時,輸出該些電性信號至該第一電性構件。該接收器24可被稱為一種光學引擎,其係被配置為一光學接收器引擎62。該接收器62可包含至少一接收PIC(光子積體電路)64,其係被配置以被設置成和該些光學接收波導60通訊。在一例子中,該接收PIC 64可被配置為一矽光子晶片。該接收PIC 64可以是與該發送PIC 32分開的。或者是,單一PIC可包含該接收PIC 64以及該發送PIC 32兩者。 With continued reference to FIG. 1, the optical receiver 24 is configured to receive optically received signals from the second member, convert the optical signals into electrical signals, and at the optical transceiver 20 with the first electrical component When connected, the electrical signals are output to the first electrical component. The receiver 24 may be referred to as an optical engine that is configured as an optical receiver engine 62. The receiver 62 can include at least one receiving PIC (photonic integrated circuit) 64 that is configured to be in communication with the optical receiving waveguides 60. In one example, the receiving PIC 64 can be configured as a single photonic wafer. The receiving PIC 64 can be separate from the transmitting PIC 32. Alternatively, a single PIC can include both the receiving PIC 64 and the transmitting PIC 32.

該接收PIC 64係包含複數個接收PIC的波導,其係被配置 以與該複數個光學接收波導60光學地對準。因此,該接收PIC 64係接收該些光學接收信號,並且被配置以轉換該些光學接收信號成為對應的電性接收信號。該些電性接收信號可以具有電流位準,其係與該光學接收信號的光子到達的強度或速率成比例的。一般而言,藉由該接收PIC 64所產生的電性接收信號的電流係隨著該進入的光學接收信號的強度增高而增高,並且隨著該進入的光學接收信號的強度減小而減小。所體認到的是,該些電性接收信號的電流位準並不一定線性地成比例於該接收到的光學接收信號的光子的數量,並且該比例經常是非線性的。因此,相較於具有較低輸送率的光子的光學接收信號,具有高輸送率的光子的光學接收信號將會被轉換成為一具有較高的電流位準的電性信號。資料可以藉由此調變的光學及電性信號來加以發送。 The receive PIC 64 is a plurality of waveguides that receive PICs that are configured to optically align with the plurality of optical receive waveguides 60. Accordingly, the receiving PIC 64 receives the optical receive signals and is configured to convert the optical receive signals into corresponding electrical receive signals. The electrical receiving signals can have a current level that is proportional to the intensity or rate at which photons of the optically received signal arrive. In general, the current through the electrical receiving signal generated by the receiving PIC 64 increases as the intensity of the incoming optical receiving signal increases, and decreases as the intensity of the incoming optically received signal decreases. . It is recognized that the current levels of the electrical receive signals are not necessarily linearly proportional to the number of photons of the received optical receive signal, and the ratio is often non-linear. Therefore, the optical receiving signal of a photon having a high transfer rate will be converted into an electrical signal having a higher current level than an optical receiving signal of a photon having a lower transfer rate. The data can be transmitted by means of the modulated optical and electrical signals.

該光學接收器引擎62以及因此的該光學接收器24可進一步包含一電流至電壓轉換器66,其係和該接收PIC 64電性連通,使得藉由該光學接收PIC 64輸出的電性接收信號係被該電流至電壓轉換器66接收到。因此,可以說成是該接收PIC 64可以將該些光學接收波導60設置成和該電流至電壓轉換器66資料通訊的。在一例子中,該電流至電壓轉換器66是一跨阻抗放大器(TIA),其係放大該電性接收信號成為可用於和該第一電性構件通訊的電壓位準。因此,藉由該電流至電壓轉換器66輸出的電性接收信號是藉由該接收PIC 64所接收到的光學信號的電子等同者。因此,藉由該電流至電壓轉換器66輸出的電性接收信號可以在一電性信號中模仿該接收到的光學模式的數位模式。 The optical receiver engine 62, and thus the optical receiver 24, can further include a current to voltage converter 66 in electrical communication with the receiving PIC 64 such that the optical receiving signal output by the optical receiving PIC 64 is received. It is received by the current to voltage converter 66. Therefore, it can be said that the receiving PIC 64 can set the optical receiving waveguides 60 to communicate with the current to voltage converter 66. In one example, the current to voltage converter 66 is a transimpedance amplifier (TIA) that amplifies the electrical receive signal into a voltage level that can be used to communicate with the first electrical component. Thus, the electrical receive signal output by the current to voltage converter 66 is the electronic equivalent of the optical signal received by the receive PIC 64. Thus, the electrical receive signal output by the current to voltage converter 66 can mimic the digital mode of the received optical mode in an electrical signal.

該接收PIC 64以及因此的該光學接收器引擎62可以藉由該 基板26來加以支承。尤其,該基板26係界定一第一基板表面26a以及一第二基板表面26b,其係沿著一橫斷的方向T與該第一基板表面26a相對的。類似地,該接收PIC 64係界定一第一接收PIC表面64a以及一第二接收PIC表面64b,其係沿著一橫斷的方向T與該第一接收PIC表面64a相對的。該接收PIC的波導可以相鄰該接收PIC 64的第二表面64b來加以設置。譬如,相較於該第一PIC表面64a,該接收PIC 64的波導可被設置成沿著該橫斷的方向T較靠近該第二表面64b。在一例子中,相較於一與該第一及第二表面64a及64b等距地間隔開的中分面,該接收PIC 64的波導可被設置成較靠近該第二表面64b。譬如,在一例子中,該接收PIC 64的波導可以與該接收PIC 64的第二表面64b間隔開不超過約20微米。在另一例子中,該發送PIC 32的波導可以與該發送PIC 32的第二表面32b間隔開不超過約10微米。在又一例子中,該發送PIC 32的波導可以與該接收PIC 32的第二表面64b間隔開不超過約1或2微米。該第二表面64b可以是藉由該接收PIC 64的一底表面所界定的。該接收PIC 64的第二表面64b可以是該接收PIC 64面對該基板26的表面。譬如,該第二表面64b可被安裝至該基板26。或者是,如以下更詳細所述的,該接收PIC 64的第二表面64b可被安裝到一載體,其係接著被安裝至該基板26。不論哪種方式,該接收PIC 64的第二表面64b都可以說是藉由該基板26來加以支承。因此,該接收PIC 64可以說是藉由該基板26來加以支承的。 The receiving PIC 64 and thus the optical receiver engine 62 can be supported by the substrate 26. In particular, the substrate 26 defines a first substrate surface 26a and a second substrate surface 26b that are opposite the first substrate surface 26a in a transverse direction T. Similarly, the receiving PIC 64 defines a first receiving PIC surface 64a and a second receiving PIC surface 64b that are opposite the first receiving PIC surface 64a in a transverse direction T. The waveguide receiving the PIC can be disposed adjacent to the second surface 64b of the receiving PIC 64. For example, the waveguide of the receiving PIC 64 can be disposed closer to the second surface 64b along the transverse direction T than the first PIC surface 64a. In one example, the waveguide of the receiving PIC 64 can be disposed closer to the second surface 64b than a mid-plane that is equally spaced from the first and second surfaces 64a and 64b. For example, in one example, the waveguide receiving the PIC 64 can be spaced apart from the second surface 64b of the receiving PIC 64 by no more than about 20 microns. In another example, the waveguide transmitting the PIC 32 can be spaced apart from the second surface 32b of the transmit PIC 32 by no more than about 10 microns. In yet another example, the waveguide transmitting the PIC 32 can be spaced apart from the second surface 64b of the receiving PIC 32 by no more than about 1 or 2 microns. The second surface 64b can be defined by a bottom surface of the receiving PIC 64. The second surface 64b of the receiving PIC 64 may be the surface of the receiving PIC 64 that faces the substrate 26. For example, the second surface 64b can be mounted to the substrate 26. Alternatively, as described in more detail below, the second surface 64b of the receiving PIC 64 can be mounted to a carrier that is then mounted to the substrate 26. Either way, the second surface 64b of the receiving PIC 64 can be said to be supported by the substrate 26. Therefore, the receiving PIC 64 can be said to be supported by the substrate 26.

該光學接收器24可以直接或是經由一載體而被安裝至該第一表面26a,以便於將該電流至電壓轉換器66設置成和該基板26的該第二複數個電性導體的個別的電性導體電性連通。譬如,覆晶的技術(例如是一 球格陣列、銅柱、或是柱形凸塊的使用)可被用來將該接收PIC 64以及該電流至電壓轉換器66安裝至該基板26。因此,該接收PIC 64以及該電流至電壓轉換器66的每一個都可以直接或是經由一載體而被表面安裝至該基板26。該接收器24可包含一接收波導組件70,其於是可包含該些光學接收波導60以及一支承該些接收波導60的接收波導夾持器72。尤其,如同在以下更詳細地加以描述的,該接收波導夾持器72可以支承該些光學接收波導60,使得該些光學接收波導60的輸出端係與該接收PIC 64的個別的波導光學對準。當該些光學接收波導60被配置為光纖時,該接收波導組件70可被稱為一接收光纖組件。類似地,當該些光學接收波導60被配置為光纖時,該接收波導夾持器72可被稱為一接收光纖夾持器。 The optical receiver 24 can be mounted to the first surface 26a either directly or via a carrier to facilitate the placement of the current to voltage converter 66 with the second plurality of electrical conductors of the substrate 26. The electrical conductors are electrically connected. For example, flip chip technology (e.g., the use of a ball grid array, copper pillars, or stud bumps) can be used to mount the receiving PIC 64 and the current to voltage converter 66 to the substrate 26. Thus, each of the receive PIC 64 and the current to voltage converter 66 can be surface mounted to the substrate 26 either directly or via a carrier. The receiver 24 can include a receive waveguide assembly 70 that can then include the optical receive waveguides 60 and a receive waveguide holder 72 that supports the receive waveguides 60. In particular, as will be described in greater detail below, the receive waveguide holder 72 can support the optical receive waveguides 60 such that the output ends of the optical receive waveguides 60 are associated with individual waveguide optical pairs of the receive PIC 64. quasi. When the optical receiving waveguides 60 are configured as optical fibers, the receiving waveguide assembly 70 can be referred to as a receiving fiber optic assembly. Similarly, when the optical receiving waveguides 60 are configured as optical fibers, the receiving waveguide holders 72 can be referred to as a receiving fiber holder.

該接收PIC 64可被配置以從該個別的光學接收波導60接收光學接收信號。如同將會從在以下的說明體認到的,該些光學接收信號可以在不通過任何波導下,從該些光學接收波導60行進至該接收PIC 64。因此,從該些光學接收波導60至該接收PIC 64的光學信號傳播可被稱為自由空間傳播。該些光學接收信號可以從該第二構件被傳送至該光學收發器20。該接收PIC 64可以界定一耦合邊緣35,並且該接收PIC 64的波導可以終端在該耦合邊緣35之處。該耦合邊緣可被配置為一光學輸入表面65,使得該些光學發送信號從該些接收波導60行進至該光學輸入表面65,並且進入到該接收PIC的波導中。在一例子中,該些接收波導60的輸出端可被設置成相鄰(亦即,邊緣耦合至)該接收PIC 64的一邊緣。該邊緣可以是藉由該光學輸入表面65所界定的。此類型的耦合係以對接耦合著稱的。 The receiving PIC 64 can be configured to receive optically received signals from the individual optical receiving waveguides 60. As will be apparent from the following description, the optical receive signals can travel from the optical receive waveguides 60 to the receive PIC 64 without passing through any of the waveguides. Thus, optical signal propagation from the optical receiving waveguides 60 to the receiving PIC 64 can be referred to as free space propagation. The optically received signals can be transmitted from the second component to the optical transceiver 20. The receiving PIC 64 can define a coupling edge 35 and the waveguide receiving the PIC 64 can terminate at the coupling edge 35. The coupling edge can be configured as an optical input surface 65 such that the optical transmit signals travel from the receive waveguides 60 to the optical input surface 65 and into the waveguide of the receive PIC. In an example, the outputs of the receive waveguides 60 can be placed adjacent (i.e., edge coupled) to an edge of the receive PIC 64. The edge may be defined by the optical input surface 65. This type of coupling is known for its butt coupling.

在一例子中,該光學輸入表面65可以延伸在該第一接收PIC 表面64a以及該第二接收PIC表面64b之間。譬如,該光學輸入表面65可以從該第一接收PIC表面64a延伸至該第二接收PIC表面64b。該光學輸入表面65可以沿著該橫斷的方向T而被定向。或者是,如同在圖9B所描繪的,該光學輸入表面65可以是相對於該橫斷的方向T傾斜的。該斜率可以是在一相對於該橫斷的方向T介於0度到8度之間的範圍內。譬如,該光學輸入表面65可以在其從該第一接收PIC表面64a延伸至該第二接收PIC表面64b時,以一角度θ來從該些接收波導60傾斜離開。該角度θ可以是介於0度到8度之間。類似地,當該接收波導60的輸入端係與該光學輸入表面65對準時,該接收波導60的中心軸可以界定一相對於該縱長的方向L的角度α。該角度α可以是介於0度到8度之間。該角度θ可以是等於該角度α。或者是,該角度θ可以是小於該角度α。又或者是,該角度0可以是大於該角度α。應該體認到的是,該接收波導60的核心在某些實施例中可以是相對於該接收PIC 64的波導呈角度偏移的。此係容許該些接收波導60能夠在它們從該接收PIC 64向後延伸時,從該基板26向上地延伸離開,藉此容許該些光纖能夠被設置在一可被設置在該收發器20的後方的設備之上。以此種方式向上地延伸該些波導60可以限制從在該PIC 64以及波導60之間的介面的背向反射的耦合到該些波導60的光纖核心中。 In an example, the optical input surface 65 can extend between the first receiving PIC surface 64a and the second receiving PIC surface 64b. For example, the optical input surface 65 can extend from the first receiving PIC surface 64a to the second receiving PIC surface 64b. The optical input surface 65 can be oriented along the transverse direction T. Alternatively, as depicted in Figure 9B, the optical input surface 65 can be tilted relative to the transverse direction T. The slope may be in a range between 0 and 8 degrees with respect to the transverse direction T. For example, the optical input surface 65 can be tilted away from the receive waveguides 60 at an angle θ as it extends from the first receive PIC surface 64a to the second receive PIC surface 64b. The angle θ can be between 0 and 8 degrees. Similarly, when the input end of the receiving waveguide 60 is aligned with the optical input surface 65, the central axis of the receiving waveguide 60 can define an angle a relative to the longitudinal direction L. The angle α can be between 0 and 8 degrees. The angle θ can be equal to the angle α. Alternatively, the angle θ may be less than the angle α. Or alternatively, the angle 0 can be greater than the angle a. It should be appreciated that the core of the receive waveguide 60 may be angularly offset relative to the waveguide of the receive PIC 64 in some embodiments. This allows the receiving waveguides 60 to extend upwardly from the substrate 26 as they extend rearwardly from the receiving PIC 64, thereby allowing the fibers to be disposed behind the transceiver 20. Above the device. Extending the waveguides 60 upwardly in this manner can limit the coupling of back reflections from the interface between the PIC 64 and the waveguide 60 into the fiber cores of the waveguides 60.

該些光學接收信號可以從該些光學接收波導60行進至該光學輸入表面65,而不通過任何介於中間的結構。或者是,一或多個介於中間的光學元件可以是位在該些光學接收波導60以及該接收PIC 64之間。這些介於中間的光學元件可包含反射鏡、透鏡、透明的基板、透明的耦合器、以及光波導中的一或多個,其係全體地作用以在該些光學接收波導60以及 該接收PIC 64之間提供一光學路徑。儘管該光學路徑在利用多個光學元件的實施例中是較複雜的,但是它們可以改善模式匹配,並且放鬆在該些光學接收波導60以及該接收PIC 64之間的對準容限。 The optically received signals can travel from the optical receiving waveguides 60 to the optical input surface 65 without passing through any intervening structures. Alternatively, one or more intervening optical elements may be positioned between the optical receiving waveguides 60 and the receiving PIC 64. The intervening optical elements can include one or more of a mirror, a lens, a transparent substrate, a transparent coupler, and an optical waveguide that act collectively to act on the optical receive waveguides 60 and the receive PIC An optical path is provided between 64. Although the optical path is more complex in embodiments that utilize multiple optical elements, they can improve pattern matching and relax alignment tolerances between the optical receiving waveguides 60 and the receiving PIC 64.

該控制器42可以控制該接收器24的電流至電壓轉換器66,其係調節該些光學接收信號。例如,該控制器42可以控制該電流至電壓轉換器66的操作,藉此將其設置在一適合接收進入的接收器信號的操作狀態中。該控制器42亦可以通訊由進入的接收電性信號所產生的靜噪(squelch)信號至在該資料處理系統中的其它元件。 The controller 42 can control the current to voltage converter 66 of the receiver 24 to adjust the optical receive signals. For example, the controller 42 can control the operation of the current to voltage converter 66, thereby setting it in an operational state suitable for receiving incoming receiver signals. The controller 42 can also communicate the squelch signal generated by the incoming received electrical signal to other components in the data processing system.

現在參照圖2-5,並且如上所述,該些光學發送波導36的輸入端係與該發送PIC 32的個別的發送PIC的波導光學對準。類似地,如上所述,該些光學接收波導60的輸出端係與該接收PIC 64的個別的接收PIC的波導之個別的波導光學對準。該發送器22以及該接收器24的一或兩者可包含一對準模組74,其係被配置成使得當該對準模組74具有一和該個別的光子積體電路32或64的預設的空間的關係,並且接收該些對應的波導36或60時,該些對應的波導36或60係與該光子積體電路的對應的波導對準。將會瞭解到的是,除非另有相反的指出,否則對於一光子積體電路(PIC)76(被標示在圖5中)的參照可以適用於該發送PIC 32以及該接收PIC 64的一或兩者。該PIC 76可以界定一第一或上表面76a以及一第二或下表面76b,其係沿著該橫斷的方向T與該第一表面76a相對的。類似地,除非另有相反的指出,否則對於一光纖夾持器或是波導夾持器86(被標示在圖4中)的參照可以適用於該發送波導夾持器38以及該接收波導夾持器72的一或兩者。當該些光波導被配置為光纖85時,對於一光纖夾持器的參照可以 適用於該波導夾持器。 Referring now to Figures 2-5, and as described above, the inputs of the optical transmit waveguides 36 are optically aligned with the individual transmit PIC's waveguides of the transmit PIC 32. Similarly, as described above, the outputs of the optical receive waveguides 60 are optically aligned with the individual waveguides of the individual PIC-receiving waveguides that receive the PIC 64. One or both of the transmitter 22 and the receiver 24 can include an alignment module 74 that is configured such that when the alignment module 74 has an individual photonic integrated circuit 32 or 64 The predetermined spatial relationship, and when receiving the corresponding waveguides 36 or 60, the corresponding waveguides 36 or 60 are aligned with corresponding waveguides of the photonic integrated circuit. It will be appreciated that references to a photonic integrated circuit (PIC) 76 (shown in Figure 5) may be applied to the transmitting PIC 32 and the receiving PIC 64, unless otherwise indicated to the contrary. Both. The PIC 76 can define a first or upper surface 76a and a second or lower surface 76b that are opposite the first surface 76a along the transverse direction T. Similarly, references to a fiber holder or waveguide holder 86 (shown in Figure 4) may be applied to the transmission waveguide holder 38 and the receiving waveguide holder, unless otherwise indicated to the contrary. One or both of the devices 72. When the optical waveguides are configured as the optical fibers 85, a reference to a fiber holder can be applied to the waveguide holder.

在一例子中,該光學發送器引擎30(以及因此的該光學發送器22)以及該光學接收器引擎62(以及因此的該光學接收器24)的一或兩者可包含一對準模組74。將會瞭解到的是,對於一光學引擎的參照可包含該光學發送器引擎30、該光學接收器引擎62、或是兩者。該對準模組74係被配置以接收該些個別的發送或接收波導36、60的一或兩者,並且被配置以與該PIC 76對準,使得藉由該對準模組74接收的該些光波導(其可被配置為光纖)係與該PIC 76的波導光學對準地來和該PIC 76對接耦合。 In one example, one or both of the optical transmitter engine 30 (and thus the optical transmitter 22) and the optical receiver engine 62 (and thus the optical receiver 24) can include an alignment module 74. It will be appreciated that references to an optical engine may include the optical transmitter engine 30, the optical receiver engine 62, or both. The alignment module 74 is configured to receive one or both of the individual transmit or receive waveguides 36, 60 and is configured to align with the PIC 76 such that it is received by the alignment module 74 The optical waveguides (which may be configured as optical fibers) are optically aligned with the waveguides of the PIC 76 to be coupled to the PIC 76.

所體認到的是,該PIC 76的波導一般是小於在該光纖中的波導結構。通常,該些模式尺寸係為了有效率的耦合而加以實質匹配的。有各種的方法可被利用以模式匹配該些波導。一種方法係在該PIC 76中利用一維及/或二維的波導錐形連接器以放大該模式尺寸來匹配該光纖的模式尺寸。一第二種方法係在一間隙區域中使用光的自由空間傳播,以匹配在該PIC 76以及該光纖之間的射束尺寸。例如,如同在圖8所展示的,從一發送PIC的耦合邊緣發射的光係由於隨著其傳播通過自由空間時的繞射而擴張。一光纖的端面可被設置成使得其係在其中該射束尺寸實質匹配該光纖模式尺寸的平面交叉該射束。例如,對於一PIC 76的一具有3微米的模場直徑的波導而言,通過空氣的傳播一約14微米的距離將會產生一9.2微米的射束直徑,其係匹配用於1.3微米波長的光的SMF28單模光纖的模式尺寸。即使該傳播的光的射束尺寸匹配該光纖的模式尺寸,該光可能不會有效率地耦合到該光纖中,因為該光是高度發散的。 It is recognized that the waveguide of the PIC 76 is generally smaller than the waveguide structure in the fiber. Typically, these mode sizes are substantially matched for efficient coupling. There are various methods that can be utilized to pattern match the waveguides. One method utilizes a one-dimensional and/or two-dimensional waveguide tapered connector in the PIC 76 to amplify the mode size to match the mode size of the fiber. A second method uses free space propagation of light in a gap region to match the beam size between the PIC 76 and the fiber. For example, as shown in Figure 8, the light system emitted from the coupled edge of a transmitting PIC expands due to diffraction as it propagates through free space. The end face of an optical fiber can be arranged such that it crosses the beam in a plane in which the beam size substantially matches the fiber mode size. For example, for a waveguide of a PIC 76 having a mode field diameter of 3 microns, a distance of about 14 microns through air propagation will result in a beam diameter of 9.2 microns, which is matched for a 1.3 micron wavelength. The mode size of the light SMF28 single mode fiber. Even if the beam size of the propagating light matches the mode size of the fiber, the light may not be efficiently coupled into the fiber because the light is highly divergent.

因此,一校正元件可被設置在該光纖的端上或是附近,以降 低光的發散並且在某些實例中準直進入該光纖核心的光。該校正元件可以用許多方式來加以做成。例如,該光纖端可被熔化,其係形成一可以作為該校正元件的彎曲的表面。一光纖熔接機可被用來準確地加熱該光纖端面,以形成該校正元件。或者是,一小量(例如,一滴)的黏著劑可被設置在該光纖端上。表面張力可以使得該黏著劑形成一彎曲的表面,使得該彎曲的黏著劑可以提供該校正元件。在另外其它實施例中,一GRIN透鏡、球體、或是鏡筒透鏡可被設置在相鄰該光纖端的對準通道84中(參見以下內容)。在某些實施例中,一折射率匹配的材料可被使用在該光學路徑中的某些地方,以改變該射束傳播性質並且降低背向反射。 Thus, a correcting element can be placed on or near the end of the fiber to reduce the divergence of light and, in some instances, collimate light into the core of the fiber. The correcting element can be made in a number of ways. For example, the fiber end can be melted to form a curved surface that can serve as the correcting element. A fiber fusion splicer can be used to accurately heat the fiber end face to form the correcting element. Alternatively, a small amount (e.g., a drop) of adhesive can be placed on the fiber end. The surface tension can cause the adhesive to form a curved surface such that the curved adhesive can provide the correcting element. In still other embodiments, a GRIN lens, sphere, or barrel lens can be placed in the alignment channel 84 adjacent the fiber end (see below). In some embodiments, an index matching material can be used somewhere in the optical path to alter the beam propagation properties and reduce back reflection.

同樣參考到圖5-6,該PIC 76可以載有至少一第一對準指示器80,並且該對準模組74可以載有至少一第二對準指示器82,其係被配置以被設置成與該第一對準指示器80對準。該至少一第一對準指示器80可包含至少一對與彼此間隔開的第一對準指示器80。類似地,該至少一第二對準指示器82可包含至少一對與彼此間隔開的第二對準指示器82。該對準模組74可包含彼此相對的一內部的模組表面74a以及一外部的模組表面74b。該對準模組74可以界定複數個對準通道84,其係被配置以接收該些發送波導36、該些接收波導60、或是兩者的個別的波導。該對準模組74可以相鄰該內部的模組表面74a來界定該些對準通道84。該些對準通道84可以是沿著該縱長的方向L細長的。該些對準通道84可以沿著該側向的方向A與彼此間隔開的。在某些例子中,該些對準通道84可以是彼此實質平行的。 Referring also to Figures 5-6, the PIC 76 can carry at least a first alignment indicator 80, and the alignment module 74 can carry at least a second alignment indicator 82 that is configured to be Arranged to align with the first alignment indicator 80. The at least one first alignment indicator 80 can include at least one pair of first alignment indicators 80 spaced apart from one another. Similarly, the at least one second alignment indicator 82 can include at least one pair of second alignment indicators 82 spaced apart from one another. The alignment module 74 can include an inner module surface 74a and an outer module surface 74b opposite each other. The alignment module 74 can define a plurality of alignment channels 84 that are configured to receive the individual waveguides of the transmit waveguides 36, the receive waveguides 60, or both. The alignment module 74 can define the alignment channels 84 adjacent to the inner module surface 74a. The alignment channels 84 may be elongated along the longitudinal direction L. The alignment channels 84 can be spaced apart from each other along the lateral direction A. In some examples, the alignment channels 84 can be substantially parallel to each other.

當該第一及第二對準指示器80及82係沿著該橫斷的方向T 來與彼此對準時,該PIC 76以及該對準模組74係界定一相關該縱長的方向L以及該側向的方向A的預設的相對的位置。尤其,當該第一及第二對準指示器80及82與彼此對準並且該些對準通道84接收到該些光纖85時,該些光纖85可以與該光子積體電路76的一對應的波導光學對準地來和該光子積體電路76對接耦合。譬如,該些對準指示器80及82可以沿著該橫斷的方向T而與彼此對準的。該第一及第二對準指示器80及82的一或兩者可被配置為視覺的標記。該些視覺的標記可以是在環境照明條件下可見的、或是在紅外光下可見的。因此,該第一及第二對準指示器80及82可以是可見的對準指示器。或者是,該第一及第二對準指示器80及82可以是結構,其中該第一及第二對準指示器80及82中之一係被配置以配接或是接收該第一及第二對準指示器80及82中的另一個。又或者是,該第一及第二對準指示器80及82可以是結構,其係分別被配置以接收或者是配接至少一輔助的對準結構,以便於對準該PIC 76與該對準模組74。 When the first and second alignment indicators 80 and 82 are aligned with each other along the transverse direction T, the PIC 76 and the alignment module 74 define a longitudinal direction L associated with the longitudinal direction. The predetermined relative position of the lateral direction A. In particular, when the first and second alignment indicators 80 and 82 are aligned with each other and the alignment channels 84 receive the optical fibers 85, the optical fibers 85 may correspond to the photon integrated circuit 76. The waveguide is optically aligned to be coupled to the photonic integrated circuit 76. For example, the alignment indicators 80 and 82 can be aligned with each other along the transverse direction T. One or both of the first and second alignment indicators 80 and 82 can be configured as visual indicia. The visual indicia can be visible under ambient lighting conditions or visible under infrared light. Thus, the first and second alignment indicators 80 and 82 can be visible alignment indicators. Alternatively, the first and second alignment indicators 80 and 82 can be configured, wherein one of the first and second alignment indicators 80 and 82 is configured to mate or receive the first and The second alignment indicator is the other of the indicators 80 and 82. Still alternatively, the first and second alignment indicators 80 and 82 can be structures configured to receive or be mated with at least one auxiliary alignment structure to facilitate alignment of the PIC 76 and the pair Pre-module 74.

該對準模組74可被配置以在該第一及第二對準指示器80及82與彼此對準時,被黏附地附接或是焊接至該PIC 76。將該對準模組74以及該PIC 76的平的表面黏附地接合及焊接到彼此,可能會由於不規則的黏著劑或焊料厚度以及由於在該對準模組74以及該焊料或黏著劑之間有差異的熱膨脹而產生失準。因此,該對準模組74可以替代地被配置以藉由分子接合而被附接至確實受這些問題所困擾的PIC 76。較佳的是,當分子接合被執行時,被接合到彼此的表面是相當平坦且清潔的,以便於改善接合成功的可能性。在一替代實施例中,該PIC 76以及對準模組74中的至少一個可被設置有間隙器(例如,三個或是更多個),其係在該PIC 76以及該對 準模組74之間提供一間隙,因而該PIC 76以及對準模組74可以在該間隙下被黏附地附接或是焊接至彼此。提供此種間隙亦可以限制不規則的黏著劑或焊料厚度的影響。 The alignment module 74 can be configured to be adhesively attached or soldered to the PIC 76 when the first and second alignment indicators 80 and 82 are aligned with one another. Adhesively bonding and soldering the alignment module 74 and the flat surface of the PIC 76 to each other may be due to irregular adhesive or solder thickness and due to the alignment module 74 and the solder or adhesive. There is a difference in thermal expansion that causes misalignment. Thus, the alignment module 74 can alternatively be configured to be attached by molecular bonding to the PIC 76 that is indeed plagued by these problems. Preferably, when molecular bonding is performed, the surfaces bonded to each other are relatively flat and clean to facilitate improved likelihood of successful bonding. In an alternate embodiment, at least one of the PIC 76 and the alignment module 74 can be provided with a gap (eg, three or more) attached to the PIC 76 and the alignment module. A gap is provided between 74 so that the PIC 76 and alignment module 74 can be adhesively attached or soldered to each other under the gap. Providing such a gap can also limit the effects of irregular adhesive or solder thickness.

參照圖5、6及7A,該些光纖85可被配置以對齊在該對準模組74的對準通道84中。當該些光纖85係如此對齊時,該些光纖85的光纖核心79係與該PIC 76的波導光學對準地間隔開,並且在該PIC 76對準並且附接至該對準模組74時,其和該PIC 76對接耦合。該些對準通道84的每一個可以是一溝槽,其係延伸到該對準模組74的一內部的模組表面74a中,以便於在該內部的模組表面74a界定一開口。每一個對準通道84可以從該內部的模組表面74a朝向該外部的模組表面74b延伸,並且在該外部的模組表面74b之前就終止。每一個對準通道84可被配置以透過在該內部的模組表面74a中的開口來接收一光纖85。例如,該些對準通道84可以是界定一頂端的實質v形的溝槽。 Referring to Figures 5, 6 and 7A, the fibers 85 can be configured to align in the alignment channels 84 of the alignment module 74. When the fibers 85 are so aligned, the fiber cores 79 of the fibers 85 are optically aligned with the waveguides of the PIC 76 and are aligned and attached to the alignment module 74 when the PIC 76 is aligned and attached. It is coupled to the PIC 76. Each of the alignment channels 84 can be a groove that extends into an interior module surface 74a of the alignment module 74 to define an opening in the inner module surface 74a. Each of the alignment channels 84 can extend from the inner module surface 74a toward the outer module surface 74b and terminate before the outer module surface 74b. Each of the alignment channels 84 can be configured to receive an optical fiber 85 through an opening in the inner module surface 74a. For example, the alignment channels 84 can be substantially V-shaped grooves defining a top end.

應該體認到的是,儘管圖7A係描繪該些對準通道84為v形的溝槽,但是該些對準通道84可以具有其它適合的形狀。例如,每一個對準通道84可以是一實質截頭的v形,其中該v形係在其頂點之處截頭的、可以是一實質u形的溝槽、或是可以具有任何其它適合的溝槽形狀,其中該溝槽的頂端係開放的。較佳的是,每一個對準通道84都具有一被配置以和該些光纖85的一個別的光纖形成一對線接觸71的形狀。或者是,每一個對準通道84可被界定為一被形成在該對準模組74中的孔洞,一光纖係透過該孔洞而被***。該孔洞可以在一沿著該側向的方向A以及該橫斷的方向T延伸的平面中具有一封閉的形狀。在某些實施例中,該孔洞可以藉 由從一超快雷射掃描一聚焦光班到該對準模組74中,以從該對準模組74剝蝕材料來加以形成。 It should be appreciated that although FIG. 7A depicts the grooves in which the alignment channels 84 are v-shaped, the alignment channels 84 may have other suitable shapes. For example, each of the alignment channels 84 can be a substantially truncated v-shape, wherein the v-shape is truncated at its apex, can be a substantially u-shaped groove, or can have any other suitable A groove shape in which the top end of the groove is open. Preferably, each of the alignment channels 84 has a shape configured to form a pair of line contacts 71 with a further one of the fibers of the fibers 85. Alternatively, each alignment channel 84 can be defined as a hole formed in the alignment module 74 through which an optical fiber is inserted. The hole may have a closed shape in a plane extending in the lateral direction A and the transverse direction T. In some embodiments, the aperture can be formed by scanning a focused light from an ultrafast laser into the alignment module 74 to ablate material from the alignment module 74.

如同在圖7A中所繪,該些光纖85可被固定在該些對準通道84之內。該些對準通道84係被配置以在該些個別的頂端之處接收該些光纖85,使得當該對準模組74被附接至該PIC 76(未顯示在圖7B中)時,該些光纖的核心79係與該光子積體電路76的個別的波導光學對準。對於在頂端中的接收之參照可包含一空間的方位,該些光纖係藉此相對於該些頂端實質居中的。 As depicted in FIG. 7A, the optical fibers 85 can be secured within the alignment channels 84. The alignment channels 84 are configured to receive the optical fibers 85 at the respective top ends such that when the alignment module 74 is attached to the PIC 76 (not shown in Figure 7B), The cores 79 of the fibers are optically aligned with the individual waveguides of the photonic integrated circuit 76. The reference to the reception in the top end may include a spatial orientation by which the optical fibers are substantially centered relative to the top ends.

就此點而言,應該體認到的是,當該些對準指示器80及82係與彼此對準時,該PIC 76的波導係沿著一平面而與該些對準通道84的頂端對準,該平面係沿著該縱長的方向L以及該橫斷的方向T而被定向的。換言之,該些對準通道84係藉由沿著該側向的方向A彼此相對的側壁93所界定的。每一個對準通道84可以界定一等距地間隔在其側壁93之間的中分面77,每一個中分面77係藉由該縱長的方向L以及該橫斷的方向T所界定。當該些對準指示器80及82係與彼此對準時,該PIC 76的波導係與該些對準通道84的個別的中分面77對準。該些中分面77可以界定被安置在該些對準通道84中並且與該PIC 76的波導對準的光纖85的核心79的位置。例如,每一個中分面77可與一光纖85的一核心79對準。在某些實施例中,該些光纖85的核心79係沿著一平面而與彼此對準,該平面係沿著該縱長的方向L以及該側向的方向A延伸的。該平面可以是相關於該橫斷的方向T,間隔在該對準模組74的內表面74a之上的。 In this regard, it should be appreciated that when the alignment indicators 80 and 82 are aligned with each other, the waveguides of the PIC 76 are aligned with the top ends of the alignment channels 84 along a plane. The plane is oriented along the longitudinal direction L and the transverse direction T. In other words, the alignment channels 84 are defined by sidewalls 93 that are opposite each other along the lateral direction A. Each alignment channel 84 can define a mid-face 77 that is equally spaced between its sidewalls 93, each of the median faces 77 being defined by the lengthwise direction L and the transverse direction T. When the alignment indicators 80 and 82 are aligned with each other, the waveguides of the PIC 76 are aligned with the individual mid-sections 77 of the alignment channels 84. The mid-facets 77 may define the locations of the cores 79 of the fibers 85 that are disposed in the alignment channels 84 and aligned with the waveguides of the PIC 76. For example, each of the mid-sections 77 can be aligned with a core 79 of an optical fiber 85. In some embodiments, the cores 79 of the fibers 85 are aligned with one another along a plane that extends along the longitudinal direction L and the lateral direction A. The plane may be in a direction T associated with the transverse, spaced above the inner surface 74a of the alignment module 74.

為了有助於對準,一力F可被施加至每一個光纖85,以便 於推動每一個光纖85抵頂一相關的對準通道84的第一及第二側壁93。每一個對準通道84可被配置以與其相關的光纖85形成至少一線接觸71。例如,每一個光纖85可以與該第一及第二側壁93的每一個形成一線接觸71,使得每一個光纖85係被對齊到其相關的對準通道84中。每一個線接觸71可以延伸在該縱長的方向L上,並且因此延伸到在圖7A的視圖中的頁面內。該些光纖85可以具有一受到良好控制的機械容限,其中該光纖直徑以及該核心79的居中係被控制到微米或是次微米的準確性。因此,該些光纖核心79可以相對於該對準模組74的對準特點82(參見圖6)準確地加以對齊。 To facilitate alignment, a force F can be applied to each of the optical fibers 85 to urge each of the optical fibers 85 against the first and second side walls 93 of an associated alignment channel 84. Each of the alignment channels 84 can be configured to form at least one line contact 71 with its associated fiber 85. For example, each of the optical fibers 85 can form a line contact 71 with each of the first and second side walls 93 such that each of the optical fibers 85 is aligned into its associated alignment channel 84. Each of the line contacts 71 can extend in the longitudinal direction L and thus extend into the page in the view of Figure 7A. The fibers 85 can have a well controlled mechanical tolerance wherein the fiber diameter and the centering of the core 79 are controlled to micrometer or submicron accuracy. Thus, the fiber cores 79 can be accurately aligned relative to the alignment features 82 (see FIG. 6) of the alignment module 74.

參照圖4以及7B至7F,該波導夾持器86可被配置以施加該力F至該些光纖85的每一個。該波導夾持器86可以用一些不同的方式來加以配置,以便於安置每一個光纖85到其相關的對準通道84中,即如同將會相關於圖7B至7F所論述者。在圖7B至7F的實施例的至少某些實施例中,該波導夾持器86可以與該對準模組74結合,以形成一運動學的(kinematic)安裝結構。一般而言,該些光纖85可以藉由一波導夾持器86來加以支承。該波導夾持器86可包含彼此相對的一內部的夾持器表面86a以及一外部的夾持器表面86b。該些光纖85可以相鄰該內部的夾持器表面86a而被支承。該波導夾持器86可以相對於該對準模組74來加以設置,使得該內部的夾持器表面86a係面對該內部的模組表面74a。該波導夾持器86可以相對於該對準模組74來加以設置,以便於對準該些光纖85與該PIC 76的波導。再者,該波導夾持器86可以施加一力F至該些光纖85的每一個,以便於使得該些光纖85適當地安置在該對準模組74的對準通道84之內。 該波導夾持器86可以在一機械準確性之下支承該些光纖85,其係在該波導夾持器86相鄰該對準模組74而被設置時,足以使得該些光纖85嚙合該些對準通道84。 Referring to Figures 4 and 7B through 7F, the waveguide holder 86 can be configured to apply the force F to each of the optical fibers 85. The waveguide holder 86 can be configured in a number of different ways to facilitate placement of each of the optical fibers 85 into its associated alignment channel 84, as will be discussed with respect to Figures 7B through 7F. In at least some embodiments of the embodiment of Figures 7B through 7F, the waveguide holder 86 can be combined with the alignment module 74 to form a kinematic mounting structure. In general, the fibers 85 can be supported by a waveguide holder 86. The waveguide holder 86 can include an inner gripper surface 86a and an outer gripper surface 86b that are opposite one another. The optical fibers 85 can be supported adjacent the inner gripper surface 86a. The waveguide holder 86 can be disposed relative to the alignment module 74 such that the inner holder surface 86a faces the inner module surface 74a. The waveguide holder 86 can be disposed relative to the alignment module 74 to facilitate alignment of the optical fibers 85 with the waveguides of the PIC 76. Moreover, the waveguide holder 86 can apply a force F to each of the optical fibers 85 to facilitate proper placement of the optical fibers 85 within the alignment channels 84 of the alignment module 74. The waveguide holder 86 can support the optical fibers 85 under a mechanical accuracy, which is sufficient for the optical fibers 85 to engage when the waveguide holder 86 is disposed adjacent to the alignment module 74. These are aligned with the channel 84.

在某些實施例中,該些光纖85的相鄰該PIC 76的端可以剛性附接至該波導夾持器86。該些光纖85的端可以藉由一黏著劑、壓入配合、或是任何其它適當的固定機構來剛性附接。或者是,該些光纖85的相鄰該PIC 76的端可以藉由該波導夾持器86來加以支承,使得該些端並非剛性附接至該波導夾持器86的。因此,當該波導夾持器86與該對準模組74配接時,該些光纖85的端可以相對於該波導夾持器86來移動。 In some embodiments, the ends of the fibers 85 adjacent the PIC 76 can be rigidly attached to the waveguide holder 86. The ends of the fibers 85 can be rigidly attached by an adhesive, press fit, or any other suitable securing mechanism. Alternatively, the ends of the fibers 85 adjacent to the PIC 76 can be supported by the waveguide holder 86 such that the ends are not rigidly attached to the waveguide holder 86. Therefore, when the waveguide holder 86 is mated with the alignment module 74, the ends of the optical fibers 85 can be moved relative to the waveguide holder 86.

該波導夾持器86係被配置以被安裝至該些光纖85,使得當該些光纖85被安裝至該波導夾持器86並且被***該些對準通道84中時,該些光纖85係與該光子積體電路76的波導光學對準地加以對接耦合至該光子積體電路76。所體認到的是,該些光纖可被配置為分別具有一核心、圍繞該核心的包覆層(cladding)、以及一圍繞該包覆層的緩衝層的光纖。該緩衝層係被配置以被固定至該波導夾持器86,使得該核心以及包覆層係從該緩衝層朝向該光子積體電路76延伸。因此,該緩衝層可以從該光纖的端被剝除。 The waveguide holder 86 is configured to be mounted to the optical fibers 85 such that when the optical fibers 85 are mounted to the waveguide holder 86 and inserted into the alignment channels 84, the optical fibers 85 The waveguide is coupled to the photonic integrated circuit 76 in optical alignment with the waveguide of the photonic integrated circuit 76. It is recognized that the fibers can be configured to have a core, a cladding surrounding the core, and an optical fiber surrounding the buffer layer of the cladding. The buffer layer is configured to be secured to the waveguide holder 86 such that the core and cladding extend from the buffer layer toward the photonic integrated circuit 76. Therefore, the buffer layer can be stripped from the end of the fiber.

更明確地參考到圖4及7B,在一例子中,該波導夾持器86可包含至少一夾持器通道90。例如,該波導夾持器86可包含複數個夾持器通道90。該些夾持器通道90分別可以是沿著該縱長的方向L細長的。該些夾持器通道90可以是沿著該側向的方向A與彼此間隔開的。該些夾持器通道90的每一個可以是一溝槽,其係延伸到該波導夾持器86的內部的夾持 器表面86a中,以便於在該內部的夾持器表面86a之處界定一開口。每一個夾持器通道90可以從該內部的夾持器表面86a朝向該外部的夾持器表面86b延伸,並且在該外部的夾持器表面86b之前就終止。每一個夾持器通道90可被配置以透過在該內部的夾持器表面86a中的開口來接收一光纖85,使得當該對準模組74係相鄰該PIC 76(未顯示在圖7B中)而被設置時,該些光纖85的核心79係與該PIC 76的個別的波導光學對準。 Referring more specifically to Figures 4 and 7B, in one example, the waveguide holder 86 can include at least one gripper passage 90. For example, the waveguide holder 86 can include a plurality of gripper channels 90. The gripper channels 90 may each be elongated along the longitudinal direction L. The gripper channels 90 may be spaced apart from each other along the lateral direction A. Each of the gripper channels 90 can be a groove that extends into the gripper surface 86a of the interior of the waveguide holder 86 to facilitate defining at the inner gripper surface 86a An opening. Each of the gripper channels 90 can extend from the inner gripper surface 86a toward the outer gripper surface 86b and terminate before the outer gripper surface 86b. Each of the gripper channels 90 can be configured to receive an optical fiber 85 through an opening in the inner gripper surface 86a such that when the alignment module 74 is adjacent to the PIC 76 (not shown in Figure 7B) When set, the cores 79 of the fibers 85 are optically aligned with the individual waveguides of the PIC 76.

該波導夾持器86可以針對於每一個夾持器通道90界定一第一通道部分90a,其係被配置以接收該緩衝層、以及一第二通道部分90b,其係被配置以接收來自該光纖85已經被剝除緩衝層的區域的包覆層。該第一通道部分90a可以是相鄰該波導夾持器86的一第一夾持器端86c,並且該第二通道部分90b可以是相鄰該波導夾持器86的一第二夾持器端86d。該第一及第二夾持器端86c及86d可以是相關一縱長的方向L而彼此相對的,該縱長的方向L係實質垂直於該橫斷的方向T以及該側向的方向A而被定向。再者,當該波導夾持器86被設置成相鄰該PIC 76時,該第二夾持器端86d可被設置成較靠近該PIC 76。該第二通道部分90b可以相關該縱長的方向L而與該第一通道部分90a對準。每一個第一通道部分90a可以在一沿著該側向的方向A以及該縱長的方向L延伸的平面中,界定一沿著該側向的方向A的寬度。每一個第一通道部分90a沿著在相同的平面中的側向的方向A的寬度係大於其相關的第二通道部分90b的一寬度。該些第一通道部分90a可以是沿著該側向的方向A與彼此間隔開。類似地,該些第二通道部分90b可以是沿著該側向的方向A與彼此間隔開。該第一及第二通道部分90a及90b可以是沿著該縱長的方向L細長的。在替代的實施 例中,該波導夾持器86可以界定複數個線接觸90a,以取代該些第一通道部分。該些線接觸90a可以是沿著該側向的方向A與彼此間隔開,並且可以沿著該縱長的方向L來與該些第二通道部分90b對準。該波導夾持器86可被配置以和每一個光纖85的緩衝層形成一線接觸90a。 The waveguide holder 86 can define a first channel portion 90a for each of the holder channels 90 that is configured to receive the buffer layer and a second channel portion 90b that is configured to receive from the The fiber 85 has been stripped of the cladding of the region of the buffer layer. The first channel portion 90a can be a first holder end 86c adjacent the waveguide holder 86, and the second channel portion 90b can be a second holder adjacent the waveguide holder 86. End 86d. The first and second gripper ends 86c and 86d may be opposite each other in a longitudinal direction L, the longitudinal direction L being substantially perpendicular to the transverse direction T and the lateral direction A. And being directed. Moreover, when the waveguide holder 86 is disposed adjacent to the PIC 76, the second holder end 86d can be disposed closer to the PIC 76. The second channel portion 90b can be aligned with the first channel portion 90a in relation to the longitudinal direction L. Each of the first passage portions 90a may define a width in a direction A along the lateral direction in a plane extending along the lateral direction A and the longitudinal direction L. The width of each of the first channel portions 90a along the lateral direction A in the same plane is greater than a width of its associated second channel portion 90b. The first channel portions 90a may be spaced apart from each other along the lateral direction A. Similarly, the second channel portions 90b may be spaced apart from each other along the lateral direction A. The first and second channel portions 90a and 90b may be elongated along the longitudinal direction L. In an alternate embodiment, the waveguide holder 86 can define a plurality of line contacts 90a in place of the first channel portions. The line contacts 90a may be spaced apart from each other along the lateral direction A and may be aligned with the second channel portions 90b along the longitudinal direction L. The waveguide holder 86 can be configured to form a line contact 90a with the buffer layer of each of the optical fibers 85.

該波導夾持器86可以界定一止擋表面92,其係被設置在該些第一通道部分90a(或是線接觸)以及該些第二通道部分90b之間。該止擋表面92係被配置以鄰接該緩衝層的一端,使得該包覆層以及核心從該個別的緩衝層沿著該縱長的方向L向前延伸到該第二通道部分90b中。在一例子中,該緩衝層可以在該個別的第一通道部分90a(或是線接觸)中黏附地附接至該波導夾持器86。該第二通道部分90b可以界定個別的頂端,並且該緩衝層可以在該第一通道部分90a(或是線接觸)中附接至該波導夾持器86,使得該核心以及包覆層係被設置在該第二通道部分90b的個別的頂端之處。該包覆層接著可以在該些對準通道84中,用根據需要的任何方式來加以固定至該對準模組74。該些第二通道部分90b可進一步被配置以面對該些對準通道84,使得該包覆層係在該些對準通道84以及該些夾持器通道90的第二通道部分90b中被捕捉在該對準模組74以及該波導夾持器86之間。就此點而言,將會體認到的是,該些對準通道84可以是藉由該對準模組74的一內表面74a所界定的,並且該些第二通道部分90b可以是藉由該波導夾持器86的一內表面86a所界定的。 The waveguide holder 86 can define a stop surface 92 that is disposed between the first channel portions 90a (or line contacts) and the second channel portions 90b. The stop surface 92 is configured to abut one end of the buffer layer such that the cladding layer and the core extend forwardly from the individual buffer layer in the longitudinal direction L into the second channel portion 90b. In an example, the buffer layer can be adhesively attached to the waveguide holder 86 in the individual first channel portion 90a (or line contact). The second channel portion 90b can define an individual top end, and the buffer layer can be attached to the waveguide holder 86 in the first channel portion 90a (or line contact) such that the core and cladding are It is disposed at the individual top end of the second channel portion 90b. The cladding layer can then be secured to the alignment module 74 in any of the alignment channels 84 in any manner as desired. The second channel portions 90b can be further configured to face the alignment channels 84 such that the cladding is tied in the alignment channels 84 and the second channel portions 90b of the holder channels 90. Captured between the alignment module 74 and the waveguide holder 86. In this regard, it will be appreciated that the alignment channels 84 may be defined by an inner surface 74a of the alignment module 74, and the second channel portions 90b may be The inner surface 86a of the waveguide holder 86 is defined.

該些光纖85的每一個都可被支承在該些夾持器通道90的一個別的夾持器通道之內。每一個夾持器通道90可被配置以和其相關的光纖85形成至少一線接觸71。例如,該些夾持器通道90可以是藉由第一及第 二側壁91所界定的實質v形的溝槽。每一個光纖85可以和其相關的夾持器通道90的第一及第二側壁91的每一個形成一線接觸71,因而每一個光纖85係被對齊到其相關的夾持器通道90中。每一個線接觸71可以在該縱長的方向L上延伸,並且因此延伸到在圖7B的視圖中的頁面內。因此,該對準模組74以及波導夾持器86係被配置以在四個接觸線之處(兩個和該對準模組74的接觸線71、以及兩個和該波導夾持器86的接觸線71)支承該光纖85。應該體認到的是,儘管圖4及7B係描繪該些夾持器通道90為v形的溝槽,但是該些夾持器通道可以具有其它適合的形狀。例如,每一個夾持器通道90可以是一實質截頭的v形,其中該v形係在其頂點之處截頭的、可以是一實質u形的溝槽、或是可以具有任何其它適合的溝槽形狀,其係與該些光纖85的一個別的光纖形成至少一線接觸71。 Each of the optical fibers 85 can be supported within a separate holder passage of the gripper passages 90. Each of the gripper channels 90 can be configured to form at least one line contact 71 with its associated fiber 85. For example, the gripper passages 90 can be substantially v-shaped grooves defined by the first and second side walls 91. Each of the fibers 85 can form a line contact 71 with each of the first and second side walls 91 of its associated holder channel 90 such that each fiber 85 is aligned into its associated holder channel 90. Each of the line contacts 71 can extend in the longitudinal direction L and thus extend into the page in the view of Figure 7B. Thus, the alignment module 74 and the waveguide holder 86 are configured to be at four contact lines (two and the contact line 71 of the alignment module 74, and the two and the waveguide holder 86) The contact line 71) supports the optical fiber 85. It should be appreciated that although Figures 4 and 7B depict the grooves in which the holder channels 90 are v-shaped, the holder channels may have other suitable shapes. For example, each of the gripper channels 90 can be a substantially truncated v-shape, wherein the v-shape is truncated at its apex, can be a substantially u-shaped groove, or can have any other suitable The trench shape is formed by at least one line contact 71 with one of the other fibers of the optical fibers 85.

該對準模組74以及波導夾持器86可被配置成使得當該波導夾持器86被設置成相鄰該對準模組74時,該波導夾持器86的內部的夾持器表面86a係面對該對準模組74的內部的模組表面74a。再者,該對準模組74以及波導夾持器86可被配置成使得當該些光纖85係被對齊在該些對準通道84以及該些夾持器通道90中時,該波導夾持器86的內部的夾持器表面86a係與該對準模組74的內部的模組表面74a間隔開,以便於在兩者之間界定一間隙78。該些光纖85的核心79可以沿著一延伸在該側向的方向A以及該縱長的方向L上的平面對準的。該平面可以與在該波導夾持器86以及該對準模組74之間的間隙78對準。提供該間隙78可以增加和該些光纖85的每一個維持四個線接觸71的可能性。在某些實施例中,該對準模組74以及波導夾持器86可以經由被設置在該間隙78中的黏著劑(未顯示) 來附接至彼此。例如,該黏著劑可以附接至該波導夾持器86的內部的夾持器表面86a以及該對準模組74的內部的模組表面74a兩者。該黏著劑可被配置成使得當該黏著劑固化時,該黏著劑係收縮,藉此將該對準模組74以及波導夾持器86朝向彼此拉動。將該對準模組74以及波導夾持器86朝向彼此拉動可以增加藉由該波導夾持器86以及該對準模組74而被施加在該光纖85上的對齊力。 The alignment module 74 and the waveguide holder 86 can be configured such that when the waveguide holder 86 is disposed adjacent to the alignment module 74, the holder surface of the waveguide holder 86 is internal The 86a faces the module surface 74a of the alignment module 74. Moreover, the alignment module 74 and the waveguide holder 86 can be configured such that when the optical fibers 85 are aligned in the alignment channels 84 and the holder channels 90, the waveguide clamping The inner gripper surface 86a of the 86 is spaced from the inner module surface 74a of the alignment module 74 to define a gap 78 therebetween. The cores 79 of the fibers 85 can be aligned along a plane extending in the lateral direction A and the longitudinal direction L. This plane can be aligned with the gap 78 between the waveguide holder 86 and the alignment module 74. Providing the gap 78 can increase the likelihood of maintaining four line contacts 71 with each of the fibers 85. In some embodiments, the alignment module 74 and the waveguide holder 86 can be attached to each other via an adhesive (not shown) disposed in the gap 78. For example, the adhesive can be attached to both the inner grip surface 86a of the waveguide holder 86 and the inner module surface 74a of the alignment module 74. The adhesive can be configured such that when the adhesive cures, the adhesive shrinks, thereby pulling the alignment module 74 and the waveguide holder 86 toward each other. Pulling the alignment module 74 and the waveguide holder 86 toward each other can increase the alignment force applied to the optical fiber 85 by the waveguide holder 86 and the alignment module 74.

該對準模組74可以針對於每一個對準通道84,界定一從其與該光纖85的接觸線71中之一沿著該側向的方向A至其另一接觸線71的距離。藉由該對準模組74針對於每一個對準通道84所界定的距離可以是依據在該對準通道84的側壁93之間的角度而定。譬如,當該角度被增大時,每一個對準通道84的接觸線71係彼此更接近地移動,並且當該角度被減小時,每一個對準通道84的接觸線71係遠離彼此地移動。類似地,該波導夾持器86可以針對於每一個夾持器通道90,界定一從其該光纖85的接觸線71中之一沿著該側向的方向A至其另一接觸線71的距離,此距離係小於、大於、或是等於藉由該對準模組74所界定的距離。藉由該波導夾持器86針對於每一個夾持器通道90所界定的距離可以是依據在該夾持器通道90的側壁91之間的角度而定。譬如,當該角度被增大時,每一個夾持器通道90的接觸線71係彼此更接近地移動,並且當該角度被減小時,每一個夾持器通道90的接觸線71係遠離彼此地移動。取至邏輯的極限,每一個夾持器通道90的第一及第二側壁91可以與彼此對準,使得該些接觸線71合併在一起而成為如同在圖7C中所示的一接觸線71。 The alignment module 74 can define, for each alignment channel 84, a distance from one of its contact lines 71 with the optical fiber 85 along the lateral direction A to its other contact line 71. The distance defined by the alignment module 74 for each alignment channel 84 may be based on the angle between the sidewalls 93 of the alignment channel 84. For example, when the angle is increased, the contact lines 71 of each of the alignment channels 84 move closer to each other, and when the angle is reduced, the contact lines 71 of each of the alignment channels 84 move away from each other. . Similarly, the waveguide holder 86 can define, for each of the holder channels 90, a direction A from one of the contact lines 71 of the optical fiber 85 along the lateral direction A to the other contact line 71 thereof. The distance is less than, greater than, or equal to the distance defined by the alignment module 74. The distance defined by the waveguide holder 86 for each of the holder channels 90 may be dependent on the angle between the side walls 91 of the holder channel 90. For example, when the angle is increased, the contact lines 71 of each of the gripper passages 90 move closer to each other, and when the angle is reduced, the contact lines 71 of each of the gripper passages 90 are away from each other. Move on the ground. Taking the limit of logic, the first and second side walls 91 of each of the holder channels 90 can be aligned with each other such that the contact lines 71 merge together to form a contact line 71 as shown in FIG. 7C. .

該對準模組74或是該波導夾持器86的彎成弓形及/或翹曲 可能會導致在上方的圖7B中的夾持器通道90並未適當地與該些對準通道84對準。該對準模組74或是該波導夾持器86的彎成弓形及/或翹曲可能會額外或替代地導致該些夾持器通道90的某些個比其它的夾持器通道更接近地間隔其對應的對準通道84。譬如,朝向該波導夾持器86的一中心的彎成弓形可能會導致該些夾持器通道90的外側的夾持器通道與其對應的對準通道84間隔開一第一距離,並且在該些外側的夾持器通道之間的一或多個內側的夾持器通道90係與其對應的對準通道84間隔開的一第二距離,其中該第二距離係大於該第一距離。因此,該些夾持器通道90的外側的夾持器通道可能提供與其個別的光纖85充分的線接觸,而該些內側的夾持器通道90可能未提供與其個別的光纖85充分的線接觸。因此,在某些實施例中,該些夾持器通道90的至少一部分(例如是該些第二部分90b)可被移除,以消除在該些夾持器通道90以及該些對準通道84之間的失準。 The bowing and/or warping of the alignment module 74 or the waveguide holder 86 may cause the holder channel 90 in FIG. 7B above to not properly align with the alignment channels 84. quasi. The bowing and/or warping of the alignment module 74 or the waveguide holder 86 may additionally or alternatively result in some of the gripper channels 90 being closer than the other gripper channels. The ground is spaced apart by its corresponding alignment channel 84. For example, bowing toward a center of the waveguide holder 86 may cause the outer gripper passages of the gripper passages 90 to be spaced apart from their corresponding alignment passages 84 by a first distance, and One or more inner gripper channels 90 between the outer gripper channels are spaced a second distance from their corresponding alignment channels 84, wherein the second distance is greater than the first distance. Thus, the gripper channels on the outside of the gripper channels 90 may provide sufficient line contact with their individual fibers 85, while the inner gripper channels 90 may not provide sufficient line contact with their individual fibers 85. . Thus, in some embodiments, at least a portion of the gripper channels 90 (eg, the second portions 90b) can be removed to eliminate the gripper channels 90 and the alignment channels Misalignment between 84.

參照圖7C,一替代實施例係被展示,其中該波導夾持器86係被配置以和該些光纖85的每一個形成單一線接觸。圖7C的波導夾持器86並未界定第二通道部分90b,並且因此並不遭受到在該些第二通道部分90b以及該些對準通道84之間的失準。如同在圖7C中所示,該波導夾持器86的內部的夾持器表面86a可以界定一支承該些光纖85的平的表面,而不是以上論述的第二通道部分90b。該平的內部的夾持器表面86a可以施加單一線接觸71至相鄰該PIC 76的每一個光纖85的端。每一個線接觸71可以施加一力F,其係對齊該些光纖85的一個別的光纖到該些對準通道84的一個別的對準通道中。 Referring to Figure 7C, an alternate embodiment is shown in which the waveguide holder 86 is configured to form a single line contact with each of the optical fibers 85. The waveguide holder 86 of FIG. 7C does not define the second channel portion 90b and thus does not suffer from misalignment between the second channel portions 90b and the alignment channels 84. As shown in Figure 7C, the inner gripper surface 86a of the waveguide holder 86 can define a flat surface that supports the optical fibers 85, rather than the second channel portion 90b discussed above. The flat inner gripper surface 86a can apply a single line contact 71 to the end of each of the optical fibers 85 adjacent the PIC 76. Each of the line contacts 71 can apply a force F that aligns one of the other fibers of the fibers 85 to a separate alignment channel of the alignment channels 84.

在此實施例中,每一個光纖85可以在該波導夾持器86的相 對該PIC 76的第一夾持器端86c上被固定至該波導夾持器86。譬如,該波導夾持器86可包含第一通道部分90a,其係被配置以接收如上相關於圖4所論述的緩衝層。該些光纖85的緩衝層可被固定至該些第一通道部分90a。每一個光纖85可以在該橫斷的方向T上,藉由該波導夾持器86的內部的夾持器表面86a來加以限制。在一例子中,每一個光纖85在該波導夾持器86的相鄰該PIC 76的第二端86d之處,並未在該側向的方向A上藉由該波導夾持器86來加以限制。而是,每一個光纖85可以在該橫向的方向A上藉由該對準模組74的側壁93來加以限制。此實施例係具有優點在於該些光纖85係具有較少的接觸線71,並且因此並未過度地受到限制。 In this embodiment, each of the optical fibers 85 can be secured to the waveguide holder 86 at a first holder end 86c of the waveguide holder 86 opposite the PIC 76. For example, the waveguide holder 86 can include a first channel portion 90a that is configured to receive a buffer layer as discussed above in relation to FIG. The buffer layers of the optical fibers 85 can be fixed to the first channel portions 90a. Each of the optical fibers 85 can be limited in the transverse direction T by the inner gripper surface 86a of the waveguide holder 86. In one example, each fiber 85 is not adjacent to the second end 86d of the PIC 76 of the waveguide holder 86 by the waveguide holder 86 in the lateral direction A. limit. Rather, each of the optical fibers 85 can be constrained in the lateral direction A by the side walls 93 of the alignment module 74. This embodiment has the advantage that the optical fibers 85 have fewer contact lines 71 and are therefore not unduly limited.

該對準模組74及/或該波導夾持器86的彎成弓形及/或翹曲可能會導致在以上的圖7C中的內部的夾持器表面86a並未適當地線接觸到所有的光纖85。譬如,朝向該波導夾持器86的一中心的彎成弓形可能會導致該內部的夾持器表面86a線接觸到該些光纖85的外側的光纖,但是並未線接觸到在該些光纖85的該些外側的光纖之間的一或多個光纖85。因此,在某些實施例中,該內部的夾持器表面86a可以是由一種柔性或是彈性地可變形的材料所做成的,其係變形以便於增加該內部的夾持器表面86a接觸到所有的光纖85的可能性。 The bowing and/or warping of the alignment module 74 and/or the waveguide holder 86 may result in the internal gripper surface 86a in Figure 7C above not being properly in line contact with all of Optical fiber 85. For example, a bowing toward a center of the waveguide holder 86 may cause the inner holder surface 86a to line contact the fibers outside the fibers 85, but not in line with the fibers 85. One or more optical fibers 85 between the outer fibers. Thus, in some embodiments, the inner gripper surface 86a can be formed from a flexible or resiliently deformable material that is deformed to increase contact with the inner gripper surface 86a. The possibility of going to all of the fiber 85.

現在轉到圖7D,一替代實施例係被展示,其中該波導夾持器86的內部的夾持器表面86a係由一種彈性地可變形的材料所做成的。在一例子中,該整個波導夾持器86可以是由該彈性地可變形的材料所做成的。在另一例子中,該波導夾持器86可以具有一由一種剛性材料所做成的夾持器主體86e,並且該內部的夾持器表面86a可以是一層或是塗層的彈性 地可變形的材料,其係被附接至該夾持器主體86e並且是比該夾持器主體86e更為撓性的。 Turning now to Figure 7D, an alternate embodiment is shown in which the inner gripper surface 86a of the waveguide holder 86 is formed from a resiliently deformable material. In one example, the entire waveguide holder 86 can be constructed from the resiliently deformable material. In another example, the waveguide holder 86 can have a holder body 86e of a rigid material and the inner holder surface 86a can be a layer or a resiliently deformable coating. The material is attached to the holder body 86e and is more flexible than the holder body 86e.

並非是與該些光纖85的每一個施加一線接觸,該內部的夾持器表面86a可以與該些光纖85的每一個施加表面接觸71。例如,當該波導夾持器86施加一力F到該些光纖85之上時,該內部的夾持器表面86a可以彈性地變形以便於配合該些光纖85的每一個的一上方部分。該向下的力係推動該些光纖85抵頂該個別的對準通道84的側壁93,此係與該些側壁93形成兩個線接觸71。這些接觸線71係相對於該對準模組74來對齊該光纖核心79,此於是對齊該光纖核心79與在該PIC 76(未顯示在圖7D中)上的一波導。 Rather than applying a line contact with each of the fibers 85, the inner holder surface 86a can apply a surface contact 71 to each of the fibers 85. For example, when the waveguide holder 86 applies a force F to the optical fibers 85, the inner holder surface 86a can be elastically deformed to fit an upper portion of each of the optical fibers 85. The downward force pushes the fibers 85 against the side walls 93 of the individual alignment channels 84, which form two line contacts 71 with the side walls 93. These contact lines 71 are aligned with the fiber core 79 relative to the alignment module 74, thus aligning the fiber core 79 with a waveguide on the PIC 76 (not shown in Figure 7D).

參照圖7E,一實施例係被展示,其中每一個對準通道84是一矩形溝槽。每一個對準通道84可以具有第一及第二側壁93,其係沿著該側向的方向A來與彼此間隔開。每一個對準通道84可以具有一底表面75,其係延伸在該第一及第二側壁93之間。每一個對準通道84可以具有一沿著該側向的方向A的寬度,其係大於其對應的光纖85沿著該側向的方向A的寬度。選配的是,每一個對準通道84可以具有一沿著該橫斷的方向T的高度,其係大於其對應的光纖85的高度。 Referring to Figure 7E, an embodiment is shown in which each alignment channel 84 is a rectangular groove. Each of the alignment channels 84 can have first and second side walls 93 that are spaced apart from each other along the lateral direction A. Each of the alignment channels 84 can have a bottom surface 75 that extends between the first and second side walls 93. Each of the alignment channels 84 can have a width along the lateral direction A that is greater than the width of its corresponding fiber 85 in the lateral direction A. Optionally, each alignment channel 84 can have a height along the transverse direction T that is greater than the height of its corresponding fiber 85.

該波導夾持器86可被配置以施加一對齊力F至該些光纖85,以便於偏壓該些光纖85抵頂該對準通道84的一對的對準表面。該對的對準表面可以是該第一及第二側壁93中之一以及該底表面75。在一例子中,該波導夾持器86可以施加該力F,以便於在一與該側向的方向A以及該橫斷的方向T呈角度偏移的方向上偏壓該些光纖85。如圖所示,該些光 纖85可被安置在該些對準通道84中,使得該光纖核心79係從該中分面77沿著該側向的方向A偏移一距離d。當該些對準指示器80及82係與彼此對準時,該PIC 76的波導係從該些對準通道84的個別的中分面77沿著該側向的方向A偏移該距離d。因此,相對於圖7B至7D的實施例,該些中分面77並不界定被安置在該些對準通道84中的光纖85的核心79的位置,並且未與該PIC 76的波導對準。而是,每一個中分面77係從一光纖85的一核心79偏移該距離d。 The waveguide holder 86 can be configured to apply an alignment force F to the optical fibers 85 to bias the optical fibers 85 against the alignment surfaces of the pair of alignment channels 84. The alignment surface of the pair may be one of the first and second side walls 93 and the bottom surface 75. In one example, the waveguide holder 86 can apply the force F to bias the optical fibers 85 in a direction that is angularly offset from the lateral direction A and the transverse direction T. As shown, the fibers 85 can be disposed in the alignment channels 84 such that the fiber cores 79 are offset from the median face 77 by a distance d in the lateral direction A. When the alignment indicators 80 and 82 are aligned with each other, the waveguides of the PIC 76 are offset from the individual mid-sections 77 of the alignment channels 84 by the distance d along the lateral direction A. Thus, with respect to the embodiment of Figures 7B through 7D, the mid-facets 77 do not define the position of the core 79 of the optical fiber 85 disposed in the alignment channels 84 and are not aligned with the waveguide of the PIC 76. . Rather, each of the mid-sections 77 is offset from a core 79 of an optical fiber 85 by the distance d.

為了偏壓該些光纖85,該波導夾持器86可包含至少一從該內部的夾持器表面86a延伸的偏壓構件81,例如是複數個偏壓構件81。每一個偏壓構件81可以對應於一對準通道84。該偏壓構件81可被配置以延伸到該對準通道84中,以便於施加一偏壓力至該光纖85。每一個偏壓構件81可以是與該波導夾持器86或該光學收發器的其它元件為單體的、或是分開地附接至其。在一例子中,每一個偏壓構件81可被配置為一楔形元件,其可以在該些對準指示器80及82係與彼此對準並且該PIC 76係被附接至該對準模組74時,推動該些光纖85的一個別的光纖抵頂該些對準通道84的一個別的對準通道的對準表面75及93。每一個光纖85的核心79係因此被設置在一對準位置處,其中其係鄰接一在該PIC 76(未顯示在圖7E中)中的波導。每一個偏壓構件81可包含一傾斜的表面81a,其係相對於該側向的方向A以及該橫斷的方向T傾斜的。每一個傾斜的表面81a可被配置以和該些光纖85的一個別的光纖做成一線接觸71。每一個傾斜的表面81a可被配置以在一垂直於該傾斜的表面81a的方向上偏壓該些光纖85的一個別的光纖。 To bias the fibers 85, the waveguide holder 86 can include at least one biasing member 81 extending from the inner holder surface 86a, such as a plurality of biasing members 81. Each of the biasing members 81 may correspond to an alignment channel 84. The biasing member 81 can be configured to extend into the alignment channel 84 to facilitate application of a biasing force to the optical fiber 85. Each of the biasing members 81 can be single or separate from the waveguide holder 86 or other components of the optical transceiver. In one example, each biasing member 81 can be configured as a wedge-shaped member that can be aligned with one another at the alignment indicators 80 and 82 and that the PIC 76 is attached to the alignment module At 74 o'clock, an additional fiber that pushes the fibers 85 abuts the alignment surfaces 75 and 93 of a further alignment channel of the alignment channels 84. The core 79 of each of the optical fibers 85 is thus disposed at an aligned position in which it is adjacent to a waveguide in the PIC 76 (not shown in Figure 7E). Each of the biasing members 81 may include an inclined surface 81a that is inclined with respect to the lateral direction A and the transverse direction T. Each of the inclined surfaces 81a can be configured to make a line contact 71 with an additional fiber of the fibers 85. Each of the inclined surfaces 81a can be configured to bias one of the other fibers of the optical fibers 85 in a direction perpendicular to the inclined surface 81a.

參照圖7F,根據一實施例的一光學收發器的一部分的概要的側視圖係被展示,其中一光纖85被安置在一對準模組74中。在此實施例中,該波導夾持器86係以一種彈性地彎曲該光纖85的方式而相鄰該對準模組74來加以設置。該光纖85係在其長度的一部分之上被固定至該波導夾持器86,使得該光纖85的一端子端85a係從該波導夾持器86向外地延伸。因此,該光纖85的端子端85a並未被固定至該波導夾持器86。該波導夾持器86係與該光纖85形成一第一線接觸71a,並且該對準模組74係與該光纖85形成一第二線接觸71b。該第一線接觸71a係與該線接觸71b呈角度偏移的。因此,該光纖係彈性地彎曲的,使得該光纖85的相鄰該PIC 76的端子端85a係安置抵頂該對準模組74。例如,該光纖85可以安置到如同在圖7A至7E的任一個中所示地被配置的一對準通道84中、或是在任何其它被適當地配置的對準通道中。以此種方式,該光纖核心79係與一PIC的波導63鄰接,使得它們係光學對準的。該對準模組74係在該縱長的方向L上延伸超出該PIC 76,因而在該對準模組74上的對準特點82可以如先前所述地與在該PIC 76上的匹配的對準特點80配接。 Referring to Figure 7F, a schematic side view of a portion of an optical transceiver in accordance with an embodiment is shown in which an optical fiber 85 is disposed in an alignment module 74. In this embodiment, the waveguide holder 86 is disposed adjacent to the alignment module 74 in a manner that elastically bends the optical fiber 85. The fiber 85 is secured to the waveguide holder 86 over a portion of its length such that a terminal end 85a of the fiber 85 extends outwardly from the waveguide holder 86. Therefore, the terminal end 85a of the optical fiber 85 is not fixed to the waveguide holder 86. The waveguide holder 86 forms a first line contact 71a with the optical fiber 85, and the alignment module 74 forms a second line contact 71b with the optical fiber 85. The first line contact 71a is angularly offset from the line contact 71b. Therefore, the optical fiber is elastically bent such that the terminal end 85a of the optical fiber 85 adjacent to the PIC 76 is placed against the alignment module 74. For example, the fiber 85 can be placed into an alignment channel 84 as shown in any of Figures 7A through 7E, or in any other suitably configured alignment channel. In this manner, the fiber core 79 is contiguous with the waveguide 63 of a PIC such that they are optically aligned. The alignment module 74 extends beyond the PIC 76 in the lengthwise direction L, such that the alignment features 82 on the alignment module 74 can be matched to the PIC 76 as previously described. Alignment features 80 mating.

不論該些中分面77是否與該PIC 76的波導對準(圖7A-D)、或是偏移的對準位置是否與該PIC 76的波導對準(圖7E),應該體認到的是,該對準模組74係被設計並且被配置以在該些對準指示器80及82係與彼此對準時,將所接收到的光纖85的核心79支承在一預設的位置處,並且該預設的位置係沿著一藉由該縱長的方向L以及該橫斷的方向T所界定的平面來與該PIC 76的波導對準。 Whether or not the mid-facets 77 are aligned with the waveguide of the PIC 76 (Figs. 7A-D), or whether the offset alignment is aligned with the waveguide of the PIC 76 (Fig. 7E), it should be recognized. Yes, the alignment module 74 is designed and configured to support the core 79 of the received fiber 85 at a predetermined position when the alignment indicators 80 and 82 are aligned with each other. And the predetermined position is aligned with the waveguide of the PIC 76 along a plane defined by the longitudinal direction L and the transverse direction T.

儘管本揭露內容的其中該些光纖85的每一個的端子端85a 係對齊到該對準模組74的一對應的對準通道84中的實施例已經被敘述,但是本揭露內容的實施例並非限於此的。在替代的實施例中,該波導夾持器86以及對準模組74可被配置成使得當該波導夾持器86係被設置成相鄰該對準模組74時,該些光纖85中的一或多個的端子端85a並未被對齊到該對準模組74的一對應的對準通道84中。例如,該些光纖85的端子端85a可以被剛性固定至該波導夾持器86,並且該波導夾持器86以及該端子端85a可以機械式地一起被對齊至該對準模組74,其於是機械式地被對齊至該PIC 76。 Although embodiments of the present disclosure in which the terminal ends 85a of each of the optical fibers 85 are aligned to a corresponding alignment channel 84 of the alignment module 74 have been described, embodiments of the present disclosure are not Limited to this. In an alternative embodiment, the waveguide holder 86 and the alignment module 74 can be configured such that when the waveguide holder 86 is disposed adjacent to the alignment module 74, the fibers 85 One or more of the terminal ends 85a are not aligned into a corresponding alignment channel 84 of the alignment module 74. For example, the terminal ends 85a of the optical fibers 85 can be rigidly secured to the waveguide holder 86, and the waveguide holders 86 and the terminal ends 85a can be mechanically aligned together to the alignment module 74, It is then mechanically aligned to the PIC 76.

例如,並且參考圖7G,根據一實施例的一波導夾持器86以及對準模組74的概要的立面端視圖係被展示。該波導夾持器86係具有複數個夾持器通道90,其可以如上相關圖4及7B所述地加以配置。每一個光纖85可以被對齊及固定在該波導夾持器86中的一夾持器通道90內。再者,該波導夾持器86以及對準模組74可被配置成使得該些光纖85中的一或多個(最多到全部),並不直接機械式接觸到該對準模組74。 For example, and referring to FIG. 7G, a schematic elevational end view of a waveguide holder 86 and alignment module 74 in accordance with an embodiment is shown. The waveguide holder 86 has a plurality of holder channels 90 that can be configured as described above with respect to Figures 4 and 7B. Each of the optical fibers 85 can be aligned and secured within a holder channel 90 in the waveguide holder 86. Moreover, the waveguide holder 86 and the alignment module 74 can be configured such that one or more (up to all) of the optical fibers 85 do not directly mechanically contact the alignment module 74.

在此實施例中,該波導夾持器86可被配置以和每一個光纖85形成兩個線接觸71。該些光纖85的端子端85a可以藉由利用一黏著劑或是其它適當的固定器來固定地被固定至該些夾持器通道90,使得端子端85a並不相對於該波導夾持器86來移動。因此,該波導夾持器86以及該些光纖85係形成一次組件83,其可被安裝到該對準模組74之上。 In this embodiment, the waveguide holder 86 can be configured to form two line contacts 71 with each of the optical fibers 85. The terminal ends 85a of the optical fibers 85 can be fixedly secured to the holder channels 90 by means of an adhesive or other suitable holder such that the terminal ends 85a are not opposite to the waveguide holders 86. Come to move. Thus, the waveguide holder 86 and the optical fibers 85 form a primary assembly 83 that can be mounted over the alignment module 74.

該對準模組74可被配置以提供和該些光纖85的至少第一及第二光纖的線接觸。在一如圖所示的例子中,該第一及第二光纖85(1)及85(2)可以是沿著該側向的方向A與彼此間隔開。再者,至少一其它光纖85(3)、 85(4)及85(5)可被設置在該第一及第二光纖85(1)及85(2)之間,其中該對準模組係被配置成不提供和該至少一其它光纖85(3)、85(4)及85(5)的線接觸。該第一及第二光纖85(1)及85(2)可以是如圖所示的光纖85(1)及85(2)的最外側的光纖,使得所有發送光學信號的光纖85都是位在該第一及第二光纖85(1)及85(2)之間,儘管本揭露內容的實施例並非限於此的。 The alignment module 74 can be configured to provide line contact with at least the first and second fibers of the fibers 85. In an example as shown, the first and second fibers 85(1) and 85(2) may be spaced apart from each other along the lateral direction A. Furthermore, at least one other optical fiber 85(3), 85(4) and 85(5) may be disposed between the first and second optical fibers 85(1) and 85(2), wherein the alignment module It is configured to not provide line contact with the at least one other optical fiber 85(3), 85(4), and 85(5). The first and second optical fibers 85(1) and 85(2) may be the outermost optical fibers of the optical fibers 85(1) and 85(2) as shown, such that all of the optical fibers 85 that transmit optical signals are in position. Between the first and second optical fibers 85(1) and 85(2), although embodiments of the present disclosure are not limited thereto.

在所示的實施例中,該對準模組74係具有一對準通道84,其係被配置以沿著該橫斷的方向T與該些夾持器通道90中之一對準。該對準通道84可以如上相關於圖7A至7F所述地加以配置。例如,該對準通道84可以是一實質v形的溝槽。該對準通道84可以和該第一對應的光纖85(1)形成兩個線接觸71。該對準模組74可被配置成使得該內部的模組表面74a係和該第二光纖85(2)形成一線接觸71。因此,該內部的模組表面74a可被視為一參考表面。再者,該對準模組74可以界定一凹處89,其係延伸到該內部的模組表面74a中。該凹處89可以朝向該外部的模組表面74b延伸,並且在該外部的模組表面74b之前就終止。該波導夾持器86以及對準模組74可被配置成使得,當該波導夾持器以及光纖次組件83被安裝到該對準模組74之上,藉此和該第一及第二光纖85(1)及85(2)形成線接觸時,該至少一其它光纖85(3)、85(4)及85(5)係被設置在該凹處89中。 In the illustrated embodiment, the alignment module 74 has an alignment channel 84 that is configured to align with one of the gripper channels 90 along the transverse direction T. The alignment channel 84 can be configured as described above with respect to Figures 7A through 7F. For example, the alignment channel 84 can be a substantially v-shaped groove. The alignment channel 84 can form two line contacts 71 with the first corresponding fiber 85(1). The alignment module 74 can be configured such that the inner module surface 74a forms a line contact 71 with the second fiber 85(2). Thus, the inner module surface 74a can be considered a reference surface. Moreover, the alignment module 74 can define a recess 89 that extends into the inner module surface 74a. The recess 89 can extend toward the outer module surface 74b and terminate before the outer module surface 74b. The waveguide holder 86 and the alignment module 74 can be configured such that when the waveguide holder and the fiber subassembly 83 are mounted over the alignment module 74, thereby the first and second When the optical fibers 85(1) and 85(2) are in line contact, the at least one other optical fibers 85(3), 85(4), and 85(5) are disposed in the recess 89.

該波導夾持器以及光纖次組件83係藉由設置該第一側邊光纖85(1)或是某種機械式參考構件(例如是一圓柱形的桿)到該對準模組74的對準通道84中,以與一PIC(未顯示在圖7G中)對準。該第二光纖85(2)或是等同的機械式參考可被設置以抵頂該對準模組74的內部的模組表面74a。該波導夾持器及光纖次組件83以及該對準模組74可以利用一黏著劑 或是其它適當的固定器來加以固定在一起,以形成單一的結構。或者是,該波導夾持器及光纖次組件83以及對準模組74可以藉由一例如是可由一夾箝(未顯示)所供應的壓縮力而被保持在一起。 The waveguide holder and the fiber subassembly 83 are provided to the alignment module 74 by providing the first side fiber 85(1) or a mechanical reference member (for example, a cylindrical rod). The alignment channel 84 is aligned with a PIC (not shown in Figure 7G). The second fiber 85(2) or an equivalent mechanical reference can be placed against the module surface 74a of the interior of the alignment module 74. The waveguide holder and fiber subassembly 83 and the alignment module 74 can be secured together using an adhesive or other suitable fixture to form a unitary structure. Alternatively, the waveguide holder and fiber subassembly 83 and alignment module 74 can be held together by a compressive force such as that which can be supplied by a clamp (not shown).

該對準模組74及波導夾持器以及光纖次組件83可以運動學地被安裝在一起。其中該第一光纖85(1)以及該第二光纖85(2)接觸該對準模組74的三個線接觸71係確定地固定該波導夾持器以及光纖次組件83的方位至該對準模組74。在圖7G中,該些光纖85(1)及85(2)中的只有兩個係與該對準模組74對齊。此係對比其中大於兩個光纖係與該對準模組74對齊的其它實施例。當被對齊的光纖85的數目增加到超過兩個時,一或多個光纖85可能未適當地與該對準模組74對齊的可能性係增高。因此,相較於其中超過兩個光纖被對齊到該對準模組中的其它系統,圖7G的對準模組74以及波導夾持器86可以是較不易受到由於不足的製造容限或機械變形所造成的對齊誤差影響的。此外,增加在第一及第二光纖85(1)及85(2)之間的橫向的距離可以限制該些光纖85的錯向的可能性。 The alignment module 74 and the waveguide holder and fiber subassembly 83 can be kinematically mounted together. Wherein the first optical fiber 85(1) and the second optical fiber 85(2) contact the three line contacts 71 of the alignment module 74 to positively fix the orientation of the waveguide holder and the fiber subassembly 83 to the pair Pre-module 74. In FIG. 7G, only two of the fibers 85(1) and 85(2) are aligned with the alignment module 74. This is a comparison of other embodiments in which more than two fiber optic lines are aligned with the alignment module 74. As the number of aligned fibers 85 increases beyond two, the likelihood that one or more fibers 85 may not properly align with the alignment module 74 is increased. Thus, alignment module 74 and waveguide holder 86 of FIG. 7G may be less susceptible to inadequate manufacturing tolerances or mechanical machinery than other systems in which more than two fibers are aligned into the alignment module. The alignment error caused by the deformation affects. Moreover, increasing the lateral distance between the first and second optical fibers 85(1) and 85(2) can limit the likelihood of misalignment of the optical fibers 85.

一種將該PIC 76設置成與該光纖85光學對準之方法可包括一對準該PIC 76與該對準模組74的步驟。該方法可進一步包括當該PIC 76係與該對準模組對準時,將該PIC 76附接至該對準模組74。該方法可以更進一步包括對準該對準模組74與界定夾持器通道90的波導夾持器86,該夾持器通道90係支承該光纖85,使得該光纖85的核心79係與該PIC 76的一對應的波導光學地對準。 A method of placing the PIC 76 in optical alignment with the optical fiber 85 can include a step of aligning the PIC 76 with the alignment module 74. The method can further include attaching the PIC 76 to the alignment module 74 when the PIC 76 is aligned with the alignment module. The method can further include aligning the alignment module 74 with a waveguide holder 86 defining a holder channel 90 that supports the optical fiber 85 such that the core 79 of the optical fiber 85 is A corresponding waveguide of the PIC 76 is optically aligned.

在替代的實施例中,該第一及第二光纖85(1)及85(2)中之一可被一對準球體或是其它適當成形的標記所取代。儘管在圖7G中的其它光 纖85(3)、85(4)及85(5)係被展示為未接觸該對準模組74,但本揭露內容的實施例並非限於此的。在替代的實施例中,該對準模組74可以具有一系列的對準通道、一參考的平坦或是兼容的表面,其係推動該些光纖85的端子端85a抵頂該波導夾持器86的對準表面。在另外其它實施例中,該波導夾持器86可以彎曲該些光纖85,使得該些光纖85的彈性變形將其對齊抵頂在該波導夾持器86中的適當的表面。 In an alternate embodiment, one of the first and second fibers 85(1) and 85(2) can be replaced by an alignment sphere or other suitably shaped indicia. Although the other optical fibers 85(3), 85(4), and 85(5) in Fig. 7G are shown as not contacting the alignment module 74, embodiments of the present disclosure are not limited thereto. In an alternative embodiment, the alignment module 74 can have a series of alignment channels, a reference flat or compatible surface that pushes the terminal ends 85a of the optical fibers 85 against the waveguide holder. The alignment surface of 86. In still other embodiments, the waveguide holder 86 can bend the fibers 85 such that the elastic deformation of the fibers 85 aligns them against the appropriate surface in the waveguide holder 86.

回到圖1至3,該基板26可以界定一延伸到該第一基板表面26a中的凹處94。該凹處94可以被製作尺寸以接收該對準模組74的一下方的部分,使得當該些對準通道84用上述的方式接收該些光纖85時,該些光纖85係與該光子積體電路76的波導光學對準地來和該光子積體電路76對接耦合。譬如,該對準模組74的一下方的部分可被安置在該凹處94中,使得該些對準通道的一部分從該第一基板表面26a延伸出。 Returning to Figures 1 through 3, the substrate 26 can define a recess 94 that extends into the first substrate surface 26a. The recess 94 can be sized to receive a lower portion of the alignment module 74 such that when the alignment channels 84 receive the optical fibers 85 in the manner described above, the optical fibers 85 are associated with the photon product The waveguide of the bulk circuit 76 is optically aligned to be coupled to the photonic integrated circuit 76. For example, a lower portion of the alignment module 74 can be disposed in the recess 94 such that a portion of the alignment channels extend from the first substrate surface 26a.

該光學引擎可進一步包含一輔助的安裝結構31,其係被安裝至該光子積體電路76。尤其,該輔助的安裝結構31可被安裝到該光子積體電路76的一面對外部的表面。譬如,該輔助的安裝結構31可被安裝至該光子積體電路76的背對下面的基板26的上表面。該輔助的安裝結構31可以相鄰該光子積體電路76的耦合至該些光纖85的邊緣來加以設置。在一例子中,該輔助的安裝結構31可以是與該光子積體電路76的邊緣實質齊平的。該輔助的安裝結構31可以進一步在該光子積體電路76的邊緣處,是沿著該側向的方向A細長的。該波導夾持器86可以在該些光纖85係與該光子積體電路76的波導光學對準地來和該光子積體電路76對接耦合時,被安裝至該輔助的安裝結構31,藉此增加在該發送光子積體電路76以 及該些光纖85之間的邊緣耦合的接合強度。再者,該輔助的安裝結構31可以降低該發送PIC 32的彎成弓形,並且提供增大的附接區域給發送波導夾持器38,藉此進一步增加在該發送PIC 32以及該些發送波導36之間的邊緣耦合的接合強度。就此點而言,該輔助的安裝結構31可被稱為一加固件,其係強化該光子積體電路76的剛性。 The optical engine can further include an auxiliary mounting structure 31 that is mounted to the photonic integrated circuit 76. In particular, the auxiliary mounting structure 31 can be mounted to an exterior facing surface of the photonic integrated circuit 76. For example, the auxiliary mounting structure 31 can be mounted to the upper surface of the substrate 26 of the photonic integrated circuit 76 that faces away from the underside. The auxiliary mounting structure 31 can be disposed adjacent to an edge of the photonic integrated circuit 76 that is coupled to the optical fibers 85. In an example, the auxiliary mounting structure 31 can be substantially flush with the edge of the photonic integrated circuit 76. The auxiliary mounting structure 31 can be further elongated at the edge of the photonic integrated circuit 76 along the lateral direction A. The waveguide holder 86 can be mounted to the auxiliary mounting structure 31 when the optical fibers 85 are optically aligned with the waveguide of the photonic integrated circuit 76 to be coupled to the photonic integrated circuit 76. The joint strength of the edge coupling between the transmission photon-sample circuit 76 and the optical fibers 85 is increased. Moreover, the auxiliary mounting structure 31 can reduce the bowing of the transmitting PIC 32 and provide an increased attachment area to the transmitting waveguide holder 38, thereby further increasing the transmitting PIC 32 and the transmitting waveguides. The joint strength of the edge coupling between 36. In this regard, the auxiliary mounting structure 31 can be referred to as a stiffener that enhances the rigidity of the photonic integrated circuit 76.

所體認到的是,方法可被提供用於對準該光子積體電路76與一光纖。譬如,該方法可包含對準該光子積體電路76與該對準模組74的步驟,該對準模組74係界定一被設計以接收該光纖的對準通道84。當該光子積體電路76係與該對準模組74對準時,該方法可包含將該光子積體電路76附接至該對準模組74的步驟,使得當該對準通道84接收該光纖時,該光纖的核心係與該光子積體電路76的對應的波導光學地對準。該對準通道84可以界定該對準模組74的一對側壁93、以及一與該些側壁93等距地間隔開的中分面。該對準步驟可以將該光子積體電路76的波導設置成與該中分面對準,使得該中分面係在該光子積體電路76的耦合邊緣處通過該波導。該方法可以進一步包括在該附接步驟之後將該光纖設置在該對準通道84中的步驟。該方法可以進一步包含在將該光纖設置在該對準通道84中之前,先將該光纖附接至一光纖夾持器86的步驟。將該光纖附接至該光纖夾持器86的步驟可包含固定該光纖的緩衝層至該光纖夾持器86的步驟,使得該光纖的核心係在該夾持器86的一通道中從該緩衝層向前延伸,該通道可以是藉由該第二耦合器通道90所界定的。就此點而言,該光纖夾持器86可以提供應變釋放(strain relief)給該光纖。該方法可以進一步包含將該核心捕捉在該對準模組74以及該光纖夾持器86之間的步驟,使得該核心係與 該光子積體電路76的波導光學對準。該捕捉步驟可包含將一界定該些耦合器通道部分90a及90b的開口之內部的夾持器表面86a設置抵頂一界定該些對準通道84的開口之內部的對準模組表面74a的步驟。 It is recognized that a method can be provided for aligning the photonic integrated circuit 76 with an optical fiber. For example, the method can include the step of aligning the photonic integrated circuit 76 with the alignment module 74 that defines an alignment channel 84 that is designed to receive the optical fiber. When the photonic integrated circuit 76 is aligned with the alignment module 74, the method can include the step of attaching the photonic integrated circuit 76 to the alignment module 74 such that when the alignment channel 84 receives the In the case of an optical fiber, the core of the fiber is optically aligned with the corresponding waveguide of the photonic integrated circuit 76. The alignment channel 84 can define a pair of sidewalls 93 of the alignment module 74 and a mid-section that is equidistantly spaced from the sidewalls 93. The aligning step can set the waveguide of the photonic integrated circuit 76 to be aligned with the mid-facet such that the mid-section passes through the waveguide at the coupling edge of the photonic integrated circuit 76. The method can further include the step of placing the fiber in the alignment channel 84 after the attaching step. The method can further include the step of attaching the fiber to a fiber holder 86 prior to placing the fiber in the alignment channel 84. The step of attaching the fiber to the fiber holder 86 can include the step of securing the buffer layer of the fiber to the fiber holder 86 such that the core of the fiber is in a channel of the holder 86 from the The buffer layer extends forwardly and the channel may be defined by the second coupler channel 90. In this regard, the fiber holder 86 can provide strain relief to the fiber. The method can further include the step of capturing the core between the alignment module 74 and the fiber holder 86 such that the core is optically aligned with the waveguide of the photonic body circuit 76. The capturing step can include positioning a gripper surface 86a defining an interior of the openings of the coupler channel portions 90a and 90b against an alignment module surface 74a defining an interior of the openings of the alignment channels 84. step.

如上所述,該光學引擎可被安裝在該基板26之上。譬如,該光學引擎可被直接安裝在該基板26上。或者是,該光學引擎可被安裝到一第二基板27之上,其係被配置為一載體29(例如是參見圖10及15),該載體29係接著被配置以被安裝到一被配置為該基板26的第一基板之上,以便於將該載體29設置成和該基板26電性連通。如同將會從在以下的說明體認到的,當該載體29被安裝至該基板26時,該載體29可被設置成和該基板26電性連通。應該體認到的是,儘管實施例係被描述成光學引擎或其之構件係藉此被直接安裝在該載體29上,但應該體認到的是,該載體29可被該基板26所取代,使得該光學引擎或其之構件係被直接安裝到該基板26之上。因此,在某些實施例中,該載體29的說明可以等同地適用於當該光學引擎係相對於該載體29而被直接安裝至該基板26時的基板26。類似地,儘管實施例係被描述成光學引擎或其之構件係藉此被直接安裝在該基板26上,但應該體認到的是,該基板26可被該載體29所取代,使得該光學引擎或其之構件係被直接安裝在該載體29上,該載體29係接著被安裝在該基板26之上。安裝該光學引擎在一載體29上的一益處是用以提供一模組化光學引擎,其可以根據需要而被安裝到任何適當的平台,例如是一中間板的模組、或是一前面板安裝的模組。在一例子中,該光學引擎可被安裝在一子板、一多來源協議(MSA)光學收發器,例如是一四通道小型可插拔(QSFP)收發器、一特殊應用積體電路(ASIC)中介體之上、或是在一板上 的收發器中。 As noted above, the optical engine can be mounted over the substrate 26. For example, the optical engine can be mounted directly on the substrate 26. Alternatively, the optical engine can be mounted onto a second substrate 27 that is configured as a carrier 29 (see, for example, Figures 10 and 15), which is then configured to be mounted to a configured Above the first substrate of the substrate 26, the carrier 29 is placed in electrical communication with the substrate 26. As will be apparent from the following description, when the carrier 29 is mounted to the substrate 26, the carrier 29 can be placed in electrical communication with the substrate 26. It should be appreciated that although the embodiment is described as an optical engine or a component thereof thereby being mounted directly on the carrier 29, it should be appreciated that the carrier 29 can be replaced by the substrate 26. The optical engine or its components are mounted directly onto the substrate 26. Thus, in some embodiments, the description of the carrier 29 is equally applicable to the substrate 26 when the optical engine is mounted directly to the substrate 26 relative to the carrier 29. Similarly, although the embodiment is described as an optical engine or a component thereof thereby being mounted directly on the substrate 26, it should be appreciated that the substrate 26 can be replaced by the carrier 29 such that the optical The engine or its components are mounted directly on the carrier 29, which is then mounted over the substrate 26. One benefit of installing the optical engine on a carrier 29 is to provide a modular optical engine that can be mounted to any suitable platform, such as a mid-board module or a front panel, as desired. Installed modules. In one example, the optical engine can be mounted on a daughter board, a multi-source protocol (MSA) optical transceiver, such as a four-channel small form factor pluggable (QSFP) transceiver, a special application integrated circuit (ASIC) ) Above the intermediaries, or in a transceiver on a board.

現在參照圖10-14,該載體29係被配置以支承複數個光纖85,使得當該PIC 76係與該載體29對準並且被安裝至該載體29時,該些光纖85係對接耦合至該PIC 76並且與該PIC 76的波導對準。應該體認到的是,對於光纖85的參照可包含該些光學發送波導36、該些光學接收波導60、或是兩者。該載體29可以界定一第一載體表面29a以及一第二載體表面29b,其係沿著該橫斷的方向T與該第一載體表面29a相對的。該載體29係被配置以被安裝至該基板26,使得該第二載體表面29b係面對該第一基板表面26a。因此,該第二載體表面29b可被安裝至該第一基板表面26a。該第二載體表面29b因此可被稱為該載體29的一底表面或下表面,並且該第一載體表面29a可被稱為該載體29的一頂表面或上表面。 Referring now to Figures 10-14, the carrier 29 is configured to support a plurality of optical fibers 85 such that when the PIC 76 is aligned with the carrier 29 and mounted to the carrier 29, the optical fibers 85 are butt coupled to the The PIC 76 is aligned with the waveguide of the PIC 76. It should be appreciated that references to optical fiber 85 may include optical transmission waveguides 36, optical reception waveguides 60, or both. The carrier 29 can define a first carrier surface 29a and a second carrier surface 29b that are opposite the first carrier surface 29a along the transverse direction T. The carrier 29 is configured to be mounted to the substrate 26 such that the second carrier surface 29b faces the first substrate surface 26a. Therefore, the second carrier surface 29b can be mounted to the first substrate surface 26a. The second carrier surface 29b may thus be referred to as a bottom or lower surface of the carrier 29, and the first carrier surface 29a may be referred to as a top or upper surface of the carrier 29.

該載體29可以界定一延伸到該第一載體表面29a中的凹穴96,使得該凹穴96的基底97係從該第一載體表面29a凹陷一距離d。同樣參考到圖12-13,該載體29可以界定複數個對準通道100,其係被配置以接收該些光纖85,使得當該PIC被安裝至該載體29時,該些核心係與該PIC 76的個別的波導對準。該些對準通道100因此可以沿著該縱長的方向L而被設置成相鄰該凹穴96的。該些對準通道100可以是沿著該縱長的方向L細長的。該些對準通道100可以是沿著該側向的方向A而與彼此間隔開的。該些對準通道100可以如上相關該對準模組74的對準通道84所述地加以建構。 The carrier 29 can define a pocket 96 that extends into the first carrier surface 29a such that the base 97 of the pocket 96 is recessed a distance d from the first carrier surface 29a. Referring also to Figures 12-13, the carrier 29 can define a plurality of alignment channels 100 that are configured to receive the optical fibers 85 such that when the PIC is mounted to the carrier 29, the cores are associated with the PIC The individual waveguides of 76 are aligned. The alignment channels 100 can thus be disposed adjacent to the pockets 96 along the longitudinal direction L. The alignment channels 100 may be elongated along the longitudinal direction L. The alignment channels 100 may be spaced apart from each other along the lateral direction A. The alignment channels 100 can be constructed as described above with respect to the alignment channels 84 of the alignment module 74.

就此點而言,該載體29可被稱為一對準模組,在於其係被配置以將該些光纖85設置成與該PIC 76對準。然而,該載體29係與上述 的對準模組74不同。譬如,當該發送PIC 32以及接收PIC 64被附接至該對準模組74時,該發送PIC 32以及該接收PIC 64可被直接安裝至該基板26。類似地,該調變器的驅動器25以及該電流至電壓轉換器66可被直接安裝至該基板26。相反地,該載體29可被配置為一具有電性導體的電性中介體,該些電性導體係被配置以被設置成與一光學引擎以及該基板26兩者電性通訊,藉此將該光學引擎設置成和該基板26電性連通。該載體29亦可以提供直接走線在該PIC 32與一驅動器25之間、及/或在一PIC 64與一電流至電壓轉換器66之間的電連接。這些電連接將會在以下更加詳細地加以描述。因此,該載體29係提供一光學對準功能以及一電性發送功能。 In this regard, the carrier 29 can be referred to as an alignment module in that it is configured to align the fibers 85 with the PIC 76. However, the carrier 29 is different from the alignment module 74 described above. For example, when the transmitting PIC 32 and the receiving PIC 64 are attached to the alignment module 74, the transmitting PIC 32 and the receiving PIC 64 can be directly mounted to the substrate 26. Similarly, the driver 25 of the modulator and the current to voltage converter 66 can be mounted directly to the substrate 26. Conversely, the carrier 29 can be configured as an electrical interposer having electrical conductors configured to be in electrical communication with both an optical engine and the substrate 26, thereby The optical engine is configured to be in electrical communication with the substrate 26. The carrier 29 can also provide direct routing of electrical connections between the PIC 32 and a driver 25, and/or between a PIC 64 and a current to voltage converter 66. These electrical connections will be described in more detail below. Therefore, the carrier 29 provides an optical alignment function as well as an electrical transmission function.

該載體29可以進一步包含一應變釋放平台98。該應變釋放平台98可被配置以附接至該光纖85的緩衝層85b,使得該包覆層85c以及核心79係從該應變釋放平台98延伸到該載體29的對準通道100中。因此,如上所述,該光纖85的緩衝層端可以從該包覆層加以剝除。該應變釋放平台98可包含應變釋放通道,其係可以如上相關該波導夾持器86的第一通道部分90a所述地加以配置。因此,該應變釋放平台98的應變釋放通道可以附接至該些光纖85的緩衝層,使得該核心以及包覆層係從該應變釋放平台延伸出,並且到該載體29的對準通道100中。該載體29可以在一介於該些對準通道100以及該應變釋放平台98之間的位置處界定一肩部102,其係從該應變釋放平台98向上延伸。該些對準通道100可以延伸穿過該肩部102。因此,該緩衝層可以附接至該應變釋放平台98,使得該些緩衝層的端鄰接該肩部102。該核心以及包覆層可以從該緩衝層,並且因此是從該肩部102向前延伸一距離是等於該些對準通道100的長度。該載體29可以 從單一元件或是從一或多個個別的元件來加以形成,其係被接合在一起以形成存在於該載體29中的凹穴96。 The carrier 29 can further include a strain relief platform 98. The strain relief platform 98 can be configured to attach to the buffer layer 85b of the optical fiber 85 such that the cladding layer 85c and the core 79 extend from the strain relief platform 98 into the alignment channel 100 of the carrier 29. Therefore, as described above, the buffer layer end of the optical fiber 85 can be stripped from the cladding layer. The strain relief platform 98 can include a strain relief passage that can be configured as described above in relation to the first passage portion 90a of the waveguide holder 86. Accordingly, the strain relief channel of the strain relief platform 98 can be attached to the buffer layer of the fibers 85 such that the core and cladding layer extend from the strain relief platform and into the alignment channel 100 of the carrier 29. . The carrier 29 can define a shoulder 102 extending upwardly from the strain relief platform 98 at a location intermediate the alignment channels 100 and the strain relief platform 98. The alignment channels 100 can extend through the shoulders 102. Accordingly, the buffer layer can be attached to the strain relief platform 98 such that the ends of the buffer layers abut the shoulder 102. The core and cladding may be from the buffer layer and thus extend forward from the shoulder 102 a distance equal to the length of the alignment channels 100. The carrier 29 can be formed from a single component or from one or more individual components that are joined together to form a pocket 96 present in the carrier 29.

或者是,該些光纖85可以用上述的方式來附接至該波導夾持器86,使得該包覆層以及核心延伸到該載體29的對準通道100中。在一替代的例子中,該夾持器86可以只包含該第一通道部分90a,而無該第二通道部分90b。在一例子中,該波導夾持器86的內部的夾持器表面86a可被安裝至該載體29。因此,該些夾持器通道90的開放端可以背對該載體29。 Alternatively, the fibers 85 can be attached to the waveguide holder 86 in the manner described above such that the cladding and core extend into the alignment channel 100 of the carrier 29. In an alternate example, the holder 86 can include only the first channel portion 90a without the second channel portion 90b. In an example, the inner gripper surface 86a of the waveguide holder 86 can be mounted to the carrier 29. Thus, the open ends of the gripper channels 90 can be directed away from the carrier 29.

該些光纖85可以用上述相關該對準模組74的方式,而被對齊到該載體29的對準通道100中。在此所述的每一個光纖85都可被配置為單模光纖,其係具有由該緩衝層所圍繞的一核心以及包覆層。該核心直徑可以是約9微米。該包覆層的外部的直徑可以是約125微米。儘管這些是光纖的標準的尺寸,但應該體認到的是,本揭露內容並不限於此類型的光纖。譬如,當該載體29係由矽所做成時,該載體29的對準通道100可以藉由非等向性蝕刻矽來加以形成。類似地,譬如當該對準模組74係由矽所做成時,上述的對準模組74的對準通道84可以藉由非等向性蝕刻矽來加以形成。該載體29以及該對準模組74可以是由矽、玻璃、陶瓷、或是一聚合物所形成的。當然,所體認到的是,該些對準通道84及100可以藉由任何適當的替代的方法來加以形成。 The fibers 85 can be aligned into the alignment channel 100 of the carrier 29 in the manner described above with respect to the alignment module 74. Each of the optical fibers 85 described herein can be configured as a single mode fiber having a core surrounded by the buffer layer and a cladding layer. The core diameter can be about 9 microns. The outer diameter of the cladding layer can be about 125 microns. Although these are standard sizes for optical fibers, it should be recognized that the disclosure is not limited to this type of fiber. For example, when the carrier 29 is made of tantalum, the alignment channel 100 of the carrier 29 can be formed by an anisotropic etching. Similarly, when the alignment module 74 is made of tantalum, the alignment channel 84 of the alignment module 74 can be formed by an anisotropic etch. The carrier 29 and the alignment module 74 may be formed of tantalum, glass, ceramic, or a polymer. Of course, it is recognized that the alignment channels 84 and 100 can be formed by any suitable alternative method.

界定該些對準通道的側壁93可以具有一寬度w,其可以微影地加以界定。若該些對準通道係藉由非等向性蝕刻矽來加以形成時,則該側壁93以及一沿著該側向的方向A被定向的線可以界定一角度α,該角 度α係介於30度到80度之間,例如是在40度到70度之間,例如是介於50度到60度之間。在一例子中,該角度α可以是約54.7度。當該些光纖被***到該些對準通道中時,該些光纖可以間隔開一間距。在一例子中,該間距可以是一介於被設置在該些對準通道中的光纖的相鄰的光纖之間的固定的間距。在一例子中,該間距可以是介於150微米到400微米之間、或是其之一倍數。譬如,在一例子中,該間距可以是約250微米或是其之某個倍數,例如是約500微米或約750微米。 The sidewalls 93 defining the alignment channels can have a width w that can be visibly defined. If the alignment channels are formed by an anisotropic etch, the sidewalls 93 and a line oriented along the lateral direction A may define an angle α, which is between Between 30 degrees and 80 degrees, for example between 40 degrees and 70 degrees, for example between 50 degrees and 60 degrees. In an example, the angle a can be about 54.7 degrees. When the fibers are inserted into the alignment channels, the fibers may be spaced apart by a spacing. In one example, the spacing can be a fixed spacing between adjacent fibers of the fibers disposed in the alignment channels. In an example, the spacing can be between 150 microns and 400 microns, or a multiple of them. For example, in one example, the spacing can be about 250 microns or some multiple thereof, such as about 500 microns or about 750 microns.

該對準通道的寬度w以及該側壁相對於沿著該側向的方向A被定向的線的角度可以決定所接收到的光纖核心相對於該第一載體表面29a沿著該橫斷的方向T的高度。如同在圖12中所繪,該核心可被設置在該第一載體表面29a之上,使得該第一載體表面29a係被設置在該核心與該第二載體表面29b之間。如同在圖13中所繪的,該核心可被設置在該第一載體表面29a之下,使得該核心係被設置在該第一載體表面29a與該第二載體表面29b之間。所體認到的是,若該核心係被設置在該第一載體表面29a之下,則該載體可以界定一被製作尺寸以接收該PIC 76的凹穴,使得該些核心可以與該PIC 76的波導光學地對準。 The width w of the alignment channel and the angle of the sidewall relative to the line oriented along the lateral direction A may determine the direction of the received fiber core relative to the first carrier surface 29a along the transverse direction T the height of. As depicted in Figure 12, the core can be disposed over the first carrier surface 29a such that the first carrier surface 29a is disposed between the core and the second carrier surface 29b. As depicted in Figure 13, the core can be disposed below the first carrier surface 29a such that the core is disposed between the first carrier surface 29a and the second carrier surface 29b. It is recognized that if the core system is disposed below the first carrier surface 29a, the carrier can define a recess sized to receive the PIC 76 such that the cores can interact with the PIC 76 The waveguide is optically aligned.

該載體29可包含複數個貫孔,其係界定被配置以將該光學引擎的電性構件設置成和該基板26電性連通的電性路徑。該些電性構件可以根據需要而包含該PIC、該調變器的驅動器25(在一發送器的情形中)、該電流至電壓轉換器66(在一接收器的情形中)、一微處理器、一額外的其它電性構件。譬如,該載體29可包含複數個導電的PIC貫孔106,其係被配置以電連接至該PIC 76,並且進一步被配置以電連接至該基板26。在一例 子中,該些PIC貫孔106的一或多個(最高到全部)因此都可以從該凹穴96的基底97延伸至該第二載體表面29b。該載體29可以進一步包含導電的輔助的貫孔104,其係被配置以在該第一載體表面29a電連接至調變器的驅動器25或是電流至電壓轉換器66,並且被配置以在該第二載體表面29b電連接至該基板26。因此,該些輔助的貫孔104可以從該第一載體表面29a延伸至該第二載體表面29b。 The carrier 29 can include a plurality of through holes that define an electrical path configured to place the electrical components of the optical engine in electrical communication with the substrate 26. The electrical components can include the PIC, the driver 25 of the modulator (in the case of a transmitter), the current to voltage converter 66 (in the case of a receiver), a microprocessor, as needed , an additional electrical component. For example, the carrier 29 can include a plurality of electrically conductive PIC vias 106 that are configured to electrically connect to the PIC 76 and are further configured to be electrically connected to the substrate 26. In one example, one or more (up to all) of the PIC vias 106 can thus extend from the base 97 of the pocket 96 to the second carrier surface 29b. The carrier 29 can further include a conductive auxiliary via 104 that is configured to be electrically coupled to the driver 25 of the modulator or current to voltage converter 66 at the first carrier surface 29a and configured to The second carrier surface 29b is electrically connected to the substrate 26. Accordingly, the auxiliary through holes 104 may extend from the first carrier surface 29a to the second carrier surface 29b.

該光學引擎可以進一步包含複數個電性接點108,其係被露出在該第一載體表面29a、該第二載體表面29b、以及該凹穴96的基底97上。該些電性接點108可包含至少一表面線路99。該些電性接點108可以終端該些導電貫孔。因此,該些電性接點108係被配置以建立電連接至配接的元件。該些配接的元件可包含該光學引擎的電性構件以及該基板26。該些電性接點108可以採用許多形式,並且該些電連接可以利用任何所要的配置來加以做成。在不同的表面上的電性接點108可以是不同的。該些電性接點108可以是焊料球、銅柱、或是某種其它類型的接點。因此,該電連接可以是藉由焊接、熱壓縮接合、超音波接合、或是某種其它類型的連接方法所建立的。 The optical engine can further include a plurality of electrical contacts 108 that are exposed on the first carrier surface 29a, the second carrier surface 29b, and the substrate 97 of the pocket 96. The electrical contacts 108 can include at least one surface line 99. The electrical contacts 108 can terminate the conductive vias. Accordingly, the electrical contacts 108 are configured to establish an electrical connection to the mated components. The mating components can include an electrical component of the optical engine and the substrate 26. The electrical contacts 108 can take many forms and the electrical connections can be made using any desired configuration. The electrical contacts 108 on different surfaces can be different. The electrical contacts 108 can be solder balls, copper posts, or some other type of contact. Thus, the electrical connection can be established by soldering, thermocompression bonding, ultrasonic bonding, or some other type of bonding method.

繼續參考到圖10-14,該PIC 76可以載有至少一第一對準指示器80,並且該載體29可以載有至少一第二對準指示器110,其係被配置以被設置成與該第一對準指示器80對準。該至少一第一對準指示器80可包含至少一對的第一對準指示器80,並且該至少一第二對準指示器110可包含至少一對的第二對準指示器82。當該第一及第二對準指示器80及110係沿著該橫斷的方向T來與彼此對準,而且該PIC 76係被附接至該載體29 時,該PIC 76以及該載體29係在一相關該縱長的方向L以及該側向的方向A的預設的相對的位置來與彼此對準。譬如,當該第一及第二對準指示器80及110係與彼此對準,而且該PIC 76係被附接至該載體時,該PIC 76係與該些對準通道100對準,使得被接收在該些對準通道100中的光纖85係與該光子積體電路76的對應的波導光學對準。再者,該PIC 76可被設置成相鄰該些對準通道100,使得從該緩衝層向前延伸一距離等於該些對準通道100的長度的核心可以對接耦合至該PIC 76。 With continued reference to Figures 10-14, the PIC 76 can carry at least a first alignment indicator 80, and the carrier 29 can carry at least a second alignment indicator 110 that is configured to be configured to The first alignment indicator 80 is aligned. The at least one first alignment indicator 80 can include at least one pair of first alignment indicators 80, and the at least one second alignment indicator 110 can include at least one pair of second alignment indicators 82. When the first and second alignment indicators 80 and 110 are aligned with each other along the transverse direction T, and the PIC 76 is attached to the carrier 29, the PIC 76 and the carrier 29 It is aligned with each other in a predetermined relative position in the direction L of the longitudinal direction and the direction A of the lateral direction. For example, when the first and second alignment indicators 80 and 110 are aligned with each other and the PIC 76 is attached to the carrier, the PIC 76 is aligned with the alignment channels 100 such that The optical fibers 85 received in the alignment channels 100 are optically aligned with the corresponding waveguides of the photonic integrated circuit 76. Moreover, the PIC 76 can be disposed adjacent to the alignment channels 100 such that a core extending forward from the buffer layer a distance equal to the length of the alignment channels 100 can be coupled to the PIC 76.

在一例子中,該些對準指示器80及110可以沿著該橫斷的方向T來與彼此對準。該第一及第二對準指示器80及110的一或兩者可被配置為視覺的標記。該些視覺的標記可以是在環境照明條件中可見的、或是在紅外光下可見的。因此,該第一及第二對準指示器80及110可以是可見的對準指示器。或者是,該第一及第二對準指示器80及110可以是結構,其中該第一及第二對準指示器80及110中之一係被配置以配接或是接收該第一及第二對準指示器80及110中的另一個。又或者是,該第一及第二對準指示器80及110可以是結構,其係分別被配置以接收或者是配接至少一輔助的對準結構,以便於對準該PIC 76與該載體29。 In an example, the alignment indicators 80 and 110 can be aligned with each other along the transverse direction T. One or both of the first and second alignment indicators 80 and 110 can be configured as visual indicia. The visual indicia can be visible in ambient lighting conditions or visible in infrared light. Thus, the first and second alignment indicators 80 and 110 can be visible alignment indicators. Alternatively, the first and second alignment indicators 80 and 110 can be configured, wherein one of the first and second alignment indicators 80 and 110 is configured to match or receive the first and The second alignment indicator is the other of the indicators 80 and 110. Still alternatively, the first and second alignment indicators 80 and 110 can be structures configured to receive or be mated with at least one auxiliary alignment structure to facilitate alignment of the PIC 76 with the carrier 29.

該PIC 76可以被製作尺寸為在相關該縱長的方向L以及該側向的方向A的一或兩者上大於該凹穴96。因此,當該PIC 76被附接至該第一載體表面29a時,該PIC 76可以延伸在該凹穴96之上。在一例子中,該PIC 76可以延伸在該凹穴96的相關該側向的方向A的兩側之上而且超出該兩側,並且可以延伸在該凹穴96的一縱長端之上而且超出該縱長端,該縱長端係相對於一被設置在該些對準通道100以及該凹穴96之間的對齊 面103。在另一例子中,該對齊面103可以與該凹穴96間隔開,使得該PIC 76可以沿著該縱長的方向L延伸在該凹穴96的兩個縱長端之上而且超出該些縱長端。該些電性接點108可以延伸在該些PIC貫孔106以及該PIC 76之間。 The PIC 76 can be sized to be larger than the pocket 96 in one or both of the direction L associated with the length and the direction A of the lateral direction. Thus, when the PIC 76 is attached to the first carrier surface 29a, the PIC 76 can extend over the pocket 96. In one example, the PIC 76 can extend over and be beyond the sides of the pocket A in the lateral direction A and can extend over a longitudinal end of the pocket 96 and Beyond the longitudinal end, the longitudinal end is opposite an alignment face 103 disposed between the alignment channels 100 and the pockets 96. In another example, the alignment surface 103 can be spaced apart from the pocket 96 such that the PIC 76 can extend over the lengthwise direction L over the two longitudinal ends of the pocket 96 and beyond Longitudinal end. The electrical contacts 108 can extend between the PIC vias 106 and the PIC 76.

當該些電性接點108被配置為可焊接的元件時,在該焊料是液體時的表面張力可以傾向將該PIC 76拉成實質齊平的抵頂該第一載體表面29a。該些電性接點108可被設置在該PIC 76以及該載體29之間,可以沿著該縱長的方向稍微偏移的。換言之,該些電性接點108可以朝向該對齊面103偏移的,使得該液體焊料推動該PIC 76的耦合邊緣來移動抵頂該對齊面。當該焊料固化時,該PIC 76係因此相對該第一載體表面29a以及該對齊面103兩者對齊的。就此點而言,應該體認到的是,該PIC 76被安裝所在的第一載體表面29a可以相對在該對齊面103的第一載體表面29稍微凹陷的,使得該耦合邊緣係沿著該縱長的方向L與該對齊面103對準。或者是,該PIC 76的耦合邊緣可以延伸到該凹穴96中,使得該耦合邊緣係沿著該縱長的方向與該對齊面103對準。在該載體29係被該基板26所取代的事件中,該些電性接點108可以從該基板26的電性接觸位置延伸至該PIC 76的電性接觸位置,以便於用上述的方式來推動該PIC 76抵頂該第一基板表面26a以及該對齊面103。 When the electrical contacts 108 are configured as solderable components, the surface tension when the solder is a liquid may tend to pull the PIC 76 substantially flush against the first carrier surface 29a. The electrical contacts 108 can be disposed between the PIC 76 and the carrier 29 and can be slightly offset along the lengthwise direction. In other words, the electrical contacts 108 can be offset toward the alignment surface 103 such that the liquid solder pushes the coupling edge of the PIC 76 to move against the alignment surface. When the solder solidifies, the PIC 76 is thus aligned with respect to both the first carrier surface 29a and the alignment surface 103. In this regard, it should be appreciated that the first carrier surface 29a on which the PIC 76 is mounted may be slightly recessed relative to the first carrier surface 29 of the alignment surface 103 such that the coupling edge is along the longitudinal direction. The long direction L is aligned with the alignment face 103. Alternatively, the coupling edge of the PIC 76 can extend into the pocket 96 such that the coupling edge is aligned with the alignment surface 103 along the lengthwise direction. In the event that the carrier 29 is replaced by the substrate 26, the electrical contacts 108 may extend from the electrical contact location of the substrate 26 to the electrical contact location of the PIC 76 to facilitate use in the manner described above. The PIC 76 is pushed against the first substrate surface 26a and the alignment surface 103.

該些對準通道100係被設計成使得當該些光纖85係被對齊在該些對準通道100中,並且該PIC 76係對準而且附接至該載體29時,該些光纖85的核心係相關該側向的方向A以及該橫斷的方向T來與該PIC 76的波導光學地對準。通常,當該PIC 76係與該第一載體表面29a實質齊平 時,該些波導的中心是在該第一載體表面29a之上1到10微米,使得在該核心以及該第一載體表面29a之間的距離也是在1到10微米的範圍中。在該些核心以及該PIC的波導之間在該縱長的方向L上的對齊係藉由利用在偏移的電性接點108之間的焊料表面張力、或是一替代的對準機構,來推動該PIC 76的耦合邊緣抵頂該載體29的對齊面103來加以達成的。 The alignment channels 100 are designed such that when the fibers 85 are aligned in the alignment channels 100 and the PIC 76 is aligned and attached to the carrier 29, the cores of the fibers 85 The direction A relative to the lateral direction and the direction T of the transverse direction are optically aligned with the waveguide of the PIC 76. Typically, when the PIC 76 is substantially flush with the first carrier surface 29a, the centers of the waveguides are 1 to 10 microns above the first carrier surface 29a such that the core and the first carrier surface 29a The distance between them is also in the range of 1 to 10 microns. The alignment between the cores and the waveguide of the PIC in the longitudinal direction L is achieved by utilizing solder surface tension between the offset electrical contacts 108, or an alternative alignment mechanism, This is achieved by pushing the coupling edge of the PIC 76 against the alignment face 103 of the carrier 29.

現在參照圖15-16,並且如上所述的,該第一及第二對準指示器80及110可以是機械式指示器,其係沿著該側向的方向A以及該橫斷的方向T來對準該PIC 76與該載體29。在一例子中,該第一及第二對準指示器80及110可以是結構,其係分別被配置以接收或者是配接至少一輔助的對準結構112,以便於對準該PIC 76與該載體29。在一例子中,該輔助的對準結構112可被配置為至少一對準銷,例如是一對的對準銷114。該些對準銷114可以是任何適當的細長的結構,其係被配置以沿著該載體29的對準通道100的一個別的對準通道延伸。接收該些對準銷114的對準通道100可以與接收該些光纖85的對準通道100相同地加以配置。因此,該些對準銷114可被配置為光纖85。或者是,該些對準銷114可以不同於該些光纖85製作尺寸的,因而接收該些對準銷114的對準通道100可以不同於接收該些光纖85的對準通道100製作尺寸的。譬如,該些對準銷114可被配置為金屬或陶瓷的銷,例如是一機械式轉移套圈(ferrule)的對準銷。在其它實施例中,該些對準銷114可以是光纖,其係單純為了機械目的而被使用,因而不是該光學迴路的部分。 Referring now to Figures 15-16, and as described above, the first and second alignment indicators 80 and 110 can be mechanical indicators along the lateral direction A and the transverse direction T The PIC 76 is aligned with the carrier 29. In an example, the first and second alignment indicators 80 and 110 can be structures configured to receive or be mated with at least one auxiliary alignment structure 112 to facilitate alignment of the PIC 76 with The carrier 29. In an example, the auxiliary alignment structure 112 can be configured as at least one alignment pin, such as a pair of alignment pins 114. The alignment pins 114 can be any suitable elongated structure that is configured to extend along a different alignment channel of the alignment channel 100 of the carrier 29. The alignment channels 100 that receive the alignment pins 114 can be configured the same as the alignment channels 100 that receive the fibers 85. Therefore, the alignment pins 114 can be configured as the optical fibers 85. Alternatively, the alignment pins 114 can be sized differently than the optical fibers 85, such that the alignment channels 100 that receive the alignment pins 114 can be sized differently than the alignment channels 100 that receive the optical fibers 85. For example, the alignment pins 114 can be configured as metal or ceramic pins, such as alignment pins for a mechanical transfer ferrule. In other embodiments, the alignment pins 114 can be optical fibers that are used solely for mechanical purposes and are therefore not part of the optical circuit.

在其中該些對準銷114係被配置為光纖85的情形中,該些對準銷114與該PIC 76的個別的波導的光學對準可以確認該PIC 76與該些 對準通道100的對準。在一例子中,相關該側向的方向的最外側的對準通道100可以接收該些對準銷114。該些對準銷114可以懸突於該對齊面103,並且可以延伸到藉由該PIC 76所界定的對應的對齊溝槽116中,以便於相關該側向的方向A以及該橫斷的方向T來對準該PIC 76以及該些對準通道100。因此,該第一對準指示器80可以是藉由該些對齊溝槽116所界定的。該些對齊溝槽116可以延伸到該PIC 76的面對該基板26的底表面中。在一替代實施例中,該些光纖85以及該些被配置為光纖85的對準銷114可以是藉由一光纖帶狀纜線所界定的。 In the case where the alignment pins 114 are configured as optical fibers 85, the optical alignment of the alignment pins 114 with the individual waveguides of the PIC 76 can confirm the pair of the PIC 76 and the alignment channels 100. quasi. In an example, the outermost alignment channels 100 associated with the lateral direction can receive the alignment pins 114. The alignment pins 114 may overhang the alignment surface 103 and may extend into corresponding alignment trenches 116 defined by the PIC 76 to facilitate the lateral direction A and the direction of the transverse direction. T aligns the PIC 76 with the alignment channels 100. Therefore, the first alignment indicator 80 can be defined by the alignment grooves 116. The alignment trenches 116 can extend into the bottom surface of the PIC 76 that faces the substrate 26. In an alternate embodiment, the optical fibers 85 and the alignment pins 114 configured as the optical fibers 85 may be defined by a fiber optic ribbon cable.

參照圖16,該些對準銷114可以從該些對準通道100延伸到該PIC 76的對齊通道116中。該些對齊溝槽116可以具有一沿著該側向的方向A的大於該些對準通道100的寬度,因為該些對準銷114最初是被設置在該些對準通道100中,並且接著係與該些對齊溝槽116對準以用於***於其中。所體認到的是,該些對齊溝槽116可以是在該PIC 76的底部開放的,並且該些對準通道100可以是在該載體29的頂端開放的。因此,該些對齊溝槽116的開放端以及該些對準通道100的開放端可以相關該橫斷的方向T而彼此面對,儘管它們係沿著該縱長的方向L與彼此偏移的。 Referring to FIG. 16, the alignment pins 114 can extend from the alignment channels 100 into the alignment channels 116 of the PIC 76. The alignment trenches 116 may have a width in the lateral direction A that is greater than the width of the alignment channels 100 because the alignment pins 114 are initially disposed in the alignment channels 100, and then The alignment grooves 116 are aligned for insertion therein. It is recognized that the alignment trenches 116 may be open at the bottom of the PIC 76 and the alignment channels 100 may be open at the top end of the carrier 29. Therefore, the open ends of the alignment grooves 116 and the open ends of the alignment channels 100 may face each other in the direction T of the transverse direction, although they are offset from each other along the longitudinal direction L. .

該PIC 76以及載體29可以與彼此間隔開,以便於界定一存在於該PIC 76以及該載體29之間的間隙78,因而在該兩者之間的對準係由線接觸(在圖16中被展示為點71)所提供的。每一個對準銷114可以藉由四個接觸線71(兩個在該載體29上以及兩個在該PIC 76上)來加以支承。若該些對準通道100的角度α係與該些對齊溝槽116的對應的角度相同的,並且若該些對齊溝槽116係具有一沿著該側向的方向A的寬度是大於該些 對準通道100,則藉由該些光纖核心79所界定的平面係相對於該載體29而位於比較靠近該PIC 76之處。應該體認到的是,相關於在圖7A-7G中的波導夾持器86以及對準模組74所敘述的對準系統及方法的任一個都可被適用至該PIC 76以及載體29。 The PIC 76 and carrier 29 can be spaced apart from each other to define a gap 78 present between the PIC 76 and the carrier 29 such that alignment between the two is by line contact (in Figure 16 It is shown as point 71). Each of the alignment pins 114 can be supported by four contact lines 71 (two on the carrier 29 and two on the PIC 76). If the angles α of the alignment channels 100 are the same as the corresponding angles of the alignment grooves 116, and if the alignment grooves 116 have a width along the lateral direction A, the width is larger than the Aligning the channel 100, the plane defined by the fiber cores 79 is located relatively close to the PIC 76 relative to the carrier 29. It should be appreciated that any of the alignment systems and methods described with respect to waveguide holder 86 and alignment module 74 in Figures 7A-7G can be applied to both PIC 76 and carrier 29.

圖10-14的光纖85以及圖15-16的光纖可以在該組裝過程的不同的階段加以附接。譬如,在一實施例中,該載體29的對準通道100可以完全地被該些光纖85以及對準銷114(若有使用的話)佔滿。該些光纖85以及對準銷可以藉由一環氧樹脂而被黏附地固定至該載體29、或是藉由某些其它方法來加以固定。該PIC 76係接著在該凹穴96之上被設置在該載體29上,並且該PIC 76的對準指示器80係與如先前所述的載體29的對準指示器對齊。一焊料回焊製程可被用來從該載體29做成電連接至該PIC 76,並且用上述的方式來機械式地固定該PIC 76至該載體29。一例如是驅動器或電流至電壓轉換器的輔助的電性結構可以在相同的回焊操作期間焊接至該載體29。此種載體/PIC次組件、或是電流至電壓轉換器/PIC次組件可被稱為一帶尾纖的次組件,因為該些光纖係被永久地固定至該次組件。 The fibers 85 of Figures 10-14 and the fibers of Figures 15-16 can be attached at different stages of the assembly process. For example, in one embodiment, the alignment channel 100 of the carrier 29 can be completely filled by the fibers 85 and the alignment pins 114 (if used). The optical fibers 85 and alignment pins may be adhesively attached to the carrier 29 by an epoxy resin or may be secured by some other means. The PIC 76 series is then placed over the carrier 29 over the pocket 96, and the alignment indicator 80 of the PIC 76 is aligned with the alignment indicator of the carrier 29 as previously described. A solder reflow process can be used to electrically connect the carrier 29 to the PIC 76 and mechanically secure the PIC 76 to the carrier 29 in the manner described above. An auxiliary electrical structure, such as a driver or a current to voltage converter, can be soldered to the carrier 29 during the same reflow operation. Such a carrier/PIC subassembly, or a current to voltage converter/PIC subassembly, may be referred to as a pigtailed subassembly because the fibers are permanently affixed to the subassembly.

在另一實施例中,該些光纖85可以在該PIC 76已經被固定至該載體29之後,在該些對準通道100中被安裝至該載體29。在此例中,該些對準銷114可以在將該些光纖85固定至該載體29之前,先被固定至該載體29。該PIC 76係接著與該載體29對準而且被固定至該載體,並且該些光纖接著可被安裝至該載體。在此實施例中,該些光纖85可以是可從該載體29分離的。 In another embodiment, the optical fibers 85 can be mounted to the carrier 29 in the alignment channels 100 after the PIC 76 has been secured to the carrier 29. In this example, the alignment pins 114 can be secured to the carrier 29 prior to securing the fibers 85 to the carrier 29. The PIC 76 series is then aligned with the carrier 29 and secured to the carrier, and the fibers can then be mounted to the carrier. In this embodiment, the fibers 85 may be detachable from the carrier 29.

如上所述,該載體29可被安裝至該基板26,其可被配置為 一印刷電路板,以形成該光學收發器20。該基板26可以提供電性路徑,以供電性信號傳輸在該PIC 76以及該驅動器25或電流至電壓轉換器66之間。如上所提到的,該載體29可以支承該發送器22以及該接收器24的一或兩者。或者是,一第一載體29可以用上述的方式來支承該發送器22,並且一第二載體29可以用上述的方式來支承該接收器24。 As described above, the carrier 29 can be mounted to the substrate 26, which can be configured as a printed circuit board to form the optical transceiver 20. The substrate 26 can provide an electrical path for transmission of power signals between the PIC 76 and the driver 25 or current to voltage converter 66. As mentioned above, the carrier 29 can support one or both of the transmitter 22 and the receiver 24. Alternatively, a first carrier 29 can support the transmitter 22 in the manner described above, and a second carrier 29 can support the receiver 24 in the manner described above.

如上相關圖10-16所述地配置該載體29以界定一對準模組可以具有額外的優點,該些光纖85以及PIC 76可以獨立地耦合至相當大而且機械強健的載體29。因此,可以沿著該些光纖85傳送的機械應力並未直接耦合到該PIC 76中。一進一步的優點是在某些實施例中,只有單一構件(該載體29)係被用來相鄰該PIC 76來對準該些光纖85,藉此降低複雜度。在某些實施例中,該些光纖85可以是可從該載體分離的。再者,該些光纖85可以在安裝該載體29至該基板26之後,才被安裝在該載體29中。此係使得該收發器20的製造變得容易,因為該帶尾纖的次組件可以在無焊料回焊的製程步驟下加以製造。 Having the carrier 29 configured to define an alignment module as described above in relation to Figures 10-16 can have the additional advantage that the fibers 85 and PIC 76 can be independently coupled to a relatively large and mechanically robust carrier 29. Therefore, mechanical stresses that can be transmitted along the fibers 85 are not directly coupled into the PIC 76. A further advantage is that in some embodiments, only a single component (the carrier 29) is used adjacent to the PIC 76 to align the fibers 85, thereby reducing complexity. In some embodiments, the fibers 85 can be detachable from the carrier. Furthermore, the optical fibers 85 can be mounted in the carrier 29 after the carrier 29 is mounted to the substrate 26. This makes the manufacture of the transceiver 20 easy because the pigtailed subassembly can be fabricated in a solderless reflow process.

應注意到的是,在圖式中所示的實施例的圖示及討論只是為了舉例的目的而已,因而不應該被解釋為限制本揭露內容。熟習此項技術者將會體認到本揭露內容係思及各種的實施例。此外,應瞭解的是,利用上述的實施例的上述的概念可以單獨、或是結合上述其它實施例的任一個來加以採用。應該進一步體認到的是,除非另有指出,否則上述相關一所描繪的實施例的各種替代的實施例都可以適用如同在此所述的所有實施例。 It should be noted that the illustrations and the discussion of the embodiments shown in the drawings are for the purpose of illustration only, and should not be construed as limiting the disclosure. Those skilled in the art will recognize the present disclosure and various embodiments. Moreover, it should be understood that the above-described concepts utilizing the above-described embodiments may be employed alone or in combination with any of the other embodiments described above. It should be further appreciated that various alternative embodiments of the above-described related embodiments may be applied to all embodiments as described herein unless otherwise indicated.

Claims (73)

一種光學引擎,其係包括:一光子積體電路,其係被配置以藉由一基板來加以支承,該光子積體電路係載有第一對準指示器;以及一對準模組,其係具有一被配置以接收一光波導的對準通道,該對準模組係載有被配置以與該第一對準指示器對準的第二對準指示器,其中當該第一對準指示器及該第二對準指示器係與彼此對準並且該對準通道係接收該光波導時,該光波導係與該光子積體電路的一對應的波導光學對準地來和該光子積體電路對接耦合。  An optical engine comprising: a photonic integrated circuit configured to be supported by a substrate, the photonic integrated circuit carrying a first alignment indicator; and an alignment module Having an alignment channel configured to receive an optical waveguide, the alignment module carrying a second alignment indicator configured to align with the first alignment indicator, wherein the first pair When the quasi-indicator and the second alignment indicator are aligned with each other and the alignment channel receives the optical waveguide, the optical waveguide is optically aligned with a corresponding waveguide of the photonic integrated circuit The photonic integrated circuit is coupled to each other.   如申請專利範圍第1項之光學引擎,其中該第一對準指示器及該第二對準指示器的一或兩者係包括視覺的標記。  The optical engine of claim 1, wherein one or both of the first alignment indicator and the second alignment indicator comprise visual indicia.   如前述申請專利範圍中任一項之光學引擎,其中該些視覺的標記是紅外光下可見的。  An optical engine according to any of the preceding claims, wherein the visual indicia are visible under infrared light.   如前述申請專利範圍中任一項之光學引擎,其中該對準模組係被配置以在該第一對準指示器及該第二對準指示器係與彼此對準時,被黏附地附接、焊接、或是分子接合至該光子積體電路。  An optical engine according to any one of the preceding claims, wherein the alignment module is configured to be adhesively attached when the first alignment indicator and the second alignment indicator are aligned with each other , soldering, or molecular bonding to the photonic integrated circuit.   如前述申請專利範圍中任一項之光學引擎,其中該光子積體電路係界定一第一表面以及一與該第一表面相對的第二表面,該第二表面係被配置以在該光子積體電路被安裝至該基板時面對該基板。  An optical engine according to any one of the preceding claims, wherein the photonic integrated circuit defines a first surface and a second surface opposite the first surface, the second surface being configured to be in the photon product The body circuit faces the substrate when it is mounted to the substrate.   如申請專利範圍第5項之光學引擎,其中該第二表面係被配置以被直接安裝至該基板。  The optical engine of claim 5, wherein the second surface is configured to be mounted directly to the substrate.   如申請專利範圍第6項之光學引擎,其中該基板係界定電性接點,其 係被配置以與一和該光學引擎電性連通的第一電性裝置配接。  The optical engine of claim 6, wherein the substrate defines an electrical contact that is configured to mate with a first electrical device in electrical communication with the optical engine.   如申請專利範圍第6項之光學引擎,其係包括一被配置以被安裝至該基板的載體,其中該基板係界定被配置以與一和該光學引擎電性連通的第一電性裝置配接的電性接點。  An optical engine according to claim 6 which includes a carrier configured to be mounted to the substrate, wherein the substrate defines a first electrical device configured to be in electrical communication with the optical engine Connected electrical contacts.   如申請專利範圍第8項之光學引擎,其中當該載體被安裝至該基板時,該載體係被設置成和該基板電性連通。  The optical engine of claim 8, wherein the carrier is disposed in electrical communication with the substrate when the carrier is mounted to the substrate.   如申請專利範圍第5至9項中任一項之光學引擎,其中該光子積體電路的該波導係相鄰該第二表面來加以設置。  The optical engine of any one of clauses 5 to 9, wherein the waveguide of the photonic integrated circuit is disposed adjacent to the second surface.   如申請專利範圍第5至10項中任一項之光學引擎,其中該光子積體電路係界定一從該第一表面延伸至該第二表面的邊緣,並且該對準通道係從該邊緣延伸出。  The optical engine of any one of clauses 5 to 10, wherein the photonic integrated circuit defines an edge extending from the first surface to the second surface, and the alignment channel extends from the edge Out.   如申請專利範圍第1項之光學引擎,其中該對準通道是一實質v形的溝槽,其係被配置以在該溝槽的一頂端處接收該光波導,使得該光波導係與該光子積體電路的該波導光學對準。  The optical engine of claim 1, wherein the alignment channel is a substantially v-shaped groove configured to receive the optical waveguide at a top end of the trench such that the optical waveguide is The waveguide of the photonic integrated circuit is optically aligned.   如前述申請專利範圍中任一項之光學引擎,其進一步包括一被配置以附接至該光波導的波導夾持器。  An optical engine according to any of the preceding claims, further comprising a waveguide holder configured to be attached to the optical waveguide.   如申請專利範圍第13項之光學引擎,其中1)該波導係包括一光纖,其係具有一核心、圍繞該核心的包覆層、以及一圍繞該包覆層的緩衝層,以及2)該緩衝層係被配置以被固定至該波導夾持器,使得該核心以及包覆層從該緩衝層朝向該光子積體電路延伸。  An optical engine according to claim 13 wherein: 1) the waveguide comprises an optical fiber having a core, a cladding surrounding the core, and a buffer layer surrounding the cladding, and 2) the A buffer layer is configured to be secured to the waveguide holder such that the core and cladding extend from the buffer layer toward the photonic integrated circuit.   如申請專利範圍第14項之光學引擎,其中該波導夾持器係界定一夾持器通道,其係具有一被配置以接收該緩衝層的第一通道部分、以及一被 配置以接收從該緩衝層延伸的該核心以及包覆層的第二通道部分。  The optical engine of claim 14, wherein the waveguide holder defines a holder channel having a first channel portion configured to receive the buffer layer, and a configured to receive from the The core of the buffer layer and the second channel portion of the cladding.   如申請專利範圍第15項之光學引擎,其中該波導夾持器係界定一在該第一通道部分以及該第二通道部分之間的止擋表面,該止擋表面係被配置以鄰接該緩衝層,使得該包覆層以及核心從該緩衝層向前延伸到該第二通道部分中。  An optical engine according to claim 15 wherein the waveguide holder defines a stop surface between the first passage portion and the second passage portion, the stop surface being configured to abut the buffer The layer is such that the cladding layer and the core extend forward from the buffer layer into the second channel portion.   如申請專利範圍第15至16項中任一項之光學引擎,其中該第二通道部分係被配置以面對該對準通道,使得該核心以及包覆層係存在於該第二通道部分以及該對準通道兩者中,藉此將該光波導對接耦合至該光子積體電路的該波導。  The optical engine of any one of clauses 15 to 16, wherein the second channel portion is configured to face the alignment channel such that the core and the cladding layer are present in the second channel portion and In both of the alignment channels, the optical waveguide is thereby coupled to the waveguide of the photonic integrated circuit.   如申請專利範圍第15至17項中任一項之光學引擎,其中該對準通道係藉由該對準模組的一內部的模組表面所界定,並且該第二通道部分係藉由該波導夾持器的一內部的夾持器表面所界定。  The optical engine of any one of clauses 15 to 17, wherein the alignment channel is defined by an inner module surface of the alignment module, and the second channel portion is An internal gripper surface of the waveguide holder is defined.   如申請專利範圍第13至18項中任一項之光學引擎,其進一步包括一被安裝至該光子積體電路的輔助的安裝結構,其中該波導夾持器係被安裝至該輔助的安裝結構,使得該光波導係與該光子積體電路的該波導光學對準地來和該光子積體電路對接耦合。  The optical engine of any one of claims 13 to 18, further comprising an auxiliary mounting structure mounted to the photonic integrated circuit, wherein the waveguide holder is mounted to the auxiliary mounting structure The optical waveguide is coupled to the photonic integrated circuit in optical alignment with the waveguide of the photonic integrated circuit.   如申請專利範圍第13項之光學引擎,其中該對準通道係藉由該對準模組的一內部的模組表面所界定,並且該波導夾持器係包含一被配置以支承該光波導的內部的夾持器表面。  The optical engine of claim 13, wherein the alignment channel is defined by an inner module surface of the alignment module, and the waveguide holder comprises a configured to support the optical waveguide The internal gripper surface.   如申請專利範圍第20項之光學引擎,其中該內部的夾持器表面係被配置以在該光波導係藉由該波導夾持器以及該對準模組加以支承時,面對該內部的模組表面。  The optical engine of claim 20, wherein the inner gripper surface is configured to face the inner portion of the optical waveguide when the optical waveguide is supported by the waveguide holder and the alignment module Module surface.   如申請專利範圍第20及21項中任一項之光學引擎,其中當該光波導係被接收在該對準通道以及該夾持器通道中時,該內部的夾持器表面係與該內部的模組表面間隔開,以便於在兩者之間界定一間隙。  The optical engine of any one of claims 20 and 21, wherein the inner gripper surface is internal to the optical waveguide when the optical waveguide is received in the alignment channel and the holder channel The module surfaces are spaced apart to define a gap between the two.   如申請專利範圍第20至22項中任一項之光學引擎,其中該波導夾持器係界定一延伸到該內部的夾持器表面中的夾持器通道,該夾持器通道係被配置以接收該光波導。  The optical engine of any one of claims 20 to 22, wherein the waveguide holder defines a holder passage extending into the inner gripper surface, the holder passage being configured To receive the optical waveguide.   如申請專利範圍第23項之光學引擎,其中該夾持器通道是一實質v形的溝槽,其係被配置以接收該光波導。  The optical engine of claim 23, wherein the holder channel is a substantially v-shaped groove configured to receive the optical waveguide.   如申請專利範圍第20項之光學引擎,其中該內部的夾持器表面是一平的表面,其係被配置以在該波導夾持器以及該對準模組支承該光波導時施加一力至該光波導。  The optical engine of claim 20, wherein the inner gripper surface is a flat surface configured to apply a force to the waveguide holder and the alignment module to support the optical waveguide The optical waveguide.   如申請專利範圍第25項之光學引擎,其中該內部的夾持器表面係被配置以在該波導夾持器以及該對準模組支承該光波導時,與該光波導形成一線接觸。  The optical engine of claim 25, wherein the inner gripper surface is configured to form a line contact with the optical waveguide when the waveguide holder and the alignment module support the optical waveguide.   如申請專利範圍第25項之光學引擎,其中該內部的夾持器表面是彈性可變形的,以便於在該波導夾持器以及該對準模組支承該光波導時配合該光波導的一上方部分。  The optical engine of claim 25, wherein the inner gripper surface is elastically deformable to facilitate engagement of the optical waveguide when the waveguide holder and the alignment module support the optical waveguide The upper part.   如申請專利範圍第1項之光學引擎,其中該對準通道是一矩形的溝槽,並且該波導夾持器係包含至少一偏壓構件,其係被配置以延伸到該對準通道中以便於施加一偏壓力至該光波導。  The optical engine of claim 1, wherein the alignment channel is a rectangular groove, and the waveguide holder comprises at least one biasing member configured to extend into the alignment channel so as to Apply a biasing force to the optical waveguide.   如申請專利範圍第28項之光學引擎,其中該偏壓構件係被配置為一楔形元件,其係包含一傾斜的表面。  The optical engine of claim 28, wherein the biasing member is configured as a wedge member comprising a slanted surface.   如申請專利範圍第1至29項中任一項之光學引擎,其中該波導夾持器係被配置以相對於該對準模組來加以設置以便於彈性地彎曲該光波導,使得該光波導的一端子端係安置抵頂該對準模組。  The optical engine of any one of claims 1 to 29, wherein the waveguide holder is configured to be disposed relative to the alignment module to elastically bend the optical waveguide such that the optical waveguide One terminal end is placed against the alignment module.   如申請專利範圍第1項之光學引擎,其中該對準模組係被配置以提供和該光波導、以及一與該光波導間隔開的第二光波導的線接觸,並且該對準模組係被配置成不提供和至少一間隔在該光波導以及該第二光波導之間的其它光波導的線接觸。  The optical engine of claim 1, wherein the alignment module is configured to provide line contact with the optical waveguide and a second optical waveguide spaced apart from the optical waveguide, and the alignment module It is configured to not provide line contact with at least one other optical waveguide spaced between the optical waveguide and the second optical waveguide.   如申請專利範圍第31項之光學引擎,其中該光波導以及該第二光波導是最外側的波導。  The optical engine of claim 31, wherein the optical waveguide and the second optical waveguide are outermost waveguides.   如申請專利範圍第31項之光學引擎,其係包括一波導夾持器,其中該光波導、該第二光波導、以及該至少一其它光波導夾持器係被固定地附接至該波導夾持器以便於形成一次組件,該次組件係被配置以安裝至該對準模組。  An optical engine according to claim 31, comprising a waveguide holder, wherein the optical waveguide, the second optical waveguide, and the at least one other optical waveguide holder are fixedly attached to the waveguide The holder facilitates forming a primary assembly that is configured to be mounted to the alignment module.   如申請專利範圍第31項之光學引擎,其中該對準通道是一實質v形的溝槽,其係被配置以和該光波導形成兩個線接觸,並且該對準模組係包含一平的內部的模組表面,其係被配置以和該第二光波導形成一線接觸。  The optical engine of claim 31, wherein the alignment channel is a substantially v-shaped groove configured to form two line contacts with the optical waveguide, and the alignment module comprises a flat An inner module surface configured to form a line contact with the second optical waveguide.   如前述申請專利範圍中任一項之光學引擎,其中該基板係包括一溝槽,其係被配置以接收該對準模組的一下方的部分,使得當該對準通道接收該光波導時,該光波導係與該光子積體電路的該對應的波導光學對準地來和該光子積體電路對接耦合。  An optical engine according to any one of the preceding claims, wherein the substrate comprises a groove configured to receive a lower portion of the alignment module such that when the alignment channel receives the optical waveguide The optical waveguide is optically aligned with the corresponding waveguide of the photonic integrated circuit to be coupled to the photonic integrated circuit.   如申請專利範圍第1項之光學引擎,其進一步包括一界定該對準模組的第二基板,其中該第二基板係界定至少一電性路徑。  The optical engine of claim 1, further comprising a second substrate defining the alignment module, wherein the second substrate defines at least one electrical path.   如申請專利範圍第36項之光學引擎,其中該第二基板係界定一第一基板表面、以及一與該第一基板表面沿著一橫向的方向相對的第二基板表面,其中該第一基板表面係面對該光子積體電路。  The optical engine of claim 36, wherein the second substrate defines a first substrate surface and a second substrate surface opposite to the first substrate surface in a lateral direction, wherein the first substrate The surface is facing the photonic integrated circuit.   如申請專利範圍第37項之光學引擎,其中該第二基板係界定複數個沿著一側向的方向與彼此間隔開的對準通道,其係相關該側向的方向實質垂直的。  The optical engine of claim 37, wherein the second substrate defines a plurality of alignment channels spaced apart from each other in a lateral direction that is substantially perpendicular to the lateral direction.   如申請專利範圍第38項之光學引擎,其係包括複數個被配置為光纖的波導,其中當該第一對準指示器及該第二對準指示器係與彼此對準,該光子積體電路係被安裝至該第二基板,並且該些光纖係被設置在該些對準通道中時,該些光纖的核心係與該光子積體電路的個別的波導光學對準。  An optical engine according to claim 38, comprising a plurality of waveguides configured as optical fibers, wherein the photon integrated body is aligned when the first alignment indicator and the second alignment indicator are aligned with each other When the circuitry is mounted to the second substrate and the fibers are disposed in the alignment channels, the cores of the fibers are optically aligned with the individual waveguides of the photonic integrated circuit.   如申請專利範圍第39項之光學引擎,其中該第二基板係界定一應變釋放平台,其係沿著一縱長的方向相鄰該對準通道來加以設置,其係實質垂直於該縱長的方向以及該側向的方向的每一個。  The optical engine of claim 39, wherein the second substrate defines a strain relief platform disposed adjacent to the alignment channel along a longitudinal direction, substantially perpendicular to the lengthwise The direction of each direction as well as the direction of the lateral direction.   如申請專利範圍第40項之光學引擎,其中該應變釋放平台係被配置以附接至該些光纖的緩衝層,使得包覆層以及該些核心係從該應變釋放平台延伸到該第二基板的該些對準通道中。  The optical engine of claim 40, wherein the strain relief platform is configured to be attached to a buffer layer of the optical fibers such that the cladding layer and the core systems extend from the strain relief platform to the second substrate These are aligned in the channel.   如申請專利範圍第39至41項中任一項之光學引擎,其中該第二基板係界定一肩部,其係從該應變釋放平台向上延伸,使得該些緩衝層的端鄰接該肩部,並且該核心以及包覆層從該緩衝層向前延伸到該些通道中。  The optical engine of any one of claims 39 to 41, wherein the second substrate defines a shoulder extending upward from the strain relief platform such that ends of the buffer layers abut the shoulder, And the core and the cladding layer extend forward from the buffer layer into the channels.   如申請專利範圍第42項之光學引擎,其中該核心以及包覆層係從該肩部向前延伸一距離是等於該些對準通道的長度。  The optical engine of claim 42, wherein the core and the cladding extend forward from the shoulder a distance equal to the length of the alignment channels.   如申請專利範圍第39至42項中任一項之光學引擎,其中該第二基 板係界定一凹穴,其係延伸到該第一載體表面中。  The optical engine of any one of claims 39 to 42 wherein the second substrate defines a recess extending into the first carrier surface.   如申請專利範圍第44項之光學引擎,其中該光子積體電路係被附接至該第一載體表面,使得該光子積體電路的一部分係延伸在該凹穴之上。  The optical engine of claim 44, wherein the photonic integrated circuit is attached to the first carrier surface such that a portion of the photonic integrated circuit extends over the recess.   如申請專利範圍第45項之光學引擎,其中該光子積體電路係鄰接一被設置在該些對準通道以及該凹穴之間的對齊面。  The optical engine of claim 45, wherein the photonic integrated circuit is adjacent to an alignment surface disposed between the alignment channels and the recess.   如申請專利範圍第46項之光學引擎,其中該第二基板係界定複數個電性貫孔、以及延伸在該些貫孔以及該光子積體電路之間的電性接點。  The optical engine of claim 46, wherein the second substrate defines a plurality of electrical vias and electrical contacts extending between the vias and the photonic integrated circuit.   如申請專利範圍第47項之光學引擎,其中該些電性接點係被配置以將該光子積體電路拉向抵頂該第一基板表面。  The optical engine of claim 47, wherein the electrical contacts are configured to pull the photonic integrated circuit toward the top surface of the first substrate.   如申請專利範圍第47至48項中任一項之光學引擎,其中該些電性接點係被配置以將該光子積體電路推動抵頂該對齊面。  The optical engine of any one of claims 47 to 48, wherein the electrical contacts are configured to push the photonic integrated circuit against the alignment surface.   如申請專利範圍第47至49項中任一項之光學引擎,其中該些電性接點係被設置在該凹穴中。  The optical engine of any one of claims 47 to 49, wherein the electrical contacts are disposed in the pocket.   如申請專利範圍第36至50項中任一項之光學引擎,其中當該些對準指示器是視覺的指示器。  The optical engine of any one of claims 36 to 50, wherein the alignment indicators are visual indicators.   如申請專利範圍第36至50項中任一項之光學引擎,其中該些對準指示器是紅外線指示器。  The optical engine of any one of claims 36 to 50, wherein the alignment indicators are infrared indicators.   如申請專利範圍第36至50項中任一項之光學引擎,其中該些對準指示器係包括對準銷,其係在該光波導和該光子積體電路的該波導光學通訊時,從該載體延伸到該光子積體電路的個別的對齊通道中。  The optical engine of any one of claims 36 to 50, wherein the alignment indicators comprise alignment pins that are optically coupled to the waveguide of the optical waveguide and the photonic integrated circuit. The carrier extends into individual aligned channels of the photonic integrated circuit.   如申請專利範圍第53項之光學引擎,其中該對準銷係被配置為一光纖。  The optical engine of claim 53, wherein the alignment pin is configured as an optical fiber.   如申請專利範圍第53項之光學引擎,其中該對準銷係與該光波導不同地被製作尺寸。  The optical engine of claim 53, wherein the alignment pin is sized differently from the optical waveguide.   如申請專利範圍第53至55項中任一項之光學引擎,其中該對準銷係藉由該第二基板的一對準通道來加以接收。  The optical engine of any one of claims 53 to 55, wherein the alignment pin is received by an alignment channel of the second substrate.   如申請專利範圍第36至56項中任一項之光學引擎,其中該第二基板係包括一載體,其係被配置以被安裝至該第一基板。  The optical engine of any one of claims 36 to 56, wherein the second substrate comprises a carrier configured to be mounted to the first substrate.   如前述申請專利範圍中任一項之光學引擎,其係包括一光學發送器,其中該光子積體電路係被配置以接收電性發送信號,轉換該些電性發送信號成為光學發送信號,並且輸出該些光學發送信號至該光波導。  An optical engine according to any one of the preceding claims, comprising an optical transmitter, wherein the photonic integrated circuit is configured to receive an electrical transmission signal, convert the electrical transmission signals into an optical transmission signal, and The optical transmission signals are output to the optical waveguide.   如申請專利範圍第58項之光學引擎,其進一步包括一耦合至該光子積體電路的光源,該光源係被配置以導引光到該光子積體電路的該波導中。  The optical engine of claim 58 further comprising a light source coupled to the photonic integrated circuit, the light source being configured to direct light into the waveguide of the photonic integrated circuit.   如前述申請專利範圍中任一項之光學引擎,其係包括一光學接收器,其中該光子積體電路係被配置以從該光波導接收光學接收信號,並且轉換該些接收到的光學接收信號成為一電流。  An optical engine according to any of the preceding claims, comprising an optical receiver, wherein the photonic integrated circuit is configured to receive optically received signals from the optical waveguide and to convert the received optically received signals Become a current.   一種將一光子積體電路設置成與一光纖光學對準之方法,該方法係包括以下步驟:對準該光子積體電路與一對準模組,該對準模組係界定一被設計以接收該光纖的對準通道;當該光子積體電路係與該對準模組對準時,將該光子積體電路附接至該對準模組,使得當該對準通道接收該光纖時,該光纖的一核心係與該光子積體電路的一對應的波導光學地對準。  A method of optically aligning a photonic integrated circuit with a fiber, the method comprising the steps of: aligning the photonic integrated circuit with an alignment module, the alignment module defining a design Receiving an alignment channel of the optical fiber; attaching the photonic integrated circuit to the alignment module when the photonic integrated circuit is aligned with the alignment module, such that when the alignment channel receives the optical fiber, A core of the fiber is optically aligned with a corresponding waveguide of the photonic integrated circuit.   如申請專利範圍第61項之方法,其中該對準通道係界定一對的側壁 以及一與該些側壁等距地間隔開的中分面,並且該對準步驟係將該光子積體電路的該波導設置成與該中分面對準。  The method of claim 61, wherein the alignment channel defines a pair of sidewalls and a mid-plane that is equidistantly spaced from the sidewalls, and the aligning step is performed by the photonic integrated circuit The waveguide is arranged to align with the mid-face.   如申請專利範圍第61項之方法,其中該對準通道係界定一對的側壁,並且該方法係包括偏壓該光纖至一相對於該些側壁偏移的位置的步驟,以便於將該光子積體電路的該波導設置成與該光纖的一核心對準。  The method of claim 61, wherein the alignment channel defines a pair of sidewalls, and the method includes the step of biasing the fiber to a position offset relative to the sidewalls to facilitate the photon The waveguide of the integrated circuit is placed in alignment with a core of the fiber.   如申請專利範圍第61至63項中任一項之方法,其進一步包括在該附接步驟之後,將該光纖設置在該對準通道中的步驟。  The method of any one of claims 61 to 63, further comprising the step of disposing the optical fiber in the alignment channel after the attaching step.   如前述申請專利範圍中任一項之方法,其進一步包括在該設置步驟之前,將該光纖附接至一光纖夾持器的步驟。  The method of any of the preceding claims, further comprising the step of attaching the optical fiber to a fiber holder prior to the step of disposing.   如申請專利範圍第65項之方法,其中將該光纖附接至該光纖夾持器的步驟係包括將該光纖的一外部的緩衝層固定至該光纖夾持器,使得該光纖的該核心係從該緩衝層向前延伸在該光纖夾持器的一通道中。  The method of claim 65, wherein the step of attaching the optical fiber to the fiber holder comprises securing an outer buffer layer of the fiber to the fiber holder such that the core of the fiber Extending forward from the buffer layer in a passage of the fiber holder.   如申請專利範圍第66項之方法,其進一步包括將該核心捕捉在該對準模組以及該光纖夾持器之間的步驟,使得該核心係與該光子積體電路的該波導光學對準。  The method of claim 66, further comprising the step of capturing the core between the alignment module and the fiber holder such that the core is optically aligned with the waveguide of the photonic body circuit .   如申請專利範圍第67項之方法,其中該捕捉步驟係包括將一界定該些夾持器通道的開放端的夾持器表面設置抵頂一界定該些對準通道的開放端的對準模組表面。  The method of claim 67, wherein the capturing step comprises disposing a surface of the holder defining an open end of the holder channels against an alignment module surface defining an open end of the alignment channels. .   如申請專利範圍第61至68項中任一項之方法,其中該對準步驟係包括視覺上對準該光子積體電路的一第一對準指示器與該對準模組的一第二對準指示器。  The method of any one of claims 61 to 68, wherein the aligning step comprises visually aligning a first alignment indicator of the photonic integrated circuit with a second of the alignment module Align the indicator.   如申請專利範圍第69項之方法,其中該第一對準指示器及該第二對 準指示器是可見的對準指示器。  The method of claim 69, wherein the first alignment indicator and the second alignment indicator are visible alignment indicators.   如申請專利範圍第69項之方法,其中該些對準指示器中之一係接收該些對準指示器中的另一個。  The method of claim 69, wherein one of the alignment indicators receives the other of the alignment indicators.   如申請專利範圍第61至71項中任一項之方法,其中該對準模組係包括一載體,並且該方法進一步包括將該載體設置成和該光子積體電路以及一基板電性連通,該基板係支承該載體並且被配置以使該光學引擎和一電性構件電性連通。  The method of any one of clauses 61 to 71, wherein the alignment module comprises a carrier, and the method further comprises disposing the carrier in electrical communication with the photonic integrated circuit and a substrate, The substrate supports the carrier and is configured to electrically communicate the optical engine and an electrical component.   一種將一光子積體電路設置成與一光纖光學對準之方法,該方法係包括以下步驟:對準該光子積體電路與一對準模組;當該光子積體電路係與該對準模組對準時,將該光子積體電路附接至該對準模組;對準該對準模組與一界定一夾持器通道的波導夾持器,該夾持器通道係支承該光纖,使得藉由該夾持器通道所支承的該光纖的一核心係與該光子積體電路的一對應的波導光學地對準。  A method of optically aligning a photonic integrated circuit with a fiber, the method comprising the steps of: aligning the photonic integrated circuit with an alignment module; and when the photonic integrated circuit is aligned with the Attaching the photonic integrated circuit to the alignment module when the module is aligned; aligning the alignment module with a waveguide holder defining a holder channel, the holder channel supporting the optical fiber A core of the optical fiber supported by the holder channel is optically aligned with a corresponding waveguide of the photonic integrated circuit.  
TW106136903A 2016-10-26 2017-10-26 Optical transceiver having alignment module TW201816445A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662413161P 2016-10-26 2016-10-26
US62/413,161 2016-10-26

Publications (1)

Publication Number Publication Date
TW201816445A true TW201816445A (en) 2018-05-01

Family

ID=62025458

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106136903A TW201816445A (en) 2016-10-26 2017-10-26 Optical transceiver having alignment module

Country Status (2)

Country Link
TW (1) TW201816445A (en)
WO (1) WO2018081340A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI827817B (en) * 2019-03-20 2024-01-01 美商Ppc寬頻股份有限公司 Information and communication system closure
TWI830793B (en) * 2018-12-11 2024-02-01 美商波音公司 Avionics pluggable active optical connector

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11009727B2 (en) 2018-11-13 2021-05-18 International Business Machines Corporation Integrated waveguide structure with pockels layer having a selected crystal orientation
WO2020187034A1 (en) * 2019-03-18 2020-09-24 佑胜光电股份有限公司 Optical transceiver module and optical fiber cable module
WO2024059724A1 (en) * 2022-09-14 2024-03-21 Senko Advanced Components, Inc. Configurable optical connector module

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6866426B1 (en) * 2000-04-07 2005-03-15 Shipley Company, L.L.C. Open face optical fiber array for coupling to integrated optic waveguides and optoelectronic submounts
CN102667564B (en) * 2009-10-09 2016-06-08 康宁公司 Integrated silicon phototonus active optics cable assembly, sub-portfolio and combination
US20130230274A1 (en) * 2012-03-05 2013-09-05 Gregory Alan Fish Photonic flexible interconnect
US9529154B2 (en) * 2014-03-21 2016-12-27 Imec Vzw Method for optical coupling between a photonic integrated circuit and an external optical element
EP3213133B1 (en) * 2014-10-27 2019-12-25 Elenion Technologies, LLC Photonic interface for electronic circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI830793B (en) * 2018-12-11 2024-02-01 美商波音公司 Avionics pluggable active optical connector
TWI827817B (en) * 2019-03-20 2024-01-01 美商Ppc寬頻股份有限公司 Information and communication system closure

Also Published As

Publication number Publication date
WO2018081340A1 (en) 2018-05-03

Similar Documents

Publication Publication Date Title
US11275225B2 (en) Method and system for an optical coupler for silicon photonics devices
US10466433B2 (en) Optical module including silicon photonics chip and coupler chip
US10795086B2 (en) Universal photonic adaptor for coupling an optical connector to an optoelectronic substrate
TW201816445A (en) Optical transceiver having alignment module
US20180335583A1 (en) Fpc-based optical interconnect module on glass interposer
US10270531B2 (en) Optical transceiver and method of manufacturing the same
US7703991B2 (en) Flip-chip mountable optical connector for chip-to-chip optical interconnectability
CN112180520A (en) Optical transceiver
TWI675229B (en) Optical module including silicon photonics chip and coupler chip
US8412052B2 (en) Surface mount (SMT) connector for VCSEL and photodiode arrays
US10012809B2 (en) Printed circuit board assembly with a photonic integrated circuit for an electro-optical interface
US9036955B2 (en) Optical interposer
CN111566532B (en) Surface mount package for single mode electro-optic modules
US20230418004A1 (en) Multi-fiber interface apparatus for photonic integrated circuit
US11415761B2 (en) Optical fiber guide component, optical connection structure and method for producing same
TW201937223A (en) Hybrid fiber integrated SOI/III-V module
Bundalo et al. PIXApp photonics packaging pilot line–development of a silicon photonic optical transceiver with pluggable fiber connectivity
TWI485455B (en) Optoelectronic hybrid interconnect
US9651749B1 (en) Interposer with opaque substrate
US20230130045A1 (en) Detachable connector for co-packaged optics
Lee et al. Optoelectronic packaging for optical interconnects
US20200400901A1 (en) Interposer
KR100937246B1 (en) Passive aligned optical sub-assembly using optical bench and method for manufacturing thereof
US20170248764A1 (en) Transceivers using a pluggable optical body
CN113589447B (en) Optoelectronic system and method of assembling an optoelectronic system