TW201816390A - The substrate structure of generating surface-enhanced Raman spectroscopy effect and the manufacturing method thereof - Google Patents

The substrate structure of generating surface-enhanced Raman spectroscopy effect and the manufacturing method thereof Download PDF

Info

Publication number
TW201816390A
TW201816390A TW105133800A TW105133800A TW201816390A TW 201816390 A TW201816390 A TW 201816390A TW 105133800 A TW105133800 A TW 105133800A TW 105133800 A TW105133800 A TW 105133800A TW 201816390 A TW201816390 A TW 201816390A
Authority
TW
Taiwan
Prior art keywords
substrate structure
bottom plate
groove
distributed
substrate
Prior art date
Application number
TW105133800A
Other languages
Chinese (zh)
Other versions
TWI707135B (en
Inventor
賴朝松
徐志賢
陳景翔
廖駿偉
丁烱珉
Original Assignee
長庚大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 長庚大學 filed Critical 長庚大學
Priority to TW105133800A priority Critical patent/TWI707135B/en
Publication of TW201816390A publication Critical patent/TW201816390A/en
Application granted granted Critical
Publication of TWI707135B publication Critical patent/TWI707135B/en

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

The present invention provides that a substrate structure capable of generating SERS comprising a substrate with a surface, a ditch structure on the surface of the substrate, and a plurality of metallic nano-pellets distributed within the ditch structure. Such a substrate structure can be implemented with a compact disc, applied to a Raman spectrometer, and formed by distributing nano-pellets solution on the compact disc.

Description

可產生表面增強拉曼散射效應的基板結構以及製作方法  Substrate structure capable of generating surface-enhanced Raman scattering effect and manufacturing method thereof  

本發明是關於一種基板結構,特別是一種可產生表面增強拉曼散射效應的基板結構和其應用。 This invention relates to a substrate structure, and more particularly to a substrate structure that produces surface-enhanced Raman scattering effects and uses thereof.

表面增強拉曼散射效應(SERS)發現於上世紀七十年代中期,該表面增強拉曼散射效應使得吸附在具有SERS活性的金屬表面的分子的拉曼信號,與溶液中相同數量分子的拉曼信號相比,發生了巨大的增強,對表面物種具有極高檢測靈敏度和選擇性,因此可在分子水準上即時觀測到介面各種物質的化學結構和組成等指紋資訊,從而使拉曼光譜技術獲得了突破性的發展。自九十年代中期,隨著奈米科技的迅速發展,特別是各種奈米結構製備和表徵技術的建立,SERS研究取得了一些重大突破。例如,通過優化銀和金奈米粒子的大小、形狀和聚集狀態,可獲得高達14個數量級的SERS增強因數,由此發展成為檢測靈敏度可達到單分子水準的譜學技術。通過發展製備奈米結構的方法,直接在第八族過渡金屬(如Pt,Pd,Ru,Rh,Fe, Co,Ni)體系獲得高品質的SERS信號,並證實了具有一至四個數量級的增強效應,拓寬了SERS應用體系。 The surface-enhanced Raman scattering effect (SERS) was found in the mid-1970s, when the surface-enhanced Raman scattering effect caused the Raman signal of a molecule adsorbed on a metal surface with SERS activity, the same number of molecules in solution as Raman Compared with the signal, it has been greatly enhanced, and it has extremely high detection sensitivity and selectivity for surface species. Therefore, fingerprint information such as chemical structure and composition of various substances on the interface can be observed at the molecular level, so that Raman spectroscopy technology can be obtained. A breakthrough development. Since the mid-1990s, with the rapid development of nanotechnology, especially the establishment of various nanostructure preparation and characterization techniques, SERS research has made some major breakthroughs. For example, by optimizing the size, shape, and aggregation state of silver and gold nanoparticles, a SERS enhancement factor of up to 14 orders of magnitude can be obtained, thereby developing a spectroscopic technique in which the detection sensitivity can reach a single molecule level. By developing a method for preparing nanostructures, high-quality SERS signals are obtained directly in the Group VIII transition metal (eg, Pt, Pd, Ru, Rh, Fe, Co, Ni) systems, and enhancements of one to four orders of magnitude are confirmed. The effect broadens the SERS application system.

表面增強拉曼散射效應(SERS)的增強機理主要包括物理增強和化學增強兩方面。其中,通常認為物理增強的SERS效應主要由表面電漿共振(Surface Plasma Resonance,SPR)導致的電磁場增強引起,SPR主要存在於奈米級尺度的金屬表面,是一種局域化的電子集體振盪。由於SPR可以極大地增強局域電場,從最早的粗糙銀電極到現在的金屬奈米粒子均是利用SPR效應激勵SERS。然而,儘管SERS技術取得很好的發展,金屬基體製備也日趨成熟,但是也存在一個問題:一般高增強因數的金屬基體的製備過程比較複雜,要求活性基體形貌必須大尺度且均一穩定;並且,單一奈米形貌的尺寸在奈米量級,甚至幾個奈米量級時,才能產生強的局域電磁場,從而引發強的SERS效應。然而,普通實驗條件不易操作與調控,難以合成幾個奈米量級且結構均一的金屬奈米材料。 The enhancement mechanism of surface enhanced Raman scattering effect (SERS) mainly includes physical enhancement and chemical enhancement. Among them, it is generally believed that the SERS effect of physical enhancement is mainly caused by the electromagnetic field enhancement caused by Surface Plasma Resonance (SPR). SPR is mainly present on the metal surface of the nanometer scale and is a localized collective oscillation of electrons. Since SPR can greatly enhance the local electric field, the SPR effect is used to excite SERS from the earliest rough silver electrode to the current metal nanoparticle. However, despite the good development of SERS technology, the preparation of metal matrix is becoming more and more mature, but there is also a problem: the preparation process of metal matrix with high enhancement factor is relatively complicated, and the active matrix morphology must be large-scale and uniform; The size of a single nanotopography can produce a strong local electromagnetic field at a nanometer scale or even a few nanometers, thus triggering a strong SERS effect. However, ordinary experimental conditions are not easy to operate and regulate, and it is difficult to synthesize a few nano-materials of nanometer size and uniform structure.

近年來,隨著電子資訊技術的發展,光微影技術(photolithography)成為製備SERS底板、構建奈米陣列的一種重要方法,但是,光微影技術成本較高,無法大批量獲得大尺度的SERS底板,間接導致了在SERS技術的實際應用中沒有強烈的誘因推展使用光微影技術。近年來,還出現了通過製備簡單易得的溫敏材料或者磁性材料的陣列作為SERS底板,在SERS檢測過程中通過微調溫度,或者附加外部磁力,使這些材料在溫度、磁場等的作用下發生瞬間的形變,從而產生一個比原結構微小的奈米結構,即為「熱點」。「熱點」處產生瞬態局域電場,引發更強的SERS效應。然而,以溫度改變的方式引發「熱點」結構,對外加溫控設備要求嚴格,以防止損壞儀 器或底板,而外加磁場,則要求底板材料為磁性體,對材料有了限制,不利於推廣。 In recent years, with the development of electronic information technology, photolithography has become an important method for preparing SERS substrates and constructing nano-arrays. However, photolithography is costly and cannot obtain large-scale SERS in large quantities. The bottom plate indirectly leads to no strong incentives for the practical application of SERS technology to use optical lithography. In recent years, an array of temperature-sensitive materials or magnetic materials which are simple and easily available has been produced as a SERS substrate, which is caused by temperature, magnetic field, etc. by fine-tuning the temperature or adding an external magnetic force during the SERS detection process. The instantaneous deformation produces a nanostructure that is smaller than the original structure, which is a "hot spot." A transient local electric field is generated at the "hot spot", causing a stronger SERS effect. However, the "hot spot" structure is triggered by the temperature change, and the external temperature control equipment is strictly required to prevent damage to the instrument or the bottom plate. When the magnetic field is applied, the material of the bottom plate is required to be a magnetic body, which has a limitation on the material and is not conducive to promotion.

本發明提供一種可產生表面增強拉曼散射效應的基板結構,其在表面上具有規律分布的凹槽結構,利用該些凹槽結構使得金屬奈米顆粒可均勻分布於其間,進而優化表面增強拉曼散射效應的信號。 The invention provides a substrate structure capable of generating surface-enhanced Raman scattering effect, which has a regularly distributed groove structure on the surface, by which the metal nano particles can be evenly distributed therebetween, thereby optimizing surface enhancement pulling The signal of the mann scattering effect.

本發明提供一種用於拉曼光譜儀(RamanSpectrometer)機台的基板結構,基板結構的表面上具有規律分布的凹槽結構,利用該些凹槽結構以及旋擺基板結構來分散金屬奈米顆粒,進而使拉曼訊號重複性更加穩定。 The invention provides a substrate structure for a Raman spectrometer, wherein the surface of the substrate structure has a regularly distributed groove structure, and the groove structure and the swing substrate structure are used to disperse the metal nano particles, and further Make the Raman signal repeatability more stable.

本發明提供一種可產生表面增強拉曼散射效應的基板結構,包括:一底板,其具有一表面;在該底板的該表面上的一凹槽結構;以及分布在該凹槽結構中的複數個金屬奈米顆粒。 The present invention provides a substrate structure capable of producing a surface-enhanced Raman scattering effect, comprising: a bottom plate having a surface; a groove structure on the surface of the bottom plate; and a plurality of grooves distributed in the groove structure Metal nanoparticle.

本發明提供一種用於拉曼光譜儀(RamanSpectrometer)機台的基板結構,包括一底板和該底板的一表面上的複數個凹槽結構。 The invention provides a substrate structure for a Raman spectrometer, comprising a bottom plate and a plurality of groove structures on a surface of the bottom plate.

本發明提供一種製作用於拉曼光譜儀機台的基板結構的方法,包括:製備包括該些金屬奈米顆粒的一奈米顆粒溶液;在奈米顆粒溶液中加入一待測物以成為一混合溶液;將該混合溶液加在該底板的該表面;以及變動該底板來移動該些凹槽結構中的該些金屬奈米顆粒和該待測物。 The invention provides a method for fabricating a substrate structure for a Raman spectrometer machine, comprising: preparing a nanoparticle solution comprising the metal nanoparticles; adding a sample to the nanoparticle solution to form a mixture a solution; the mixed solution is applied to the surface of the bottom plate; and the bottom plate is changed to move the metal nanoparticles and the test object in the groove structures.

10‧‧‧底板 10‧‧‧floor

12‧‧‧凹槽結構 12‧‧‧ Groove structure

22‧‧‧凹槽間距 22‧‧‧ Groove spacing

14‧‧‧金屬奈米顆粒 14‧‧‧Metal Nanoparticles

16‧‧‧待測物 16‧‧‧Test object

30‧‧‧步驟 30‧‧‧Steps

32‧‧‧步驟 32‧‧‧Steps

34‧‧‧步驟 34‧‧‧Steps

36‧‧‧步驟 36‧‧‧Steps

第1圖為應用於拉曼光譜儀機台的本發明之基板結構實施例的立 體示意圖。 Fig. 1 is a schematic perspective view of an embodiment of a substrate structure of the present invention applied to a Raman spectrometer machine.

第2圖為本發明分布金屬奈米顆粒和待測物的步驟方塊圖。 Fig. 2 is a block diagram showing the steps of distributing metal nanoparticles and a test object according to the present invention.

第3圖為本發明的奈米顆粒在基板結構中的速度和數量的比較圖。 Figure 3 is a graph comparing the velocity and number of nanoparticles in the substrate structure of the present invention.

第4圖則為使用本發明基板結構的RAMAN信號圖。 Figure 4 is a RAMAN signal diagram using the substrate structure of the present invention.

請參考第1圖為應用於拉曼光譜儀機台的本發明之基板結構實施例的立體示意圖。於第1圖中,在底板10的表面上分布有一或複數個凹槽結構12,基板結構的底板10可以是玻璃或矽材料製作的,或是其他適合的複合材料。於本發明中,一凹槽結構12可以是以平面螺旋狀的方式分布於底板10的表面,並且包括多個凹槽間距(螺距)22,多個凹槽間距22相同或是規律地連續(遞增或遞減)或間段式變化。可以選擇地,多個凹槽結構12可以是以平面同心狀的方式分布於底板10的表面,例如同心圓狀或是其他同心幾何形狀。要說明的是,第1圖中的凹槽結構12的尺寸被放大以利說明,實際上的凹槽結構12可以非常細小至非裸視可辨認,也可以是裸視可辨認的紋路。 Please refer to FIG. 1 , which is a perspective view of an embodiment of a substrate structure of the present invention applied to a Raman spectrometer machine. In Fig. 1, one or more groove structures 12 are distributed on the surface of the substrate 10. The substrate 10 of the substrate structure may be made of glass or tantalum material or other suitable composite material. In the present invention, a groove structure 12 may be distributed in a plane spiral manner on the surface of the bottom plate 10, and includes a plurality of groove pitches (pitch) 22, and the plurality of groove pitches 22 are the same or regularly continuous ( Increment or decrement) or a segmental change. Alternatively, the plurality of groove structures 12 may be distributed in a plane concentric manner on the surface of the base plate 10, such as concentric or other concentric geometry. It should be noted that the size of the groove structure 12 in FIG. 1 is enlarged to illustrate that the actual groove structure 12 can be very small to be non-naked and identifiable.

依據前述,第1圖中,本發明的底板10可以以目前普及的光碟片來實現。目前的光碟片是作為儲存資訊的載體之用,不論是唯讀或讀寫的光碟片,不論其儲存資訊的多寡,其表面皆具有凹槽結構。當光碟片被讀或寫入資訊時,受汙染或受損的表面都會造成讀寫光碟片的失敗,故目前的光碟片的應用上,需保持光碟片的表面清潔或保護光碟片。但本發明應用目前的光碟片作為本發明的底板10,在應用上是完全異於目前的光碟片 的應用,詳述如後。 According to the foregoing, in the first figure, the bottom plate 10 of the present invention can be realized by a currently popular optical disk. The current optical disc is used as a carrier for storing information. Whether it is a read-only or read-write optical disc, the surface has a groove structure regardless of the amount of information stored therein. When the optical disc is read or written, the contaminated or damaged surface will cause the failure of reading and writing the optical disc. Therefore, in the current application of the optical disc, it is necessary to keep the surface of the optical disc clean or protect the optical disc. However, the present invention uses the current optical disc as the bottom plate 10 of the present invention, which is completely different from the current optical disc application in application, as described in detail later.

續參考第1圖,本發明的基板結構包括在凹槽結構12中分布金屬複數顆金屬奈米顆粒14。金屬奈米顆粒14的尺寸小於凹槽結構12的每一凹槽寬度,故金屬奈米顆粒14可在凹槽結構12中移動,凹槽結構12的存在,能夠使得金屬奈米顆粒14更加均勻地分布於底板10上。是以,當將本發明的底板10作為可產生表面增強拉曼散射效應的基板結構時,可以優化表面增強拉曼散射效應的信號。可以理解的,當有待測物16伴隨金屬奈米顆粒14時,隨著金屬奈米顆粒14在凹槽結構12中的均勻分布,待測物16亦可以均勻地被分布在底板10的表面,進而有利於後續可被測試機台量測。 Continuing with reference to FIG. 1, the substrate structure of the present invention includes distributing a plurality of metal nanoparticles of metal 14 in the recess structure 12. The metal nanoparticle 14 has a smaller size than each groove width of the groove structure 12, so that the metal nanoparticle 14 can move in the groove structure 12, and the presence of the groove structure 12 can make the metal nanoparticle 14 more uniform. The ground is distributed on the bottom plate 10. Therefore, when the substrate 10 of the present invention is used as a substrate structure capable of generating a surface-enhanced Raman scattering effect, the signal of the surface-enhanced Raman scattering effect can be optimized. It can be understood that when the analyte 16 is accompanied by the metal nanoparticle 14, the analyte 16 can be uniformly distributed on the surface of the substrate 10 as the metal nanoparticle 14 is uniformly distributed in the groove structure 12. In turn, it is advantageous for subsequent measurement by the test machine.

第2圖係本發明分布金屬奈米顆粒和待測物的步驟方塊圖(亦即形成使用於拉曼光譜儀機台的基板結構的方法)。如第2圖之步驟30,製備奈米顆粒溶液,例如使用化學方式將銀還原成銀奈米顆粒,並將銀奈米顆粒加入水溶液中或其它有揮發性的溶劑中。 Fig. 2 is a block diagram showing the steps of distributing the metal nanoparticles and the object to be tested of the present invention (i.e., a method of forming a substrate structure for use in a Raman spectrometer machine). As in step 30 of Figure 2, a nanoparticle solution is prepared, for example, chemically reducing silver to silver nanoparticles, and silver nanoparticles to an aqueous solution or other volatile solvent.

第2圖之步驟32,在奈米顆粒溶液中加入待測物,例如可加入R6G染劑作為待測物。此處稱為待測物之目的,係因奈米顆粒較難檢測其分佈情形或是分佈區域,故設計藉由該待測物之檢測分布區域,而可間接測出得知奈米顆粒之相關分佈情形與分佈區域。 In step 32 of Fig. 2, a test object is added to the nanoparticle solution, for example, an R6G dye can be added as a test object. The purpose of the object to be tested here is that it is difficult to detect the distribution or the distribution area of the nanoparticle. Therefore, it is possible to indirectly detect the nanoparticle by the detection distribution area of the analyte. Related distribution scenarios and distribution areas.

於第2圖之步驟34:將包括奈米顆粒和待測物的混合溶液滴在底板的表面。 In step 34 of Fig. 2, a mixed solution comprising nanoparticle and a test object is dropped on the surface of the bottom plate.

第2圖之步驟36,變動底板來移動凹槽結構中的奈米顆粒和待測物,藉由變動底板的方式,例如擺動整個基板結構的水平角度,也就是傾斜整個基板結構以流動奈米顆粒和待測物(流動式),或是旋轉整個基板結 構,即整個基板結構相對於一旋轉軸旋轉(旋轉式),以移動凹槽結構中的奈米顆粒和待測物。而可作為選擇的步驟是,於變動基板結構前可以靜置基板結構。 In step 36 of FIG. 2, the bottom plate is changed to move the nano particles and the object to be tested in the groove structure, and the horizontal angle of the entire substrate structure is swung by changing the bottom plate, that is, the entire substrate structure is tilted to flow the nanometer. The particles and the object to be tested (flow type) or rotate the entire substrate structure, that is, the entire substrate structure is rotated (rotated) with respect to a rotating axis to move the nanoparticles and the object to be tested in the groove structure. The optional step is to allow the substrate structure to be placed before the substrate structure is changed.

參考第3圖,係本發明的奈米顆粒在基板結構中的速度和數量的比較圖。於第3圖中,網狀區塊愈高,表示在溝槽內的奈米顆粒速度越快。在兩種方式中,使用與凹槽順向流動或順向旋轉(along),能提高進入凹槽的奈米顆粒數量。 Referring to Figure 3, a comparison of the velocity and number of nanoparticles of the present invention in a substrate structure is shown. In Figure 3, the higher the network block, the faster the nanoparticle velocity in the trench. In both ways, the use of a forward flow or a forward rotation with the groove increases the number of nanoparticles entering the groove.

第4圖則為使用本發明基板結構的RAMAN信號圖,由第4圖可以觀察到,因SERS效應,在光碟上明顯出現前述待測物R6G的染料分子訊號(如第4圖所標示之AgNPs+R6G),故而可測出奈米顆粒的分佈情形與分佈區域。 Figure 4 is a RAMAN signal diagram using the substrate structure of the present invention. It can be observed from Fig. 4 that due to the SERS effect, the dye molecules of the sample R6G are apparently present on the optical disk (such as the AgNPs indicated in Fig. 4). +R6G), so the distribution and distribution of nanoparticles can be measured.

故而,本發明如第1圖的底板10有如下的優點,應用現有生產光碟片的製程即可製作可產生表面增強拉曼散射效應的基板結構,降低生產基板的成本,利用基板結構的凹槽結構來均勻分散奈米顆粒,因此可採用粒徑分布較廣的奈米顆粒,也就是採用較低成本的奈米顆粒搭配即可產生良好的表面增強拉曼散射效應,採用現在的光碟片或相當於現在的光碟片,則讀或讀寫光碟片的光碟機可被應用於拉曼光譜儀等的分析數據機台上。 Therefore, the bottom plate 10 of the present invention as shown in FIG. 1 has the following advantages, and the substrate structure capable of generating surface-enhanced Raman scattering effect can be fabricated by using the existing process for producing an optical disk, and the cost of the substrate is reduced, and the groove of the substrate structure is utilized. The structure is used to uniformly disperse the nanoparticles, so that nano particles with a wide particle size distribution can be used, that is, a lower cost nano particle combination can produce a good surface-enhanced Raman scattering effect, using the current optical disc or Equivalent to the current optical disc, the optical disc drive that reads or reads the optical disc can be applied to an analytical data machine such as a Raman spectrometer.

Claims (12)

一種可產生表面增強拉曼散射效應的基板結構,包含:一底板,其具有一表面;於該底板的該表面上的一凹槽結構;以及分布在該凹槽結構中的複數個金屬奈米顆粒。  A substrate structure capable of producing a surface-enhanced Raman scattering effect, comprising: a bottom plate having a surface; a groove structure on the surface of the bottom plate; and a plurality of metal nanoparticles distributed in the groove structure Particles.   如申請專利範圍第1項所述的基板結構,其中該底板的材料係由玻璃、矽以及複合材料群組中所選出。  The substrate structure of claim 1, wherein the material of the bottom plate is selected from the group consisting of glass, germanium, and composite materials.   如申請專利範圍第1項所述的基板結構,其中該複數個金屬奈米顆粒包含複數個銀奈米顆粒。  The substrate structure of claim 1, wherein the plurality of metal nanoparticles comprise a plurality of silver nanoparticles.   如申請專利範圍第1項所述的基板結構,更包含待測物分布於該凹槽結構中。  The substrate structure according to claim 1, further comprising the object to be tested being distributed in the groove structure.   如申請專利範圍第1項所述的基板結構,其中該凹槽結構以平面螺旋狀的方式分布於該底板的該表面上。  The substrate structure of claim 1, wherein the groove structure is distributed in a plane spiral manner on the surface of the bottom plate.   一種使用於拉曼光譜儀(RamanSpectrometer)機台的基板結構,包含一底板,以及該底板的一表面上的複數個凹槽結構。  A substrate structure for a Raman spectrometer includes a bottom plate and a plurality of groove structures on a surface of the bottom plate.   如申請專利範圍第6項所述的基板結構,其中該複數個凹槽結構以平面同心狀的方式分布於該底板的該表面。  The substrate structure of claim 6, wherein the plurality of groove structures are distributed in a plane concentric manner on the surface of the bottom plate.   如申請專利範圍第6項所述的基板結構,其中,該複數個凹槽結構的複數個凹槽間距相同或是規律地連續或間段式變化。  The substrate structure of claim 6, wherein the plurality of groove structures of the plurality of groove structures have the same or regular continuous or intermittent variation.   如申請專利範圍第6項所述的基板結構,更包括複數個金屬奈米顆粒分布於該複數個凹槽結構中。  The substrate structure of claim 6, further comprising a plurality of metal nanoparticles distributed in the plurality of groove structures.   如申請專利範圍第6項所述的基板結構,更包括複數個待測物分布於該複數個凹槽結構中。  The substrate structure of claim 6, further comprising a plurality of analytes distributed in the plurality of recess structures.   一種形成如申請專利範圍第6項所述之使用於拉曼光譜儀機台的基板結構的方法,包含:製備包括該複數個金屬奈米顆粒的一奈米顆粒溶液;在奈米顆粒溶液中加入一待測物以成為一混合溶液;加入該混合溶液於該底板的該表面;以及變動該底板以移動該複數個凹槽結構中的該複數個金屬奈米顆粒和該待測物。  A method for forming a substrate structure for use in a Raman spectrometer machine according to claim 6 of the invention, comprising: preparing a nanoparticle solution comprising the plurality of metal nanoparticles; adding in the nanoparticle solution a test object to be a mixed solution; adding the mixed solution to the surface of the bottom plate; and varying the bottom plate to move the plurality of metal nanoparticles and the test object in the plurality of groove structures.   如請求項11所述的形成方法,其中該變動步驟包含擺動該整個基板結構的水平角度,或是旋轉該整個基板結構。  The forming method of claim 11, wherein the changing step comprises swinging a horizontal angle of the entire substrate structure or rotating the entire substrate structure.  
TW105133800A 2016-10-20 2016-10-20 The substrate structure of generating surface-enhanced raman spectroscopy effect and the manufacturing method thereof TWI707135B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105133800A TWI707135B (en) 2016-10-20 2016-10-20 The substrate structure of generating surface-enhanced raman spectroscopy effect and the manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105133800A TWI707135B (en) 2016-10-20 2016-10-20 The substrate structure of generating surface-enhanced raman spectroscopy effect and the manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW201816390A true TW201816390A (en) 2018-05-01
TWI707135B TWI707135B (en) 2020-10-11

Family

ID=62949265

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105133800A TWI707135B (en) 2016-10-20 2016-10-20 The substrate structure of generating surface-enhanced raman spectroscopy effect and the manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI707135B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115184339A (en) * 2022-09-08 2022-10-14 海澳华(黑龙江)生物医药技术有限公司 Method for rapidly detecting viruses based on portable Raman spectrometer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201126148A (en) * 2010-01-26 2011-08-01 Ind Tech Res Inst Method and system for Raman detection
TWM491160U (en) * 2014-07-18 2014-12-01 Frank Jiann-Fu Yang Carrier for use with Raman spectrum

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115184339A (en) * 2022-09-08 2022-10-14 海澳华(黑龙江)生物医药技术有限公司 Method for rapidly detecting viruses based on portable Raman spectrometer

Also Published As

Publication number Publication date
TWI707135B (en) 2020-10-11

Similar Documents

Publication Publication Date Title
Li et al. Metal-substrate-mediated plasmon hybridization in a nanoparticle dimer for photoluminescence line-width shrinking and intensity enhancement
Cho et al. Uniform chiral gap synthesis for high dissymmetry factor in single plasmonic gold nanoparticle
Tallarida et al. Tip-enhanced Raman spectromicroscopy on the angstrom scale: bare and CO-terminated Ag tips
Zhou et al. Quantitative analysis of dipole and quadrupole excitation in the surface plasmon resonance of metal nanoparticles
Zheng et al. Reversible gating of smart plasmonic molecular traps using thermoresponsive polymers for single-molecule detection
Park et al. Charge transfer enhancement in the SERS of a single molecule
Wu et al. Gold Nanoparticles Sliding on Recyclable Nanohoodoos—Engineered for Surface‐Enhanced Raman Spectroscopy
Zhang et al. Hierarchical 3D SERS substrates fabricated by integrating photolithographic microstructures and self‐assembly of silver nanoparticles
Schmucker et al. Correlating nanorod structure with experimentally measured and theoretically predicted surface plasmon resonance
Baida et al. Quantitative determination of the size dependence of surface plasmon resonance damping in single Ag@ SiO2 nanoparticles
Crut et al. Optical absorption and scattering spectroscopies of single nano-objects
Lee et al. A facile method to obtain highly stable silver nanoplate colloids with desired surface plasmon resonance wavelengths
Braun et al. Versatile direct laser writing lithography technique for surface enhanced infrared spectroscopy sensors
Das et al. Plasmon based biosensor for distinguishing different peptides mutation states
Song et al. Probing the mechanisms of strong fluorescence enhancement in plasmonic nanogaps with sub-nanometer precision
Tian et al. Plasmonic Heterodimers with Binding Site‐Dependent Hot Spot for Surface‐Enhanced Raman Scattering
Ross et al. Structure–function relationships for surface-enhanced Raman spectroscopy-active plasmonic paper
Liu et al. The SERS response of semiordered Ag nanorod arrays fabricated by template oblique angle deposition
Wi et al. Sombrero-shaped plasmonic nanoparticles with molecular-level sensitivity and multifunctionality
Boukouvala et al. Wulff-based approach to modeling the plasmonic response of single crystal, twinned, and core–shell nanoparticles
Bhattarai et al. Tip-enhanced Raman nanospectroscopy of smooth spherical gold nanoparticles
CN108982474A (en) A kind of surface reinforced Raman active substrate and preparation method thereof based on the compound plasmon resonance structure of metal-dielectric
Caridad et al. Hot-volumes as uniform and reproducible SERS-detection enhancers in weakly-coupled metallic nanohelices
Du et al. Stable Ag@ oxides nanoplates for surface-enhanced Raman spectroscopy of amino acids
Goswami et al. Nanometer‐scale uniform conductance switching in molecular memristors