TW201813267A - DC-DC converter and controlling method thereof - Google Patents

DC-DC converter and controlling method thereof Download PDF

Info

Publication number
TW201813267A
TW201813267A TW105129163A TW105129163A TW201813267A TW 201813267 A TW201813267 A TW 201813267A TW 105129163 A TW105129163 A TW 105129163A TW 105129163 A TW105129163 A TW 105129163A TW 201813267 A TW201813267 A TW 201813267A
Authority
TW
Taiwan
Prior art keywords
coupled
power switch
pin
signal
converter
Prior art date
Application number
TW105129163A
Other languages
Chinese (zh)
Inventor
陳威蓉
Original Assignee
力智電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 力智電子股份有限公司 filed Critical 力智電子股份有限公司
Priority to TW105129163A priority Critical patent/TW201813267A/en
Priority to CN201610891686.7A priority patent/CN107809176A/en
Publication of TW201813267A publication Critical patent/TW201813267A/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

A DC-DC converter coupled to a compensating circuit and coupled to an output voltage through an external inductor is disclosed. The DC-DC converter includes a first power switch, a second power switch, an output pin, a feedback pin and a power switch control pin. The first power switch and second power switch are both coupled to a terminal of external inductor. The output pin is coupled to the second power switch. The feedback pin is coupled to the output pin. The power switch control pin is coupled to the first power switch and provides a first time signal to the first power switch. The compensating circuit is coupled between the feedback pin and power switch control pin. The compensating circuit includes an integrator for receiving the first time signal from power switch control pin and providing a compensating signal to the feedback pin.

Description

直流對直流轉換器及其控制方法    DC-to-DC converter and control method thereof   

本發明與轉換電路有關,特別是關於一種直流對直流轉換器及其控制方法。 The invention relates to a conversion circuit, in particular to a DC-to-DC converter and a control method thereof.

習知的降壓直流對直流轉換裝置(Buck DC-DC Converter)採用固定導通時間(Constant On Time,COT)之方式控制,如圖1所示,其需要靠輸出電壓Vout上的漣波(ripple)回授並觸發產生脈寬調變信號。當輸出電容Cout採用的是具有低等效串聯電阻的多層陶瓷電容(Multi-layer Ceramic Capacitor,MLCC)時,將會使得輸出電壓Vout回授的漣波過小,而過於平滑的回授信號受到電路中的電感及電容影響,會導致誤差放大器A1輸出的比較信號Comp產生相位延遲。一旦比較信號Comp之相位延遲達到180度時,將會出現共振現象而導致整個系統不穩定。 The conventional buck DC-DC converter (Buck DC-DC Converter) is controlled by a constant on time (COT) method, as shown in Figure 1, which requires the ripple on the output voltage Vout ) Feedback and trigger to generate a pulse width modulation signal. When the output capacitor Cout uses a multi-layer ceramic capacitor (MLCC) with a low equivalent series resistance, the ripple of the output voltage Vout feedback will be too small, and the too smooth feedback signal will be subject to the circuit The influence of inductance and capacitance will cause the phase delay of the comparison signal Comp output from the error amplifier A1. Once the phase delay of the comparison signal Comp reaches 180 degrees, a resonance phenomenon will occur and the entire system will be unstable.

習知的升壓直流對直流轉換裝置(Boost DC-DC Converter)採用固定關閉時間(Constant Off Time)之方式控制,如圖2所示,若採用多層陶瓷電容(MLCC)作為輸出電容Cout一樣會有輸出電壓上的漣波過小的問題。如果直接採用固定導通時間(COT)之方式控制,尤其是當輸出電容Cout採用的是電解電容時,回授信號甚至會出現與斜波信號Ramp反相的漣波。若未採用適當的補償電路進行相位的補償,很可能會導致輸出崩潰之現象 發生。 The conventional boost DC-DC converter (Constant Off Time) is used to control. As shown in Figure 2, if a multilayer ceramic capacitor (MLCC) is used as the output capacitor Cout, There is a problem that the ripple on the output voltage is too small. If it is directly controlled by a fixed on-time (COT) method, especially when the output capacitor Cout is an electrolytic capacitor, the feedback signal may even have a ripple reverse to the ramp signal Ramp. Without proper compensation circuit for phase compensation, it is likely to cause output collapse.

有鑑於此,本發明提供一種直流對直流轉換器及其控制方法,以解決先前技術所述及的問題。 In view of this, the present invention provides a DC-to-DC converter and a control method thereof to solve the problems mentioned in the prior art.

本發明之一較佳具體實施例為一種直流對直流轉換器。於此實施例中,直流對直流轉換器耦接補償電路並透過外部電感耦接輸入電壓。直流對直流轉換器包含第一電力開關、第二電力開關、輸出接腳、回授接腳及電力開關控制接腳。第一電力開關耦接外部電感之一端。第二電力開關耦接外部電感之一端。輸出接腳耦接第二電力開關。回授接腳耦接輸出接腳。電力開關控制接腳耦接第一電力開關,且提供第一時間信號至第一電力開關。補償電路耦接於回授接腳與電力開關控制接腳之間,補償電路包含積分器,積分器自電力開關控制接腳接收第一時間信號,且提供補償信號至回授接腳。 A preferred embodiment of the present invention is a DC-to-DC converter. In this embodiment, the DC-to-DC converter is coupled to the compensation circuit and is coupled to the input voltage through an external inductor. The DC-to-DC converter includes a first power switch, a second power switch, an output pin, a feedback pin, and a power switch control pin. The first power switch is coupled to one terminal of the external inductor. The second power switch is coupled to one terminal of the external inductor. The output pin is coupled to the second power switch. The feedback pin is coupled to the output pin. The power switch control pin is coupled to the first power switch and provides a first time signal to the first power switch. The compensation circuit is coupled between the feedback pin and the power switch control pin. The compensation circuit includes an integrator. The integrator receives the first time signal from the power switch control pin and provides a compensation signal to the feedback pin.

在本發明之一實施例中,積分器包含彼此串接之電阻及第一電容,且電阻的第一端耦接電力開關控制接腳,第一電容耦接於電阻的第二端與接地端之間。 In one embodiment of the present invention, the integrator includes a resistor and a first capacitor connected in series with each other, and a first terminal of the resistor is coupled to a power switch control pin, and the first capacitor is coupled to a second terminal of the resistor and a ground terminal. between.

在本發明之一實施例中,積分器包含彼此串接之電阻及第一電容,且電阻的第一端耦接電力開關控制接腳,第一電容耦接於電阻的第二端與直流對直流轉換器之輸出電壓。 In one embodiment of the present invention, the integrator includes a resistor and a first capacitor connected in series with each other, and a first terminal of the resistor is coupled to a power switch control pin, and a first capacitor is coupled to a second terminal of the resistor and a DC pair. Output voltage of DC converter.

在本發明之一實施例中,補償電路還包含濾波電容,濾波電容耦接於積分器與回授接腳之間。 In one embodiment of the present invention, the compensation circuit further includes a filter capacitor, and the filter capacitor is coupled between the integrator and the feedback pin.

在本發明之一實施例中,補償信號為斜波信號,且斜波 信號與第一時間信號同步。 In one embodiment of the present invention, the compensation signal is a ramp signal, and the ramp signal is synchronized with the first time signal.

在本發明之一實施例中,直流對直流轉換器還包含恆定導通時間產生單元,分別耦接第一電力開關與第二電力開關。 In an embodiment of the present invention, the DC-to-DC converter further includes a constant on-time generating unit, which is respectively coupled to the first power switch and the second power switch.

在本發明之一實施例中,直流對直流轉換器還包含誤差放大器及比較器,誤差放大器耦接補償電路及回授接腳,比較器耦接於誤差放大器與恆定導通時間產生單元之間。 In one embodiment of the present invention, the DC-to-DC converter further includes an error amplifier and a comparator. The error amplifier is coupled to the compensation circuit and the feedback pin. The comparator is coupled between the error amplifier and the constant on-time generating unit.

根據本發明之另一較佳具體實施例為直流對直流轉換器的控制方法。於此實施例中,直流對直流轉換器包括恆定導通時間產生單元、電力開關控制接腳及回授接腳,其中電力開關控制接腳與回授接腳之間耦接補償電路。該控制方法包含:透過恆定導通時間產生單元提供第一時間信號至第一電力開關控制接腳;以及利用補償電路處理第一時間信號,以提供補償信號至回授接腳。 Another preferred embodiment of the present invention is a method for controlling a DC-to-DC converter. In this embodiment, the DC-to-DC converter includes a constant on-time generating unit, a power switch control pin and a feedback pin, wherein a compensation circuit is coupled between the power switch control pin and the feedback pin. The control method includes: providing a first time signal to a first power switch control pin through a constant on-time generating unit; and processing the first time signal using a compensation circuit to provide a compensation signal to the feedback pin.

相較於先前技術,本發明之直流對直流轉換器及其控制方法係利用補償電路處裡控制信號以產生漣波信號,並透過補償電路中之濾波電容濾除漣波信號中之直流部分,藉以產生穩定且良好的漣波信號對回授信號(feedback signal)進行相位補償,進而產生穩定的控制信號,使得Boost直流對直流轉換系統能夠維持正常運作,能有效避免先前技術發生之輸出崩潰現象。 Compared with the prior art, the DC-to-DC converter and the control method of the present invention use a control signal in the compensation circuit to generate a ripple signal, and filter the DC part of the ripple signal through a filter capacitor in the compensation circuit. The feedback signal is phase-compensated by generating a stable and good ripple signal, thereby generating a stable control signal, so that the Boost DC-to-DC conversion system can maintain normal operation and can effectively avoid the output collapse phenomenon of the previous technology. .

關於本發明之優點與精神可以藉由以下的發明詳述及所附圖式得到進一步的瞭解。 The advantages and spirit of the present invention can be further understood through the following detailed description of the invention and the accompanying drawings.

3‧‧‧直流對直流轉換電路 3‧‧‧DC to DC Conversion Circuit

30‧‧‧直流對直流轉換器 30‧‧‧DC to DC Converter

32‧‧‧補償電路 32‧‧‧Compensation circuit

Constant Off Time‧‧‧固定關閉時間控制邏輯電路 Constant Off Time‧‧‧Fixed Off Time Control Logic Circuit

FB‧‧‧回授接腳 FB‧‧‧ Feedback pin

LG‧‧‧電力開關控制接腳 LG‧‧‧ Power Switch Control Pin

IN‧‧‧積分器 IN‧‧‧ Integrator

S1‧‧‧時間信號 S1‧‧‧time signal

S2‧‧‧補償信號 S2‧‧‧Compensation signal

LX‧‧‧輸入接腳 LX‧‧‧ input pin

VCC‧‧‧供電電壓接腳 VCC‧‧‧ supply voltage pin

EN‧‧‧致能接腳 EN‧‧‧ enable pin

GND‧‧‧接地接腳 GND‧‧‧ ground pin

OUT‧‧‧輸出接腳 OUT‧‧‧output pin

L‧‧‧外部電感 L‧‧‧External inductor

Vin‧‧‧輸入電壓 Vin‧‧‧ input voltage

Cin‧‧‧輸入電容 Cin‧‧‧input capacitor

SEN‧‧‧致能信號 SEN‧‧‧Enable signal

Vout‧‧‧輸出電壓 Vout‧‧‧Output voltage

Cout‧‧‧外部輸出電容 Cout‧‧‧External output capacitor

R1~R2‧‧‧外部電阻 R1 ~ R2‧‧‧External resistor

Rj‧‧‧電阻 Rj‧‧‧ resistance

Cj‧‧‧第一電容 Cj‧‧‧first capacitor

Cf‧‧‧第二電容 Cf‧‧‧Second capacitor

S0‧‧‧第二時間信號 S0‧‧‧Second time signal

M1‧‧‧第一電力開關 M1‧‧‧First Power Switch

M2‧‧‧第二電力開關 M2‧‧‧Second Power Switch

COT‧‧‧控制邏輯電路 COT‧‧‧Control logic circuit

A1‧‧‧第一誤差放大器 A1‧‧‧The first error amplifier

A2‧‧‧第二誤差放大器 A2‧‧‧Second Error Amplifier

VFB‧‧‧回授電壓 VFB‧‧‧Feedback voltage

Vref‧‧‧參考電壓 Vref‧‧‧Reference voltage

Comp‧‧‧比較信號 Comp‧‧‧ Comparison Signal

Ramp‧‧‧斜波信號 Ramp‧‧‧ ramp signal

Ton‧‧‧導通時間 Ton‧‧‧on time

S10~S12‧‧‧步驟 S10 ~ S12‧‧‧step

圖1繪示習知的Buck直流對直流轉換系統的示意圖。 FIG. 1 shows a schematic diagram of a conventional Buck DC-to-DC conversion system.

圖2繪示習知的Boost直流對直流轉換系統的示意圖。 FIG. 2 shows a schematic diagram of a conventional Boost DC-to-DC conversion system.

圖3繪示根據本發明之一具體實施例之直流對直流轉換器與補償電路的功能方塊圖。 FIG. 3 is a functional block diagram of a DC-to-DC converter and a compensation circuit according to a specific embodiment of the present invention.

圖4及圖5繪示當第一電容之第二端耦接至接地端時之直流對直流轉換器與補償電路之示意圖。 4 and 5 are schematic diagrams of a DC-to-DC converter and a compensation circuit when the second terminal of the first capacitor is coupled to the ground terminal.

圖6繪示當第一電容之第二端耦接至接地端時之第一時間信號、第二時間信號、補償信號及參考電壓的時序圖。 FIG. 6 is a timing diagram of the first time signal, the second time signal, the compensation signal, and the reference voltage when the second terminal of the first capacitor is coupled to the ground terminal.

圖7及圖8繪示當第一電容之第二端耦接至輸出接腳時之直流對直流轉換器與補償電路之示意圖。 7 and 8 are schematic diagrams of a DC-to-DC converter and a compensation circuit when the second terminal of the first capacitor is coupled to the output pin.

圖9繪示當第一電容之第二端耦接至輸出接腳時之第一時間信號、第二時間信號、補償信號及參考電壓的時序圖。 FIG. 9 is a timing diagram of the first time signal, the second time signal, the compensation signal, and the reference voltage when the second terminal of the first capacitor is coupled to the output pin.

圖10繪示根據本發明之另一具體實施例之直流對直流轉換電路的功能方塊圖。 FIG. 10 is a functional block diagram of a DC-to-DC conversion circuit according to another embodiment of the present invention.

圖11繪示根據本發明之另一具體實施例之直流對直流轉換器的控制方法之流程圖。 FIG. 11 is a flowchart of a method for controlling a DC-to-DC converter according to another embodiment of the present invention.

現在將詳細參考本發明的示範性實施例,並在附圖中說明所述示範性實施例的實例。在圖式及實施方式中所使用相同或類似標號的元件/構件是用來代表相同或類似部分。 Reference will now be made in detail to the exemplary embodiments of the present invention, and examples of the exemplary embodiments will be described in the accompanying drawings. The same or similar referenced elements / components are used in the drawings and embodiments to represent the same or similar parts.

根據本發明之一較佳具體實施例為一種直流對直流轉換器(DC-DC converter)。降壓直流對直流轉換器(Buck DC-DC Converter)可應用於升壓直流對直流轉換系統(Boost DC-DC Converting System)中,但不以 此為限。請參照圖3,圖3繪示本實施例之直流對直流轉換器30耦接補償電路32的功能方塊圖。 A preferred embodiment of the present invention is a DC-DC converter. Buck DC-DC Converter can be used in Boost DC-DC Converting System, but it is not limited to this. Please refer to FIG. 3, which illustrates a functional block diagram of the DC-to-DC converter 30 coupled to the compensation circuit 32 in this embodiment.

如圖3所示,直流對直流轉換器30包含回授接腳FB及電力開關控制接腳LG。補償電路32包含積分器IN。直流對直流轉換器30的回授接腳FB及電力開關控制接腳LG分別耦接補償電路32的積分器IN。直流對直流轉換器30的電力開關控制接腳LG提供第一時間信號S1至補償電路32的積分器IN。當積分器IN自電力開關控制接腳LG接收到第一時間信號S1時,積分器IN將第一時間信號S1積分以提供補償信號S2至回授接腳FB。於此實施例中,補償電路32所產生的補償信號S2為一斜波信號,並且與第一時間信號S1同步,但不以此為限。 As shown in FIG. 3, the DC-to-DC converter 30 includes a feedback pin FB and a power switch control pin LG. The compensation circuit 32 includes an integrator IN. The feedback pin FB and the power switch control pin LG of the DC-to-DC converter 30 are respectively coupled to the integrator IN of the compensation circuit 32. The power switch control pin LG of the DC-to-DC converter 30 provides the first time signal S1 to the integrator IN of the compensation circuit 32. When the integrator IN receives the first time signal S1 from the power switch control pin LG, the integrator IN integrates the first time signal S1 to provide a compensation signal S2 to the feedback pin FB. In this embodiment, the compensation signal S2 generated by the compensation circuit 32 is a ramp signal and is synchronized with the first time signal S1, but it is not limited thereto.

接著請參照圖4,於一實施例中,直流對直流轉換器30包含有輸入接腳LX、輸出接腳OUT、電力開關控制接腳LG、回授接腳FB、供電電壓接腳VCC、致能接腳EN及接地接腳GND。補償電路32包含電阻Rj、第一電容Cj及第二電容Cf,其中積分器IN包含彼此串接之電阻Rj與第一電容Cj。 Please refer to FIG. 4. In an embodiment, the DC-to-DC converter 30 includes an input pin LX, an output pin OUT, a power switch control pin LG, a feedback pin FB, a power supply voltage pin VCC, and the like. Can be pin EN and ground pin GND. The compensation circuit 32 includes a resistor Rj, a first capacitor Cj, and a second capacitor Cf. The integrator IN includes a resistor Rj and a first capacitor Cj connected in series with each other.

於固定導通時間(COT)控制的Boost直流對直流轉換系統中,輸入接腳LX耦接外部電感L之第一端,並透過外部電感L接收輸入電壓Vin。供電電壓接腳VCC耦接輸入電壓Vin。需說明的是,若於Buck直流對直流轉換系統中,接腳LX仍會耦接外部電感L,但其係作為相位接腳(PHASE)與輸出接腳(OUT)而提供輸出電壓Vout。 In a Boost DC-to-DC conversion system controlled by fixed on-time (COT), the input pin LX is coupled to the first end of the external inductor L, and receives the input voltage Vin through the external inductor L. The supply voltage pin VCC is coupled to the input voltage Vin. It should be noted that in the Buck DC-to-DC conversion system, the pin LX will still be coupled to the external inductor L, but it provides the output voltage Vout as the phase pin (PHASE) and the output pin (OUT).

外部輸入電容Cin之第一端亦耦接至外部電感L之第二端與輸入電壓Vin之間,外部輸入電容Cin之第二端耦接至接地端GND。致 能接腳EN用以接收一致能信號SEN。 The first terminal of the external input capacitor Cin is also coupled between the second terminal of the external inductor L and the input voltage Vin, and the second terminal of the external input capacitor Cin is coupled to the ground terminal GND. The enable pin EN is used to receive the enable signal SEN.

輸出接腳OUT用以輸出一輸出電壓Vout,並且外部輸出電容Cout耦接於輸出接腳OUT與接地端之間。外部電阻R1及R2串接於輸出電壓Vout與接地端之間。回授接腳FB耦接至外部電阻R1及R2之間。 The output pin OUT is used to output an output voltage Vout, and an external output capacitor Cout is coupled between the output pin OUT and the ground terminal. The external resistors R1 and R2 are connected in series between the output voltage Vout and the ground terminal. The feedback pin FB is coupled between the external resistors R1 and R2.

補償電路32分別耦接直流對直流轉換器30的電力開關控制接腳LG與回授接腳FB,並且補償電路32亦耦接至外部電阻R1與R2之間。電阻Rj耦接於電力開關控制接腳LG與第二電容Cf之間;第一電容Cj之第一端耦接至電阻Rj與第二電容Cf之間,且第一電容Cj之第二端耦接至接地端;第二電容Cf之第一端耦接電阻Rj及第一電容Cj;第二電容Cf之第二端耦接至回授接腳FB以及外部電阻R1與R2之間。 The compensation circuit 32 is respectively coupled to the power switch control pin LG and the feedback pin FB of the DC-to-DC converter 30, and the compensation circuit 32 is also coupled between the external resistors R1 and R2. The resistor Rj is coupled between the power switch control pin LG and the second capacitor Cf; the first terminal of the first capacitor Cj is coupled between the resistor Rj and the second capacitor Cf, and the second terminal of the first capacitor Cj is coupled Connected to the ground; the first terminal of the second capacitor Cf is coupled to the resistor Rj and the first capacitor Cj; the second terminal of the second capacitor Cf is coupled to the feedback pin FB and the external resistors R1 and R2.

補償電路32作為漣波信號產生電路,並且補償電路32中之第二電容Cf用以作為濾波電容,其功用在於將補償電路32所提供的漣波信號中之直流部分加以濾除,藉以產生穩定且良好的漣波信號來對回授信號進行相位補償,使得系統能維持正常運作。 The compensation circuit 32 is used as a ripple signal generating circuit, and the second capacitor Cf in the compensation circuit 32 is used as a filter capacitor. Its function is to filter the DC part of the ripple signal provided by the compensation circuit 32 to generate stability. And a good ripple signal is used to phase compensate the feedback signal, so that the system can maintain normal operation.

由於升壓直流對直流轉換系統採用固定關閉時間(Constant Off Time)方式控制,若直接套用固定導通時間(Constant On Time)控制器很可能會導致輸出崩潰,因此本發明之補償電路32的信號來源是電力開關控制接腳LG(亦即下橋開關控制接腳),相位才會正確,也才能避免輸出崩潰之現象發生。 Since the boost DC to DC conversion system is controlled by a constant off time method, if a constant on time controller is directly applied, the output may collapse. Therefore, the signal source of the compensation circuit 32 of the present invention It is the power switch control pin LG (that is, the lower-bridge switch control pin) that the phase is correct, and the output collapse can be avoided.

請參照圖5,於一實施例中,直流對直流轉換器30還包含有第一電力開關M1、第二電力開關M2、控制邏輯電路COT、第一誤差放大器A1及第二誤差放大器A2。 Referring to FIG. 5, in an embodiment, the DC-to-DC converter 30 further includes a first power switch M1, a second power switch M2, a control logic circuit COT, a first error amplifier A1, and a second error amplifier A2.

第一電力開關M1耦接於輸入接腳LX與接地接腳GND之間,並且第一電力開關M1之閘極耦接控制邏輯電路COT及電力開關控制接腳LG。第一電力開關M1接收電力開關控制接腳LG所輸出的第一時間信號S1並根據第一時間信號S1進行操作,以將輸入電壓Vin轉換為輸出電壓Vout。 The first power switch M1 is coupled between the input pin LX and the ground pin GND, and the gate of the first power switch M1 is coupled to the control logic circuit COT and the power switch control pin LG. The first power switch M1 receives the first time signal S1 output from the power switch control pin LG and operates according to the first time signal S1 to convert the input voltage Vin into the output voltage Vout.

第二電力開關M2耦接於輸入接腳LX與輸出接腳OUT之間,並且第二電力開關M2之閘極耦接控制邏輯電路COT,以根據第二時間信號S0進行操作。第二時間信號S0與第一時間信號S1同步且反相。即第一時間信號S1與第二時間信號S0的週期一致但相位彼此相反。 The second power switch M2 is coupled between the input pin LX and the output pin OUT, and the gate of the second power switch M2 is coupled to the control logic circuit COT to operate according to the second time signal S0. The second time signal S0 is synchronized and inverted with the first time signal S1. That is, the periods of the first time signal S1 and the second time signal S0 are the same but their phases are opposite to each other.

控制邏輯電路COT分別耦接第一電力開關M1之閘極、第二電力開關M2之閘極、電力開關控制接腳LG、致能接腳EN及第二誤差放大器A2之輸出端;第一誤差放大器A1之正輸入端+接收參考電壓Vref且第一誤差放大器A1之負輸入端一耦接回授接腳FB以接收回授電壓VFB,並且第一誤差放大器A1之輸出端耦接第二誤差放大器A2之正輸入端+;第二誤差放大器A2之正輸入端+及負輸入端一分別耦接第一誤差放大器A1之輸出端及斜波信號Ramp,並且第二誤差放大器A2之輸出端耦接控制邏輯電路COT。 The control logic circuit COT is respectively coupled to the gate of the first power switch M1, the gate of the second power switch M2, the power switch control pin LG, the enable pin EN, and the output terminal of the second error amplifier A2; the first error The positive input terminal of the amplifier A1 + receives the reference voltage Vref and the negative input terminal of the first error amplifier A1 is coupled to the feedback pin FB to receive the feedback voltage VFB, and the output terminal of the first error amplifier A1 is coupled to the second error. The positive input terminal + of the amplifier A2; the positive input terminal + and the negative input terminal of the second error amplifier A2 are respectively coupled to the output terminal of the first error amplifier A1 and the ramp signal Ramp, and the output terminal of the second error amplifier A2 is coupled Connect the control logic circuit COT.

請參照圖6,圖6繪示當第一電容Cj之第二端耦接至接地端時之第一時間信號S1、第二時間信號S0、補償信號S2及參考電壓Vref的時序圖。如圖6所示,補償電路32所產生的補償信號S2為一斜波信號,並且補償信號(斜波信號)S2係與第一時間信號S1同步。至於第二時間信號S0則與第一時間信號S1同步且反相。 Please refer to FIG. 6, which illustrates a timing diagram of the first time signal S1, the second time signal S0, the compensation signal S2 and the reference voltage Vref when the second terminal of the first capacitor Cj is coupled to the ground terminal. As shown in FIG. 6, the compensation signal S2 generated by the compensation circuit 32 is a ramp signal, and the compensation signal (ramp signal) S2 is synchronized with the first time signal S1. As for the second time signal S0, it is synchronized with the first time signal S1 and inverted.

當第一時間信號S1處於高相位時,第二時間信號S0處於低相位,補償信號S2為往上的斜波信號;當第一時間信號S1處於低相位時,第二時間信號S0處於高相位,補償信號S2為往下的斜波信號。第一時間信號S1維持於高相位的時間長度即為導通時間Ton。 When the first time signal S1 is in a high phase, the second time signal S0 is in a low phase, and the compensation signal S2 is an upward ramp signal; when the first time signal S1 is in a low phase, the second time signal S0 is in a high phase , The compensation signal S2 is a downward ramp signal. The length of time during which the first time signal S1 is maintained at a high phase is the on-time Ton.

除了前述圖4至圖5繪示之第一電容Cj之第二端耦接至接地端的實施例之外,第一電容Cj之第二端亦可耦接至輸出接腳OUT,以根據輸出電壓Vout及控制信號S1產生補償信號S2,如圖7至圖8所示,此種接法的補償信號S2根據第一時間信號S1及輸出電壓Vout產生,可使直流對直流轉換器30在輸出電壓Vout瞬變(transient)時有較佳的響應。由於圖7至圖8與圖4至圖5之差異處僅在於第一電容Cj之第二端耦接至輸出接腳OUT而不是耦接至接地端,故其電路的詳細作動情形請參照前述實施例,於此不另行贅述。 In addition to the foregoing embodiments in which the second terminal of the first capacitor Cj is coupled to the ground terminal as shown in FIG. 4 to FIG. 5, the second terminal of the first capacitor Cj may also be coupled to the output pin OUT, so as to Vout and the control signal S1 generate a compensation signal S2, as shown in FIG. 7 to FIG. 8. The compensation signal S2 of this connection is generated according to the first time signal S1 and the output voltage Vout, which can enable the DC-to-DC converter 30 at the output voltage. Vout has better response when transient. As the difference between Fig. 7 to Fig. 8 and Fig. 4 to Fig. 5 is only that the second terminal of the first capacitor Cj is coupled to the output pin OUT instead of being coupled to the ground terminal, please refer to the foregoing for detailed operation of the circuit. The embodiments are not described herein again.

圖9為圖7及圖8之第一時間信號S1、第二時間信號S0、補償信號S2及參考電壓Vref的時序圖。由於升壓(Boost)系統的輸出電壓Vout有與補償信號S2反相的漣波,使得第一電容Cj之第二端耦接至輸出接腳OUT時之補償電路32所產生的補償信號(斜波信號)S2的斜率會小於第一電容Cj之第二端耦接至接地端時之補償電路32所產生的補償信號(斜波信號)S2的斜率。 FIG. 9 is a timing diagram of the first time signal S1, the second time signal S0, the compensation signal S2, and the reference voltage Vref of FIGS. 7 and 8. Because the output voltage Vout of the boost system has a ripple opposite to the compensation signal S2, the compensation signal (slope generated by the compensation circuit 32 when the second terminal of the first capacitor Cj is coupled to the output pin OUT) The slope of the compensation signal (S2) generated by the compensation circuit 32 when the second terminal of the first capacitor Cj is coupled to the ground is smaller than the slope of the compensation signal (slope signal) S2.

圖10為本發明之另一較佳具體實施例為升壓直流對直流轉換電路。如圖10所示,直流對直流轉換電路3包含直流對直流轉換器30及補償電路32。補償電路32耦接直流對直流轉換器30。直流對直流轉換器30包含輸入接腳LX、輸出接腳OUT、回授接腳FB、誤差放大器A1、電 力開關控制接腳LG、接地接腳GND及第一電力開關M1。補償電路32包含一積分器IN。輸入接腳LX耦接一外部電感L。輸出接腳OUT耦接一外部輸出電容Cout。誤差放大器A1耦接回授接腳FB。電力開關控制接腳LG提供時間信號S1至補償電路32之積分器IN及第一電力開關M1。第一電力開關M1分別耦接輸入接腳LX、電力開關控制接腳LG及接地接腳GND,並根據時間信號S1進行操作。積分器IN分別耦接電力開關控制接腳LG及回授接腳FB。補償電路32之積分器IN自電力開關控制接腳LG接收時間信號S1並據以產生補償信號S2至回授接腳FB。至於直流對直流轉換電路3的詳細電路結構及作動請參照前述實施例之內容,於此不另行贅述。 FIG. 10 is another step-up DC-to-DC conversion circuit according to another preferred embodiment of the present invention. As shown in FIG. 10, the DC-to-DC conversion circuit 3 includes a DC-to-DC converter 30 and a compensation circuit 32. The compensation circuit 32 is coupled to the DC-to-DC converter 30. The DC-to-DC converter 30 includes an input pin LX, an output pin OUT, a feedback pin FB, an error amplifier A1, a power switch control pin LG, a ground pin GND, and a first power switch M1. The compensation circuit 32 includes an integrator IN. The input pin LX is coupled to an external inductor L. The output pin OUT is coupled to an external output capacitor Cout. The error amplifier A1 is coupled to the feedback pin FB. The power switch control pin LG provides a time signal S1 to the integrator IN of the compensation circuit 32 and the first power switch M1. The first power switch M1 is respectively coupled to the input pin LX, the power switch control pin LG, and the ground pin GND, and operates according to the time signal S1. The integrator IN is respectively coupled to the power switch control pin LG and the feedback pin FB. The integrator IN of the compensation circuit 32 receives the time signal S1 from the power switch control pin LG and generates a compensation signal S2 to the feedback pin FB accordingly. As for the detailed circuit structure and operation of the DC-to-DC conversion circuit 3, please refer to the content of the foregoing embodiment, and will not be repeated here.

根據本發明之另一較佳具體實施例為直流對直流轉換器的控制方法。於此實施例中,直流對直流轉換器包括恆定導通時間產生單元、電力開關控制接腳及回授接腳,其中電力開關控制接腳與回授接腳之間耦接補償電路。 Another preferred embodiment of the present invention is a method for controlling a DC-to-DC converter. In this embodiment, the DC-to-DC converter includes a constant on-time generating unit, a power switch control pin and a feedback pin, wherein a compensation circuit is coupled between the power switch control pin and the feedback pin.

請參照圖11,圖11繪示根據本發明之另一具體實施例之直流對直流轉換器的控制方法之流程圖。如圖11所示,直流對直流轉換器的控制方法包含下列步驟。 Please refer to FIG. 11, which illustrates a flowchart of a method for controlling a DC-to-DC converter according to another embodiment of the present invention. As shown in FIG. 11, the method for controlling a DC-to-DC converter includes the following steps.

步驟S10:透過恆定導通時間產生單元提供第一時間信號至第一電力開關控制接腳;以及步驟S12:利用補償電路處理第一時間信號,以提供補償信號至回授接腳。補償信號可以是斜波信號,但不以此為限。 Step S10: providing a first time signal to the first power switch control pin through the constant on-time generating unit; and step S12: processing the first time signal using a compensation circuit to provide a compensation signal to the feedback pin. The compensation signal may be a ramp signal, but is not limited thereto.

藉由以上較佳具體實施例之詳述,係希望能更加清楚描述本發明之特徵與精神,而並非以上述所揭露的較佳具體實施例來對本 發明之範疇加以限制。相反地,其目的是希望能涵蓋各種改變及具相等性的安排於本發明所欲申請之專利範圍的範疇內。 With the detailed description of the above preferred embodiments, it is hoped that the features and spirit of the present invention may be more clearly described, and the scope of the present invention is not limited by the preferred embodiments disclosed above. On the contrary, the intention is to cover various changes and equivalent arrangements within the scope of the patents to be applied for in the present invention.

Claims (9)

一種直流對直流轉換器,耦接一補償電路並透過一外部電感耦接一輸入電壓,該直流對直流轉換器包含:一第一電力開關,耦接該外部電感之一端;一第二電力開關,耦接該外部電感之一端;一輸出接腳,耦接該第二電力開關;一回授接腳,耦接該輸出接腳;以及一電力開關控制接腳,耦接該第一電力開關,且提供一第一時間信號至該第一電力開關;其中該補償電路耦接於該回授接腳與該電力開關控制接腳之間,該補償電路包含一積分器,該積分器自該電力開關控制接腳接收該第一時間信號,且提供一補償信號至該回授接腳。     A DC-to-DC converter coupled to a compensation circuit and coupled to an input voltage through an external inductor. The DC-to-DC converter includes a first power switch coupled to one end of the external inductor; a second power switch Is coupled to one end of the external inductor; an output pin is coupled to the second power switch; a feedback pin is coupled to the output pin; and a power switch control pin is coupled to the first power switch And providing a first time signal to the first power switch; wherein the compensation circuit is coupled between the feedback pin and the power switch control pin, the compensation circuit includes an integrator, and the integrator starts from the The power switch control pin receives the first time signal and provides a compensation signal to the feedback pin.     如申請專利範圍第1項所述之直流對直流轉換器,其中該積分器包含彼此串接之一電阻及一第一電容,且該電阻的第一端耦接該電力開關控制接腳,該第一電容耦接於該電阻的第二端與一接地端之間。     The DC-to-DC converter according to item 1 of the patent application scope, wherein the integrator includes a resistor and a first capacitor connected in series with each other, and a first end of the resistor is coupled to the power switch control pin, the The first capacitor is coupled between the second terminal of the resistor and a ground terminal.     如申請專利範圍第1項所述之直流對直流轉換器,其中該積分器包含彼此串接之一電阻及一第一電容,且該電阻的第一端耦接該電力開關控制接腳,該第一電容耦接於該電阻的第二端與該直流對直流轉換器之一輸出電壓。     The DC-to-DC converter according to item 1 of the patent application scope, wherein the integrator includes a resistor and a first capacitor connected in series with each other, and a first end of the resistor is coupled to the power switch control pin, the The first capacitor is coupled to the second terminal of the resistor and an output voltage of the DC-to-DC converter.     如申請專利範圍第1項所述之直流對直流轉換器,其中該補償電路還包含一濾波電容,該濾波電容耦接於該積分器與該回授接腳之間。     The DC-to-DC converter according to item 1 of the patent application scope, wherein the compensation circuit further includes a filter capacitor, the filter capacitor is coupled between the integrator and the feedback pin.     如申請專利範圍第1項所述之直流對直流轉換器,其中該補償信號為一斜波信號,且該斜波信號與該第一時間信號同步。     The DC-to-DC converter according to item 1 of the scope of patent application, wherein the compensation signal is a ramp signal, and the ramp signal is synchronized with the first time signal.     如申請專利範圍第1項所述之直流對直流轉換器,還包含一恆定導通時間產生單元,分別耦接該第一電力開關與該第二電力開關。     The DC-to-DC converter according to item 1 of the patent application scope further includes a constant on-time generating unit, which is respectively coupled to the first power switch and the second power switch.     如申請專利範圍第5項所述之直流對直流轉換器,還包含一誤差放大器及一比較器,該誤差放大器耦接該補償電路及該回授接腳,該比較器耦接於該誤差放大器與該恆定導通時間產生單元之間。     The DC-to-DC converter according to item 5 of the scope of patent application, further comprising an error amplifier and a comparator. The error amplifier is coupled to the compensation circuit and the feedback pin. The comparator is coupled to the error amplifier. And the constant on-time generating unit.     一種直流對直流轉換器的控制方法,該直流對直流轉換器包括一恆定導通時間產生單元、一電力開關控制接腳及一回授接腳,其中該電力開關控制接腳與該回授接腳之間耦接一補償電路,該控制方法包含:透過該恆定導通時間產生單元提供一第一時間信號至該第一電力開關控制接腳;以及利用該補償電路處理該第一時間信號,以提供一補償信號至該回授接腳。     A control method for a DC-to-DC converter. The DC-to-DC converter includes a constant on-time generating unit, a power switch control pin and a feedback pin, wherein the power switch control pin and the feedback pin A compensation circuit is coupled between the control methods. The control method includes: providing a first time signal to the first power switch control pin through the constant on-time generating unit; and using the compensation circuit to process the first time signal to provide A compensation signal is sent to the feedback pin.     如申請專利範圍第8項所述之控制方法,其中該補償信號為一斜波信號。     The control method according to item 8 of the scope of patent application, wherein the compensation signal is a ramp signal.    
TW105129163A 2016-09-08 2016-09-08 DC-DC converter and controlling method thereof TW201813267A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW105129163A TW201813267A (en) 2016-09-08 2016-09-08 DC-DC converter and controlling method thereof
CN201610891686.7A CN107809176A (en) 2016-09-08 2016-10-13 DC-DC converter and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105129163A TW201813267A (en) 2016-09-08 2016-09-08 DC-DC converter and controlling method thereof

Publications (1)

Publication Number Publication Date
TW201813267A true TW201813267A (en) 2018-04-01

Family

ID=61576405

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105129163A TW201813267A (en) 2016-09-08 2016-09-08 DC-DC converter and controlling method thereof

Country Status (2)

Country Link
CN (1) CN107809176A (en)
TW (1) TW201813267A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111224645B (en) * 2018-11-26 2023-10-20 力智电子股份有限公司 DC-DC conversion circuit and time signal generator thereof

Also Published As

Publication number Publication date
CN107809176A (en) 2018-03-16

Similar Documents

Publication Publication Date Title
TWI496387B (en) Switching regulator and control circuit and control method thereof
CN110545039B (en) Switching converter, control circuit and control method thereof
TWI622260B (en) Buck-boost converter with ramp compensation and controller and control method thereof
US9154031B2 (en) Current mode DC-DC conversion device with fast transient response
TWI479790B (en) Switching-mode power supply with ripple mode control and associated methods
US8248040B2 (en) Time-limiting mode (TLM) for an interleaved power factor correction (PFC) converter
US9685860B2 (en) Buck-boost converter and method for regulation
US8536841B2 (en) PWM control circuit of a converter and the control method thereof
US9923463B2 (en) Constant on-time switching converter with reference voltage adjusting circuit and controller thereof
TWI591949B (en) Switching Regulator with Ripple-Based Constant ON-Time (RBCOT) and Control Circuit and Control Method Thereof
US10148176B2 (en) DC to DC converter with pulse width modulation and a clamping circuit for non-pulse width modulation control
CN106160434B (en) Ripple wave suppression method and circuit and load driving circuit applying same
JP2013165537A (en) Switching regulator, control method thereof, and power supply device
CN210724566U (en) Switch converter and control circuit thereof
JP5228416B2 (en) Constant current output control type switching regulator
TW201415770A (en) Control device for DC-DC converter and control method thereof
CN104539154A (en) Switch converter and control circuit thereof
US20200076307A1 (en) Frequency control circuit, control method and switching converter
IT202000013627A1 (en) A CONTROL CIRCUIT FOR AN ELECTRONIC CONVERTER, RELATED INTEGRATED CIRCUIT, ELECTRONIC CONVERTER AND PROCEDURE
TWI728573B (en) Adaptive frequency adjusting system
TWI491149B (en) Dc-dc controller and multi-ramp signal operating method thereof
TWI555318B (en) Voltage converter
TWI605675B (en) Dc-dc power convertor and method for controlling output voltage using the same
TWI463768B (en) Dc-to-dc converter
TW201813267A (en) DC-DC converter and controlling method thereof