TW201809676A - Scanning probe microscope and method for examining a sample surface - Google Patents

Scanning probe microscope and method for examining a sample surface Download PDF

Info

Publication number
TW201809676A
TW201809676A TW106126550A TW106126550A TW201809676A TW 201809676 A TW201809676 A TW 201809676A TW 106126550 A TW106126550 A TW 106126550A TW 106126550 A TW106126550 A TW 106126550A TW 201809676 A TW201809676 A TW 201809676A
Authority
TW
Taiwan
Prior art keywords
cantilever
sample
scanning
probe microscope
scanning probe
Prior art date
Application number
TW106126550A
Other languages
Chinese (zh)
Other versions
TWI656347B (en
Inventor
克里斯多福 包爾
克勞斯 艾汀格
嘉博莉爾 巴瑞莉亞
Original Assignee
德商卡爾蔡司Smt有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德商卡爾蔡司Smt有限公司 filed Critical 德商卡爾蔡司Smt有限公司
Publication of TW201809676A publication Critical patent/TW201809676A/en
Application granted granted Critical
Publication of TWI656347B publication Critical patent/TWI656347B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q70/00General aspects of SPM probes, their manufacture or their related instrumentation, insofar as they are not specially adapted to a single SPM technique covered by group G01Q60/00
    • G01Q70/02Probe holders
    • G01Q70/04Probe holders with compensation for temperature or vibration induced errors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q10/00Scanning or positioning arrangements, i.e. arrangements for actively controlling the movement or position of the probe
    • G01Q10/04Fine scanning or positioning
    • G01Q10/045Self-actuating probes, i.e. wherein the actuating means for driving are part of the probe itself, e.g. piezoelectric means on a cantilever probe
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q40/00Calibration, e.g. of probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q70/00General aspects of SPM probes, their manufacture or their related instrumentation, insofar as they are not specially adapted to a single SPM technique covered by group G01Q60/00
    • G01Q70/06Probe tip arrays

Abstract

The present application relates to a scanning probe microscope (1200) for examining a sample surface (150), the scanning probe microscope comprising: (a) at least one first measuring probe (330) having a first securing region (305) and at least one first cantilever (310, 810, 1710, 1910), on which at least one first measuring tip (320) is arranged; (b) wherein the at least one first cantilever (310, 810, 1710, 1910) is configured to adopt an adjustable bending at a free end (350) of the at least one first cantilever (310, 810, 1910) before the beginning of a scanning process, which adjustable bending at least partly compensates for or intensifies a tilting of the first securing region (305) and/or a pre-bending of the at least one first cantilever (310, 810, 1710, 1910); and (c) at least one optical measuring device (1300) configured to determine the adjustable bending.

Description

檢查樣品表面的掃描探針顯微鏡及方法 Scanning probe microscope and method for inspecting sample surface 【相關專利參照】[Related patent reference]

本專利申請案主張2016年8月8日向德國專利局申請之名稱為「Rastersondenmikroskop und Verfahren zum Untersuchen einer Probenoberflaeche」的德國專利申請案DE 10 2016 214 658.0的優先權,其以引用的方式將其整體內容明確地併入本文。 The present patent application claims the priority of the German patent application No. DE 10 2016 214 65 8.0, which is assigned to the German Patent Office, the entire disclosure of which is hereby incorporated by reference. It is expressly incorporated herein.

本發明關於用以檢查樣品表面的掃描探針顯微鏡及方法。 The present invention relates to scanning probe microscopes and methods for inspecting the surface of a sample.

掃描探針顯微鏡使用一量測探針掃描一樣品或其表面,因此獲得量測資料以產生樣品表面的拓樸表示。掃描探針顯微鏡在下文中簡稱為SPM。不同的SPM類型係根據探針的量測尖端與樣品表面之間的互動類型來區分。通常使用掃描穿隧顯微鏡(STM),其中在彼此不接觸的樣品與量測尖端之間施加電壓,並量測所產生的穿隧電流。 A scanning probe microscope scans a sample or its surface using a measuring probe, thus obtaining measurement data to produce a topographic representation of the surface of the sample. The scanning probe microscope is hereinafter referred to simply as SPM. The different SPM types are distinguished by the type of interaction between the probe tip and the sample surface. A scanning tunneling microscope (STM) is typically used in which a voltage is applied between a sample that is not in contact with each other and the measuring tip, and the resulting tunneling current is measured.

在稱作原子力顯微鏡(AFM)或掃描力顯微鏡(SFM)的顯微鏡中,量測尖端被樣品表面的原子力偏轉,一般為交換互動的吸引凡德瓦力及/或互斥力。量測尖端的偏轉與作用於量測尖端及樣品表面之間的力成正比,且此力用以決定表面拓樸。 In microscopes called atomic force microscopy (AFM) or scanning force microscopy (SFM), the measurement tip is deflected by the atomic force on the surface of the sample, typically to attract van der Waals and/or mutual repulsion. The deflection of the measuring tip is proportional to the force acting between the measuring tip and the surface of the sample, and this force is used to determine the surface topology.

除了這些傳統的SPM類型,還有許多其他的裝置類型用於特定的應用領域,例如磁力顯微鏡或光學及聲學近場掃描顯微鏡。 In addition to these traditional SPM types, there are many other device types for specific applications, such as magnetic microscopes or optical and acoustic near-field scanning microscopes.

掃描探針顯微鏡可在不同操作模式下使用。在接觸模式下,量測尖端放置於樣品表面上並以此狀態在樣品表面上掃描。在此情況下,SPM頭在樣品上的距離可保持固定,且承載量測尖端的懸臂或彈簧桿的偏折可被量測並用於對表面進行成像。也有可能以一封閉控制迴路保持懸臂的偏折為固定,並追蹤SPM到樣品表面輪廓的距離。 Scanning probe microscopes can be used in different modes of operation. In the contact mode, the measurement tip is placed on the surface of the sample and scanned on the surface of the sample in this state. In this case, the distance of the SPM head on the sample can remain fixed, and the deflection of the cantilever or spring rod carrying the measurement tip can be measured and used to image the surface. It is also possible to keep the deflection of the cantilever fixed by a closed control loop and track the distance of the SPM to the surface contour of the sample.

在第二操作模式(非接觸模式)中,量測尖端被帶到距離樣品表面的一定義距離處,且懸臂被激發而振盪,一般在或接近懸臂的共振頻率下振盪。量測探針接著在樣品表面上掃描。由於量測尖端在此操作模式中沒有接觸樣品,其磨損很低。 In the second mode of operation (non-contact mode), the measuring tip is brought to a defined distance from the surface of the sample, and the cantilever is excited to oscillate, typically oscillating at or near the resonant frequency of the cantilever. The measurement probe is then scanned over the surface of the sample. Since the measuring tip does not touch the sample in this mode of operation, its wear is low.

在第三操作模式(間歇模式(輕拍模式TM))中,懸臂同樣進行一強迫振盪,但SPM及樣品表面之間的距離係選擇使得量測尖端在振盪週期的一小部分期間到達樣品表面。樣品表面的輪廓來自強迫振盪的頻率、振幅或相位的變化,該變化是由量測探針與樣品表面的互動所引起。 In the third mode of operation (intermittent mode (tap mode TM )), the cantilever also performs a forced oscillation, but the distance between the SPM and the sample surface is selected such that the measurement tip reaches the sample surface during a small portion of the oscillation period. . The contour of the surface of the sample is derived from the change in the frequency, amplitude or phase of the forced oscillation caused by the interaction of the measurement probe with the surface of the sample.

在第四操作模式(步入式操作模式)中,依序地執行垂直於樣品表面及平行於樣品表面的運動。為此,量測探針的量測尖端下降至樣品表面並同時量測樣品表面及量測尖端之間的互動。之後,量測尖端再次被帶回其初始位置。接著,量測尖端平行於樣品表面位移一定義部分,並以另一降下的過程來繼續分析程序。 In the fourth mode of operation (walk-in mode of operation), motion perpendicular to the surface of the sample and parallel to the surface of the sample is performed sequentially. To this end, the measuring tip of the measuring probe is lowered to the surface of the sample and the interaction between the surface of the sample and the measuring tip is simultaneously measured. The measuring tip is then brought back to its original position again. Next, the measurement tip is displaced parallel to the surface of the sample by a defined portion and the analysis procedure is continued with another lowering process.

作者A.Pasupuleti等人在出版物「預測自變形微機械懸臂的機械行為(Predicting the mechanical behaviour of self-deformed micromachined cantilevers)」,6th Int.Conf.on Thermal,Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems,pp.254-258(2005)中描述了基於懸臂的實證模型的懸臂行為。 The author, A. Pasupuleti et al., in the publication "Predicting the mechanical behaviour of self-deformed micromachined cantilevers", 6th Int. Conf. on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro- The cantilever behavior of an cantilever-based empirical model is described in Electronics and Micro-Systems, pp. 254-258 (2005).

在J.Vac.Sci.Technol.B 9(2),Mar/Apr 1991,pp.1318-1322 中的文章「使用光熱振盪的掃描吸引力顯微鏡(Scanning attractive force microscope using photothermal vibration)」中,作者N.Umeda、S.Ishizaki及H.Uwai描述了借助於脈衝雷射光束的的懸臂振盪的激發及使用光指針系統偵測懸臂的振盪。 In J.Vac.Sci.Technol.B 9(2), Mar/Apr 1991, pp.1318-1322 In the article "Scanning attractive force microscope using photothermal vibration", authors N. Umeda, S. Ishizaki, and H. Uwai describe the excitation of cantilever oscillations by means of a pulsed laser beam. And using the optical pointer system to detect the oscillation of the cantilever.

美國專利案No.US 6 718 764 B1描述了經由產生一定義永久預應力之微致動器的定義彎曲。 U.S. Patent No. 6,718,764 B1 describes the definition of bending by creating a microactuator defining a permanent pre-stress.

作者B.Rogers、L.Manning、T.Sulchek及J.D.Adams在文章「以壓電懸臂改良輕拍模式原子力顯微鏡(Improving tapping mode atomic force microscopy with piezoelectric cantilevers)」,Ultramicroscopy,100,pp.267-276(2004)中描述在原子力顯微鏡的間歇操作模式下使用壓電懸臂。 Authors B. Rogers, L. Manning, T. Sulchek, and JDAdams in the article "Improving tapping mode atomic force microscopy with piezoelectric cantilevers", Ultramicroscopy, 100, pp. 267-276 The use of piezoelectric cantilevers in the intermittent mode of operation of an atomic force microscope is described in (2004).

Tzvetan Ivanov在其博士論文「Piezoresistive Cantilever mit einem integrierten Aktuator(具有整合致動器的壓阻懸臂)」,Department of Physics at the University of Kassel(2004)中描述具有基於雙型態效應的整合致動器和整合壓阻力梯度感測器的懸臂的發展。 Tzvetan Ivanov describes an integrated actuator based on the double-type effect in his doctoral thesis "Piezoresistive Cantilever mit einem integrierten Aktuator", Department of Physics at the University of Kassel (2004) And the development of cantilever with integrated pressure resistance gradient sensor.

在文章「在低Q環境中對乾淨懸臂反應以光熱激發改造原子力顯微鏡(Retrofitting an atomic force microscope with photothermal excitation for a clean cantilever response in low Q environments)」,Rev.of Scien.Instrum.83,053703-1-053703-8(2012)中,作者A.Labuda等人描述經由懸臂的應力誘發彎曲對懸臂進行光熱激發。 In the article "Retrofitting an atomic force microscope with photothermal excitation for a clean cantilever response in low Q environments", Rev. of Scien. Instrum. 83, 053703- 1-053703-8 (2012), author A. Labuda et al. describe photothermal excitation of a cantilever via stress induced bending of a cantilever.

在出版物「掃描近端探針陣列的可控懸臂預偏轉(Controllable cantilever predeflection for arrays of scanning proximal probes)」,MNE 2007中,作者Y.Sarow、Trv.Ivanov、A.Frank,B.E.Volland及I.W.Rangelow提出了自我控制壓阻懸臂的預彎的模擬結果。 In the publication "Controllable cantilever predeflection for arrays of scanning proximal probes", MNE 2007, by Y.Sarow, Trv.Ivanov, A.Frank, BEVolland and IW Rangelow proposed the simulation results of the pre-bending of the self-controlled piezoresistive cantilever.

在「PRONANO:用於奈米尺度分析和合成的大規模平行智能懸臂探針平台上的整合計畫的程序(PRONANO:proceedings of the integrated project on massively parallel intelligent cantilever probe platforms for nanoscale analysis and synthesis)」,MV-Wissenschaft,Sept.2010,ISBN 978-3-86991-177-9,pp.89-99中的文章「自致動壓阻SPM懸臂的基本原理(Basic principles of self-actuated piezoresistive SPM cantilevers)」,作者I.W.Rangelow等人描述探針配置或二維探針陣列,其中每一探針的每一懸臂具有可使懸臂進行強迫振盪的一整合熱致動器。此外,藉由DC電壓的施加,熱致動器可使懸臂朝向樣品表面偏折。此功能有助於探針配置的個別懸臂的接近,為掃描探針顯微鏡的掃描程序做準備。 PRONANO: Proceedings of the integrated project on massively parallel intelligent cantilever probe platforms for PRONANO: Proceedings of the integrated project on massively parallel intelligent cantilever probe platforms for Nanoscale analysis and synthesis", MV-Wissenschaft, Sept. 2010, ISBN 978-3-86991-177-9, pp. 89-99, "Basic Principles of Self-actuated Piezoresistive SPM Cantilever" (Basic principles of self) -actuated piezoresistive SPM cantilevers), by IWRangelow et al., describes probe configurations or two-dimensional probe arrays in which each cantilever of each probe has an integrated thermal actuator that allows for forced oscillation of the cantilever. In addition, the thermal actuator deflects the cantilever toward the surface of the sample by the application of a DC voltage. This feature facilitates the proximity of individual cantilevers in the probe configuration, in preparation for the scanning procedure of the scanning probe microscope.

在所有傳統的SPM類型中,針對一掃描程序以一限定方式用測量探針的測量尖端接近待掃描的樣品表面是一個耗時的過程。由於在工作位置的量測尖端一般具有在二或三位數奈米範圍的高度,當量測尖端靠近表面時,絕對需要確保量測尖端實際上與樣品有最小距離,且懸臂及其固定板不會沉降在樣品上而非量測尖端,有可能損壞或甚至破壞該樣品。為此目的,承載量測探針的固定板的架座一般從水平面傾斜一特定角度。量測探針的此傾斜的影響為量測探針的量測尖端在樣品表面上不是垂直地沉降。此外,懸臂在其縱向方向上可能不是直的,而是具有曲線。在前述之量測探針的懸臂進行振盪的其中一操作模式下,量測尖端因此描述了有關待檢查的樣品表面的曲線軌跡。因此,掃描探針顯微鏡的解析度特別在當掃描陡峭側翼或具有高外觀比的樣品時會降低。 In all conventional SPM types, it is a time consuming process to approach the surface of the sample to be scanned with the measuring tip of the measuring probe in a defined manner for a scanning procedure. Since the measuring tip in the working position generally has a height in the range of two or three digits of nanometers, when the equivalent measuring tip is close to the surface, it is absolutely necessary to ensure that the measuring tip actually has a minimum distance from the sample, and the cantilever and its fixed plate It does not settle on the sample, not the measurement tip, and may damage or even destroy the sample. For this purpose, the mount of the mounting plate carrying the measuring probe is generally inclined at a specific angle from the horizontal. The effect of this tilt of the measurement probe is that the measurement tip of the measurement probe does not settle vertically on the surface of the sample. Furthermore, the cantilever may not be straight in its longitudinal direction but have a curve. In one of the operational modes in which the cantilever of the aforementioned measuring probe oscillates, the measuring tip thus describes a curved trajectory about the surface of the sample to be examined. Therefore, the resolution of the scanning probe microscope is particularly reduced when scanning steep flank or samples with high aspect ratios.

因此,本發明解決了指定可用以至少部分地避免上述問題的裝置和方法的問題。 Accordingly, the present invention addresses the problem of specifying apparatus and methods that can be used to at least partially avoid the above problems.

根據本發明一範例具體實施例,此問題由申請專利範圍第1項所述的裝置解決。在一具體實施例中,裝置包含用以檢查一樣品表面的一掃描探針顯微鏡,此掃描探針顯微鏡包含:(a)至少一第一量測探針,其具有第一固定區域及至少一第一懸臂,其中至少一第一量測尖端係配置於 至少一第一量測探針上;(b)其中至少一第一懸臂組態以在一掃描程序開始前在至少一第一懸臂的一自由端採用可調整彎曲,該可調整彎曲至少部分地補償或增強第一固定區域的傾斜及/或至少一第一懸臂的預彎;以及(c)至少一光學量測裝置,組態以決定可調整彎曲。 According to an exemplary embodiment of the present invention, this problem is solved by the apparatus of claim 1 of the patent application. In a specific embodiment, the apparatus includes a scanning probe microscope for inspecting a surface of the sample, the scanning probe microscope comprising: (a) at least one first measuring probe having a first fixed area and at least one a first cantilever, wherein at least one first measurement tip is disposed on At least one first measurement probe; (b) wherein at least one of the first cantilever configurations employs an adjustable bend at a free end of the at least one first cantilever prior to the beginning of the scanning procedure, the adjustable bend being at least partially Compensating or enhancing the tilt of the first fixed area and/or the pre-bend of the at least one first cantilever; and (c) at least one optical measuring device configured to determine the adjustable bend.

在本申請案中,術語「傾斜」表示繞量測探針的一橫向軸旋轉,該橫向軸係沿水平方向。在本申請案中,樣品表面配置在一水平面中。 In the present application, the term "tilt" means a rotation about a transverse axis of the measurement probe, the transverse axis being in a horizontal direction. In the present application, the surface of the sample is placed in a horizontal plane.

在本申請案中,術語「可調整」一方面表示懸臂的自由端的暫時可變彎曲,其由來自外界的影響所造成。該術語另一方面表示懸臂的自由端的永久彎曲,其實質地補償量測探針的固定區域的傾斜。 In the present application, the term "adjustable" on the one hand means a temporally variable bend of the free end of the cantilever which is caused by an influence from the outside. The term, on the other hand, represents a permanent bend of the free end of the cantilever that substantially compensates for the tilt of the fixed area of the measurement probe.

可調整彎曲可實現為遠離樣品表面,使得在掃描程序開始前,至少一第一懸臂的自由端係實質平行於待掃描的樣品表面排列。 The adjustable bend can be achieved away from the surface of the sample such that at least one of the free ends of the first cantilever is substantially parallel to the surface of the sample to be scanned prior to the start of the scanning procedure.

本申請案的此處及其他地方,表述「實質上」表示當使用根據現有技術的量測儀器來量測量測變數時,在其誤差容忍度內的量測變數的指示。 Here and elsewhere in this application, the expression "substantially" means an indication of the measured variable within its error tolerance when measuring a variable using a measuring instrument according to the prior art.

較佳地,掃描探針顯微鏡量測頭的架座具有相對水平面或樣品表面的傾角,量測探針的固定區域在該架座上固定於SPM量測頭,該傾角使掃描探針顯微鏡的懸臂相對樣品表面傾斜,使得量測尖端為量測探針與樣品表面接觸的第一部份,而不是懸臂或甚至量測探針的固定區域。對掃描探針顯微鏡及/或待檢查樣品的損害可因此而避免。由於此預防措施,掃描探針顯微鏡的量測探針可快速地被帶到一工作位置以進行掃描程序,其結果為此分析儀器的效率提高。 Preferably, the mount of the scanning probe microscope measuring head has an inclination relative to a horizontal plane or a sample surface, and the fixed area of the measuring probe is fixed on the mount to the SPM measuring head, the tilting angle of the scanning probe microscope The cantilever is tilted relative to the surface of the sample such that the measurement tip is the first portion of the measurement probe that is in contact with the surface of the sample, rather than the cantilever or even the fixed area of the measurement probe. Damage to the scanning probe microscope and/or the sample to be inspected can thus be avoided. Due to this precaution, the measuring probe of the scanning probe microscope can be quickly brought to a working position for the scanning process, with the result that the efficiency of the analytical instrument is improved.

懸臂的自由端的可調整彎曲(量測尖端安裝於其上)較佳在SPM的量測探針接近待掃描或待檢查的樣品表面後,但在開始執行掃描程序之前遠離樣品表面,使得在執行掃描程序期間量測探針的量測尖端與樣品表面案幾乎垂直接觸。因此,在待檢查的樣品表面的掃描期間,量測探 針及掃描探針顯微鏡的成像像差將最小化。這特別適用於表面具有陡峭的側翼及/或表面拓樸具有高外觀比的樣品。懸臂實際上是否具有所需彎曲的事實將藉由在執行SPM的掃瞄程序之前量測懸臂或其自由端實際上是否採用所需彎曲來確認。因此,在量測開始之前,量測尖端相對樣品表面有明確的定向,其結果首先為最佳化SPM的解析度,其次為有助於對量測資料的解讀。根據本發明的掃描探針顯微鏡因此使得即使是具有高外觀比的樣品也能以高解析度來進行掃描。 Adjustable bending of the free end of the cantilever (on which the measuring tip is mounted) preferably after the measuring probe of the SPM approaches the surface of the sample to be scanned or to be inspected, but away from the surface of the sample before starting the scanning procedure, so that execution is performed The measurement tip of the measurement probe is in nearly vertical contact with the sample surface during the scanning procedure. Therefore, during the scanning of the surface of the sample to be inspected, the measurement The imaging aberrations of the needle and scanning probe microscope will be minimized. This applies in particular to samples with steep flank and/or surface topography with a high aspect ratio. The fact that the cantilever actually has the desired bend will be confirmed by measuring whether the cantilever or its free end is actually using the desired bend before performing the SPM scan procedure. Therefore, before the measurement begins, the measurement tip has a clear orientation relative to the sample surface. The result is first to optimize the resolution of the SPM, and secondly to facilitate the interpretation of the measurement data. The scanning probe microscope according to the present invention thus enables scanning with high resolution even in samples having a high aspect ratio.

將量測探針盡可能垂直地導引至待檢查樣品表面、或在振盪操作模式下盡可能垂直地相對待掃描的樣品表面振盪是有利的。掃描探針顯微鏡的解析度可因此而最大化。特別地,因此也可檢查樣品表面上的結構元件的角落及邊緣。 It is advantageous to direct the measuring probe as perpendicularly as possible to the surface of the sample to be inspected or to oscillate as perpendicularly as possible to the surface of the sample to be scanned in the oscillating mode of operation. The resolution of the scanning probe microscope can thus be maximized. In particular, it is therefore also possible to inspect the corners and edges of the structural elements on the surface of the sample.

由於懸臂的彎曲的調整及監測發生在實際掃描程序之前,根據本發明的掃描探針顯微鏡可在所有傳統的操作模式下操作。 The scanning probe microscope according to the present invention can be operated in all conventional modes of operation since the adjustment and monitoring of the bending of the cantilever occurs prior to the actual scanning procedure.

至少一第一懸臂的自由端的可調整彎曲可實施為朝向待掃描的樣品表面。 The adjustable curvature of the free end of at least one of the first cantilevers can be implemented towards the surface of the sample to be scanned.

懸臂的自由端為位在懸臂具有量測探針的固定區域的懸臂端對面的懸臂端。 The free end of the cantilever is at the cantilever end opposite the cantilever end of the cantilever having a fixed area of the probe.

為掃描陡峭的側翼,將懸臂彎曲可能是有利的,使得量測尖端在掃描期間也以大角度接近陡峭側翼。由於懸臂的此彎曲,量測尖端可以大角度(理想上以高達90°的角度)掃描特定的陡峭側翼或側壁。此外,藉由懸臂的放大彎曲,可以高解析度分析陡峭側翼及樣品表面之間的特定邊緣及/或角落。整體而言,掃描探針顯微鏡的懸臂的可調整彎曲有可能最小化僅可在不確定性下被偵測或無法被偵測的樣品表面的區域。 To scan the steep flank, it may be advantageous to bend the cantilever such that the measurement tip also approaches the steep flank at large angles during the scan. Due to this bending of the cantilever, the measuring tip can scan a particular steep side or side wall at a large angle (ideally at an angle of up to 90°). In addition, specific edges and/or corners between the steep flank and the sample surface can be analyzed with high resolution by magnification bending of the cantilever. Overall, the adjustable curvature of the cantilever of the scanning probe microscope has the potential to minimize the area of the sample surface that can only be detected or undetectable under uncertainty.

至少一第一懸臂的可調整彎曲可定義至少一第一懸臂在一掃描程序期間的一振盪的一零交點。 The adjustable bend of the at least one first cantilever defines an at least one first zero canal of an oscillation of the first cantilever during a scanning procedure.

以此方式調整懸臂的可調整彎曲將致能量測尖端實質上以 一垂直角度接近待掃描的樣品表面。 Adjusting the adjustable bend of the cantilever in this way will cause the energy measurement tip to A vertical angle is close to the surface of the sample to be scanned.

掃描探針顯微鏡量測頭的至少一架座可組態以具有相對水平面為0.5°到45°、較佳為1.0°到40°、更佳為1.5°到30°、且最佳為2.0°到20°的一傾角。 At least one mount of the scanning probe microscope probe can be configured to have a relative horizontal plane of 0.5 to 45, preferably 1.0 to 40, more preferably 1.5 to 30, and most preferably 2.0. A dip to 20°.

至少一第一懸臂的可調整彎曲可實施為永久彎曲。 The adjustable curvature of the at least one first cantilever can be implemented as a permanent bend.

在此範例變化形式中,量測探針的懸臂在生產期間為彎曲,使得其量測尖端在量測探針的固定區域已架設在偏斜架座後實質垂直於樣品表面。這表示量測探針專為SPM量測頭的架座的傾斜度而生產。在掃描程序開始前,依所需量測及校正懸臂的自由端的定向以及量測尖端的定向。 In this exemplary variation, the cantilever of the measurement probe is curved during production such that its measurement tip is substantially perpendicular to the sample surface after the fixed area of the measurement probe has been mounted on the deflection mount. This means that the measuring probe is produced specifically for the inclination of the pedestal of the SPM measuring head. Prior to the start of the scanning procedure, the orientation of the free end of the cantilever is measured and corrected as needed and the orientation of the tip is measured.

至少一第一懸臂可包含至少兩個材料層,其彼此連接且其具有不同的熱膨脹係數且其永久地相對彼此預加應力。 The at least one first cantilever may comprise at least two layers of material that are connected to each other and that have different coefficients of thermal expansion and that are permanently pre-stressed relative to each other.

相對彼此的兩層的預應力可由多種方式產生。在這方面,第二層可在高溫下施加至整個懸臂或懸臂的部分。冷卻後,兩層相互施加應力,且懸臂具有沿其縱向軸的彎曲。然而,舉例來說,也有可能從熱膨脹係數不同的二或更多材料來產生懸臂,接著將其加熱至高於兩材料的其中一者的軟化點(yield point)的溫度,其結果為兩層在冷卻後形成相對彼此的永久預應力。 The two layers of pre-stress relative to each other can be produced in a variety of ways. In this regard, the second layer can be applied to the entire cantilever or portion of the cantilever at elevated temperatures. After cooling, the two layers stress each other and the cantilever has a curvature along its longitudinal axis. However, it is also possible, for example, to generate a cantilever from two or more materials having different coefficients of thermal expansion, and then heat it to a temperature higher than a yield point of one of the two materials, with the result that two layers are After cooling, permanent prestressing relative to each other is formed.

至少一第一懸臂可包含至少一第一致動器。至少一第一致動器可整合至至少一第一懸臂。此外,至少一第一致動器可配置於至少一第一懸臂的部分區域中。較佳地,至少一第一致動器配置在至少一第一懸臂的自由端的附近。 At least one first cantilever can include at least one first actuator. At least one first actuator can be integrated to the at least one first cantilever. Furthermore, at least one first actuator can be disposed in a partial region of the at least one first cantilever. Preferably, at least one first actuator is disposed adjacent the free end of the at least one first cantilever.

整合或安裝在懸臂上的第一致動器具有以下優點:懸臂的可調整彎曲可在控制信號的協助下以一定義方式調整。因此,可補償或校正SPM量測頭的架座的不同傾斜角度及/或懸臂的不同預彎曲。光學量測裝置確定是否已正確地設定適合於固定裝置的相應傾斜角的懸臂的彎曲。此 外,藉由光學量測裝置,有可能在掃瞄程序開始前,決定懸臂的自由端是否已正確地採用將懸臂的預彎曲實質補償的彎曲。 The first actuator integrated or mounted on the cantilever has the advantage that the adjustable curvature of the cantilever can be adjusted in a defined manner with the aid of control signals. Thus, different tilt angles of the mounts of the SPM measuring head and/or different pre-bends of the cantilever can be compensated or corrected. The optical measuring device determines whether the bending of the cantilever suitable for the respective tilt angle of the fixture has been correctly set. this In addition, with the optical measuring device, it is possible to determine whether the free end of the cantilever has correctly used the bending that substantially compensates for the pre-bending of the cantilever before the scanning procedure begins.

第一致動器可更組態以在待檢查的樣品表面上以一固定偏折來掃描懸臂。此外,第一致動器可組態以激發懸臂在一預定義頻率下振盪。 The first actuator can be further configured to scan the cantilever with a fixed deflection on the surface of the sample to be inspected. Additionally, the first actuator can be configured to excite the cantilever to oscillate at a predefined frequency.

第一致動器可包含多型態(multimorph)致動器及/或壓電致動器。多型態致動器可包含雙型態致動器。雙型態致動器可包含雙金屬元件。 The first actuator may comprise a multimorph actuator and/or a piezoelectric actuator. The multi-type actuator can include a dual-type actuator. The dual type actuator can comprise a bimetallic element.

雙型態致動器可由光信號及/或電信號啟動。此外,雙型態致動器可經由電子束啟動。 The dual mode actuator can be activated by an optical signal and/or an electrical signal. Furthermore, the dual-type actuator can be activated via an electron beam.

使用壓電致動器作為懸臂的彎曲元件具有壓電致動器對控制信號快速地作出反應的優點。因此,懸臂的自由端以及量測探針可動態地遠離樣品表面及朝向樣品表面偏折或彎曲,並可因此適應於待掃描的樣品表面的結構。 A curved element using a piezoelectric actuator as a cantilever has the advantage that the piezoelectric actuator reacts quickly to the control signal. Thus, the free end of the cantilever and the measurement probe can be dynamically deflected away from the surface of the sample and deflected or bent toward the surface of the sample, and can thus be adapted to the structure of the surface of the sample to be scanned.

掃描探針顯微鏡可更包含一雷射系統,其組態以在控制信號被施加到雷射系統時,使至少一第一致動器實現至少一第一懸臂的可調整彎曲。 The scanning probe microscope can further include a laser system configured to cause the at least one first actuator to achieve an adjustable bend of the at least one first cantilever when the control signal is applied to the laser system.

雷射光束可聚焦至一小焦斑(focal spot)。此外,可精準地調整其在致動器上的入射點。因此,懸臂的材料系統的部分可在雷射光束的協助下選擇性地加熱。因此,雷射光束能夠造成致動器中的一定義溫度變化。因此,透過懸臂沿其縱向軸的可調整彎曲,雷射光束非常適合於將該懸臂快速地且以針對性方式適應於樣品表面的待檢查輪廓。 The laser beam can be focused to a small focal spot. In addition, the point of incidence on the actuator can be precisely adjusted. Thus, portions of the cantilever material system can be selectively heated with the aid of a laser beam. Thus, the laser beam can cause a defined temperature change in the actuator. Thus, by the adjustable curvature of the cantilever along its longitudinal axis, the laser beam is well suited to adapt the cantilever quickly and in a targeted manner to the profile to be inspected on the surface of the sample.

此外,可使用加熱的調節以激發懸臂並因此激發量測探針的量測尖端振盪。 In addition, a heated adjustment can be used to excite the cantilever and thus the measurement tip oscillation of the excitation probe.

至少一第一懸臂可包含組態以在控制信號被施加時局部加熱雙型態致動器的加熱裝置。此外,至少一第一懸臂可包含至少一加熱電 阻器,以在控制信號被施加時局部地加熱雙型態致動器的一層。 The at least one first cantilever can include a heating device configured to locally heat the dual-type actuator when the control signal is applied. In addition, at least one first cantilever may include at least one heating A resistor to locally heat a layer of the dual-type actuator when the control signal is applied.

局部加熱裝置(其形式例如為加熱電阻器)可選擇性地加熱雙型態致動器的部分,並因此而使自由端彎曲一可調整角度,使得懸臂的自由端具有一預定義定向。 A localized heating device, in the form of, for example, a heating resistor, selectively heats the portion of the dual-type actuator and thereby bends the free end by an adjustable angle such that the free end of the cantilever has a predefined orientation.

彼此連接的至少兩材料層中的其中至少一者可包含形式為在部分區域中植入材料的加熱電阻器。加熱電阻器可由懸臂的摻雜部分實施。摻雜原子可經由植入或擴散而引入至懸臂。此外,有可能藉由氣相沉積或濺鍍施加金屬條帶來產生加熱電阻器。 At least one of the at least two material layers connected to each other may comprise a heating resistor in the form of implanted material in a partial region. The heating resistor can be implemented by a doped portion of the cantilever. The dopant atoms can be introduced to the cantilever via implantation or diffusion. In addition, it is possible to create a heating resistor by applying a metal strip by vapor deposition or sputtering.

由於所施加金屬條帶執行兩個功能的事實,具有施加金屬加熱電阻器的懸臂並沒有複雜的結構且可因此有成本效益地生產。兩個功能首先為作為雙型態結構的部分,其次為作為用以在懸臂中產生局部溫度分布的電阻器。 Due to the fact that the applied metal strip performs two functions, the cantilever with the application of the metal heating resistor has no complicated structure and can therefore be produced cost-effectively. The two functions are first part of the double-type structure, followed by the resistors used to create a local temperature distribution in the cantilever.

至少一第一致動器可組態以在掃描程序期間保持至少一第一懸臂的可調整彎曲為實質不變。 The at least one first actuator is configurable to maintain the adjustable curvature of the at least one first cantilever substantially unchanged during the scanning procedure.

在掃描程序期間,可獨立於掃描探針顯微鏡的操作模式,藉由光學量測裝置監視懸臂的可調整彎曲。這使得有可能確保在樣品檢查期間維持量測探針的量測尖端相對樣品表面的所需定向。 During the scanning procedure, the adjustable bending of the cantilever can be monitored by an optical measuring device independently of the mode of operation of the scanning probe microscope. This makes it possible to ensure that the desired orientation of the measurement tip of the measurement probe relative to the sample surface is maintained during the sample examination.

至少一第一懸臂可包含第二致動器。第二致動器可整合至至少一第一懸臂。第二致動器可組態以激發至少一第一懸臂進行一強迫振盪。此外,第二致動器可組態以在待檢查的樣品表面上以一固定的偏折掃描至少一第一懸臂。第二致動器可以雙型態致動器的形式及/或壓電致動器的形式實施。 At least one first cantilever can include a second actuator. The second actuator can be integrated into the at least one first cantilever. The second actuator is configurable to excite at least one first cantilever for a forced oscillation. Additionally, the second actuator is configurable to scan the at least one first cantilever at a fixed deflection on the surface of the sample to be inspected. The second actuator can be implemented in the form of a dual-type actuator and/or in the form of a piezoelectric actuator.

由於懸臂包含兩個致動器的事實,因此可得到作用在懸臂上的兩個參數,以首先監視或最佳化該懸臂的彎曲,其次監視或最佳化量測探針與樣品表面的互動。 Due to the fact that the cantilever contains two actuators, two parameters acting on the cantilever can be obtained to first monitor or optimize the bending of the cantilever, and secondly to monitor or optimize the interaction of the measuring probe with the surface of the sample. .

壓電致動器可組態以執行至少部分地補償量測探針的固定 區域的偏斜的至少一懸臂的可調整彎曲,或執行強化固定區域的偏斜的至少一懸臂的可調整彎曲。 The piezoelectric actuator is configurable to perform at least partially compensation of the fixation of the measurement probe An adjustable bend of at least one cantilever of the deflection of the region, or an adjustable bend of at least one cantilever that enforces deflection of the fixed region.

壓電致動器可藉由電流方向的反轉來實現懸臂在兩個相反方向中的運動。 The piezoelectric actuator can achieve the movement of the cantilever in two opposite directions by reversing the direction of the current.

至少一第一懸臂及量測尖端可具有範圍在1kHz-10MHz、較佳在5kHz-5MHz、更佳在10kHz-2MHz、且最佳在15kHz-1MHz的一共振頻率。此外,至少一懸臂可具有範圍在0.001N/m-400N/m、較佳在0.02N/m-200N/m、更佳在0.04N/m-150N/m、且最佳在0.1N/m-100N/m的一彈簧常數。 The at least one first cantilever and the measurement tip can have a resonant frequency ranging from 1 kHz to 10 MHz, preferably from 5 kHz to 5 MHz, more preferably from 10 kHz to 2 MHz, and most preferably from 15 kHz to 1 MHz. Furthermore, at least one of the cantilevers may have a range of from 0.001 N/m to 400 N/m, preferably from 0.02 N/m to 200 N/m, more preferably from 0.04 N/m to 150 N/m, and most preferably at 0.1 N/m. A spring constant of -100 N/m.

掃描探針顯微鏡可更包含組態以提供控制信號給第一致動器及/或第二致動器的控制裝置。此外,控制裝置可組態以提供控制信號給一或多個加熱裝置。 The scanning probe microscope can further include a control device configured to provide a control signal to the first actuator and/or the second actuator. Furthermore, the control device can be configured to provide a control signal to one or more heating devices.

電性連接可整合至至少一第一懸臂的固定區域,該電性連接通向一或兩個致動器或一或兩個加熱裝置。 The electrical connection can be integrated into a fixed area of at least one first cantilever that leads to one or both actuators or one or two heating devices.

掃描探針顯微鏡的探針現在較佳為可自動變化的。藉由致動器或加熱裝置的電性連接被整合至量測探針的固定區域,量測探針可自動地變化,即不需手動互動。因此,可實現掃描探針顯微鏡的簡單操作。這使得有可能在例如製造環境中使用前文定義的掃描探針顯微鏡。此外,自動探針變化確保高重現性和可靠性。此外,探針變化的自動化使得可能實現小於1分鐘的短探針更換時間。這對在真空環境下操作的掃描探針顯微鏡特別有用。 Probes for scanning probe microscopes are now preferably automatically variable. The electrical connection by the actuator or heating device is integrated into the fixed area of the measurement probe, and the measurement probe can be automatically changed, ie without manual interaction. Therefore, a simple operation of the scanning probe microscope can be achieved. This makes it possible to use a scanning probe microscope as defined above, for example in a manufacturing environment. In addition, automatic probe changes ensure high reproducibility and reliability. Furthermore, the automation of probe changes makes it possible to achieve short probe replacement times of less than 1 minute. This is especially useful for scanning probe microscopes that operate in a vacuum environment.

掃描探針顯微鏡可更包含一偵測裝置,其組態以從樣品表面的拓樸及量測探針的量測尖端的拓樸決定比起沒有以增強方式彎曲的懸臂,以增強方式朝樣品表面彎曲的懸臂是否可更正確地檢查待檢查區域。 The scanning probe microscope may further comprise a detection device configured to determine from the topography of the sample surface and the topography of the measurement probe to the cantilever that is not curved in an enhanced manner, in an enhanced manner toward the sample Whether the surface-bent cantilever can check the area to be inspected more correctly.

至少一光學量測裝置可包含一光指針系統。光指針系統可包含雷射系統及四象限光二極體,且其中雷射系統將一光束導向至至少一 第一懸臂,該光束從至少一第一懸臂反射至四象限光二極體。 At least one optical metrology device can include an optical pointer system. The light pointer system can include a laser system and a four-quadrant light diode, and wherein the laser system directs a light beam to at least one a first cantilever that reflects from at least one first cantilever to a four-quadrant light diode.

當決定懸臂沿其長軸的可調整彎曲時,在光指針系統的具體實施例中的光學量測裝置將致能高準確度。此外,掃描探針顯微鏡通常包含形式為光指針系統的光學量測裝置,使得不需要為了決定懸臂的可調整彎曲而對掃描探針顯微鏡進行複雜的改造。量測探針的縱向軸從量測尖端對稱地延伸至量測探針的固定區域。懸臂的橫向軸在量測探針的平面中垂直於縱向軸。 The optical metrology apparatus in a particular embodiment of the optical pointer system will enable high accuracy when determining the adjustable curvature of the cantilever along its long axis. In addition, scanning probe microscopes typically include an optical metrology device in the form of an optical pointer system that eliminates the need for complex modifications to the scanning probe microscope in order to determine the adjustable curvature of the cantilever. The longitudinal axis of the measurement probe extends symmetrically from the measurement tip to a fixed area of the measurement probe. The transverse axis of the cantilever is perpendicular to the longitudinal axis in the plane of the measurement probe.

至少一第一懸臂可包含壓阻感測器及/或壓電感測器。 The at least one first cantilever may comprise a piezoresistive sensor and/or a piezoelectric inductive detector.

壓電感測器可用以決定掃描程序期間量測探針與樣品表面的互動。此外,除了光學量測裝置,還可使用壓電感測器用以偵測在掃描期間作用在量測尖端的力。此外,壓阻感測器可用以在掃描程序開始之前量測懸臂的可調整彎曲。 A pressure sensor can be used to determine the interaction of the measurement probe with the surface of the sample during the scanning procedure. In addition, in addition to the optical measuring device, a piezoelectric inductive detector can be used to detect the force acting on the measuring tip during the scanning. Additionally, a piezoresistive sensor can be used to measure the adjustable bend of the cantilever prior to the start of the scanning procedure.

根據另一態樣,掃描探針顯微鏡更包含一測試本體,用以決定至少一第一懸臂的可調整彎曲。 According to another aspect, the scanning probe microscope further includes a test body for determining an adjustable bend of the at least one first cantilever.

具有定義尺寸的測試本體(其包含特別是具有已知尺寸的一或多個結構元件)可用以校正SPM量測頭的架座相對水平面的傾斜角度、懸臂的可調整彎曲及/或光學量測裝置的回應行為。掃描探針顯微鏡的校正可定期地重複。校正值可儲存於掃描探針顯微鏡的非揮發性記憶體中。校正值可用以從量測探針的一或多個掃描的資料決定懸臂的可調整彎曲及/或用以決定待檢查的樣品表面的拓樸影像。 A test body having a defined size (which comprises one or more structural elements, in particular having a known size) can be used to correct the tilt angle of the mount of the SPM measuring head relative to the horizontal plane, the adjustable bending of the cantilever and/or the optical measurement The response behavior of the device. Calibration of the scanning probe microscope can be repeated periodically. The correction value can be stored in the non-volatile memory of the scanning probe microscope. The correction value can be used to determine the adjustable curvature of the cantilever from the data of one or more scans of the measurement probe and/or to determine a topographic image of the surface of the sample to be inspected.

掃描探針顯微鏡可更包含:(d)至少一第二量測探針,其具有第二固定區域及至少一第二懸臂,其中至少一第二量測尖端係配置於至少一第二量測探針上;(e)其中至少一第二懸臂組態以在一掃描程序開始前在至少一第二懸臂的一自由端採用一可調整彎曲,該可調整彎曲至少部分地補償或增強第二固定區域的傾斜及/或至少一第二懸臂的預彎;(f)其中至少一第一懸臂及至少一第二懸臂實質上以反平行向量的形式配置。 The scanning probe microscope may further comprise: (d) at least one second measuring probe having a second fixed area and at least one second cantilever, wherein at least one second measuring tip is disposed on the at least one second measuring (e) wherein at least one of the second cantilever configurations employs an adjustable bend at a free end of the at least one second cantilever prior to the start of the scanning process, the adjustable bend at least partially compensating or enhancing the second The tilt of the fixed area and/or the pre-bend of the at least one second cantilever; (f) wherein at least one of the first cantilever and the at least one second cantilever are substantially configured in the form of anti-parallel vectors.

形式為反平行向量的兩個懸臂的配置使得有可能以高準確度分析例如一網的兩垂直側壁,其由SPM在垂直網的方向上掃描。若兩量測探針之間的距離可調整,網的兩側壁可由兩個量測探針的量測尖端同時地掃描。為此目的,為了掃描相應的側翼或側壁,相應懸臂的量測尖端朝樣品彎曲。因此,可使用量測尖端掃描樣品的區域,其中懸臂的彎曲適應於樣品表面的拓樸。 The configuration of the two cantilevers in the form of anti-parallel vectors makes it possible to analyze, for example, two vertical side walls of a net with high accuracy, which are scanned by the SPM in the direction of the vertical web. If the distance between the two measuring probes is adjustable, the two side walls of the mesh can be simultaneously scanned by the measuring tips of the two measuring probes. For this purpose, in order to scan the respective side flaps or side walls, the measuring tip of the respective cantilever is bent towards the sample. Thus, the area of the sample can be scanned using a measurement tip where the curvature of the cantilever is adapted to the topography of the sample surface.

若表面拓樸的結構為未知,則樣品區域可由實質垂直於樣品表面導引的量測尖端在第一掃描中掃描。從量測資料所產生的影像,決定用於第二掃描之相應量測尖端的懸臂的可調整彎曲。然後,使用彎曲的懸臂再次地掃描待檢查的樣品區域(例如側壁)。接著,從樣品的相同區域的兩次掃描的量測資料產生樣品表面的實際第二影像。若第二影像假設樣品表面的第二影像仍與實際不符,則待檢查樣品區域可使用不同彎曲的懸臂再次掃描。此程序可依需求重複,直到出現樣品表面的待檢查區域的真實影像。 If the structure of the surface topology is unknown, the sample area can be scanned in the first scan by a measurement tip that is substantially perpendicular to the surface of the sample. From the image produced by the measurement data, the adjustable curvature of the cantilever for the respective measurement tip of the second scan is determined. The region of the sample to be inspected (eg, the sidewall) is then scanned again using a curved cantilever. Next, the two second scanned measurements from the same area of the sample produce an actual second image of the sample surface. If the second image assumes that the second image on the surface of the sample still does not match the actual, the area of the sample to be inspected can be scanned again using a differently curved cantilever. This procedure can be repeated as needed until a real image of the area to be inspected on the surface of the sample appears.

懸臂的可調整彎曲只需要最小質量的運動。因此,可針對一掃描程序非常快速且可重複地準備量測探針。因此,懸臂的可調整彎曲所造成掃描探針顯微鏡的生產力的減少僅微不足道。 Adjustable bending of the cantilever requires only minimal mass of motion. Therefore, the measurement probe can be prepared very quickly and reproducibly for a scanning procedure. Therefore, the adjustable bending of the cantilever causes the reduction in productivity of the scanning probe microscope to be negligible.

掃描探針顯微鏡一般包含易於互換的量測探針及可模組化實施的控制裝置用以產生控制信號。因此,現有的裝置可以簡單的方式由本文所述的量測探針改造。 Scanning probe microscopes typically include an easily interchangeable measurement probe and a modularly implementable control device for generating control signals. Thus, existing devices can be retrofitted in a simple manner from the measurement probes described herein.

掃描探針顯微鏡可包含至少兩個第一懸臂及至少兩個第二懸臂,其中至少兩個第一懸臂及至少兩個第二懸臂實質上以相對彼此旋轉90°的方式配置。 The scanning probe microscope can include at least two first cantilevers and at least two second cantilevers, wherein at least two of the first cantilevers and the at least two second cantilevers are substantially configured to rotate 90[deg.] relative to each other.

在一範例具體實施例中,掃描探針顯微鏡包含四個懸臂,其在每一情況下以實質為90°的角度配置,且其量測尖端朝向彼此。在此組態中,與掃描方向無關,掃描探針顯微鏡可高度準確地分析具有彼此垂直 延伸的網的樣品,例如光學微影光罩的吸收體圖案的元素。 In an exemplary embodiment, the scanning probe microscope comprises four cantilevers, which in each case are arranged at an angle of substantially 90[deg.] and whose measuring tips are facing each other. In this configuration, regardless of the scanning direction, the scanning probe microscope can be highly accurately analyzed with perpendicular to each other. A sample of the extended web, such as an element of an absorber pattern of an optical lithographic mask.

根據另一範例具體實施例,上述問題由用以檢查樣品表面的一方法解決。用以使用包含一固定區域及至少一懸臂的至少一量測探針來檢查樣品表面的方法包含一系列步驟:(a)在一掃描程序開始前,調整在至少一懸臂的一自由端的一可調整彎曲,該可調整彎曲至少部分地補償或增強固定區域的傾斜及/或至少一懸臂的預彎;以及(b)在掃描程序開始前使用一光學量測裝置,以決定至少一懸臂是否採用可調整彎曲。 According to another exemplary embodiment, the above problem is solved by a method for inspecting the surface of a sample. The method for inspecting the surface of a sample using at least one metrology probe comprising a fixed region and at least one cantilever comprises a series of steps: (a) adjusting a free end of at least one cantilever prior to the start of a scanning procedure Adjusting the bend, the at least partially compensated or enhanced tilt of the fixed area and/or at least one pre-bend of the cantilever; and (b) using an optical measuring device prior to the start of the scanning process to determine whether at least one cantilever is employed Adjustable bending.

另一態樣更包含以下步驟:以一接觸操作模式、以一非接觸操作模式、一間歇性操作模式或一步入式操作模式執行掃描程序。 Another aspect further includes the step of performing the scanning procedure in a contact mode of operation, in a non-contact mode of operation, an intermittent mode of operation, or a one-step mode of operation.

另一態樣更包含以下步驟:當執行掃描程序時,以一封閉控制迴路操作至少一懸臂。 Another aspect further includes the step of operating at least one cantilever in a closed control loop when the scanning procedure is performed.

包含具有可沿其縱向軸調整的彎曲的懸臂的掃描探針顯微鏡可在所有傳統的操作模式下操作。因此,懸臂的可調整彎曲的調整對包含相應懸臂的SPM的使用沒有任何缺點。 A scanning probe microscope comprising a cantilever having a curvature that can be adjusted along its longitudinal axis can be operated in all conventional modes of operation. Thus, the adjustment of the adjustable bend of the cantilever does not have any disadvantages for the use of SPM containing the corresponding cantilever.

另一態樣更包含以下步驟:若在步驟(b)中的決定顯示至少一懸臂沒有正確地採用可調整彎曲,則重複步驟(a)及步驟(b)。 Another aspect further includes the step of repeating steps (a) and (b) if the decision in step (b) indicates that at least one of the cantilevers does not properly employ the adjustable bend.

所述方法的一優點為可改變懸臂的可調整彎曲,直到懸臂的自由端具有一預定義定向。如前文所解釋,懸臂的自由端的可調整彎曲可補償量測探針的固定區域相對水平面的傾斜及/或懸臂的預彎曲。 One advantage of the method is that the adjustable bend of the cantilever can be varied until the free end of the cantilever has a predefined orientation. As explained above, the adjustable curvature of the free end of the cantilever compensates for the tilt of the fixed region of the measurement probe relative to the horizontal plane and/or the pre-bend of the cantilever.

另一態樣包含以下步驟:在決定至少一懸臂的自由端已採用相對待掃描的樣品表面的預定義定向後,在待掃描的樣品表面上掃描至少一量測尖端。 Another aspect includes the step of scanning at least one measurement tip on the surface of the sample to be scanned after determining that the free end of at least one of the cantilevers has been pre-defined with respect to the surface of the sample to be scanned.

至少一懸臂的可調整彎曲可以使得待掃描的樣品表面有可能被量測尖端實質垂直地接近。 The adjustable curvature of at least one of the cantilevers may make it possible for the surface of the sample to be scanned to be substantially vertically accessed by the measuring tip.

可調整彎曲可更包含:將至少一懸臂彎曲遠離待掃描的樣品表面,使得在掃描程序開始前,至少一懸臂的自由端實質平行於待掃描 的樣品表面排列。此外,可調整彎曲可包含:將至少一懸臂的自由端朝向待掃描的樣品表面彎曲。 Adjustable bending may further comprise: bending at least one cantilever away from the surface of the sample to be scanned such that at least one free end of the cantilever is substantially parallel to the surface to be scanned before the scanning process begins The surface of the sample is arranged. Additionally, the adjustable bend can include bending the free end of the at least one cantilever toward the surface of the sample to be scanned.

另一態樣包含以下步驟:偵測樣品表面的拓樸,其實質對應量測尖端的輪廓,以決定是否傾向增強至少一懸臂的可調整彎曲。 Another aspect includes the steps of detecting a topography of the surface of the sample that substantially corresponds to the profile of the tip to determine whether it tends to enhance the adjustable curvature of at least one of the cantilevers.

另一態樣包含以下步驟:基於所偵測的樣品表面的高度梯度決定量測探針的懸臂是否以一強化方式彎曲。 Another aspect includes the step of determining whether the cantilever of the measurement probe is curved in a strengthened manner based on the detected height gradient of the surface of the sample.

上述定義的方法使得有可能在相應樣品區域的更新掃描的協助下,藉由懸臂的自由端的相應強化彎曲,在掃描程序期間識別陡峭的高側或增加樣品表面的掃描的準確度。 The method defined above makes it possible to identify a steep high side or increase the accuracy of the scanning of the sample surface during the scanning procedure by means of corresponding enhanced bending of the free end of the cantilever with the aid of an updated scan of the corresponding sample area.

根據另一態樣,上述的掃描探針顯微鏡執行上述的一方法。 According to another aspect, the scanning probe microscope described above performs a method as described above.

電腦程式可包含指令,若指令由前述掃描探針顯微鏡的其中一者執行,將使掃描探針顯微鏡執行前述其中一態樣的方法步驟。 The computer program can include instructions that, if executed by one of the aforementioned scanning probe microscopes, will cause the scanning probe microscope to perform the method steps of one of the foregoing aspects.

控制裝置可組態以使一掃描探針顯微鏡執行前述方法的方法步驟。 The control device is configurable to cause a scanning probe microscope to perform the method steps of the aforementioned method.

100‧‧‧圖式 100‧‧‧ schema

110‧‧‧樣品 110‧‧‧ samples

120‧‧‧基板 120‧‧‧Substrate

130‧‧‧結構元素 130‧‧‧Structural elements

140‧‧‧掃瞄 140‧‧‧ scan

145‧‧‧線 Line 145‧‧

150‧‧‧樣品表面 150‧‧‧ sample surface

160‧‧‧缺陷 160‧‧‧ Defects

200‧‧‧圖式 200‧‧‧ schema

260‧‧‧缺陷 260‧‧‧ Defects

300‧‧‧圖式 300‧‧‧ schema

305‧‧‧固定區域 305‧‧‧Fixed area

310‧‧‧懸臂 310‧‧‧cantilever

312‧‧‧位置 312‧‧‧ position

315‧‧‧位置 315‧‧‧ position

317‧‧‧位置 317‧‧‧Location

320‧‧‧量測尖端 320‧‧‧measuring tip

325‧‧‧尖端 325‧‧‧ tip

330‧‧‧量測探針 330‧‧‧Measurement probe

340‧‧‧架座 340‧‧‧ 座座

350‧‧‧自由端 350‧‧‧Free end

360‧‧‧軌跡 360‧‧‧Track

370‧‧‧縱向軸 370‧‧‧ longitudinal axis

380‧‧‧水平面 380‧‧‧ horizontal plane

390‧‧‧傾斜角度 390‧‧‧ tilt angle

400‧‧‧圖式 400‧‧‧ pattern

410‧‧‧側壁 410‧‧‧ side wall

420‧‧‧側壁 420‧‧‧ side wall

430‧‧‧輪廓 430‧‧‧ contour

440‧‧‧區域 440‧‧‧Area

450‧‧‧量測不確定圖 450‧‧‧Measurement uncertainty map

500‧‧‧圖式 500‧‧‧ schema

610‧‧‧計算曲線 610‧‧‧ Calculation curve

620‧‧‧計算曲線 620‧‧‧ Calculation curve

630‧‧‧計算曲線 630‧‧‧ Calculation curve

800‧‧‧圖式 800‧‧‧ schema

810‧‧‧懸臂 810‧‧‧ cantilever

860‧‧‧軌跡 860‧‧‧ track

910‧‧‧曲線 910‧‧‧ Curve

920‧‧‧曲線 920‧‧‧ Curve

930‧‧‧曲線 930‧‧‧ Curve

1100‧‧‧圖式 1100‧‧‧ schema

1105‧‧‧固定區域 1105‧‧‧Fixed area

1130‧‧‧探針 1130‧‧‧Probe

1150‧‧‧固定區域 1150‧‧‧Fixed area

1200‧‧‧顯微鏡 1200‧‧‧Microscope

1210‧‧‧樣品 1210‧‧‧ samples

1215‧‧‧定位裝置 1215‧‧‧ Positioning device

1225‧‧‧樣品台 1225‧‧‧Sample table

1260‧‧‧雷射系統 1260‧‧‧Laser system

1265‧‧‧雷射光束 1265‧‧‧Laser beam

1270‧‧‧光偵測器 1270‧‧‧Photodetector

1275‧‧‧雷射光束 1275‧‧‧Laser beam

1280‧‧‧控制裝置 1280‧‧‧Control device

1282‧‧‧連接 1282‧‧‧Connect

1284‧‧‧連接 1284‧‧‧Connect

1290‧‧‧雷射系統 1290‧‧‧Laser system

1295‧‧‧雷射光束 1295‧‧‧Laser beam

1300‧‧‧光學量測裝置 1300‧‧‧Optical measuring device

1400‧‧‧圖式 1400‧‧‧ pattern

1442‧‧‧層 1442‧‧ layer

1444‧‧‧層 1444‧‧ layer

1460‧‧‧位置 1460‧‧‧Location

1500‧‧‧圖式 1500‧‧‧ pattern

1560‧‧‧加熱電阻器 1560‧‧‧heating resistor

1565‧‧‧引線 1565‧‧‧ lead

1575‧‧‧引線 1575‧‧‧ lead

1600‧‧‧圖式 1600‧‧‧ schema

1660‧‧‧壓電致動器 1660‧‧‧ Piezoelectric Actuator

1665‧‧‧引線 1665‧‧‧ lead

1675‧‧‧引線 1675‧‧‧ lead

1710‧‧‧懸臂 1710‧‧‧cantilever

1790‧‧‧傾斜角度 1790‧‧‧ Tilt angle

1900‧‧‧圖式 1900‧‧‧ pattern

1905‧‧‧固定區域 1905‧‧‧Fixed area

1910‧‧‧懸臂 1910‧‧‧ cantilever

1920‧‧‧量測尖端 1920‧‧‧measuring tip

1930‧‧‧探針 1930‧‧‧Probe

1950‧‧‧自由端 1950‧‧‧Free end

1970‧‧‧縱向軸 1970‧‧‧ longitudinal axis

2100‧‧‧流程圖 2100‧‧‧Flowchart

2200‧‧‧流程圖 2200‧‧‧ Flowchart

以下詳細描述將參考所附隨的圖式描述本發明目前的較佳範例具體實施例,其中:圖1的上半部顯示在由掃描探針顯微鏡(AFM)掃描的樣品的基板上具有條帶的光學微影圖案化樣品的摘錄,且下半部顯示在條帶上沿掃描線之AFM的量測探針的掃瞄;圖2實質地表示圖1中樣品的摘錄,該摘錄由掃描電子顯微鏡所擷取;圖3示意地顯示掃描探針顯微鏡的量測探針,該量測探針的架座具有相對水平面的一傾斜角,並藉此將量測探針的固定區域相對水平面傾斜相同角度; 圖4描述量測探針在圖1的樣品的元件的兩側壁上的掃描的示意圖,且在下半部圖式中再現樣品結構的掃描區域的輪廓,該輪廓由掃描決定;圖5描述傾斜、振盪懸臂的自由端的軌跡示意圖;圖6描述懸臂的自由端及量測尖端的計算路徑運動,其具有針對0°的架座傾斜的懸臂的變化曲率(點線及實線)及針對8°的架座傾斜的量測尖端的變化曲率(虛線);圖7顯示圖6的一摘錄;圖8顯示遠離樣品表面彎曲的懸臂的自由端的軌跡示意圖;圖9再現圖6的自由端或量測尖端的計算路徑運動,其中量測尖端遠離樣品表面彎曲;圖10顯示圖9的一摘錄;圖11的上半部顯示一傾斜懸臂,其中由遠離樣品表面的懸臂的自由端的彎曲實質地補償傾斜,且在下半部圖式中描述相對圖4的彎曲懸臂的改良;圖12示意地再現掃描探針顯微鏡的某些重要組件;圖13示意地顯示圖12的光指針系統的重要組件;圖14示意性地顯示通過具有V型懸臂的掃描力顯微鏡的探針及架座的平面圖(頂部)及剖面圖(底部);圖15再現加熱電阻器被施加在懸臂的臂的大部分上之後的圖14的量測探針;圖16示意地顯示通過掃描力顯微鏡的量測探針及架座的平面圖(頂部)及剖面圖(底部),其中壓電致動器已安裝在V型懸臂的兩臂的大部分上;圖17示意地顯示相對水平面傾斜的量測探針,其中懸臂的自由端具有遠離樣品表面的永久彎曲; 圖18示意地顯示傾斜的懸臂,其自由端具有朝向樣品表面的暫時彎曲;圖19的上半部示意性地顯示兩個量測探針,其為平行配置且其量測尖端指向彼此,其自由端補償懸臂的傾斜,下半部圖式示意性地顯示上半部圖式的兩個量測探針,其懸臂係彎曲朝向樣品表面;圖20示意地描述四個探針的組態,其量測探針朝向彼此;圖21再現用以使用量測探針檢查樣品表面的方法流程圖,其中可以調整懸臂的自由端的定向並因此可調整量測尖端;以及圖22描述用以調整懸臂的自由端的彎曲的一範例方法的流程圖。 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present detailed description of the present invention will be described with reference to the accompanying drawings in which: the upper part of FIG. 1 shows a strip on a substrate of a sample scanned by a scanning probe microscope (AFM). The optical lithography pattern extracts the sample, and the lower half shows the scan of the measurement probe along the AFM of the scan line on the strip; Figure 2 essentially shows the excerpt of the sample in Figure 1, which is scanned by the electron Microscope capture; Figure 3 shows schematically a measurement probe of a scanning probe microscope, the mount of the measurement probe having an oblique angle with respect to a horizontal plane, and thereby tilting the fixed area of the measurement probe relative to the horizontal plane The same angle Figure 4 depicts a schematic view of the scanning of the measuring probe on both side walls of the element of the sample of Figure 1, and in the lower half of the figure the outline of the scanned area of the sample structure is reproduced, the contour being determined by scanning; Figure 5 depicts the tilt, Schematic diagram of the trajectory of the free end of the oscillating cantilever; Figure 6 depicts the free end of the cantilever and the calculated path motion of the measuring tip with the varying curvature of the cantilever tilted for the 0° mount (dotted and solid) and for 8° The slanted measuring tip of the measuring tip has a varying curvature (dashed line); FIG. 7 shows an excerpt from FIG. 6; FIG. 8 shows a trajectory of the free end of the cantilever bent away from the surface of the sample; FIG. 9 reproduces the free end or measuring tip of FIG. Calculating the path motion, wherein the measuring tip is curved away from the surface of the sample; Figure 10 shows an excerpt from Figure 9; the upper half of Figure 11 shows a tilting cantilever in which the curvature of the free end of the cantilever away from the surface of the sample substantially compensates for the tilt, And the improvement of the curved cantilever relative to FIG. 4 is described in the lower half of the drawing; FIG. 12 schematically reproduces some important components of the scanning probe microscope; FIG. 13 schematically shows the optical pointer system of FIG. Figure 14 schematically shows a plan view (top) and a cross-sectional view (bottom) of a probe and a mount through a scanning force microscope having a V-shaped cantilever; Figure 15 reproduces the large height of the heating resistor applied to the arm of the cantilever a measurement probe of FIG. 14 after a portion; FIG. 16 schematically shows a plan view (top) and a cross-sectional view (bottom) of a measurement probe and a mount through a scanning force microscope, wherein the piezoelectric actuator is mounted on a majority of the arms of the V-shaped cantilever; Figure 17 schematically shows a measurement probe tilted relative to the horizontal plane, wherein the free end of the cantilever has a permanent bend away from the surface of the sample; Figure 18 shows schematically a tilted cantilever with a free end having a temporary curvature towards the surface of the sample; the upper half of Figure 19 schematically shows two measuring probes in parallel configuration with their measuring tips pointing towards each other, The free end compensates for the tilt of the cantilever, and the lower half of the diagram schematically shows two measurement probes of the upper half of the diagram with the cantilever system curved toward the surface of the sample; Figure 20 schematically depicts the configuration of the four probes, The measurement probes are oriented toward each other; Figure 21 reproduces a flow chart of a method for inspecting the surface of a sample using a metrology probe, wherein the orientation of the free end of the cantilever can be adjusted and thus the measurement tip can be adjusted; and Figure 22 depicts the cantilever adjustment A flow chart of an exemplary method of bending the free end.

下文將參考圖1到圖4簡短地討論傳統的掃描探針顯微鏡在掃描具有高外觀比的結構時的困難。之後,將更詳細地解釋根據本發明的裝置及根據本發明的方法的當前較佳具體實施例。 The difficulty of a conventional scanning probe microscope in scanning a structure having a high aspect ratio will be briefly discussed below with reference to FIGS. 1 through 4. Hereinafter, the presently preferred embodiment of the apparatus according to the invention and the method according to the invention will be explained in more detail.

圖1的範例圖式100在上半部圖中示意性地顯示結構化樣品110的摘錄,其包含具有週期性條帶結構130的元素的規則圖案。週期性條帶的側壁非常陡峭;其理想上為垂直的。樣品110的摘錄係使用原子力顯微鏡(AFM)作為掃描探針顯微鏡(SPM)的一範例來進行掃描。圖式100的下半部表示AFM或SPM沿線145或掃描線145(即垂直於條帶結構130的元素)的掃描140。如從圖1的下半部圖可看出,週期性條帶130的高度稍微超過60nm。從下半部圖中同樣也可得到週期性條帶130具有約為200nm的寬度。樣品110的基板120及條帶結構130的元件的表面基本上都是平面的。 The example schema 100 of FIG. 1 schematically shows an excerpt of a structured sample 110 in a top half view that includes a regular pattern of elements having a periodic strip structure 130. The side walls of the periodic strip are very steep; they are ideally vertical. The excerpt of sample 110 was scanned using an atomic force microscope (AFM) as an example of a scanning probe microscope (SPM). The lower half of the diagram 100 represents a scan 140 of the AFM or SPM along line 145 or scan line 145 (i.e., an element perpendicular to the strip structure 130). As can be seen from the lower half of Figure 1, the height of the periodic strip 130 is slightly over 60 nm. It is also possible to obtain from the lower half of the figure that the periodic strip 130 has a width of about 200 nm. The surfaces of the substrate 120 of the sample 110 and the elements of the strip structure 130 are substantially planar.

此外,在下半部圖中的掃瞄140顯示條帶130的右側壁的量測以與左側壁的量測不同的角度傾斜。這顯示在SPM或AFM的協助下對圖1所示的結構化樣品110的摘錄的成像的第一個困難。 Furthermore, the scan 140 in the lower half of the graph shows that the measurement of the right side wall of the strip 130 is inclined at a different angle than the measurement of the left side wall. This shows the first difficulty in imaging the excerpt of the structured sample 110 shown in Figure 1 with the assistance of SPM or AFM.

從圖式100的上半部,可另外看出條帶結構130的中心元素或中心條帶具有沿右側翼或側壁的缺陷160,而條帶結構130的此元素的左側壁看起來沒有任何缺陷。圖2中的圖式200實質上再次顯示了來自圖1中圖式100之包含基板120及週期性條帶結構130的樣品110的摘錄。圖2中的圖式200係在掃描電子顯微鏡(SEM)的協助下擷取。除了沿條帶結構130的中心元素的右側壁的缺陷160之外,此顯微照片顯示中心結構元素130的左側翼也具有缺陷260。這表示AFM或SPM無法或至少無法明確地沿條帶結構130的一元素的左側邊緣來成像缺陷260。 From the upper half of the drawing 100, it can be additionally seen that the central element or central strip of the strip structure 130 has a defect 160 along the right side wing or side wall, while the left side wall of this element of the strip structure 130 does not appear to have any defects. . The diagram 200 of FIG. 2 substantially again shows an excerpt from the sample 110 comprising the substrate 120 and the periodic strip structure 130 of the graph 100 of FIG. The pattern 200 in Figure 2 is captured with the aid of a scanning electron microscope (SEM). In addition to the defect 160 along the right side wall of the central element of the strip structure 130, this photomicrograph shows that the left side wing of the central structural element 130 also has a defect 260. This means that the AFM or SPM cannot or at least cannot explicitly image the defect 260 along the left edge of an element of the strip structure 130.

圖1顯示在樣品110的基板120上具有結構元素130的樣品表面150的範例,其中結構元素130具有高外觀比(即結構的高度或深度與其(最小)寬度的比例)。此外,條帶結構130的元素具有陡峭的側壁或側面。以條帶130結構化的樣品110因此非常適合用以說明本發明所要解決的問題。此外,可基於此範例描述此問題的解決方案的功效,如本申請案所揭露。然而,本文所描述的掃描探針顯微鏡連同相關的方法並不限於對具有條帶結構130的樣品110的應用。而是,根據本發明的掃描探針顯微鏡及根據本發明的方法可用以分析任意的樣品。 1 shows an example of a sample surface 150 having a structural element 130 on a substrate 120 of a sample 110, wherein the structural element 130 has a high aspect ratio (ie, the height or depth of the structure is proportional to its (minimum) width). Furthermore, the elements of the strip structure 130 have steep sidewalls or sides. The sample 110 structured with the strip 130 is therefore well suited to illustrate the problems to be solved by the present invention. Furthermore, the efficacy of the solution to this problem can be described based on this example, as disclosed in the present application. However, the scanning probe microscopes described herein along with related methods are not limited to the application to the sample 110 having the strip structure 130. Rather, the scanning probe microscope according to the invention and the method according to the invention can be used to analyze any sample.

圖3中的圖式300表示具有固定區域305或固定板305、懸臂310或彈簧桿310、及量測尖端320的量測探針330。在固定區域305的協助下,量測探針330固定在AFM量測頭的架座340上。這可藉由例如夾合來實現。 The diagram 300 in FIG. 3 represents a metrology probe 330 having a fixed region 305 or fixed plate 305, a cantilever 310 or spring rod 310, and a measurement tip 320. With the aid of the fixed area 305, the measurement probe 330 is fixed to the mount 340 of the AFM measuring head. This can be achieved by, for example, clamping.

藉由架座340,量測探針330因此而併入一掃描探針顯微鏡(未示於圖3)中。量測探針330或探針330的量測尖端320較佳為安裝在懸臂310的自由端350附近。在圖3中,架座340及量測探針330的固定區域305或固定板305相對水平面380繞一橫向軸(其垂直於圖式300範例中的繪圖平面)傾斜或偏斜一角度390。架座340沿懸臂310的縱向軸370傾斜。傾斜角度390一般在5°到20°的範圍。位置315顯示傾斜或偏斜的懸臂310處於其靜止位 置。位置312及317表示振盪懸臂310的最大偏折的位置。位置315表示一強迫振盪的零交點。在振盪期間,懸臂310的自由端350沿軌跡360進行一運動。對於懸臂310的偏折312、317,懸臂310的量測尖端320的尖端325的路徑運動將跟隨軌跡360。為清楚起見,在懸臂310的位置315及317處將不顯示量測尖端320。 With the mount 340, the metrology probe 330 is thus incorporated into a scanning probe microscope (not shown in Figure 3). The measurement tip 330 of the probe 330 or probe 330 is preferably mounted adjacent the free end 350 of the cantilever 310. In FIG. 3, the mount 340 and the fixed area 305 or the fixed plate 305 of the metrology probe 330 are inclined or offset at an angle 390 relative to the horizontal plane 380 about a transverse axis that is perpendicular to the plane of the drawing in the example of the drawing 300. The mount 340 is angled along the longitudinal axis 370 of the cantilever 310. The angle of inclination 390 is generally in the range of 5° to 20°. Position 315 shows the tilted or skewed cantilever 310 in its rest position Set. Positions 312 and 317 represent the locations of the maximum deflection of the oscillating cantilever 310. Location 315 represents the zero crossing of a forced oscillation. During the oscillation, the free end 350 of the cantilever 310 performs a motion along the trajectory 360. For the deflections 312, 317 of the cantilever 310, the path motion of the tip 325 of the measurement tip 320 of the cantilever 310 will follow the trajectory 360. For the sake of clarity, the measurement tip 320 will not be displayed at positions 315 and 317 of the cantilever 310.

圖4中的圖式400顯示偏斜或傾斜探針330如何產生圖1中的圖式100。在圖4中,量測探針330分析樣品表面150,其中架座340或安裝在架座上的壓電元件激發懸臂310進行強迫振盪。在圖4的左上部分,探針330掃描樣品110的條帶結構130的一元素的表面。在上半圖的中間,懸臂310的量測尖端320沿條帶元素130右側壁410掃描。圖式右上部分顯示光罩的條帶結構130的一元素的左側壁420的掃描。圖式下半部顯示從圖4的上半部圖式的掃描所選取的輪廓。結構元件130的實質平面表面可由相對垂直於樣品110表面傾斜的量測尖端320以高解析度檢查。這對樣品110的基板120也是適用的。結構元素130的右側壁的分析(量測尖端320相對於其表面具有不同於零的小角度)也可由量測尖端320以合理的解析度分析。在條帶結構130的元素的左側橫向邊界420的檢查期間,然而,偏斜的量測尖端320的尖端325當下降至樣品表面150時將遠離側壁420的表面移動。這導致側壁420或條帶結構130的元件的邊緣的分析期間有大的量測不準確性,其導致輪廓430中左側壁420的錯誤表示440。傳統掃描探針顯微鏡的量測資料在輪廓430的區域440中不是很有彈性。線450透過一量測不確定圖來表示上述解釋。量測不確定性的區域(即條帶結構130的元素的左側壁的區域)在量測不確定性圖中以點線表示。 The diagram 400 in FIG. 4 shows how the skewed or tilted probe 330 produces the pattern 100 of FIG. In FIG. 4, the measurement probe 330 analyzes the sample surface 150, wherein the mount 340 or the piezoelectric element mounted on the mount excites the cantilever 310 for forced oscillation. In the upper left portion of FIG. 4, probe 330 scans the surface of an element of strip structure 130 of sample 110. In the middle of the upper half of the figure, the measuring tip 320 of the cantilever 310 is scanned along the right side wall 410 of the strip element 130. The upper right portion of the drawing shows a scan of the left side wall 420 of an element of the strip structure 130 of the reticle. The lower half of the figure shows the outline selected from the scan of the upper half of Figure 4. The substantially planar surface of the structural element 130 can be inspected at high resolution by a measurement tip 320 that is oblique relative to the surface of the sample 110. This is also true for the substrate 120 of the sample 110. Analysis of the right side wall of structural element 130 (measurement tip 320 has a small angle different from zero with respect to its surface) may also be analyzed by measurement tip 320 with reasonable resolution. During inspection of the left lateral boundary 420 of the elements of the strip structure 130, however, the tip 325 of the skewed measurement tip 320 will move away from the surface of the sidewall 420 when lowered to the sample surface 150. This results in large measurement inaccuracies during analysis of the edges of the sidewall 420 or the elements of the strip structure 130, which results in an erroneous representation 440 of the left side wall 420 in the profile 430. The measurement data of a conventional scanning probe microscope is not very elastic in the region 440 of the contour 430. Line 450 represents the above explanation through a measure of uncertainty. The area in which the uncertainty is measured (i.e., the area of the left side wall of the element of the strip structure 130) is indicated by a dotted line in the measurement uncertainty map.

圖5的圖式500描述懸臂310的量測尖端320的尖端325在其沿路景區線360的移動期間的移動分解成高度變化及橫向變化。 The diagram 500 of FIG. 5 depicts the movement of the tip end 325 of the measurement tip 320 of the cantilever 310 during its movement along the road view line 360 into a height change and a lateral change.

圖6顯示懸臂310的自由端350的計算曲線(點線610)、懸臂310的量測尖端320的尖端325的計算曲線(實線620)、及在架座340以及固定 區域305或懸臂310朝樣品表面150的8°額外偏斜的情況下的懸臂310的量測尖端320的尖端325的計算曲線(虛線630)。曲線表示懸臂310延伸達懸臂310的自由端350的90°彎曲的高度誇張的彎曲。經由懸臂310的曲率的量測尖端320的尖端325的高度變化h=10.23μm導致同樣為10.23μm的區域中的橫向偏移(綠色曲線)。若懸臂310為彎曲狀使得彎曲為90°,懸臂的自由端描述90°的圓弧段。在此特定的情況下,垂直及水平偏移實質上相同。額外的8°傾斜角度390導致量測尖端320的尖端325的8.7μm高度變化及約為11.0μm的橫向偏移(虛線630)。 6 shows a calculated curve of the free end 350 of the cantilever 310 (dotted line 610), a calculated curve of the tip end 325 of the measuring tip 320 of the cantilever 310 (solid line 620), and the mount 340 and the fixed The calculated curve (dashed line 630) of the tip 325 of the tip 320 of the cantilever 310 with the region 305 or cantilever 310 being deflected towards 8° of the sample surface 150. The curve represents the highly exaggerated curvature of the cantilever 310 extending up to the 90° bend of the free end 350 of the cantilever 310. The change in height of the tip 325 of the tip 320 by the curvature of the cantilever 310 is h = 10.23 μm resulting in a lateral shift (green curve) in the region also being 10.23 μm. If the cantilever 310 is curved such that the bend is 90°, the free end of the cantilever describes a 90° arc segment. In this particular case, the vertical and horizontal offsets are substantially the same. The additional 8[deg.] tilt angle 390 results in a 8.7 [mu]m height change of the tip end 325 of the measurement tip 320 and a lateral offset of about 11.0 [mu]m (dashed line 630).

圖7顯示圖6中計算曲線右上角的放大視圖。懸臂310的量測尖端320的尖端325的1μm的高度變化造成約0.2μm的橫向偏移。相較之下,針對具有8°傾斜角度的懸臂310,1μm的高度變化導致約0.4μm的量測尖端320的尖端325的橫向偏移。 Figure 7 shows an enlarged view of the upper right corner of the calculation curve in Figure 6. A 1 [mu]m height change of the tip end 325 of the measuring tip 320 of the cantilever 310 results in a lateral offset of about 0.2 [mu]m. In contrast, for a cantilever 310 having an 8[deg.] tilt angle, a height variation of 1 [mu]m results in a lateral offset of the tip end 325 of the measurement tip 320 of about 0.4 [mu]m.

圖8中的圖式800顯示彎曲懸臂810的自由端360的軌跡860。懸臂810的彎曲係遠離樣品表面150。此外,懸臂810具有相對水平面380繞量測探針330的橫向軸的偏斜或傾斜。 Diagram 800 in FIG. 8 shows a trajectory 860 of the free end 360 of the curved cantilever 810. The curvature of the cantilever 810 is away from the sample surface 150. In addition, the cantilever 810 has a deflection or tilt relative to the horizontal axis of the measurement probe 330 relative to the horizontal plane 380.

圖9中的圖式再現針對高度誇張振盪激發的彎曲懸臂810的自由端350的計算軌跡(點線910)。實線軌跡920表示量測探針330的量測尖端320的尖端325的路徑。最後,虛線曲線930顯示當懸臂810的固定板305的彎曲懸臂810具有8°傾斜角時量測尖端320的尖端325的路徑運動。 The pattern in Figure 9 reproduces the calculated trajectory (dotted line 910) of the free end 350 of the curved cantilever 810 that is excited for a highly exaggerated oscillation. The solid line trajectory 920 represents the path of the tip end 325 of the measurement tip 320 of the measurement probe 330. Finally, the dashed curve 930 shows the path motion of the tip end 325 of the measurement tip 320 when the curved cantilever 810 of the fixed plate 305 of the cantilever 810 has an 8[deg.] tilt angle.

圖10以類似圖7的方式顯示圖9中計算曲線右上角的放大視圖。懸臂810的自由端350(點線910)或量測尖端320的尖端325的1μm的高度變化造成約10nm的橫向偏移。給定此偏轉,偏斜、彎曲的懸臂860(傾斜角度8°)造成量測尖端320的尖端325約為20nm的橫向偏移。 Figure 10 shows an enlarged view of the upper right corner of the calculation curve of Figure 9 in a manner similar to Figure 7. A height variation of 1 μm of the free end 350 of the cantilever 810 (dotted line 910) or the tip end 325 of the measuring tip 320 results in a lateral offset of about 10 nm. Given this deflection, the skewed, curved cantilever 860 (inclination angle 8°) causes the tip end 325 of the measurement tip 320 to be laterally offset by approximately 20 nm.

圖11的上半圖顯示探針1130或量測探針1130,其固定區域係固定於一偏斜架座340上。架座340的傾斜角度390由遠離樣品表面150的懸臂810的可調整彎曲來補償,使得懸臂810的自由端350實質平行於樣品表 面150對齊。彎曲懸臂810的量測尖端320的尖端325實質垂直地接近樣品表面150。在掃描探針顯微鏡的振盪操作模式中,量測探針330的尖端325實質執行一垂直運動1110。尖端325的橫向偏移由彎曲懸臂810最小化。從圖11的圖式1100的下半部與圖4(參考量測不確定圖450)比較可看出,藉由最小化量測尖端320的尖端325的橫向運動,受到高度不確定性困擾的輪廓1150的區域也同樣被最小化。 The upper half of Figure 11 shows probe 1130 or measurement probe 1130 with a fixed area secured to a deflector mount 340. The angle of inclination 390 of the mount 340 is compensated by the adjustable bend of the cantilever 810 away from the sample surface 150 such that the free end 350 of the cantilever 810 is substantially parallel to the sample sheet Face 150 is aligned. The tip end 325 of the measurement tip 320 of the curved cantilever 810 approaches the sample surface 150 substantially perpendicularly. In the oscillating mode of operation of the scanning probe microscope, the tip end 325 of the metrology probe 330 substantially performs a vertical motion 1110. The lateral offset of the tip 325 is minimized by the curved cantilever 810. From the lower half of the pattern 1100 of FIG. 11 as compared to FIG. 4 (reference measurement uncertainty map 450), it can be seen that by minimizing the lateral movement of the tip end 325 of the tip 320, it is subject to high uncertainty. The area of the contour 1150 is also minimized.

圖12示意地顯示掃描探針顯微鏡1200的某些組件,其中的SPM量測頭包含用以將量測探針330、1130併入SPM 1200的架座340。掃描探針顯微鏡根據用於檢查樣品1210的測量變數來進行區分。掃描穿隧顯微鏡(STM)使用樣品1210與量測尖端320之間的穿隧電流,當施加一電壓於樣品1210及量測尖端320之間時將發生該穿隧電流,用以分析樣品1210的樣品表面150的拓樸。原子力顯微鏡(AFM)從樣品1210所造成的量測尖端320的偏折來決定樣品1210的表面拓樸150。磁力顯微鏡(MFM)量測樣品1210與量測尖端320之間的磁力。掃描近場選擇顯微鏡(SNOM)使用消散電磁波作為樣品1210與量測尖端320之間的互動。掃描近場聲學顯微鏡(SNAM)使用近場聲學互動用以掃描樣品1210的表面拓樸。掃描探針顯微鏡的此列舉並非完整的。 FIG. 12 schematically shows certain components of a scanning probe microscope 1200 that includes a mount 340 for incorporating the metrology probes 330, 1130 into the SPM 1200. The scanning probe microscope is distinguished according to the measurement variables used to inspect the sample 1210. The scanning tunneling microscope (STM) uses the tunneling current between the sample 1210 and the measurement tip 320, which will occur when a voltage is applied between the sample 1210 and the measurement tip 320 for analysis of the sample 1210. The topography of the sample surface 150. An atomic force microscope (AFM) determines the surface topography 150 of the sample 1210 from the deflection of the measurement tip 320 caused by the sample 1210. A magnetic force microscope (MFM) measures the magnetic force between the sample 1210 and the measurement tip 320. A scanning near field selection microscope (SNOM) uses dissipative electromagnetic waves as an interaction between the sample 1210 and the measurement tip 320. A scanning near-field acoustic microscope (SNAM) uses near-field acoustic interaction to scan the surface topography of sample 1210. This list of scanning probe microscopes is not complete.

懸臂810繞量測探針330的橫向軸的可調整彎曲的原理(如在本申請案中所述)可應用至具有一懸臂的所有類型的掃描探針顯微鏡的探針,即彈性可彎曲的槓桿臂或簡稱彈簧桿。量測探針不具有懸臂的掃描探針顯微鏡在用於本申請案所述組態之前需配備有懸臂810。下文將解釋原子力顯微鏡(AFM)作為掃描探針顯微鏡1200的一範例。 The principle of adjustable bending of the cantilever 810 about the transverse axis of the measurement probe 330 (as described in the present application) can be applied to probes of all types of scanning probe microscopes having a cantilever, ie, elastically bendable Lever arm or simply spring rod. A scanning probe microscope having a cantilever without a cantilever is required to be equipped with a cantilever 810 prior to use in the configuration described herein. An atomic force microscope (AFM) will be explained below as an example of a scanning probe microscope 1200.

圖12所述的原子力顯微鏡1200可在環境條件下或在真空腔(未示於圖12)中操作。待分析的樣品1210配置於樣品台1225。樣品台1225可由定位裝置1215在三個空間方向中定位。定位裝置1215包含例如一或多個微位移元件,例如形式為主軸致動器及/或壓電致動器(未示於圖12)。 The atomic force microscope 1200 illustrated in Figure 12 can be operated under ambient conditions or in a vacuum chamber (not shown in Figure 12). The sample 1210 to be analyzed is disposed on the sample stage 1225. The sample stage 1225 can be positioned in three spatial directions by the positioning device 1215. Positioning device 1215 includes, for example, one or more micro-displacement elements, such as in the form of a spindle actuator and/or a piezoelectric actuator (not shown in Figure 12).

量測探針330、1130經由架座340固定於原子力顯微鏡(AFM)1200的保持裝置(未示於圖12)上。保持裝置可經由壓電致動器(未示於圖4)連接至AFM 1200的量測頭。將架座340連接至AFM量測頭的保持裝置的壓電致動器可執行掃描裝置的功能。替代地或補充地,在另一具體實施例中,有可能將定位裝置1215及將架座340連接至保持裝置的壓電致動器之間的樣品表面150及量測尖端320間的相對運動分開。舉例來說,定位裝置1215在樣品平面(xy-平面)中執行樣品1210的運動且上述的壓電致動器實現量測尖端320在垂直於樣品的方向(z方向)中的運動。 The measurement probes 330, 1130 are fixed to a holding device (not shown in FIG. 12) of an atomic force microscope (AFM) 1200 via a mount 340. The holding device can be connected to the measuring head of the AFM 1200 via a piezoelectric actuator (not shown in Figure 4). A piezoelectric actuator that connects the mount 340 to the holding device of the AFM measuring probe can perform the function of the scanning device. Alternatively or additionally, in another embodiment, it is possible to couple the positioning device 1215 and the relative movement between the sample surface 150 and the measuring tip 320 between the piezoelectric actuators that connect the mount 340 to the holding device. separate. For example, the positioning device 1215 performs the motion of the sample 1210 in the sample plane (xy-plane) and the piezoelectric actuator described above effects the movement of the measurement tip 320 in a direction perpendicular to the sample (z direction).

然而,較佳地,以靜止的方式實施樣品台1225且量測尖端320由微位移元件(未示於圖12)帶到樣品1210的待分析區域。 Preferably, however, the sample stage 1225 is implemented in a stationary manner and the measurement tip 320 is brought by a micro-displacement element (not shown in Figure 12) to the area of the sample 1210 to be analyzed.

探針330、1130的量測尖端320可在複數個操作模式下操作。首先,其可在樣品1210的表面150上的固定高度處掃描。或者,探針330、1130可在封閉控制迴路中以恆定力在樣品表面150上導引。此外,在調解方法的協助下,有可能使懸臂310、810垂直於樣品表面150振盪,並藉此在一封閉控制迴路中掃描樣品1210的表面150。在此情況中,懸臂310、810可在其共振頻率下振盪(自振盪)或執行在預定義頻率下的強迫振盪。在首先提到的情況中(即懸臂310、810或探針330、1130在共振下振盪),進行FM(調頻)解調,其中量測由量測尖端320及樣品1210之間互動所造成的頻率變化。在共振頻率附近強迫振盪的情況下,執行AM(調幅)解調以偵測由量測尖端320及樣品表面150之間的互動所改變的振盪的振幅。 The measurement tip 320 of the probes 330, 1130 can operate in a plurality of modes of operation. First, it can be scanned at a fixed height on the surface 150 of the sample 1210. Alternatively, the probes 330, 1130 can be guided over the sample surface 150 with a constant force in a closed control loop. Moreover, with the aid of the mediation method, it is possible to oscillate the cantilever 310, 810 perpendicular to the sample surface 150 and thereby scan the surface 150 of the sample 1210 in a closed control loop. In this case, the cantilever 310, 810 can oscillate (self-oscillate) at its resonant frequency or perform forced oscillation at a predefined frequency. In the first mentioned case (i.e., the cantilever 310, 810 or probes 330, 1130 oscillate under resonance), FM (frequency modulation) demodulation is performed, wherein the measurement is caused by the interaction between the measurement tip 320 and the sample 1210. Frequency changes. In the case of forced oscillation near the resonant frequency, AM (amplitude modulation) demodulation is performed to detect the amplitude of the oscillations that are altered by the interaction between the measurement tip 320 and the sample surface 150.

由於量測尖端320與樣品1210的表面150的互動所造成的量測尖端320或懸臂310、810的偏折可使用光指針系統量測。圖13顯示一光指針系統1300。在圖13中,為清楚說明,再次分別地說明此一系統的重要組件。雷射系統1260將雷射光束1265導向至懸臂310、810的自由端。從懸臂310、810反射的雷射光束1275由光偵測器1270接收。光偵測器1270通常以四象限光二極體的形式實施。也有可能使用雙段光二極體。因此,可像懸 臂310、810的預彎及/或扭轉一樣量測用以補償傾斜角度390的懸臂310、810的自由端350的可調整彎曲。量測懸臂310、810的扭轉需要四象限光二極體作為光偵測器。 The deflection of the measurement tip 320 or cantilever 310, 810 due to the interaction of the measurement tip 320 with the surface 150 of the sample 1210 can be measured using an optical pointer system. Figure 13 shows an optical pointer system 1300. In Fig. 13, important components of this system are separately illustrated again for clarity of illustration. Laser system 1260 directs laser beam 1265 to the free ends of cantilevers 310, 810. The laser beam 1275 reflected from the cantilever 310, 810 is received by the photodetector 1270. Photodetector 1270 is typically implemented in the form of a four-quadrant photodiode. It is also possible to use a two-segment photodiode. Therefore, it can be like hanging The pre-bend and/or torsion of the arms 310, 810 are measured to compensate for the adjustable bend of the free end 350 of the cantilever 310, 810 of the angle of inclination 390. Measuring the torsion of the cantilever 310, 810 requires a four-quadrant light dipole as the photodetector.

此外,可使用光學干涉儀以決定量測探針330的量測尖端320與樣品表面150之間的距離。使用光學干涉儀也可能決定量測尖端在z方向上(即垂直於樣品表面150)的運動(未示於圖12)。此外,也可在懸臂810的壓阻元件或感測器(未示於圖12)的協助下偵測懸臂810的自由端350的對齊。此外,也有可能從光學信號與壓阻元件的量測資料的結合來決定懸臂810的自由端350相對樣品表面150或水平面380的定向(同樣未示於圖12)。 Additionally, an optical interferometer can be used to determine the distance between the measurement tip 320 of the measurement probe 330 and the sample surface 150. It may also be possible to measure the movement of the tip in the z-direction (i.e. perpendicular to the sample surface 150) using an optical interferometer (not shown in Figure 12). In addition, the alignment of the free end 350 of the cantilever 810 can also be detected with the aid of a piezoresistive element or sensor of the cantilever 810 (not shown in Figure 12). In addition, it is also possible to determine the orientation of the free end 350 of the cantilever 810 relative to the sample surface 150 or the horizontal plane 380 from the combination of the optical signal and the measurement data of the piezoresistive element (also not shown in Figure 12).

此外,原子力顯微鏡1200包含控制裝置1280。後者經由用於控制信號的引線1284連接至第二雷射系統1290。在圖12所示的範例中,在固定區域305附近的第二雷射系統1290的雷射光束1295被導引至懸臂810於V型懸臂810的兩臂上,以局部地加熱懸臂810的雙型致動器。以個別彈簧桿的形式選擇懸臂310使得有可能僅使用一個光束來工作,從而有助於雷射光束1295的調整。 In addition, the atomic force microscope 1200 includes a control device 1280. The latter is connected to the second laser system 1290 via leads 1284 for control signals. In the example shown in FIG. 12, the laser beam 1295 of the second laser system 1290 near the fixed region 305 is directed to the cantilever 810 on both arms of the V-shaped cantilever 810 to locally heat the double of the cantilever 810 Type actuator. Selecting the cantilever 310 in the form of individual spring bars makes it possible to operate with only one beam, thereby facilitating the adjustment of the laser beam 1295.

對第二雷射系統1290沒有特別的要求。其波長可任意地選擇。然而,在電磁頻譜的可見範圍內的波長有助於雷射光束1295的調整。此外,選擇雷射輻射的波長使得吸收輻射的比例盡可能高是有利的。對懸臂810的局部加熱部分,數mW的輸出功率已足夠。為了實現懸臂810的部分的局部加熱,需要聚焦在<10μm的一焦斑(focal spot)。特別地,焦斑應小於懸臂310或V型懸臂810的臂的寬度,使得只有很少的雷射輻射通過懸臂310、810到達樣品150、1210。在V型懸臂810的情況中,兩臂應被均勻地輻照。這些要求對現代的雷射系統來說沒有問題。兩個雷射系統1260及1290的波長為不同是有利的。接著,有可能使用濾波器以避免雷射1290對光偵測器1270的信號的干擾(例如由於散射光)。 There are no special requirements for the second laser system 1290. The wavelength can be arbitrarily selected. However, wavelengths in the visible range of the electromagnetic spectrum contribute to the adjustment of the laser beam 1295. Furthermore, it is advantageous to select the wavelength of the laser radiation such that the proportion of absorbed radiation is as high as possible. For the locally heated portion of the cantilever 810, an output power of several mW is sufficient. In order to achieve localized heating of portions of the cantilever 810, it is desirable to focus on a focal spot of <10 [mu]m. In particular, the focal spot should be smaller than the width of the arms of the cantilever 310 or the V-shaped cantilever 810 such that only a small amount of laser radiation passes through the cantilevers 310, 810 to the samples 150, 1210. In the case of a V-shaped cantilever 810, the arms should be uniformly irradiated. These requirements are no problem for modern laser systems. It is advantageous to have different wavelengths of the two laser systems 1260 and 1290. Next, it is possible to use a filter to avoid interference of the laser 1290 with the signal of the photodetector 1270 (eg, due to scattered light).

此外,控制裝置1280具有連接至架座340的第二連接1282。 經由連接1282,來自控制裝置1280的控制信號可傳送至探針1130的懸臂810。在後續圖式中顯示用於原子力顯微鏡1200的數個範例懸臂810。熟此技藝者將理解到同樣可使用其他類型的懸臂,例如圖3中所述的懸臂310。此外,懸臂810的自由端350的可調整彎曲可藉由經由連接1282及/或1284施加控制信號或調整信號到懸臂810來實現。 Additionally, control device 1280 has a second connection 1282 that is coupled to mount 340. Via the connection 1282, a control signal from the control device 1280 can be transmitted to the cantilever 810 of the probe 1130. Several example cantilevers 810 for the atomic force microscope 1200 are shown in subsequent figures. Those skilled in the art will appreciate that other types of cantilevers can be used as well, such as the cantilever 310 described in FIG. Moreover, the adjustable bending of the free end 350 of the cantilever 810 can be accomplished by applying a control signal or adjusting a signal to the cantilever 810 via connections 1282 and/or 1284.

圖14中的圖式1400的上半部顯示探針1130的平面圖,且下半圖顯示通過探針1130的對稱平面或縱向軸370及量測探針320的剖面圖。圖14下方所示的yz平面對應通過懸臂810及其量測尖端320的截面。如前文已在圖3的討論的上下文中所作的解釋,探針1130具有固定區域1150、量測尖端320及懸臂810。在固定區域1105的協助下,量測探針1130安裝於架座340上。懸臂810包含彼此相疊配置且具有不同的熱膨脹係數的兩層1442及1444。兩層1442及1444可例如由半導體及/或電絕緣材料建構。此處應提到矽(Si)作為半導體層的範例,及氮化矽(Si3N4)作為絕緣體材料的範例。此外,兩層1442或1444中的一個有可能包含金屬層,例如鋁層或鉻層,且第二層有可能包含半導體層或電絕緣層,例如聚合物層。此外,只要該材料具有不同的線性熱膨脹係數,所有材料都可用於兩層1442和1444。 The upper half of the diagram 1400 in FIG. 14 shows a plan view of the probe 1130, and the lower half shows a cross-sectional view through the symmetry plane or longitudinal axis 370 of the probe 1130 and the measurement probe 320. The yz plane shown at the bottom of FIG. 14 corresponds to a section through the cantilever 810 and its measuring tip 320. As previously explained in the context of the discussion of FIG. 3, the probe 1130 has a fixed area 1150, a measurement tip 320, and a cantilever 810. With the aid of the fixed area 1105, the measurement probe 1130 is mounted on the mount 340. The cantilever 810 includes two layers 1442 and 1444 that are disposed one on another and have different coefficients of thermal expansion. The two layers 1442 and 1444 can be constructed, for example, from a semiconductor and/or electrically insulating material. Here, 矽 (Si) as an example of a semiconductor layer, and yttrium nitride (Si 3 N 4 ) as an example of an insulator material should be mentioned here. Furthermore, one of the two layers 1442 or 1444 may comprise a metal layer, such as an aluminum layer or a chromium layer, and the second layer may comprise a semiconducting layer or an electrically insulating layer, such as a polymer layer. In addition, as long as the material has different linear thermal expansion coefficients, all materials can be used for two layers 1442 and 1444.

此外,可想像得到,將不同元素或不同化合物在在整個區域上植入到懸臂810的材料中或到部分區域中至一特定深度,以因此而產生第二層,其線性膨脹不同於懸臂310、810的材料。在此情況下,可使用半導體製造中已知的方法及材料。可從懸臂310、810的頂側(即遠離量測尖端320之側)及/或從懸臂310、810的下側(即具有量測尖端320之側)進行植入。 Furthermore, it is conceivable that different elements or different compounds are implanted throughout the region into the material of the cantilever 810 or into a partial region to a specific depth, thereby creating a second layer having a linear expansion different from that of the cantilever 310 , 810 materials. In this case, methods and materials known in semiconductor manufacturing can be used. Implantation can be performed from the top side of the cantilever 310, 810 (i.e., away from the side of the measurement tip 320) and/or from the underside of the cantilever 310, 810 (i.e., the side with the measurement tip 320).

量測尖端320可由懸臂810的下層1444的材料、由上層1442的材料、或由不同的材料產生。這同樣適用於固定區域1105或固定板1105。這表示可整體地實施量測尖端320、層1442或1444的其中一層及固定板1105。或者,個別或所有組件可由適當材料分開地製造,然後再彼此連接,例如藉由黏劑接合。 The measurement tip 320 can be produced from the material of the lower layer 1444 of the cantilever 810, from the material of the upper layer 1442, or from a different material. The same applies to the fixed area 1105 or the fixed plate 1105. This means that one of the measurement tips 320, layers 1442 or 1444 and the fixed plate 1105 can be implemented integrally. Alternatively, individual or all of the components may be fabricated separately from suitable materials and then joined to each other, such as by an adhesive.

懸臂310、810的對稱溫度變化導致在yz平面中的懸臂810的自由端350的彎曲。懸臂810的局部加熱可例如以雷射系統1290的雷射光束1295在位置460處由光束的局部輻照來產生。懸臂810的彎曲為與在位置1460引入的光功率成比例的第一近似。除了雷射光束1295的光功率之外,懸臂310、810的自由端350的彎曲範圍也取決於雷射光束1295入射在懸臂310、810上的位置1460。此外,雷射光束1295撞擊於其上的材料的吸收係數及其特定的熱傳導(以及輻照的持續時間)將影響懸臂310、810的自由端350的可調整彎曲。 The symmetrical temperature variation of the cantilevers 310, 810 causes bending of the free end 350 of the cantilever 810 in the yz plane. Localized heating of the cantilever 810 can be produced, for example, by laser beam 1295 of the laser system 1290 at a location 460 by localized irradiation of the beam. The curvature of the cantilever 810 is a first approximation that is proportional to the optical power introduced at location 1460. In addition to the optical power of the laser beam 1295, the range of curvature of the free end 350 of the cantilever 310, 810 also depends on the location 1460 at which the laser beam 1295 is incident on the cantilever 310, 810. Moreover, the absorption coefficient of the material onto which the laser beam 1295 impinges and its particular heat transfer (and the duration of the irradiation) will affect the adjustable bending of the free end 350 of the cantilever 310, 810.

當控制裝置1280的控制信號經由連接1284施加至雷射系統1290,由於懸臂810的低質量,懸臂810的可調整彎曲在微秒範圍內以非常短的時間常數實現。從雷射光束1295在懸臂810上的位置1460處的第一次入射到在懸臂810內設定穩定狀態的持續時間很大程度上取決於層1442及1444的材料的熱導性。此外,該時間常數受到懸臂310、810的膨脹以及受到固定板1105的體積及材料很大的影響。熱時間常數因此在數微妙到毫秒的範圍內變化。在雷射光束1295被控制裝置1280關閉後,懸臂310、810再次回到熱平衡的時間常數通常更大。 When the control signal of control device 1280 is applied to laser system 1290 via connection 1284, the adjustable bend of cantilever 810 is achieved in the microsecond range with a very short time constant due to the low mass of cantilever 810. The duration from the first incidence of laser beam 1295 at location 1460 on cantilever 810 to the steady state set within cantilever 810 is highly dependent on the thermal conductivity of the materials of layers 1442 and 1444. Moreover, this time constant is affected by the expansion of the cantilever arms 310, 810 and by the volume and material of the fixed plate 1105. The thermal time constant therefore varies from a few microseconds to a millisecond. After the laser beam 1295 is turned off by the control device 1280, the time constant for the cantilever 310, 810 to return to thermal equilibrium again is typically greater.

為了讓懸臂310、810的自由端350在掃描程序期間維持彎曲,因此必須藉由持續的能量供應來維持局部溫度梯度。若量測探針1130在調解方式下操作,懸臂810在z方向上振盪。然而,懸臂振盪的振幅一般為小(<1μm),因此後者對第一近似可忽略。 In order for the free ends 350 of the cantilevers 310, 810 to remain curved during the scanning procedure, local temperature gradients must be maintained by a sustained energy supply. If the measurement probe 1130 is operated in a mediation mode, the cantilever 810 oscillates in the z direction. However, the amplitude of the cantilever oscillation is generally small (<1 μm), so the latter is negligible for the first approximation.

在位置1460區域中的局部溫度增加不僅取決於雷射光束1295的功率,也取決於雷射光束1295在懸臂810上的材料1442及1444及位置1460。 The increase in local temperature in the region of position 1460 depends not only on the power of the laser beam 1295, but also on the materials 1442 and 1444 and the position 1460 of the laser beam 1295 on the cantilever 810.

圖14所示的範例懸臂810包含具有不同熱膨脹係數的兩個材料。也有可能將三個或更多材料相疊配置。然而,三個或更多不同材料相疊配置的情況下,應注意確保懸臂810的共振頻率維持在10kHz到20MHz 的範圍內。 The example cantilever 810 shown in Figure 14 contains two materials having different coefficients of thermal expansion. It is also possible to stack three or more materials together. However, in the case where three or more different materials are stacked, care should be taken to ensure that the resonant frequency of the cantilever 810 is maintained at 10 kHz to 20 MHz. In the range.

此外,在圖14所示的範例中,兩層1442及1444在整個懸臂810上延伸。然而,也有可能層1442及1444的其中一層或兩層沒有在整個懸臂810上延伸(未示於圖14中)。 Moreover, in the example shown in FIG. 14, two layers 1442 and 1444 extend over the entire cantilever 810. However, it is also possible that one or both of layers 1442 and 1444 do not extend over the entire cantilever 810 (not shown in Figure 14).

圖15的圖式1500顯示圖14中的懸臂810,其包含具有不同熱膨脹係數的兩個材料1442及1444。此外,懸臂810包含形式為兩個加熱電阻器1560的加熱裝置,其安裝於懸臂810的兩臂上。加熱電阻器1560可例如以薄塗層的形式實施。當前的較佳材料為鋁。鋁首先具有高的熱膨脹係數,其次有相對高的電阻。具有類似特性的其他金屬同樣也可使用。 Figure 1500 of Figure 15 shows the cantilever 810 of Figure 14 containing two materials 1442 and 1444 having different coefficients of thermal expansion. In addition, the cantilever 810 includes a heating device in the form of two heating resistors 1560 that are mounted on the arms of the cantilever 810. Heating resistor 1560 can be implemented, for example, in the form of a thin coating. The current preferred material is aluminum. Aluminum first has a high coefficient of thermal expansion, and secondly has a relatively high electrical resistance. Other metals with similar properties can also be used.

為簡化起見,加熱電阻器1560在圖15中以矩形的形式來表示。加熱電阻器一般具有蜿蜒的電導體結構。在此情況下,導體的寬度在數微米的範圍內。導體的長度一般為數百微米,例如200μm到500μm。 For the sake of simplicity, the heating resistor 1560 is shown in the form of a rectangle in FIG. Heating resistors generally have a meandering electrical conductor structure. In this case, the width of the conductor is in the range of a few microns. The length of the conductor is typically several hundred microns, for example 200 μm to 500 μm.

下文將基於一範例解釋加熱電阻器應用於懸臂810。例示性懸臂810包含4.6μm厚的矽層。後者由0.6μm厚的氧化矽層覆蓋。在第一步驟中,在氧化矽層上沉積一薄鉻層(約50nm)作為黏著促進層。在鉻層上沉積形式為折疊導體結構的1μm厚的鋁層,其作用為加熱電阻器。 The application of a heating resistor to the cantilever 810 will be explained below based on an example. The exemplary cantilever 810 comprises a 4.6 [mu]m thick layer of tantalum. The latter is covered by a 0.6 μm thick layer of ruthenium oxide. In the first step, a thin chromium layer (about 50 nm) is deposited on the ruthenium oxide layer as an adhesion promoting layer. A 1 μm thick aluminum layer in the form of a folded conductor structure was deposited on the chrome layer, which acts as a heating resistor.

加熱電阻器也可藉由植入摻雜物到半導體懸臂310、810而產生。此程序在「PRONANO:用於奈米尺度分析和合成的大規模平行智能懸臂探針平台上的整合計畫的程序(PRONANO:proceedings of the integrated project on massively parallel intelligent cantilever probe platforms for nanoscale analysis and synthesis)」一書中有描述,其由Thomas Sulzbach和Ivo W.Rangelow編輯,Münster:出版商Monsenstein和Vannerdat,ISBN:978-3-86991-177-9。 Heating resistors can also be created by implanting dopants into the semiconductor cantilevers 310, 810. PRONANO: Proceedings of the integrated project on massively parallel intelligent cantilever probe platforms for nanoscale analysis and synthesis in PRONANO: Proceedings of the integrated project on massively parallel intelligent cantilever probe platforms for nanoscale analysis and synthesis It is described in the book, edited by Thomas Sulzbach and Ivo W. Rangelow, Münster: Publishers Monsenstein and Vannerdat, ISBN: 978-3-86991-177-9.

在圖15所述的具體實施例中,除了懸臂810的兩層1442及1444,也施加了加熱電阻器1560。然而,當施加加熱電阻器1560時,也有可能省去兩層1442及1444中的一層。具有不同於懸臂810的層1442及1444的 線性熱膨脹的加熱電阻器1560接著執行懸臂810的第二層的功能。然而,有可能藉由植入摻雜物至懸臂810的臂中來產生加熱電阻器1560。 In the particular embodiment illustrated in Figure 15, a heating resistor 1560 is applied in addition to the two layers 1442 and 1444 of the cantilever 810. However, when the heating resistor 1560 is applied, it is also possible to omit one of the two layers 1442 and 1444. Having layers 1442 and 1444 different from cantilever 810 The linear thermally expanded heating resistor 1560 then performs the function of the second layer of the cantilever 810. However, it is possible to create the heating resistor 1560 by implanting dopants into the arms of the cantilever 810.

加熱電阻器1560具有兩個引線1565及1575,其通過量測探針1130的固定區域1105並將加熱電阻器1560經由連接1282連接至控制裝置1280。 The heating resistor 1560 has two leads 1565 and 1575 that pass through the fixed area 1105 of the probe 1130 and connect the heating resistor 1560 to the control device 1280 via the connection 1282.

加熱電阻器1560允許安裝加熱電阻器1560於其上的懸臂810的局部加熱。以類似於在圖14的討論的上下文中所解釋的方式,懸臂810的局部加熱導致量測探針330的自由端350及懸臂810相對樣品表面150的可調整彎曲。用以在懸臂810內設定在加熱電阻器1560的局部熱供應與固定板1105的熱散逸之間的一穩定狀態的熱時間常數具有與前述相同的數量級。由於懸臂810的低質量,即使在數mW範圍內的低電功率就已足夠(一般在2mW到10mW的範圍),其由加熱電阻器1560轉換為熱,以可調整地彎曲懸臂810的自由端350。 Heating resistor 1560 allows for localized heating of cantilever 810 on which heating resistor 1560 is mounted. Local heating of the cantilever 810 results in an adjustable bend of the free end 350 of the probe probe 330 and the cantilever 810 relative to the sample surface 150 in a manner similar to that explained in the context of the discussion of FIG. The thermal time constant used to set a steady state between the local heat supply of the heating resistor 1560 and the heat dissipation of the fixed plate 1105 within the cantilever 810 has the same order of magnitude as previously described. Due to the low mass of the cantilever 810, even low electrical power in the range of a few mW is sufficient (typically in the range of 2 mW to 10 mW), which is converted to heat by the heating resistor 1560 to adjustably bend the free end 350 of the cantilever 810 .

加熱電阻器1560可數位地操作,即當施加控制信號時,一預定義電壓施加至加熱電阻器1560且後者將一定義電功率轉換為對應的熱能量。或者,加熱電阻器1560也可以類比的方式操作,使得加熱電阻器1560的電功率耗損可根據出現在引線1565及1575上的電壓而設定。若使用圖12所示的原子力顯微鏡,加熱電阻器1560也可用於封閉控制迴路。在此情況下,懸臂810的自由端350的定向與水平面370的偏差(其可經由光指針系統決定)可作用為控制變數。 The heating resistor 1560 can be operated digitally, i.e., when a control signal is applied, a predefined voltage is applied to the heating resistor 1560 and the latter converts a defined electrical power to a corresponding thermal energy. Alternatively, the heating resistor 1560 can also be operated in an analogous manner such that the electrical power loss of the heating resistor 1560 can be set according to the voltages appearing on the leads 1565 and 1575. If an atomic force microscope as shown in Fig. 12 is used, the heating resistor 1560 can also be used to close the control loop. In this case, the deviation of the orientation of the free end 350 of the cantilever 810 from the horizontal plane 370 (which may be determined via the optical pointer system) may act as a control variable.

在圖15的範例中,加熱電阻器1560安裝於懸臂810的頂側。在一替代形式中,加熱電阻器1560可安裝於懸臂810的底側(未示於圖15)。這具有的優點為,加熱電阻器無法不利地影響用以決定懸臂810的自由端350的彎曲及/或偏折的雷射光束1265的位置。另一方面,安裝於懸臂640底側的加熱電阻器稍微地降低了懸臂810與樣品表面150之間的距離。 In the example of FIG. 15, a heating resistor 1560 is mounted on the top side of the cantilever 810. In an alternative form, heating resistor 1560 can be mounted to the underside of cantilever 810 (not shown in Figure 15). This has the advantage that the heating resistor cannot adversely affect the position of the laser beam 1265 that determines the bending and/or deflection of the free end 350 of the cantilever 810. On the other hand, the heating resistor mounted on the bottom side of the cantilever 640 slightly reduces the distance between the cantilever 810 and the sample surface 150.

圖14及圖15描述用於原子力顯微鏡的探針1130,其懸臂以V 形的方式實施。然而,在此申請案中所定義的原子力顯微鏡也可使用其懸臂以不同方式組態的探針1130,例如圖3中的條帶型懸臂310。 Figures 14 and 15 depict a probe 1130 for an atomic force microscope with a cantilever of V The form is implemented. However, the atomic force microscope defined in this application can also use a probe 1130 whose cantilever is configured in a different manner, such as the strip type cantilever 310 of FIG.

圖16中的圖式1600顯示懸臂810,其具有壓電致動器1660安裝於其兩臂上。懸臂810包含實質均勻的材料層1442。壓電致動器1660經由引線1665及1675及1282及連接至原子力顯微鏡1200的控制裝置1280。 Diagram 1600 in Figure 16 shows a cantilever 810 having a piezoelectric actuator 1660 mounted to its arms. Cantilever 810 includes a substantially uniform layer of material 1442. Piezoelectric actuator 1660 is coupled to control device 1280 of atomic force microscope 1200 via leads 1665 and 1675 and 1282.

壓電致動器可以例如氧化鋅(ZnO)致動器的形式施加至懸臂810,如前文針對加熱電阻器所述。這例如由作者S.R.Manalis、S.C.Minne及C.F.Quate在文章「使用具有積體致動器及感測器的懸臂的用於高速成像的原子力顯微鏡(Atomic force microscopy for high speed imaging using cantilevers with an integrated actuator and sensor)」,Appl.Phys.Lett.68,871(1996)中所描述。一般而言,使用來自半導體工業及MEMS(微機電系統)生產的幾乎完全整合的生產方法來沉積或實施壓電致動器1660 The piezoelectric actuator can be applied to the cantilever 810 in the form of, for example, a zinc oxide (ZnO) actuator, as previously described for the heating resistor. For example, by the authors SRManalis, SCMinne, and CFQuate in the article "Atomic force microscopy for high speed imaging using cantilevers with an integrated actuator" (Atomic force microscopy for high speed imaging using cantilevers with an integrated actuator) And sensor)", as described in Appl. Phys. Lett. 68, 871 (1996). In general, piezoelectric actuators 1660 are deposited or implemented using an almost fully integrated production method from the semiconductor industry and MEMS (Micro Electro Mechanical Systems) production.

在壓電致動器1660的協助下,懸臂810的自由端350的可調整彎曲具有以下優點:懸臂810的自由端可遠離樣品表面150或朝樣品表面150快速地彎曲。壓電致動器的反應時間受限於其相對大的電容,其在施加電壓變化時將導致一電流。壓電致動器的電容與引線1665及1675的電阻一起限制了自由端350對施加至引線1665、1675的電壓信號變化的反應。 With the aid of the piezoelectric actuator 1660, the adjustable bending of the free end 350 of the cantilever 810 has the advantage that the free end of the cantilever 810 can be bent away from the sample surface 150 or toward the sample surface 150. The reaction time of a piezoelectric actuator is limited by its relatively large capacitance, which will cause a current when a voltage change is applied. The capacitance of the piezoelectric actuator together with the resistance of leads 1665 and 1675 limits the reaction of free end 350 to changes in the voltage signal applied to leads 1665, 1675.

在圖14到圖16的範例具體實施例中,可調整懸臂810的彎曲以盡可能地補償固定區域1105的偏斜及/或併入懸臂810的預彎。然而,也有可能裝配具有遠離樣品表面150的一固定合併彎曲的懸臂。圖17表示具有永久彎曲的懸臂1710。永久彎曲可例如藉由在高於或低於室溫的一溫度下施加第二層至現有懸臂上而產生,其中第二層由具有與第一層材料的熱膨脹係數不同的一熱膨脹係數的材料所構成。冷卻或加熱至室溫將給兩層應力,藉此而形成懸臂1710的永久性彎曲。 In the exemplary embodiment of FIGS. 14-16, the curvature of the cantilever 810 can be adjusted to compensate for the deflection of the fixed region 1105 and/or to incorporate the pre-bend of the cantilever 810 as much as possible. However, it is also possible to assemble a cantilever with a fixed merged bend away from the sample surface 150. Figure 17 shows a cantilever 1710 with permanent curvature. Permanent bending can be produced, for example, by applying a second layer to a prior cantilever at a temperature above or below room temperature, wherein the second layer is comprised of a material having a coefficient of thermal expansion that is different from the coefficient of thermal expansion of the first layer of material. Composition. Cooling or heating to room temperature will give two layers of stress, thereby forming a permanent bend of the cantilever 1710.

或者,可將永久彎曲引入至包含具有不同熱膨脹係數的兩種材料的懸臂1710中,其藉由將懸臂1710加熱超過在較低溫度下熔化的材 料的延伸限制的短時間。 Alternatively, permanent bending can be introduced into a cantilever 1710 comprising two materials having different coefficients of thermal expansion by heating the cantilever 1710 beyond the material that melts at a lower temperature. The extension of the material is limited for a short time.

具有固定永久彎曲的懸臂1710係針對架座340的特定傾斜角1790而設計。 The cantilever 1710 with a fixed permanent bend is designed for a particular tilt angle 1790 of the mount 340.

圖18示意性地顯示一範例具體實施例,其中懸臂310、810藉由致動器1560或1660或藉由雷射光束1290以不同於圖14至圖16中的方式朝樣品表面150彎曲。架座340及懸臂310、810的固定區域305、1105相對水平面380傾斜了角度390、1790。如前文所解釋,傾斜角度390、1790可例如為10°。在懸臂310、810的此組態中,樣品110的條帶結構130的一元件的側壁410可被以比無彎曲或向上彎曲的懸臂310、810(亦即遠離樣品表面彎曲的懸臂810)更高的準確率來分析。 Figure 18 schematically illustrates an exemplary embodiment in which the cantilever arms 310, 810 are bent toward the sample surface 150 by an actuator 1560 or 1660 or by a laser beam 1290 in a manner different from that of Figures 14-16. The fixed regions 305, 1105 of the mount 340 and the cantilever 310, 810 are inclined at an angle 390, 1790 with respect to the horizontal plane 380. As explained above, the tilt angles 390, 1790 can be, for example, 10°. In this configuration of the cantilevers 310, 810, the sidewall 410 of an element of the strip structure 130 of the sample 110 can be more than the cantilever 310, 810 (i.e., the cantilever 810 that is curved away from the surface of the sample) that is not curved or curved upwards. High accuracy to analyze.

若懸臂310、810包含致能自由端350在相反方向中彎曲的一或複數個致動器1660,有可能在樣品表面150上以懸臂310、810執行第一次掃描程序,其自由端350盡可能地補償架座340的傾斜角度或懸臂310、810的預彎。若由第一次掃描產生的樣品表面150的輪廓包含懸臂310、810無法真實地掃描樣品表面150的特定區域(例如側壁410)的指示,則在第二次掃描之前,懸臂310、810在另一方向彎曲(即朝樣品表面150)並以如此備製的懸臂310、810進行側壁410的第二次掃描。從兩次掃描的資料的疊加,控制裝置1280可決定在側壁410區域中的樣品表面150的實際輪廓。 If the cantilever 310, 810 includes one or more actuators 1660 that enable the free end 350 to bend in the opposite direction, it is possible to perform the first scanning procedure on the sample surface 150 with the cantilevers 310, 810, with the free end 350 It is possible to compensate for the tilt angle of the mount 340 or the pre-bend of the cantilever 310, 810. If the contour of the sample surface 150 produced by the first scan includes an indication that the cantilever 310, 810 cannot actually scan a particular region of the sample surface 150 (eg, sidewall 410), the cantilever 310, 810 is in another prior to the second scan. The second direction of the sidewall 410 is performed by bending in one direction (i.e., toward the sample surface 150) and with the cantilever arms 310, 810 thus prepared. From the superposition of the two scanned data, control device 1280 can determine the actual contour of sample surface 150 in the region of sidewall 410.

圖19中的圖式1900顯示包含兩個探針330及1930的組態,在其協助下可重複地掃描網的兩個側表面。兩個探針330配置為彼此反平行,即量測尖端320及1920指向彼此。固定區域305及1905繞其縱向軸370及1970傾斜一角度。兩個固定區域305及1905可具有相同或不同的傾斜角。懸臂810及1910可為相同類型的懸臂。對懸臂810及1910也有可能使用不同類型的懸臂。這同樣適用於量測尖端320及1920。 The diagram 1900 in Figure 19 shows a configuration comprising two probes 330 and 1930 with the aid of which the two side surfaces of the web can be repeatedly scanned. The two probes 330 are configured to be anti-parallel to each other, i.e., the measurement tips 320 and 1920 are directed toward each other. The fixed regions 305 and 1905 are angled about their longitudinal axes 370 and 1970. The two fixed regions 305 and 1905 can have the same or different tilt angles. Cantilevers 810 and 1910 can be the same type of cantilever. It is also possible to use different types of cantilevers for the cantilevers 810 and 1910. The same applies to the measurement tips 320 and 1920.

在上半部圖中,兩量測探針330及1930的懸臂810及1910遠離樣品表面150彎曲,以由懸臂810、1910的自由端350、1950盡可能地補償 固定區域305及1905的傾斜。在此對齊中,有可能以高解析度掃描樣品的平面區域,例如樣品110的基板120或條帶結構130的元件的表面。 In the upper half of the figure, the cantilever arms 810 and 1910 of the two measuring probes 330 and 1930 are bent away from the sample surface 150 to compensate as much as possible by the free ends 350, 1950 of the cantilever 810, 1910. The inclination of the fixed areas 305 and 1905. In this alignment, it is possible to scan a planar area of the sample, such as the substrate 120 of the sample 110 or the surface of the elements of the strip structure 130, with high resolution.

在圖19的下半部圖中,懸臂810及1910朝樣品表面150彎曲。以此調整,量測探針330可以改良的準確率掃描圖1中樣品110的條帶結構130的一元件的左側壁410。類似地,量測探針1930可掃描樣品110的條帶結構130的一元件的右側壁420。從兩個懸臂810及1910在不具有高外觀比的樣品表面150的區域上的掃描以及朝樣品表面150彎曲的傾斜懸臂810及1910在陡峭壁上的個別掃描,掃描探針顯微鏡1200的控制裝置1280可產生樣品表面150的實際輪廓。 In the lower half of FIG. 19, the cantilevers 810 and 1910 are curved toward the sample surface 150. With this adjustment, the measurement probe 330 can scan the left side wall 410 of an element of the strip structure 130 of the sample 110 of FIG. 1 with improved accuracy. Similarly, the metrology probe 1930 can scan the right side wall 420 of an element of the strip structure 130 of the sample 110. Control of the scanning probe microscope 1200 from the scanning of the two cantilevers 810 and 1910 on the area of the sample surface 150 without a high aspect ratio and the individual scans of the inclined cantilevers 810 and 1910 curved toward the sample surface 150 on a steep cliff 1280 can produce an actual contour of the sample surface 150.

在圖19中,樣品表面150的掃瞄以相對兩個量測探針330及1930的配置的平行方式來進行。然而,平行探針330及1930的掃描方向定位的陡峭側壁難以由探針330及1930進行掃描。圖20顯示在各個情況下包含兩量測探針330及1930兩次的組態。在此處,兩探針330及1930以在各個情況下相對彼此旋轉90°的方式配置。若在此配置中,掃描探針顯微鏡1200包含兩個量測探針330及1930,則SPM 1200可實際地成像結構元件具有含陡峭側壁的矩形形狀的樣品表面150。為了掃描不具有高外觀比的樣品表面150的區域,懸臂810及1910的自由端350、1950可平行於樣品表面150對齊並單獨地或組合地掃描樣品表面。 In Figure 19, the scan of the sample surface 150 is performed in a parallel manner relative to the configuration of the two measurement probes 330 and 1930. However, the steep sidewalls of the parallel probes 330 and 1930 that are positioned in the scanning direction are difficult to scan by the probes 330 and 1930. Figure 20 shows a configuration comprising two measuring probes 330 and 1930 twice in each case. Here, the two probes 330 and 1930 are arranged in such a manner as to be rotated by 90° with respect to each other in each case. If in this configuration, the scanning probe microscope 1200 includes two metrology probes 330 and 1930, the SPM 1200 can actually image the structural element having a rectangular shaped sample surface 150 with steep sidewalls. To scan a region of the sample surface 150 that does not have a high aspect ratio, the free ends 350, 1950 of the cantilevers 810 and 1910 can be aligned parallel to the sample surface 150 and scan the sample surface separately or in combination.

測試本體(其例如可從公司μmash採購)可用以校正懸臂310、810、1710、1910的自由端350、1950的可調整彎曲。測試本體的關鍵元件為其突出結構元件。若量測尖端320、1920相對z方向(即垂直於樣品)為對稱且量測尖端320、1920另外垂直於測試本體,則量測探針330、1930產生測試本體的對稱影像。若兩條件的其中之一不符合,量測探針330、1930產生測試本體的扭曲影像。若量測探針330、1930的掃瞄並非以相對於測試本體平行的方式來進行,則量測資料在實施對稱性考量之前應相應地校正。 A test body (which may be purchased, for example, from the company μmash) may be used to correct the adjustable bend of the free ends 350, 1950 of the cantilevers 310, 810, 1710, 1910. The key component of the test body is its protruding structural component. If the measurement tips 320, 1920 are symmetric with respect to the z-direction (ie, perpendicular to the sample) and the measurement tips 320, 1920 are otherwise perpendicular to the test body, the measurement probes 330, 1930 produce a symmetrical image of the test body. If one of the two conditions does not match, the measurement probes 330, 1930 produce a distorted image of the test body. If the scans of the measurement probes 330, 1930 are not performed in parallel with respect to the test body, the measurement data should be corrected accordingly before the symmetry considerations are implemented.

圖21重現可用以檢查樣品表面150(特別是具有高外觀比及/ 或陡峭側翼410、420的表面150)的方法的流程圖2100。方法開始於2110。在第一步驟2120中,藉由可調整彎曲調整懸臂310、810、1910的自由端350、1950,其中可調整彎曲至少部分地補償或增強量測探針330、1930的固定區域305、1905的一傾斜及/或懸臂310、810、1910的一預彎。第二步驟2130包含借助光學量測裝置1300來決定懸臂310、810、1910是否具有所需的彎曲。兩步驟在掃描程序開始前執行。在第三選擇性步驟2140(由虛線方塊表示)中,若在步驟2120中的可調整彎曲的決定顯示懸臂沒有正確地採用可調整彎曲,則重複步驟2120及步驟2130。最後,方法結束於步驟2150。流程圖2100中所述方法在樣品表面150的掃瞄之前執行。 Figure 21 reproduction can be used to inspect the sample surface 150 (especially with a high aspect ratio and / Flowchart 2100 of the method of the surface 150) of the steep side flaps 410, 420. The method begins at 2110. In a first step 2120, the free ends 350, 1950 of the cantilever arms 310, 810, 1910 are adjusted by adjustable bends, wherein the adjustable bends at least partially compensate or enhance the fixed regions 305, 1905 of the measurement probes 330, 1930 A pre-bend of a tilt and/or cantilever 310, 810, 1910. The second step 2130 includes determining whether the cantilever 310, 810, 1910 has the desired bend by means of the optical metrology device 1300. The two steps are performed before the scanning process begins. In a third optional step 2140 (represented by the dashed squares), if the decision to adjust the bend in step 2120 indicates that the cantilever does not properly employ the adjustable bend, then steps 2120 and 2130 are repeated. Finally, the method ends at step 2150. The method described in flowchart 2100 is performed prior to scanning of sample surface 150.

最後,圖22中的流程圖2200顯示用以調整懸臂310、810、1910的自由端350、1950的定向的一範例方法。方法開始於步驟2210。步驟2220包含雷射系統1290的切換,其將雷射光束1295導引至懸臂810、1910的自由端350附近的懸臂810、1910上。光指針系統1300的四象限光二極體1270量測由懸臂310、810、1910的自由端350、1950所反射的光束1275的A-B部分。流程圖2200的左下方顯示四象限光二極體1270的平面圖。光束1275中心地撞擊於光二極體1270的光敏感區域上。 Finally, flowchart 2200 in FIG. 22 shows an exemplary method for adjusting the orientation of free ends 350, 1950 of cantilevers 310, 810, 1910. The method begins in step 2210. Step 2220 includes switching of the laser system 1290 that directs the laser beam 1295 to the cantilevers 810, 1910 near the free end 350 of the cantilever 810, 1910. The four-quadrant photodiode 1270 of the optical pointer system 1300 measures the A-B portion of the beam 1275 reflected by the free ends 350, 1950 of the cantilevers 310, 810, 1910. A plan view of the four-quadrant photodiode 1270 is shown at the lower left of the flow chart 2200. The light beam 1275 centrally impinges on the light sensitive area of the photodiode 1270.

步驟2230包含決定光束1275在四象限光二極體1270的區段A及B中具有的信號部分。決定步驟2240包含確定區段A及B的信號部分是否小於預定義臨界值。若是這樣的話,在步驟2250中,雷射系統1290的光功率增加,且在步驟2230中再次量測四象限光二極體1270的區段A及B的信號部分。接著,決定步驟2240包含確定區段A及B的新的信號部分是否仍小於預定義臨界值。若非如此,則步驟2260包含確定雷射系統1290的瞬時光功率設定懸臂310、810、1910的自由端350、1950的期望彎曲。步驟2270接著包含開始量測尖端320、1920接近樣品表面150的程序。用以調整懸臂310、810、1910的自由端350、1950相對樣品表面150的定向的方法結束於步驟2280。 Step 2230 includes determining the portion of the signal that light beam 1275 has in segments A and B of four-quadrant photodiode 1270. Decision step 2240 includes determining if the signal portion of segments A and B is less than a predefined threshold. If so, in step 2250, the optical power of the laser system 1290 is increased, and in step 2230, the signal portions of segments A and B of the four-quadrant photodiode 1270 are again measured. Next, decision step 2240 includes determining if the new signal portion of segments A and B is still less than a predefined threshold. If not, step 2260 includes determining that the instantaneous optical power of the laser system 1290 sets the desired bend of the free ends 350, 1950 of the cantilevers 310, 810, 1910. Step 2270 then includes a procedure to begin measuring the proximity of the tips 320, 1920 to the sample surface 150. The method for adjusting the orientation of the free ends 350, 1950 of the cantilevers 310, 810, 1910 relative to the sample surface 150 ends at step 2280.

較佳地,圖22中的方法在封閉迴路控制(例如具有比例元件及積分元件)結合採樣與保持電路的協助下執行。在達成設定值後,從採樣模式切換到保持模式。 Preferably, the method of Figure 22 is performed with closed loop control (e.g., with proportional and integral components) in conjunction with a sample and hold circuit. After the set value is reached, the sampling mode is switched to the hold mode.

Claims (21)

一種用以檢查一樣品表面的掃描探針顯微鏡,包含:a.至少一第一量測探針,其具有一第一固定區域及至少一第一懸臂,其中至少一第一量測尖端係配置於該至少一第一量測探針上;b.其中該至少一第一懸臂組態以在一掃描程序開始前在該至少一第一懸臂的一自由端採用一可調整彎曲,該可調整彎曲至少部分地補償或增強該第一固定區域的一傾斜及/或該至少一第一懸臂的一預彎;以及c.至少一光學量測裝置,組態以決定該可調整彎曲。 A scanning probe microscope for inspecting a surface of a sample, comprising: a. at least one first measuring probe having a first fixed area and at least one first cantilever, wherein at least one first measuring tip is configured On the at least one first measurement probe; b. wherein the at least one first cantilever is configured to adopt an adjustable bend at a free end of the at least one first cantilever prior to the start of the scanning process, the adjustable The bending at least partially compensates or enhances a tilt of the first fixed area and/or a pre-bend of the at least one first cantilever; and c. at least one optical measuring device configured to determine the adjustable bend. 如申請專利範圍第1項所述之掃描探針顯微鏡,其中該可調整彎曲實現為遠離該樣品表面,使得在該掃描程序開始前,該至少一第一懸臂的該自由端係實質平行於待掃描之該樣品表面排列。 The scanning probe microscope of claim 1, wherein the adjustable bending is achieved away from the surface of the sample such that the free end of the at least one first cantilever is substantially parallel to the surface before the scanning process begins The sample surface of the sample was scanned. 如申請專利範圍第1項所述之掃描探針顯微鏡,其中該至少一第一懸臂的該自由端的該可調整彎曲係實施為朝向待掃描的該樣品表面。 The scanning probe microscope of claim 1, wherein the adjustable curvature of the free end of the at least one first cantilever is implemented toward the surface of the sample to be scanned. 如前述申請專利範圍之其中任一項所述之掃描探針顯微鏡,其中該至少一第一懸臂的該可調整彎曲定義該至少一第一懸臂在一掃描程序期間的一振盪的一零交點。 A scanning probe microscope according to any one of the preceding claims, wherein the adjustable curvature of the at least one first cantilever defines an at least one first cantilever at an oscillating zero crossing during a scanning procedure. 如前述申請專利範圍之其中任一項所述之掃描探針顯微鏡,其中該至少一第一懸臂的該可調整彎曲係實施為永久彎曲。 A scanning probe microscope according to any one of the preceding claims, wherein the adjustable bending system of the at least one first cantilever is embodied as a permanent bend. 如前述申請專利範圍之其中任一項所述之掃描探針顯微鏡,其中該至少一第一懸臂包含至少兩個材料層,其彼此連接且其具有不同的熱膨脹係數且其永久地相對彼此預加應力。 A scanning probe microscope according to any one of the preceding claims, wherein the at least one first cantilever comprises at least two layers of material connected to each other and having different coefficients of thermal expansion and which are permanently pre-added to each other stress. 如前述申請專利範圍之其中任一項所述之掃描探針顯微鏡,其中該至少一第一懸臂包含至少一致動器。 A scanning probe microscope according to any of the preceding claims, wherein the at least one first cantilever comprises at least an actuator. 如前述申請專利範圍之其中任一項所述之掃描探針顯微鏡,其中該至少一致動器包含一多型態(multimorph)致動器及/或一壓電致動器。 A scanning probe microscope according to any one of the preceding claims, wherein the at least one actuator comprises a multimorph actuator and/or a piezoelectric actuator. 如申請專利範圍第7項或第8項所述之掃描探針顯微鏡,其中該至少一致動器組態以在該掃描程序期間保持該至少一第一懸臂的該可調整彎曲為實質不變。 A scanning probe microscope according to claim 7 or 8, wherein the at least one actuator is configured to maintain the adjustable curvature of the at least one first cantilever substantially unchanged during the scanning procedure. 如前述申請專利範圍之其中任一項所述之掃描探針顯微鏡,其中該至少一光學量測裝置包含一光指針系統。 A scanning probe microscope according to any of the preceding claims, wherein the at least one optical measuring device comprises an optical pointer system. 如前述申請專利範圍之其中任一項所述之掃描探針顯微鏡,其中該光指針系統包含一雷射系統及一四象限光二極體,且其中該雷射系統將一光束導向至該至少一第一懸臂,該光束從該至少一第一懸臂反射至該四象限光二極體。 A scanning probe microscope according to any one of the preceding claims, wherein the optical pointer system comprises a laser system and a four-quadrant light diode, and wherein the laser system directs a light beam to the at least one a first cantilever, the light beam being reflected from the at least one first cantilever to the four-quadrant light diode. 如前述申請專利範圍之其中任一項所述之掃描探針顯微鏡,更包含一測試本體,用以決定該至少一第一懸臂的該彎曲。 A scanning probe microscope according to any one of the preceding claims, further comprising a test body for determining the curvature of the at least one first cantilever. 如前述申請專利範圍之其中任一項所述之掃描探針顯微鏡,包含: d.至少一第二量測探針,其具有一第二固定區域及至少一第二懸臂,其中至少一第二量測尖端係配置於該至少一第二量測探針上;e.其中該至少一第二懸臂組態以在一掃描程序開始前在該至少一第二懸臂的一自由端採用一可調整彎曲,該可調整彎曲至少部分地補償或增強該第二固定區域的一傾斜及/或該至少一第二懸臂的一預彎;以及f.其中該至少一第一懸臂及該至少一第二懸臂實質上以反平行向量的形式配置。 A scanning probe microscope according to any one of the preceding claims, comprising: The at least one second measuring probe has a second fixing area and at least one second cantilever, wherein at least one second measuring tip is disposed on the at least one second measuring probe; e. The at least one second cantilever configuration employs an adjustable bend at a free end of the at least one second cantilever prior to the start of the scanning process, the adjustable bend at least partially compensating or enhancing a tilt of the second fixed region And/or a pre-bend of the at least one second cantilever; and f. wherein the at least one first cantilever and the at least one second cantilever are substantially configured in an anti-parallel vector. 如前述申請專利範圍所述之掃描探針顯微鏡,包含至少兩個第一懸臂及至少兩個第二懸臂,其中該至少兩個第一懸臂及該至少兩個第二懸臂實質上以相對彼此旋轉90°的方式配置。 A scanning probe microscope according to the preceding patent application, comprising at least two first cantilevers and at least two second cantilevers, wherein the at least two first cantilevers and the at least two second cantilevers substantially rotate relative to each other 90° mode configuration. 一種用以使用至少一量測探針來檢查一樣品表面的方法,該至少一量測探針包含一固定區域及至少一懸臂,其中至少一量測尖端係配置於該至少一量測探針上,其中該方法包含一系列步驟:a.在一掃描程序開始前,調整在該至少一懸臂的一自由端的一可調整彎曲,該可調整彎曲至少部分地補償或增強該固定區域的一傾斜及/或該至少一懸臂的一預彎;以及b.在該掃描程序開始前使用一光學量測裝置,以決定該至少一懸臂是否採用該可調整彎曲。 A method for inspecting a surface of a sample using at least one measuring probe, the at least one measuring probe comprising a fixed area and at least one cantilever, wherein at least one measuring tip is disposed on the at least one measuring probe The method includes a series of steps: a. adjusting an adjustable bend at a free end of the at least one cantilever prior to the beginning of the scanning process, the adjustable bend at least partially compensating or enhancing a tilt of the fixed region And/or a pre-bend of the at least one cantilever; and b. using an optical metrology device prior to the beginning of the scanning procedure to determine whether the at least one cantilever employs the adjustable bend. 如申請專利範圍第15項所述之方法,更包含以下步驟:以一接觸操作模式、以一非接觸操作模式、一間歇性操作模式或一步入式操作模式執行該掃描程序。 The method of claim 15, further comprising the step of performing the scanning procedure in a contact mode of operation, in a non-contact mode of operation, an intermittent mode of operation, or a one-step mode of operation. 如申請專利範圍第15項或第16項所述之方法,更包含以下步驟:當執行該掃描程序時,以一封閉控制迴路操作該至少一懸臂。 The method of claim 15 or 16, further comprising the step of operating the at least one cantilever in a closed control loop when the scanning procedure is performed. 如前述申請專利範圍第15項至第17之其中任一項所述之方法,更包含以下步驟:若在步驟b中的決定顯示該至少一懸臂沒有正確地採用該可調整彎曲,則重複步驟a及步驟b。 The method of any one of the preceding claims, further comprising the step of repeating the step if the decision in step b indicates that the at least one cantilever does not correctly adopt the adjustable bend a and step b. 如前述申請專利範圍第15項至第18之其中任一項所述之方法,其由申請專利範圍第1項至第14項的一掃描探針顯微鏡執行。 The method according to any one of the preceding claims, wherein the scanning probe microscope of the first to the fourteenth aspect of the patent application is carried out. 一種包含指令的電腦程式,其中若該指令由申請專利範圍第1項至第14項所述的掃描探針顯微鏡的其中一者執行,將使該掃描探針顯微鏡執行申請專利範圍第15項至第18項之其中一項所述的方法步驟。 A computer program comprising instructions, wherein if the instruction is performed by one of the scanning probe microscopes described in claim 1 to item 14, the scanning probe microscope is to be subjected to claim 15 to Method step as described in one of the 18th items. 一種控制裝置,組態以使一掃描探針顯微鏡執行申請專利範圍第15項至第18項之其中一項所述的方法步驟。 A control device configured to cause a scanning probe microscope to perform the method steps of one of claims 15 to 18.
TW106126550A 2016-08-08 2017-08-07 Scanning probe microscope and method for examining a sample surface TWI656347B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
??102016214658.0 2016-08-08
DE102016214658.0A DE102016214658B4 (en) 2016-08-08 2016-08-08 Scanning probe microscope and method for examining a sample surface

Publications (2)

Publication Number Publication Date
TW201809676A true TW201809676A (en) 2018-03-16
TWI656347B TWI656347B (en) 2019-04-11

Family

ID=59523160

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106126550A TWI656347B (en) 2016-08-08 2017-08-07 Scanning probe microscope and method for examining a sample surface

Country Status (3)

Country Link
DE (1) DE102016214658B4 (en)
TW (1) TWI656347B (en)
WO (1) WO2018029151A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110940832A (en) * 2018-09-25 2020-03-31 台湾积体电路制造股份有限公司 Method and system for measuring substrate characteristics and method for measuring surface of substrate
TWI729418B (en) * 2018-06-21 2021-06-01 德商卡爾蔡司Smt有限公司 Apparatus and method for examining and/or processing a sample
TWI785906B (en) * 2021-11-26 2022-12-01 國立成功大學 Method for identification of mechanical and magnetic features with nanoscale resolution

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110967528B (en) * 2018-09-30 2023-03-24 中国计量科学研究院 Scanning probe
EP4050643A1 (en) 2021-01-15 2022-08-31 Changxin Memory Technologies, Inc. Dimension measurement method and device for semiconductor structure

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05157555A (en) * 1991-12-09 1993-06-22 Nikon Corp Probe for interatomic force microscope
JP3892198B2 (en) * 2000-02-17 2007-03-14 エスアイアイ・ナノテクノロジー株式会社 Microprobe and sample surface measuring device
US6941823B1 (en) * 2001-11-07 2005-09-13 Veeco Instruments Inc. Apparatus and method to compensate for stress in a microcantilever
US6718764B1 (en) * 2002-06-28 2004-04-13 Zyvex Corporation System and method for microstructure positioning using metal yielding
DE10307561B4 (en) * 2003-02-19 2006-10-05 Suss Microtec Test Systems Gmbh Measuring arrangement for the combined scanning and investigation of microtechnical, electrical contacts having components
US20060260388A1 (en) * 2005-04-26 2006-11-23 Chanmin Su Probe and method for a scanning probe microscope
US7748260B2 (en) * 2006-07-12 2010-07-06 Veeco Instruments Inc. Thermal mechanical drive actuator, thermal probe and method of thermally driving a probe
US10254306B2 (en) * 2012-11-29 2019-04-09 Infinitesima Limited Probe calibration or measurement routine
JP5453664B1 (en) * 2013-07-16 2014-03-26 Wafer Integration株式会社 Scanning probe microscope prober using self-detecting cantilever
DE102014212311A1 (en) * 2014-06-26 2015-12-31 Carl Zeiss Smt Gmbh Scanning probe microscope and method of inspecting a high aspect ratio surface

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI729418B (en) * 2018-06-21 2021-06-01 德商卡爾蔡司Smt有限公司 Apparatus and method for examining and/or processing a sample
US11262378B2 (en) 2018-06-21 2022-03-01 Carl Zeiss Smt Gmbh Apparatus and method for examining and/or processing a sample
US11592461B2 (en) 2018-06-21 2023-02-28 Carl Zeiss Smt Gmbh Apparatus and method for examining and/or processing a sample
CN110940832A (en) * 2018-09-25 2020-03-31 台湾积体电路制造股份有限公司 Method and system for measuring substrate characteristics and method for measuring surface of substrate
US11236996B2 (en) 2018-09-25 2022-02-01 Taiwan Semiconductor Manufacturing Co., Ltd. Line edge roughness analysis using atomic force microscopy
US11774241B2 (en) 2018-09-25 2023-10-03 Taiwan Semiconductor Manufacturing Co., Ltd. Line edge roughness analysis using atomic force microscopy
TWI785906B (en) * 2021-11-26 2022-12-01 國立成功大學 Method for identification of mechanical and magnetic features with nanoscale resolution
US11835547B2 (en) 2021-11-26 2023-12-05 National Cheng Kung University Method for detecting mechanical and magnetic features with nanoscale resolution

Also Published As

Publication number Publication date
TWI656347B (en) 2019-04-11
WO2018029151A1 (en) 2018-02-15
DE102016214658B4 (en) 2020-10-08
DE102016214658A1 (en) 2018-02-08

Similar Documents

Publication Publication Date Title
TWI656347B (en) Scanning probe microscope and method for examining a sample surface
US7748260B2 (en) Thermal mechanical drive actuator, thermal probe and method of thermally driving a probe
US10119990B2 (en) Scanning probe microscope and method for examining a surface with a high aspect ratio
JP5248515B2 (en) Probe assembly for scanning probe microscope
KR101410191B1 (en) Fast-scanning spm and method of operating the same
US6779387B2 (en) Method and apparatus for the ultrasonic actuation of the cantilever of a probe-based instrument
JP2017521655A5 (en)
WO2004074816A1 (en) Scanning probe microscope and sample observing method using this and semiconductor device production method
JP3925380B2 (en) Scanning probe microscope
US10197595B2 (en) Dual-probe scanning probe microscope
US20050056783A1 (en) Object inspection and/or modification system and method
US9739799B2 (en) Method and apparatus to compensate for deflection artifacts in an atomic force microscope
US20180106830A1 (en) Method and Device of Using a Scanning Probe Microscope
KR102102637B1 (en) Topography signal and option signal acquisition apparatus, method and atomic force microscope having the same
US20240125692A1 (en) Super-resolution thermoreflectance thermal measurement system
JP7391998B2 (en) Torsion wing probe assembly
KR102630924B1 (en) Thermally stable, drift-resistant probes and manufacturing methods for scanning probe microscopy
JP3450460B2 (en) Scanning probe microscope
Stadelmann Review of Scanning Probe Microscopy Techniques
KR20240004958A (en) AFM imaging with creep compensation
JP2006276027A (en) Scanning probe microscope
Somnath Fundamentals of heat transfer and thermal-mechanical control for improved atomic force microscopy
JPH0321802A (en) Inter-atomic force microscope and its probe