TW201809603A - Rotary encoder, bike with rotary encoder and operating method of rotary encoder - Google Patents

Rotary encoder, bike with rotary encoder and operating method of rotary encoder Download PDF

Info

Publication number
TW201809603A
TW201809603A TW105119934A TW105119934A TW201809603A TW 201809603 A TW201809603 A TW 201809603A TW 105119934 A TW105119934 A TW 105119934A TW 105119934 A TW105119934 A TW 105119934A TW 201809603 A TW201809603 A TW 201809603A
Authority
TW
Taiwan
Prior art keywords
processing unit
crank
rotary encoder
motor
sensing elements
Prior art date
Application number
TW105119934A
Other languages
Chinese (zh)
Other versions
TWI596320B (en
Inventor
林登財
王世杰
陳慶潼
顏伯勳
Original Assignee
翌能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 翌能科技股份有限公司 filed Critical 翌能科技股份有限公司
Priority to TW105119934A priority Critical patent/TWI596320B/en
Application granted granted Critical
Publication of TWI596320B publication Critical patent/TWI596320B/en
Publication of TW201809603A publication Critical patent/TW201809603A/en

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

A rotary encoder is for electrically connecting a motor. The rotary encoder comprises a circuit board and a crank. The circuit board has a processor unit and a plurality of Hall sensing element that the processor unit electrically connected to the Hall sensing elements. The crank has a magnetic element, and the crank rotates around a rotatable axis toward a first direction or a second direction. The magnetic element is for sensing with these Hall sensing elements. When the crank rotates around the rotatable axis, these Hall sensing elements sense a motion status of the magnetic element and output a sensing signal to the processor unit. The processor unit based on the sensing signal calculates a rotation speed of the crank, and the processor unit based on the rotation speed controls outputting power of the motor.

Description

旋轉編碼器、具有旋轉編碼器的自行車及旋轉編碼器的運作 方法 Rotary encoder, bicycle with rotary encoder and rotary encoder operation method

本發明有關於一種旋轉編碼器、具有旋轉編碼器的自行車及旋轉編碼器的運作方法,且特別是有關於電性連接馬達的旋轉編碼器、具有旋轉編碼器的自行車及旋轉編碼器的運作方法。 The invention relates to a rotary encoder, a bicycle and a rotary encoder with a rotary encoder, and in particular to a rotary encoder for electrically connecting a motor, a bicycle with a rotary encoder and a rotary encoder .

隨著休閒、觀光以及自行車產業的蓬勃發展,自行車以成為家家戶戶具備的交通工具。倘若人們家中不具備自行車,人們亦可透過U Bike或租賃公司租借自行車。因此,騎乘自行車的活動已蔚為一種休閒、觀光的全民運動。例如,於台東伯朗大道上,人們往往騎乘自行車並穿梭於田野間;或是人們往往騎乘自行車自行環島活動。 With the rapid development of leisure, sightseeing and bicycle industry, bicycles have become a means of transportation for every household. If people do not have bicycles in their homes, people can rent bicycles through U Bike or rental companies. Therefore, the activity of riding a bicycle has become a leisure and sightseeing national sport. For example, on the Taitung Burang Avenue, people often ride bicycles and shuttle between fields; or people often ride bicycles around the island.

配合人們想要有騎乘自行車的樂趣,並達到舒適地騎乘自行車的目的,因此發展出助力自行車。其中,助力自行車往往加裝習知的旋轉編碼器。然而,習知的旋轉編碼器係透過光耦合器或磁鐵芯來實現,因此習知的旋轉編碼器往往佔據較大的體積與重量,而不適合裝設至自行車上。其中,光耦合器在自行車的環境中,屬於惡劣環境,因此光耦合器容易產生誤動作;而磁鐵環則除重量較大,增加騎乘負載外,整個環狀結構和曲柄結合,很難遮蔽其突兀外觀,藉此破壞整台車的造型。 In order to cooperate with people who want to have a bicycle ride and achieve the purpose of riding a bicycle comfortably, a bicycle is developed. Among them, assist bicycles are often equipped with conventional rotary encoders. However, conventional rotary encoders are implemented by optical couplers or magnetic cores, so conventional rotary encoders tend to occupy a large volume and weight and are not suitable for mounting on bicycles. Among them, the optocoupler is in a harsh environment in the bicycle environment, so the optocoupler is prone to malfunction; while the magnet ring has a larger weight and increases the riding load, the entire ring structure and the crank are combined, and it is difficult to shield it. The appearance of the abrupt, thereby destroying the shape of the entire car.

此外,習知的旋轉編碼器往往需要較多的電能供應,以進行旋轉控制運作,因此消耗自行車上的電源模組的電力,藉此增設較大電量的電源模組、或攜帶更多顆電源模組而造成使用上的不 方便。 In addition, the conventional rotary encoder often requires more power supply for the rotation control operation, thereby consuming the power of the power module on the bicycle, thereby adding a large power supply module or carrying more power. Module does not cause use Convenience.

本發明在於提供一種旋轉編碼器、具有旋轉編碼器的自行車及旋轉編碼器的運作方法,透過多個霍爾感測元件感測曲柄的轉速之設計,藉此提升使用旋轉編碼器的方便性。 The present invention provides a rotary encoder, a bicycle having a rotary encoder, and a rotary encoder operating method for sensing the rotational speed of the crank through a plurality of Hall sensing elements, thereby improving the convenience of using the rotary encoder.

本發明提出一種旋轉編碼器,適用於電性連接一馬達。旋轉編碼器包括一電路板及一曲柄。電路板具有一處理單元及多個霍爾感測元件,處理單元電性連接該些霍爾感測元件。曲柄具有一磁性元件,曲柄繞著一轉動軸心以一第一方向或一第二方向轉動,磁性元件用以與該些霍爾感測元件相互感應。其中,於曲柄以轉動軸心轉動時,該些霍爾感測元件感測到磁性元件的一移動狀態,並傳輸一感測訊號給處理單元,處理單元根據感測訊號以計算出曲柄的一轉速,且處理單元根據轉速以控制馬達的輸出功率。 The invention provides a rotary encoder suitable for electrically connecting a motor. The rotary encoder includes a circuit board and a crank. The circuit board has a processing unit and a plurality of Hall sensing elements, and the processing unit is electrically connected to the Hall sensing elements. The crank has a magnetic element, and the crank rotates about a rotation axis in a first direction or a second direction, and the magnetic element is used to sense each of the Hall sensing elements. Wherein, when the crank rotates on the rotation axis, the Hall sensing elements sense a moving state of the magnetic component, and transmit a sensing signal to the processing unit, and the processing unit calculates a crank based on the sensing signal. The rotational speed, and the processing unit controls the output power of the motor according to the rotational speed.

本發明提出一種具有旋轉編碼器的自行車,包含有一自行車體及一旋轉編碼器。自行車體設有一電源模組、一馬達以及供踩踏用的一對踏板,電源模組係用以對馬達提供電能。旋轉編碼器電性連接於馬達以及電源模組。旋轉編碼器的一處理單元係控制電源模組對馬達所提供的電能,而旋轉編碼器的一曲柄連接至該對踏板的其中之一。其中,於曲柄以轉動軸心轉動時,旋轉編碼器的一電路板上的多個霍爾感測元件感測到曲柄的一磁性元件的一移動狀態,並傳輸一感測訊號給處理單元,處理單元根據感測訊號以計算出曲柄的一轉速,且處理單元根據轉速以控制馬達的輸出功率。 The invention provides a bicycle having a rotary encoder comprising a bicycle body and a rotary encoder. The bicycle body is provided with a power module, a motor and a pair of pedals for stepping on, and the power module is used to supply electric power to the motor. The rotary encoder is electrically connected to the motor and the power module. A processing unit of the rotary encoder controls the power supplied by the power module to the motor, and a crank of the rotary encoder is coupled to one of the pair of pedals. Wherein, when the crank rotates on the rotation axis, the plurality of Hall sensing elements on a circuit board of the rotary encoder senses a moving state of a magnetic component of the crank and transmits a sensing signal to the processing unit, The processing unit calculates a rotational speed of the crank according to the sensing signal, and the processing unit controls the output power of the motor according to the rotational speed.

本發明提出一種旋轉編碼器的運作方法,包含有:於一電路板上配置一處理單元及多個霍爾感測元件,處理單元電性連接該些霍爾感測元件;於一曲柄上配置一磁性元件,曲柄繞著一轉動 軸心以一第一方向或一第二方向轉動,磁性元件用以與該些霍爾感測元件相互感應;於曲柄以轉動軸心轉動時,該些霍爾感測元件感測到磁性元件的一移動狀態,並傳輸一感測訊號給處理單元;及處理單元根據感測訊號以計算出曲柄的一轉速,且處理單元根據轉速以控制馬達的輸出功率。 The invention provides a method for operating a rotary encoder, comprising: configuring a processing unit and a plurality of Hall sensing components on a circuit board, wherein the processing unit is electrically connected to the Hall sensing components; and configuring on a crank a magnetic element, the crank rotates around The axis rotates in a first direction or a second direction, and the magnetic element senses with the Hall sensing elements; and the Hall sensing elements sense the magnetic element when the crank rotates on the rotating axis a moving state, and transmitting a sensing signal to the processing unit; and the processing unit calculates a rotational speed of the crank according to the sensing signal, and the processing unit controls the output power of the motor according to the rotating speed.

本發明的具體手段為利用一種旋轉編碼器、具有旋轉編碼器的自行車及旋轉編碼器的運作方法,透過多個霍爾感測元件感測曲柄的轉速,致使處理單元調整馬達的輸出功率。其中,多個霍爾感測元件分別配置於電路板上,且霍爾感測元件的數量將可提升感測曲柄的轉速之解析度,致使處理單元更精準地計算出曲柄的轉速。因此,本發明確實可提升旋轉編碼器之使用方便性。 A specific means of the present invention utilizes a rotary encoder, a bicycle having a rotary encoder, and a rotary encoder to sense the rotational speed of the crank through a plurality of Hall sensing elements, thereby causing the processing unit to adjust the output power of the motor. Wherein, the plurality of Hall sensing elements are respectively disposed on the circuit board, and the number of Hall sensing elements can increase the resolution of the rotation speed of the sensing crank, so that the processing unit can more accurately calculate the rotation speed of the crank. Therefore, the present invention can indeed improve the usability of the rotary encoder.

以上之概述與接下來的實施例,皆是為了進一步說明本發明之技術手段與達成功效,然所敘述之實施例與圖式僅提供參考說明用,並非用來對本發明加以限制者。 The above summary and the following examples are intended to be illustrative of the invention and the embodiments of the invention.

1、1a‧‧‧旋轉編碼器 1, 1a‧‧‧ Rotary encoder

10‧‧‧電路板 10‧‧‧ boards

P1‧‧‧處理單元 P1‧‧‧ processing unit

h1~h24‧‧‧霍爾感測元件 H1~h24‧‧‧ Hall sensing component

12‧‧‧曲柄 12‧‧‧ crank

120‧‧‧磁性元件 120‧‧‧Magnetic components

14‧‧‧狀態感測單元 14‧‧‧Status sensing unit

16‧‧‧應變規 16‧‧‧Strain gauge

R‧‧‧轉動軸心 R‧‧‧Rotating axis

a、b‧‧‧預設角度 a, b‧‧‧preset angle

VB‧‧‧自行車體 VB‧‧‧Bicycle body

F1‧‧‧踏板 F1‧‧‧ pedal

PS‧‧‧電源模組 PS‧‧‧Power Module

M1‧‧‧馬達 M1‧‧‧ motor

SH‧‧‧殼體 SH‧‧‧shell

c1‧‧‧外圈路 C1‧‧‧outer road

c2‧‧‧內圈路 C2‧‧‧ inner circle

D1‧‧‧第一方向 D1‧‧‧ first direction

D2‧‧‧第二方向 D2‧‧‧ second direction

S501~S517‧‧‧步驟 S501~S517‧‧‧Steps

圖1為本發明一實施例之旋轉編碼器之架構示意圖。 FIG. 1 is a schematic structural diagram of a rotary encoder according to an embodiment of the present invention.

圖1A為本發明一實施例之旋轉編碼器之架構示意圖。 FIG. 1A is a schematic structural diagram of a rotary encoder according to an embodiment of the present invention.

圖2為本發明另一實施例之旋轉編碼器裝設於自行車之示意圖。 2 is a schematic view of a rotary encoder mounted on a bicycle according to another embodiment of the present invention.

圖3為根據圖2之本發明另一實施例之旋轉編碼器的轉速-馬達的輸出功率之波形圖。 3 is a waveform diagram of the rotational speed of the rotary encoder and the output power of the motor according to another embodiment of the present invention.

圖4為根據圖2之本發明另一實施例之旋轉編碼器的轉速-馬達的輸出功率之波形圖。 4 is a waveform diagram showing the rotational speed of the rotary encoder and the output power of the motor according to another embodiment of the present invention.

圖5為本發明另一實施例之旋轉編碼器的運作方法之流程圖。 FIG. 5 is a flow chart of a method for operating a rotary encoder according to another embodiment of the present invention.

圖1為本發明一實施例之旋轉編碼器之架構示意圖。請參閱 圖1。一種旋轉編碼器1,適用於電性連接一馬達(未繪示)。旋轉編碼器1包括一電路板10及一曲柄12(Crank)。在實務上,電路板10具有一處理單元P1及多個霍爾感測元件h1~h12。處理單元P1電性連接該些霍爾感測元件h1~h12。而曲柄12具有一磁性元件120。曲柄12繞著一轉動軸心R以一第一方向D1或一第二方向D2轉動。磁性元件120用以與該些霍爾感測元件h1~h12相互感應。 FIG. 1 is a schematic structural diagram of a rotary encoder according to an embodiment of the present invention. See figure 1. A rotary encoder 1 is adapted to be electrically connected to a motor (not shown). The rotary encoder 1 includes a circuit board 10 and a crank 12 (Crank). In practice, the circuit board 10 has a processing unit P1 and a plurality of Hall sensing elements h1~h12. The processing unit P1 is electrically connected to the Hall sensing elements h1 h h12. The crank 12 has a magnetic element 120. The crank 12 is rotated about a rotation axis R in a first direction D1 or a second direction D2. The magnetic component 120 is used to sense the Hall sensing elements h1~h12.

詳細來說,電路板10例如為一圓環型基板或一圓盤型基板。圓環型基板或圓盤型基板具有一個圈路、電路或迴路。而這些霍爾感測元件h1~h12設置於這一個圈路上。其中,任意兩相鄰的霍爾感測元件h11、h12相隔一預設角度a而配置於這一個圈路上。預設角度a係以轉動軸心R為頂點,並以兩相鄰的霍爾感測元件h11、h12分別延伸至頂點所形成之夾角。 In detail, the circuit board 10 is, for example, a ring-shaped substrate or a disk-shaped substrate. The ring-shaped substrate or the disk-shaped substrate has a loop, a circuit or a loop. These Hall sensing elements h1~h12 are disposed on this loop. Wherein, any two adjacent Hall sensing elements h11 and h12 are arranged on the one-way path with a predetermined angle a. The preset angle a is defined by the rotation axis R as an apex and the angle formed by the two adjacent Hall sensing elements h11 and h12 respectively extending to the apex.

為了方便說明,本實施例係以12個霍爾感測元件h1~h12來說明。其中,任意兩相鄰的霍爾感測元件h1~h12相隔30度。同理可知,當電路板10上使用16個霍爾感測元件,任意兩相鄰的霍爾感測元件相隔22.5度。當然,使用霍爾感測元件h1~h12的數量越多,則可越精準地計算出曲柄12的轉速及其位置。也就是說,隨著霍爾感測元件h1~h12的配置數量增加,亦將提升這些霍爾感測元件h1~h12感測曲柄12的轉速及其位置之精度。本實施例不限制霍爾感測元件h1~h12的數量。 For convenience of explanation, the present embodiment is described by 12 Hall sensing elements h1 to h12. Wherein, any two adjacent Hall sensing elements h1~h12 are separated by 30 degrees. Similarly, when six Hall sensing elements are used on the board 10, any two adjacent Hall sensing elements are separated by 22.5 degrees. Of course, the more the number of Hall sensing elements h1 to h12 is used, the more accurately the rotational speed of the crank 12 and its position can be calculated. That is to say, as the number of configurations of the Hall sensing elements h1 to h12 increases, the accuracy of the Hall sensing elements h1 to h12 sensing the rotational speed of the crank 12 and its position will also be improved. This embodiment does not limit the number of Hall sensing elements h1 to h12.

值得一提的是,當預設角度越小時,則多個霍爾感測元件h1~h12感測曲柄12的轉速的解析度將大幅提升。例如,以16個霍爾感測元件配置於電路板10的預設角度為22.5度,以12個霍爾感測元件配置於電路板10的預設角度為30度。則以16個霍爾感測元件所感測得的轉速之解析度優於以12個霍爾感測元件所感測得的轉速之解析度。簡單來說,霍爾感測元件h1~h12的數量越多,且任兩者間的預設角度越小,則感測得的轉速之解析度越高。 It is worth mentioning that when the preset angle is smaller, the resolution of the plurality of Hall sensing elements h1 to h12 sensing the rotational speed of the crank 12 will be greatly improved. For example, the predetermined angle at which the 16 Hall sensing elements are disposed on the circuit board 10 is 22.5 degrees, and the predetermined angle at which the 12 Hall sensing elements are disposed on the circuit board 10 is 30 degrees. The resolution of the rotational speed sensed by the 16 Hall sensing elements is better than the resolution of the rotational speed sensed by the 12 Hall sensing elements. In short, the greater the number of Hall sensing elements h1~h12, and the smaller the preset angle between any two, the higher the resolution of the sensed rotational speed.

進一步來說,各霍爾感測元件h1~h12例如為單極性霍爾開關、雙極性霍爾開關、全極性霍爾開關或線性霍爾元件。例如磁性元件120之一磁場磁極靠近霍爾感測元件h1~h12,霍爾感測元件h1~h12輸出低電位電壓的信號;或是磁性元件120之一磁場磁極離開霍爾感測元件h1~h12,霍爾感測元件h1~h12輸出高電位電壓的信號。 Further, each of the Hall sensing elements h1 to h12 is, for example, a unipolar Hall switch, a bipolar Hall switch, a full polarity Hall switch, or a linear Hall element. For example, one of the magnetic elements 120 has a magnetic field pole close to the Hall sensing elements h1~h12, and the Hall sensing elements h1~h12 output a low potential voltage signal; or one of the magnetic elements 120 has a magnetic field pole away from the Hall sensing element h1~ H12, Hall sensing elements h1~h12 output signals of high potential voltage.

線性霍爾元件是一種模擬信號輸出的磁感測器。線性霍爾元件的輸出電壓隨輸入的磁力密度線性變化。因此,線性霍爾元件的電壓輸出會精確跟蹤磁通密度的變化。線性霍爾元件是直接檢測出受檢測對象本身的磁場或磁特性,一般應用於調速、測電壓、電流、功率、厚度、線圈匝數等等。 A linear Hall element is a magnetic sensor that simulates the output of a signal. The output voltage of the linear Hall element varies linearly with the magnetic density of the input. Therefore, the voltage output of the linear Hall element accurately tracks changes in flux density. The linear Hall element directly detects the magnetic field or magnetic characteristics of the object to be detected, and is generally applied to speed regulation, voltage measurement, current, power, thickness, number of turns of the coil, and the like.

值得注意的是,根據這些霍爾感測元件h1~h12設置於電路板10的位置,處理單元P1亦可得知曲柄12位於上、下方時點的位置。例如霍爾感測元件h1為曲柄12位於上方時點的位置。而霍爾感測元件h6為曲柄12位於下方時點的位置。因此,處理單元P1亦可根據曲柄12位於上、下方時點的位置以控制馬達的輸出功率。 It should be noted that, according to the position where the Hall sensing elements h1 to h12 are disposed on the circuit board 10, the processing unit P1 can also know the position of the crank 12 at the upper and lower positions. For example, the Hall sensing element h1 is a position at which the crank 12 is located above. The Hall sensing element h6 is a position at which the crank 12 is located below. Therefore, the processing unit P1 can also control the output power of the motor according to the position of the crank 12 at the upper and lower points.

進一步來說,這些霍爾感測元件h1~h12可偵測出曲柄12的一踩踏頻率、一踩踏方向、一踩踏死點及一最大踩踏出力點的其中之一或組合。其中,踩踏頻率例如為每分鐘或每秒鐘踩踏曲柄12轉動的次數。踩踏方向例如為踩踏曲柄12以第一方向D1或第二方向D2的轉動方向。踩踏死點例如為踩踏曲柄12至霍爾感測元件h12或h6的位置,在這上下死點的位置,沒有力臂的作用。 Further, the Hall sensing elements h1~h12 can detect one or a combination of a stepping frequency, a stepping direction, a stepping dead point and a maximum stepping force point of the crank 12. The pedaling frequency is, for example, the number of times the pedal 12 is rotated every minute or every second. The stepping direction is, for example, a turning direction in which the crank 12 is stepped in the first direction D1 or the second direction D2. The step of stepping on the dead point is, for example, the position where the crank 12 is stepped on to the Hall sensing element h12 or h6, and there is no force arm at the position of the top dead center.

最大踩踏出力點例如為踩踏曲柄12產生最大踩踏出力的位置。因此,處理單元P1透過這些霍爾感測元件h1~h12以取得踩踏頻率、踩踏方向、踩踏死點及最大踩踏出力點的其中之一或組合等資訊。所以,處理單元P1控制馬達輸出,以使馬達出力更即時,不會因踩踏死點或torque sensor沒有輸出,而馬達就沒有提 供助力。 The maximum stepping force output point is, for example, a position at which the pedal 12 is depressed to generate a maximum pedaling force. Therefore, the processing unit P1 transmits the Hall sensing elements h1 to h12 to obtain information such as one or a combination of the pedaling frequency, the pedaling direction, the stepping dead point, and the maximum pedaling force point. Therefore, the processing unit P1 controls the motor output so that the motor output is more instantaneous, and there is no output due to the stepping dead point or the torque sensor, and the motor does not mention For help.

此外,處理單元P1例如透過微處理器、中央處理器(CPU)、控制晶片或控制電路來實現。在實務上,處理單元P1逐次掃描該些霍爾感測元件h1~h12,並開啟與磁性元件120相互感應的該些霍爾感測元件h1~h12的其中之一或一些,藉此達到節省能源。被開啟的霍爾感測元件係為感應到曲柄12的磁性元件120的霍爾感測元件。另處理單元P1透過一模糊控制程式控制馬達的輸出功率。其中,處理單元P1控制馬達的輸出功率正比於曲柄12的轉速。 Furthermore, the processing unit P1 is implemented, for example, by means of a microprocessor, a central processing unit (CPU), a control chip or a control circuit. In practice, the processing unit P1 scans the Hall sensing elements h1~h12 one by one, and turns on one or some of the Hall sensing elements h1~h12 that are mutually inductive with the magnetic element 120, thereby saving energy. The Hall sensing element that is turned on is a Hall sensing element that senses the magnetic element 120 of the crank 12. The processing unit P1 controls the output power of the motor through a fuzzy control program. Among them, the processing unit P1 controls the output power of the motor to be proportional to the rotational speed of the crank 12.

舉例來說,處理單元P1例如以第一方向D1掃瞄該些霍爾感測元件h1~h12。其中,曲柄12轉動到位於霍爾感測元件h3之位置。因此,感測到磁性元件120的霍爾感測元件h3將被處理單元P1開啟,而其餘霍爾感測元件h1~h2、h4~h12仍處於關閉狀態。當曲柄12轉動到霍爾感測元件h2之位置時,感測到磁性元件120的霍爾感測元件h2將被處理單元P1開啟,而其餘霍爾感測元件h1、h3~h12仍處於關閉狀態。 For example, the processing unit P1 scans the Hall sensing elements h1 h h12, for example, in a first direction D1. Among them, the crank 12 is rotated to a position at the Hall sensing element h3. Therefore, it is sensed that the Hall sensing element h3 of the magnetic element 120 will be turned on by the processing unit P1, while the remaining Hall sensing elements h1~h2, h4~h12 are still in the off state. When the crank 12 is rotated to the position of the Hall sensing element h2, it is sensed that the Hall sensing element h2 of the magnetic element 120 will be turned on by the processing unit P1, while the remaining Hall sensing elements h1, h3~h12 are still off. status.

在其他實施例中,曲柄12轉動到位於霍爾感測元件h3之位置。感測到磁性元件120的霍爾感測元件h3及相鄰的霍爾感測元件h1、h2將被處理單元P1開啟,而其餘霍爾感測元件h4~h12仍處於關閉狀態。也就是說,處理單元P1可開啟與磁性元件120相互感應的該些霍爾感測元件h1~h12的其中之一些。藉此本實施例可達到計算出曲柄12的轉速及節能省電等功效。 In other embodiments, the crank 12 is rotated to a position at the Hall sensing element h3. It is sensed that the Hall sensing element h3 of the magnetic element 120 and the adjacent Hall sensing elements h1, h2 will be turned on by the processing unit P1, while the remaining Hall sensing elements h4~h12 are still in the off state. That is, the processing unit P1 can turn on some of the Hall sensing elements h1 h h12 that are inductive with the magnetic element 120. Thereby, the rotation speed of the crank 12 and the energy saving and the like can be calculated by the embodiment.

為了方便說明,第一方向D1例如為逆時針方向,第二方向D2例如為順時針方向。曲柄12以第一方向D1轉動時,處理單元P1計算出的轉速例如為正值的每分鍾轉數。而曲柄12以第二方向D2轉動時,處理單元P1計算出的轉速例如為負值的每分鍾轉數;或是處理單元P1不計算以第二方向D2轉動的轉速。 For convenience of explanation, the first direction D1 is, for example, a counterclockwise direction, and the second direction D2 is, for example, a clockwise direction. When the crank 12 is rotated in the first direction D1, the rotational speed calculated by the processing unit P1 is, for example, a positive number of revolutions per minute. When the crank 12 is rotated in the second direction D2, the rotational speed calculated by the processing unit P1 is, for example, a negative number of revolutions per minute; or the processing unit P1 does not calculate the rotational speed rotated in the second direction D2.

接著,曲柄12的一端樞接一轉軸(未繪示),轉軸位於轉動軸 心R上。曲柄12的另一端往外延伸,例如往外延伸至一踏板(未繪示)。其中,磁性元件120例如為一橡膠磁鐵、一鐵氧體磁鐵、一鋁鎳鈷磁鐵、一釤鈷磁鐵、一釹磁鐵或一釹鐵硼。 Then, one end of the crank 12 is pivotally connected to a rotating shaft (not shown), and the rotating shaft is located at the rotating shaft. Heart R. The other end of the crank 12 extends outwardly, for example, extending outwardly to a pedal (not shown). The magnetic element 120 is, for example, a rubber magnet, a ferrite magnet, an alnico magnet, a samarium cobalt magnet, a neodymium magnet or a neodymium iron boron.

磁性元件120設置於鄰近該些霍爾感測元件h1~h12的曲柄12上。因此,例如曲柄12往第一方向D1轉動時,磁性元件120會依序與霍爾感測元件h12~h1相互感應;反之,例如曲柄12往第二方向D2轉動時,磁性元件120會依序與霍爾感測元件h1~h12相互感應。 The magnetic element 120 is disposed on the crank 12 adjacent to the Hall sensing elements h1 h h12. Therefore, for example, when the crank 12 is rotated in the first direction D1, the magnetic element 120 is inductively sensed with the Hall sensing elements h12~h1; otherwise, when the crank 12 is rotated in the second direction D2, the magnetic element 120 is sequentially Sensing with Hall sensing elements h1~h12.

其中,於曲柄12以轉動軸心R轉動時,該些霍爾感測元件h1~h12感測到磁性元件120的一移動狀態,並傳輸一感測訊號給處理單元P1。處理單元P1根據感測訊號以計算出曲柄12的一轉速,且處理單元P1根據轉速以控制馬達的輸出功率。 When the crank 12 rotates with the rotation axis R, the Hall sensing elements h1~h12 sense a moving state of the magnetic component 120 and transmit a sensing signal to the processing unit P1. The processing unit P1 calculates a rotational speed of the crank 12 based on the sensing signal, and the processing unit P1 controls the output power of the motor according to the rotational speed.

舉例來說,當曲柄12的轉速越高時,處理單元P1控制馬達以輸出越大的輔助動力。反之,當曲柄12的轉速越低時,處理單元P1控制馬達以輸出越小的輔助動力。其中,處理單元P1根據轉速以及馬達的一電流狀態,以判斷是否進入一爬坡模式。 For example, when the rotational speed of the crank 12 is higher, the processing unit P1 controls the motor to output a larger auxiliary power. Conversely, when the rotational speed of the crank 12 is lower, the processing unit P1 controls the motor to output a smaller auxiliary power. The processing unit P1 determines whether to enter a climbing mode according to the rotation speed and a current state of the motor.

例如,處理單元P1控制馬達以輸出較大的輔助動力,而馬達仍處於低電流狀態,並未達到輸出較大的輔助動力。因此,處理單元P1將判斷出,「馬達需要更多的電能,致使馬達達到爬坡時的輸出功率」。所以,處理單元P1根據上述狀態以進入爬坡模式,並以爬坡模式控制馬達以輸出更大的輔助動力。 For example, the processing unit P1 controls the motor to output a larger auxiliary power while the motor is still in a low current state and does not reach a larger auxiliary power output. Therefore, the processing unit P1 will judge that "the motor needs more electric energy, causing the motor to reach the output power when climbing." Therefore, the processing unit P1 enters the hill climbing mode according to the above state, and controls the motor in the hill climbing mode to output a larger auxiliary power.

此外,旋轉編碼器1更包括一狀態感測單元14及一應變規16,分別電性連接處理單元P1。在實務上,狀態感測單元14根據一重力狀態、一加速度狀態或一高度狀態,以輸出一狀態訊號給處理單元P1。處理單元P1根據狀態訊號以進入一爬坡模式。狀態感測單元14例如為G-sensor、重力感測器、加速度感測器或高度計。 In addition, the rotary encoder 1 further includes a state sensing unit 14 and a strain gauge 16 electrically connected to the processing unit P1. In practice, the state sensing unit 14 outputs a status signal to the processing unit P1 according to a gravity state, an acceleration state, or a height state. The processing unit P1 enters a hill climbing mode according to the status signal. The state sensing unit 14 is, for example, a G-sensor, a gravity sensor, an acceleration sensor, or an altimeter.

另應變規16根據一扭力狀態以輸出一扭力訊號給處理單元 P1。處理單元P1根據扭力訊號以進入一爬坡模式。在實務上,應變規16例如設置於轉軸、曲柄12或踏板上。其中,當曲柄12所受的扭力越大時,則轉軸亦對應受到的扭力越大。因此,處理單元P1判斷扭力狀態,以進入一爬坡模式。 The strain gauge 16 outputs a torsion signal to the processing unit according to a torque state. P1. The processing unit P1 enters a climbing mode according to the torque signal. In practice, the strain gauge 16 is for example provided on a shaft, a crank 12 or a pedal. Among them, when the torque received by the crank 12 is larger, the torque corresponding to the rotating shaft is also larger. Therefore, the processing unit P1 determines the torque state to enter a hill climbing mode.

在其他實施例中,旋轉編碼器1可不包括狀態感測單元14及應變規16;或是旋轉編碼器1可包括狀態感測單元14及應變規16的其中之一或組合。本實施例不限制狀態感測單元14及應變規16的態樣。 In other embodiments, the rotary encoder 1 may not include the state sensing unit 14 and the strain gauge 16; or the rotary encoder 1 may include one or a combination of the state sensing unit 14 and the strain gauge 16. This embodiment does not limit the state of the state sensing unit 14 and the strain gauge 16.

圖1A為本發明一實施例之旋轉編碼器之架構示意圖。請參閱圖1A。其中圖1A與圖1中的旋轉編碼器1a、1二者結構相似,而以下將對二者所包括的相同元件以相同標號表示。旋轉編碼器1a、1二者的差異在於:圖1A的旋轉編碼器1a包括二個圈路c1、c2,例如為內圈路c2及外圈路c1。而霍爾感測元件h1~h24的數量例如為24個,並分別設置於這二圈路c1、c2上。 FIG. 1A is a schematic structural diagram of a rotary encoder according to an embodiment of the present invention. Please refer to Figure 1A. 1A and 1 are similar in structure, and the same elements that are included in the following will be denoted by the same reference numerals. The difference between the rotary encoders 1a, 1 is that the rotary encoder 1a of Fig. 1A includes two loops c1, c2, for example, an inner loop c2 and an outer loop c1. The number of Hall sensing elements h1 to h24 is, for example, 24, and is respectively disposed on the two winding paths c1 and c2.

詳細來說,這些霍爾感測元件h1~h12配置於外圈路c1,而這些霍爾感測元件h13~h24配置於內圈路c2。其中,這些霍爾感測元件h1~h24係以交錯配置於電路板10上。而任意兩相鄰的霍爾感測元件h1~h24相隔15度。因此,本實施例之旋轉編碼器1a可更精確地計算出曲柄12的轉速及其位置。 Specifically, the Hall sensing elements h1 to h12 are disposed on the outer ring path c1, and the Hall sensing elements h13 to h24 are disposed on the inner ring path c2. The Hall sensing elements h1 to h24 are arranged on the circuit board 10 in a staggered manner. And any two adjacent Hall sensing elements h1~h24 are separated by 15 degrees. Therefore, the rotary encoder 1a of the present embodiment can more accurately calculate the rotational speed of the crank 12 and its position.

值得一提的是,內圈路c2上的這些霍爾感測元件h13~h24例如均為N極的感測器。而外圈路c1上的這些霍爾感測元件h1~h12例如均為S極的感測器;或是內圈路c2上的這些霍爾感測元件h13~h24例如均為S極的感測器。而外圈路c1上的這些霍爾感測元件h1~h12例如均為N極的感測器。 It is worth mentioning that these Hall sensing elements h13~h24 on the inner ring circuit c2 are, for example, N-pole sensors. The Hall sensing elements h1 to h12 on the outer ring circuit c1 are, for example, sensors of the S pole; or the Hall sensing elements h13 to h24 on the inner ring circuit c2 are, for example, S poles. Detector. The Hall sensing elements h1 to h12 on the outer ring road c1 are, for example, N-pole sensors.

在其他實施例中,電路板10可包括三個圈路或多個圈路,而這些霍爾感測元件h1~h24分別配置於這些圈路上。本實施例不限制這些霍爾感測元件h1~h24配置於這些圈路上的態樣。 In other embodiments, the circuit board 10 may include three loops or a plurality of loops, and the Hall sensing elements h1 h h24 are respectively disposed on the loops. This embodiment does not limit the arrangement in which these Hall sensing elements h1 to h24 are disposed on these loops.

圖2為本發明另一實施例之旋轉編碼器裝設於自行車之示意圖。請參閱圖2。一種具有旋轉編碼器1的自行車,包含有一自行車體VB及一旋轉編碼器1。自行車體VB設有一電源模組PS、一馬達M1以及供踩踏用的一對踏板F1。電源模組PS係用以對馬達M1提供電能。而旋轉編碼器1電性連接於馬達M1以及電源模組PS。旋轉編碼器1的一處理單元P1係控制電源模組PS對馬達M1所提供的電能,而旋轉編碼器1的一曲柄12連接至該對踏板F1的其中之一。 2 is a schematic view of a rotary encoder mounted on a bicycle according to another embodiment of the present invention. Please refer to Figure 2. A bicycle having a rotary encoder 1 includes a bicycle body VB and a rotary encoder 1. The bicycle body VB is provided with a power module PS, a motor M1, and a pair of pedals F1 for pedaling. The power module PS is used to supply electric power to the motor M1. The rotary encoder 1 is electrically connected to the motor M1 and the power module PS. A processing unit P1 of the rotary encoder 1 controls the power supplied by the power module PS to the motor M1, and a crank 12 of the rotary encoder 1 is connected to one of the pair of pedals F1.

詳細來說,一種自行車體VB設置有一旋轉編碼器1。其中,旋轉編碼器1設置於自行車體VB的左側。而自行車體VB的右側具有一中置飛輪。另外,旋轉編碼器1具有一殼體SH。電路板10設置於殼體SH內。殼體SH配置於自行車體VB的左側,並鄰近該對踏板F1的其中之一。曲柄12樞接殼體SH。 In detail, a bicycle body VB is provided with a rotary encoder 1. Among them, the rotary encoder 1 is disposed on the left side of the bicycle body VB. The right side of the bicycle body VB has a center flywheel. In addition, the rotary encoder 1 has a housing SH. The circuit board 10 is disposed in the housing SH. The housing SH is disposed on the left side of the bicycle body VB and adjacent to one of the pair of pedals F1. The crank 12 is pivotally connected to the housing SH.

值得一提的是,馬達M1例如為中置馬達、後置馬達或三相無刷馬達。為了方便說明,本實施例之馬達M1係以中置馬達來說明。其中,中置馬達係設置於左側踏板F1,並與中置飛輪相對的位置附近,如圖2所繪示。 It is worth mentioning that the motor M1 is, for example, a center motor, a rear motor or a three-phase brushless motor. For convenience of explanation, the motor M1 of the present embodiment will be described with a center motor. The center motor is disposed on the left side pedal F1 and is adjacent to the position of the center flywheel, as shown in FIG. 2 .

當使用者踩踏踏板F1,致使曲柄12以第一方向D1轉動時,自行車往前移動。其中,處理單元P1根據感測訊號以計算出曲柄12的轉速。也就是說,處理單元P1可計算出使用者騎乘自行車的踩踏轉速,並根據踩踏轉速以控制馬達M1的輸出功率。 When the user steps on the pedal F1, causing the crank 12 to rotate in the first direction D1, the bicycle moves forward. The processing unit P1 calculates the rotation speed of the crank 12 according to the sensing signal. That is to say, the processing unit P1 can calculate the pedaling speed of the user riding the bicycle, and control the output power of the motor M1 according to the pedaling speed.

舉例來說,當使用者踩踏自行車的轉速越快時,處理單元P1將控制馬達M1以輸出越大的輔助動力,藉此節省使用者踩踏的體力。反之,當使用者踩踏自行車的轉速越慢時,處理單元P1將控制馬達M1以輸出越小的輔助動力。 For example, when the speed at which the user steps on the bicycle is faster, the processing unit P1 will control the motor M1 to output a larger auxiliary power, thereby saving the user's physical exertion. Conversely, the slower the rotational speed of the user stepping on the bicycle, the processing unit P1 will control the motor M1 to output the smaller auxiliary power.

簡單來說,當使用者踩踏自行車的轉速越快,即表示騎乘自行車的使用者越想加快速度。因此,馬達M1相對提供較大的輔助 動力。當使用者踩踏自行車的轉速越慢,即表示騎乘自行車的使用者越想降低速度。因此,馬達M1相對提供較小的輔助動力。藉此達到輔助使用者騎乘自行車的目的。 In short, the faster the user pedals on the bicycle, the more the user riding the bicycle wants to speed up. Therefore, the motor M1 provides relatively large assistance. power. The slower the user spins on the bicycle, the more the user riding the bicycle wants to slow down. Therefore, the motor M1 provides a relatively small auxiliary power. Thereby, the purpose of assisting the user to ride the bicycle is achieved.

圖3為根據圖2之本發明另一實施例之平地時旋轉編碼器的轉速-馬達的輸出功率之波形圖。圖4為根據圖2之本發明另一實施例之爬坡時旋轉編碼器的轉速-馬達的輸出功率之波形圖。請參閱圖3及圖4。其中,圖3及圖4中的X軸係為曲柄12的轉速。Y軸係為馬達M1的輸出功率。 3 is a waveform diagram showing the rotational speed of the rotary encoder and the output power of the motor according to another embodiment of the present invention. 4 is a waveform diagram of the rotational speed of the rotary encoder and the output power of the motor during hill climbing according to another embodiment of the present invention. Please refer to Figure 3 and Figure 4. The X-axis in FIGS. 3 and 4 is the rotational speed of the crank 12. The Y axis is the output power of the motor M1.

圖3為自行車於平地狀況下,處理單元P1於平地模式時的控制馬達M1的輸出功率的訊號波形圖。例如,當踩踏轉速低於50rpm(或每分鐘轉數)時,處理單元P1控制馬達M1的輸出功率例如為20牛頓/米(或N/m)。當踩踏轉速介於50~100rpm時,處理單元P1控制馬達M1的輸出功率例如為40牛頓/米。當踩踏轉速超過100rpm時,處理單元P1控制馬達M1的輸出功率例如為60牛頓/米。因此,當使用者踩踏自行車越頻繁時,馬達M1伴隨著輸出越高的輔助動力。 FIG. 3 is a signal waveform diagram of the output power of the control motor M1 when the bicycle is in the flat mode and the processing unit P1 is in the flat mode. For example, when the pedaling speed is lower than 50 rpm (or the number of revolutions per minute), the processing unit P1 controls the output power of the motor M1 to be, for example, 20 Newtons/meter (or N/m). When the pedaling speed is between 50 and 100 rpm, the processing unit P1 controls the output power of the motor M1 to be, for example, 40 N/m. When the pedaling speed exceeds 100 rpm, the processing unit P1 controls the output power of the motor M1 to be, for example, 60 N/m. Therefore, when the user steps on the bicycle more frequently, the motor M1 is accompanied by the higher auxiliary power output.

接著,圖4為自行車於爬坡狀況下,處理單元P1於爬坡模式時的控制馬達M1的輸出功率的訊號波形圖。例如,當踩踏轉速低於20rpm時,處理單元P1控制馬達M1的輸出功率例如為20牛頓/米。當踩踏轉速介於20~50rpm時,處理單元P1控制馬達M1的輸出功率例如為40牛頓/米。當踩踏轉速超過50rpm時,處理單元P1控制馬達M1的輸出功率例如為60牛頓/米。 Next, FIG. 4 is a signal waveform diagram of the output power of the control motor M1 when the processing unit P1 is in the hill climbing mode under the condition of climbing the bicycle. For example, when the pedaling speed is lower than 20 rpm, the processing unit P1 controls the output power of the motor M1 to be, for example, 20 N/m. When the pedaling speed is between 20 and 50 rpm, the processing unit P1 controls the output power of the motor M1 to be, for example, 40 N/m. When the pedaling speed exceeds 50 rpm, the processing unit P1 controls the output power of the motor M1 to be, for example, 60 N/m.

也就是說,爬坡模式下之曲柄12的轉速的區間範圍較小於平地模式下之曲柄12的轉速的區間範圍。因此,於爬坡模式下,處理單元P1於較窄的轉速的區間範圍,以控制馬達M1輸出較高的輸出功率,如圖4。於平地模式下,處理單元P1於較寬的轉速的區間範圍,以控制馬達M1的輸出功率,如圖3。換句話說,本實 施例藉由偵測曲柄12的轉速,進而調整騎乘狀態時給自行車體VB的輔助動力,讓騎乘者更為舒適。 That is to say, the range of the rotational speed of the crank 12 in the climbing mode is smaller than the range of the rotational speed of the crank 12 in the flat mode. Therefore, in the climbing mode, the processing unit P1 is in the range of the narrower rotational speed to control the motor M1 to output a higher output power, as shown in FIG. In the flat mode, the processing unit P1 is in the range of the wider rotational speed to control the output power of the motor M1, as shown in FIG. In other words, this is By detecting the rotation speed of the crank 12, the embodiment adjusts the auxiliary power to the bicycle body VB when riding, so that the rider is more comfortable.

圖5為本發明另一實施例之旋轉編碼器的運作方法之流程圖。請參閱圖5。一種旋轉編碼器的運作方法,包含有下列步驟: FIG. 5 is a flow chart of a method for operating a rotary encoder according to another embodiment of the present invention. Please refer to Figure 5. A method of operating a rotary encoder includes the following steps:

於步驟S501中,於一電路板上配置一處理單元及多個霍爾感測元件。接著,於步驟S503中,兩相鄰的霍爾感測元件相隔一預設角度而配置於電路板的一個圈路或多個圈路上。其中預設角度如圖1或圖1A所繪示的夾角。 In step S501, a processing unit and a plurality of Hall sensing elements are disposed on a circuit board. Next, in step S503, two adjacent Hall sensing elements are disposed on a loop or a plurality of loops of the circuit board at a predetermined angle. The preset angle is the angle shown in FIG. 1 or FIG. 1A.

於步驟S505中,於一曲柄上配置一磁性元件,曲柄繞著一轉動軸心以一第一方向或一第二方向轉動。磁性元件用以與該些霍爾感測元件相互感應。於步驟S507中,於曲柄以轉動軸心轉動時,該些霍爾感測元件感測到磁性元件的一移動狀態,並傳輸一感測訊號給處理單元。 In step S505, a magnetic element is disposed on a crank, and the crank rotates in a first direction or a second direction about a rotation axis. The magnetic element is for sensing with the Hall sensing elements. In step S507, when the crank rotates with the rotation axis, the Hall sensing elements sense a moving state of the magnetic element and transmit a sensing signal to the processing unit.

接著,於步驟S509中,處理單元根據感測訊號以計算出曲柄的一轉速,且處理單元根據轉速以控制馬達的輸出功率。於步驟S511中,處理單元控制馬達的輸出功率正比於曲柄的轉速。也就是說,使用者踩踏曲柄越快時,馬達的輸出功率越大,藉此輸出較大的助力給自行車。反之,使用者踩踏曲柄越慢時,馬達的輸出功率越小,藉此輸出較小的助力給自行車。 Next, in step S509, the processing unit calculates a rotation speed of the crank according to the sensing signal, and the processing unit controls the output power of the motor according to the rotation speed. In step S511, the processing unit controls the output power of the motor to be proportional to the rotational speed of the crank. That is to say, the faster the user step on the crank, the greater the output power of the motor, thereby outputting a larger boost to the bicycle. Conversely, the slower the user steps on the crank, the smaller the output power of the motor, thereby outputting less power to the bicycle.

於步驟S511之後,本發明透過步驟S513、步驟S515及步驟S517等其中之一或組合,以判別是否進入爬坡模式的控制方式。其中,於步驟S513中,處理單元根據轉速以及馬達的一電流狀態,以判斷是否進入一爬坡模式。於步驟S515中,處理單元根據一狀態感測單元的一狀態訊號以進入一爬坡模式。另於步驟S517中,處理單元根據一應變規的一扭力訊號以進入一爬坡模式。 After step S511, the present invention passes through one or a combination of steps S513, S515, and S517 to determine whether to enter the climbing mode control mode. In step S513, the processing unit determines whether to enter a climbing mode according to the rotation speed and a current state of the motor. In step S515, the processing unit enters a hill climbing mode according to a state signal of the state sensing unit. In addition, in step S517, the processing unit enters a climbing mode according to a torsion signal of a strain gauge.

簡單來說,處理單元根據上述步驟S513、步驟S515及步驟S517等其中之一條件成立下,以進入爬坡模式之控制。在其他實 施中,本發明亦可根據上述步驟S513、步驟S515及步驟S517等任二者條件成立下,以進入爬坡模式之控制。其餘部分均相同,在此不予贅述。 Briefly, the processing unit is set up according to one of the above steps S513, S515, and S517 to enter the control of the climbing mode. In other real In the present invention, the present invention can also be controlled according to the above steps S513, S515, and S517 to enter the climbing mode control. The rest are the same and will not be repeated here.

綜上所述,本發明為一種旋轉編碼器,透過多個霍爾感測元件以感測曲柄的轉速,致使處理單元根據轉速以調整馬達的輸出功率。其中,多個霍爾感測元件分別配置於電路板上,任意兩相鄰的霍爾感測元件相隔一預設角度。預設角度係以轉動軸心為頂點,並以兩相鄰的霍爾感測元件分別延伸至頂點所形成之夾角。當預設角度越小時,則多個霍爾感測元件感測曲柄的轉速的解析度將大大提升。此外,處理單元以掃描方式開啟多個霍爾感測元件其中之一或一些。被開啟的霍爾感測元件係為感應到曲柄的磁性元件的霍爾感測元件,藉此達到節能省電之功效。如此一來,本發明確實可提升旋轉編碼器之使用方便性。 In summary, the present invention is a rotary encoder that transmits a plurality of Hall sensing elements to sense the rotational speed of the crank, thereby causing the processing unit to adjust the output power of the motor according to the rotational speed. The plurality of Hall sensing elements are respectively disposed on the circuit board, and any two adjacent Hall sensing elements are separated by a predetermined angle. The preset angle is vertices with the axis of rotation and the angle formed by the two adjacent Hall sensing elements respectively extending to the apex. When the preset angle is smaller, the resolution of the rotational speed of the plurality of Hall sensing elements sensing the crank will be greatly improved. Additionally, the processing unit turns on one or more of the plurality of Hall sensing elements in a scanning manner. The Hall sensing element that is turned on is a Hall sensing element that senses the magnetic element of the crank, thereby achieving energy saving and power saving effects. In this way, the present invention can indeed improve the ease of use of the rotary encoder.

以上所述僅為本發明之實施例,其並非用以侷限本發明之專利範圍。 The above description is only an embodiment of the present invention, and is not intended to limit the scope of the invention.

Claims (14)

一種旋轉編碼器,適用於電性連接一馬達,該旋轉編碼器包括:一電路板,具有一處理單元及多個霍爾感測元件,該處理單元電性連接該些霍爾感測元件;一曲柄,具有一磁性元件,該曲柄繞著一轉動軸心以一第一方向或一第二方向轉動,該磁性元件用以與該些霍爾感測元件相互感應;其中,於該曲柄以該轉動軸心轉動時,該些霍爾感測元件感測到該磁性元件的一移動狀態,並傳輸一感測訊號給該處理單元,該處理單元根據該感測訊號以計算出該曲柄的一轉速,且該處理單元根據該轉速以控制該馬達的輸出功率。 A rotary encoder for electrically connecting a motor, the rotary encoder comprising: a circuit board having a processing unit and a plurality of Hall sensing elements, the processing unit electrically connecting the Hall sensing elements; a crank having a magnetic member, the crank rotating in a first direction or a second direction about a rotation axis, wherein the magnetic element is for sensing with the Hall sensing elements; wherein, the crank is When the rotating axis rotates, the Hall sensing components sense a moving state of the magnetic component, and transmit a sensing signal to the processing unit, and the processing unit calculates the crank according to the sensing signal. A rotational speed, and the processing unit controls the output power of the motor according to the rotational speed. 如請求項1所述之旋轉編碼器,其中該處理單元逐次掃描該些霍爾感測元件,並開啟與該磁性元件相互感應的該些霍爾感測元件的其中之一或一些。 The rotary encoder of claim 1, wherein the processing unit scans the Hall sensing elements one by one and turns on one or some of the Hall sensing elements that are inductive with the magnetic element. 如請求項1所述之旋轉編碼器,更包括一狀態感測單元,電性連接該處理單元,該狀態感測單元根據一加速度狀態或一高度狀態,以輸出一狀態訊號給該處理單元,該處理單元根據該狀態訊號以進入一爬坡模式。 The rotary encoder according to claim 1, further comprising a state sensing unit electrically connected to the processing unit, the state sensing unit outputting a state signal to the processing unit according to an acceleration state or a height state, The processing unit enters a hill climbing mode according to the status signal. 如請求項1所述之旋轉編碼器,更包括一應變規,電性連接該處理單元,該應變規根據一扭力狀態以輸出一扭力訊號給該處理單元,該處理單元根據該扭力訊號以進入一爬坡模式。 The rotary encoder according to claim 1, further comprising a strain gauge electrically connected to the processing unit, wherein the strain gauge outputs a torsion signal to the processing unit according to a torque state, and the processing unit enters according to the torque signal A hill climbing mode. 如請求項1所述之旋轉編碼器,其中該處理單元根據該轉速以及該馬達的一電流狀態,以判斷是否進入一爬坡模式。 The rotary encoder of claim 1, wherein the processing unit determines whether to enter a hill climbing mode according to the rotation speed and a current state of the motor. 如請求項1所述之旋轉編碼器,其中該處理單元控制該馬達的輸出功率正比於該曲柄的該轉速,該處理單元透過該些霍爾感測元件以偵測出該曲柄的一踩踏頻率、一踩踏方向、一踩踏死點及一最大踩踏出力點的其中之一或組合,該處理單元控制該馬達以即時輸出功率。 The rotary encoder of claim 1, wherein the processing unit controls the output power of the motor to be proportional to the rotational speed of the crank, and the processing unit transmits the Hall sensing elements to detect a stepping frequency of the crank. The processing unit controls the motor to instantaneously output power, one of or a combination of a stepping direction, a stepping dead point, and a maximum stepping force point. 如請求項1所述之旋轉編碼器,其中該第一方向為逆時針方向,該第二方向為順時間方向,該曲柄以該第一方向轉動時,該處理單元計算出的該轉速為正值的每分鍾轉數,而該曲柄以該第二方向轉動時,該處理單元計算出的該轉速為負值的每分鍾轉數。 The rotary encoder according to claim 1, wherein the first direction is a counterclockwise direction, and the second direction is a clockwise direction, and when the crank is rotated in the first direction, the rotation speed calculated by the processing unit is positive. The number of revolutions per minute of the value, and when the crank is rotated in the second direction, the rotation speed calculated by the processing unit is a negative number of revolutions per minute. 如請求項1所述之旋轉編碼器,其中該電路板為一圓環型基板或一圓盤型基板,該圓環型基板或該圓盤型基板具有一個圈路或多個圈路,而兩相鄰的該霍爾感測元件相隔一預設角度而配置於該圈路或該多個圈路上,該預設角度係以該轉動軸心為頂點,並以兩相鄰的該霍爾感測元件分別延伸至頂點所形成之夾角。 The rotary encoder of claim 1, wherein the circuit board is a ring-shaped substrate or a disk-shaped substrate, and the annular substrate or the disk-shaped substrate has a loop or a plurality of loops, and Two adjacent Hall sensing elements are disposed on the loop or the plurality of loops at a predetermined angle, the preset angle is vertices with the rotation axis, and the two adjacent Halls The sensing elements extend to an included angle formed by the vertices, respectively. 如請求項1所述之旋轉編碼器,其中該曲柄的一端樞接一轉軸,該轉軸位於該轉動軸心上,該曲柄的一端往外延伸至一踏板。 The rotary encoder of claim 1, wherein one end of the crank is pivotally connected to a rotating shaft, the rotating shaft is located on the rotating shaft, and one end of the crank extends outward to a pedal. 一種具有旋轉編碼器的自行車,包含有:一自行車體,設有一電源模組、一馬達以及供踩踏用的一對踏板,該電源模組係用以對該馬達提供電能;及一如請求項1至9其中之一的旋轉編碼器,電性連接於該馬達以及該電源模組,該旋轉編碼器的一處理單元係控制該電源模組對該馬達所提供的電能,而該旋轉編碼器的一曲柄連接至該對踏板的其中之一;其中,於該曲柄以該轉動軸心轉動時,該旋轉編碼器的一電路板上的多個霍爾感測元件感測到該曲柄的一磁性元件的一移動狀態,並傳輸一感測訊號給該處理單元,該處理單元根據該感測訊號以計算出該曲柄的一轉速,且該處理單元根據該轉速以控制該馬達的輸出功率。 A bicycle having a rotary encoder includes: a bicycle body, a power module, a motor and a pair of pedals for stepping on, the power module is used to supply electric power to the motor; and The rotary encoder of one of the first to the ninth is electrically connected to the motor and the power module, and a processing unit of the rotary encoder controls the power supplied by the power module to the motor, and the rotary encoder a crank connected to one of the pair of pedals; wherein, when the crank is rotated by the rotation axis, a plurality of Hall sensing elements on a circuit board of the rotary encoder senses one of the cranks a moving state of the magnetic component, and transmitting a sensing signal to the processing unit, the processing unit calculates a rotational speed of the crank according to the sensing signal, and the processing unit controls the output power of the motor according to the rotating speed. 如請求項10所述之具有旋轉編碼器的自行車,更包括一殼體,該電路板設置於該殼體內,該殼體配置於該自行車體的左側, 並鄰近該對踏板的其中之一,該曲柄樞接該殼體。 A bicycle having a rotary encoder according to claim 10, further comprising a casing, the circuit board being disposed in the casing, the casing being disposed on a left side of the bicycle body And adjacent to one of the pair of pedals, the crank pivotally connects the housing. 一種旋轉編碼器的運作方法,包含有:於一電路板上配置一處理單元及多個霍爾感測元件,該處理單元電性連接該些霍爾感測元件;於一曲柄上配置一磁性元件,該曲柄繞著一轉動軸心以一第一方向或一第二方向轉動,該磁性元件用以與該些霍爾感測元件相互感應;於該曲柄以該轉動軸心轉動時,該些霍爾感測元件感測到該磁性元件的一移動狀態,並傳輸一感測訊號給該處理單元;及該處理單元根據該感測訊號以計算出該曲柄的一轉速,且該處理單元根據該轉速以控制該馬達的輸出功率。 A method for operating a rotary encoder includes: arranging a processing unit and a plurality of Hall sensing elements on a circuit board, the processing unit electrically connecting the Hall sensing elements; and arranging a magnetic body on a crank An element that rotates in a first direction or a second direction about a rotation axis, the magnetic element is for sensing with the Hall sensing elements; and when the crank is rotated by the rotation axis, The Hall sensing component senses a moving state of the magnetic component and transmits a sensing signal to the processing unit; and the processing unit calculates a rotation speed of the crank according to the sensing signal, and the processing unit The output power of the motor is controlled based on the rotational speed. 如請求項12所述之旋轉編碼器的運作方法,其中於該處理單元根據該轉速以控制該馬達的輸出功率之步驟中,更包括:該處理單元控制該馬達的輸出功率正比於該曲柄的該轉速;該處理單元根據該轉速以及該馬達的一電流狀態,以判斷是否進入一爬坡模式;該處理單元根據一狀態感測單元的一狀態訊號以進入一爬坡模式;及該處理單元根據一應變規的一扭力訊號以進入一爬坡模式。 The method for operating a rotary encoder according to claim 12, wherein in the step of controlling the output power of the motor according to the rotation speed, the processing unit further comprises: the processing unit controlling the output power of the motor to be proportional to the crank The processing unit determines whether to enter a climbing mode according to the rotating speed and a current state of the motor; the processing unit enters a climbing mode according to a state signal of a state sensing unit; and the processing unit According to a torque signal of a strain gauge to enter a climbing mode. 如請求項12所述之旋轉編碼器的運作方法,其中於一電路板上配置一處理單元及多個霍爾感測元件之步驟中,更包括:兩相鄰的該霍爾感測元件相隔一預設角度而配置於該電路板的一個圈路或多個圈路上,該預設角度係以該轉動軸心為頂點,並以兩相鄰的該霍爾感測元件分別延伸至頂點所形成之夾角,而該電路板為一圓環型基板或一圓盤型基板。 The method for operating a rotary encoder according to claim 12, wherein the step of disposing a processing unit and the plurality of Hall sensing elements on a circuit board further comprises: separating two adjacent Hall sensing elements a predetermined angle is disposed on a loop or a plurality of loops of the circuit board, wherein the preset angle is an apex of the rotation axis, and the two adjacent Hall sensing elements respectively extend to the apex The angle formed is formed, and the circuit board is a ring-shaped substrate or a disk-shaped substrate.
TW105119934A 2016-06-24 2016-06-24 Rotary encoder, bike with rotary encoder and operating method of rotary encoder TWI596320B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105119934A TWI596320B (en) 2016-06-24 2016-06-24 Rotary encoder, bike with rotary encoder and operating method of rotary encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105119934A TWI596320B (en) 2016-06-24 2016-06-24 Rotary encoder, bike with rotary encoder and operating method of rotary encoder

Publications (2)

Publication Number Publication Date
TWI596320B TWI596320B (en) 2017-08-21
TW201809603A true TW201809603A (en) 2018-03-16

Family

ID=60189038

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105119934A TWI596320B (en) 2016-06-24 2016-06-24 Rotary encoder, bike with rotary encoder and operating method of rotary encoder

Country Status (1)

Country Link
TW (1) TWI596320B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI834650B (en) * 2019-03-28 2024-03-11 台灣東電化股份有限公司 Rotary angle detecting device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW352071U (en) * 1993-09-14 1999-02-01 Riken Kk An electric powered bicycle
US5599244A (en) * 1995-08-14 1997-02-04 Ethington; Russell A. Automatic transmission shifter for velocipedes
US6296072B1 (en) * 1999-01-20 2001-10-02 Opti-Bike Llc Electric bicycle and methods
US20120130603A1 (en) * 2010-11-18 2012-05-24 Sean Michael Simpson System and method for controlling a transmission of a human-powered vehicle
IT1404164B1 (en) * 2011-02-03 2013-11-15 Milano Politecnico ELECTRICALLY ASSISTED RIDING BICYCLE
CN102826179B (en) * 2012-07-28 2014-03-26 成都宽和科技有限责任公司 Sensing element with adjustable positions and magnetic fluxes of magnetic blocks in shell
CN103895797B (en) * 2014-04-04 2016-04-27 太仓市悦博电动科技有限公司 Interior flower-drum is revolving motive-force-assisted bicycle speed-change control device and control method
CN108528617B (en) * 2014-12-05 2021-05-28 株式会社岛野 Bicycle control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI834650B (en) * 2019-03-28 2024-03-11 台灣東電化股份有限公司 Rotary angle detecting device

Also Published As

Publication number Publication date
TWI596320B (en) 2017-08-21

Similar Documents

Publication Publication Date Title
TWI694948B (en) Bicycle control device and bicycle control method
US8972086B2 (en) Bicycle drive apparatus
CN201777370U (en) Speed-sensing power-assisting control device for electric bicycle
US11167818B2 (en) Human-powered vehicle control device
TWI500554B (en) Bicycle control device
AU2014373279B2 (en) Center-mounted control system of bicycle
CN103085932B (en) Electric bicycle center shaft force moment sensing device
TWI670197B (en) Electric auxiliary system and electric auxiliary vehicle
JP7149325B2 (en) Device for detecting operating parameters of a vehicle
US9020694B2 (en) Bicycle-use measuring apparatus and control method
CN107588787B (en) Rotary encoder and operation method thereof and bicycle with rotary encoder
TWI596320B (en) Rotary encoder, bike with rotary encoder and operating method of rotary encoder
GB2482696A (en) Force-sensing bicycle pedal and electric cycle
CN206049945U (en) A kind of brake handle device, brake gear and the vehicles
JP2022113793A (en) Control device for human-powered vehicle
WO2018205713A1 (en) Electric bicycle torque sensing-type motor and electric bicycle
JP3203473U (en) Torque gear structure
CN203064150U (en) Center-shaft moment sensing device for electric bicycle
WO2020153350A1 (en) Bicycle control device, motor unit, drive unit, electric bicycle, and program
TWI678314B (en) Operation parameter detecting apparatus for a vehicle
CN110422268A (en) A kind of electric bicycle pedal moment control device
CN214014073U (en) Magnetic encoder and electronic device having the same
CN205971729U (en) Electric bicycle and variable speed auxiliary device thereof
JP5633389B2 (en) Torque detection device and electric power steering device
CN110182296B (en) Bicycle center shaft torque detection device