TW201809483A - Control system for controlling a fluid actuator - Google Patents

Control system for controlling a fluid actuator Download PDF

Info

Publication number
TW201809483A
TW201809483A TW106118370A TW106118370A TW201809483A TW 201809483 A TW201809483 A TW 201809483A TW 106118370 A TW106118370 A TW 106118370A TW 106118370 A TW106118370 A TW 106118370A TW 201809483 A TW201809483 A TW 201809483A
Authority
TW
Taiwan
Prior art keywords
valve
piston
chamber
assembly
platform
Prior art date
Application number
TW106118370A
Other languages
Chinese (zh)
Other versions
TWI735589B (en
Inventor
佰學 楊
崔永俊
張秉威
坂田晃一
樹平 李
Original Assignee
尼康股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 尼康股份有限公司 filed Critical 尼康股份有限公司
Publication of TW201809483A publication Critical patent/TW201809483A/en
Application granted granted Critical
Publication of TWI735589B publication Critical patent/TWI735589B/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/042Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the feed line, i.e. "meter in"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/044Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by electrically-controlled means, e.g. solenoids, torque-motors
    • F15B13/0442Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by electrically-controlled means, e.g. solenoids, torque-motors with proportional solenoid allowing stable intermediate positions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B19/00Testing; Calibrating; Fault detection or monitoring; Simulation or modelling of fluid-pressure systems or apparatus not otherwise provided for
    • F15B19/007Simulation or modelling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/30565Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve
    • F15B2211/30575Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve in a Wheatstone Bridge arrangement (also half bridges)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/327Directional control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/35Directional control combined with flow control
    • F15B2211/351Flow control by regulating means in feed line, i.e. meter-in control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/35Directional control combined with flow control
    • F15B2211/353Flow control by regulating means in return line, i.e. meter-out control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6654Flow rate control

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

A stage assembly for positioning a workpiece includes a stage, a base, a fluid actuator assembly, and a control system. The stage retains the workpiece. The fluid actuator assembly moves the stage along the movement axis relative to the base. The fluid actuator assembly includes a piston housing that defines a piston chamber, a piston that is positioned within and moves relative to the piston chamber along a piston axis, and a valve assembly that controls the flow of a piston fluid into the piston chamber. The valve assembly includes a first inlet valve having a first inlet valve characteristic. The control system controls the valve assembly to control the flow of the piston fluid into the piston chamber. The control system can utilize an inverse of the first inlet valve characteristic to control the valve assembly.

Description

用於控制流體致動器的控制系統 Control system for controlling fluid actuators

曝光設備通常用以將影像自遮罩轉印至諸如LCD平板顯示器或半導體晶圓之工件上。典型的曝光設備包括:照明源;遮罩平台總成,其保持及精確地定位遮罩;透鏡總成;工件平台總成,其保持及精確地定位工件;及量測系統,其監測遮罩及工件之位置或移動。從未終止期望減小用以定位遮罩及/或工件之致動器的成本,同時仍準確地定位此等組件。 Exposure devices are commonly used to transfer images from a mask onto a workpiece such as an LCD flat panel display or semiconductor wafer. A typical exposure apparatus includes: an illumination source; a mask platform assembly that maintains and accurately positions the mask; a lens assembly; a workpiece platform assembly that holds and accurately positions the workpiece; and a measurement system that monitors the mask And the position or movement of the workpiece. It has never been desired to reduce the cost of actuators used to position the mask and/or workpiece while still accurately positioning such components.

本發明係關於用於沿著一移動軸線定位一工件之平台總成。在一個實施例中,該平台總成包括一平台、一底座、一流體致動器總成及一控制系統。該平台經調適以保持該工件。該流體致動器總成耦接至該平台且沿著該移動軸線相對於該底座來移動該平台。該流體致動器總成可包括:一活塞殼體,其界定一活塞腔室;一活塞,其定位於該活塞腔室內且沿著一活塞軸線相對於該活塞腔室而移動;及一閥總成,其控制一活塞流體進入該活塞腔室之流動。該閥總成包括具有一第一入口閥特性之一第一入口閥。該控制系統控制該閥總成以控制該活塞流體進入該活塞腔室之該流動。在某些實施例中,該控制系統利用該第一入口閥特性之一反轉 以控制該閥總成。 The present invention relates to a platform assembly for positioning a workpiece along a moving axis. In one embodiment, the platform assembly includes a platform, a base, a fluid actuator assembly, and a control system. The platform is adapted to hold the workpiece. The fluid actuator assembly is coupled to the platform and moves the platform relative to the base along the axis of movement. The fluid actuator assembly can include: a piston housing defining a piston chamber; a piston positioned within the piston chamber and moving relative to the piston chamber along a piston axis; and a valve An assembly that controls the flow of a piston fluid into the piston chamber. The valve assembly includes a first inlet valve having a first inlet valve characteristic. The control system controls the valve assembly to control the flow of the piston fluid into the piston chamber. In some embodiments, the control system reverses using one of the first inlet valve characteristics To control the valve assembly.

在一個實施例中,該活塞流體為一氣體,且本發明被描述為一種氣動控制應用。替代地,該活塞流體可為諸如油之一液體,且可利用不同方程式。 In one embodiment, the piston fluid is a gas and the invention is described as a pneumatic control application. Alternatively, the piston fluid can be a liquid such as oil and different equations can be utilized.

如本文中所提供,該控制系統精確地控制該活塞之每一側上的流體壓力以產生用以準確地驅動及定位該平台之所要力。在某些實施例中,評估該閥總成以識別嵌入於該系統中之非線性。此等非線性包括每一閥之該等閥特性。閥特性之非獨占式實例包括:(i)隨著腔室體積之流體壓力變化;(ii)比例閥之背隙及差壓相依性;及(iii)與上游及下游壓力相關聯之流體流動非線性。可經由測試、模型化或模擬來識別該等非線性。隨後,在該控制系統之一控制迴路中反轉及使用該等閥特性以線性化該系統且準確地控制該流體致動器總成。 As provided herein, the control system precisely controls the fluid pressure on each side of the piston to create the desired force to accurately drive and position the platform. In certain embodiments, the valve assembly is evaluated to identify non-linearities embedded in the system. These non-linearities include these valve characteristics of each valve. Non-exclusive examples of valve characteristics include: (i) fluid pressure changes with chamber volume; (ii) backlash and differential pressure dependence of proportional valves; and (iii) fluid flow associated with upstream and downstream pressures Nonlinear. These non-linearities can be identified via testing, modeling, or simulation. These valve characteristics are then reversed and used in one of the control systems to linearize the system and accurately control the fluid actuator assembly.

因此,已藉由將經識別之系統動力學模型併入至控制設計中而解決與將一液壓缸施加至平台軌跡運動相關聯之液壓缸壓力及閥動力學的系統非線性問題。 Thus, system nonlinearities associated with hydraulic cylinder pressure and valve dynamics associated with applying a hydraulic cylinder to platform trajectory motion have been addressed by incorporating the identified system dynamics model into the control design.

在某些實施例中,該活塞將該活塞腔室分離成在該活塞之相對側上的一第一腔室及一第二腔室。另外,該閥總成控制該活塞流體進入及離開該第一腔室及該第二腔室之流動。 In some embodiments, the piston separates the piston chamber into a first chamber and a second chamber on opposite sides of the piston. Additionally, the valve assembly controls the flow of the piston fluid into and out of the first chamber and the second chamber.

在一個實施例中,該閥總成包括:(i)該第一入口閥,其控制該活塞流體進入該第一腔室之該流動;(ii)一第一出口閥,其控制該活塞流體離開該第一腔室之該流動;(iii)一第二入口閥,其控制該活塞流體進入該第二腔室之該流動;及(iv)一第二出口閥,其控制該活塞流體離開 該第二腔室之該流動。另外,該第一出口閥具有一第一出口閥特性;該第二入口閥具有一第二入口閥特性;且該第二出口閥具有一第二出口閥特性。在此實施例中,該控制系統亦利用該第一出口閥特性之一反轉、該第二入口閥特性之一反轉及該第二出口閥特性之一反轉以控制該閥總成。 In one embodiment, the valve assembly includes: (i) the first inlet valve that controls the flow of the piston fluid into the first chamber; (ii) a first outlet valve that controls the piston fluid The flow leaving the first chamber; (iii) a second inlet valve that controls the flow of the piston fluid into the second chamber; and (iv) a second outlet valve that controls the piston fluid to exit This flow of the second chamber. Additionally, the first outlet valve has a first outlet valve characteristic; the second inlet valve has a second inlet valve characteristic; and the second outlet valve has a second outlet valve characteristic. In this embodiment, the control system also utilizes one of the first outlet valve characteristics to reverse, one of the second inlet valve characteristics to reverse, and one of the second outlet valve characteristics to reverse to control the valve assembly.

作為一個非獨占式實例,可使用該第一入口閥之實驗測試來判定該第一入口閥特性,可使用該第一出口閥之實驗測試來判定該第一出口閥特性,可使用該第二入口閥之實驗測試來判定該第二入口閥特性,且可使用該第二出口閥之實驗測試來判定該第二出口閥特性。 As a non-exclusive example, the first inlet valve can be used to determine the first inlet valve characteristic, and the first outlet valve can be used to determine the first outlet valve characteristic, and the second outlet can be used. An experimental test of the inlet valve determines the second inlet valve characteristic and an experimental test of the second outlet valve can be used to determine the second outlet valve characteristic.

如本文中所提供,舉例而言,每一閥特性可為:(i)用於該閥之電流命令與一有效孔口面積之間的關係;(ii)用於該閥之電流命令與閥位置之間的關係;及/或(iii)用於該閥之有效孔口面積與閥位置之間的關係。 As provided herein, for example, each valve characteristic can be: (i) a relationship between a current command for the valve and an effective orifice area; (ii) a current command and valve for the valve The relationship between the positions; and/or (iii) the relationship between the effective orifice area for the valve and the valve position.

本發明亦係關於一種曝光設備,及一種用於製造一裝置之程序,該程序包括以下步驟:提供一基板;及運用該曝光設備將一影像形成至該基板。 The invention also relates to an exposure apparatus, and a program for fabricating a device, the program comprising the steps of: providing a substrate; and forming an image onto the substrate using the exposure apparatus.

本發明亦係關於一種用於沿著一移動軸線定位一工件之方法。在一個實施例中,該方法包括:(i)提供一底座;(ii)將該工件耦接至一平台;(iii)運用一流體致動器總成而沿著該移動軸線移動該平台,該流體致動器總成包括:一活塞殼體,其界定一活塞腔室;一活塞,其定位於該活塞腔室內且沿著一活塞軸線相對於該活塞腔室而移動;及一閥總成,其控制一活塞流體進入該活塞腔室之流動;其中該閥總成包括具有一第一入口閥特性之一第一入口閥;及(iv)運用一控制系統來控制該閥總成以控 制該活塞流體進入該活塞腔室之該流動,其中該控制系統利用該第一入口閥特性之一反轉以控制該閥總成。 The invention also relates to a method for positioning a workpiece along a moving axis. In one embodiment, the method includes: (i) providing a base; (ii) coupling the workpiece to a platform; (iii) applying a fluid actuator assembly to move the platform along the axis of movement, The fluid actuator assembly includes: a piston housing defining a piston chamber; a piston positioned within the piston chamber and moving relative to the piston chamber along a piston axis; and a total valve Forming a flow of a piston fluid into the piston chamber; wherein the valve assembly includes a first inlet valve having a first inlet valve characteristic; and (iv) using a control system to control the valve assembly control The flow of the piston fluid into the piston chamber is made wherein the control system reverses with one of the first inlet valve characteristics to control the valve assembly.

10‧‧‧平台總成 10‧‧‧ Platform Assembly

12‧‧‧底座 12‧‧‧Base

14‧‧‧平台 14‧‧‧ platform

16‧‧‧平台移動器總成 16‧‧‧ Platform mover assembly

18‧‧‧量測系統 18‧‧‧Measurement system

20‧‧‧控制系統 20‧‧‧Control system

20A‧‧‧處理器 20A‧‧‧ processor

20B‧‧‧電子資料儲存器 20B‧‧‧Electronic data storage

22‧‧‧工件 22‧‧‧Workpiece

24‧‧‧流體致動器總成 24‧‧‧ Fluid Actuator Assembly

26‧‧‧底座安裝台 26‧‧‧Base mounting table

28‧‧‧軸承總成 28‧‧‧ bearing assembly

30‧‧‧移動軸線 30‧‧‧Moving axis

31‧‧‧活塞總成 31‧‧‧Piston assembly

32‧‧‧活塞殼體 32‧‧‧ piston housing

32A‧‧‧管狀側壁 32A‧‧‧Tubular sidewall

32B‧‧‧圓盤狀第一端壁 32B‧‧‧disk-shaped first end wall

32C‧‧‧圓盤狀第二端壁 32C‧‧‧Disc second end wall

32D‧‧‧壁孔隙 32D‧‧‧ wall pores

34‧‧‧活塞腔室 34‧‧‧Piston chamber

34A‧‧‧第一腔室 34A‧‧‧First Chamber

34B‧‧‧第二腔室 34B‧‧‧Second chamber

36‧‧‧活塞 36‧‧‧Piston

36A‧‧‧活塞軸線 36A‧‧‧Piston axis

36B‧‧‧活塞體 36B‧‧‧ piston body

36C‧‧‧活塞密封件 36C‧‧‧ piston seals

36D‧‧‧第一橫樑 36D‧‧‧First beam

36E‧‧‧第二橫樑 36E‧‧‧Second beam

38‧‧‧閥總成 38‧‧‧Valve assembly

38A‧‧‧第一閥子總成 38A‧‧‧First valve assembly

38B‧‧‧第二閥子總成 38B‧‧‧Second valve assembly

38C‧‧‧第一入口閥 38C‧‧‧First inlet valve

38D‧‧‧第一出口閥 38D‧‧‧First exit valve

38E‧‧‧第二入口閥 38E‧‧‧Second inlet valve

38F‧‧‧第二出口閥 38F‧‧‧Second outlet valve

40‧‧‧活塞流體 40‧‧‧ piston fluid

42‧‧‧活塞安裝台 42‧‧‧Piston Mounting Table

44‧‧‧總力(F) 44‧‧‧ Total strength (F)

46‧‧‧流體壓力源 46‧‧‧ Fluid pressure source

46A‧‧‧流體貯槽 46A‧‧‧ fluid storage tank

46B‧‧‧壓縮器 46B‧‧‧Compressor

46C‧‧‧壓力調節器 46C‧‧‧pressure regulator

260‧‧‧平台參考區塊 260‧‧‧ Platform Reference Block

262‧‧‧平台回饋控制器 262‧‧‧ platform feedback controller

264‧‧‧平台前饋控制器 264‧‧‧ Platform Feedforward Controller

266‧‧‧回饋轉換器 266‧‧‧Feedback Converter

268‧‧‧前饋轉換器 268‧‧‧Feed-forward converter

270‧‧‧第一腔室控制器 270‧‧‧First chamber controller

272‧‧‧第二腔室控制器 272‧‧‧Second chamber controller

278‧‧‧腔室體積估計器 278‧‧‧chamber volume estimator

290‧‧‧壓力回饋控制器 290‧‧‧Pressure feedback controller

292‧‧‧壓力至質量流量轉換器 292‧‧‧Pressure to mass flow converter

294‧‧‧入口質量流量至孔口面積轉換器 294‧‧‧Inlet mass flow to orifice area converter

296‧‧‧出口質量流量至孔口面積轉換器 296‧‧‧Export mass flow to orifice area converter

297‧‧‧入口孔口面積至電流轉換器 297‧‧‧Inlet orifice area to current converter

298‧‧‧出口孔口面積至電流轉換器 298‧‧‧Export orifice area to current converter

334i‧‧‧腔室 334i‧‧‧室

338i‧‧‧閥子總成 338i‧‧‧ valve assembly

338ii‧‧‧入口閥 338ii‧‧‧Inlet valve

338io‧‧‧出口閥 338io‧‧‧Export valve

340‧‧‧加壓活塞流體 340‧‧‧Pressure piston fluid

346‧‧‧壓力源 346‧‧‧Pressure source

400‧‧‧管路 400‧‧‧ pipeline

402‧‧‧孔口 402‧‧‧孔口

538‧‧‧閥 538‧‧‧Valve

539A‧‧‧閥殼體 539A‧‧‧ valve housing

539B‧‧‧可移動閥體 539B‧‧‧ movable valve body

539C‧‧‧入口導管 539C‧‧‧Inlet catheter

539D‧‧‧出口導管 539D‧‧‧Export conduit

539E‧‧‧彈性構件 539E‧‧‧Flexible components

539F‧‧‧螺線管 539F‧‧‧ Solenoid

600A‧‧‧線 600A‧‧‧ line

600B‧‧‧線 600B‧‧‧ line

602A‧‧‧線 602A‧‧‧ line

602B‧‧‧線 602B‧‧‧ line

604A‧‧‧線 604A‧‧‧ line

604B‧‧‧線 604B‧‧‧ line

606A‧‧‧線 606A‧‧‧ line

606B‧‧‧線 606B‧‧‧ line

608A‧‧‧線 608A‧‧‧ line

608B‧‧‧線 608B‧‧‧ line

610A‧‧‧線 610A‧‧‧ line

610B‧‧‧線 610B‧‧‧ line

612A‧‧‧線 612A‧‧‧ line

612B‧‧‧線 612B‧‧‧ line

614‧‧‧閥特性 614‧‧‧ valve characteristics

616‧‧‧反轉閥特性 616‧‧‧Reversing valve characteristics

738‧‧‧閥 738‧‧‧Valve

739A‧‧‧閥殼體 739A‧‧‧ valve housing

739B‧‧‧可移動閥體 739B‧‧‧Removable valve body

739D‧‧‧出口開口 739D‧‧‧Export opening

739E‧‧‧彈性構件 739E‧‧‧Flexible components

739F‧‧‧螺線管 739F‧‧‧ Solenoid

814‧‧‧閥特性 814‧‧‧ valve characteristics

816‧‧‧反轉閥特性 816‧‧‧Reversing valve characteristics

914‧‧‧閥特性 914‧‧‧ valve characteristics

1014‧‧‧第一閥特性 1014‧‧‧First valve characteristics

1015‧‧‧第二閥特性 1015‧‧‧Second valve characteristics

1016‧‧‧反轉閥特性/圖形 1016‧‧‧Reverse valve characteristics / graphics

1017‧‧‧反轉閥特性/圖形 1017‧‧‧Reverse valve characteristics / graphics

1110‧‧‧板平台總成 1110‧‧‧ board platform assembly

1120‧‧‧控制系統 1120‧‧‧Control system

1122‧‧‧工件 1122‧‧‧Workpiece

1170‧‧‧曝光設備 1170‧‧‧Exposure equipment

1172‧‧‧設備框架 1172‧‧‧ Equipment framework

1182‧‧‧照明系統 1182‧‧‧Lighting system

1184‧‧‧遮罩平台總成 1184‧‧‧mask platform assembly

1186‧‧‧光學總成 1186‧‧‧Optical assembly

1188‧‧‧遮罩 1188‧‧‧ mask

1192‧‧‧照明源 1192‧‧‧Lighting source

1194‧‧‧照明光學總成 1194‧‧‧Lighting optics assembly

1201‧‧‧步驟 1201‧‧‧Steps

1202‧‧‧步驟 1202‧‧‧Steps

1203‧‧‧步驟 1203‧‧‧Steps

1204‧‧‧步驟 1204‧‧‧Steps

1205‧‧‧步驟 1205‧‧‧Steps

1206‧‧‧步驟 1206‧‧‧Steps

結合隨附描述自隨附圖式將最佳地理解本發明之新穎特徵以及本發明自身(關於其結構及其操作兩者),在圖式中相似參考標號指代相似部分,且在圖式中:圖1為具有本發明之特徵之平台總成的簡化側視說明;圖2A為說明用於控制流體致動器總成之方法的控制方塊圖;圖2B為腔室控制器的控制方塊圖;圖3為具有本發明之特徵之一個活塞腔室及一個閥子總成的簡化說明;圖4為包括孔口之管路的簡化說明;圖5A至圖5C為閥之一個非獨占式實例的簡化剖示圖;圖6A為說明圖5A至圖5C之閥之閥特性的圖形;圖6B為說明圖5A至圖5C之閥之反轉閥特性的圖形;圖7A至圖7D為在各種閥位置處的另一類型之閥的簡化說明;圖7E為在部分敞開位置中之出口及閥體的簡化說明;圖8A為說明用於圖7A至圖7D所說明之閥之經計算正規化有效孔口面積對正規化滑軸位置的圖形;圖8B為標繪滑軸位置對正規化有效孔口面積的圖形;圖9A為說明滑軸閥之測試結果的圖形;圖9B為說明滑軸閥之模擬結果的圖形;圖10A說明滑軸閥之兩個閥特性; 圖10B說明兩個反轉閥特性;圖11為具有本發明之特徵之曝光設備的示意性說明;且圖12為概述根據本發明的用於製造裝置之程序的流程圖。 The novel features of the invention, as well as the description of the invention, and the 1 is a simplified side view of a platform assembly having features of the present invention; FIG. 2A is a control block diagram illustrating a method for controlling a fluid actuator assembly; FIG. 2B is a control block of a chamber controller Figure 3 is a simplified illustration of a piston chamber and a valve assembly having features of the present invention; Figure 4 is a simplified illustration of a conduit including an orifice; Figures 5A through 5C are a non-exclusive valve BRIEF DESCRIPTION OF THE DRAWINGS FIG. 6A is a diagram illustrating the valve characteristics of the valves of FIGS. 5A to 5C; FIG. 6B is a diagram illustrating the characteristics of the reverse valve of the valves of FIGS. 5A to 5C; FIGS. 7A to 7D are diagrams A simplified illustration of another type of valve at various valve positions; Figure 7E is a simplified illustration of the outlet and valve body in a partially open position; Figure 8A is a diagram illustrating the normalized calculation of the valve illustrated in Figures 7A through 7D A graph of the effective orifice area versus the normalized sliding axis position; Figure 8B is a plot Normalized effective axial position of the pattern on the orifice area; FIG. 9A is a graph illustrating the test results of the spool valve shaft; FIG. 9B is a graph illustrating a simulation result of the spool valve shaft; FIG. 10A illustrates characteristics of two valves of the valve spool shaft; Figure 10B illustrates two reverse valve characteristics; Figure 11 is a schematic illustration of an exposure apparatus having features of the present invention; and Figure 12 is a flow chart summarizing a procedure for fabricating a device in accordance with the present invention.

圖1為平台總成10的簡化說明,平台總成10包括底座12、平台14、平台移動器總成16、量測系統18及控制系統20(被說明為方框)。此等組件中之每一者的設計可變化以適合平台總成10之設計要求。平台總成10特別有用於在製造及/或檢測程序期間精確地定位工件22(有時亦被稱作裝置)。 1 is a simplified illustration of a platform assembly 10 that includes a base 12, a platform 14, a platform mover assembly 16, a metrology system 18, and a control system 20 (illustrated as a block). The design of each of these components can be varied to suit the design requirements of the platform assembly 10. The platform assembly 10 is particularly useful for accurately positioning a workpiece 22 (sometimes referred to as a device) during manufacturing and/or inspection procedures.

作為概觀,在某些實施例中,平台移動器總成16包括製造起來相對廉價的流體致動器總成24。另外,在本文中所提供之獨特校準及識別程序之後,控制系統20可控制流體致動器總成24以準確地定位工件22。由此,平台總成10製造起來較不昂貴,且工件22仍係以所要程度之準確度而定位。 As an overview, in certain embodiments, the platform mover assembly 16 includes a fluid actuator assembly 24 that is relatively inexpensive to manufacture. Additionally, after the unique calibration and identification procedures provided herein, control system 20 can control fluid actuator assembly 24 to accurately position workpiece 22. Thus, the platform assembly 10 is less expensive to manufacture and the workpiece 22 is still positioned with the desired degree of accuracy.

由平台總成10定位及移動之工件22的類型可變化。舉例而言,工件22可為LCD平板顯示器、半導體晶圓或遮罩,且平台總成10可用作曝光設備之部分。替代地,舉例而言,平台總成10可用以在製造及/或檢測期間移動其他類型之裝置,在電子顯微鏡(圖中未示)下方移動裝置,或在精密量測操作(圖中未示)期間移動裝置。 The type of workpiece 22 that is positioned and moved by the platform assembly 10 can vary. For example, the workpiece 22 can be an LCD flat panel display, a semiconductor wafer or a mask, and the platform assembly 10 can be used as part of an exposure apparatus. Alternatively, for example, the platform assembly 10 can be used to move other types of devices during manufacturing and/or inspection, to move the device under an electron microscope (not shown), or in precision measurement operations (not shown) During the mobile device.

本文中所提供之一些圖包括指定X軸、Y軸及Z軸之定向系統。應理解,定向系統僅僅用於參考且可變化。舉例而言,X軸可與Y軸切換,及/或平台總成10可旋轉。此外,此等軸線可替代地被稱作第一軸 線、第二軸線或第三軸線。 Some of the figures provided herein include orientation systems that specify the X-axis, Y-axis, and Z-axis. It should be understood that the orientation system is for reference only and may vary. For example, the X-axis can be switched with the Y-axis and/or the platform assembly 10 can be rotated. In addition, these axes may alternatively be referred to as the first axis Line, second axis or third axis.

底座12支撐平台14。在圖1所說明之非獨占式實施例中,底座12具剛性且為大體上矩形板形狀。另外,底座12可固定地緊固至底座安裝台26。替代地,底座12可緊固至另一結構。 The base 12 supports the platform 14. In the non-exclusive embodiment illustrated in Figure 1, the base 12 is rigid and generally rectangular plate shaped. Additionally, the base 12 can be fixedly secured to the base mounting table 26. Alternatively, the base 12 can be fastened to another structure.

平台14保持工件22。在一個實施例中,平台係由平台移動器總成16相對於底座12精確地移動以精確地定位平台14及工件22。在圖1中,平台14為大體上矩形形狀且包括用於保持工件22之裝置固持器(圖中未示)。裝置固持器可為真空卡盤、靜電卡盤,或將工件22直接耦接至平台14的某一其他類型之夾具。在本文中所說明之實施例中,平台總成10包括保持工件22之單一平台14。替代地,舉例而言,平台總成10可經設計為包括被獨立地移動及定位之多個平台。作為一實例,平台總成10可包括由平台移動器總成16移動之粗略平台(圖中未示),及保持工件22且運用精細平台移動器總成(圖中未示)相對於粗略平台而移動之精細平台(圖中未示)。 The platform 14 holds the workpiece 22. In one embodiment, the platform is accurately moved relative to the base 12 by the platform mover assembly 16 to accurately position the platform 14 and the workpiece 22. In Figure 1, the platform 14 is generally rectangular in shape and includes a device holder (not shown) for holding the workpiece 22. The device holder can be a vacuum chuck, an electrostatic chuck, or some other type of fixture that directly couples the workpiece 22 to the platform 14. In the embodiment illustrated herein, the platform assembly 10 includes a single platform 14 that holds the workpiece 22. Alternatively, for example, platform assembly 10 can be designed to include multiple platforms that are independently moved and positioned. As an example, platform assembly 10 can include a coarse platform (not shown) that is moved by platform mover assembly 16, and holds workpiece 22 and utilizes a fine platform mover assembly (not shown) relative to the coarse platform The fine platform for moving (not shown).

另外,在圖1中,可運用允許平台14相對於底座12移動之軸承總成28相對於底座12來支撐平台14。舉例而言,軸承總成28可為輥軸承、流體軸承、線性軸承,或另一類型之軸承。 Additionally, in FIG. 1, the platform 14 can be supported relative to the base 12 by a bearing assembly 28 that allows the platform 14 to move relative to the base 12. For example, the bearing assembly 28 can be a roller bearing, a fluid bearing, a linear bearing, or another type of bearing.

量測系統18監測平台14相對於參考(諸如光學總成(圖1中未示)或底座12)之移動及/或位置,且將量測資訊提供至控制系統20。在具有此資訊的情況下,可運用控制系統20來控制平台移動器總成16以精確地定位平台14。量測系統18之設計可根據平台14之移動要求而變化。在一個實施例中,量測系統18可包括監測平台14沿著Y軸之移動的線性 編碼器。替代地,量測系統18可包括干涉計,或另一類型之移動或位置感測器。 The measurement system 18 monitors the movement and/or position of the platform 14 relative to a reference, such as an optical assembly (not shown in FIG. 1 or the base 12), and provides measurement information to the control system 20. With this information, the control system 20 can be utilized to control the platform mover assembly 16 to accurately position the platform 14. The design of the measurement system 18 can vary depending on the movement requirements of the platform 14. In one embodiment, the metrology system 18 can include linearity of the movement of the monitoring platform 14 along the Y-axis. Encoder. Alternatively, measurement system 18 may include an interferometer, or another type of movement or position sensor.

平台移動器總成16係由控制系統20控制以相對於底座12來移動平台14。在圖1中,平台移動器總成16包括沿著單一移動軸線30(例如,Y軸)移動平台14之流體致動器總成24。 The platform mover assembly 16 is controlled by the control system 20 to move the platform 14 relative to the base 12. In FIG. 1, the platform mover assembly 16 includes a fluid actuator assembly 24 that moves the platform 14 along a single axis of movement 30 (eg, the Y-axis).

流體致動器總成24之設計可依照本文中所提供之教示而變化。在一個非獨占式實施例中,流體致動器總成24包括:(i)活塞總成31,其包括界定活塞腔室34之活塞殼體32,及定位於活塞腔室34中之活塞36;及(i)閥總成38,其控制活塞流體40(被說明為小圓圈)進入及離開活塞腔室34之流動。舉例而言,活塞流體40可為空氣或另一類型之流體。此等組件之設計可依照本文中所提供之教示而變化。 The design of the fluid actuator assembly 24 can vary in accordance with the teachings provided herein. In a non-exclusive embodiment, the fluid actuator assembly 24 includes: (i) a piston assembly 31 that includes a piston housing 32 that defines a piston chamber 34, and a piston 36 that is positioned in the piston chamber 34. And (i) a valve assembly 38 that controls the flow of piston fluid 40 (described as a small circle) into and out of the piston chamber 34. For example, the piston fluid 40 can be air or another type of fluid. The design of such components can vary depending on the teachings provided herein.

在一個實施例中,活塞殼體32具剛性且界定大體上右圓柱狀活塞腔室34。在此實施例中,活塞殼體32包括:管狀側壁32A;圓盤狀第一端壁32B;及圓盤狀第二端壁32C,其與第一端壁32B隔開。一個或兩個端壁32B、32C可包括用於收納活塞36之部分的壁孔隙32D。 In one embodiment, the piston housing 32 is rigid and defines a generally right cylindrical piston chamber 34. In this embodiment, the piston housing 32 includes a tubular side wall 32A, a disk-shaped first end wall 32B, and a disk-shaped second end wall 32C spaced from the first end wall 32B. One or both of the end walls 32B, 32C can include a wall aperture 32D for receiving a portion of the piston 36.

活塞殼體32可固定地緊固至活塞安裝台42。替代地,活塞殼體32可緊固至另一結構,諸如底座12。又替代地,因為活塞殼體32接收由平台移動器總成16產生之反作用力,所以活塞殼體32可耦接至抵消、減小及最小化來自平台移動器總成16之反作用力對其他結構之位置的影響的反作用總成(reaction assembly)。舉例而言,活塞殼體32可耦接至維持於配重質量塊支撐件(圖中未示)上方之大配重質量塊(圖中未示),配重質量塊支撐件具有允許活塞殼體32沿著移動軸線30運動之反作用軸承(圖中 未示)。 The piston housing 32 can be fixedly secured to the piston mounting table 42. Alternatively, the piston housing 32 can be fastened to another structure, such as the base 12. Still alternatively, because the piston housing 32 receives the reaction force generated by the platform mover assembly 16, the piston housing 32 can be coupled to counteract, reduce, and minimize the reaction force from the platform mover assembly 16 to other The reaction assembly of the influence of the position of the structure. For example, the piston housing 32 can be coupled to a large counterweight mass (not shown) that is maintained above the counterweight mass support (not shown), the counterweight mass support having a piston housing Reaction bearing of the movement of the body 32 along the movement axis 30 (in the figure) Not shown).

活塞36定位於活塞腔室34內且沿著活塞軸線36A相對於活塞腔室34而移動。在某些實施例中,活塞軸線36A與移動軸線30同軸。在圖1所說明之非獨占式實施例中,活塞36包括:(i)剛性圓盤狀活塞體36B;(ii)活塞密封件36C,其密封活塞體36B與活塞殼體32之間的區域;(iii)剛性第一橫樑36D,其附接至活塞體36B且遠離活塞體36B而懸臂,且延伸通過第一端壁32B中之壁孔隙32D;(iv)剛性第二橫樑36E,其附接至活塞體36B且遠離活塞體36B而懸臂,且延伸通過第二端壁32C中之壁孔隙32D;(iv)第一橫樑密封件(圖中未示),其密封第一橫樑36D與第一端壁32B之間的區域;及(v)第二橫樑密封件(圖中未示),其密封第二橫樑36E與第二端壁32C之間的區域。 The piston 36 is positioned within the piston chamber 34 and moves relative to the piston chamber 34 along the piston axis 36A. In certain embodiments, the piston axis 36A is coaxial with the axis of movement 30. In the non-exclusive embodiment illustrated in Figure 1, the piston 36 includes: (i) a rigid disc-shaped piston body 36B; (ii) a piston seal 36C that seals the area between the piston body 36B and the piston housing 32. (iii) a rigid first beam 36D attached to the piston body 36B and cantilevered away from the piston body 36B and extending through the wall aperture 32D in the first end wall 32B; (iv) a rigid second beam 36E, attached Connected to the piston body 36B and cantilevered away from the piston body 36B and extend through the wall aperture 32D in the second end wall 32C; (iv) a first beam seal (not shown) that seals the first beam 36D and the first An area between the end walls 32B; and (v) a second beam seal (not shown) that seals a region between the second beam 36E and the second end wall 32C.

在此實施例中,第二橫樑36E亦固定地緊固至平台14。換言之,第二橫樑36E延伸於活塞體36B與平台14之間,使得活塞體36B之移動引起平台14之移動。另外,在此實施例中,包括第一橫樑36D以使得活塞體36B之每一側上的有效面積出於計算簡易起見而相同。替代地,舉例而言,流體致動器總成24可經設計為沒有第一橫樑36D。在此設計中,活塞體36B之左側上的有效面積大於右側上的有效面積。 In this embodiment, the second beam 36E is also fixedly secured to the platform 14. In other words, the second beam 36E extends between the piston body 36B and the platform 14 such that movement of the piston body 36B causes movement of the platform 14. Additionally, in this embodiment, the first beam 36D is included such that the effective area on each side of the piston body 36B is the same for simplicity of calculation. Alternatively, for example, the fluid actuator assembly 24 can be designed without the first beam 36D. In this design, the effective area on the left side of the piston body 36B is greater than the effective area on the right side.

活塞體36B將活塞腔室34分離成在活塞體36B之相對側上的第一腔室34A(亦被稱作「腔室1」)及第二腔室34B(亦被稱作「腔室2」)。在圖1中,第一腔室34A在活塞體36B之左側上,且第二腔室34B在活塞體36B之右側上。另外,第一腔室34A具有腔室1有效活塞面積(A 1 ),且被填充有處於第一壓力(P 1 )、處於第一溫度(T 1 )且具有第一體積(V 1 ) 之活塞流體40。相似地,第二腔室34B具有腔室2有效活塞面積(A 2 ),且被填充有處於第二壓力(P 2 )、處於第二溫度(T 2 )且具有第二體積(V 2 )之活塞流體40。在圖1所說明之此非獨占式實例中,流體致動器總成24經設計使得腔室1有效活塞面積(A 1 )大致等於腔室2有效活塞面積(A 2 )。 The piston body 36B separates the piston chamber 34 into a first chamber 34A (also referred to as "chamber 1") and a second chamber 34B (also referred to as "chamber 2" on opposite sides of the piston body 36B. "). In Figure 1, the first chamber 34A is on the left side of the piston body 36B and the second chamber 34B is on the right side of the piston body 36B. In addition, the first chamber 34A has the effective piston area (A 1 ) of the chamber 1 and is filled with the first pressure (P 1 ), at the first temperature (T 1 ) and having the first volume (V 1 ). Piston fluid 40. Similarly, the second chamber 34B has a chamber 2 effective piston area (A 2 ) and is filled with a second pressure (P 2 ), at a second temperature (T 2 ), and with a second volume (V 2 ) Piston fluid 40. In this non-exclusive illustrative example of FIG. 1, the fluid actuator assembly 24 is designed so that the chamber 1 the effective piston area (A 1) is substantially equal to the effective piston area of the chamber 2 (A 2).

第一腔室34A中的活塞流體40之第一壓力(P 1 )在活塞體36B上產生第一力(F 1 ),且第二腔室34B中的活塞流體40之第二壓力(P 2 )在活塞體36B上產生第二力(F 2 )。由流體致動器總成24產生之總力(F)44(由箭頭所說明)等於第一力(F 1 )減去第二力(F 2 )(F=F 1 -F 2 )。 The first pressure (P 1 ) of the piston fluid 40 in the first chamber 34A produces a first force (F 1 ) on the piston body 36B and the second pressure of the piston fluid 40 in the second chamber 34B (P 2 A second force (F 2 ) is generated on the piston body 36B. The total force (F) 44 (illustrated by the arrows) produced by the fluid actuator assembly 24 is equal to the first force (F 1 ) minus the second force (F 2 ) (F = F 1 - F 2 ).

在具有圖1所說明之非獨占式設計的情況下,當第一壓力(P 1 )大於第二壓力(P 2 )時,第一力(F 1 )大於第二力(F 2 ),總力(F)為正且自左向右推動活塞體36B及平台14。與此對比,當第一壓力(P 1 )小於第二壓力(P 2 )時,第一力(F 1 )小於第二力(F 2 ),總力(F)為負且自右向左推動活塞體36B及平台14。 In the case of the non-exclusive design illustrated in FIG. 1, when the first pressure (P 1 ) is greater than the second pressure (P 2 ), the first force (F 1 ) is greater than the second force (F 2 ), The force (F) is positive and pushes the piston body 36B and the platform 14 from left to right. In contrast, when the first pressure (P 1 ) is less than the second pressure (P 2 ), the first force (F 1 ) is smaller than the second force (F 2 ), and the total force (F) is negative and from right to left. The piston body 36B and the platform 14 are pushed.

在一個實施例中,閥總成38係由控制系統20控制以準確地且個別地控制每一腔室34A、34B中之壓力。作為一個非獨占式實施例,閥總成38包括:(i)第一閥子總成38A,其經控制以控制活塞流體40進入及離開第一腔室34A之流動且準確地控制第一壓力(P 1 );及(ii)第二閥子總成38B,其經控制以控制活塞流體40進入及離開第二腔室34B之流動以準確地控制第二壓力(P 2 )。在此實施例中,第一閥子總成38A包括:第一入口閥38C,其經控制以控制活塞流體40進入第一腔室34A之流動;及第一出口閥38D,其經控制以控制活塞流體40離開第一腔室34A之流動。相似地,第二閥子總成38B包括:第二入口閥38E,其經控制以控制活塞流體 40進入第二腔室34B之流動;及第二出口閥38F,其經控制以控制活塞流體40離開第二腔室34B之流動。 In one embodiment, the valve assembly 38 is controlled by the control system 20 to accurately and individually control the pressure in each of the chambers 34A, 34B. As a non-exclusive embodiment, the valve assembly 38 includes: (i) a first valve subassembly 38A that is controlled to control the flow of piston fluid 40 into and out of the first chamber 34A and accurately control the first pressure (P 1 ); and (ii) a second valve subassembly 38B that is controlled to control the flow of piston fluid 40 into and out of the second chamber 34B to accurately control the second pressure (P 2 ). In this embodiment, the first valve subassembly 38A includes a first inlet valve 38C that is controlled to control the flow of piston fluid 40 into the first chamber 34A, and a first outlet valve 38D that is controlled to control The piston fluid 40 exits the flow of the first chamber 34A. Similarly, second valve subassembly 38B includes a second inlet valve 38E that is controlled to control the flow of piston fluid 40 into second chamber 34B, and a second outlet valve 38F that is controlled to control piston fluid 40. The flow exits the second chamber 34B.

在此實施例中,流體致動器總成24可包括將加壓活塞流體40提供至入口閥38C、38E之一或多個流體壓力源46(展示兩個)。此外,流體壓力源46中之每一者可包括流體貯槽46A、在貯槽46A中產生加壓活塞流體40之壓縮器46B,及控制被遞送至入口閥38C、38E之活塞流體40之壓力的壓力調節器46C。另外,出口閥38D、38F可通向大氣或通向低壓區域,諸如真空腔室。 In this embodiment, the fluid actuator assembly 24 can include one or more fluid pressure sources 46 (showing two) that provide pressurized piston fluid 40 to the inlet valves 38C, 38E. Additionally, each of the fluid pressure sources 46 can include a fluid sump 46A, a compressor 46B that produces pressurized piston fluid 40 in sump 46A, and a pressure that controls the pressure of piston fluid 40 delivered to inlet valves 38C, 38E. Regulator 46C. Additionally, the outlet valves 38D, 38F can be open to the atmosphere or to a low pressure region, such as a vacuum chamber.

在某些實施例中,閥38C、38D、38E、38F中之每一者包括影響此等閥38C、38D、38E、38F之控制的一或多個閥特性。舉例而言,(i)第一入口閥38C具有一或多個第一入口閥特性;(ii)第一出口閥38D具有一或多個第一出口閥特性;(iii)第二入口閥38E具有一或多個第二入口閥特性;及/或(iv)第二出口閥38F具有一或多個第二出口閥特性。在一個實施例中,個別地測試每一閥38C、38D、38E、38F以判定各別閥38C、38D、38E、38F之個別閥特性。在具有此設計的情況下,使用各別閥38C、38D、38E、38F之個別閥特性以控制每一閥38C、38D、38E、38F。替代地,若每一閥38C、38D、38E、38F相似且具有相似閥特性,則可測試閥38C、38D、38E、38F中之一者且可使用彼閥之閥特性以控制閥38C、38D、38E、38F中之全部。 In certain embodiments, each of valves 38C, 38D, 38E, 38F includes one or more valve characteristics that affect the control of such valves 38C, 38D, 38E, 38F. For example, (i) first inlet valve 38C has one or more first inlet valve characteristics; (ii) first outlet valve 38D has one or more first outlet valve characteristics; (iii) second inlet valve 38E Having one or more second inlet valve characteristics; and/or (iv) second outlet valve 38F having one or more second outlet valve characteristics. In one embodiment, each valve 38C, 38D, 38E, 38F is individually tested to determine individual valve characteristics of the respective valves 38C, 38D, 38E, 38F. With this design, individual valve characteristics of the respective valves 38C, 38D, 38E, 38F are used to control each of the valves 38C, 38D, 38E, 38F. Alternatively, if each valve 38C, 38D, 38E, 38F is similar and has similar valve characteristics, one of the valves 38C, 38D, 38E, 38F can be tested and the valve characteristics of the valve can be used to control the valves 38C, 38D , 38E, 38F all.

所利用之閥38C、38D、38E、38F的類型可變化。作為非獨占式實例,每一閥38C、38D、38E、38F可為比例閥,諸如提動(「蘑菇」)型閥或滑軸型閥。 The types of valves 38C, 38D, 38E, 38F utilized may vary. As a non-exclusive example, each valve 38C, 38D, 38E, 38F can be a proportional valve, such as a poppet ("mushroom") type valve or a slide shaft type valve.

閥特性之類型將根據所利用之閥38C、38D、38E、38F的類型而變化。下文詳細地描述閥38C、38D、38E、38F之非獨占式類型與閥特性之非獨占式實例的配對。應注意,閥38C、38D、38E、38F可不同於本文中所提供之實例,且閥特性可不同於本文中所提供之實例。 The type of valve characteristics will vary depending on the type of valves 38C, 38D, 38E, 38F utilized. Pairing of non-exclusive types of valves 38C, 38D, 38E, 38F with non-exclusive examples of valve characteristics is described in detail below. It should be noted that valves 38C, 38D, 38E, 38F may differ from the examples provided herein, and the valve characteristics may differ from the examples provided herein.

如本文中所提供,對於每一閥38C、38D、38E、38F,其對應閥特性可經由實驗測試、經由模擬或此兩者之組合予以判定。 As provided herein, for each valve 38C, 38D, 38E, 38F, its corresponding valve characteristics can be determined via experimental testing, via simulation, or a combination of the two.

控制系統20控制閥總成38以控制活塞流體40進入及離開每一腔室34A、34B之流動。藉由選擇性地控制活塞流體40進入及離開每一腔室34A、34B之流動,可控制閥總成38以在活塞體36B上產生準確地移動活塞體36B及平台14之可控制力44(「F」)。 Control system 20 controls valve assembly 38 to control the flow of piston fluid 40 into and out of each of chambers 34A, 34B. By selectively controlling the flow of piston fluid 40 into and out of each of the chambers 34A, 34B, the valve assembly 38 can be controlled to produce a controllable force 44 on the piston body 36B that accurately moves the piston body 36B and the platform 14 ( "F").

控制系統20電連接至及控制被引導至閥總成38之電流以精確地定位平台14及工件22。在一個實施例中,控制系統20使用來自量測系統18之資訊以進行以下操作:(i)不斷地判定平台14之位置(「x」);及(ii)將電流引導至閥總成38以定位平台14。控制系統20可包括一或多個處理器20A及電子資料儲存器20B。控制系統20使用一或多個演算法以執行本文中所提供之步驟。 Control system 20 is electrically coupled to and controls the current directed to valve assembly 38 to accurately position platform 14 and workpiece 22. In one embodiment, control system 20 uses information from measurement system 18 to: (i) continuously determine the position of platform 14 ("x"); and (ii) direct current to valve assembly 38 To position the platform 14. Control system 20 can include one or more processors 20A and electronic data storage 20B. Control system 20 uses one or more algorithms to perform the steps provided herein.

在某些實施例中,控制系統20個別地控制第一閥38C、38D中之每一者以控制第一腔室34A中之第一壓力(P 1 )以產生所要第一力(F 1 )。相似地,控制系統20個別地控制第二閥38E、38F中之每一者以控制第二腔室34B中之第二壓力(P 2 )以產生所要第二力(F 2 )。因此,藉由控制閥38C、38D、38E、38F,控制系統20可控制流體致動器總成24以在平台14上產生所要總力(F)44。 In certain embodiments, control system 20 individually controls each of first valves 38C, 38D to control a first pressure (P 1 ) in first chamber 34A to produce a desired first force (F 1 ) . Similarly, control system 20 individually controls each of second valves 38E, 38F to control a second pressure (P 2 ) in second chamber 34B to produce a desired second force (F 2 ). Thus, by controlling valves 38C, 38D, 38E, 38F, control system 20 can control fluid actuator assembly 24 to produce a desired total force (F) 44 on platform 14.

在某些實施例中,當控制系統20判定需要將活塞流體40添加至第一腔室34A時,控制系統20將第一出口閥38D控制為閉合,且將第一入口閥38C控制為敞開適當量以添加活塞流體40。另外,當控制系統20判定需要自第一腔室34A移除活塞流體40時,控制系統20將第一入口閥38C控制為閉合,且將第一出口閥38C控制為敞開適當量以釋放活塞流體40。在此實例中,將第一閥38C、38D中之一者控制為在任何給定時間閉合。替代地,控制系統20可將第一閥38C、38D兩者控制為在自第一腔室34A添加活塞流體40及/或移除活塞流體40期間敞開。 In certain embodiments, when control system 20 determines that piston fluid 40 needs to be added to first chamber 34A, control system 20 controls first outlet valve 38D to close and control first inlet valve 38C to open properly The amount of piston fluid 40 is added. Additionally, when control system 20 determines that piston fluid 40 needs to be removed from first chamber 34A, control system 20 controls first inlet valve 38C to close and control first outlet valve 38C to open an appropriate amount to release piston fluid 40. In this example, one of the first valves 38C, 38D is controlled to close at any given time. Alternatively, control system 20 may control both first valves 38C, 38D to open during the addition of piston fluid 40 from first chamber 34A and/or removal of piston fluid 40.

相似地,當控制系統20判定需要將活塞流體40添加至第二腔室34B時,控制系統20將第二出口閥38F控制為閉合,且將第二入口閥38E控制為敞開適當量以添加活塞流體40。另外,當控制系統20判定需要自第二腔室34B移除活塞流體40時,控制系統20將第二入口閥38E控制為閉合,且將第二出口閥38F控制為敞開適當量以釋放活塞流體40。在此實例中,將第二閥38E、38F中之一者控制為在任何給定時間閉合。替代地,控制系統20可將第二閥38E、38F兩者控制為在自第二腔室34B添加活塞流體40及/或移除活塞流體40期間敞開。 Similarly, when control system 20 determines that piston fluid 40 needs to be added to second chamber 34B, control system 20 controls second outlet valve 38F to close and control second inlet valve 38E to open an appropriate amount to add a piston Fluid 40. Additionally, when control system 20 determines that piston fluid 40 needs to be removed from second chamber 34B, control system 20 controls second inlet valve 38E to close and control second outlet valve 38F to open an appropriate amount to release piston fluid. 40. In this example, one of the second valves 38E, 38F is controlled to close at any given time. Alternatively, control system 20 may control both of second valves 38E, 38F to open during the addition of piston fluid 40 from second chamber 34B and/or removal of piston fluid 40.

對兩個腔室34A、34B進行精確流體壓力控制以產生所要力44來驅動平台14。為了準確地控制流體致動器總成24,關鍵的是判定嵌入於系統中之非線性,諸如:(i)隨著腔室體積之流體壓力變化;(ii)比例閥38C、38D、38E、38F之背隙及差壓相依性;及(3)與上游及下游壓力相關聯之流體流動非線性。經由實驗測試及/或模型化,可由控制系統20識別及補償此等非線性。 Precise fluid pressure control is performed on the two chambers 34A, 34B to generate the desired force 44 to drive the platform 14. In order to accurately control the fluid actuator assembly 24, it is critical to determine the nonlinearities embedded in the system, such as: (i) fluid pressure changes with chamber volume; (ii) proportional valves 38C, 38D, 38E, 38F backlash and differential pressure dependence; and (3) fluid flow nonlinearity associated with upstream and downstream pressures. These non-linearities can be identified and compensated by control system 20 via experimental testing and/or modeling.

舉例而言,控制系統20可進行以下操作:(i)利用第一入口閥特性之反轉以控制第一入口閥38C;(ii)利用第一出口閥特性之反轉以控制第一出口閥38D;(iii)利用第二入口閥特性之反轉以控制第二入口閥38E;及(iv)利用第二出口閥特性之反轉以控制第二出口閥38F。因為控制系統20利用每一閥特性之反轉,所以可以改良的準確度控制每一閥38C、38D、38E、38F。 For example, control system 20 can perform the following operations: (i) utilizing the reversal of the first inlet valve characteristic to control first inlet valve 38C; (ii) utilizing the reversal of the first outlet valve characteristic to control the first outlet valve 38D; (iii) utilizing the reverse of the second inlet valve characteristic to control the second inlet valve 38E; and (iv) utilizing the reverse of the second outlet valve characteristic to control the second outlet valve 38F. Because control system 20 utilizes the reversal of each valve characteristic, each valve 38C, 38D, 38E, 38F can be controlled with improved accuracy.

圖2A為說明用於控制流體致動器總成24以準確地定位平台14之方法之一個非獨占式實例的控制方塊圖220。更特定言之,控制方塊圖220說明一種用於將電流引導至閥總成38以控制活塞總成31以精確地定位平台14之非獨占式方法。在控制方塊圖220中,平台14具有如由量測系統18(圖1所說明)所量測之經量測瞬時平台位置(「x」)(例如沿著量測軸線30(圖1所說明))。 2A is a control block diagram 220 illustrating a non-exclusive example of a method for controlling fluid actuator assembly 24 to accurately position platform 14. More specifically, control block diagram 220 illustrates a non-exclusive method for directing current to valve assembly 38 to control piston assembly 31 to accurately position platform 14. In control block diagram 220, platform 14 has a measured instantaneous platform position ("x") as measured by measurement system 18 (illustrated in Figure 1) (e.g., along measurement axis 30 (illustrated in Figure 1) )).

在此實施例中,控制方塊圖220包括:(i)平台參考區塊260,其提供平台、平台14之所要參考位置或軌跡(「x d 」)(例如沿著移動軸線30(圖1所說明))、所要速度(「」)、所要加速度(「」),及平台加速度變化率參考(「」);(ii)平台回饋(「FB」)控制器262;(iii)平台前饋(「FF」)控制器264;(iv)回饋轉換器266,其將回饋力命令轉換為回饋壓力命令;(v)前饋轉換器268,其將前饋力命令轉換為前饋壓力命令;(vi)第一腔室控制器270;(vii)第二腔室控制器272;及(vii)腔室體積估計器278,其基於平台14之經量測位置(「x」)來估計第一腔室之當前第一腔室體積(「V 1 」)及第一體積改變率(「」),且基於平台14之經量測位置來估計第二腔室之當前第二腔室體積(「V 2 」)及第二體積改變率(「」)。 In this embodiment, the control block diagram 220 includes: (i) a platform reference block 260 that provides a desired reference position or trajectory ("x d ") for the platform, platform 14 (eg, along the axis of movement 30 (FIG. 1) Explanation)), the desired speed (" "), the desired acceleration (" "), and platform acceleration rate change reference (" (ii) platform feedback ("FB") controller 262; (iii) platform feedforward ("FF") controller 264; (iv) feedback converter 266 that converts feedback command to feedback pressure command (v) feedforward converter 268 that converts feedforward force commands into feedforward pressure commands; (vi) first chamber controller 270; (vii) second chamber controller 272; and (vii) chamber estimates the volume of chamber 278, which is based on the measuring position ( "x"), the internet 14 to estimate the current volume of the first chamber of the first chamber ( "V 1") and rate of change of the first volume ( " And estimating the current second chamber volume ("V 2 ") and the second volume change rate of the second chamber based on the measured position of the platform 14 (" ").

應注意,圖2A之控制方塊圖220的一些區塊係可選的,及/或控制方塊圖220可包括額外控制區塊。舉例而言,可將控制方塊圖220設計為沒有平台前饋控制器264迴路。另外或替代地,控制方塊圖220可經設計為包括反覆學習迴路(圖中未示)。在控制方塊圖220中,在自左向右移動的情況下,比較平台所要參考260位置或軌跡(「x d 」)與平台經量測位置(「x」)以產生表示平台14之所要位置與經量測位置之間的誤差的平台跟蹤誤差(「e」)。接下來,將平台跟蹤誤差(「e」)饋送至產生平台回饋力命令(「F fb 」)之平台回饋控制器262,平台回饋力命令(「F fb 」)表示為將平台14自經量測位置移動至參考位置所必要的力命令。同時,將所要參考位置(「x d 」)、平台速度參考(「」)、平台加速度參考(「」)、平台加速度變化率參考(「」)饋送至產生平台前饋力命令(「F ff 」)之平台前饋控制器264,平台前饋力命令(「F ff 」)表示為補償諸如系統時間延遲及軌跡之事項所必要的力命令。 It should be noted that some of the blocks of control block diagram 220 of FIG. 2A are optional, and/or control block diagram 220 may include additional control blocks. For example, control block diagram 220 can be designed without a platform feedforward controller 264 loop. Additionally or alternatively, control block diagram 220 can be designed to include a repeat learning loop (not shown). In the control block diagram 220, in the case of moving from left to right, the comparison platform is to reference the 260 position or trajectory ("x d ") and the platform measured position ("x") to generate the desired position of the platform 14. Platform tracking error ("e") for the error between the measured position and the measured position. Next, the platform tracking error ("e") is fed to the platform feedback controller 262 that generates the platform feedback command (" Ffb "), and the platform feedback command (" Ffb ") is expressed as the platform 14 self-going The force command necessary to move the position to the reference position. At the same time, the desired reference position ("x d "), platform speed reference (" "), platform acceleration reference (" "), platform acceleration rate change reference (" Feeding to the platform feedforward controller 264 that generates the platform feedforward command ("F ff "), the platform feedforward command ("F ff ") is expressed as the force necessary to compensate for things such as system time delays and trajectories. command.

接下來,在此實施例中,組合平台回饋力命令(「Ffb」)與前饋力命令(「Fff」)以產生被饋送至回饋轉換器266之組合力命令(「Fcmd」),回饋轉換器266將組合力命令轉換為用於第一腔室之第一回饋壓力命令(「P1fb」或「P1,cmd」),及用於第二腔室之第二回饋壓力命令(「P2fb」或「P2,cmd」)。相似地,將平台前饋力命令(「Fff」)饋送至前饋轉換器268,前饋轉換器268將前饋力命令轉換為用於第一腔室之第一前饋改變率壓力命令(「」),及用於第二腔室之第二前饋改變率壓力命令(「」)。 Next, in this embodiment, the platform feedback force command ("F fb ") and the feedforward force command ("F ff ") are combined to generate a combined force command ("F cmd ") that is fed to the feedback converter 266. The feedback converter 266 converts the combined force command into a first feedback pressure command for the first chamber ("P1 fb " or "P 1, cmd "), and a second feedback pressure command for the second chamber ("P2 fb " or "P 2, cmd "). Similarly, a platform feedforward force command ("F ff ") is fed to the feed forward converter 268, which converts the feedforward force command into a first feedforward change rate pressure command for the first chamber. (" "), and a second feedforward change rate pressure command for the second chamber (" ").

隨後,第一腔室控制器270使用第一回饋壓力命令(「P1,cmd」、第一前饋壓力命令(「」)、第一經量測壓力(「P 1 」)、第一腔室體積(「V 1 」) 及第一體積改變率(「」)以判定被引導至第一閥子總成之第一閥子總成電流命令(「u 1 」)。相似地,第二腔室控制器272使用第二回饋壓力命令(「P2,cmd」、第二前饋壓力命令(「」)、第二經量測壓力(「P 2 」)、第二腔室體積(「V 2 」)及第二體積改變率(「」)以判定被引導至第二閥子總成之第二閥子總成電流命令(「u 2 」)。至閥總成38之電流控制至活塞總成31之活塞流體且在平台14上產生力(「F」)。 Subsequently, the first chamber controller 270 uses the first feedback pressure command ("P 1, cmd ", first feedforward pressure command (" "), the first measured pressure ("P 1 "), the first chamber volume ("V 1 ") and the first volume change rate (" ") to determine the first valve subassembly current command ("u 1 ") that is directed to the first valve subassembly. Similarly, the second chamber controller 272 uses a second feedback pressure command ("P 2, cmd ", a second feedforward pressure command (" "), the second measured pressure ("P 2 "), the second chamber volume ("V 2 ") and the second volume change rate (" ") to determine the second valve subassembly current command ("u 2 ") that is directed to the second valve subassembly. The current to valve assembly 38 is controlled to the piston fluid of piston assembly 31 and produces a force ("F") on platform 14.

如本文中所提供,腔室控制器270、272利用閥特性之反轉以準確地判定為準確地控制兩個腔室中之壓力所必要的各別電流命令。下文參考圖2B來更詳細地描述此程序。 As provided herein, the chamber controllers 270, 272 utilize the reversal of valve characteristics to accurately determine the respective current commands necessary to accurately control the pressure in the two chambers. This procedure is described in more detail below with reference to Figure 2B.

應注意,在每一閥子總成之一個閥在任何給定時間閉合的實施例中,單一電流命令全部為每一閥子總成所需要。替代地,若每一閥子總成之兩個閥可在任何給定時間敞開,則腔室控制器270、272將需要經設計以將單獨電流命令提供至每一閥。 It should be noted that in the embodiment where one valve of each valve assembly is closed at any given time, a single current command is required for each valve assembly. Alternatively, if the two valves of each valve assembly are open at any given time, the chamber controllers 270, 272 will need to be designed to provide separate current commands to each valve.

數個方程式有用於理解由平台移動器總成16產生之力且有用於理解由控制系統20對平台移動器總成16之控制。如上文所提供,如下提供由平台移動器總成16產生之總力: F = F 1- F 2。 方程式1 Several equations are used to understand the forces generated by the platform mover assembly 16 and are used to understand the control of the platform mover assembly 16 by the control system 20. As provided above, the total force generated by the platform mover assembly 16 is provided as follows: F = F 1 - F 2 . Equation 1

如上文所提供, F 為總力; F 1為由第一腔室產生之力;且 F 2為由第二腔室產生之力。 As provided above, F is the total force; F 1 is the force generated by the first chamber; and F 2 is the force generated by the second chamber.

可如下重寫方程式1: F = P 1 A 1- P 2 A 2。 方程式2 Equation 1 can be rewritten as follows: F = P 1 A 1 - P 2 A 2 . Equation 2

如上文所提供, P 1為第一腔室中之第一腔室壓力; A 1為用於第一腔室 之有效活塞面積; P 2為第二腔室34B中之第二腔室壓力;且 A 2為用於第二腔室34B之有效活塞面積。 As provided above, P 1 is the first chamber pressure in the first chamber; A 1 is the effective piston area for the first chamber; P 2 is the second chamber pressure in the second chamber 34B; And A 2 is the effective piston area for the second chamber 34B.

另外,可如下表達平台上之力: In addition, the power on the platform can be expressed as follows:

在方程式3中及在別處,M為平台(包括工件)之質量,C為阻尼係數,為平台之質量塊的加速度,且為平台速度。 In Equation 3 and elsewhere, M is the mass of the platform (including the workpiece) and C is the damping coefficient. The acceleration of the mass of the platform, and For platform speed.

可如下表達氣體方程式: P i V i = m i RT i 。 方程式4 The gas equation can be expressed as follows: P i V i = m i RT i . Equation 4

在方程式4中及在別處, i 為各別腔室(第一腔室(「1」)或第二腔室(「2」));P i 為各別腔室中之壓力;V i 為各別腔室中之體積;R為氣體常數; m i 為各別腔室中之氣體質量;且T i 為各別腔室中之溫度,可如下重寫方程式4: In Equation 4 and elsewhere, i is a separate chamber (first chamber ("1") or second chamber ("2")); P i is the pressure in each chamber; V i is The volume in each chamber; R is the gas constant; m i is the mass of the gas in each chamber; and T i is the temperature in each chamber, Equation 4 can be rewritten as follows:

在方程式5中及在別處,為各別腔室中之壓力改變率;為各別腔室中之體積改變率,且為各別腔室中之質量流率。 In Equation 5 and elsewhere, The rate of pressure change in each chamber; For the volume change rate in each chamber, and The mass flow rate in each chamber.

可如下將方程式5重寫為腔室壓力模型化: Equation 5 can be rewritten as chamber pressure modeling as follows:

另外,可如下將方程式5重寫為腔室質量流率控制: Additionally, Equation 5 can be rewritten as chamber mass flow rate control as follows:

可如下將第一腔室34A之第一體積 V 1寫為平台位置之函數:V 1=A 1(x+x 1,o )。 方程式8 The first volume V 1 of the first chamber 34A can be written as a function of the position of the platform as follows: V 1 = A 1 ( x + x 1, o ). Equation 8

相似地,可如下將第二腔室34B之第二體積 V 2寫為平台位置之函數:V 2=A 2(-x+x 2,o )。 方程式9 Similarly, the second volume V 2 of the second chamber 34B can be written as a function of the position of the platform as follows: V 2 = A 2 (- x + x 2, o ). Equation 9

在方程式8及9中及在別處, A 1為第一腔室之有效活塞面積; A 2為第二腔室之有效活塞面積; X 為平台之當前位置;x 1,O 為第一腔室之截止長度;且x 2,O 為第二腔室之截止長度。 In Equations 8 and 9 and elsewhere, A 1 is the effective piston area of the first chamber; A 2 is the effective piston area of the second chamber; X is the current position of the platform; x 1, O is the first chamber The cutoff length; and x 2, O is the cutoff length of the second chamber.

可如下重寫方程式8: Equation 8 can be rewritten as follows:

相似地,可如下重寫方程式9: Similarly, Equation 9 can be rewritten as follows:

在此等方程式中及在別處,為第一腔室中之體積改變率;且為第二腔室中之體積改變率。 In these equations and elsewhere, Is the volume change rate in the first chamber; and It is the volume change rate in the second chamber.

可如下表達每一腔室34A、34B之腔室壓力控制: Chamber pressure control for each chamber 34A, 34B can be expressed as follows:

F cmd = P 1,cmd A 1- P 2,cmd A 2。 方程式13 F cmd = P 1, cmd A 1 - P 2, cmd A 2 . Equation 13

在方程式12及13中及在別處, F cmd 為力命令; F feedforward 為前饋力命令; F feedback 為回請力命令;為平台加速度參考;為平台速度參考;為平台加速度變化率參考,x d 為參考位置; C 為平台與致動器系統之阻尼比; C fb (s)為平台回饋控制濾波器;x為平台之當前經量測位置; P 1,cmd 為至第一腔室之壓力命令;且 P 2,cmd 為至第二腔室之壓力命令。 In Equations 12 and 13 and elsewhere, F cmd is the force command; F feedforward is the feedforward command; F feedback is the return command; For platform acceleration reference; For platform speed reference; For the platform acceleration rate of change reference, x d is the reference position; C is the damping ratio of the platform and the actuator system; C fb ( s ) is the platform feedback control filter; x is the current measured position of the platform; P 1, Cmd is the pressure command to the first chamber; and P 2, cmd is the pressure command to the second chamber.

可如下重寫方程式12及13: P 1,cmd A 1=F o +rF,及 方程式14 Equations 12 and 13 can be rewritten as follows: P 1, cmd A 1 = F o + r . F , and Equation 14

P 2,cmd A 2=F o -(1-r).F。 方程式15 P 2, cmd A 2 = F o -(1- r ). F. Equation 15

在方程式14及15中及在別處,F o 為偏移力命令;且r為第一腔室與第二腔室之間的分佈比。在某些實施例中,r具有大於0但小於1之值(0<r<1),其中標稱值為r=0.5。 In Equations 14 and 15 and elsewhere, F o is an offset force command; and r is the distribution ratio between the first chamber and the second chamber. In certain embodiments, r has a value greater than zero but less than one (0 < r < 1), with a nominal value of r = 0.5.

可如下重寫方程式14及15: Equations 14 and 15 can be rewritten as follows:

可如下表達腔室壓力控制: Chamber pressure control can be expressed as follows:

另外,可如下表達方程式18: In addition, Equation 18 can be expressed as follows:

相似於方程式7,可如下表達腔室質量流量控制: Similar to Equation 7, the chamber mass flow control can be expressed as follows:

在方程式21中及在別處,為用於第一腔室及第二腔室中之一者的質量流率命令。 In Equation 21 and elsewhere, A mass flow rate command for one of the first chamber and the second chamber.

圖2B為說明腔室控制器270、272(圖2A所說明)中之一者可如何被組態的控制方塊圖。在此實施例中,腔室控制器包括:(i)壓力回饋控制器290;(ii)壓力至質量流量轉換器292;(iii)入口質量流量至孔 口面積轉換器294;(iv)出口質量流量至孔口面積轉換器296;(v)入口孔口面積至電流轉換器297;及(vi)出口孔口面積至電流轉換器298。在此實施例中,壓力回饋控制器290接收用於各別腔室之壓力誤差 P i,err ,且產生壓力改變率回饋(「」)。壓力至質量流量轉換器292接收壓力改變率命令(「」)、腔室壓力(「P i 」)、當前腔室體積(「V i」)及體積改變率(「」),且產生用於入口閥之質量流率命令()及用於出口閥之質量流率命令(「」)。壓力至質量流量轉換器292可使用本文中所提供之方程式21及22。 2B is a control block diagram illustrating how one of the chamber controllers 270, 272 (illustrated in FIG. 2A) can be configured. In this embodiment, the chamber controller includes: (i) a pressure feedback controller 290; (ii) a pressure to mass flow converter 292; (iii) an inlet mass flow to orifice area converter 294; (iv) an outlet Mass flow to orifice area converter 296; (v) inlet orifice area to current transducer 297; and (vi) outlet orifice area to current transducer 298. In this embodiment, the pressure feedback controller 290 receives the pressure errors P i, err for the respective chambers and generates a pressure change rate feedback (" "). Pressure to mass flow converter 292 receives a pressure change rate command (" "), chamber pressure (" P i "), current chamber volume (" V i "), and volume change rate (" And) produces a mass flow rate command for the inlet valve ( ) and the mass flow rate command for the outlet valve (" "). Pressure to mass flow converter 292 can use equations 21 and 22 provided herein.

入口質量流量至孔口面積轉換器294接收質量流率命令(「」)及腔室壓力(「P i 」),且產生用於入口閥之入口孔口面積命令(「a i,cmd+」)。入口質量流量至孔口面積轉換器294可使用本文中所提供之方程式24。稍微相似地,出口質量流量至孔口面積轉換器296接收質量流率命令(「」)及腔室壓力(「P i 」),且產生用於出口閥之出口孔口面積命令(「a i,cmd-」)。出口質量流量至孔口面積轉換器296可使用本文中所提供之方程式25。 The inlet mass flow to orifice area converter 294 receives the mass flow rate command (" ") and chamber pressure (" P i ") and generate an inlet orifice area command (" a i , cmd + ") for the inlet valve. The inlet mass flow to orifice area converter 294 can use Equation 24 provided herein. Slightly similar, the exit mass flow to orifice area converter 296 receives the mass flow rate command (" ") and chamber pressure (" P i ") and generate an outlet orifice area command (" a i , cmd - ") for the outlet valve. The outlet mass flow to orifice area converter 296 can use Equation 25 provided herein.

接下來,入口孔口面積至電流轉換器297使用入口孔口面積命令(「a i,cmd+」)以產生用於入口閥之入口電流命令(「u i,cmd+」)。入口孔口面積至電流轉換器297可使用本文中所提供之方程式27。相似地,出口孔口面積至電流轉換器298使用出口孔口面積命令(「a i,cmd-」)以產生用於出口閥之出口電流命令(「u i,cmd-」)。出口孔口面積至電流轉換器298可使用本文中所提供之方程式28。 Next, the area of the inlet orifice to-current converter 297 using commands inlet aperture area ( "a i, cmd +") to generate a current command for the inlet valve of the inlet ( "u i, cmd +"). The inlet orifice area to current converter 297 can use Equation 27 provided herein. Similarly, the outlet orifice area to current converter 298 uses the outlet orifice area command (" a i , cmd - ") to generate an outlet current command (" u i , cmd - ") for the outlet valve. The exit orifice area to current converter 298 can use Equation 28 provided herein.

圖3為一個活塞腔室334i及一個閥子總成338i的簡化說 明。如圖3所說明,在此實施例中,進入及離開腔室334i之腔室質量流率命令係由入口閥338ii及出口閥338io控制。在此實施例中,壓力源346將處於被稱作 P source 之壓力的加壓活塞流體340提供至入口閥338ii之入口。另外,出口閥338io之出口處於 P drain 之壓力。可如下重寫方程式21之腔室質量流量控制: 3 is a simplified illustration of a piston chamber 334i and a valve assembly 338i. As illustrated in Figure 3, in this embodiment, the chamber mass flow rate command into and out of chamber 334i is controlled by inlet valve 338ii and outlet valve 338io. In this embodiment, pressure source 346 provides pressurized piston fluid 340 at a pressure referred to as P source to the inlet of inlet valve 338ii. In addition, the outlet of the outlet valve 338io is at the pressure of the P drain . The chamber mass flow control of Equation 21 can be rewritten as follows:

在方程式22中及在別處,為用於所選擇腔室334i之入口閥338ii的質量流率命令;且為用於所選擇腔室334i之出口閥338io的質量流率命令。如本文中所提供,在某些實施例中,若需要增加進入腔室334i之質量流率(0),則將出口閥338io閉合(=0)且將質量流率命令設定為等於入口閥338ii之質量流率命令(=)。相似地,在某些實施例中,若需要增加離開腔室334i之質量流率(<0),則將入口閥338ii閉合(=0)且將質量流率命令設定為等於出口閥338io之質量流率命令(=)。 In Equation 22 and elsewhere, Is a mass flow rate command for the inlet valve 338ii of the selected chamber 334i; Is the mass flow rate command for the outlet valve 338io of the selected chamber 334i. As provided herein, in certain embodiments, if it is desired to increase the mass flow rate into the chamber 334i ( 0), then the outlet valve 338io is closed ( =0) and set the mass flow rate command equal to the mass flow rate command of the inlet valve 338ii ( = ). Similarly, in some embodiments, if it is desired to increase the mass flow rate away from chamber 334i ( <0), the inlet valve 338ii is closed ( =0) and set the mass flow rate command equal to the mass flow rate command of the outlet valve 338io ( = ).

可如下書寫閥流量方程式: The valve flow equation can be written as follows:

在方程式23中及在別處, a 為敞開的閥孔口之面積; f 為數學函數; P upstream 為閥孔口之上游壓力;且 P downstream 為閥孔口之下游壓力。因此,質量流率等於敞開的閥孔口之面積乘以上游壓力及下游壓力之函數。 In Equation 23 and elsewhere, a is the area of the open valve orifice; f is a mathematical function; P upstream is the upstream pressure of the valve orifice; and P downstream is the downstream pressure of the valve orifice. Thus, the mass flow rate is equal to the area of the open valve orifice multiplied by the upstream pressure and downstream pressure.

圖4為包括孔口402之管路400的簡化說明,孔口402類似於閥在敞開時之閥孔口。在此實例中,上游壓力及下游壓力被標記,且孔 口402具有孔口面積。參考圖3及圖4,可將方程式23重寫為以下閥孔口面積命令: 4 is a simplified illustration of a conduit 400 including an orifice 402 that is similar to a valve orifice when the valve is open. In this example, the upstream and downstream pressures are labeled and the orifice 402 has an orifice area. Referring to Figures 3 and 4, Equation 23 can be rewritten as the following valve orifice area command:

在此等方程式中及在別處,a i,cmd+為用於所選擇腔室334i之入口閥338ii的閥孔口命令;且a i,cmd-為用於所選擇腔室334i之出口閥338io的質量流率命令。 In these equations and elsewhere, a i , cmd + is the valve orifice command for the inlet valve 338ii of the selected chamber 334i; and a i , cmd is the outlet valve 338io for the selected chamber 334i Mass flow rate command.

可如下書寫閥面積方程式:a=A(u)。 方程式26 The valve area equation can be written as follows: a = A ( u ). Equation 26

在方程式26中, a 為閥孔口面積; A 為閥面積方程式;且 u 為閥電流。下文更詳細地描述閥面積方程式。 In Equation 26, a is the valve orifice area; A is the valve area equation; and u is the valve current. The valve area equation is described in more detail below.

可如下將方程式26重寫為閥電流命令: Equation 26 can be rewritten as a valve current command as follows:

在方程式27及28中及在別處,u i,cmd+為至入口閥之閥電流命令;為用於入口閥之閥面積方程式之反轉;a i,cmd+為入口閥之閥孔口面積;u i,cmd-為至出口閥之閥電流命令;為用於出口閥之閥面積方程式之反轉;且a i,cmd-為出口閥之閥孔口面積。 In equations 27 and 28 and elsewhere, u i , cmd + is the valve current command to the inlet valve; For the reversal of the valve area equation for the inlet valve; a i , cmd + is the valve orifice area of the inlet valve; u i , cmd is the valve current command to the outlet valve; It is the reversal of the valve area equation for the outlet valve; and a i , cmd - is the valve orifice area of the outlet valve.

可如下更一般地書寫方程式24及25: Equations 24 and 25 can be written more generally as follows:

對於次音速流,上游壓力除以下游壓力小於或等於塞塔(「θ」) (),則 For subsonic flow, the upstream pressure divided by the downstream pressure is less than or equal to the stal ("θ") ( ),then

對於次音速流,當上游壓力除以下游壓力大於塞塔(「θ」)() 時,則f(P u ,P d )=βP u 。 方程式31 For subsonic flow, when the upstream pressure is divided by the downstream pressure is greater than the plug ("θ") ( When, then f ( P u , P d ) = βP u . Equation 31

在此等方程式中,;且 ,其中 c 為排放係數; M m 為氣體分子質量;Z為氣體可壓縮性 因子;k為比熱比;R為通用氣體定律常數;且T為溫度。 In these equations, ; And Where c is the emission coefficient; M m is the gas molecular mass; Z is the gas compressibility factor; k is the specific heat ratio; R is the general gas law constant; and T is the temperature.

圖5A為可用作來自圖1之閥38C、38D、38E、38F中之一者的閥538之一個非獨占式實例的簡化剖示圖。在此實施例中,閥538為提動型閥,其包括閥殼體539A、可移動閥體539B、入口導管539C、出口導管539D、抵靠入口導管539C推動閥體539B之彈性構件539E(例如彈簧),及螺線管539F。 FIG. 5A is a simplified cross-sectional view of a non-exclusive example of valve 538 that may be used as one of valves 38C, 38D, 38E, 38F from FIG. In this embodiment, valve 538 is a poppet type valve that includes a valve housing 539A, a movable valve body 539B, an inlet conduit 539C, an outlet conduit 539D, and an elastic member 539E that urges valve body 539B against inlet conduit 539C (eg, Spring), and solenoid 539F.

在此簡化實例中,閥殼體538A為稍微圓柱形形狀,閥體539B為圓盤形狀,且導管539C、539D為管狀形狀。另外,在圖5A中,閥538被說明為在控制系統(圖5A中未示)未將電流引導至螺線管539F時處於閉合位置。由此,彈性構件539E抵靠入口導管539C之頂部推動閥體539B以閉合閥538。 In this simplified example, the valve housing 538A is slightly cylindrical in shape, the valve body 539B is in the shape of a disk, and the conduits 539C, 539D are tubular in shape. Additionally, in FIG. 5A, valve 538 is illustrated in a closed position when the control system (not shown in FIG. 5A) is not directing current to solenoid 539F. Thereby, the elastic member 539E pushes the valve body 539B against the top of the inlet duct 539C to close the valve 538.

應注意,當未將電流引導至螺線管539F時,只要彈簧預負 載力大於由上游壓力與下游壓力之間的壓力差產生的力,閥就保持閉合。 It should be noted that when the current is not directed to the solenoid 539F, as long as the spring is pre-loaded The load is greater than the force generated by the pressure difference between the upstream and downstream pressures and the valve remains closed.

圖5B為圖5A之閥538的簡化剖示圖,其中閥538處於敞開位置。此時,控制系統(圖5B中未示)正將電流引導至螺線管539F。當將電流引導至螺線管時,此產生遠離入口導管539C之頂部向上推動(吸引)閥體539B的螺線管力 F solenoid 。典型地,螺線管力之量值與電流成比例。當將足夠電流引導至螺線管539F時,會克服彈性構件539F之彈簧預負載力,遠離入口導管539C之頂部移動閥體539B,且將閥538敞開。另外,電流之量將判定閥538被敞開多遠。通常,閥開口之大小隨著電流增加而增加。 Figure 5B is a simplified cross-sectional view of the valve 538 of Figure 5A with the valve 538 in an open position. At this point, the control system (not shown in Figure 5B) is directing current to solenoid 539F. When directing current to the solenoid, this creates a solenoid force F solenoid that pushes (attracts) the valve body 539B away from the top of the inlet conduit 539C. Typically, the magnitude of the solenoid force is proportional to the current. When sufficient current is directed to the solenoid 539F, the spring preload force of the resilient member 539F is overcome, the valve body 539B is moved away from the top of the inlet conduit 539C, and the valve 538 is opened. Additionally, the amount of current will determine how far the valve 538 is open. Typically, the size of the valve opening increases as the current increases.

如圖5B所說明,閥體539B已自閉合位置移動至敞開位置的量被稱作「y」。 As illustrated in Fig. 5B, the amount by which the valve body 539B has moved from the closed position to the open position is referred to as "y".

圖5C為圖5A之閥538的簡化剖示圖,其中入口導管539C被移除,螺線管539F未啟動,且導管539C、539D中不存在壓力。此時,彈性構件539E將閥體539B向下推動預負載距離y o 。閥體539B被說明為處於呈參考假想之形式的閉合位置。當入口導管539D處於適當位置(如圖5A所說明)時,彈性構件539E施加等於彈性構件539E之彈簧常數k s 乘以預負載距離y o 的彈簧預負載力。 Figure 5C is a simplified cross-sectional view of the valve 538 of Figure 5A with the inlet conduit 539C removed, the solenoid 539F unactivated, and no pressure in the conduits 539C, 539D. At this time, the elastic member 539E pushes the valve body 539B downward by the preload distance y o . Valve body 539B is illustrated in a closed position in the form of a reference imaginary. When the inlet conduit 539D in place (as illustrated in FIG. 5A), the resilient member 539E is applied to the elastic member 539E of equal spring constant k s is multiplied by the preload force of the preload spring in the distance y o.

可如下表達閥538之控制 The control of valve 538 can be expressed as follows

在方程式32中及在別處, M v 為閥體539B之質量;為閥體539B之加速度; C v 為由彈簧摩擦造成之阻尼;為閥體539B之速度;k s 為彈性構件539E之彈簧常數;y o 為預負載距離;k f 為螺線管力常數;u為被引導至螺線 管之電流命令;r為入口導管539C之頂部處的半徑;差量壓力(delta pressure)為上游壓力與下游壓力之間的差(ΔP = P u - P d )。 In Equation 32 and elsewhere, M v is the mass of valve body 539B; Is the acceleration of the valve body 539B; C v is the damping caused by the spring friction; Is the speed of the valve body 539B; k s is the spring constant of the elastic member 539E; y o is the preload distance; k f is the solenoid force constant; u is the current command directed to the solenoid; r is the inlet conduit 539C The radius at the top; the delta pressure is the difference between the upstream pressure and the downstream pressure ( Δ P = P u - P d ).

可如下表達圖5A至圖5C所說明之閥538之有效孔口面積「a」: The effective aperture area "a" of the valve 538 illustrated in Figures 5A through 5C can be expressed as follows:

在方程式33及34中及在別處, A 為閥面積方程式;且 A -1為閥面積方程式之反轉。 In Equations 33 and 34 and elsewhere, A is the valve area equation; and A -1 is the inverse of the valve area equation.

可如下表達為克服彈簧預負載力所必要的截止區電流u o The cut-off current u o necessary to overcome the spring preload force can be expressed as follows:

在具有圖5A至圖5C所說明之閥538的情況下,可如下表達在無洩漏的情況下的最大允許壓力差ΔP max In the case of the valve 538 illustrated in Figures 5A to 5C, the maximum allowable pressure difference Δ P max in the absence of leakage can be expressed as follows:

在具有圖5A至圖5C所說明之閥538的情況下,可如下表達靜態控制電流: In the case of the valve 538 illustrated in Figures 5A-5C, the static control current can be expressed as follows:

如上文所提供,為了準確地控制流體致動器總成24,關鍵的是判定嵌入於閥38C、38D、38E、38F中之每一者中的非線性。在某些實 施例中,每一閥38C、38D、38E、38F未拆卸以識別每一閥38C、38D、38E、38F之閥特性。代替地,測試閥總成24之每一實體閥38C、38D、38E、38F以判定其各別閥特性。舉例而言,對於每一閥38C、38D、38E、38F,運用各種閥電流命令與各種入口/出口壓力差來量測流率。隨後,對於每一閥38C、38D、38E、38F,可使用流量方程式(參見方程式24至31)而自流率資訊計算有效孔口面積。 As provided above, in order to accurately control the fluid actuator assembly 24, it is critical to determine the non-linearity embedded in each of the valves 38C, 38D, 38E, 38F. In some real In the embodiment, each valve 38C, 38D, 38E, 38F is not disassembled to identify the valve characteristics of each valve 38C, 38D, 38E, 38F. Instead, each of the solid valves 38C, 38D, 38E, 38F of the valve assembly 24 is tested to determine its individual valve characteristics. For example, for each valve 38C, 38D, 38E, 38F, various valve current commands are applied to various inlet/outlet pressure differentials to measure flow rate. Subsequently, for each valve 38C, 38D, 38E, 38F, the flow orifice equation (see Equations 24 to 31) can be used to calculate the effective orifice area from the flow rate information.

圖6A為說明針對各種差量壓力(「ΔP」)之閥有效孔口面積對電流命令的圖形。此圖形係藉由在各種差量壓力下以實驗方式測試提動閥而產生。舉例而言,在維持350kPa之差量壓力時,在至螺線管之複數個不同電流命令下量測流率。隨後,針對每一經量測流率計算有效孔口面積,且在圖6A中將有效孔口面積標繪為小方框。隨後,藉由曲線擬合此等資料點而產生線600A。線600A表示針對350kPa之差量壓力之閥面積孔口對電流命令之間的關係。 Figure 6A is a graph illustrating valve effective orifice area versus current command for various differential pressures (" ΔP "). This pattern is produced by experimentally testing the poppet valve under various differential pressures. For example, while maintaining a differential pressure of 350 kPa, the flow rate is measured at a plurality of different current commands to the solenoid. Subsequently, the effective orifice area is calculated for each measured flow rate, and the effective orifice area is plotted as a small square in Figure 6A. Line 600A is then generated by curve fitting the data points. Line 600A represents the relationship between the valve area orifice versus current command for a differential pressure of 350 kPa.

接下來,在維持300kPa之差量壓力時,在至螺線管之複數個不同電流命令下量測流率。隨後,針對每一經量測流率計算有效孔口面積,且在圖6A中將有效孔口面積標繪為小圓圈。隨後,藉由曲線擬合此等資料點而產生線602A。線602A表示針對300kPa之差量壓力之閥面積孔口對電流命令之間的關係。 Next, while maintaining a differential pressure of 300 kPa, the flow rate is measured under a plurality of different current commands to the solenoid. Subsequently, the effective orifice area is calculated for each measured flow rate, and the effective orifice area is plotted as a small circle in Figure 6A. Line 602A is then generated by curve fitting the data points. Line 602A represents the relationship between the valve area orifice versus current command for a differential pressure of 300 kPa.

接下來,在維持250kPa之差量壓力時,在至螺線管之複數個不同電流命令下量測流率。隨後,針對每一經量測流率計算有效孔口面積,且在圖6A中將有效孔口面積標繪為小「x」。隨後,藉由曲線擬合此等資料點而產生線604A。線604A表示針對250kPa之差量壓力之閥面積孔口 對電流命令之間的關係。 Next, while maintaining a differential pressure of 250 kPa, the flow rate is measured under a plurality of different current commands to the solenoid. Subsequently, the effective orifice area is calculated for each measured flow rate, and the effective orifice area is plotted as a small "x" in Figure 6A. Line 604A is then generated by curve fitting the data points. Line 604A represents the valve area orifice for a differential pressure of 250 kPa The relationship between current commands.

另外,在維持200kPa之差量壓力時,在至螺線管之複數個不同電流命令下量測流率。隨後,針對每一經量測流率計算有效孔口面積,且在圖6A中將有效孔口面積標繪為小「z」。隨後,藉由曲線擬合此等資料點而產生線606A。線606A表示針對200kPa之差量壓力之閥面積孔口對電流命令之間的關係。 In addition, when the differential pressure of 200 kPa is maintained, the flow rate is measured under a plurality of different current commands to the solenoid. Subsequently, the effective orifice area is calculated for each measured flow rate, and the effective orifice area is plotted as a small "z" in Figure 6A. Line 606A is then generated by curve fitting the data points. Line 606A represents the relationship between valve area orifice versus current command for a differential pressure of 200 kPa.

此外,在維持150kPa之差量壓力時,在至螺線管之複數個不同電流命令下量測流率。隨後,針對每一經量測流率計算有效孔口面積,且在圖6A中將有效孔口面積標繪為小三角形。隨後,藉由曲線擬合此等資料點而產生線608A。線608A表示針對150kPa之差量壓力之閥面積孔口對電流命令之間的關係。 In addition, while maintaining a differential pressure of 150 kPa, the flow rate is measured at a plurality of different current commands to the solenoid. Subsequently, the effective orifice area is calculated for each measured flow rate, and the effective orifice area is plotted as a small triangle in Figure 6A. Line 608A is then generated by curve fitting the data points. Line 608A represents the relationship between the valve area orifice versus current command for a differential pressure of 150 kPa.

另外,在維持100kPa之差量壓力時,在至螺線管之複數個不同電流命令下量測流率。隨後,針對每一經量測流率計算有效孔口面積,且在圖6A中將有效孔口面積標繪為小「+」。隨後,藉由曲線擬合此等資料點而產生線610A。線610A表示針對100kPa之差量壓力之閥面積孔口對電流命令之間的關係。 In addition, when the differential pressure of 100 kPa is maintained, the flow rate is measured under a plurality of different current commands to the solenoid. Subsequently, the effective orifice area is calculated for each measured flow rate, and the effective orifice area is plotted as a small "+" in Figure 6A. Line 610A is then generated by curve fitting the data points. Line 610A represents the relationship between the valve area orifice versus current command for a differential pressure of 100 kPa.

最後,在維持50kPa之差量壓力時,在至螺線管之複數個不同電流命令下量測流率。隨後,針對每一經量測流率計算有效孔口面積,且在圖6A中將有效孔口面積標繪為小「D」。隨後,藉由曲線擬合此等資料點而產生線612。線612表示針對50kPa之差量壓力之閥面積孔口對電流命令之間的關係。 Finally, while maintaining a differential pressure of 50 kPa, the flow rate is measured at a plurality of different current commands to the solenoid. Subsequently, the effective orifice area is calculated for each measured flow rate, and the effective orifice area is plotted as small "D" in Figure 6A. Line 612 is then generated by curve fitting the data points. Line 612 represents the relationship between valve area orifice versus current command for a differential pressure of 50 kPa.

在此實例中,此閥之閥特性614表示針對數個不同差量壓力 之有效閥孔口面積對電流命令的關係。替代地,舉例而言,閥特性614可為以下各者:(i)針對數個不同差量壓力之有效閥孔口面積對電壓之間的關係;(ii)針對數個不同差量壓力之流率對電流命令之間的關係;及/或(iii)針對數個不同差量壓力之流率對電壓之間的關係。 In this example, the valve characteristic 614 of this valve represents pressure for several different differentials The relationship between the effective valve orifice area and the current command. Alternatively, for example, the valve characteristic 614 can be: (i) an effective valve orifice area versus voltage relationship for a plurality of different differential pressures; (ii) for a plurality of different differential pressures The relationship between flow rate versus current command; and/or (iii) the relationship between flow rate versus voltage for several different differential pressures.

如上文所提供,在某些實施例中,將閥特性614反轉以產生隨後用於控制彼閥之反轉閥特性616。舉例而言,可將圖6A中之資料反轉(切換圖形之X及Y軸)以產生圖6B所說明之反轉閥特性616。 As provided above, in certain embodiments, the valve characteristic 614 is reversed to produce a reverse valve characteristic 616 that is subsequently used to control the valve. For example, the data in FIG. 6A can be reversed (switching the X and Y axes of the graph) to produce the reverse valve characteristic 616 illustrated in FIG. 6B.

更特定言之,圖6B為說明閥電流命令對有效孔口面積的圖形,該圖形為圖6A中之圖形的反轉。在此實例中,將來自圖6A之資料反轉以產生圖6B中之資料。隨後,使用曲線擬合以產生圖6B中之曲線。 More specifically, FIG. 6B is a graph illustrating the valve current command versus effective aperture area, which is an inverse of the pattern in FIG. 6A. In this example, the data from Figure 6A is inverted to produce the data in Figure 6B. Subsequently, curve fitting was used to generate the curve in Figure 6B.

舉例而言,在350kPa之差量壓力下,將資料表示為小方框。隨後,藉由曲線擬合此等資料點而產生線600B。線600B表示針對350kPa之差量壓力之閥電流命令與閥面積孔口之間的關係。 For example, at a differential pressure of 350 kPa, the data is represented as a small square. Line 600B is then generated by curve fitting these data points. Line 600B represents the relationship between the valve current command for the differential pressure of 350 kPa and the valve area orifice.

接下來,在300kPa之差量壓力下,將資料表示為小圓圈。隨後,藉由曲線擬合此等資料點而產生線602B。線602B表示針對300kPa之差量壓力之閥電流命令與閥面積孔口之間的關係。 Next, the data is represented as a small circle under a differential pressure of 300 kPa. Line 602B is then generated by curve fitting the data points. Line 602B represents the relationship between the valve current command for the differential pressure of 300 kPa and the valve area orifice.

相似地,在250kPa之差量壓力下,將資料表示為小「x's」。隨後,藉由曲線擬合此等資料點而產生線604B。線604B表示針對250kPa之差量壓力之閥電流命令與閥面積孔口之間的關係。 Similarly, the data is expressed as a small "x's" at a differential pressure of 250 kPa. Line 604B is then generated by curve fitting the data points. Line 604B represents the relationship between the valve current command for the differential pressure of 250 kPa and the valve area orifice.

另外,在200kPa之差量壓力下,將資料表示為小「z's」。隨後,藉由曲線擬合此等資料點而產生線606B。線606B表示針對200kPa之差量壓力之閥電流命令與閥面積孔口之間的關係。 In addition, the data was expressed as a small "z's" under a differential pressure of 200 kPa. Line 606B is then generated by curve fitting the data points. Line 606B represents the relationship between the valve current command for the differential pressure of 200 kPa and the valve area orifice.

此外,在150kPa之差量壓力下,將資料表示為小三角形。隨後,藉由曲線擬合此等資料點而產生線608B。線608B表示針對150kPa之差量壓力之閥電流命令與閥面積孔口之間的關係。 In addition, the data is represented as a small triangle at a differential pressure of 150 kPa. Line 608B is then generated by curve fitting the data points. Line 608B represents the relationship between the valve current command for the differential pressure of 150 kPa and the valve area orifice.

另外,在100kPa之差量壓力下,將資料表示為小「+'s」。隨後,藉由曲線擬合此等資料點而產生線610B。線610B表示針對100kPa之差量壓力之閥電流命令與閥面積孔口之間的關係。 In addition, the data is expressed as a small "+'s" under a differential pressure of 100 kPa. Line 610B is then generated by curve fitting the data points. Line 610B represents the relationship between the valve current command for the differential pressure of 100 kPa and the valve area orifice.

最後,在50kPa之差量壓力下,將資料表示為小「D's」。隨後,藉由曲線擬合此等資料點而產生線612B。線612B表示針對50kPa之差量壓力之閥電流命令與閥面積孔口之間的關係。 Finally, the data is expressed as a small "D's" under a differential pressure of 50 kPa. Line 612B is then generated by curve fitting the data points. Line 612B represents the relationship between the valve current command for the differential pressure of 50 kPa and the valve area orifice.

應注意,來自圖6B圖形之反轉閥特性616資料可由控制系統使用以準確地控制閥。亦應注意,控制系統可利用內插以產生針對其他差量壓力之資料以在其他差量壓力下準確地控制閥。 It should be noted that the reverse valve characteristic 616 data from the graph of Figure 6B can be used by the control system to accurately control the valve. It should also be noted that the control system may utilize interpolation to generate data for other differential pressures to accurately control the valve at other differential pressures.

圖7A至圖7D為在各種閥位置處的另一類型之閥738的簡化剖示說明,閥738可用作來自圖1之閥38C、38D、38E、38F中之一者。更特定言之,圖7A為在完全閉合位置處之滑軸型閥738的簡化側視說明;圖7B為在閉合基線(準備敞開)位置處之滑軸型閥738的簡化側視說明;圖7C為在部分敞開位置處之滑軸型閥738的簡化側視說明;且圖7D為在完全敞開位置處之滑軸型閥738的簡化側視說明。 7A-7D are simplified cross-sectional illustrations of another type of valve 738 at various valve positions that may be used as one of the valves 38C, 38D, 38E, 38F from FIG. More specifically, FIG. 7A is a simplified side elevational view of the slide shaft type valve 738 at the fully closed position; FIG. 7B is a simplified side elevational view of the slide shaft type valve 738 at the closed baseline (ready open) position; 7C is a simplified side view of the slide shaft type valve 738 at a partially open position; and FIG. 7D is a simplified side view of the slide shaft type valve 738 at a fully open position.

在此實施例中,閥738為滑軸型閥,其包括閥殼體739A、可移動閥體739B(有時被稱作「滑軸」)、入口開口(圖中未示)、出口開口739D、自右向左推動閥體739B之彈性構件739E(例如彈簧),及自左向右移動閥體739B之螺線管739F。 In this embodiment, valve 738 is a spool type valve that includes a valve housing 739A, a movable valve body 739B (sometimes referred to as a "sliding shaft"), an inlet opening (not shown), and an outlet opening 739D. The elastic member 739E (for example, a spring) of the valve body 739B is pushed from the right to the left, and the solenoid 739F of the valve body 739B is moved from the left to the right.

在此簡化實例中,閥殼體738A為稍微中空圓柱形形狀,閥體739B為圓盤形狀,且開口739D為圓形形狀且定位於閥殼體738A之相對側上,其中閥體739B定位於相對側之間。 In this simplified example, valve housing 738A is slightly hollow cylindrical in shape, valve body 739B is in the shape of a disk, and opening 739D is circular in shape and is positioned on the opposite side of valve housing 738A, wherein valve body 739B is positioned Between the opposite sides.

應注意,因為上游壓力及下游壓力正交於閥體739B,所以差量壓力將不影響閥738之敞開或閉合。 It should be noted that because the upstream and downstream pressures are orthogonal to valve body 739B, the differential pressure will not affect the opening or closing of valve 738.

另外,在圖7A中,閥738被說明為在控制系統(圖7A中未示)未將電流引導至螺線管739F時處於完全閉合位置。此時,閥體739B覆蓋入口及出口739D兩者以閉合閥738。 Additionally, in FIG. 7A, valve 738 is illustrated in a fully closed position when the control system (not shown in FIG. 7A) is not directing current to solenoid 739F. At this time, the valve body 739B covers both the inlet and the outlet 739D to close the valve 738.

圖7B為圖7A之閥738的簡化剖示圖,其中閥738處於恰在其敞開之前的基線位置。此時,控制系統(圖7B中未示)正將電流引導至螺線管739F。當將電流引導至螺線管時,此產生將閥體739B推動至閥738準備敞開之基線位置y b 的螺線管力 F solenoid Figure 7B is a simplified cross-sectional view of the valve 738 of Figure 7A with the valve 738 in a baseline position just prior to its opening. At this point, the control system (not shown in Figure 7B) is directing current to solenoid 739F. When directing current to the solenoid, this creates a solenoid force F solenoid that pushes the valve body 739B to the baseline position y b at which the valve 738 is ready to open.

圖7C為圖7A之閥738的簡化剖示圖,其中閥738處於部分敞開位置。此時,控制系統(圖7C中未示)正將電流引導至螺線管739F。當將電流引導至螺線管時,此產生將閥體739B推動至閥738部分敞開之位置y的螺線管力 F solenoid Figure 7C is a simplified cross-sectional view of the valve 738 of Figure 7A with the valve 738 in a partially open position. At this point, the control system (not shown in Figure 7C) is directing current to solenoid 739F. When directing current to the solenoid, this creates a solenoid force F solenoid that pushes the valve body 739B to a position y where the valve 738 is partially open.

典型地,螺線管力之量值與電流成比例。當將足夠電流引導至螺線管739F時,會克服彈性構件739F之彈簧預負載力,使閥體739B移動。另外,電流之量將判定閥738被敞開多遠。通常,閥開口之大小隨著電流增加而增加。 Typically, the magnitude of the solenoid force is proportional to the current. When a sufficient current is directed to the solenoid 739F, the spring preload force of the elastic member 739F is overcome to move the valve body 739B. Additionally, the amount of current will determine how far the valve 738 is open. Typically, the size of the valve opening increases as the current increases.

圖7D為圖7A之閥738的簡化剖示圖,其中閥738處於完全位置。 Figure 7D is a simplified cross-sectional view of valve 738 of Figure 7A with valve 738 in a full position.

在此實施例中,可如下表達用於圖7A至圖7D所說明之閥738的閥機械動力學: In this embodiment, the valve mechanics for the valve 738 illustrated in Figures 7A-7D can be expressed as follows:

在方程式38中及在別處, M V 為閥體739B之質量;為閥體739B之加速度;c v 為由彈簧摩擦造成之阻尼;為閥體739B之速度;k s 為彈性構件739E之彈簧常數;y o 為預負載距離;k f 為螺線管力常數;u為被引導至螺線管之電流命令;且f preload 為彈性構件739E之預負載力。 In Equation 38 and elsewhere, M V is the mass of valve body 739B; Is the acceleration of the valve body 739B; c v is the damping caused by the spring friction; Is the speed of the valve body 739B; k s is the spring constant of the elastic member 739E; y o is the preload distance; k f is the solenoid force constant; u is the current command directed to the solenoid; and f preload is elastic Preload force of member 739E.

圖7E為在有助於闡釋有效孔口面積之部分敞開位置中之出口739D及閥體739B的簡化說明。在此實例中, χ = y o + y 。另外,可如下計算此類型之閥738的有效孔口面積Aeff Figure 7E is a simplified illustration of outlet 739D and valve body 739B in a partially open position that facilitates the interpretation of the effective orifice area. In this example, χ = y o + y . Additionally, the effective orifice area A eff of this type of valve 738 can be calculated as follows:

圖8A為說明使用用於圖7A至圖7D所說明之閥的上述公式所計算之正規化有效孔口面積對正規化滑軸位置的圖形。在此實例中,此閥之閥特性814表示正規化有效孔口面積對正規化滑軸位置之關係。 Figure 8A is a graph illustrating the normalized effective orifice area versus normalized sliding axis position calculated using the above formula for the valve illustrated in Figures 7A through 7D. In this example, the valve characteristic 814 of the valve represents the relationship of the normalized effective orifice area to the normalized sliding axis position.

如上文所提供,在某些實施例中,將閥特性814反轉以產生圖8B所說明的隨後用於控制彼閥之反轉閥特性816。舉例而言,可將圖8A中之資料反轉(切換圖形之X及Y軸)以產生圖8B所說明的標繪滑軸位置對正規化有效孔口面積之反轉閥特性816。 As provided above, in certain embodiments, the valve characteristic 814 is reversed to produce the reverse valve characteristic 816 that is subsequently used to control the valve as illustrated in Figure 8B. For example, the data in FIG. 8A can be reversed (switching the X and Y axes of the graph) to produce the reverse valve characteristic 816 of the normalized effective orifice area as illustrated by the plotted slide axis position illustrated in FIG. 8B.

某些閥(例如滑軸閥)具有類背隙滯後。在此等閥中,對於 相同電流命令,滑軸位置可取決於先前命令歷史而不同。 Some valves, such as slide shaft valves, have a backlash-like hysteresis. In these valves, for With the same current command, the position of the slide axis can vary depending on the previous command history.

圖9A為說明滑軸閥之測試結果的圖形。在圖9A中,該圖形說明滑軸位置對電壓。另外,圖9B為說明滑軸閥之模擬結果的圖形。在圖9B中,該圖形說明滑軸位置對電流。此等圖說明:對於相同電流命令(或電壓命令),滑軸位置可取決於先前命令歷史而不同。舉例而言,參考圖9A,對於相同命令(例如5伏特),滑軸位置將取決於先前命令而不同。相似地,參考圖9B,對於相同命令(例如0.5安培),滑軸位置將取決於先前命令而不同。 Fig. 9A is a graph illustrating the test results of the slide shaft valve. In Figure 9A, the graph illustrates the position of the slide axis versus voltage. In addition, FIG. 9B is a graph illustrating a simulation result of the slide shaft valve. In Figure 9B, the graph illustrates the position of the slide axis versus current. These figures illustrate that for the same current command (or voltage command), the position of the slide axis can be different depending on the previous command history. For example, referring to Figure 9A, for the same command (e.g., 5 volts), the position of the slide axis will vary depending on the previous command. Similarly, referring to Figure 9B, for the same command (e.g., 0.5 amps), the position of the slide axis will vary depending on the previous command.

如本文中所提供,參考圖9A,此閥之另一閥特性914係由滑軸位置對電壓之關係表示。參考圖9B,此閥之又一閥特性915係由滑軸位置對電流之關係表示。因此,如本文中所提供,可校準及模型化滑軸閥非線性(背隙及有效孔口幾何形狀)。隨後,可將其反轉應用於控制軟體以線性化滑軸閥。 As provided herein, with reference to Figure 9A, another valve characteristic 914 of the valve is represented by the relationship of the position of the sliding shaft to the voltage. Referring to Figure 9B, a further valve characteristic 915 of the valve is represented by the relationship of the position of the sliding shaft to the current. Thus, as provided herein, the spool valve non-linearity (backlash and effective orifice geometry) can be calibrated and modeled. It can then be applied to the control software to linearize the slideshaft valve.

用以計算閥之背隙的方法可變化。在一個實施例中,可藉由將電流(或電壓)命令自零逐漸地增加至最大值且接著將其逐漸地減小至零同時監測閥體之位置而執行校準。隨後將電流(或電壓)命令對滑軸位置資料用作補償映圖。 The method used to calculate the backlash of the valve can vary. In one embodiment, the calibration can be performed by gradually increasing the current (or voltage) command from zero to a maximum and then gradually reducing it to zero while monitoring the position of the valve body. The current (or voltage) command is then used as a compensation map for the sliding axis position data.

在某些實施例中,可在校準背隙時判定閥之基線位置 y o 。可藉由在檢查閥之出口流量以判定孔口何時開始敞開時稍微增加電流命令而判定基線位置。 In some embodiments, the baseline position y o of the valve can be determined when calibrating the backlash. The baseline position can be determined by slightly increasing the current command while checking the outlet flow of the valve to determine when the orifice begins to open.

圖10A說明滑軸閥之兩個閥特性。更特定言之,圖10A包括:(i)第一閥特性1014,例如說明正規化有效孔口面積對正規化滑軸位置 之圖形;及(ii)第二閥特性1015,例如說明滑軸位置對電流之圖形。可以實驗方式獲取或計算用於圖形1014、1015之資料。 Figure 10A illustrates the two valve characteristics of the spool valve. More specifically, FIG. 10A includes: (i) a first valve characteristic 1014, for example, illustrating normalized effective orifice area versus normalized sliding axis position And (ii) the second valve characteristic 1015, for example, a graph illustrating the position of the sliding shaft versus current. The data for the graphs 1014, 1015 can be obtained or calculated experimentally.

如上文所提供,在某些實施例中,將閥特性1014、1015反轉以產生圖10B所說明的隨後用於控制彼閥之反轉閥特性1016、1017。舉例而言,將來自圖形1014之資料反轉(切換圖形之X及Y軸)以產生標繪正規化滑軸位置對正規化有效孔口面積之圖形1016。另外,將來自圖形1015之資料反轉(切換圖形之X及Y軸)以產生標繪電流對滑軸位置之圖形1017。如本文中所提供,反轉閥特性1016、1017有助於準確地控制閥之有效孔口面積,而不管閥之非線性。 As provided above, in certain embodiments, the valve characteristics 1014, 1015 are reversed to produce the reverse valve characteristics 1016, 1017 illustrated in Figure 10B for subsequent control of the valve. For example, the data from graph 1014 is inverted (switching the X and Y axes of the graph) to produce a graph 1016 that plots the normalized slide axis position versus normalized effective aperture area. In addition, the data from graph 1015 is inverted (switching the X and Y axes of the graph) to produce a graph 1017 plotting the current versus slide axis position. As provided herein, the reverse valve characteristics 1016, 1017 help to accurately control the effective orifice area of the valve regardless of the non-linearity of the valve.

應注意,反轉閥特性1016、1017可呈查找表、映圖、圖形、圖表或分析模型或擬合模型之形式。 It should be noted that the reverse valve characteristics 1016, 1017 may be in the form of lookup tables, maps, graphs, charts or analytical models or fitted models.

圖11為說明有用於本發明之曝光設備1170的示意圖。曝光設備1170包括設備框架1172、照明系統1182(輻照設備)、遮罩平台總成1184、光學總成1186(透鏡總成)、板平台總成1110,及控制遮罩平台總成1184及板平台總成1110之控制系統1120。 Figure 11 is a schematic diagram showing an exposure apparatus 1170 for use in the present invention. The exposure apparatus 1170 includes a device frame 1172, an illumination system 1182 (irradiation device), a mask platform assembly 1184, an optical assembly 1186 (lens assembly), a plate platform assembly 1110, and a control mask platform assembly 1184 and a board. Control system 1120 of platform assembly 1110.

曝光設備1170特別可用作將液晶顯示裝置之圖案(圖中未示)自遮罩1188轉印至工件1122上的微影裝置。 The exposure apparatus 1170 is particularly useful as a lithography apparatus that transfers a pattern (not shown) of a liquid crystal display device from the mask 1188 to the workpiece 1122.

設備框架1172具剛性且支撐曝光設備1170之組件。設備框架1172之設計可變化以適合針對曝光設備1170之其餘部分的設計要求。 The equipment frame 1172 is rigid and supports the components of the exposure apparatus 1170. The design of the equipment frame 1172 can be varied to suit the design requirements for the remainder of the exposure apparatus 1170.

照明系統1182包括照明源1192及照明光學總成1194。照明源1192發射光能射束(輻照)。照明光學總成1194將光能射束自照明源1192導引至遮罩1188。射束選擇性地照明遮罩1188之不同部分且曝光工件1122。 The illumination system 1182 includes an illumination source 1192 and an illumination optics assembly 1194. Illumination source 1192 emits a beam of light energy (irradiation). Illumination optics assembly 1194 directs the beam of light energy from illumination source 1192 to mask 1188. The beam selectively illuminates different portions of the mask 1188 and exposes the workpiece 1122.

光學總成1186將傳遞通過遮罩1188之光投影及/或聚焦至工件1122。取決於曝光設備1170之設計,光學總成1186可放大或減小照明於遮罩1188上之影像。 The optical assembly 1186 projects and/or focuses light transmitted through the mask 1188 to the workpiece 1122. Depending on the design of the exposure apparatus 1170, the optical assembly 1186 can magnify or reduce the image illuminated on the mask 1188.

遮罩平台總成1184相對於光學總成1186及工件1122來固持及定位遮罩1188。相似地,板平台總成1110相對於遮罩1188之經照明部分的經投影影像來固持及定位工件1122。 The mask platform assembly 1184 holds and positions the mask 1188 relative to the optical assembly 1186 and the workpiece 1122. Similarly, the plate platform assembly 1110 holds and positions the workpiece 1122 relative to the projected image of the illuminated portion of the mask 1188.

存在數個不同類型之微影裝置。舉例而言,曝光設備1170可用作掃描類型光微影系統,其將圖案自遮罩1188曝光至玻璃工件1122上,其中遮罩1188與工件1122同步地移動。替代地,曝光設備1170可為步進及重複類型光微影系統,其在遮罩1188及工件1122靜止時曝光遮罩1188。 There are several different types of lithography devices. For example, exposure apparatus 1170 can be used as a scanning type photolithography system that exposes a pattern from mask 1188 onto glass workpiece 1122, with mask 1188 moving in synchronization with workpiece 1122. Alternatively, exposure device 1170 can be a step and repeat type photolithography system that exposes mask 1188 when mask 1188 and workpiece 1122 are stationary.

然而,本文中所提供之曝光設備1170及平台總成的用途並不限於用於液晶顯示裝置製造之光微影系統。舉例而言,曝光設備1170可用作半導體光微影系統,其將積體電路圖案曝光至晶圓或光微影系統上以用於製造薄膜磁頭。另外,本發明亦可應用於近接光微影系統,其藉由在不使用透鏡總成的情況下接近地定位遮罩及基板而曝光遮罩圖案。另外,本文中所提供之本發明可用於其他裝置,包括其他平板顯示器處理裝備、電梯、機器工具、金屬切割機器、檢測機器及磁碟機。 However, the use of the exposure apparatus 1170 and the platform assembly provided herein is not limited to the photolithography system used in the manufacture of liquid crystal display devices. For example, exposure device 1170 can be used as a semiconductor photolithography system that exposes an integrated circuit pattern onto a wafer or photolithography system for use in fabricating a thin film magnetic head. In addition, the present invention is also applicable to a proximity photolithography system that exposes a mask pattern by closely positioning a mask and a substrate without using a lens assembly. Additionally, the invention provided herein can be used in other devices, including other flat panel display processing equipment, elevators, machine tools, metal cutting machines, inspection machines, and disk drives.

根據上述實施例之光微影系統可藉由以下方式而建置:裝配各種子系統(包括所附申請專利範圍中列出之每一元件),使得維持規定的機械準確度、電準確度及光學準確度。為了維持各種準確度,在裝配之前及之後,調整每一光學系統以達成其光學準確度。相似地,調整每一機械 系統及每一電系統以達成其各別機械及電準確度。將每一子系統裝配至光微影系統中之程序包括在每一子系統之間的機械介面、電路配線連接及氣壓管道連接。不必說,亦存在在自各種子系統裝配光微影系統之前裝配每一子系統的程序。一旦使用各種子系統而裝配光微影系統,就執行總調整以確保在整個光微影系統中維持準確度。另外,需要在溫度及清潔度被控制的清潔室中製造曝光系統。 The photolithography system according to the above embodiments can be constructed by assembling various subsystems (including each of the components listed in the scope of the appended claims) so as to maintain the specified mechanical accuracy, electrical accuracy, and Optical accuracy. To maintain various accuracies, each optical system is adjusted to achieve its optical accuracy before and after assembly. Similarly, adjust each machine The system and each electrical system to achieve their respective mechanical and electrical accuracy. The procedure for assembling each subsystem into a photolithography system includes a mechanical interface between each subsystem, a circuit wiring connection, and a pneumatic pipe connection. Needless to say, there are also procedures for assembling each subsystem before assembling the photolithography system from various subsystems. Once the photolithography system is assembled using various subsystems, a total adjustment is performed to ensure accuracy is maintained throughout the photolithography system. In addition, it is necessary to manufacture an exposure system in a clean room where temperature and cleanliness are controlled.

另外,可藉由圖12中大體上所展示之程序而使用上述系統來製作裝置。在步驟1201中,設計裝置之功能及效能特性。接下來,在步驟1202中,根據先前設計步驟來設計具有圖案之遮罩(光罩),且在並列步驟1203中製造玻璃板。在步驟1204中藉由上文中根據本發明所描述之光微影系統將步驟1202中所設計之遮罩圖案曝光至來自步驟1203之玻璃板上。在步驟1205中,裝配(包括切割程序、接合程序及封裝程序)平板顯示裝置,最後,接著在步驟1206中檢測裝置。 Additionally, the apparatus described above can be fabricated using the above-described system as generally illustrated in FIG. In step 1201, the functionality and performance characteristics of the device are designed. Next, in step 1202, a patterned mask (mask) is designed according to the previous design steps, and the glass sheet is fabricated in the parallel step 1203. The mask pattern designed in step 1202 is exposed to the glass plate from step 1203 in step 1204 by the photolithography system described above in accordance with the present invention. In step 1205, the flat panel display device is assembled (including the cutting program, the bonding program, and the packaging program), and finally, the device is then detected in step 1206.

雖然如本文中所展示及揭示之特定總成完全地能夠獲得目標且提供上文中所陳述之優點,但應理解,其僅僅說明本發明之目前較佳實施例,且除了如所附申請專利範圍中所描述的內容以外,並不意欲限制本文中所展示之建構或設計細節。 While the particular assembly as shown and described herein is fully capable of achieving the objectives and the advantages set forth hereinabove, it is understood that it is merely illustrative of the presently preferred embodiments of the present invention and In addition to what is described herein, it is not intended to limit the construction or design details shown herein.

Claims (13)

一種用於沿著一移動軸線定位一工件之平台總成,該平台總成包含:一平台,其經調適以耦接至該工件;一底座;一流體致動器總成,其耦接至該平台且沿著該移動軸線相對於該底座來移動該平台,該流體致動器總成包括:一活塞殼體,其界定一活塞腔室;一活塞,其定位於該活塞腔室內且沿著一活塞軸線相對於該活塞腔室而移動;及一閥總成,其控制一活塞流體進入該活塞腔室之流動;其中該閥總成包括具有一第一入口閥特性之一第一入口閥;及一控制系統,其控制該閥總成以控制該活塞流體進入該活塞腔室之該流動,其中該控制系統利用該第一入口閥特性之一反轉以控制該閥總成。 A platform assembly for positioning a workpiece along a movement axis, the platform assembly comprising: a platform adapted to couple to the workpiece; a base; a fluid actuator assembly coupled to The platform moves the platform relative to the base along the axis of movement, the fluid actuator assembly comprising: a piston housing defining a piston chamber; a piston positioned within the piston chamber and along a piston axis moving relative to the piston chamber; and a valve assembly that controls a flow of piston fluid into the piston chamber; wherein the valve assembly includes a first inlet having a first inlet valve characteristic And a control system that controls the valve assembly to control the flow of the piston fluid into the piston chamber, wherein the control system reverses with one of the first inlet valve characteristics to control the valve assembly. 如申請專利範圍第1項之平台總成,其中該活塞將該活塞腔室分離成在該活塞之相對側上的一第一腔室及一第二腔室;且其中該閥總成控制該活塞流體進入該第一腔室及該第二腔室之流動。 The platform assembly of claim 1, wherein the piston separates the piston chamber into a first chamber and a second chamber on opposite sides of the piston; and wherein the valve assembly controls the The piston fluid enters the flow of the first chamber and the second chamber. 如申請專利範圍第2項之平台總成,其中該閥總成控制該活塞流體離開該第一腔室及該第二腔室之流動。 The platform assembly of claim 2, wherein the valve assembly controls flow of the piston fluid away from the first chamber and the second chamber. 如申請專利範圍第3項之平台總成,其中該閥總成包括:(i)該第一入口閥,其控制該活塞流體進入該第一腔室之該流動;(ii)一第一出口閥,其控制該活塞流體離開該第一腔室之該流動;(iii)一第二入口閥,其控制該活塞流體進入該第二腔室之該流動;及(iv)一第二出口閥,其控制該活塞流體離開該第二腔室之該流動。 The platform assembly of claim 3, wherein the valve assembly comprises: (i) the first inlet valve that controls the flow of the piston fluid into the first chamber; (ii) a first outlet a valve that controls the flow of the piston fluid away from the first chamber; (iii) a second inlet valve that controls the flow of the piston fluid into the second chamber; and (iv) a second outlet valve And controlling the flow of the piston fluid away from the second chamber. 如申請專利範圍第4項之平台總成,其中該第一出口閥具有一第一出 口閥特性,該第二入口閥具有一第二入口閥特性,且該第二出口閥具有一第二出口閥特性;且其中該控制系統亦利用該第一出口閥特性之一反轉、該第二入口閥特性之一反轉及該第二出口閥特性之一反轉以控制該閥總成。 The platform assembly of claim 4, wherein the first outlet valve has a first out a port valve characteristic, the second inlet valve has a second inlet valve characteristic, and the second outlet valve has a second outlet valve characteristic; and wherein the control system also reverses using one of the first outlet valve characteristics, One of the second inlet valve characteristics is reversed and one of the second outlet valve characteristics is reversed to control the valve assembly. 如申請專利範圍第4項之平台總成,其中使用該第一入口閥之實驗測試來判定該第一入口閥特性,使用該第一出口閥之實驗測試來判定該第一出口閥特性,使用該第二入口閥之實驗測試來判定該第二入口閥特性,且使用該第二出口閥之實驗測試來判定該第二出口閥特性。 The platform assembly of claim 4, wherein an experimental test of the first inlet valve is used to determine the first inlet valve characteristic, and an experimental test of the first outlet valve is used to determine the first outlet valve characteristic, using An experimental test of the second inlet valve determines the second inlet valve characteristic and an experimental test of the second outlet valve is used to determine the second outlet valve characteristic. 如申請專利範圍第1項之平台總成,其中藉由該第一入口閥之實驗測試來判定該第一入口閥特性。 The platform assembly of claim 1, wherein the first inlet valve characteristic is determined by an experimental test of the first inlet valve. 如申請專利範圍第1項之平台總成,其中該第一入口閥特性為用於該第一入口閥之電流命令與一有效孔口面積之間的關係。 The platform assembly of claim 1, wherein the first inlet valve characteristic is a relationship between a current command for the first inlet valve and an effective orifice area. 如申請專利範圍第1項之平台總成,其中該第一入口閥特性為用於該第一入口閥之電流命令與閥位置之間的關係。 The platform assembly of claim 1, wherein the first inlet valve characteristic is a relationship between a current command for the first inlet valve and a valve position. 如申請專利範圍第1項之平台總成,其中該第一入口閥特性為用於該第一入口閥之有效孔口面積與閥位置之間的關係。 The platform assembly of claim 1, wherein the first inlet valve characteristic is a relationship between an effective orifice area for the first inlet valve and a valve position. 一種曝光設備,其包括一照明源,及如申請專利範圍第1項之平台總成,該平台總成相對於該照明系統來移動該平台。 An exposure apparatus comprising an illumination source, and a platform assembly according to claim 1, wherein the platform assembly moves the platform relative to the illumination system. 一種用於製造一裝置之程序,其包括以下步驟:提供一基板;及運用如申請專利範圍第11項之曝光設備將一影像形成至該基板。 A program for fabricating a device comprising the steps of: providing a substrate; and forming an image onto the substrate using an exposure apparatus as in claim 11 of the patent application. 一種用於沿著一移動軸線定位一工件之方法,該方法包含:提供一底座; 將該工件耦接至一平台;運用一流體致動器總成而沿著該移動軸線移動該平台,該流體致動器總成包括:一活塞殼體,其界定一活塞腔室;一活塞,其定位於該活塞腔室內且沿著一活塞軸線相對於該活塞腔室而移動;及一閥總成,其控制一活塞流體進入該活塞腔室之流動;其中該閥總成包括具有一第一入口閥特性之一第一入口閥;及運用一控制系統來控制該閥總成以控制該活塞流體進入該活塞腔室之該流動,其中該控制系統利用該第一入口閥特性之一反轉以控制該閥總成。 A method for positioning a workpiece along a movement axis, the method comprising: providing a base; Coupling the workpiece to a platform; moving the platform along the movement axis using a fluid actuator assembly, the fluid actuator assembly comprising: a piston housing defining a piston chamber; a piston Positioning within the piston chamber and moving relative to the piston chamber along a piston axis; and a valve assembly that controls the flow of a piston fluid into the piston chamber; wherein the valve assembly includes a a first inlet valve characteristic; and using a control system to control the valve assembly to control the flow of the piston fluid into the piston chamber, wherein the control system utilizes one of the first inlet valve characteristics Reverse to control the valve assembly.
TW106118370A 2016-06-01 2017-06-01 A stage assembly for positioning a workpiece, an exposure apparatus and a process for manufacturing a device TWI735589B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662344262P 2016-06-01 2016-06-01
US62/344,262 2016-06-01

Publications (2)

Publication Number Publication Date
TW201809483A true TW201809483A (en) 2018-03-16
TWI735589B TWI735589B (en) 2021-08-11

Family

ID=60477928

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106118370A TWI735589B (en) 2016-06-01 2017-06-01 A stage assembly for positioning a workpiece, an exposure apparatus and a process for manufacturing a device

Country Status (5)

Country Link
JP (1) JP6737346B2 (en)
KR (1) KR102214590B1 (en)
CN (1) CN109477501B (en)
TW (1) TWI735589B (en)
WO (1) WO2017210450A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11092170B2 (en) 2017-02-15 2021-08-17 Nikon Corporation Dual valve fluid actuator assembly
WO2021108770A1 (en) * 2019-11-27 2021-06-03 The Texas A & M University System Nanopositioning systems and associated methods

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5385041A (en) * 1992-08-12 1995-01-31 Gemcor Engineering Corporation Piston rod stabilizing device for a riveting apparatus ram assembly
DE19523645A1 (en) * 1995-06-29 1997-01-02 Stihl Maschf Andreas Valve for aerating and ventilating vehicle fuel tank of hand-held work tools
JPH09144705A (en) * 1995-11-27 1997-06-03 Nippon Kuatsu Syst Kk Negative pneumatic pressure servo unit
US6289259B1 (en) * 1998-10-16 2001-09-11 Husky Injection Molding Systems Ltd. Intelligent hydraulic manifold used in an injection molding machine
TWI284785B (en) * 2002-04-24 2007-08-01 Nikon Corp Exposure system and device manufacturing method
US7021191B2 (en) * 2003-01-24 2006-04-04 Viking Technologies, L.C. Accurate fluid operated cylinder positioning system
CN101158365A (en) * 2007-11-13 2008-04-09 辽宁鑫宇装备自动化有限公司 Direct driving type volume servo control power installation
US8375989B2 (en) * 2009-10-22 2013-02-19 Eaton Corporation Method of operating a control valve assembly for a hydraulic system
JP5460764B2 (en) * 2012-02-29 2014-04-02 富士重工業株式会社 Range switching device
JP5978985B2 (en) * 2012-12-26 2016-08-24 コベルコ建機株式会社 Hydraulic control device and construction machine equipped with the same
JP2014215774A (en) * 2013-04-24 2014-11-17 キヤノン株式会社 Stage device, creation method and program
CN203373716U (en) * 2013-06-26 2014-01-01 上海利策海洋工程技术有限公司 Self-installation suction pile type movable platform structure
CN103481093B (en) * 2013-09-13 2015-09-09 中联重科股份有限公司 Machining mechanism and machining system for workpiece
CN103738882B (en) * 2014-01-24 2016-01-06 长安大学 A kind of space orientation platform
CN105179340B (en) * 2015-09-10 2017-06-06 北汽福田汽车股份有限公司 Concrete mixer and its stirring hydraulic system
CN205207305U (en) * 2015-12-04 2016-05-04 上海创力集团股份有限公司 Entry driving machine hydraulic actuating system

Also Published As

Publication number Publication date
TWI735589B (en) 2021-08-11
KR20190003723A (en) 2019-01-09
KR102214590B1 (en) 2021-02-09
JP6737346B2 (en) 2020-08-05
WO2017210450A1 (en) 2017-12-07
CN109477501B (en) 2021-07-09
CN109477501A (en) 2019-03-15
JP2019520604A (en) 2019-07-18

Similar Documents

Publication Publication Date Title
US9983595B2 (en) Method and apparatus for gas flow control
US10260656B2 (en) Vacuum valve and vacuum pressure control system using the same
EP0647788B1 (en) Tare supporting apparatus
US20080309910A1 (en) Vibration isolating apparatus, control method for vibration isolating apparatus, and exposure apparatus
JP7174430B2 (en) VALVE DEVICE, ADJUSTMENT INFORMATION GENERATING METHOD, FLOW CONTROL METHOD, FLUID CONTROL DEVICE, FLOW CONTROL METHOD, SEMICONDUCTOR MANUFACTURING APPARATUS AND SEMICONDUCTOR MANUFACTURING METHOD
KR101004857B1 (en) Vibration suppression apparatus, exposure apparatus, and method of manufacturing device
TWI735589B (en) A stage assembly for positioning a workpiece, an exposure apparatus and a process for manufacturing a device
US9529282B2 (en) Position-measurement systems
JP2005032818A (en) Hydrostatic bearing, pointing device and aligner
JP6566192B2 (en) Anti-vibration apparatus, exposure apparatus, and device manufacturing method
Zhou et al. Microassembly station with controlled environment
US11092170B2 (en) Dual valve fluid actuator assembly
JP2009164246A (en) Stage apparatus and method of controlling the same
Mehmood et al. Nonlinear modeling of electro-pneumatic actuator for variable nozzle turbocharger control
JP2005307993A (en) Method for calibrating stage device using variable restriction static pressure bearing
US20030097205A1 (en) Control scheme and system for active vibration isolation
JP2002110523A (en) Aligner
US11269262B2 (en) Frame assembly, lithographic apparatus and device manufacturing method
US20230060389A1 (en) Driving apparatus, exposure apparatus, and article manufacturing method
Matitschka et al. euspen’s 23rd International Conference & Exhibition, Copenhagen, DK, June 2023
NL2023502A (en) Piezo actuator, piezo actuator system, substrate support and lithographic apparatus
JP2004031978A (en) Exposure equipment
JP2005353968A (en) Closed loop controlling equipment, optical element driving device, and exposing device
JP2014064025A (en) Positioning apparatus, exposure apparatus and device manufacturing method