TW201806305A - Control device for rotating electrical machine - Google Patents

Control device for rotating electrical machine Download PDF

Info

Publication number
TW201806305A
TW201806305A TW105132878A TW105132878A TW201806305A TW 201806305 A TW201806305 A TW 201806305A TW 105132878 A TW105132878 A TW 105132878A TW 105132878 A TW105132878 A TW 105132878A TW 201806305 A TW201806305 A TW 201806305A
Authority
TW
Taiwan
Prior art keywords
voltage command
voltage
rotating electrical
electrical machine
correction amount
Prior art date
Application number
TW105132878A
Other languages
Chinese (zh)
Other versions
TWI631812B (en
Inventor
伊藤正人
蜂矢陽祐
足立章二
Original Assignee
三菱電機股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機股份有限公司 filed Critical 三菱電機股份有限公司
Publication of TW201806305A publication Critical patent/TW201806305A/en
Application granted granted Critical
Publication of TWI631812B publication Critical patent/TWI631812B/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

An error compensation reference value for compensating error of an estimated position of a rotor of a rotating electrical machine is obtained based on a first rotating electrical machine current and a second rotating electrical machine current flowing in the rotating electrical machine depending on a first voltage instruction with an arbitrary magnitude and an arbitrary direction and a second voltage instruction consisting of n directions with an arbitrary magnitude.

Description

旋轉電機的控制裝置 Rotary motor control unit

本發明係關於感應機及同步機等之旋轉電機的控制裝置,更詳言之係關於能夠使用並非利用位置感測器(sensor)而取得的轉子的位置資訊來控制旋轉電機之旋轉電機的控制裝置。 The present invention relates to a control device for a rotating electrical machine such as an induction machine and a synchronous machine, and more particularly to control of a rotating electrical machine capable of controlling a rotating electrical machine using position information of a rotor that is not obtained by using a position sensor. Device.

為了精度良好地控制感應機及同步機等之旋轉電機,必須正確地掌握旋轉電機的轉子速度或位置。為了掌握旋轉電機的轉子速度或位置的資訊,有在旋轉電機安裝位置感測器或速度感測器之方法。此方法可正確得到旋轉電機的轉子速度或位置資訊,但設置感測器會使得成本增加,而且必須配置用來將感測器資訊傳送至控制裝置之配線,此外還有感測器本身會故障而導致可靠性降低等之課題。因此,作為解決此等課題之方法,開發出了一種採用從施加至旋轉電機之電壓或流至旋轉電機之電流來推測旋轉電機的轉子位置之所謂的「無位置感測器控制法」之旋轉電機的控制裝置。 In order to accurately control a rotating machine such as an induction machine or a synchronous machine, it is necessary to accurately grasp the rotor speed or position of the rotating electrical machine. In order to grasp the information of the rotor speed or position of the rotating electrical machine, there is a method of installing a position sensor or a speed sensor in the rotating electrical machine. This method can correctly obtain the rotor speed or position information of the rotating machine, but setting the sensor will increase the cost, and must be configured to transmit the sensor information to the wiring of the control device, in addition, the sensor itself will malfunction. This leads to problems such as reduced reliability. Therefore, as a method for solving such problems, a so-called "positionless sensor control method" that estimates the rotor position of a rotating electrical machine from a voltage applied to a rotating electrical machine or a current flowing to a rotating electrical machine has been developed. Motor control unit.

已知的無位置感測器控制法,係利用感應 電壓資訊來得到轉子位置或轉子速度之無位置感測器控制法。例如專利文獻1,係藉由演算出能讓推測的轉子磁通的q軸成分為零之角頻率w,而希望能夠根據旋轉二軸座標(d-q軸)上的電流及前述旋轉二軸座標(d-q軸)上的電壓指令,來演算出角頻率及同步電動機的推測電流及推測轉子磁通及推測旋轉速度。然而,利用感應電壓資訊之無位置感測器控制法,在低速域因為感應電壓資訊很小,所以位置推測精度很差。尤其是停止時,感應電壓為零,所以原理上要進行位置推測很難。 Known position sensorless control method Voltage information to obtain a position sensorless control method for rotor position or rotor speed. For example, in Patent Document 1, it is desirable to calculate the current frequency on the rotating two-axis coordinate (dq axis) and the aforementioned two-axis coordinate by calculating the angular frequency w at which the q-axis component of the estimated rotor magnetic flux is zero. The voltage command on the dq axis) is used to calculate the angular frequency and the estimated current of the synchronous motor and the estimated rotor flux and the estimated rotational speed. However, the position-free sensor control method using the induced voltage information has a poor positional accuracy because the induced voltage information is small in the low speed range. Especially when stopping, the induced voltage is zero, so it is difficult to estimate the position in principle.

另外,有一種旋轉電機其所具備的轉子具有突極,在此種旋轉電機可採用利用旋轉電機的電感(inductance)分佈與位置的相關性,來推測轉子位置之方法。例如專利文獻2中就揭示一種:將相對於驅動用的基本波電壓具有開關(switching)週期的m倍的週期之位置檢測用電壓施加至旋轉電機,從此時流動的電流的大小來檢測出旋轉電機的電感分佈再據以推測出轉子的位置之方法。此方法的位置檢測用電壓的頻率大多設定得比驅動用的基本波電壓的頻率高,所以一般將此方法稱為無感測器高頻疊加法。無感測器高頻疊加法具有:因為是利用與速度無關係之電感分佈來推測位置,所以即使是在停止時還是在低速域都幾乎不會有位置推測精度變差的情形之特徵。因此,在低速域採用無感測器高頻疊加法。 Further, there is a rotating electric machine in which a rotor has a salient pole. In such a rotating electrical machine, a method of estimating the rotor position by utilizing the correlation between the inductance distribution and the position of the rotating electrical machine can be employed. For example, Patent Document 2 discloses a method of applying a voltage for detecting a position having a period of m times a switching period with respect to a fundamental wave voltage for driving to a rotating electrical machine, and detecting a rotation from a magnitude of a current flowing at this time. The inductance distribution of the motor is based on the method of estimating the position of the rotor. The frequency of the position detecting voltage of this method is often set to be higher than the frequency of the fundamental wave voltage for driving, so this method is generally referred to as a sensorless high frequency superposition method. The sensorless high-frequency superposition method has a feature that the position is estimated by using the inductance distribution irrelevant to the speed, so that there is almost no characteristic that the position estimation accuracy is deteriorated even in the low speed range at the time of stopping. Therefore, the sensorless high frequency superposition method is employed in the low speed range.

無感測器高頻疊加法係利用旋轉電機的電感分佈,所以一旦因為電流流至旋轉電機而產生的磁飽和 現象使得電感分佈有了變化,就會使得推測位置產生誤差而導致位置推測精度變差。具體而言,流至旋轉電機之電流,尤其是往會產生轉矩(torque)的方向之電流增大,位置誤差也會隨之而增大。因此,有如專利文獻3所揭示之依據流至旋轉電機之電流而修正位置誤差之方法。 The non-sensor high-frequency superposition method utilizes the inductance distribution of the rotating electrical machine, so once the magnetic saturation occurs due to the current flowing to the rotating electrical machine The phenomenon causes a change in the inductance distribution, which causes an error in the speculative position and causes the position estimation accuracy to deteriorate. Specifically, the current flowing to the rotating electrical machine, especially in the direction in which the torque is generated, increases, and the positional error also increases. Therefore, there is a method of correcting the position error in accordance with the current flowing to the rotary electric machine as disclosed in Patent Document 3.

又,在例如日本特許第4271397號中也揭示了在驅動旋轉電機1之前檢測一次初始磁極位置之技術。 Further, a technique of detecting the initial magnetic pole position before driving the rotary electric machine 1 is also disclosed in, for example, Japanese Patent No. 4271397.

[先前技術文獻] [Previous Technical Literature] (專利文獻) (Patent Literature)

(專利文獻1)日本特許第4672236號公報 (Patent Document 1) Japanese Patent No. 4672236

(專利文獻2)日本特許第5069306號公報 (Patent Document 2) Japanese Patent No. 5069306

(專利文獻3)日本特許第5745105號公報 (Patent Document 3) Japanese Patent No. 5745105

(專利文獻4)日本特許第4271397號公報 (Patent Document 4) Japanese Patent No. 4271397

根據前述的各專利文獻所揭示的採用無位置感測器控制法之以往的旋轉電機的控制裝置的話,因為對應於電流之位置誤差的修正量會隨著旋轉電機的種類、容量等之不同而不同,所以必須就各種旋轉電機的種類、容量預先測定出位置誤差的修正量,並使該測定出的值記憶於控制裝置等中。不過,為了測定出位置誤差的修正量,要準備負載裝置,且得進行一邊施加負載給旋轉電機一邊量測之繁雜的作業,因而有必須花很多時間及勞力之課題。 According to the conventional control device for a rotating electrical machine using the position sensorless control method disclosed in the above-mentioned patent documents, the correction amount corresponding to the position error of the current varies depending on the type and capacity of the rotating electrical machine. Since it is different, it is necessary to measure the correction amount of the position error in advance for the type and capacity of various types of rotating electrical machines, and to store the measured values in the control device or the like. However, in order to measure the correction amount of the position error, it is necessary to prepare a load device, and it is necessary to perform a complicated operation of measuring the load while applying the load to the rotating electrical machine. Therefore, it is necessary to spend a lot of time and labor.

本發明係目的在於解決以往的旋轉電機的控制裝置之如前述的課題者,提供一種無需準備負載裝置及進行一邊施加負載給旋轉電機一邊量測之繁雜的作業,可簡單且以短時間求出誤差修正量基準值之旋轉電機的控制裝置。 An object of the present invention is to solve the above-mentioned problems of the conventional control device for a rotating electrical machine, and to provide a complicated operation for measuring the load without applying a load device and applying a load to the rotating electrical machine, and the present invention can be easily and in a short time. A control device for a rotating electrical machine with an error correction amount reference value.

本發明之旋轉電機的控制裝置,係控制具備有轉子及定子之旋轉電機者,該轉子具有場磁極,該定子具有電樞繞組,該控制裝置係具備有:構成為檢測流至前述旋轉電機的電樞繞組之電流之電流檢測手段;輸出要施加至前述旋轉電機的電樞繞組之電壓的指令值,亦即電壓指令之控制手段;根據從前述控制手段輸出之前述電壓指令,施加電壓至前述旋轉電機的電樞繞組之電壓施加手段;推測前述旋轉電機的轉子的旋轉位置之位置推測手段;以及將作為修正前述位置推測手段所推測的推測位置的誤差之基準值之誤差修正量基準值,因應前述電流設為誤差修正量而輸出至前述位置推測手段之修正量輸出手段,前述位置推測手段係構成為根據流至前述電樞繞組之電流及前述誤差修正量來推測前述轉子的位置,前述控制手段係具備有:輸出第一電壓指令作為電壓指令之第一電壓指令產 生部,其中該第一電壓指令係任意的大小且任意的方向之電壓指令;輸出任意的大小且包含n個方向(n為2以上的自然數)之第二電壓指令作為電壓指令之第二電壓指令產生部;以及根據由於施加按照前述第一電壓指令之電壓至前述旋轉電機的電樞捲線而流動的第一旋轉電機電流、及由於施加按照前述第二電壓指令之電壓至前述旋轉電機而流動的第二旋轉電機電流,演算前述誤差修正量基準值之修正量基準值演算手段。 The control device for a rotating electrical machine according to the present invention controls a rotating electric machine including a rotor having a field magnetic pole, the stator having an armature winding, and the control device configured to detect a flow to the rotating electric machine. a current detecting means for the current of the armature winding; a command value for outputting a voltage to be applied to the armature winding of the rotating electrical machine, that is, a voltage command control means; applying a voltage to the foregoing according to the voltage command outputted from the control means a voltage applying means for the armature winding of the rotating electrical machine; a position estimating means for estimating a rotational position of the rotor of the rotating electrical machine; and an error correcting amount reference value as a reference value for correcting an error of the estimated position estimated by the position estimating means, The position estimating means is configured to estimate the position of the rotor based on the current flowing through the armature winding and the error correction amount, in response to the correction amount output means outputting the error correction amount to the position estimating means. The control means is provided with: outputting the first voltage command as A first voltage command of the voltage command production The first voltage command is a voltage command of an arbitrary size and an arbitrary direction; and outputting a second voltage command of an arbitrary size and including n directions (n is a natural number of 2 or more) as the second voltage command a voltage command generating unit; and a first rotating electrical machine current flowing to the armature winding of the rotating electrical machine by applying a voltage according to the first voltage command, and a voltage applied to the rotating electrical machine according to the voltage of the second voltage command The flow of the second rotating electrical machine current, the correction amount reference value calculation means for calculating the aforementioned error correction amount reference value.

另外,本發明之旋轉電機的控制裝置,係控制具備有轉子及定子之旋轉電機者,該轉子具有由永久磁鐵所構成的磁極,該定子具有電樞繞組,該控制裝置係具備有:構成為檢測流至前述旋轉電機的電樞繞組之電流之電流檢測手段;輸出要施加至前述旋轉電機的電樞繞組之電壓的指令值,亦即電壓指令之控制手段;根據從前述控制手段輸出之前述電壓指令,施加電壓至前述旋轉電機的電樞繞組之電壓施加手段;推測前述旋轉電機的轉子的旋轉位置之位置推測手段;以及將作為修正前述位置推測手段推測的推測位置的誤差之基準值之誤差修正量基準值,因應前述電流設為誤差 修正量而輸出至前述位置推測手段之修正量輸出手段,前述位置推測手段係構成為根據流至前述電樞繞組之電流及前述誤差修正量來推測前述轉子的位置,前述控制手段係具備有:輸出任意的方向且任意的大小之[m×n]個(m為「1」以上的自然數)第一電壓指令作為電壓指令之第一電壓指令產生部;輸出任意的大小且包含n個方向之第二電壓指令作為電壓指令之第二電壓指令產生部;以及根據由於施加按照前述第一電壓指令之電壓至前述旋轉電機而流動的第一旋轉電機電流、及由於施加按照前述第二電壓指令之電壓至前述旋轉電機而流動的第二旋轉電機電流,演算前述誤差修正量基準值之修正量基準值演算手段。 Further, the control device for a rotating electrical machine according to the present invention controls a rotating electric machine including a rotor having a magnetic pole composed of a permanent magnet and a stator having an armature winding, and the control device is provided with: a current detecting means for detecting a current flowing to an armature winding of the rotating electrical machine; a command value for outputting a voltage to be applied to an armature winding of the rotating electrical machine, that is, a control means for a voltage command; and the foregoing output according to the control means a voltage command, a voltage application means for applying a voltage to the armature winding of the rotating electrical machine, a position estimating means for estimating a rotational position of the rotor of the rotating electrical machine, and a reference value of an error of a estimated position estimated as a means for correcting the position estimating means The error correction amount reference value is set as the error according to the aforementioned current The correction amount output means for outputting the correction amount to the position estimating means, wherein the position estimating means is configured to estimate the position of the rotor based on the current flowing through the armature winding and the error correction amount, and the control means includes: Outputs [m × n] (m is a natural number of "1" or more) in any direction and outputs a first voltage command as a voltage command first voltage command generating unit; outputs an arbitrary size and includes n directions a second voltage command generating portion as a voltage command; and a first rotating electrical machine current flowing according to a voltage applied to the rotating electrical machine according to the voltage of the first voltage command, and a second voltage command according to the applying The second rotating electrical machine current flowing through the rotating electric machine calculates a correction amount reference value calculating means for the error correction amount reference value.

根據本發明之旋轉電機的控制裝置,根據按照任意的大小且任意的方向之第一電壓指令及任意的大小且包含n個方向之第二電壓指令而流至旋轉電機之第一旋轉電機電流及第二旋轉電機電流,求得相當於位置誤差的修正量之誤差修正量基準值,藉此,旋轉電機的控制裝置可自動地求出誤差修正量基準值,因此無需如以往準備負載裝置及進行一邊施加負載給旋轉電機一邊量測之繁雜的作業,可簡單且以短時間求出誤差修正量基準值。 According to the control device for a rotating electrical machine of the present invention, the first rotating electrical machine current flowing to the rotating electrical machine is based on a first voltage command of an arbitrary size and an arbitrary direction and a second voltage command of an arbitrary size and including n directions The second rotating electrical machine current obtains an error correction amount reference value corresponding to the correction amount of the position error, whereby the control device for the rotating electrical machine can automatically obtain the error correction amount reference value, so that it is not necessary to prepare the load device and perform the conventional method. The error correction amount reference value can be obtained simply and in a short time by performing a complicated operation of measuring the load on the rotating electric machine.

另外,本發明之旋轉電機的控制裝置,係 根據按照任意的方向且任意的大小之[m×n]個(m為「1」以上的自然數)第一電壓指令及任意的大小且包含n個方向之第二電壓指令而流至旋轉電機之第一旋轉電機電流及第二旋轉電機電流,求得相當於位置誤差的修正量之誤差修正量基準值,藉此,旋轉電機的控制裝置可自動地求出誤差修正量基準值,因此無需如以往準備負載裝置及進行一邊施加負載給旋轉電機一邊量測之繁雜的作業,可簡單且以短時間求出誤差修正量基準值。 In addition, the control device for the rotating electrical machine of the present invention is The first voltage command of [m×n] (m is a natural number of “1” or more) in an arbitrary direction and an arbitrary size, and a second voltage command of an arbitrary size and including n directions, flows to the rotary electric machine The first rotating electrical machine current and the second rotating electrical machine current obtain an error correction amount reference value corresponding to the correction amount of the position error, whereby the control device for the rotating electrical machine can automatically obtain the error correction amount reference value, so that it is not necessary In the conventional work of preparing a load device and measuring the load while applying a load to the rotating electrical machine, the error correction amount reference value can be easily obtained in a short time.

1‧‧‧旋轉電機 1‧‧‧Rotating motor

2‧‧‧電流檢測手段 2‧‧‧ Current detection means

3‧‧‧控制手段 3‧‧‧Control means

4‧‧‧電壓施加手段 4‧‧‧Voltage application means

5‧‧‧位置推測手段 5‧‧‧Location speculation

6‧‧‧修正量輸出手段 6‧‧‧corrected output means

7‧‧‧修正量基準值演算手段 7‧‧‧corrected reference value calculation method

31‧‧‧基本電壓指令產生部 31‧‧‧Basic Voltage Command Generation Department

32‧‧‧高頻電壓指令產生部 32‧‧‧High Frequency Voltage Command Generation Department

33、39‧‧‧加法部 33, 39 ‧ ‧ Addition Department

34‧‧‧第一電壓指令產生部 34‧‧‧First Voltage Command Generation Department

35‧‧‧第二電壓指令產生部 35‧‧‧Second voltage command generation unit

36‧‧‧電壓指令選擇部 36‧‧‧Voltage Command Selection Department

37‧‧‧第一座標轉換器 37‧‧‧First coordinate converter

381‧‧‧第二座標轉換器(1) 381‧‧‧Second coordinate converter (1)

382‧‧‧第二座標轉換器(2) 382‧‧‧Second coordinate converter (2)

383‧‧‧第二座標轉換器(3) 383‧‧‧Second coordinate converter (3)

1000‧‧‧旋轉電機的控制裝置 1000‧‧‧Rotary motor control unit

θ 0‧‧‧推測位置 θ 0‧‧‧ Speculated position

θ err‧‧‧位置誤差 θ err‧‧‧ position error

c‧‧‧誤差修正量 C‧‧‧error correction

c0‧‧‧誤差修正量基準值 C0‧‧‧Error correction reference value

c1‧‧‧控制相位修正量 C1‧‧‧Control phase correction

iu、iv、iw‧‧‧旋轉電機電流 Iu, iv, iw‧‧‧ rotating motor current

id‧‧‧d軸上的旋轉電機電流 Rotating motor current on the id‧‧‧d axis

iq‧‧‧q軸上的旋轉電機電流 Rotating motor current on the iq‧‧‧q axis

ω *‧‧‧速度指令 ω *‧‧‧ speed command

ω 0r‧‧‧推測速度 ω 0r‧‧‧ speculation speed

ω h‧‧‧具有任意的值之角頻率 ω h‧‧‧ angular frequency with arbitrary values

Id_trq‧‧‧轉矩電流指令的d軸成分 Id_trq‧‧‧d-axis component of torque current command

Iq_trq‧‧‧轉矩電流指令的q軸成分 Iq_trq‧‧‧ q-axis component of torque current command

Im‧‧‧旋轉電機的額定電流 Im‧‧‧Rated current of rotating electrical machine

Itrq‧‧‧轉矩電流指令 Itrq‧‧‧Torque Current Command

idh‧‧‧在d軸方向流動的高頻電流 Idh‧‧‧ high-frequency current flowing in the d-axis direction

ids‧‧‧d軸上的基本電流指令 Basic current command on the ids‧‧d axis

iqh‧‧‧在q軸方向流動的高頻電流 Iqh‧‧‧ high-frequency current flowing in the q-axis direction

iqh_ref‧‧‧位置誤差修正量 Iqh_ref‧‧‧ position error correction

iqs‧‧‧q軸上的基本電流指令 Basic current command on the iqs‧‧‧q axis

td1‧‧‧d軸上的第一電壓指令vd1的脈衝施加時間 Pulse application time of the first voltage command vd1 on the td1‧‧‧d axis

tq1‧‧‧q軸上的第一電壓指令vq1的脈衝施加時間 Pulse application time of the first voltage command vq1 on the tq1‧‧‧q axis

Ld‧‧‧d軸電感 Ld‧‧‧d shaft inductance

Lq‧‧‧q軸電感 Lq‧‧‧q axis inductance

Lm‧‧‧旋轉電機的電感 Lm‧‧‧Induction of rotating electrical machine

Lmin‧‧‧電感的最小值 Lmin‧‧‧ Minimum inductance

Lmax‧‧‧電感的最大值 Maximum value of Lmax‧‧‧ inductance

m‧‧‧轉矩電流指令的模式個數 m‧‧‧Number of modes of torque current command

R‧‧‧旋轉電機的電樞繞組的電阻 R‧‧‧Resistance of armature windings of rotating electrical machines

V1_cnt(n)‧‧‧第一反電壓指令 V1_cnt(n)‧‧‧First reverse voltage command

Vdc‧‧‧直流母線電壓 Vdc‧‧‧ DC bus voltage

Vh‧‧‧高頻電壓的振幅 Vh‧‧‧Amplitude of high frequency voltage

vus、vvs、vws‧‧‧三相基本電壓指令 Vus, vvs, vws‧‧‧ three-phase basic voltage command

vd1‧‧‧d軸上的第一電壓指令 First voltage command on the vd1‧‧‧d axis

vd2‧‧‧d軸上的第二電壓指令 Second voltage command on the vd2‧‧‧d axis

vdh‧‧‧d軸上的高頻電壓指令 High frequency voltage command on vdh‧‧‧d axis

vdq‧‧‧vd1、vq1、vd2、vq2的振幅 Amplitude of vdq‧‧‧vd1, vq1, vd2, vq2

vds‧‧‧d軸上的基本電壓指令 Basic voltage command on the vds‧‧‧d axis

vq1‧‧‧q軸上的第一電壓指令 First voltage command on the vq1‧‧‧q axis

vq2‧‧‧q軸上的第二電壓指令 Second voltage command on the vq2‧‧‧q axis

vqh‧‧‧q軸上的高頻電壓指令 High frequency voltage command on the vqh‧‧‧q axis

vqs‧‧‧q軸上的基本電壓指令 Basic voltage command on the vqs‧‧‧q axis

vu1、vv1、vw1‧‧‧三相第一電壓指令 Vu1, vv1, vw1‧‧‧ three-phase first voltage command

vu2、vv2、vw2‧‧‧三相第二電壓指令 Vu2, vv2, vw2‧‧‧ three-phase second voltage command

第1圖係顯示本發明的實施形態1之旋轉電機的控制裝置的構成之構成圖。 Fig. 1 is a configuration diagram showing a configuration of a control device for a rotating electrical machine according to Embodiment 1 of the present invention.

第2A圖係用來說明本發明的實施形態1之旋轉電機的控制裝置的動作之說明圖。 Fig. 2A is an explanatory view for explaining the operation of the control device for the rotary electric machine according to the first embodiment of the present invention.

第2B圖係用來說明本發明的實施形態1之旋轉電機的控制裝置的動作之說明圖。 Fig. 2B is an explanatory view for explaining the operation of the control device for the rotary electric machine according to the first embodiment of the present invention.

第3A圖係用來說明本發明的實施形態1之旋轉電機的控制裝置的動作之說明圖。 Fig. 3A is an explanatory view for explaining the operation of the control device for the rotary electric machine according to the first embodiment of the present invention.

第3B圖係用來說明本發明的實施形態1之旋轉電機的控制裝置的動作之說明圖。 Fig. 3B is an explanatory view for explaining the operation of the control device for the rotary electric machine according to the first embodiment of the present invention.

第4圖係用來說明本發明的實施形態1之旋轉電機的控制裝置的動作之說明圖。 Fig. 4 is an explanatory view for explaining the operation of the control device for the rotary electric machine according to the first embodiment of the present invention.

第5圖係用來說明本發明的實施形態1之旋轉電機的控制裝置的動作之說明圖。 Fig. 5 is an explanatory view for explaining the operation of the control device for the rotary electric machine according to the first embodiment of the present invention.

第6圖係用來說明本發明的實施形態1之旋轉電機的控制裝置的動作之說明圖。 Fig. 6 is an explanatory view for explaining the operation of the control device for the rotary electric machine according to the first embodiment of the present invention.

第7圖係用來說明本發明的實施形態1之旋轉電機的控制裝置的動作之說明圖。 Fig. 7 is an explanatory view for explaining the operation of the control device for the rotary electric machine according to the first embodiment of the present invention.

第8A圖係用來說明本發明的實施形態1之旋轉電機的控制裝置的動作之說明圖。 Fig. 8A is an explanatory view for explaining the operation of the control device for the rotary electric machine according to the first embodiment of the present invention.

第8B圖係用來說明本發明的實施形態1之旋轉電機的控制裝置的動作之說明圖。 Fig. 8B is an explanatory view for explaining the operation of the control device for the rotary electric machine according to the first embodiment of the present invention.

第9圖係用來說明本發明的實施形態1之旋轉電機的控制裝置的動作之說明圖。 Fig. 9 is an explanatory view for explaining the operation of the control device for the rotary electric machine according to the first embodiment of the present invention.

第10圖係用來說明本發明的實施形態1之旋轉電機的控制裝置的動作之說明圖。 Fig. 10 is an explanatory view for explaining the operation of the control device for the rotary electric machine according to the first embodiment of the present invention.

第11圖係用來說明本發明的實施形態1之旋轉電機的控制裝置的動作之說明圖。 Fig. 11 is an explanatory view for explaining the operation of the control device for the rotary electric machine according to the first embodiment of the present invention.

第12圖係用來說明本發明的實施形態1之旋轉電機的控制裝置的動作之說明圖。 Fig. 12 is an explanatory view for explaining the operation of the control device for the rotary electric machine according to the first embodiment of the present invention.

第13圖係用來說明本發明的實施形態1之旋轉電機的控制裝置的動作之說明圖。 Fig. 13 is an explanatory view for explaining the operation of the control device for the rotating electrical machine according to the first embodiment of the present invention.

第14圖係用來說明本發明的實施形態1之旋轉電機的控制裝置的動作之說明圖。 Fig. 14 is an explanatory view for explaining the operation of the control device for the rotary electric machine according to the first embodiment of the present invention.

第15圖係用來說明本發明的實施形態1之旋轉電機的控制裝置的動作之說明圖。 Fig. 15 is an explanatory view for explaining the operation of the control device for the rotary electric machine according to the first embodiment of the present invention.

第16圖係用來說明本發明的實施形態1之旋轉電機的控制裝置的動作之說明圖。 Fig. 16 is an explanatory view for explaining the operation of the control device for the rotary electric machine according to the first embodiment of the present invention.

第17圖係用來說明本發明的實施形態1之旋轉電機的控制裝置的動作之說明圖。 Fig. 17 is an explanatory view for explaining the operation of the control device for the rotary electric machine according to the first embodiment of the present invention.

第18圖係用來說明本發明的實施形態1之旋轉電機的控制裝置的動作之流程圖。 Fig. 18 is a flow chart for explaining the operation of the control device for the rotating electrical machine according to the first embodiment of the present invention.

第19圖係用來說明本發明的實施形態1之旋轉電機的控制裝置的動作之說明圖。 Fig. 19 is an explanatory view for explaining the operation of the control device for the rotary electric machine according to the first embodiment of the present invention.

第20圖係用來說明本發明的實施形態1之旋轉電機的控制裝置的構成之說明圖。 Figure 20 is an explanatory view for explaining the configuration of a control device for a rotating electrical machine according to Embodiment 1 of the present invention.

第21圖係用來說明本發明的實施形態1之旋轉電機的控制裝置的構成之說明圖。 Figure 21 is an explanatory view for explaining the configuration of a control device for a rotating electrical machine according to Embodiment 1 of the present invention.

第22圖係用來說明本發明的實施形態2之旋轉電機的控制裝置的動作之流程圖。 Fig. 22 is a flow chart for explaining the operation of the control device for the rotating electrical machine according to the second embodiment of the present invention.

第23圖係用來說明本發明的實施形態2之旋轉電機的控制裝置的動作之說明圖。 Fig. 23 is an explanatory view for explaining the operation of the control device for the rotary electric machine according to the second embodiment of the present invention.

第24圖係用來說明本發明的實施形態3之旋轉電機的控制裝置的動作之流程圖。 Fig. 24 is a flow chart for explaining the operation of the control device for the rotary electric machine according to the third embodiment of the present invention.

第25圖係用來說明本發明的實施形態3之旋轉電機的控制裝置的動作之說明圖。 Figure 25 is an explanatory view for explaining the operation of the control device for the rotating electrical machine according to the third embodiment of the present invention.

第26圖係用來說明本發明的實施形態4之旋轉電機的控制裝置的動作之流程圖。 Figure 26 is a flow chart for explaining the operation of the control device for a rotating electrical machine according to Embodiment 4 of the present invention.

第27圖係用來說明本發明的實施形態5之旋轉電機的控制裝置的動作之說明圖。 Figure 27 is an explanatory view for explaining the operation of the control device for the rotating electrical machine according to the fifth embodiment of the present invention.

第28圖係用來說明本發明的實施形態5之旋轉電機的控制裝置的動作之流程圖。 Fig. 28 is a flow chart for explaining the operation of the control device for the rotating electrical machine according to the fifth embodiment of the present invention.

第29圖係用來說明本發明的實施形態5之旋轉電機的控制裝置的動作之說明圖。 Figure 29 is an explanatory view for explaining the operation of the control device for the rotating electrical machine according to the fifth embodiment of the present invention.

第30圖係用來說明本發明的實施形態6之旋轉電機的控制裝置的動作之流程圖。 Figure 30 is a flow chart for explaining the operation of the control device for a rotating electrical machine according to Embodiment 6 of the present invention.

實施形態1. Embodiment 1.

第1圖係顯示本發明的實施形態1之旋轉電機的控制裝置的構成之構成圖。第1圖顯示的是旋轉電機1在本發明的實施形態1中係具有三相繞組且在轉子配置永久磁鐵之突極型的永久磁鐵同步機之例,但其他種類的旋轉電機也可利用同樣的原理來構成。以下,針對旋轉電機的控制裝置1000進行說明。 Fig. 1 is a configuration diagram showing a configuration of a control device for a rotating electrical machine according to Embodiment 1 of the present invention. In the first embodiment of the present invention, the rotary electric machine 1 is an example of a salient-type permanent magnet synchronous machine having a three-phase winding and a permanent magnet disposed in the rotor. However, other types of rotating electric machines can be used in the same manner. The principle is to constitute. Hereinafter, a control device 1000 for a rotating electrical machine will be described.

電流檢測手段2係檢測出流至旋轉電機1之旋轉電機電流。在本實施形態1中係檢測出整個三相的電流,但亦可採用:利用流至旋轉電機1之電流為三相平衡的之原理,只檢測出三相之中任意兩相的電流,剩下的一相之電流則利用計算來求出之公知的方法。 The current detecting means 2 detects the rotating machine current flowing to the rotary electric machine 1. In the first embodiment, the current of the entire three phases is detected. However, it is also possible to use the principle that the current flowing to the rotary electric machine 1 is balanced by three phases, and only the current of any two of the three phases is detected. The current of the next phase is calculated using a known method.

控制手段3係輸出電壓指令至電壓施加手段4。在本實施形態1中,控制手段3係構成為根據後述之位置推測手段5輸出的推測位置θ,而利用與旋轉電機1的速度大致同步旋轉之座標軸(亦即d-q軸)來演算出電壓指令。控制手段3具備有:基本電壓指令產生部31、高頻電壓指令產生部32、加法部33、第一電壓指令產生部34、 第二電壓指令產生部35、電壓指令選擇部36、第一座標轉換器37、第二座標轉換器(1)381、第二座標轉換器(2)382、及第二座標轉換器(3)383。 The control means 3 outputs a voltage command to the voltage application means 4. In the first embodiment, the control means 3 is configured to calculate a voltage command by a coordinate axis (i.e., a dq axis) that rotates substantially synchronously with the speed of the rotary electric machine 1 based on the estimated position θ outputted by the position estimating means 5, which will be described later. . The control means 3 includes a basic voltage command generating unit 31, a high-frequency voltage command generating unit 32, an adding unit 33, and a first voltage command generating unit 34. Second voltage command generating unit 35, voltage command selecting unit 36, first coordinate converter 37, second coordinate converter (1) 381, second coordinate converter (2) 382, and second coordinate converter (3) 383.

第一座標轉換器37係如後述,將電流檢測手段2所檢測出的三相的旋轉電機電流iu、iv、iw予以座標轉換為d軸上的旋轉電機電流id及q軸上的旋轉電機電流iq。第二座標轉換器(1)381係如後述,對加法部33的輸出進行座標轉換而將之從d-q軸轉換為三相。第二座標轉換器(2)382係對第一電壓指令產生部34的輸出進行座標轉換而將之從d-q軸轉換為三相。第二座標轉換器(3)383係如後述,對第二電壓指令產生部35的輸出進行座標轉換而將之從d-q軸轉換為三相。 The first standard conversion converter 37 converts the three-phase rotating electric machine currents iu, iv, and iw detected by the current detecting means 2 into a rotating electric machine current id on the d-axis and a rotating electric machine current on the q-axis, as will be described later. Iq. The second coordinate converter (1) 381 converts the output of the addition unit 33 into a three-phase from the d-q axis as will be described later. The second coordinate converter (2) 382 performs coordinate conversion on the output of the first voltage command generating portion 34 to convert it from the d-q axis to the three phase. The second coordinate converter (3) 383 converts the output of the second voltage command generating unit 35 from the d-q axis to the three phases as will be described later.

基本電壓指令產生部31係演算出用來讓旋轉電機1的轉子位置、速度、轉矩、電流等遵照從外部輸入的位置指令(未圖示)、速度指令ω *、轉矩指令(未圖示)、電流指令(未圖示)等之驅動用的d軸上的基本電壓指令vds及q軸上的基本電壓指令vqs並予以輸出。例如,實施形態1揭示的是如第1圖所示之從外部輸入速度指令ω *之情況,在此情況係以讓後述的位置推測手段5輸出的推測速度ω r遵照速度指令ω *之方式進行周知的比例積分控制而產生電流指令,再以讓d軸上的基本電流指令ids及q軸上的基本電流指令iqs遵照該電流指令之方式進行比例積分控制來演算出d軸上的基本電壓指令vds及q軸上的基本電壓指令vqs並予以輸出。 The basic voltage command generating unit 31 calculates a position command (not shown) for inputting the rotor position, speed, torque, current, and the like of the rotary electric machine 1 from the outside, a speed command ω*, and a torque command (not shown). The basic voltage command vds on the d-axis for driving, such as a current command (not shown), and the basic voltage command vqs on the q-axis are output. For example, in the first embodiment, the speed command ω* is input from the outside as shown in Fig. 1, and in this case, the estimated speed ω r outputted by the position estimating means 5 to be described later follows the speed command ω *. A well-known proportional-integral control is used to generate a current command, and the basic current command ids on the d-axis and the basic current command iqs on the q-axis are proportionally integrated to perform the proportional-integral control to calculate the basic voltage on the d-axis. The basic voltage command vqs on the vds and q axes is commanded and output.

修正量基準值演算手段7係根據電流檢測手段2所檢測出的旋轉電機電流iu、iv、iw而演算出後述的誤差修正量基準值c0並予以輸出。修正量輸出手段6係根據來自修正量基準值演算手段7之誤差修正量基準值c0、及第一座標轉換器37所輸出的d軸上的旋轉電機電流id及q軸上的旋轉電機電流iq而演算出誤差修正量c並予以輸出。 The correction amount reference value calculation means 7 calculates and outputs an error correction amount reference value c0 to be described later based on the rotating electrical machine currents iu, iv, and iw detected by the current detecting means 2. The correction amount output means 6 is based on the error correction amount reference value c0 from the correction amount reference value calculation means 7 and the rotary electric machine current id on the d-axis and the rotary electric machine current iq on the q-axis output from the first coordinate converter 37. The error correction amount c is calculated and output.

高頻電壓指令產生部32係輸出具有比旋轉電機1的旋轉角頻率大的旋轉角頻率之d軸上的高頻電壓指令vdh及q軸上的高頻電壓指令vqh。在本發明的實施形態1中,高頻電壓指令產生部32係構成為:輸出如以下的式(1)所示之交變高頻電壓,此交變高頻電壓係只在d軸方向輸出具有任意的值的振幅Vh,且具有比旋轉電機1的旋轉角頻率大的任意的值的旋轉角頻率ω h之高頻電壓。 The high-frequency voltage command generating unit 32 outputs a high-frequency voltage command vdh on the d-axis and a high-frequency voltage command vqh on the q-axis having a rotational angular frequency larger than the rotational angular frequency of the rotary electric machine 1. In the first embodiment of the present invention, the high-frequency voltage command generating unit 32 is configured to output an alternating high-frequency voltage as shown in the following formula (1), and the alternating high-frequency voltage is output only in the d-axis direction. The high-frequency voltage of the rotational angular frequency ω h having an arbitrary value of the amplitude Vh and having an arbitrary value larger than the rotational angular frequency of the rotary electric machine 1.

Figure TW201806305AD00001
Figure TW201806305AD00001

其中,t表示時間。 Where t is the time.

加法部33係將基本電壓指令產生部31輸出的d軸上的基本電壓指令vds及q軸上的基本電壓指令vqs、與高頻電壓指令產生部32輸出的d軸上的高頻電壓指令vdh及q軸上的高頻電壓指令vqh予以相加然後輸出。第二座標轉換器(1)381將加法部33的輸出從d-q軸座標轉換到三相座標而輸出三相基本電壓指令vus、vvs、vws。 The addition unit 33 is a basic voltage command vds on the d-axis and a basic voltage command vqs on the q-axis output from the basic voltage command generation unit 31, and a high-frequency voltage command vdh on the d-axis output from the high-frequency voltage command generation unit 32. And the high frequency voltage command vqh on the q axis is added and then output. The second coordinate converter (1) 381 converts the output of the addition unit 33 from the d-q axis coordinate to the three-phase coordinate to output three-phase basic voltage commands vs, vvs, and vws.

第一電壓指令產生部34係輸出用來求出誤差修正量基準值c0之後述的d軸上的第一電壓指令vd1及q軸上的第一電壓指令vq1。第二座標轉換器(2)382將來自第一電壓指令產生部34之d軸上的第一電壓指令vd1及q軸上的第一電壓指令vq1予以座標轉換到三相座標而輸出三相第一電壓指令vu1、vv1、vw1。第二電壓指令產生部35係輸出用來求出誤差修正量基準值c0之後述的d軸上的第二電壓指令vd2及q軸上的第二電壓指令vq2。第二座標轉換器(3)383將來自第二電壓指令產生部35之d軸上的第二電壓指令vd2及q軸上的第二電壓指令vq2予以座標轉換到三相座標而輸出三相第二電壓指令vu2、vv2、vw2。第一電壓指令產生部34及第二電壓指令產生部35的詳細動作將在後面說明。 The first voltage command generating unit 34 outputs a first voltage command vd1 on the d-axis and a first voltage command vq1 on the q-axis to be described later, which are used to obtain the error correction amount reference value c0. The second coordinate converter (2) 382 coordinates the first voltage command vd1 from the d-axis of the first voltage command generating portion 34 and the first voltage command vq1 on the q-axis to a three-phase coordinate to output a three-phase number. A voltage command vu1, vv1, vw1. The second voltage command generating unit 35 outputs a second voltage command vd2 on the d-axis and a second voltage command vq2 on the q-axis to be described later, which are used to obtain the error correction amount reference value c0. The second coordinate converter (3) 383 coordinates the second voltage command vd2 from the d-axis of the second voltage command generating portion 35 and the second voltage command vq2 on the q-axis to a three-phase coordinate to output a three-phase number Two voltage commands vu2, vv2, vw2. The detailed operations of the first voltage command generating unit 34 and the second voltage command generating unit 35 will be described later.

電壓指令選擇部36係將第二座標轉換器(1)381對加法部33的輸出進行座標轉換而轉換出的三相基本電壓指令vus、vvs、vws、第二座標轉換器(2)382對第一電壓指令產生部34輸出的d軸上的第一電壓指令vd1及q軸上的第一電壓指令vq1進行座標轉換而轉換出的三相第一電壓指令vu1、vv1、vw1、第二電壓指令產生部35輸出的d軸上的第二電壓指令vd2及q軸上的第二電壓指令vq2予以輸入。電壓指令選擇部36係構成為:在修正量基準值演算手段7要演算出後述的誤差修正量基準值c0之時,選擇三相第一電壓指令vu1、vv1、vw1、或三相第二電壓指令vu2、vv2、vw2並予以輸出,在要演算出誤差修正量基 準值c0之時以外的時期,亦即,要使旋轉電機1按照從控制手段3的外部輸進來的位置指令、速度指令、轉矩指令、電流指令等之中的至少任一者而動作之時,選擇三相基本電壓指令vus、vvs、vws並予以輸出。 The voltage command selection unit 36 is a three-phase basic voltage command usus, vvs, vws, and a second coordinate converter (2) 382 that are converted by the second coordinate converter (1) 381 to the output of the addition unit 33. The first voltage command vd1 on the d-axis and the first voltage command vq1 on the q-axis output by the first voltage command generating unit 34 perform coordinate conversion to convert the three-phase first voltage commands vu1, vv1, vw1, and the second voltage. The second voltage command vd2 on the d-axis and the second voltage command vq2 on the q-axis output by the command generating unit 35 are input. The voltage command selection unit 36 is configured to select the three-phase first voltage command vu1, vv1, vw1, or the three-phase second voltage when the correction amount reference value calculation means 7 is to calculate the error correction amount reference value c0 to be described later. The instructions vu2, vv2, vw2 are output and are used to calculate the error correction basis. In a period other than the time when the value c0 is the same, that is, the rotary electric machine 1 is operated in accordance with at least one of a position command, a speed command, a torque command, a current command, and the like input from the outside of the control device 3. When the three-phase basic voltage commands vsus, vvs, and vws are selected and output.

電壓施加手段4係由複數個半導體開關元件所構成,且構成為:根據控制手段3的輸出,亦即控制手段3中的電壓指令選擇部36選擇的前述的三相基本電壓指令vus、vvs、vws,將三相電壓施加至旋轉電機1。 The voltage application means 4 is composed of a plurality of semiconductor switching elements, and is configured to be based on the output of the control means 3, that is, the three-phase basic voltage command vs. vvs selected by the voltage command selecting unit 36 in the control means 3. Vws, a three-phase voltage is applied to the rotary electric machine 1.

更詳言之,電壓施加手段4係例如由所謂的電壓型逆變器(inverter)等所構成,電壓型逆變器係具有三相橋式電路(bridge circuit),且三相橋式電路係具備有:將具有第一功率半導體開關元件之U相上臂(arm)及具有第二功率半導體開關元件之U相下臂串聯連接而成之U相臂、將具有第三功率半導體開關元件之V相上臂及具有第四功率半導體開關元件之V相下臂串聯連接而成之V相臂、以及將具有第五功率半導體開關元件之W相上臂及具有第六功率半導體開關元件之W相下臂串聯連接而成之W相臂,電壓型逆變器藉由使前述的各功率半導體開關元件on/off,將施加於三相橋式電路的直流側端子之直流電壓變換為三相交流電壓並將之施加至旋轉電機1的電樞繞組。 More specifically, the voltage application means 4 is constituted by, for example, a so-called voltage type inverter, and the voltage type inverter has a three-phase bridge circuit, and the three-phase bridge circuit system A U-phase arm having a U-phase upper arm having a first power semiconductor switching element and a U-phase lower arm having a second power semiconductor switching element connected in series, and a V having a third power semiconductor switching element a V-phase arm in which an upper arm and a V-phase lower arm having a fourth power semiconductor switching element are connected in series, and a W-phase upper arm having a fifth power semiconductor switching element and a W-phase lower arm having a sixth power semiconductor switching element a W-phase arm connected in series, the voltage-type inverter converts a DC voltage applied to a DC-side terminal of the three-phase bridge circuit into a three-phase AC voltage by on/off each of the power semiconductor switching elements described above This is applied to the armature winding of the rotary electric machine 1.

又,如上述構成之電壓施加手段4係構成為:即使作為藉由使前述的各半導體功率開關元件on/off將在作為發電機而動作之旋轉電機1的電樞繞組感應產生的三相交流電壓轉換為直流電壓之轉換器(converter)也可 動作。 Further, the voltage application means 4 configured as described above is configured to be a three-phase AC which is induced by the armature winding of the rotary electric machine 1 that operates as a generator by causing each of the semiconductor power switching elements on/off described above. A converter that converts voltage to DC voltage is also available action.

位置推測手段5係進行:在驅動旋轉電機1之前檢測出轉子的磁鐵磁通的方向之初始磁極位置檢測動作、及在驅動旋轉電機1當中一直推測旋轉電機1的轉子的位置或速度之平常時位置推測動作這兩個動作。位置推測手段5的初始磁極位置檢測動作係例如與前述的專利文獻4揭示的技術一樣,只在驅動旋轉電機1之前進行一次。之後,才進行平常時位置推測動作。 The position estimating means 5 performs an initial magnetic pole position detecting operation for detecting the direction of the magnet magnetic flux of the rotor before driving the rotary electric machine 1, and an ordinary time for estimating the position or speed of the rotor of the rotary electric machine 1 in the driving rotary electric machine 1 The position speculation action is two actions. The initial magnetic pole position detecting operation of the position estimating means 5 is performed only once before the rotary electric machine 1 is driven, as in the technique disclosed in the above-mentioned Patent Document 4. After that, the normal position estimation operation is performed.

以下,針對平常時位置推測動作的具體的方法進行說明。在要演算出前述的誤差修正量基準值c0之時,位置推測手段5輸出其初始磁極位置檢測動作所檢測出的旋轉電機1的轉子位置來作為推測位置θ 0。因此,在要演算出誤差修正量基準值c0之時,前述的第一座標轉換器37及第二座標轉換器(1)381、第二座標轉換器(2)382及第二座標轉換器(3)383分別以位置推測手段5的初始磁極位置檢測動作所檢測出的旋轉電機1的轉子位置θ 0作為控制相位,而進行前述的座標轉換。 Hereinafter, a specific method of the normal position estimation operation will be described. When the error correction amount reference value c0 is to be calculated, the position estimating means 5 outputs the rotor position of the rotary electric machine 1 detected by the initial magnetic pole position detecting operation as the estimated position θ 0 . Therefore, when the error correction amount reference value c0 is to be calculated, the first coordinate converter 37 and the second coordinate converter (1) 381, the second coordinate converter (2) 382, and the second coordinate converter ( 3) 383 The coordinate conversion θ 0 of the rotary electric machine 1 detected by the initial magnetic pole position detecting operation of the position estimating means 5 is used as the control phase, and the coordinate conversion described above is performed.

位置推測手段5的平常時位置推測動作,係利用旋轉電機1的轉子的突極性來推測旋轉電機1的轉子位置,演算出該轉子的推測位置θ或轉子的推測速度ω 0r並予以輸出。在此情況,前述的第一座標轉換器37及第二座標轉換器(1)381、第二座標轉換器(2)382及第二座標轉換器(3)383分別以位置推測手段5的平常時位置推測動作所推測出的旋轉電機1的轉子的推測位置θ作為控制相位, 而進行前述的座標轉換。 In the normal position estimation operation of the position estimation means 5, the rotor position of the rotary electric machine 1 is estimated by the sudden polarity of the rotor of the rotary electric machine 1, and the estimated position θ of the rotor or the estimated speed ω 0r of the rotor is calculated and output. In this case, the first coordinate converter 37 and the second coordinate converter (1) 381, the second coordinate converter (2) 382, and the second coordinate converter (3) 383 are normally used by the position estimation means 5, respectively. The estimated position θ of the rotor of the rotary electric machine 1 estimated by the time position estimation operation is used as the control phase. The aforementioned coordinate conversion is performed.

接著,針對推測旋轉電機1的轉子位置或轉子速度之原理、及位置推測手段5的演算動作進行詳細的說明。如前述,以位置推測手段5輸出的推測位置θ 0作為控制相位,第二座標轉換器(1)381進行座標轉換而從d-q軸轉換出三相基本電壓指令vus、vvs、vws,此三相基本電壓指令vus、vvs、vws經由電壓指令選擇部36而傳給電壓施加手段4。電壓施加手段4根據接收到的三相基本電壓指令vus、vvs、vws而產生三相交流電壓並將之施加至旋轉電機1的電樞繞組。按照施加的三相交流電壓而在旋轉電機1的電樞繞組流動之三相的旋轉電機電流iu、iv、iw,使旋轉磁場產生。旋轉電機1的轉子設有由永久磁鐵所構成之突極的場磁極,因而轉子與電樞繞組所產生的旋轉磁場同步而旋轉。 Next, the principle of estimating the rotor position or the rotor speed of the rotary electric machine 1 and the calculation operation of the position estimation means 5 will be described in detail. As described above, the estimated position θ 0 outputted by the position estimating means 5 is used as the control phase, and the second coordinate converter (1) 381 performs coordinate conversion to convert the three-phase basic voltage commands vus, vvs, and vws from the dq axis. The basic voltage commands vs, vvs, and vws are transmitted to the voltage application means 4 via the voltage command selection unit 36. The voltage applying means 4 generates a three-phase AC voltage based on the received three-phase basic voltage commands usv, vvs, vws and applies it to the armature winding of the rotary electric machine 1. The three-phase rotating electrical machine currents iu, iv, and iw flowing in the armature winding of the rotary electric machine 1 in accordance with the applied three-phase AC voltage generate a rotating magnetic field. The rotor of the rotary electric machine 1 is provided with a field pole of a salient pole formed by a permanent magnet, and thus the rotor rotates in synchronization with a rotating magnetic field generated by the armature winding.

若相對於與轉子之旋轉同步而旋轉之永久磁鐵的磁通,將水平方向記為dm軸,將與該dm軸正交之方向(以下將此方向稱為正交方向)記為qm軸,且使用此dm-qm軸,則在旋轉電機1為具有突極性之永久磁鐵同步機之情況,d-q軸上的電壓方程式可表示成如下之式(2)。 When the magnetic flux of the permanent magnet that rotates in synchronization with the rotation of the rotor, the horizontal direction is denoted by the dm axis, and the direction orthogonal to the dm axis (hereinafter referred to as the orthogonal direction) is referred to as the qm axis. Further, in the case where the dm-qm axis is used, in the case where the rotary electric machine 1 is a permanent magnet synchronous machine having a sharp polarity, the voltage equation on the dq axis can be expressed as the following equation (2).

Figure TW201806305AD00002
其中,
Figure TW201806305AD00003
Figure TW201806305AD00002
among them,
Figure TW201806305AD00003

利用突極性來推測旋轉電機1的轉子位置或轉子速度之方法,大多主要是利用在旋轉電機1的轉子速度為零及低速的範圍,所以將旋轉速度假設為[ω r≒0],可根據式(2)而得到以下之式(3)。 The method of estimating the rotor position or the rotor speed of the rotary electric machine 1 by using the sudden polarity is mainly based on the range in which the rotor speed of the rotary electric machine 1 is zero and the low speed, so the rotation speed is assumed to be [ω r ≒ 0], which can be The following formula (3) is obtained by the formula (2).

Figure TW201806305AD00004
Figure TW201806305AD00004

式(3)的右邊第二項為高頻電流的微分,高頻電流的微分成分為高頻電壓Vh的角頻率ω h倍,所以式(3)的右邊第二項>>右邊第一項。因此,式(3)的右邊第一項可忽略,而可從式(3)得到以下的式(4)。 The second term on the right side of equation (3) is the differentiation of the high-frequency current, and the micro-frequency is divided into the angular frequency ω h times divided into the high-frequency voltage Vh, so the second item on the right side of the equation (3) >> the first item on the right side . Therefore, the first term on the right side of the equation (3) can be ignored, and the following equation (4) can be obtained from the equation (3).

Figure TW201806305AD00005
Figure TW201806305AD00005

此處,若所給與的係如前述的式(1)所示的 具有振幅Vh之高頻電壓,則在d軸流動之高頻電流idh及在q軸流動之高頻電流iqh,可藉由將式(1)代入式(4)然後將兩邊予以積分,而得到以下的式(5)。 Here, if the given system is as shown in the above formula (1) The high-frequency voltage having the amplitude Vh, the high-frequency current idh flowing in the d-axis and the high-frequency current iqh flowing in the q-axis can be obtained by substituting the formula (1) into the equation (4) and then integrating the two sides. The following formula (5).

Figure TW201806305AD00006
Figure TW201806305AD00006

從式(5)可知:在d軸流動之高頻電流idh及在q軸流動之高頻電流iqh的振幅成分中都含有d-q軸、與dm-qm軸之間的偏差△ θ。尤其,在q軸流動之高頻電流iqh的振幅成分為sin2△ θ,所以計算出在q軸流動之高頻電流iqh的振幅|iqh|,且以讓振幅|iqh|成為零之方式,利用例如以下的式(6)所示的積分式相等之求解,或者利用比例積分控制等而以讓作為推測軸之d-q軸與dm-qm軸一致之方式演算出位置推測值θ。 As is clear from the equation (5), the amplitude components of the high-frequency current idh flowing in the d-axis and the high-frequency current iqh flowing in the q-axis include the deviation Δθ between the d-q axis and the dm-qm axis. In particular, since the amplitude component of the high-frequency current iqh flowing in the q-axis is sin2Δθ, the amplitude |iqh| of the high-frequency current iqh flowing in the q-axis is calculated, and the amplitude |iqh| is made zero. For example, the solution of the integral equations shown in the following equation (6) is equalized, or the position estimation value θ is calculated such that the dq axis as the estimated axis coincides with the dm-qm axis by proportional integration control or the like.

Figure TW201806305AD00007
Figure TW201806305AD00007

因為轉子速度係轉子位置的微分值,所以推測速度ω 0r可藉由例如以下之式(7)般將推測位置θ 0予以微分而求得。 Since the rotor speed is a differential value of the rotor position, the estimated speed ω 0r can be obtained by, for example, differentiating the estimated position θ 0 by the following equation (7).

Figure TW201806305AD00008
Figure TW201806305AD00008

以上為位置推測手段5的基本的位置推測動作。 The above is the basic position estimation operation of the position estimation means 5.

接著,針對旋轉電機1發生磁飽和時位置推測手段5輸出的推測位置θ 0進行說明。第2A及2B圖係用來說明本發明的實施形態1之旋轉電機的控制裝置的動作之說明圖,第2A圖係顯示在旋轉電機1未發生磁飽和時,轉子所具有的永久磁鐵的磁通的方向在0°方向時的電感分佈,橫軸為轉子位置(電氣角),縱軸為電感的大小。第2B圖係顯示在轉子位置平面描繪第2A圖所示的電感分佈所得到的電感利薩如圖形(Lissajous figures),橢圓的大小表示電感的大小。 Next, the estimated position θ 0 output by the position estimating means 5 when the rotary electric machine 1 is magnetically saturated will be described. 2A and 2B are explanatory views for explaining the operation of the control device for the rotary electric machine according to the first embodiment of the present invention, and FIG. 2A shows the magnetic field of the permanent magnet of the rotor when the rotary electric machine 1 is not magnetically saturated. The inductance distribution in the direction of 0° is the rotor position (electrical angle) on the horizontal axis and the inductance on the vertical axis. Figure 2B shows the Lissajous figures obtained by plotting the inductance distribution shown in Figure 2A on the rotor position plane. The size of the ellipse indicates the size of the inductor.

在旋轉電機1未發生磁飽和之情況,具有突極性之永久磁鐵旋轉電機的電感最小之方向,係與永久磁鐵的磁通的方向相同。因此,利用第2A、2B圖來說明到前述的式(6)為止的位置推測動作的話,如式(6)所示將推測位置θ 0調整成讓在q軸流動之高頻電流iqh的大小為零之動作,係等同於將推測位置θ 0調整到與第2A、2B圖所示之電感為最小值Lmin之位置一致。 In the case where the rotary electric machine 1 is not magnetically saturated, the direction in which the inductance of the permanent magnet rotating motor having the polarity is the smallest is the same as the direction of the magnetic flux of the permanent magnet. Therefore, when the position estimation operation up to the above equation (6) is described using the second and second graphs, the estimated position θ 0 is adjusted to the magnitude of the high-frequency current iqh flowing in the q-axis as shown in the equation (6). The action of zero is equivalent to adjusting the estimated position θ 0 to coincide with the position where the inductance shown in FIGS. 2A and 2B is the minimum value Lmin.

第3A及3B圖係用來說明本發明的實施形態1之旋轉電機的控制裝置的動作之說明圖,第3A圖係顯示在旋轉電機1發生磁飽和時,轉子所具有的永久磁鐵的磁通的方向在0°方向時的電感分佈,橫軸為轉子位置(電 氣角),縱軸為電感的大小。第3B圖係顯示在轉子位置平面描繪第3A圖所示的電感分佈所得到的電感利薩如圖形,橢圓的大小表示電感的大小。 3A and 3B are explanatory views for explaining the operation of the control device for the rotary electric machine according to the first embodiment of the present invention, and FIG. 3A is a view showing the magnetic flux of the permanent magnet of the rotor when the rotary electric machine 1 is magnetically saturated. The inductance is distributed in the direction of 0°, and the horizontal axis is the rotor position (electrical The gas angle), the vertical axis is the size of the inductor. Fig. 3B shows the inductance Lissajous figure obtained by drawing the inductance distribution shown in Fig. 3A on the rotor position plane, and the size of the ellipse indicates the size of the inductance.

旋轉電機1發生了磁飽和,電感分佈就會如第3A、3B圖所示般變化,永久磁鐵的磁通的方向會變得與電感為最小值Lmin之位置不一致。換言之,如式(6)所示以讓在q軸流動之高頻電流iqh的大小為零之方式進行轉子位置的推測的話,就會將偏離開0°之位置推測為轉子位置。利用第3A、3B圖來看的話,在q軸流動之高頻電流iqh的大小為零之位置,會為從0°之位置偏移到電感為最小值Lmin之位置後的位置,所以會將偏移了0°與電感為最小值Lmin的位置之偏差θ err後的位置當作是推測位置θ 0。此位置誤差θ err為磁飽和時的推測位置之誤差。 The rotating motor 1 is magnetically saturated, and the inductance distribution changes as shown in Figs. 3A and 3B. The direction of the magnetic flux of the permanent magnet does not coincide with the position where the inductance is the minimum value Lmin. In other words, if the rotor position is estimated such that the magnitude of the high-frequency current iqh flowing in the q-axis is zero as shown in the equation (6), the position deviated from 0° is estimated as the rotor position. As seen from the 3A and 3B diagrams, the position of the high-frequency current iqh flowing in the q-axis is zero, and the position is shifted from the position of 0° to the position where the inductance is at the minimum value Lmin. The position shifted by the deviation θ err from the position where the inductance is the minimum value Lmin is regarded as the estimated position θ 0 . This position error θ err is an error of the estimated position at the time of magnetic saturation.

接著,利用數學式來說明在旋轉電機1磁飽和時之轉子位置的推測動作。由於磁飽和,永久磁鐵磁通的方向與高頻電流iqh的最小值Lmin之間會產生位置誤差θ err。利用以下的式(8)來表示前述的式(2)的d軸電感Ldc、q軸電感Lqc、電感變化量Ldqc。 Next, the estimation operation of the rotor position when the rotary electric machine 1 is magnetically saturated will be described using a mathematical expression. Due to magnetic saturation, a position error θ err is generated between the direction of the permanent magnet flux and the minimum value Lmin of the high-frequency current iqh. The d-axis inductance Ldc, the q-axis inductance Lqc, and the inductance change amount Ldqc of the above formula (2) are expressed by the following formula (8).

L dc =L-l cos{2(△θ+θ err )} L qc =L+l cos{2(△θ+θ err )} L dqc =l sin{2(△θ+θ err )}...式(8) L dc = L - l cos{2(△θ+θ err )} L qc = L + l cos{2(Δθ+θ err )} L dqc = l sin{2(Δθ+θ err )}. . . Formula (8)

將式(8)代入式(3),且進行與式(4)、式(5)一樣之計算,可得到以下之式(9)。 Substituting the formula (8) into the formula (3), and performing the same calculations as in the formula (4) and the formula (5), the following formula (9) can be obtained.

Figure TW201806305AD00009
Figure TW201806305AD00009

式(9)中,在q軸方向的高頻電流iqh的大小中含有位置誤差θ err。因此,從式(9)可知:以讓在q軸方向的高頻電流iqh的大小為零之方式調整了推測位置θ 0之後,會產生位置誤差θ err份量的誤差。以上為與旋轉電機1發生磁飽和時位置推測手段5所輸出的推測位置θ 0有關之說明。 In the equation (9), the position error θ err is included in the magnitude of the high-frequency current iqh in the q-axis direction. Therefore, it is understood from the equation (9) that the error of the position error θ err is generated after the estimated position θ 0 is adjusted such that the magnitude of the high-frequency current iqh in the q-axis direction is zero. The above is a description of the estimated position θ 0 outputted by the position estimating means 5 when the rotary electric machine 1 is magnetically saturated.

接著,針對修正量輸出手段6的動作進行說明。修正量輸出手段6係輸出用來修正前述的旋轉電機1磁飽和時產生的位置誤差θ err之值,亦即位置誤差修正量。修正旋轉電機1磁飽和時產生的位置誤差θ err之方法,有前述的專利文獻3中揭示之以由於如下之式(10)所表示的位置誤差θ err而產生之在q軸方向的高頻電流iqh的大小(在以下的說明中,將此稱為位置誤差修正量)|iqh_ref|作為控制標的而進行比例積分控制之方法。 Next, the operation of the correction amount output means 6 will be described. The correction amount output means 6 outputs a value for correcting the position error θ err generated when the above-described rotary electric machine 1 is magnetically saturated, that is, the position error correction amount. The method of correcting the position error θ err generated when the rotary electric machine 1 is magnetically saturated has the high frequency in the q-axis direction which is generated by the position error θ err expressed by the following formula (10) as disclosed in the above Patent Document 3. The magnitude of the current iqh (this is referred to as a position error correction amount in the following description)|iqh_ref| is a method of performing proportional-integral control as a control target.

Figure TW201806305AD00010
Figure TW201806305AD00010

還可考慮採用別的方法,例如以讓式(9)中之在q軸方向的高頻電流iqh的大小為零之方式演算出推測位置θ 0之後,將推測位置θ 0減掉位置誤差θ err之方法等。採用以上所述的方法,在原理上可減小或消除旋 轉電機1磁飽和時的位置誤差。 It is also conceivable to adopt another method. For example, after calculating the estimated position θ 0 such that the magnitude of the high-frequency current iqh in the q-axis direction in the equation (9) is zero, the estimated position θ 0 is subtracted from the position error θ. Err method, etc. Using the method described above, it is possible to reduce or eliminate the rotation in principle. Position error when the motor 1 is magnetically saturated.

然而,位置誤差θ err之值或位置誤差修正量|iqh_ref|之值,會隨著旋轉電機1係成為什麼樣的磁飽和而變化。旋轉電機1的磁飽和的狀態會隨著旋轉電機1的構造之不同而不同,所以位置誤差θ err或位置誤差修正量iqh_ref,係每個旋轉電機都不同之值。而且,要用數學式來表現旋轉電機1係成為什麼樣的磁飽和很困難,所以要修正位置誤差θ err,就必須就每個旋轉電機事先量測及準備修正位置誤差θ err或位置誤差修正量|iqh_ref|。此外,位置誤差θ err或位置誤差修正量|iqh_ref|還有隨著旋轉電機電流,尤其是有助於轉矩之電流成分(以下,將此稱為轉矩電流)而變化之特徵。 However, the value of the position error θ err or the value of the position error correction amount |iqh_ref| changes depending on what magnetic saturation the rotating electrical machine 1 becomes. The state of magnetic saturation of the rotary electric machine 1 varies depending on the configuration of the rotary electric machine 1, so the position error θ err or the position error correction amount iqh_ref is a value different for each rotary electric machine. Moreover, it is difficult to express the magnetic saturation of the rotating electric machine 1 by mathematical expression. Therefore, to correct the position error θ err, it is necessary to measure and prepare the corrected position error θ err or position error correction for each rotating electric machine. Quantity | iqh_ref|. Further, the position error θ err or the position error correction amount |iqh_ref| is also characterized by a change in the current of the rotating machine, in particular, a current component contributing to the torque (hereinafter referred to as a torque current).

因此,修正量輸出手段6要事先準備位置誤差θ err或位置誤差修正量|iqh_ref|並將之記憶於記憶體(memery)中作為旋轉電機電流或轉矩電流的函數,並依據從外部輸入之旋轉電機電流、或轉矩電流來取出相對應的位置誤差θ err或位置誤差修正量|iqh_ref|作為誤差修正量c將之輸出至位置推測手段5。 Therefore, the correction amount output means 6 prepares the position error θ err or the position error correction amount |iqh_ref| in advance and memorizes it in the memory (memery) as a function of the rotating machine current or the torque current, and inputs it from the outside. The corresponding motor position current or torque current is taken out to extract the corresponding position error θ err or the position error correction amount |iqh_ref| as the error correction amount c and output to the position estimating means 5.

接著,具體說明修正量輸出手段6中記憶的位置誤差θ err或位置誤差修正量|iqh_ref|之值、及從修正量輸出手段6輸出的誤差修正量c的設定方法。第4圖係用來說明本發明的實施形態1之旋轉電機的控制裝置的動作之說明圖,其中顯示相對於轉矩電流之位置誤差修正量|iqh_ref|的實測波形的一例,橫軸為轉矩電流,縱軸為位置 誤差修正量|iqh_ref|。第5圖係用來說明本發明的實施形態1之旋轉電機的控制裝置的動作之說明圖,其中顯示相對於轉矩電流之修正量基準值的一例,橫軸為轉矩電流,縱軸為修正量基準值。 Next, a method of setting the position error θ err or the position error correction amount |iqh_ref| stored in the correction amount output means 6 and the error correction amount c outputted from the correction amount output means 6 will be specifically described. FIG. 4 is an explanatory view for explaining an operation of a control device for a rotating electrical machine according to Embodiment 1 of the present invention, in which an example of a measured waveform of a position error correction amount |iqh_ref| with respect to a torque current is displayed, and the horizontal axis is a rotation. Moment current, vertical axis is position Error correction amount |iqh_ref|. FIG. 5 is an explanatory view for explaining an operation of a control device for a rotating electrical machine according to Embodiment 1 of the present invention, in which an example of a correction amount reference value with respect to a torque current is displayed, wherein the horizontal axis represents a torque current and the vertical axis represents Correction reference value.

修正量輸出手段6中,使根據第4圖所示的實測波形而如例如第5圖所示與等間隔的不同的轉矩電流的值對應之位置誤差修正量|iqh_ref|之值(第5圖中○符號處的值)記憶於記憶體中,且以利用線性插值求出所記憶的位置誤差修正量iqh_ref的兩個鄰接的值之間的值(第5圖中鄰接的○符號與○符號之間的值)之方式,預先設定有位置誤差修正量之值。此處,將該設定的位置誤差修正量iqh_ref之值稱為誤差修正量基準值c0。 In the correction amount output means 6, the value of the position error correction amount |iqh_ref| corresponding to the value of the torque current different from each other as shown in FIG. 5, for example, as shown in FIG. In the figure, the value at the symbol ○ is stored in the memory, and the value between two adjacent values of the stored position error correction amount iqh_ref is obtained by linear interpolation (the adjacent ○ symbol and ○ in Fig. 5) The value of the position error correction amount is set in advance in the manner of the value between the symbols. Here, the value of the set position error correction amount iqh_ref is referred to as an error correction amount reference value c0.

要輸出至位置推測手段5之誤差修正量c,係由修正量輸出手段6從記憶體讀出與從控制手段3的外部輸進來的旋轉電機電流,亦即轉矩電流對應之誤差修正量基準值c0,並作為誤差修正量c而予以輸出。此外,在前述的說明中,說明的雖然是將位置誤差修正量|iqh_ref|設定作為誤差修正量基準值c0之例,但在將位置誤差θ err設定作為修正量基準值之情況,也可進行與前述一樣之設定。以上即為修正量輸出手段6的動作。 The error correction amount c to be output to the position estimation means 5 is read by the correction amount output means 6 from the memory and the rotation motor current input from the outside of the control means 3, that is, the error correction amount reference corresponding to the torque current. The value c0 is output as the error correction amount c. In the above description, the position error correction amount |iqh_ref| is set as the error correction amount reference value c0. However, the position error θ err may be set as the correction amount reference value. The same settings as before. The above is the operation of the correction amount output means 6.

要設定至修正量輸出手段6之修正量基準值,必須根據如第4圖所示之利用實機而測定的位置誤差修正量|iqh_ref|之值而設定,以往係準備負載裝置,然後以人力進行實測,再根據實測值而以人力計算出位置誤差修 正量|iqh_ref|並將之設定至修正量輸出手段6。本發明的實施形態1則是不使用負載裝置且不用人力而自動地演算出修正量基準值,且實現此目的的係以控制手段3中的第一電壓指令產生部34及第二電壓指令產生部35、以及修正量基準值演算手段7為主體之構成。 The correction amount reference value to be set to the correction amount output means 6 must be set based on the value of the position error correction amount |iqh_ref| measured by the actual machine as shown in Fig. 4, and the load device is prepared in the related art. Perform the actual measurement, and then calculate the position error repair by manpower based on the measured value. The positive |iqh_ref| is set to the correction amount output means 6. According to the first embodiment of the present invention, the correction amount reference value is automatically calculated without using a load device and without using a human power, and the first voltage command generating portion 34 and the second voltage command are generated by the control means 3 in order to achieve the object. The unit 35 and the correction amount reference value calculation means 7 are mainly configured.

接著,說明第一電壓指令產生部34、第二電壓指令產生部35、修正量基準值演算手段7的詳細內容。首先,說明得到修正量基準值之原理,然後說明第一電壓指令產生部34、第二電壓指令產生部35、及修正量基準值演算手段7的動作。 Next, the details of the first voltage command generating unit 34, the second voltage command generating unit 35, and the correction amount reference value calculating means 7 will be described. First, the principle of obtaining the correction amount reference value will be described, and then the operations of the first voltage command generating unit 34, the second voltage command generating unit 35, and the correction amount reference value calculating means 7 will be described.

具有突極性之旋轉電機1的電感利薩如圖形,係如前述,在旋轉電機1未發生磁飽和時如第2B圖所示,在旋轉電機1發生磁飽和時如第3B圖所示。此處,若將旋轉電機1的電感的電阻成分予以忽略的話,則在施加振幅一定的電壓至旋轉電機1之情況,電流利薩如圖形在未發生磁飽和時會如第6圖所示。亦即,第6圖係用來說明本發明的實施形態1之旋轉電機的控制裝置的動作之說明圖,其中顯示施加振幅一定的電壓至旋轉電機1之情況且旋轉電機1未發生磁飽和時的電流利薩如圖形。第6圖中,Imax表示電流利薩如圖形的長軸方向的大小,Imin表示電流利薩如圖形的短軸方向的大小。 The inductance Lissajous figure of the rotary electric machine 1 having the polarity is as shown in the above, and when the rotary electric machine 1 is not magnetically saturated, as shown in FIG. 2B, when the rotary electric machine 1 is magnetically saturated, as shown in FIG. 3B. Here, if the resistance component of the inductance of the rotary electric machine 1 is ignored, when a voltage having a constant amplitude is applied to the rotary electric machine 1, the current Lissajous figure will be as shown in Fig. 6 when magnetic saturation does not occur. In other words, Fig. 6 is an explanatory view for explaining the operation of the control device for the rotary electric machine according to the first embodiment of the present invention, in which the voltage of a constant amplitude is applied to the rotary electric machine 1 and the rotary electric machine 1 is not magnetically saturated. The current Lisa is like a graphic. In Fig. 6, Imax represents the magnitude of the current Lissajous figure in the long-axis direction, and Imin represents the magnitude of the current Lissajous figure in the short-axis direction.

另一方面,若將旋轉電機1的電感的電阻成分予以忽略的話,則在施加振幅一定的電壓至旋轉電機1之情況,電流利薩如圖形在發生磁飽和時則是如第7圖所 示。亦即,第7圖係用來說明本發明的實施形態1之旋轉電機的控制裝置的動作之說明圖,其中顯示施加振幅一定的電壓至旋轉電機1之情況且旋轉電機1發生磁飽和時的電流利薩如圖形。旋轉電機1發生磁飽和時的電流利薩如圖形係如第7圖所示,為將電感利薩如圖形的橢圓的短軸與長軸互換後的圖形。 On the other hand, if the resistance component of the inductance of the rotary electric machine 1 is ignored, when a voltage having a constant amplitude is applied to the rotary electric machine 1, the current Lissajous figure is magnetically saturated as shown in Fig. 7. Show. In other words, Fig. 7 is an explanatory view for explaining the operation of the control device for the rotary electric machine according to the first embodiment of the present invention, and shows a case where a voltage having a constant amplitude is applied to the rotary electric machine 1 and the rotary electric machine 1 is magnetically saturated. The current Lisa is like a graphic. The current Lissajous figure when the rotating electric machine 1 is magnetically saturated is shown in Fig. 7, which is a figure in which the short axis of the ellipse of the inductor Lissajous figure is interchanged with the long axis.

要將旋轉電機1的阻抗的電阻成分忽略,可考慮施加高頻電壓、或脈衝電壓至旋轉電機1。例如,施加高頻電壓至旋轉電機1之情況,只要施加以下的式(11)成立之角頻率的高頻電壓至旋轉電機1,就可使旋轉電機1的阻抗之中的電感成分為支配性的而可將電阻成分忽略掉。此時,流至旋轉電機1之電流係如以下的式(12)所示。 To ignore the resistance component of the impedance of the rotary electric machine 1, it is conceivable to apply a high-frequency voltage or a pulse voltage to the rotary electric machine 1. For example, when a high-frequency voltage is applied to the rotary electric machine 1, as long as the high-frequency voltage of the angular frequency established by the following formula (11) is applied to the rotary electric machine 1, the inductance component among the impedances of the rotary electric machine 1 can be made dominant. The resistance component can be ignored. At this time, the current flowing to the rotary electric machine 1 is as shown in the following formula (12).

R《ω h L m ...式(11) R h L m . . . Formula (11)

(Lm:旋轉電機的電感) (L m : inductance of the rotating electrical machine)

Figure TW201806305AD00011
Figure TW201806305AD00011

在施加一定振幅Vdc的脈衝電壓之情況,施加脈衝電壓時之流至旋轉電壓1之電流可用以下的式(13)加以表示。 In the case where a pulse voltage of a certain amplitude Vdc is applied, the current flowing to the rotating voltage 1 when the pulse voltage is applied can be expressed by the following formula (13).

Figure TW201806305AD00012
Figure TW201806305AD00012

第8A及8B圖係用來說明本發明的實施形態1之旋轉電機的控制裝置的動作之說明圖,其中以示意圖的方式顯示施加脈衝電壓時的電壓波形及電流波形。從 式(13)可知流至旋轉電機1之電流最終會成為Vdc/R,但如第8A圖所示,以Vdc/R表示之電流值一般而言係為比旋轉電機1的額定電流Im大非常多之值。此處,在旋轉電機的控制裝置中,Vdc為電壓施加手段4的直流母線變壓,R為旋轉電機1的電樞繞組的電阻。 8A and 8B are explanatory views for explaining the operation of the control device for the rotary electric machine according to the first embodiment of the present invention, and the voltage waveform and the current waveform when the pulse voltage is applied are schematically shown. From Equation (13) shows that the current flowing to the rotary electric machine 1 eventually becomes Vdc/R, but as shown in Fig. 8A, the current value expressed by Vdc/R is generally larger than the rated current Im of the rotary electric machine 1. More value. Here, in the control device for the rotary electric machine, Vdc is the DC bus voltage of the voltage application means 4, and R is the resistance of the armature winding of the rotary electric machine 1.

因此,在只考慮旋轉電機1的額定電流Im附近的電流之情況,係如第8B圖所示,流至旋轉電機1之電流可視為係與時間成正比之直線,且該直線的斜率係為對式(13)進行時間微分然後將t=0代入所得到之以下的式(14)。因此,流至旋轉電機1之電流係為以下的式(15),施加脈衝電壓時流至旋轉電機1之電流可忽略旋轉電機1的阻抗之中的電阻成份的影響而得到。 Therefore, in the case where only the current in the vicinity of the rated current Im of the rotary electric machine 1 is considered, as shown in Fig. 8B, the current flowing to the rotary electric machine 1 can be regarded as a straight line proportional to time, and the slope of the straight line is The equation (13) is time-differentiated and then t=0 is substituted into the obtained equation (14) below. Therefore, the current flowing to the rotary electric machine 1 is expressed by the following formula (15), and the current flowing to the rotary electric machine 1 when the pulse voltage is applied can be obtained by neglecting the influence of the resistance component among the impedances of the rotary electric machine 1.

Figure TW201806305AD00013
Figure TW201806305AD00013

Figure TW201806305AD00014
Figure TW201806305AD00014

從式(12)及式(15)可知:在施加可忽視旋轉電機1的阻抗之中的電阻成分之電壓給旋轉電機1之情況,電流的大小與旋轉電機1的電感Lm為倒數之關係,所以得到的電流利薩如圖形會為電感利薩如圖形的短軸與長軸互換後的圖形。 From the equations (12) and (15), it is understood that when the voltage of the resistance component among the impedances of the rotary electric machine 1 is applied to the rotary electric machine 1, the magnitude of the current is inversely related to the inductance Lm of the rotary electric machine 1, So the resulting current Lissajous figure will be the shape of the inductor Lissajous if the short and long axes of the figure are interchanged.

因為電流利薩如圖形只是將電感利薩如圖 形的短軸與長軸互換而成者,所以只要旋轉電機1的磁飽和的程度相同,第3B圖所示的電感利薩如圖形的橢圓的傾斜角、及第7圖所示的電流利薩如圖形的橢圓的傾斜角就會相同,位置誤差θ err就會相同。因此,從電流利薩如圖形來計算其橢圓的傾斜角,就可求出位置誤差θ err。位置誤差修正量|iqh_ref|則可利用前述的式(10)而得到。 Because the current Lissajous figure just puts the inductor Lisa as shown The short axis of the shape is interchanged with the long axis, so as long as the magnetic saturation of the rotating electrical machine 1 is the same, the inclination angle of the ellipse of the inductor Lissajous figure shown in Fig. 3B and the current shown in Fig. 7 The inclination angle of the ellipse of the Saru graphic will be the same, and the position error θ err will be the same. Therefore, the position error θ err can be obtained by calculating the inclination angle of the ellipse from the current Lissajous figure. The position error correction amount |iqh_ref| can be obtained by the above equation (10).

此處,式(10)中的L及1係如式(2)中記載的,可用Lmax及Lmin來加以表現,所以式(10)可變形成以下的式(16)。 Here, L and 1 in the formula (10) can be expressed by Lmax and Lmin as described in the formula (2), and therefore the formula (10) can be modified to form the following formula (16).

Figure TW201806305AD00015
Figure TW201806305AD00015

又,在施加脈衝電壓之情況,電流與電感係為式(15)之關係,所以電感的最大值Lmax及Lmin可利用電流利薩如圖形的長軸方向的大小Imax及短軸方向的大小Imin而套用以下的式(17)來求出。 Further, when the pulse voltage is applied, the current and the inductance are in the relationship of the equation (15). Therefore, the maximum values Lmax and Lmin of the inductance can be obtained by using the magnitude Imax of the long-axis direction of the current Lissajous figure and the size Imin of the short-axis direction. The formula (17) is used to find out.

Figure TW201806305AD00016
Figure TW201806305AD00016

又,將式(17)代入式(16)就成為以下的式(18),就可從脈衝電壓的振幅Vdc及脈衝電壓施加時間t、以及相當於位置誤差θ err之電流利薩如圖形的橢圓的傾斜角、電流利薩如圖形的短軸方向的大小Imin、長軸方向 的大小Imax來計算出位置誤差修正量|iqh_ref|。 Further, when the equation (17) is substituted into the equation (16), the following equation (18) is obtained, and the amplitude Vdc of the pulse voltage and the pulse voltage application time t, and the current corresponding to the position error θ err can be expressed as a graph. The inclination angle of the ellipse, the magnitude of the current Lissajous figure in the short axis direction of the figure, Imin, and the direction of the long axis The size Imax is used to calculate the position error correction amount |iqh_ref|.

Figure TW201806305AD00017
Figure TW201806305AD00017

式(18)中的Vh及ω h係為前述的高頻電壓指令產生部32輸出的高頻電壓的振幅及角頻率,為可任意設定之值,所以兩者皆為已知的值。 In the equation (18), Vh and ωh are the amplitudes and angular frequencies of the high-frequency voltage outputted by the high-frequency voltage command generating unit 32, and are arbitrarily set values. Therefore, both of them are known values.

式(17)、式(18)係針對從在施加脈衝電壓的情況得到之電流利薩如圖形來演算出位置誤差修正量之方法而導出的數學式,同樣地,在施加的是高頻電壓的情況,則可利用前述的式(12)之關係來演算出位置誤差修正量。接著,為了求出如第5圖所示的○部分之與希望的複數個轉矩電流相對的位置誤差θ err或位置誤差修正量iqh_ref,藉由取得在各轉矩電流流至旋轉電機1之狀態的電流利薩如圖形,來得到相對於各轉矩電流之電流利薩如圖形。然後,根據得到的電流利薩如圖形來演算出相對於各轉矩電流之位置誤差θ err或位置誤差修正量iqh_ref,就可得到如第5圖所示之修正量基準值。 Equations (17) and (18) are mathematical expressions derived from a method of calculating a position error correction amount from a current Lissajous figure obtained by applying a pulse voltage. Similarly, a high frequency voltage is applied. In the case of the above equation (12), the position error correction amount can be calculated. Next, in order to obtain the position error θ err or the position error correction amount iqh_ref corresponding to the desired plurality of torque currents in the ○ portion shown in FIG. 5, the torque current is supplied to the rotary electric machine 1 The state of current Lisa is like a graph to get a current Lissajous figure relative to each torque current. Then, based on the obtained current Lissajous figure, the position error θ err or the position error correction amount iqh_ref with respect to each torque current is calculated, and the correction amount reference value as shown in Fig. 5 can be obtained.

又,為了從電流利薩如圖形求出相當於位置誤差θ err之電流利薩如圖形的橢圓的傾斜角、電流利薩如圖形的長軸方向的大小Imax、電流利薩如圖形的短軸方向的大小Imin,可採用以應用最小平方法來使電流利薩如圖形與以下的式(19)之橢圓方程式的基本形一致之方式進行擬合(fitting)之周知的方法來求出。 Further, in order to obtain the current angle of the ellipse from the current Lissajous figure, the angle of the ellipse of the current Lissajous figure, the magnitude of the current Lissajous figure in the long-axis direction, and the short axis of the current Lissajous figure. The size of the direction Imin can be obtained by a well-known method of fitting the current Lissajous figure to the basic shape of the elliptic equation of the following formula (19) by applying the least square method.

Figure TW201806305AD00018
Figure TW201806305AD00018

式(19)係在xy平面描繪橢圓之情況,畫成圖的話係由第9圖所示。亦即,第9圖係用來說明本發明的實施形態1之旋轉電機的控制裝置的動作之說明圖,顯示的是橢圓方程式的基本形。 Equation (19) is an ellipse in the xy plane, and is drawn as shown in Fig. 9. In other words, Fig. 9 is an explanatory view for explaining the operation of the control device for the rotating electrical machine according to the first embodiment of the present invention, and shows the basic form of the elliptic equation.

以上,針對從電流利薩如圖形來求出位置誤差θ err或位置誤差修正量|iqh_ref|之原理進行了說明。接著,針對為了得到電流利薩如圖形所需的動作進行說明。為了求出與前述的各轉矩電流對應之電流利薩如圖形,必須要有用來使轉矩電流流至旋轉電機1之電壓指令、及用來得到電流利薩如圖形之電壓指令。在本實施形態1中,用來使轉矩電流流動之電壓指令,係作為第一電壓指令產生部34所產生的第一電壓指令之d軸上的第一電壓指令vd1及q軸上的第一電壓指令vq1,用來得到電流利薩如圖形之電壓指令,係作為第二電壓指令產生部35所產生的第二電壓指令之d軸上的第二電壓指令vd2及q軸上的第二電壓指令vq2。 The principle of obtaining the position error θ err or the position error correction amount |iqh_ref| from the current Lissajous figure has been described above. Next, an explanation will be given of an operation required to obtain a current Lissajous figure. In order to obtain a current Lissajous figure corresponding to each of the aforementioned torque currents, a voltage command for flowing a torque current to the rotary electric machine 1 and a voltage command for obtaining a current Lissajous figure are necessary. In the first embodiment, the voltage command for causing the torque current to flow is the first voltage command vd1 on the d-axis and the q-axis on the d-axis of the first voltage command generated by the first voltage command generating unit 34. a voltage command vq1 for obtaining a voltage command of the current Lissajous figure, the second voltage command vd2 on the d-axis and the second on the q-axis of the second voltage command generated by the second voltage command generating unit 35 Voltage command vq2.

首先,針對第一電壓指令產生部34的動作進行說明。在旋轉電機1為單體,亦即無負載狀態之情況,使轉矩電流持續流動的話旋轉電機1會邊加速邊旋轉。特 別是在旋轉電機1係組裝於某些機械裝置內且旋轉電機1的旋轉範圍有限制之情況,若旋轉電機1超出限制的旋轉範圍而旋轉,就會有使前述機械裝置破損之虞。因此,不可使轉矩電流一直流動,轉矩電流必須儘可能的短時間。因而,第一電壓指令產生部34係產生及輸出讓任意的轉矩電流流至旋轉電機1之如後述的短時間的脈衝狀的電壓指令。 First, the operation of the first voltage command generating unit 34 will be described. When the rotary electric machine 1 is a single unit, that is, in a no-load state, the rotary electric machine 1 rotates while being accelerated while the torque current continues to flow. special In the case where the rotary electric machine 1 is incorporated in some mechanical device and the range of rotation of the rotary electric machine 1 is limited, if the rotary electric machine 1 rotates beyond the limited rotation range, the mechanical device may be damaged. Therefore, the torque current must not flow all the time, and the torque current must be as short as possible. Therefore, the first voltage command generating unit 34 generates and outputs a short-time pulse-like voltage command that causes an arbitrary torque current to flow to the rotary electric machine 1 as will be described later.

第10、11圖係用來說明本發明的實施形態1之旋轉電機的控制裝置的動作之說明圖。第10圖顯示轉矩電流Itrq及其d軸成分及q軸成分。第11圖顯示d軸上的第一電壓指令vd1及q軸上的第一電壓指令vq1。如第10圖所示,在例如想要使轉矩電流指令Itrq在與d軸成角度θ trq之方向流動之情況,轉矩電流指令Itrq的d軸成分Id_trq及轉矩電流指令Itrq的q軸成分Iq_trq係為利用以下的式(20)而求出之值。 10 and 11 are explanatory views for explaining the operation of the control device for the rotary electric machine according to the first embodiment of the present invention. Fig. 10 shows the torque current Itrq and its d-axis component and q-axis component. Figure 11 shows the first voltage command vd1 on the d-axis and the first voltage command vq1 on the q-axis. As shown in Fig. 10, for example, when the torque current command Itrq is to flow in the direction of the angle θtrq from the d-axis, the d-axis component Id_trq of the torque current command Itrq and the q-axis of the torque current command Itrq The component Iq_trq is a value obtained by the following formula (20).

I d_trq =I trq cos θ trq I q_trq =I trq sin θ trq ...式(20) I d_trq = I trq cos θ trq I q_trq = I trq sin θ trq . . . Formula (20)

用來得到該轉矩電流指令Itrq的d軸成分Id_trq之d軸上的第一電壓指令vd1係如第11圖所示,係振幅為Vdq且脈衝施加時間為td1之脈衝狀的電壓指令。用來得到轉矩電流指令Itrq的q軸成分Iq_trq之q軸上的第一電壓指令vq1係如第11圖所示,係振幅為Vdq且脈衝施加時間為tq1之脈衝狀的電壓指令。 The first voltage command vd1 on the d-axis for obtaining the d-axis component Id_trq of the torque current command Itrq is a pulse-like voltage command having an amplitude of Vdq and a pulse application time of td1 as shown in FIG. The first voltage command vq1 on the q-axis for obtaining the q-axis component Iq_trq of the torque current command Itrq is a pulse-like voltage command having an amplitude of Vdq and a pulse application time of tq1 as shown in FIG.

第12圖係用來說明本發明的實施形態1之 旋轉電機的控制裝置的動作之說明圖,顯示的是轉矩電流指令Itrq只由q軸成分所構成之情況。亦即,如第12圖所示,在想要使任意的值的轉矩電流指令Itrq在q軸方向流動之情況,式(20)中的角度θ trq係為90°,轉矩電流指令Itrq的d軸成分Id_trq係為0,轉矩電流指令Itrq的q軸成分Iq_trq係等於轉矩電流指令Itrq。因此,供給的是如第13圖所示之d軸上的第一電壓指令vd1為0,q軸上的第一電壓指令vq1為振幅Vdq且施加時間為tq1之脈衝狀的電壓指令。 Figure 12 is a diagram for explaining the first embodiment of the present invention. An explanatory diagram of the operation of the control device for the rotating electrical machine shows a case where the torque current command Itrq is composed only of the q-axis component. That is, as shown in Fig. 12, when it is desired to cause an arbitrary value of the torque current command Itrq to flow in the q-axis direction, the angle θ trq in the equation (20) is 90°, and the torque current command Itrq The d-axis component Id_trq is 0, and the q-axis component Iq_trq of the torque current command Itrq is equal to the torque current command Itrq. Therefore, the supply of the first voltage command vd1 on the d-axis as shown in Fig. 13 is 0, and the first voltage command vq1 on the q-axis is the amplitude Vdq and the pulse-like voltage command of the application time tq1 is applied.

d軸上的第一電壓指令vd1及q軸上的第一電壓指令vq1的振幅Vdq如前述,係為依電壓施加手段4的直流母線電壓而定之d-q軸上的最大電壓振幅值,並非可以任意設定之值。因此,要使希望的電流在d軸及q軸方向流動,係藉由將脈衝施加時間td1,tq1調整為任意的值而實現。脈衝施加時間td1,tq1係如表示脈衝施加時間與流至旋轉電機1之電流的關係之前述式(15)所示,另外,想要使之在d軸流動之希望的電流,係根據轉矩電流指令Itrq的d軸成分Id_trq而決定,想要使之在q軸流動之希望的電流,係由轉矩電流指令Itrq的q軸成分Iq_trq所決定。因此,可使用d軸電感Ld、q軸電感Lq而根據以下所示的式(21)來設定脈衝施加時間td1,tq1。 The first voltage command vd1 on the d-axis and the amplitude Vdq of the first voltage command vq1 on the q-axis are the maximum voltage amplitude values on the dq axis depending on the DC bus voltage of the voltage application means 4, as described above, and may not be arbitrary. Set the value. Therefore, it is realized by adjusting the pulse application time td1, tq1 to an arbitrary value so that the desired current flows in the d-axis and q-axis directions. The pulse application time td1, tq1 is expressed by the above equation (15) indicating the relationship between the pulse application time and the current flowing to the rotary electric machine 1, and the desired current to be caused to flow in the d-axis is based on the torque. The d-axis component Id_trq of the current command Itrq is determined, and the desired current to be caused to flow in the q-axis is determined by the q-axis component Iq_trq of the torque current command Itrq. Therefore, the pulse application time td1, tq1 can be set according to the following equation (21) using the d-axis inductance Ld and the q-axis inductance Lq.

Figure TW201806305AD00019
Figure TW201806305AD00019

此處,將由於施加依作為第一電壓指令之d軸上的第一電壓指令vd1及q軸上的第一電壓指令vq1而定之電壓至旋轉電機1而流動的電流的峰值稱為第一旋轉電機電流。此第一旋轉電機電流係記憶在修正量基準值演算手段7中。此第一旋轉電機電流係實際流至旋轉電機1之轉矩電流。記憶第一旋轉電機電流之目的,係為了得到流至旋轉電機1之正確的轉矩電流。作為第一電壓指令之d軸上的第一電壓指令vd1及q軸上的第一電壓指令vq1,係設定成讓任意的轉矩電流指令Itrq流動,但在前述式(21)中的d軸電感Ld、q軸電感Lq、d軸上的第一電壓指令vd1及q軸上的第一電壓指令vq1有誤差之情況,會有實際流至旋轉電機1之轉矩電流與轉矩電流指令Itrq不一致之情形。因此,本實施形態構成為將第一旋轉電機電流記憶起來而可得到更正確的轉矩電流之形態。 Here, the peak value of the current flowing to the rotary electric machine 1 due to the application of the first voltage command vd1 on the d-axis as the first voltage command and the first voltage command vq1 on the q-axis is referred to as the first rotation. Motor current. This first rotating electrical machine current is stored in the correction amount reference value calculating means 7. This first rotating electrical machine current actually flows to the torque current of the rotating electrical machine 1. The purpose of memorizing the first rotating electrical machine current is to obtain the correct torque current flowing to the rotating electrical machine 1. The first voltage command vd1 on the d-axis and the first voltage command vq1 on the q-axis as the first voltage command are set such that an arbitrary torque current command Itrq flows, but the d-axis in the above equation (21) When the inductance Ld, the q-axis inductance Lq, the first voltage command vd1 on the d-axis, and the first voltage command vq1 on the q-axis have errors, there is a torque current and a torque current command Itrq actually flowing to the rotary electric machine 1. Inconsistent situation. Therefore, in this embodiment, the first rotating electrical machine current is memorized, and a more accurate torque current can be obtained.

接著,針對第二電壓指令產生部35的動作進行說明。從第二電壓指令產生部35輸出之第二電壓指令,係用來得到電流利薩如圖形之電壓指令,係振幅相同且用來在旋轉電機1的n個方向施加電壓之電壓指令。此處,可設定為n係2以上的自然數,但在要描繪出電流利薩如圖形之情況,最好在實質上使n為4以上的自然數。 再者,施加電壓的方向可為任何方向,例如可為相對於旋轉電機1的電氣角一周以360°/n之等間隔分佈之各個方向。 Next, the operation of the second voltage command generating unit 35 will be described. The second voltage command outputted from the second voltage command generating unit 35 is used to obtain a voltage command of the current Lissajous figure, and is a voltage command having the same amplitude and used to apply a voltage in the n directions of the rotary electric machine 1. Here, a natural number of n-series or more may be set. However, in the case where a current Lissajous figure is to be drawn, it is preferable to make n a natural number of 4 or more. Furthermore, the direction in which the voltage is applied may be any direction, and may be, for example, various directions distributed at equal intervals of 360°/n with respect to the electrical angle of the rotary electric machine 1.

第14圖係用來說明本發明的實施形態1之旋轉電機的控制裝置的動作之說明圖,顯示的是n=6,相對於旋轉電機1的電氣角一周以360°/6,亦即60°之間隔施加第二電壓指令之情況。因為在同一方向施加第二電壓指令無意義,所以n個方向最好為都不相同之方向。本實施形態1中,係使用n=6之情況為例進行說明。輸出n個第二電壓指令之順序可為任何順序,在本實施形態1中係構成為按第14圖所示之<1>、<2>、<3>、<4>、<5>、<6>之順序依序輸出之形態。 Fig. 14 is an explanatory view for explaining the operation of the control device for the rotary electric machine according to the first embodiment of the present invention, showing that n = 6 and 360 degrees / 6 with respect to the electrical angle of the rotary electric machine 1, that is, 60 The case where the second voltage command is applied at intervals of °. Since the application of the second voltage command in the same direction is meaningless, the n directions are preferably different directions. In the first embodiment, a case where n=6 is used will be described as an example. The order of outputting the n second voltage commands may be any order, and in the first embodiment, it is configured to be <1>, <2>, <3>, <4>, <5> as shown in FIG. The order of <6> is sequentially outputted.

作為第二電壓指令之d軸上的第二電壓指令vd2及q軸上的第二電壓指令vq2的振幅可任意設定,但最好將第二電壓指令的振幅設定為:可讓大小與驅使旋轉電機1旋轉時,按照高頻電壓指令產生部32所輸出之作為高頻電壓指令之d軸上的高頻電壓指令vdh及q軸上的高頻電壓指令vqh而流至旋轉電機1之高頻電流相同,且使不會讓旋轉電機1磁飽和之電流流動者。另外,n個方向的第二電壓指令的振幅都相同之情況,旋轉電機1的磁飽和程度也比較會相同,而且演算也會比較簡單,所以最好使n個方向的第二電壓指令的振幅都相同。 The amplitude of the second voltage command vd2 on the d-axis and the second voltage command vq2 on the q-axis as the second voltage command can be arbitrarily set, but it is preferable to set the amplitude of the second voltage command to: size and drive rotation When the motor 1 rotates, the high frequency voltage command vdh on the d-axis and the high-frequency voltage command vqh on the q-axis which are the high-frequency voltage command output from the high-frequency voltage command generating unit 32 flow to the high frequency of the rotary electric machine 1 . The current is the same, and the current that does not magnetically saturate the rotating electrical machine 1 flows. In addition, when the amplitudes of the second voltage commands in the n directions are the same, the degree of magnetic saturation of the rotary electric machine 1 is also the same, and the calculation is relatively simple, so it is preferable to make the amplitude of the second voltage command in the n directions. All the same.

但是,作為第二電壓指令之d軸上的第二電壓指令vd2及q軸上的第二電壓指令vq2若輸出的是脈衝電壓,則d軸上的第二電壓指令vd2及q軸上的第二電壓 指令vq2的振幅係如前述為由電壓施加手段4的直流母線電壓所決定之d-q軸上的最大電壓振幅值,所以實際上必須根據前述的式(21)來調整作為d軸上的第二電壓指令vd2及q軸上的第二電壓指令vq2之電壓脈衝的施加時間。 However, if the second voltage command vd2 on the d-axis of the second voltage command and the second voltage command vq2 on the q-axis output a pulse voltage, the second voltage command on the d-axis is the second voltage command vd2 and the q-axis. Two voltage Since the amplitude of the command vq2 is the maximum voltage amplitude value on the dq axis determined by the DC bus voltage of the voltage applying means 4 as described above, it is necessary to actually adjust the second voltage as the d-axis according to the above equation (21). The application time of the voltage pulse of the second voltage command vq2 on the command vd2 and the q-axis.

為了得到相對於轉矩電流指令Itrq之電流利薩如圖形,從電壓施加手段4施加根據第一電壓指令之電壓至旋轉電機1,並在按照第一電壓指令之轉矩電流流至旋轉電機1的期間,輸出第二電壓指令。具體而言,只要在控制手段3輸出第一電壓指令給電壓施加手段4後,立即從控制手段3輸出第二電壓指令至電壓施加手段4即可。 In order to obtain a current Lissajous figure with respect to the torque current command Itrq, a voltage according to the first voltage command is applied from the voltage applying means 4 to the rotating electrical machine 1, and the torque current according to the first voltage command flows to the rotating electrical machine 1 During the period, the second voltage command is output. Specifically, as long as the control means 3 outputs the first voltage command to the voltage applying means 4, the control means 3 outputs the second voltage command to the voltage applying means 4 immediately.

在旋轉電機1並未磁飽和之情況,亦即第一電壓指令為0之情況,係為如第2B圖所示之電感利薩如圖形,所以施加按照第14圖所示的6個第二電壓指令之電壓,第15圖中的○符號的電流就會流至旋轉電機。另外,在第一電壓指令不為0,根據第一電壓指令之電流流至旋轉電機1,旋轉電機1因而磁飽和之狀態,且成為例如前述的第3B圖所示的電感利薩如圖形之情況,施加根據第14圖所示的6個第二電壓指令至旋轉電機1,第16圖中的○符號所表示的電流就會流動。第16圖所示的電流利薩如圖形的中心,係在第一電壓指令所想要使之流動之轉矩電流指令的d成分Id_trq及q成分Iq_trq的附近。只要是使轉矩電流指令的d成分Id_trq為「0」之第一電壓指令,就會為如第17圖所示之以(0,Iq_trq)附近為中心之電流利薩 如圖形。第15至17圖係用來說明本發明的實施形態1之旋轉電機的控制裝置的動作之說明圖。 In the case where the rotary electric machine 1 is not magnetically saturated, that is, when the first voltage command is 0, it is an inductance Lissajous figure as shown in FIG. 2B, so 6 seconds as shown in FIG. 14 are applied. The voltage of the voltage command, the current of the symbol ○ in Fig. 15 flows to the rotating electrical machine. Further, when the first voltage command is not 0, the current according to the first voltage command flows to the rotary electric machine 1, and the rotary electric machine 1 is thus magnetically saturated, and becomes, for example, the inductor Lissajous figure shown in the aforementioned FIG. 3B. In the case where six second voltage commands shown in Fig. 14 are applied to the rotary electric machine 1, the current indicated by the symbol ○ in Fig. 16 flows. The center of the current Lissajous figure shown in Fig. 16 is in the vicinity of the d component Id_trq and the q component Iq_trq of the torque current command that the first voltage command is intended to flow. As long as the first voltage command for the d component Id_trq of the torque current command is "0", it will be the current Lissa, centered around (0, Iq_trq) as shown in Fig. 17. Figure shape. 15 to 17 are explanatory views for explaining the operation of the control device for the rotating electrical machine according to the first embodiment of the present invention.

此處,將按照n個第二電壓指令而得到之如第15至17圖所示之n個旋轉電機電流稱為第二旋轉電機電流。此n個第二旋轉電機電流係記憶於修正量基準值演算手段7中。以上即為第二電壓指令產生部35的動作的說明。 Here, the n rotating machine currents as shown in FIGS. 15 to 17 obtained by the n second voltage commands are referred to as second rotating machine currents. The n second rotating electrical machine current systems are stored in the correction amount reference value calculating means 7. The above is the description of the operation of the second voltage command generating unit 35.

接著,針對修正量基準值演算手段7的動作進行說明。修正量基準值演算手段7係使用所記憶的前述的n個第二旋轉電機電流,如前述,以使之擬合至表示橢圓方程式的基本形之式(19)的方式,計算出第二旋轉電機電流的利薩如圖形的橢圓的傾斜角、橢圓的長軸的長度、短軸的長度,進而計算出位置誤差θ err或位置誤差修正量|iqh_ref|。然後,將另外記憶的相對於前述第一旋轉電機電流之位置誤差θ err或位置誤差修正量|iqh_ref|,亦即相對於實際流至旋轉電機1的轉矩電流之位置誤差θ err或位置誤差修正量|iqh_ref|當作是誤差修正量基準值c0而予以輸出。 Next, the operation of the correction amount reference value calculation means 7 will be described. The correction amount reference value calculation means 7 calculates the second rotating electrical machine by using the stored n second rotating electrical machine currents as described above, so as to fit to the basic equation (19) representing the elliptic equation. The Lisa of the current is the inclination angle of the ellipse of the figure, the length of the major axis of the ellipse, and the length of the minor axis, thereby calculating the position error θ err or the position error correction amount |iqh_ref|. Then, the position error θ err or the position error correction amount |iqh_ref| which is additionally stored with respect to the first rotating electric machine current, that is, the position error θ err or the position error with respect to the torque current actually flowing to the rotary electric machine 1 The correction amount |iqh_ref| is output as the error correction amount reference value c0.

例如,使誤差修正量基準值c0為位置誤差θ err之情況,以屬於周知的技術之最小平方法來擬合至表示橢圓方程式的基本形之式(19)而求出的橢圓的傾斜角係相當於位置誤差θ err,所以從橢圓的傾斜角,將橢圓的長軸與d軸所成的角度設定作為誤差修正量基準值c0。設定的誤差修正量基準值c0,可為橢圓的短軸或長軸的任一 方、與d軸或q軸的任一方所成的角度,並不一定非得要設定成前述之橢圓的長軸與d軸所成的角度。 For example, when the error correction amount reference value c0 is the position error θ err, the inclination angle of the ellipse obtained by fitting to the basic equation (19) representing the elliptic equation by the least square method belonging to the well-known technique is equivalent. Since the position error θ err is set, the angle formed by the major axis of the ellipse and the d-axis is set as the error correction amount reference value c0 from the inclination angle of the ellipse. The set error correction amount reference value c0 can be any of the short or long axis of the ellipse The angle formed by either the square or the d-axis or the q-axis does not necessarily have to be set to the angle formed by the long axis of the ellipse and the d-axis.

使誤差修正量基準值c0為位置誤差修正量|iqh_ref|之情況,係除了使用以屬於周知的技術之最小平方法來擬合至表示橢圓方程式的基本形之式(19)而求出的橢圓的傾斜角之外,也使用橢圓的長軸的長度及短軸的長度而套用式(17)來演算出位置誤差修正量,並將之設定為誤差修正量基準值。 The case where the error correction amount reference value c0 is the position error correction amount |iqh_ref| is obtained by fitting to the ellipse obtained by fitting the formula (19) representing the basic form of the elliptic equation by the least square method belonging to a well-known technique. In addition to the inclination angle, the length of the major axis of the ellipse and the length of the minor axis are used, and the position error correction amount is calculated by the equation (17), and is set as the error correction amount reference value.

接著,針對到得到相對於各轉矩電流之誤差修正量基準值c0為止之流程及時間序列動作進行說明。第18圖係用來說明本發明的實施形態1之旋轉電機的控制裝置的動作之流程圖。第19圖係用來說明本發明的實施形態1之旋轉電機的控制裝置的動作之說明圖,其中顯示控制手段3進行以第18圖的流程圖為根據的動作時之d軸及q軸的電壓指令以及d軸及q軸的電流的時間序列波形的一部分,A係d軸電壓指令的時間序列波形,B係q軸電壓指令的時間序列波形,C係d軸電流的時間序列波形,D係q軸電流的時間序列波形。第18及19圖中,m表示轉矩電流指令Itrq的模式(pattern)的個數,第18圖中m=5。5個轉矩電流指令的詳細內容,在第18圖中係將轉矩電流指令Itrq設為若旋轉電機1的額定電流為0[%]到200[%]時每個為50[%]刻度之5個模式。轉矩電流指令的模式數可為任意個,各轉矩電流指令的間隔亦可自由設定。 Next, the flow and time series operation until the error correction amount reference value c0 for each torque current is obtained will be described. Fig. 18 is a flow chart for explaining the operation of the control device for the rotating electrical machine according to the first embodiment of the present invention. FIG. 19 is an explanatory view for explaining the operation of the control device for the rotary electric machine according to the first embodiment of the present invention, wherein the display control means 3 performs the d-axis and the q-axis at the time of the operation based on the flowchart of FIG. Part of the time series waveform of the voltage command and the d-axis and q-axis current, the time series waveform of the A-line d-axis voltage command, the time series waveform of the B-system q-axis voltage command, and the time series waveform of the C-system d-axis current, D A time series waveform of the q-axis current. In Figures 18 and 19, m represents the number of patterns of the torque current command Itrq, and m = 5 in Fig. 18. The details of the five torque current commands are shown in Fig. 18 The current command Itrq is set to five modes each of which is 50 [%] when the rated current of the rotary electric machine 1 is 0 [%] to 200 [%]. The number of modes of the torque current command can be any number, and the interval of each torque current command can be freely set.

第18圖中,最初係在步驟S1設定m=1。接 著,在步驟S2,設定相對於m=1之轉矩電流指令Itrq(1)。使轉矩電流指令Itrq(1)為旋轉電機1的額定電流的0[%]。在步驟S3,針對設定的轉矩電流指令Itrq(1),演算出作為第一電壓指令之d軸上的第一電壓指令vd1及q軸上的第一電壓指令vq1並予以輸出。步驟S2及步驟S3之動作(1),係在第19圖中的時序(A1)進行,由第一電壓指令產生部34進行。m=1時,第一電壓指令為0。 In Fig. 18, m = 1 is initially set in step S1. Connect At step S2, the torque current command Itrq(1) with respect to m=1 is set. The torque current command Ifrq(1) is 0 [%] of the rated current of the rotary electric machine 1. In step S3, for the set torque current command Itrq(1), the first voltage command vd1 on the d-axis as the first voltage command and the first voltage command vq1 on the q-axis are calculated and output. The operation (1) of step S2 and step S3 is performed at the timing (A1) in Fig. 19, and is performed by the first voltage command generating unit 34. When m=1, the first voltage command is 0.

接著,進入到步驟S4,由電流檢出手段2檢測出根據第一電壓指令而流至旋轉電機1之第一旋轉電機電流,並將此檢測出的第一旋轉電機電流記憶至記憶體中。步驟S4之動作(2),係在第19圖中的時序(B1)進行,由修正量基準值演算手段7進行。在步驟S4中記憶的第一旋轉電機電流,係以▲符號顯示於第19圖中的d軸電流及q軸電流上。m=1時,第一電壓指令為0,所以第一旋轉電機電流也為0。 Next, the process proceeds to step S4, and the current detecting means 2 detects the first rotating electrical machine current flowing to the rotary electric machine 1 according to the first voltage command, and memorizes the detected first rotating electrical machine current into the memory. The operation (2) of step S4 is performed at the timing (B1) in Fig. 19, and is performed by the correction amount reference value calculation means 7. The first rotating electrical machine motor stored in step S4 is indicated by the ▲ symbol on the d-axis current and the q-axis current in Fig. 19. When m=1, the first voltage command is 0, so the first rotating machine current is also zero.

接著,在步驟S5,產生及輸出n個第二電壓指令。本實施形態1中n=6。步驟S5之動作(3),係在第19圖中的時序(C1)進行,由第二電壓指令產生部35進行。第19圖中的時序(C1)係構成為依序輸出第14圖所示的電壓指令<1>、<2>、<3>、<4>、<5>、<6>之形態。如前述,電壓指令<1>、<2>、<3>、<4>、<5>、<6>的輸出的順序可為任意的順序。 Next, in step S5, n second voltage commands are generated and output. In the first embodiment, n = 6. The operation (3) of step S5 is performed at the timing (C1) in Fig. 19, and is performed by the second voltage command generating unit 35. The sequence (C1) in Fig. 19 is configured to sequentially output the voltage commands <1>, <2>, <3>, <4>, <5>, and <6> shown in Fig. 14. As described above, the order of the outputs of the voltage commands <1>, <2>, <3>, <4>, <5>, and <6> may be any order.

步驟S6係將第二旋轉電機電流記憶至記憶體中。步驟S6之動作(4),係在第19圖中的時序(C1)進行, 係為在時間上與前述的步驟S5的動作(3)的進行時序相同之時序。步驟S6係將第19圖中以●符號標記之n個第二旋轉電機電流記憶至記憶體中。步驟S6之動作(4),係由修正量基準值演算手段7進行。 Step S6 is to memorize the second rotating electrical machine current into the memory. The action (4) of step S6 is performed at the timing (C1) in Fig. 19, It is the same timing as the timing of the operation (3) of the above-described step S5 in time. In step S6, the n second rotating electrical machines marked with the ● symbol in Fig. 19 are memorized into the memory. The operation (4) of step S6 is performed by the correction amount reference value calculation means 7.

接著,在步驟S7,使用所記憶的n個第二旋轉電機電流來演算出位置誤差θ err、或位置誤差修正量|iqh_ref|並將之輸出作為誤差修正量基準值c0。輸出誤差修正量基準值c0時,也同時輸出記憶的第一旋轉電機電流(等於轉矩電流)。此步驟S7之動作(5)係由修正量基準值演算手段7進行,係在第19圖中的[m=1]與[m=2]之間的時序進行。 Next, in step S7, the position error θ err or the position error correction amount |iqh_ref| is calculated using the stored n second rotating machine currents and output as the error correction amount reference value c0. When the error correction amount reference value c0 is output, the stored first rotating electrical machine current (equal to the torque current) is also simultaneously output. The operation (5) of this step S7 is performed by the correction amount reference value calculation means 7, and is performed at the timing between [m = 1] and [m = 2] in Fig. 19.

接著,進入到步驟S8,使經過步驟S7的動作(5)的處理而輸出之誤差修正量基準值c0與第一旋轉電機電流記憶至修正量輸出手段6。步驟S8之動作(6)也在第19圖中的[m=1]與[m=2]之間的時序進行。接著,在步驟S9,進行是否為[m=5]之判定,若還沒到[m=5](步驟S9的結果為“否”),就前進至步驟S10而使[m=m+1],然後回到步驟S2,之後重複步驟S2至S9之處理。在步驟S9,若已到[m=5],就結束處理。 Next, the process proceeds to step S8, and the error correction amount reference value c0 outputted by the processing of the operation (5) of step S7 and the first rotating electrical machine current are memorized to the correction amount output means 6. The action (6) of step S8 is also performed at the timing between [m = 1] and [m = 2] in Fig. 19. Next, in step S9, it is determined whether or not [m=5], and if it has not reached [m=5] (the result of step S9 is "NO"), the process proceeds to step S10 to make [m=m+1). ], then return to step S2, and then the processing of steps S2 to S9 is repeated. In step S9, if [m=5] has been reached, the processing is terminated.

以上即為一個轉矩電流指令的流程及時間序列動作。在此動作之後,變更為[m=2],且如前述,進行第18圖中的動作(1)至(5)之流程的處理。[m=2]時的A、B、C、D之各時間序列波形,係顯示於第19圖中標示為[m=2]之範圍內。[m=3]、[m=4]、[m=5]之情況也進行與前述的一 樣之動作,一直實施到[m=5]才結束。使誤差修正量基準值c0與第一旋轉電機電流記憶至修正量輸出手段6之動作,可在已到[m=5]而結束之後,才一併進行[m=1]、[m=2]、[m=3]、[m=4]、[m=5]各情況的第一旋轉電機電流及誤差修正量基準值c0之記憶。 The above is the flow and time series action of a torque current command. After this operation, it is changed to [m=2], and as described above, the processing of the processes (1) to (5) in Fig. 18 is performed. The time series waveforms of A, B, C, and D at [m=2] are shown in the range indicated as [m=2] in Fig. 19. The case of [m=3], [m=4], [m=5] is also performed with the aforementioned one. The action has been implemented until [m=5]. The operation of the error correction amount reference value c0 and the first rotating electrical machine current to the correction amount output means 6 can be performed together after [m=5] has ended, and [m=1], [m=2 ], [m=3], [m=4], [m=5] The memory of the first rotating electrical machine current and the error correction amount reference value c0.

前述的各動作的d軸電壓指令的時間序列波形、q軸電壓指令的時間序列波形、d軸電流的時間序列波形、及q軸電流的時間序列波形,係如第19圖的A、B、C、D所示。 The time series waveform of the d-axis voltage command for each operation, the time series waveform of the q-axis voltage command, the time series waveform of the d-axis current, and the time-series waveform of the q-axis current are as shown in FIG. 19A and B. C and D are shown.

如以上所述,本發明的實施形態1之旋轉電機的控制裝置,係從控制手段3輸出用來使希望的轉矩電流流至旋轉電機1之任意的大小且任意的方向之電壓指令,亦即第一電壓指令,隨後立即從控制手段3依序輸出用來取得電流利薩如圖形之任意的大小且包含n個方向之n個電壓指令,亦即第二電壓指令,來取得在希望的轉矩電流之電流利薩如圖形。然後以最小平方法將取得的電流利薩如圖形擬合至橢圓的方程式,藉以演算出橢圓的傾斜角、橢圓的長軸的長度、短軸的長度,再從演算出的橢圓的傾斜角、長軸的長度、短軸的長度來演算出位置誤差θ err或位置誤差修正量|iqh_ref|並將之記憶起來,旋轉電機的控制裝置因而可自動地求出誤差修正量基準值c0。 As described above, the control device for the rotary electric machine according to the first embodiment of the present invention outputs a voltage command for causing a desired torque current to flow to an arbitrary size and in any direction of the rotary electric machine 1 from the control means 3. That is, the first voltage command, and then immediately output from the control means 3 to obtain any current size of the current Lissajous figure and include n voltage commands in n directions, that is, the second voltage command, to obtain the desired The current of the torque current is Lissajous as a graphic. Then, the obtained current Lissajous figure is fitted to the elliptic equation by the least square method, thereby calculating the inclination angle of the ellipse, the length of the major axis of the ellipse, the length of the short axis, and then the inclination angle of the calculated ellipse, The position error θ err or the position error correction amount |iqh_ref| is calculated by calculating the length of the long axis and the length of the short axis, and the control device of the rotary electric machine can automatically obtain the error correction amount reference value c0.

另外,係為了使m種類的轉矩電流依據m個轉矩電流指令的模式(pattern)而流動,準備大小及方向為m種類的第一電壓指令,且從控制手段3輸出m種類之 中的一個第一電壓指令,隨後立即從控制手段3依序輸出用來取得電流利薩如圖形之任意的大小且包含n個方向之n個電壓指令,亦即第二電壓指令,來取得在希望的轉矩電流之電流利薩如圖形。然後以最小平方法將取得的電流利薩如圖形擬合至橢圓的方程式,藉以演算出相對於m種類之中的一個轉矩電流之橢圓的傾斜角、橢圓的長軸的長度、短軸的長度,再從演算出的橢圓的傾斜角、長軸的長度、短軸的長度來演算出位置誤差θ err或位置誤差修正量|iqh_ref|。重複此動作m次,可求出相對於m種類的轉矩電流之位置誤差θ err或位置誤差修正量|iqh_ref|。因此,無需如以往準備負載裝置及進行一邊施加負載給旋轉電機一邊量測之繁雜的作業,就可簡單且以短時間求出誤差修正量基準值。 Further, in order to cause the m type torque current to flow according to the pattern of the m torque current commands, the first voltage command of the m type and the size is prepared, and the m type is output from the control means 3. a first voltage command in the first, and then immediately output from the control means 3 to obtain a current Lissajous figure of any size and include n voltage commands in n directions, that is, a second voltage command, to obtain The desired torque current is the current Lissajous figure. Then, the obtained current Lissajous figure is fitted to the elliptic equation by the least square method, thereby calculating the inclination angle of the ellipse relative to one of the m types, the length of the major axis of the ellipse, and the short axis. For the length, the position error θ err or the position error correction amount |iqh_ref| is calculated from the calculated inclination angle of the ellipse, the length of the long axis, and the length of the short axis. By repeating this operation m times, the position error θ err or the position error correction amount |iqh_ref| with respect to the m type torque current can be obtained. Therefore, it is not necessary to prepare a load device and carry out a complicated operation for measuring the load while applying a load to the rotating electrical machine, and the error correction amount reference value can be obtained simply and in a short time.

而且,即使事前不能取得要作為驅動對象之旋轉電機,旋轉電機的控制裝置也可自動地求出誤差修正量基準值,所以使用旋轉電機的控制裝置之使用者(user)自己就可求出與作為驅動對象之旋轉電機配合之誤差修正量基準值。因此,旋轉電機的控制裝置之製造商(maker)即使事前不能取得要作為驅動對象之旋轉電機,也可利用高頻疊加無感測器控制來驅動旋轉電機。 Further, even if the rotary electric machine to be driven is not obtained in advance, the control device for the rotary electric machine can automatically obtain the error correction amount reference value, so that the user using the control device of the rotary electric machine can obtain the The error correction amount reference value for the rotary motor to be driven. Therefore, the manufacturer of the control device for the rotary electric machine can drive the rotary electric machine by the high-frequency superimposition sensorless control even if the rotary electric machine to be driven is not obtained in advance.

第20及21圖係用來說明本發明的實施形態1之旋轉電機的控制裝置的構成之說明圖。此處,作為實施形態1之旋轉電機的控制裝置的構成元素之電流檢測手段2、控制手段3、電壓施加手段4、位置推測手段5、修 正量輸出手段6、及修正量基準值演算手段7各者的機能,係利用處理電路而實現。此處理電路可為如同第20圖所示的處理電路200之類的專用的硬體,亦可為如第21圖所示之執行儲存在記憶裝置101中的程式(program)之處理器(processor)100(也稱為CPU(Central Processing Unit)、中央處理裝置、處理裝置、演算裝置、微處理器、微電腦、DSP)。 20 and 21 are explanatory views for explaining the configuration of a control device for a rotating electrical machine according to Embodiment 1 of the present invention. Here, as the constituent elements of the control device for the rotary electric machine according to the first embodiment, the current detecting means 2, the control means 3, the voltage applying means 4, the position estimating means 5, and the repair The functions of each of the positive output means 6 and the correction amount reference value calculation means 7 are realized by a processing circuit. The processing circuit may be a dedicated hardware such as the processing circuit 200 shown in FIG. 20, or may be a processor (program) that executes a program stored in the memory device 101 as shown in FIG. 100 (also referred to as CPU (Central Processing Unit), central processing unit, processing device, calculation device, microprocessor, microcomputer, DSP).

在如第20圖所示處理電路係由專用的硬體所構成之情況,處理電路200係為單一電路、複合電路、程式化處理器、並列的程式化處理器、ASIC、FPGA、或組合以上各者而成者。可利用處理電路200來分別實現電流檢測手段2、控制手段3、電壓施加手段4、位置推測手段5、修正量輸出手段6、及修正量基準值演算手段7各者的機能,亦可利用處理電路200來總括實現各者的機能。 In the case where the processing circuit is constituted by a dedicated hardware as shown in FIG. 20, the processing circuit 200 is a single circuit, a composite circuit, a programmed processor, a parallel programd processor, an ASIC, an FPGA, or a combination thereof. Each is a winner. The processing circuit 200 can be used to realize the functions of each of the current detecting means 2, the control means 3, the voltage applying means 4, the position estimating means 5, the correction amount output means 6, and the correction amount reference value calculating means 7, and can also utilize the processing. Circuit 200 is used to collectively implement the functions of each.

又,在如第21圖所示處理電路係由處理器100所構成之情況,電流檢測手段2、控制手段3、電壓施加手段4、位置推測手段5、修正量輸出手段6、及修正量基準值演算手段7各者的機能,係藉由軟體、韌體、或軟體與韌體之組合而實現。軟體、韌體係記述成程式儲存於記憶裝置101中。處理電路100藉由讀出記憶裝置101中記憶的程式並執行,來實現各機能。亦即,具備有用來儲存程式之記憶裝置101,且該程式執行的結果將會進行電流檢測手段2、控制手段3、電壓施加手段4、位置推測手段5、修正量輸出手段6、及修正量基準值演算手段7各者的動作步驟。亦可說該等程式是使電腦執行電流檢測手段 2、控制手段3、電壓施加手段4、位置推測手段5、修正量輸出手段6、及修正量基準值演算手段7的處理步驟或處理方法者。記憶裝置101係由例如ROM、EPROM、EEPROM等之非揮發性或揮發性的半導體記憶體、或軟碟、光碟、CD、DVD等所構成。 Further, in the case where the processing circuit is constituted by the processor 100 as shown in Fig. 21, the current detecting means 2, the control means 3, the voltage applying means 4, the position estimating means 5, the correction amount output means 6, and the correction amount reference are provided. The function of each of the value calculation means 7 is realized by a combination of software, firmware, or a combination of a soft body and a firmware. The software and tough system are described as stored in the memory device 101. The processing circuit 100 realizes each function by reading and executing the program stored in the memory device 101. That is, the memory device 101 for storing the program is provided, and the result of the program execution is performed by the current detecting means 2, the control means 3, the voltage applying means 4, the position estimating means 5, the correction amount output means 6, and the correction amount. The operation procedure of each of the reference value calculation means 7. It can also be said that these programs are used to enable the computer to perform current detection. 2. The processing procedure or processing method of the control means 3, the voltage application means 4, the position estimation means 5, the correction amount output means 6, and the correction amount reference value calculation means 7. The memory device 101 is composed of a non-volatile or volatile semiconductor memory such as a ROM, an EPROM, or an EEPROM, or a floppy disk, a compact disc, a CD, a DVD, or the like.

又,關於電流檢測手段2、控制手段3、電壓施加手段4、位置推測手段5、修正量輸出手段6、及修正量基準值演算手段7各者的機能,可使得其中的一部分以專用的硬體加以實現、其他的部分以軟體或韌體加以實現。例如,關於電流檢測手段2及電壓施加手段4,可利用做成為專用的硬體之處理電路來實現其機能,關於控制手段3、位置推測手段5、修正量輸出手段6、及修正量基準值演算手段7,則可由處理電路讀出並執行記憶裝置101中儲存的程式而實現其機能。 Further, the functions of each of the current detecting means 2, the control means 3, the voltage applying means 4, the position estimating means 5, the correction amount output means 6, and the correction amount reference value calculating means 7 can be made to be dedicated hard. The body is implemented, and the other parts are realized by software or firmware. For example, the current detecting means 2 and the voltage applying means 4 can realize their functions by using a processing circuit which is a dedicated hardware, and the control means 3, the position estimating means 5, the correction amount output means 6, and the correction amount reference value. The calculation means 7 can be realized by the processing circuit reading and executing the program stored in the memory device 101.

如上所述,實現電流檢測手段2、控制手段3、電壓施加手段4、位置推測手段5、修正量輸出手段6、及修正量基準值演算手段7各者的機能之處理電路,可藉由硬體、軟體、韌體、或以上各者的組合而實現。 As described above, the processing circuit for realizing the functions of each of the current detecting means 2, the control means 3, the voltage applying means 4, the position estimating means 5, the correction amount output means 6, and the correction amount reference value calculating means 7 can be hardened. The body, the soft body, the firmware, or a combination of the above is realized.

實施形態2. Embodiment 2.

接著,針對本發明的實施形態2之旋轉電機的控制裝置進行說明。第22圖係用來說明本發明的實施形態2之旋轉電機的控制裝置的動作之流程圖。第23圖係用來說明本發明的實施形態2之旋轉電機的控制裝置的動作之說明 圖,其中顯示在第22圖的流程圖中,轉矩電流指令的模式的個數m為2個(m=2)時的動作,且顯示d軸及q軸的電壓指令及d軸及q軸的電流的時間序列波形的一部分,A係d軸電壓指令的時間序列波形,B係q軸電壓指令的時間序列波形,C係d軸電流的時間序列波形,D係q軸電流的時間序列波形。 Next, a control device for a rotating electrical machine according to a second embodiment of the present invention will be described. Fig. 22 is a flow chart for explaining the operation of the control device for the rotating electrical machine according to the second embodiment of the present invention. Figure 23 is a view for explaining the operation of the control device for a rotating electrical machine according to Embodiment 2 of the present invention. In the flowchart of FIG. 22, the operation when the number m of modes of the torque current command is two (m=2), and the voltage command of the d-axis and the q-axis and the d-axis and q are displayed. Part of the time series waveform of the current of the axis, time series waveform of the D-axis voltage command of the A system, time series waveform of the Q-axis voltage command of the B system, time series waveform of the D-axis current of the C system, time series of the D-axis q-axis current Waveform.

實施形態2之旋轉電機的控制裝置的構成,係與前述的實施形態1中說明過的第1圖一樣,各構成部分的動作也與實施形態1中說明過的大致一樣,所以在以下的說明中,將只針對與實施形態1的情況不同的部分進行說明。第22圖中與實施形態1的情況不同之點在於:經步驟S6將第二旋轉電機電流記憶至記憶體後,係在步驟S11中輸出第一電壓指令的相反相位的電壓指令(以下將之稱為第一反電壓指令)。實際上,係如第23圖所示,在將第二電壓指令及第二旋轉電機電流記憶起來之時序(C2)之後,設置時序(D2),在此時序(D2)輸出第一反電壓指令。亦即,設成為在輸出第二電壓指令之後,隨即輸出第一反電壓指令之點與實施形態1的情況不同。 The configuration of the control device for the rotary electric machine according to the second embodiment is the same as that of the first embodiment described in the first embodiment, and the operation of each component is substantially the same as that described in the first embodiment, so the following description will be given. Only parts different from the case of the first embodiment will be described. In the twenty-fifth aspect, the difference from the first embodiment is that after the second rotating electrical machine current is stored in the memory in step S6, the voltage command of the opposite phase of the first voltage command is output in step S11 (hereinafter, Called the first counter voltage command). Actually, as shown in FIG. 23, after the timing (C2) of memorizing the second voltage command and the second rotating motor current, the timing (D2) is set, and the first counter voltage command is output at this timing (D2). . That is, it is assumed that the point at which the first reverse voltage command is output immediately after the output of the second voltage command is different from that in the first embodiment.

輸出第一反電壓指令之處理的目的,係為了使得旋轉電機1由於按照第一電壓指令而流至旋轉電機1之第一旋轉電機電流而轉動的量在最小限度。尤其,在按照第一電壓指令而流至旋轉電機1之電流較大之情況、或旋轉電機1的慣性矩較小之情況等,旋轉電機1的軸有大幅轉動之可能性。因此,在剛輸出對於電流利薩如圖形 的取得而言必須的第二電壓指令後,從第一電壓指令產生部34輸出第一反電壓指令,來抵銷流至旋轉電機1之旋轉電機電流,使旋轉電機1的軸的轉動量在最小限度。第一反電壓指令的大小可與第一電壓指令相同,亦可設想為旋轉電機1轉動了,而設定得比第一電壓指令大,來使已轉動的量回復原狀。 The purpose of the processing of outputting the first counter voltage command is to minimize the amount of rotation of the rotary electric machine 1 due to the first rotating electric machine current flowing to the rotary electric machine 1 in accordance with the first voltage command. In particular, when the current flowing to the rotary electric machine 1 according to the first voltage command is large or the moment of inertia of the rotary electric machine 1 is small, the shaft of the rotary electric machine 1 may be greatly rotated. So just after the output for the current Lissajous figure After obtaining the second voltage command necessary for the acquisition, the first voltage command generation unit 34 outputs a first reverse voltage command to cancel the rotary motor current flowing to the rotary electric machine 1, so that the rotation amount of the shaft of the rotary electric machine 1 is Minimal. The magnitude of the first counter voltage command may be the same as the first voltage command, and it is also conceivable that the rotary electric machine 1 is rotated and set larger than the first voltage command to restore the rotated amount to its original state.

前述各動作的d軸電壓指令的時間序列波形、q軸電壓指令的時間序列波形、d軸電流的時間序列波形、及q軸電流的時間序列波形,係如第23圖的A、B、C、D所示。 The time-series waveform of the d-axis voltage command, the time-series waveform of the q-axis voltage command, the time-series waveform of the d-axis current, and the time-series waveform of the q-axis current are the A, B, and C of FIG. , D shows.

如以上所述,本發明的實施形態2之旋轉電機的控制裝置,係在第二電壓指令產生部35剛輸出第二電壓指令後,隨即從第一電壓指令產生部34輸出第一電壓指令,藉此而可將旋轉電機1的軸的轉動量抑制在最小限度、或使已轉動的量回復原狀,即使在旋轉電機1係組裝在其他的機械裝置內而可動範圍受限之情況,旋轉電機的控制裝置也可自動地求出誤差修正量基準值。因此,無需如以往準備負載裝置及進行一邊施加負載給旋轉電機一邊量測之繁雜的作業,就可簡單且短時間地求出誤差修正量基準值。而且,即使旋轉電機1係組裝在其他的機械裝置內,且作為驅動對象之旋轉電機1為單體,旋轉電機的控制裝置也可自動地求出誤差修正量基準值,所以在將旋轉電機1組裝在其他的機械裝置內之狀態,使用旋轉電機的控制裝置之使用者(user)自己就可求出與作為驅動對象之 旋轉電機配合之誤差修正量基準值,可利用高頻疊加無感測器控制來驅動旋轉電機。 As described above, the control device for the rotary electric machine according to the second embodiment of the present invention immediately outputs the first voltage command from the first voltage command generating unit 34 immediately after the second voltage command generating unit 35 outputs the second voltage command. Thereby, the amount of rotation of the shaft of the rotary electric machine 1 can be minimized, or the amount of rotation can be restored to the original state, and the rotary electric machine 1 can be assembled in another mechanical device and the movable range is limited. The control device can also automatically determine the error correction amount reference value. Therefore, the error correction amount reference value can be obtained simply and in a short time without the complicated work of measuring the load device and applying the load to the rotary electric machine. Further, even if the rotary electric machine 1 is incorporated in another mechanical device and the rotary electric machine 1 to be driven is a single unit, the control device for the rotary electric machine can automatically obtain the error correction amount reference value, so the rotary electric machine 1 is When it is assembled in another mechanical device, the user who uses the control device of the rotary motor can find and drive the user himself. The reference value of the error correction amount of the rotating motor can be used to drive the rotating electric machine by using the high frequency superimposed sensorless control.

實施形態3. Embodiment 3.

接著,針對本發明的實施形態3之旋轉電機的控制裝置進行說明。第24圖係用來說明本發明的實施形態3之旋轉電機的控制裝置的動作之流程圖,其中顯示到得到相對於各轉矩電流之誤差修正量基準值為止的處理。第25圖係用來說明本發明的實施形態3之旋轉電機的控制裝置的動作之說明圖,其中顯示在第24圖的流程圖中,進行轉矩電流指令的模式的個數m為2個(m=2)時的動作之時的d軸及q軸的電壓指令以及d軸及q軸的電流的時間序列波形的一部分,A係d軸電壓指令的時間序列波形,B係q軸電壓指令的時間序列波形,C係d軸電流的時間序列波形,D係q軸電流的時間序列波形。 Next, a control device for a rotating electrical machine according to a third embodiment of the present invention will be described. Fig. 24 is a flowchart for explaining the operation of the control device for the rotating electrical machine according to the third embodiment of the present invention, and shows the processing until the error correction amount reference value with respect to each torque current is obtained. Figure 25 is an explanatory view for explaining the operation of the control device for the rotating electrical machine according to the third embodiment of the present invention, wherein the number m of modes for performing the torque current command is two in the flowchart of Fig. 24; Part of the time series waveform of the d-axis and q-axis voltage and the d-axis and q-axis current at the time of (m=2) operation, the time series waveform of the A-system d-axis voltage command, and the B-system q-axis voltage The time series waveform of the command, the time series waveform of the C system d-axis current, and the time series waveform of the D system q-axis current.

本發明的實施形態3之旋轉電機的控制裝置的構成,係與前述的實施形態1中說明過的第1圖一樣,各構成部分的動作也與實施形態1中說明過的大致一樣,所以在以下的說明中,將以與實施形態1不同的部分為主體進行說明。前述的實施形態1及實施形態2係構成為:在輸出第一電壓指令之後,按照第一電壓指令之第一旋轉電機電流流動的期間,輸出全部的n個第二電壓指令之形態。然而,在第二電壓指令的數目n很多之情況等,最先(第一個)輸出的第二電壓指令與最後(第n個)輸出的第二電壓 指令之間的時間很長,就會有第一旋轉電機電流隨著時間而減小,在輸出最初的第二電壓指令時、及輸出最後的第二電壓指令時,流至旋轉電機1之第一旋轉電機電流的大小會變化之情形。另外,在第二電壓指令的大小很大之情況,會有因為按照第二電壓指令之第二旋轉電機電流而使得第一旋轉電機電流本身減小之可能。 The configuration of the control device for the rotating electrical machine according to the third embodiment of the present invention is the same as that of the first embodiment described in the first embodiment, and the operation of each component is substantially the same as that described in the first embodiment. In the following description, a part different from the first embodiment will be mainly described. In the first embodiment and the second embodiment described above, after the first voltage command is output, all of the n second voltage commands are output in a period in which the first rotating electrical machine current flows in accordance with the first voltage command. However, in the case where the number n of the second voltage commands is large, etc., the first (first) output second voltage command and the last (nth) output second voltage The time between commands is very long, and the first rotating motor current decreases with time. When the first second voltage command is output and the last second voltage command is output, the flow to the rotating motor 1 is The situation in which the magnitude of the current of a rotating electrical machine changes. In addition, in the case where the magnitude of the second voltage command is large, there is a possibility that the first rotating electrical machine current itself is reduced due to the second rotating electrical machine current according to the second voltage command.

因此,本實施形態3係如第24圖之流程圖及第25圖之時間序列波形圖所示,採取:在輸出第一電壓指令V1後,輸出一個第二電壓指令V2(1),然後再輸出第一電壓指令V1,然後輸出一個第二電壓指令V2(2)之每輸出一個第二電壓指令,就也輸出一個第一電壓指令之形態,以減小第一旋轉電機電流減小之影響。以下,針對本發明的實施形態3之旋轉電機的控制裝置的詳細動作進行說明。 Therefore, in the third embodiment, as shown in the flowchart of FIG. 24 and the time series waveform diagram of FIG. 25, after the first voltage command V1 is output, a second voltage command V2(1) is output, and then Outputting the first voltage command V1, and then outputting a second voltage command V2(2) for outputting a second voltage command, also outputting a form of the first voltage command to reduce the influence of the first rotating motor current reduction . Hereinafter, the detailed operation of the control device for the rotating electrical machine according to the third embodiment of the present invention will be described.

本實施形態3中,為了用具體的動作來說明,而與實施形態1一樣使轉矩電流指令的模式的個數m為5個,且將轉矩電流指令Itrq設為若旋轉電機1的額定電流為0[%]到200[%]時每個為50[%]刻度之5個模式。另外,第二電壓指令也與實施形態1一樣包含如第14圖所示之[n=6]個方向。 In the third embodiment, in order to explain the specific operation, the number m of the torque current command modes is five as in the first embodiment, and the torque current command Itrq is set to the rated value of the rotary electric machine 1. Each mode is 50 [%] scales when the current is from 0 [%] to 200 [%]. Further, the second voltage command also includes [n=6] directions as shown in Fig. 14 as in the first embodiment.

在第24圖之流程圖中,求誤差修正量基準值c0之流程開始後,係在步驟S31使m=1。接著,在步驟S32進行設定轉矩電流指令Itrq(m)之動作(1)。接著在步驟S33進行設定[n=1]之動作(2)。然後,在步驟S34,進行輸 出第一電壓指令V1(m)之動作(3),接著進入到步驟S35,進行將第一旋轉電機電流I1m(n)記憶起來之動作(4)。然後,在步驟S36,進行輸出第n個第二電壓指令V2(n)之動作(5)。接著,在步驟S37,進行將第二旋轉電機電流I2m(n)記憶起來之動作(6)。 In the flowchart of Fig. 24, after the flow of the error correction amount reference value c0 is started, m = 1 is made in step S31. Next, in step S32, the operation (1) of setting the torque current command Itrq(m) is performed. Next, in step S33, an action (2) of setting [n = 1] is performed. Then, in step S34, the input is performed. The operation (3) of the first voltage command V1 (m) is performed, and then the process proceeds to step S35, and the operation (4) of remembering the first rotating electrical machine current I1m(n) is performed. Then, in step S36, an operation (5) of outputting the nth second voltage command V2(n) is performed. Next, in step S37, an operation (6) of remembering the second rotating electrical machine current I2m(n) is performed.

第二電壓指令V2(n)係以若[n=1]就為第14圖之<1>,若[n=2]就為第14圖之<2>這樣的每次n改變就在不同的方向輸出之指令。另外,如已在實施形態1中說明過的,第二電壓指令V2(n)在時間上係在第一電壓指令V1(m)輸出後隨即輸出,例如,在微電腦之情況,係在輸出第一電壓指令的演算週期的下一個演算週期輸出。此第24圖的(3)至(6)之動作,在[m=2]之情況係相當於第25圖的[n=1]之部分。 The second voltage command V2(n) is <1> of Fig. 14 if [n=1], and each n change of <2> of Fig. 14 if [n=2] is different. The direction of the output of the instruction. Further, as described in the first embodiment, the second voltage command V2(n) is outputted immediately after the output of the first voltage command V1(m), for example, in the case of a microcomputer, in the output. The output of the next calculation cycle of the calculation cycle of a voltage command. The operation of (3) to (6) in Fig. 24 corresponds to the portion of [n = 1] of Fig. 25 in the case of [m = 2].

接著,在步驟S38,進行是否為[n=6]之判定,若還沒到[n=6](步驟S38的結果為“否”),就前進至步驟S312而進行使n加1[n=n+1]之動作(8),然後回到步驟S34而重複步驟S34至S37之動作(3)至(6)。此部分的動作,在[m=2]之情況係相當於第25圖的[n=2]至[n=6]之部分。 Next, in step S38, it is determined whether or not [n=6], and if it has not yet reached [n=6] (the result of step S38 is "NO"), the process proceeds to step S312, and n is incremented by 1 [n]. The action (8) of =n+1] is then returned to step S34 and the actions (3) to (6) of steps S34 to S37 are repeated. The action of this part is equivalent to the part of [n=2] to [n=6] of Fig. 25 in the case of [m=2].

第24圖中的動作(1)至(3)、(5)、(7)、(8)之處理,係由第1圖中的控制手段3進行。更詳言之,屬於與第一電壓指令有關的處理之第24的動作(1)及(3)係由第一電壓指令產生部34進行,屬於與第二電壓指令有關的處理之第24的動作(5)係由第二電壓指令產生部35進行。另外,第24圖中的記憶第一旋轉電機電流及第二旋轉電機電 流之處理的動作(4)及(6),係由第1圖中的修正量基準值演算手段7進行。如以上所述,進行[n=1]至[n=6]之動作後,在步驟S38,進行是否為[n=6]之判定的動作(7)。 The processes (1) to (3), (5), (7), and (8) in Fig. 24 are performed by the control means 3 in Fig. 1. More specifically, the operations (1) and (3) belonging to the 24th process related to the first voltage command are performed by the first voltage command generating unit 34 and belong to the 24th of the process related to the second voltage command. The operation (5) is performed by the second voltage command generating unit 35. In addition, the memory of the first rotating electrical machine and the second rotating electrical machine in FIG. 24 The operations (4) and (6) of the flow processing are performed by the correction amount reference value calculation means 7 in Fig. 1 . As described above, after the operation of [n=1] to [n=6] is performed, in step S38, an operation (7) of determining whether or not [n=6] is performed is performed.

接著,在步驟S39,進行使用記憶的n個第二旋轉電機電流I2m(n)來演算出位置誤差θ err、或位置誤差修正量|iqh_ref|並將之輸出作為誤差修正量基準值c0之動作(9)。此處理係與實施形態1一樣,與實施形態1之情況不同的是:除了輸出誤差修正量基準值c0,也一併輸出演算所記憶的n個第一旋轉電機電流I1m(n)的平均值所得到之結果。實施形態1因為只輸出一個第一電壓指令所以第一旋轉電機電流也為一個,本實施形態則是因為輸出n個第一電壓指令,所以第一旋轉電機電流也為n個。雖然也可輸出n個第一旋轉電機電流之中的一個,但在n個第一旋轉電機電流很不平均之情況,求其n個的平均值較可減小該不平均之影響,所以如上述輸出演算n個第一旋轉電機電流的平均值所得到之結果。此步驟S39之處理係由第1圖中的修正量基準值演算手段7進行。 Next, in step S39, the operation of calculating the position error θ err or the position error correction amount |iqh_ref| using the stored n second rotating electric machine currents I2m(n) and outputting it as the error correction amount reference value c0 is performed. (9). This processing is the same as that of the first embodiment, and is different from the case of the first embodiment in that the average value of the n first rotating electrical machine currents I1m(n) stored in the calculation is outputted in addition to the output error correction amount reference value c0. The result obtained. In the first embodiment, since only one first voltage command is output, the first rotating electrical machine current is also one. In the present embodiment, since the n first voltage commands are output, the first rotating electrical machine current is also n. Although one of the n first rotating electrical machine currents can also be output, if the currents of the n first rotating electrical machines are very uneven, the average of the n averages can reduce the influence of the unevenness, so The above output calculates the result of the average of the n first rotating electrical machine currents. The processing of this step S39 is performed by the correction amount reference value calculation means 7 in Fig. 1 .

前述步驟S39之動作(9)的處理後,進入到步驟S310,進行將修正量基準值演算手段7所輸出之誤差修正量基準值c0及第一旋轉電機電流的平均值記憶起來之動作(10)。此動作(10)之處理係由修正量輸出手段6進行。而且,步驟S39之動作(9)及步驟S310之動作(10)的處理,係為時間序列地在第25圖之[n=6]的處理結束後且到達[m=3]之前進行。 After the process of the above-described operation (9) of the step S39, the process proceeds to step S310, and the operation of storing the error correction amount reference value c0 outputted by the correction amount reference value calculation means 7 and the average value of the first rotating electrical machine current is performed (10) ). The processing of this action (10) is performed by the correction amount output means 6. Further, the processing of the operation (9) of step S39 and the operation (10) of step S310 are performed in a time series after the processing of [n=6] in Fig. 25 is completed and before [m=3] is reached.

步驟S310之動作(10)的處理結束後,在步驟S311進行動作(11),亦即進行是否為[m=5]之判定,若還沒到[m=5],就前進至步驟S313而使m加1[m=m+1],然後回到步驟S32而再度進行步驟S32至S310之動作(1)至(10)。若已到達[m=5],表示已測定完成相對於設定的所有的轉矩電流指令Itrq(m)之誤差修正量基準值,而結束動作。 After the processing of the operation (10) in step S310 is completed, the operation (11) is performed in step S311, that is, whether or not the determination is [m=5], and if it is not yet [m=5], the processing proceeds to step S313. When m is incremented by 1 [m = m + 1], the process returns to step S32 and the actions (1) to (10) of steps S32 to S310 are performed again. When [m=5] has been reached, it indicates that the error correction amount reference value for all the torque current commands Itrq(m) that has been set is completed, and the operation is ended.

又,在第一電壓指令的大小有m種類之情況,因為第二電壓指令的方向有n個方向,所以第一電壓指令及第二電壓指令係輸出[m×n]個。換句話說,第一電壓指令與第二電壓指令的組合也為[m×n]個。 Further, when there are m types of the first voltage command, since the direction of the second voltage command has n directions, the first voltage command and the second voltage command output [m × n]. In other words, the combination of the first voltage command and the second voltage command is also [m x n].

前述各動作的d軸電壓指令的時間序列波形、q軸電壓指令的時間序列波形、d軸電流的時間序列波形、及q軸電流的時間序列波形,係如第25圖中的A、B、C、及D所示。 The time-series waveform of the d-axis voltage command, the time-series waveform of the q-axis voltage command, the time-series waveform of the d-axis current, and the time-series waveform of the q-axis current are the A, B, and FIG. C, and D are shown.

本實施形態3之第24圖所示的流程圖,係按第14圖的<1>至<6>之順序依序輸出第二電壓指令,以如此的順序輸出第二電壓指令,動作會很明確,但並不一定要按<1>至<6>之順序。又,[m×n]個之第一電壓指令與第二電壓指令的組合也可按任意的順序輸出。但是,在[m×n]個之第一電壓指令與第二電壓指令的組合中,相同的組合並沒有意義,所以最好設定為[m×n]個組合都不相同之電壓指令。 In the flowchart shown in Fig. 24 of the third embodiment, the second voltage command is sequentially output in the order of <1> to <6> in Fig. 14, and the second voltage command is output in this order. Clear, but not necessarily in the order of <1> to <6>. Further, the combination of the [m × n] first voltage command and the second voltage command may be output in an arbitrary order. However, in the combination of the [m × n] first voltage command and the second voltage command, the same combination does not make sense, so it is preferable to set the voltage command which is different in [m × n] combinations.

如以上所述,本發明的實施形態3之旋轉電 機的控制裝置,係進行n次:從控制手段3輸出用來使希望的轉矩電流流至旋轉電機1之任意的大小且任意的方向之電壓指令,亦即第一電壓指令,隨後立即從控制手段3依序輸出用來取得電流利薩如圖形之任意的大小且包含n個方向之n個電壓指令,亦即n個第二電壓指令之中的一個之動作,且利用由於施加按照第一電壓指令之電壓至旋轉電機而流動之n個第一旋轉電機電流、及n個第二旋轉電機電流,來取得在希望的轉矩電流之電流利薩如圖形,然後以最小平方法將取得的電流利薩如圖形擬合(fitting)至橢圓的方程式,藉以演算出橢圓的傾斜角、橢圓的長軸的長度、短軸的長度,再從演算出的橢圓的傾斜角、長軸的長度、短軸的長度來演算出位置誤差θ err或位置誤差修正量|iqh_ref|並將之記憶起來,旋轉電機的控制裝置因而可自動地求出誤差修正量基準值。 As described above, the rotary electric power of Embodiment 3 of the present invention The control device of the machine performs n times: a voltage command for outputting a desired torque current to any size of the rotary electric machine 1 in any direction, that is, a first voltage command, is output from the control means 3, and then immediately The control means 3 sequentially outputs an action for obtaining one of the n voltage directions of the current Lissajous figure and including n directions, that is, one of the n second voltage commands, and a voltage command voltage to the n first rotating motor current flowing through the rotating electrical machine, and n second rotating electrical machine currents to obtain a current Lissajous figure of the desired torque current, and then to obtain the least squares method The current Lisa is figured to the equation of the ellipse to calculate the tilt angle of the ellipse, the length of the major axis of the ellipse, the length of the minor axis, and the length of the ellipse and the length of the long axis. The position error θ err or the position error correction amount |iqh_ref| is calculated by the length of the short axis, and the control device of the rotary electric machine can automatically obtain the error correction amount reference value.

另外,係為了使m種類的轉矩電流流動,準備[m×n]大小及方向為m種類的第一電壓指令,且進行n次:從控制手段3輸出[m×n]個之中的一個第一電壓指令,隨後立即從控制手段3輸出用來取得電流利薩如圖形之任意的大小且包含n個方向之[m×n]個電壓指令,亦即[m×n]個第二電壓指令之中的一個之動作,且利用由於輸出n個m種類的第一電壓指令之中的一個第一電壓指令而流至旋轉電機之n個第一旋轉電機電流、及n個第二旋轉電機電流,來取得m種類之中的一個轉矩電流之電流利薩如圖形,然後以最小平方法將取得的電流利薩如圖形擬合 (fitting)至橢圓的方程式,藉以演算出相對於m種類之中的一個轉矩電流之橢圓的傾斜角、橢圓的長軸的長度、短軸的長度,而可從演算出的橢圓的傾斜角、長軸的長度、短軸的長度來演算出位置誤差θ err或位置誤差修正量|iqh_ref|。重複此動作m次,可求出相對於m種類的轉矩電流指令之位置誤差θ err或位置誤差修正量|iqh_ref|。因此,可消除由於n個第二電壓指令的最初到最後的時間很長而使得第一旋轉電機電流衰減、或由於第二電壓指令而使得第一旋轉電機電流衰減之影響,可更精度良好地求出誤差修正量基準值。 In addition, in order to flow m-type torque current, a first voltage command of [m×n] size and direction of m type is prepared, and n times are performed: among the [m×n] outputs from the control means 3 a first voltage command, and then immediately outputting from the control means 3 an arbitrary size of the current Lissajous figure and including [m × n] voltage commands of n directions, that is, [m × n] second One of the voltage commands, and using n first rotating motor currents flowing to the rotating electrical machine and n second rotations by outputting one of the first voltage commands of the n m types Motor current, to obtain a current of a torque current in the m type Lissajous figure, and then fit the current Lissajous figure into the figure by the least square method Fitting to the equation of the ellipse, by which the inclination angle of the ellipse of one of the torque currents, the length of the major axis of the ellipse, and the length of the minor axis are calculated, and the inclination angle of the ellipse can be calculated from The length of the long axis and the length of the short axis are used to calculate the position error θ err or the position error correction amount |iqh_ref|. By repeating this operation m times, the position error θ err or the position error correction amount |iqh_ref| with respect to the m type torque current command can be obtained. Therefore, it is possible to eliminate the influence of the first rotating electrical machine current attenuation due to the longest initial time of the n second voltage commands or the first rotating electrical machine current attenuation due to the second voltage command, which can be more accurately performed. Find the error correction amount reference value.

因此,無需如以往準備負載裝置及進行一邊施加負載給旋轉電機一邊量測之繁雜的作業,就可簡單且短時間地求出誤差修正量基準值。而且,即使事前不能取得要作為驅動對象之旋轉電機,旋轉電機的控制裝置也可自動地求出誤差修正量基準值,所以使用旋轉電機的控制裝置之使用者(user)自己就可求出與作為驅動對象之旋轉電機配合之誤差修正量基準值,因而旋轉電機的控制裝置之製造商(maker)即使事前不能取得要作為驅動對象之旋轉電機,也可利用高頻疊加無感測器控制來驅動旋轉電機。 Therefore, the error correction amount reference value can be obtained simply and in a short time without the complicated work of measuring the load device and applying the load to the rotary electric machine. Further, even if the rotary electric machine to be driven is not obtained in advance, the control device for the rotary electric machine can automatically obtain the error correction amount reference value, so that the user using the control device of the rotary electric machine can obtain the As a reference value of the error correction amount of the rotating motor to be driven, the manufacturer of the control device for the rotating electrical machine can use the high-frequency superimposed sensorless control even if the rotating electric machine to be driven is not obtained in advance. Drive the rotating motor.

實施形態4. Embodiment 4.

接著,針對本發明的實施形態4之旋轉電機的控制裝置進行說明。實施形態4係:雖然是根據前述的實施形態 3的處理所做的誤差修正量基準值的演算,而利用按照第一電壓指令而流至旋轉電機1之第一旋轉電機電流及按照第二電壓指令而流至旋轉電機1之第二旋轉電機電流使旋轉電機1動作,但使其動作的量在最小限度者。本發明的實施形態4之旋轉電機的控制裝置的構成與第1圖一樣。 Next, a control device for a rotating electrical machine according to a fourth embodiment of the present invention will be described. Embodiment 4: According to the above embodiment The calculation of the error correction amount reference value by the processing of 3, and the second rotating electrical machine that flows to the rotating electric machine 1 according to the first voltage command and the second rotating electric machine that flows to the rotating electric machine 1 according to the second voltage command The electric current causes the rotary electric machine 1 to operate, but the amount of operation is minimized. The configuration of the control device for the rotating electrical machine according to the fourth embodiment of the present invention is the same as that of the first embodiment.

第26圖係用來說明本發明的實施形態4之旋轉電機的控制裝置的動作之流程圖,其中顯示到得到相對於各轉矩電流的誤差修正量基準值為止之處理。第26圖所示的本發明的實施形態4之旋轉電機的控制裝置,係與實施形態2的情況一樣構成為:為了使藉由第一電壓指令而使旋轉電機1動作的量在最小限度,而輸出與在第二電壓指令之前輸出之第一電壓指令相反相位的電壓指令,亦即第一反電壓指令V1_cnt(n)之形態。就第26圖的流程圖而言,雖然是透過在利用步驟S47將第二旋轉電機電流記憶起來之程序後的步驟S48之動作(100),來輸出第一反電壓指令,但亦可構成為在時間上係在輸出第二電壓指令之後就輸出第一反電壓指令。 Fig. 26 is a flowchart for explaining the operation of the control device for the rotary electric machine according to the fourth embodiment of the present invention, in which the process of obtaining the error correction amount reference value with respect to each torque current is displayed. The control device for the rotary electric machine according to the fourth embodiment of the present invention shown in FIG. 26 is configured to minimize the amount of operation of the rotary electric machine 1 by the first voltage command, as in the case of the second embodiment. And outputting a voltage command opposite to the first voltage command outputted before the second voltage command, that is, the form of the first counter voltage command V1_cnt(n). In the flowchart of Fig. 26, the first reverse voltage command is outputted through the operation (100) of step S48 after the program for storing the second rotating electrical machine current in step S47, but it may be configured as The first counter voltage command is output in time after the output of the second voltage command.

第一反電壓指令V1_cnt(n)的大小可與第一電壓指令相同,亦可設想為旋轉電機1轉動了,而設定得比第一電壓指令大,來使已轉動的量回復原狀。又,第一反電壓指令的個數係與第一電壓指令及第二電壓指令相同,為[m×n]個。 The magnitude of the first counter voltage command V1_cnt(n) may be the same as the first voltage command, and it is also conceivable that the rotary electric machine 1 is rotated and set larger than the first voltage command to return the rotated amount to its original state. Further, the number of the first counter voltage commands is the same as the first voltage command and the second voltage command, and is [m × n].

第26圖之流程圖中的步驟S41至S47,係與前述的實施形態3中的第24圖之流程圖中的步驟S31 至S37一樣,第26圖之流程圖中的步驟S49至S414,係與前述的實施形態3中的第24圖之流程圖中的步驟S38至S313一樣。 Steps S41 to S47 in the flowchart of Fig. 26 are the same as step S31 in the flowchart of Fig. 24 in the above-described third embodiment. Similarly to S37, steps S49 to S414 in the flowchart of Fig. 26 are the same as steps S38 to S313 in the flowchart of Fig. 24 in the above-described third embodiment.

如以上所述,本發明的實施形態4之旋轉電機的控制裝置,係在第二電壓指令產生部剛輸出第二電壓指令後,隨即從第一電壓指令產生部輸出第一電壓指令,藉此而可將旋轉電機1的轉動量抑制在最小限度、或使已轉動的量回復原狀,即使在旋轉電機1組裝在其他的機械裝置內而可動範圍受限之情況,旋轉電機的控制裝置也可自動地求出誤差修正量基準值。因此,無需如以往準備負載裝置及進行一邊施加負載給旋轉電機一邊量測之繁雜的作業,就可簡單且短時間地求出誤差修正量基準值。而且,即使旋轉電機組裝在其他的機械裝置內,且作為驅動對象之旋轉電機為單體,旋轉電機的控制裝置也可自動地求出誤差修正量基準值,所以在將旋轉電機1組裝在其他的機械裝置內之狀態,使用旋轉電機的控制裝置之使用者(user)不用依靠控制裝置製造商等的專家,自己就可求出與作為驅動對象之旋轉電機配合之誤差修正量基準值,而可利用高頻疊加無感測器控制來驅動旋轉電機。 As described above, in the control device for the rotating electrical machine according to the fourth embodiment of the present invention, immediately after the second voltage command generating unit outputs the second voltage command, the first voltage command generating unit outputs the first voltage command. Further, the amount of rotation of the rotary electric machine 1 can be minimized, or the amount of rotation can be restored to the original state, and the control device of the rotary electric machine can be controlled even when the rotary electric machine 1 is assembled in another mechanical device and the movable range is limited. The error correction amount reference value is automatically obtained. Therefore, the error correction amount reference value can be obtained simply and in a short time without the complicated work of measuring the load device and applying the load to the rotary electric machine. Further, even if the rotary electric machine is incorporated in another mechanical device and the rotary electric machine to be driven is a single unit, the control device for the rotary electric machine can automatically obtain the error correction amount reference value, so that the rotary electric machine 1 is assembled in the other In the state of the mechanical device, the user who uses the control device of the rotary electric machine can obtain the error correction amount reference value for the rotary electric machine to be driven, without relying on an expert such as the control device manufacturer. The high frequency superposition sensorless control can be used to drive the rotating electrical machine.

實施形態5. Embodiment 5.

接著,針對本發明的實施形態5之旋轉電機的控制裝置進行說明。第27圖係用來說明本發明的實施形態5之旋轉電機的控制裝置的動作之說明圖。與第1圖不同之點在 於:第27圖中修正量基準值演算手段71會輸出控制相位修正量c1之點;以及控制手段300具有加法部39,加法部39將推測位置θ 0與修正量基準值演算手段71輸出的控制相位修正量c1相加之點。除此之外的部分都與實施形態1至實施形態4中說明過的一樣,故以下以上述的不同點為主體進行說明。 Next, a control device for a rotating electrical machine according to a fifth embodiment of the present invention will be described. Figure 27 is an explanatory view for explaining the operation of the control device for the rotating electrical machine according to the fifth embodiment of the present invention. The difference from Figure 1 is In the 27th figure, the correction amount reference value calculation means 71 outputs a point for controlling the phase correction amount c1; and the control means 300 has the addition unit 39, and the addition unit 39 outputs the estimated position θ 0 and the correction amount reference value calculation means 71. Controls the point at which the phase correction amount c1 is added. The other points are the same as those described in the first embodiment to the fourth embodiment. Therefore, the differences will be mainly described below.

如在實施形態2及實施形態4中說明過的,會有旋轉電機1由於按照第一電壓指令而流動之第一旋轉電機電流而轉動之情形。實施形態2及實施形態4係藉由輸出第一反電壓指令來使旋轉電機1的轉動量在最小限度,但也有即便如此旋轉電機1仍會轉動之情形。分別輸入第一座標轉換器37、第二座標轉換器(1)38、第二座標轉換器(2)38、第二座標轉換器(3)38之推測位置θ 0係如前述,為位置推測手段5進行初始磁極位置檢測而檢測出的旋轉電機1的檢測位置,所以在旋轉電機1轉動了之情況,第一座標轉換器37會在錯誤的推測位置θ 0進行對於電流檢測手段2檢測出的旋轉電機電流之座標轉換,第二座標轉換器(1)38、第二座標轉換器(2)38、第二座標轉換器(3)38也是,會在錯誤的推測位置θ 0進行對於第一電壓指令產生部34輸出的第一電壓指令及第二電壓指令產生部35輸出的第二電壓指令之座標轉換。結果,就會無法正確地演算出在修正量基準值演算部71演算之誤差修正量基準值c0。 As described in the second embodiment and the fourth embodiment, the rotary electric machine 1 may be rotated by the first rotating electric machine current flowing in accordance with the first voltage command. In the second embodiment and the fourth embodiment, the amount of rotation of the rotary electric machine 1 is minimized by outputting the first reverse voltage command. However, even if the rotary electric machine 1 is rotated, the rotary electric machine 1 may be rotated. The estimated position θ 0 of the first coordinate converter 37, the second coordinate converter (1) 38, the second coordinate converter (2) 38, and the second coordinate converter (3) 38 is input as described above, and is a position estimation. Since the means 5 detects the detected position of the rotary electric machine 1 detected by the initial magnetic pole position detection, the first coordinate converter 37 detects the current detecting means 2 at the erroneous estimated position θ 0 when the rotary electric machine 1 rotates. The coordinate conversion of the rotating motor current, the second coordinate converter (1) 38, the second coordinate converter (2) 38, and the second coordinate converter (3) 38 are also performed at the wrong estimated position θ 0 The first voltage command outputted by the voltage command generating unit 34 and the second voltage command outputted by the second voltage command generating unit 35 are coordinate-converted. As a result, the error correction amount reference value c0 calculated by the correction amount reference value calculation unit 71 cannot be correctly calculated.

因此,本實施形態5係構成為:即使旋轉電 機1轉動了,也可利用修正量基準值演算部71來演算出其轉動的量,且將之輸出作為控制相位修正量c1,然後在加法部39將位置推測手段5進行初始磁極位置檢測所檢測出的旋轉電機1的位置(亦即推測位置θ 0)加上控制相位修正量c1,能夠使第一座標轉換器37、第二座標轉換器(1)38、第二座標轉換器(2)38、第二座標轉換器(3)38在正確的控制相位進行座標轉換。 Therefore, the fifth embodiment is configured to be rotated even if When the machine 1 is rotated, the correction amount reference value calculation unit 71 can calculate the amount of rotation, and output it as the control phase correction amount c1, and then the position estimating means 5 performs the initial magnetic pole position detection in the addition unit 39. The detected position of the rotary electric machine 1 (that is, the estimated position θ 0) plus the control phase correction amount c1 enables the first coordinate converter 37, the second coordinate converter (1) 38, and the second coordinate converter (2) 38. The second coordinate converter (3) 38 performs coordinate conversion at the correct control phase.

以下,針對本發明的實施形態5之旋轉電機的控制裝置的詳細內容進行說明。控制相位修正量c1可為採用任意的方法所得到的,只要能夠知道旋轉電機1的轉動的量即可,例如也可考慮讓位置推測手段5重新進行初始磁極位置檢測之方法。作為其他的方法,本實施形態5將針對以利用電流利薩如圖形而取得之橢圓的傾斜角作為控制相位修正量c1之方法進行說明。 Hereinafter, the details of the control device for the rotating electrical machine according to the fifth embodiment of the present invention will be described. The control phase correction amount c1 can be obtained by an arbitrary method as long as the amount of rotation of the rotary electric machine 1 can be known. For example, a method in which the position estimating means 5 performs the initial magnetic pole position detection again can be considered. As another method, in the fifth embodiment, a method of controlling the phase correction amount c1 by using the inclination angle of the ellipse obtained by using the current Lissajous figure is described.

如前述,在旋轉電機1未發生磁飽和之情況,係如第6圖所示,電流利薩如圖形的長軸方向會與旋轉電機1的勵磁磁鐵的磁通的方向(旋轉電機1的d軸方向)一致。換句話說,橢圓的長軸與d軸所成的角度(亦即橢圓的傾斜角)為零。另一方面,在未發生磁飽和,且電流利薩如圖形的長軸方向與在控制相位做座標轉換而轉換出的d軸(以下將之記為控制d軸)不一致之情況,就表示控制相位有誤差,此誤差即為橢圓的長軸與d軸所成的角度,亦即橢圓的傾斜角。因此,在控制相位做座標轉換而轉換出的d-q軸(以下將之記為控制d-q軸)上,在未發生磁飽和的 狀態取得電流利薩如圖形,再演算出橢圓的傾斜角,就可導出控制相位修正量。 As described above, in the case where the rotary electric machine 1 does not undergo magnetic saturation, as shown in Fig. 6, the direction of the long axis of the current Lissajous figure and the direction of the magnetic flux of the field magnet of the rotary electric machine 1 (the rotation motor 1) The d-axis direction is consistent. In other words, the angle formed by the major axis of the ellipse and the d-axis (ie, the tilt angle of the ellipse) is zero. On the other hand, when magnetic saturation does not occur, and the current Lissajous figure is inconsistent with the d-axis (hereinafter referred to as the control d-axis) converted by the coordinate conversion of the control phase, it indicates control. There is an error in the phase, which is the angle formed by the long axis of the ellipse and the d-axis, that is, the tilt angle of the ellipse. Therefore, on the d-q axis (hereinafter referred to as the control d-q axis) converted by controlling the phase coordinate conversion, magnetic saturation does not occur. The state obtains the current Lissajous figure, and then calculates the tilt angle of the ellipse to derive the control phase correction amount.

因此,本實施形態5按照如第28圖之流程圖所示的流程,求出相對於個轉矩電流之誤差修正量基準值。第28圖係用來說明本發明的實施形態5之旋轉電機的控制裝置的動作之流程圖。第28圖之流程圖,係在作為前述的實施形態4的流程圖之第26圖之流程圖上,追加了步驟S59至步驟S511(亦即(200)至(202))者,除此之外都與第26圖之流程圖一樣。亦即,第28圖之流程圖中的步驟S51至步驟S58與第26圖之流程圖中的步驟S41至步驟S48一樣,第28圖之流程圖中的步驟S512至步驟S517與第26圖之流程圖中的步驟S49至步驟S414一樣。 Therefore, in the fifth embodiment, the error correction amount reference value with respect to each torque current is obtained in accordance with the flow shown in the flowchart of Fig. 28. Fig. 28 is a flow chart for explaining the operation of the control device for the rotating electrical machine according to the fifth embodiment of the present invention. In the flowchart of Fig. 28, steps S59 to S511 (i.e., (200) to (202)) are added to the flowchart of Fig. 26 of the flowchart of the fourth embodiment, except that The outside is the same as the flowchart of Figure 26. That is, steps S51 to S58 in the flowchart of FIG. 28 are the same as steps S41 to S48 in the flowchart of FIG. 26, and steps S512 to S517 and FIG. 26 in the flowchart of FIG. Steps S49 to S414 in the flowchart are the same.

實施形態1至4中說明過的第二電壓指令,係用來測定電流利薩如圖形之電壓指令,按照此電壓指令而流動之電流並不會使旋轉電機1發生磁飽和。亦即,第二電壓指令可沿用作為控制相位修正用電壓指令。因此,在第28圖所示之流程圖中,在步驟S58輸出第一反電壓指令之動作(100)之後,在步驟S59進行輸出n個第二電壓指令之動作(200)。 The second voltage command described in the first to fourth embodiments is for measuring a voltage command of a current Lissajous figure, and the current flowing according to the voltage command does not cause magnetic saturation of the rotary electric machine 1. That is, the second voltage command can be used as the voltage command for controlling the phase correction. Therefore, in the flowchart shown in Fig. 28, after the operation (100) of the first back voltage command is output in step S58, the operation (200) of outputting the n second voltage commands is performed in step S59.

為了區別步驟S59之動作(200)所輸出的n個第二電壓指令、與步驟S56之動作(5)所輸出的第二電壓指令,將步驟S59之動作(200)所輸出的第二電壓指令稱為控制相位修正用電壓指令。此處控制相位修正用電壓指令雖為n個,但其數目可不是n個,只要n在2以上且可以 良好精度從電流利薩如圖形求出橢圓的傾斜度即可,n可為任何數目。 In order to distinguish the n second voltage commands outputted by the action (200) of the step S59 and the second voltage command outputted by the action (5) of the step S56, the second voltage command outputted by the action (200) of the step S59 is performed. It is called a voltage command for controlling phase correction. Here, although there are n voltage control phase correction commands, the number may be n, as long as n is 2 or more and Good precision can be obtained from the current Lissajous figure as the angle of the ellipse, and n can be any number.

輸出n個控制相位修正用電壓指令之後,係根據n個控制相位修正用電壓指令使電壓從電壓施加手段4施加至旋轉電機1,然後使用因此而流至旋轉電機1之n個電流(已下將此稱為控制相位修正用旋轉電機電流),以將之擬合(fitting)至表示橢圓方程式的基本形之前述的式(19)之方式計算出橢圓的傾斜角而計算出控制相位修正量。進行此計算的係步驟S510之動作(201)。然後,利用步驟S511之動作(202)在加法部39將推測位置θ 0及控制相位修正量c1相加起來。 After n pieces of control phase correction voltage commands are output, voltages are applied from the voltage application means 4 to the rotary electric machine 1 based on the n control phase correction voltage commands, and then n currents flowing to the rotary electric machine 1 are used (below This is called a control phase correction rotary electric machine current, and the control phase correction amount is calculated by fitting the inclination angle of the ellipse to the equation (19) which represents the basic form of the elliptic equation. Performing this calculation is the action of step S510 (201). Then, the adder 39 adds the estimated position θ 0 and the control phase correction amount c1 by the operation (202) of step S511.

第29圖係用來說明本發明的實施形態5之旋轉電機的控制裝置的動作之說明圖,其中利用時間序列波形的一部分來顯示第28圖之流程圖的處理。第29圖顯示在[m=2],[n=1]及[n=2]時的電壓指令vd,vq及電流id,iq的時間序列波形。具體而言,A係d軸電壓指令的時間序列波形,B係q軸電壓指令的時間序列波形,C係d軸電流的時間序列波形,D係q軸電流的時間序列波形。 Fig. 29 is an explanatory view for explaining the operation of the control device for the rotary electric machine according to the fifth embodiment of the present invention, in which the processing of the flowchart of Fig. 28 is displayed using a part of the time-series waveform. Figure 29 shows the time series waveforms of the voltage commands vd, vq and current id, iq at [m = 2], [n = 1] and [n = 2]. Specifically, the time series waveform of the A-system d-axis voltage command, the time series waveform of the B-system q-axis voltage command, the time-series waveform of the C-system d-axis current, and the time-series waveform of the D-system q-axis current.

在第29圖中的[n=1],第一電壓指令V1_cnt之後的<1>、<2>、<3>、<4>、<5>、及<6>係控制相位修正用電壓指令,輸出第14圖的[n=6]之電壓指令。又,根據第29圖中以星號表示之控制相位修正用電壓指令而流至旋轉電機1之旋轉電機電流,係為控制相位修正用旋轉電機電流。在輸出第29圖的時間序列波形的[n=1]之<6>,亦 即最後的控制相位修正用電壓指令後到[n=2]為止的期間,使用控制相位修正用旋轉電機電流來演算出橢圓的傾斜角,亦即控制相位修正量,進而將推測位置θ 0及控制相位修正量c1相加起來。藉由此處理,即使按照[n=1]之第一電壓指令V1之第一旋轉電機電流流動,使得旋轉電機1轉動了,也可在[n=2]之時,使用以[n=1]中演算出的控制相位修正量c1加以修正過的控制位置進行座標轉換,所以不會受到旋轉電機1轉動了之影響,可在正確的d-q軸上進行電壓指令之產生及旋轉電機電流之處理。 In [n=1] in Fig. 29, <1>, <2>, <3>, <4>, <5>, and <6> after the first voltage command V1_cnt are used to control the phase correction voltage command. , output the voltage command of [n=6] in Fig. 14. Further, the rotary electric machine current flowing to the rotary electric machine 1 by the control phase correction voltage command indicated by an asterisk in Fig. 29 is used to control the phase correction rotary electric machine current. Outputting <6 of [n=1] of the time series waveform of Fig. 29, In the period from the last control phase correction voltage command to [n=2], the tilt angle of the ellipse is calculated using the phase motor for controlling the phase correction, that is, the phase correction amount is controlled, and the estimated position θ 0 and The control phase correction amount c1 is added up. By this processing, even if the first rotating electrical machine current according to the first voltage command V1 of [n=1] causes the rotating electrical machine 1 to rotate, it can be used at [n=2], [n=1 The calculated control phase correction amount c1 is converted to the corrected control position for coordinate conversion. Therefore, the rotation of the rotary electric machine 1 is not affected, and the voltage command can be generated on the correct dq axis and the rotary motor current can be processed. .

如上述,藉由重複第28圖所示之動作(3)至(202)之一連串的動作,可一直在正確的d-q軸上進行電壓指令之產生及旋轉電機電流之處理,所以能以良好精度求出誤差修正量基準值。第一電壓指令、第二電壓指令、第一反電壓指令為[m×n]個,所以該一連串的動作係進行[m×n]次。 As described above, by repeating the series of operations (3) to (202) shown in Fig. 28, the voltage command can be generated and the rotary motor current can be processed on the correct dq axis, so that the accuracy can be improved. Find the error correction amount reference value. Since the first voltage command, the second voltage command, and the first reverse voltage command are [m×n], the series of operations are performed [m×n] times.

如以上所述,本發明的實施形態5之旋轉電機的控制裝置,係為了使m種類的轉矩電流流動,準備大小及方向為m種類的第一電壓指令,且進行[m×n]次:從控制手段3輸出[m×n]個之中的一個第一電壓指令,隨後立即從控制手段3依序輸出用來取得電流利薩如圖形之任意的大小且包含n個方向之[m×n]個電壓指令,亦即[m×n]個第二電壓指令之中的一個,隨即再輸出與在輸出第二電壓指令之前輸出的第一電壓指令相反相位之第一反電壓指令,再隨即輸出n個包含n個方向之第二電壓指令之一連 串的動作,因此即使按照第一電壓指令而流至旋轉電機1之第一旋轉電機電流使旋轉電機1轉動了,也可以良好精度求出相對於m種類的轉矩電流之位置誤差θ err或位置誤差修正量|iqh_ref|。 As described above, the control device for the rotating electrical machine according to the fifth embodiment of the present invention prepares the first voltage command of the m type and the size in order to flow the m type torque current, and performs [m × n] times. : outputting one of the [m×n] first voltage commands from the control means 3, and then immediately outputting from the control means 3 sequentially to obtain an arbitrary size of the current Lissajous figure and including n directions [m ×n] one voltage command, that is, one of [m×n] second voltage commands, and then outputting a first counter voltage command opposite to the first voltage command outputted before the output of the second voltage command, Then output one of the second voltage commands containing n directions Since the operation of the string is performed, even if the first rotating electrical machine current flowing to the rotary electric machine 1 according to the first voltage command causes the rotary electric machine 1 to rotate, the position error θ err of the torque current with respect to the m type can be obtained with good precision or Position error correction amount |iqh_ref|.

因此,無需如以往準備負載裝置及進行一邊施加負載給旋轉電機一邊量測之繁雜的作業,就可簡單且短時間地求出誤差修正量基準值。而且,即使事前不能取得要作為驅動對象之旋轉電機,旋轉電機的控制裝置也可自動地求出誤差修正量基準值,所以使用旋轉電機的控制裝置之使用者(user)自己就可求出與作為驅動對象之旋轉電機配合之誤差修正量基準值,因而旋轉電機的控制裝置之製造商(maker)即使事前不能取得要作為驅動對象之旋轉電機,也可利用高頻疊加無感測器控制來驅動旋轉電機。 Therefore, the error correction amount reference value can be obtained simply and in a short time without the complicated work of measuring the load device and applying the load to the rotary electric machine. Further, even if the rotary electric machine to be driven is not obtained in advance, the control device for the rotary electric machine can automatically obtain the error correction amount reference value, so that the user using the control device of the rotary electric machine can obtain the As a reference value of the error correction amount of the rotating motor to be driven, the manufacturer of the control device for the rotating electrical machine can use the high-frequency superimposed sensorless control even if the rotating electric machine to be driven is not obtained in advance. Drive the rotating motor.

實施形態6. Embodiment 6.

接著,針對本發明的實施形態6之旋轉電機的控制裝置進行說明。第30圖係用來說明本發明的實施形態6之旋轉電機的控制裝置的動作之流程圖。誤差修正量基準值c0雖會隨著旋轉電機的種類、容量等之不同而不同,但基本上只要是同一個旋轉電機,誤差修正量基準值c0就不變。亦即,可只針對初次驅動的旋轉電機進行誤差修正量基準值c0之演算處理。因此,如第30圖所示,利用步驟S61判定是否為初次驅動的旋轉電機,若為初次驅動的旋轉電 機(步驟S61的結果為“是”),才在步驟S62進行誤差修正量基準值c0之演算處理。如此判定要不要實施誤差修正量基準值c0之演算,可在旋轉電機1之起動時防止無謂的處理及時間之浪費。 Next, a control device for a rotating electrical machine according to a sixth embodiment of the present invention will be described. Figure 30 is a flow chart for explaining the operation of the control device for a rotating electrical machine according to Embodiment 6 of the present invention. Although the error correction amount reference value c0 differs depending on the type and capacity of the rotary electric machine, basically, the error correction amount reference value c0 does not change as long as it is the same rotating electric machine. That is, the calculation processing of the error correction amount reference value c0 can be performed only for the first-time rotating motor. Therefore, as shown in Fig. 30, it is determined in step S61 whether it is the first-time rotating electric machine, and if it is the first-time rotating electric power If the result is "YES" in step S61, the arithmetic processing of the error correction amount reference value c0 is performed in step S62. In this way, it is determined whether or not the calculation of the error correction amount reference value c0 is to be performed, and unnecessary processing and waste of time can be prevented at the start of the rotary electric machine 1.

實施形態7. Embodiment 7.

接著,針對本發明的實施形態7之旋轉電機的控制裝置進行說明。實施形態7係使m種類的第一電壓指令的大小隨著m之增大而漸漸增大、或漸漸減小。要實現如此的變化形態,可在設定前述的第18圖、第22圖、第24圖、第26圖、第28圖的轉矩電流Itrq(m)時,使轉矩電流指令Itrq(m)隨著m之增大而漸漸增大、或漸漸減小。 Next, a control device for a rotating electrical machine according to a seventh embodiment of the present invention will be described. In the seventh embodiment, the magnitude of the first voltage command of the m type is gradually increased or decreased gradually as m increases. To achieve such a change, the torque current command Itrq(m) can be set when the torque current Itrq(m) of the above-described 18th, 22nd, 24th, 26th, and 28thth views is set. As m increases, it gradually increases, or gradually decreases.

使轉矩電流指令Itrq(m)隨著m之增大而漸漸增大之情況,係若想要使之隨著m之加1而變化之轉矩電流指令的變化量為△itrq的話,則只要如以下的式(22)設定轉矩電流指令Itrq(m)即可。 When the torque current command Itrq(m) gradually increases as m increases, if the amount of change in the torque current command that is to be changed by the addition of m is Δitrq, then The torque current command Itrq(m) may be set as in the following equation (22).

I trq (m)=△I trq m...式(22) I trq ( m )=△ I trq . m . . . Equation (22)

使轉矩電流指令Itrq(m)隨著m之增大而漸漸減小之情況,則是只要如以下的式(23)進行設定即可。 When the torque current command Ifrq(m) is gradually decreased as m increases, the setting may be performed by the following equation (23).

I trq (m)=△I trq .(m max-m)...式(23) I trq ( m )=△ I trq . ( m max - m ). . . Equation (23)

m max為m的最大設定值 m max is the maximum setting of m

如以上所述,本發明的實施形態7之旋轉電機的控制裝置,係在變更m種類的第一電壓指令的種類時,使第一電壓指令的大小漸漸增大、或漸漸減小,不僅處理順序會變得較容易理解,而且會使記憶的第一旋轉電機電流及第二旋轉電機電流的大小按照大小順序,所以可使處理簡單化而抑制演算量。 As described above, in the control device for the rotating electrical machine according to the seventh embodiment of the present invention, when the type of the first voltage command of the m type is changed, the magnitude of the first voltage command is gradually increased or gradually decreased, and not only the processing is performed. The order becomes easier to understand, and the size of the first rotating motor current and the second rotating machine current that are memorized is sequentially changed, so that the processing can be simplified and the amount of calculation can be suppressed.

本發明並不限定於前述的實施形態1至實施形態7,還可在未脫離本發明的主旨之範圍內,適當地將各實施形態予以組合,或在其構成上增加一些變化、或將其構成的一部分予以省略。 The present invention is not limited to the above-described first embodiment to the seventh embodiment, and various embodiments may be combined as appropriate, or some changes may be added to the configuration or may be added thereto without departing from the spirit of the invention. A part of the configuration is omitted.

(產業上的可利用性) (industrial availability)

本發明可利用於製造或使用旋轉電機的控制裝置之領域、及利用於製造或使用要採用該控制裝置的旋轉電機之領域、以及利用於要採用該旋轉電機的控制裝置及使用了該控制裝置的旋轉電機之產業領域。 The present invention can be utilized in the field of manufacturing or using a control device for a rotating electrical machine, in the field of manufacturing or using a rotating electrical machine to be used with the control device, and in a control device for using the rotating electrical machine and using the same. The industrial field of rotating electrical machines.

1‧‧‧旋轉電機 1‧‧‧Rotating motor

2‧‧‧電流檢測手段 2‧‧‧ Current detection means

3‧‧‧控制手段 3‧‧‧Control means

4‧‧‧電壓施加手段 4‧‧‧Voltage application means

5‧‧‧位置推測手段 5‧‧‧Location speculation

6‧‧‧修正量輸出手段 6‧‧‧corrected output means

7‧‧‧修正量基準值演算手段 7‧‧‧corrected reference value calculation method

31‧‧‧基本電壓指令產生部 31‧‧‧Basic Voltage Command Generation Department

32‧‧‧高頻電壓指令產生部 32‧‧‧High Frequency Voltage Command Generation Department

33‧‧‧加法部 33‧‧‧Addition Department

34‧‧‧第一電壓指令產生部 34‧‧‧First Voltage Command Generation Department

35‧‧‧第二電壓指令產生部 35‧‧‧Second voltage command generation unit

36‧‧‧電壓指令選擇部 36‧‧‧Voltage Command Selection Department

37‧‧‧第一座標轉換器 37‧‧‧First coordinate converter

381‧‧‧第二座標轉換器(1) 381‧‧‧Second coordinate converter (1)

382‧‧‧第二座標轉換器(2) 382‧‧‧Second coordinate converter (2)

383‧‧‧第二座標轉換器(3) 383‧‧‧Second coordinate converter (3)

1000‧‧‧旋轉電機的控制裝置 1000‧‧‧Rotary motor control unit

θ 0‧‧‧推測位置 θ 0‧‧‧ Speculated position

c‧‧‧誤差修正量 C‧‧‧error correction

c0‧‧‧誤差修正量基準值 C0‧‧‧Error correction reference value

id‧‧‧d軸上的旋轉電機電流 Rotating motor current on the id‧‧‧d axis

iq‧‧‧q軸上的旋轉電機電流 Rotating motor current on the iq‧‧‧q axis

iu、iv、iw‧‧‧旋轉電機電流 Iu, iv, iw‧‧‧ rotating motor current

ω 0r‧‧‧推測速度 ω 0r‧‧‧ speculation speed

ω *‧‧‧速度指令 ω *‧‧‧ speed command

vus、vvs、vws‧‧‧三相基本電壓指令 Vus, vvs, vws‧‧‧ three-phase basic voltage command

vd1‧‧‧d軸上的第一電壓指令 First voltage command on the vd1‧‧‧d axis

vd2‧‧‧d軸上的第二電壓指令 Second voltage command on the vd2‧‧‧d axis

vdh‧‧‧d軸上的高頻電壓3指令 High frequency voltage 3 command on vdh‧‧‧d axis

vds‧‧‧d軸上的基本電壓指令 Basic voltage command on the vds‧‧‧d axis

vq1‧‧‧q軸上的第一電壓指令 First voltage command on the vq1‧‧‧q axis

vq2‧‧‧q軸上的第二電壓指令 Second voltage command on the vq2‧‧‧q axis

vqh‧‧‧q軸上的高頻電壓指令 High frequency voltage command on the vqh‧‧‧q axis

vqs‧‧‧q軸上的基本電壓指令 Basic voltage command on the vqs‧‧‧q axis

vu1、vv1、vw1‧‧‧三相第一電壓指令 Vu1, vv1, vw1‧‧‧ three-phase first voltage command

vu2、vv2、vw2‧‧‧三相第二電壓指令 Vu2, vv2, vw2‧‧‧ three-phase second voltage command

Claims (18)

一種旋轉電機的控制裝置,係控制具備有轉子及定子之旋轉電機者,該轉子具有場磁極,該定子具有電樞繞組,該控制裝置係具備有:構成為檢測流至前述旋轉電機的電樞繞組之電流之電流檢測手段;輸出要施加至前述旋轉電機的電樞繞組之電壓的指令值,亦即電壓指令之控制手段;根據從前述控制手段輸出之前述電壓指令,施加電壓至前述旋轉電機的電樞繞組之電壓施加手段;推測前述旋轉電機的轉子的旋轉位置之位置推測手段;以及將作為修正前述位置推測手段所推測的推測位置的誤差之基準值之誤差修正量基準值,因應前述電流設為誤差修正量而輸出至前述位置推測手段之修正量輸出手段,前述位置推測手段係構成為根據流至前述電樞繞組之電流及前述誤差修正量來推測前述轉子的位置,前述控制手段係具備有:輸出第一電壓指令作為電壓指令之第一電壓指令產生部,其中該第一電壓指令係任意的大小且任意的方向之電壓指令;輸出任意的大小且包含n個方向(n為2以上的自然數)之第二電壓指令作為電壓指令之第二電壓指令產 生部;以及根據由於施加按照前述第一電壓指令之電壓至前述旋轉電機的電樞而流動的第一旋轉電機電流、及由於施加按照前述第二電壓指令之電壓至前述旋轉電機而流動的第二旋轉電機電流,演算前述誤差修正量基準值之修正量基準值演算手段。 A control device for a rotating electrical machine is for controlling a rotating electric machine including a rotor having a field pole, the stator having an armature winding, and the control device comprising: an armature configured to detect flow to the rotating electrical machine a current detecting means for outputting a current of the winding; outputting a command value to be applied to a voltage of the armature winding of the rotating electrical machine, that is, a control means of the voltage command; applying a voltage to the rotating electric machine according to the voltage command outputted from the control means The voltage application means of the armature winding; the position estimation means for estimating the rotational position of the rotor of the rotating electrical machine; and the error correction amount reference value as a reference value for correcting the error of the estimated position estimated by the position estimating means, The correction amount output means for outputting the error correction amount to the position estimating means, wherein the position estimating means is configured to estimate the position of the rotor based on the current flowing through the armature winding and the error correction amount, and the control means The system has: outputting a first voltage command as a voltage The first voltage command generating unit, wherein the first voltage command is a voltage command of an arbitrary size and an arbitrary direction; and outputting a second voltage command of an arbitrary size and including n directions (n is a natural number of 2 or more) As the second voltage command of the voltage command And a first rotating electric machine current flowing according to an armature of the rotating electric machine by applying a voltage according to the first voltage command, and a flow flowing to the rotating electric machine by applying a voltage according to the second voltage command The second rotating electrical machine current is used to calculate the correction amount reference value calculation means for the aforementioned error correction amount reference value. 如申請專利範圍第1項所述之旋轉電機的控制裝置,其中,前述第二電壓指令產生部係構成為在前述第一電壓指令產生部輸出前述第一電壓指令後,輸出n個前述包含n個方向之第二電壓指令。 The control device for a rotating electrical machine according to claim 1, wherein the second voltage command generating unit is configured to output n pieces of the n after the first voltage command generating unit outputs the first voltage command. The second voltage command in one direction. 如申請專利範圍第2項所述之旋轉電機的控制裝置,其中,前述第一電壓指令產生部係構成為在前述第二電壓指令產生部輸出前述n個第二電壓指令後,輸出與前述第一電壓指令為反方向之第一反電壓指令。 The control device for a rotating electrical machine according to claim 2, wherein the first voltage command generating unit is configured to output the nth second voltage command after the second voltage command generating unit outputs the A voltage command is the first reverse voltage command in the reverse direction. 一種旋轉電機的控制裝置,係控制具備有轉子及定子之旋轉電機者,該轉子具有由永久磁鐵所構成的磁極,該定子具有電樞繞組,該控制裝置係具備有:構成為檢測流至前述旋轉電機的電樞繞組之電流之電流檢測手段;輸出要施加至前述旋轉電機的電樞繞組之電壓的指令值,亦即電壓指令之控制手段;根據從前述控制手段輸出之前述電壓指令,施加電 壓至前述旋轉電機的電樞繞組之電壓施加手段;推測前述旋轉電機的轉子的旋轉位置之位置推測手段;以及將作為修正前述位置推測手段所推測的推測位置的誤差之基準值之誤差修正量基準值,因應前述電流設為誤差修正量而輸出至前述位置推測手段之修正量輸出手段,前述位置推測手段係構成為根據流至前述電樞繞組之電流及前述誤差修正量來推測前述轉子的位置,前述控制手段係具備有:輸出任意的方向且任意的大小之[m×n]個(m為「1」以上的自然數)第一電壓指令作為電壓指令之第一電壓指令產生部;輸出任意的大小且包含n個方向之第二電壓指令作為電壓指令之第二電壓指令產生部;以及根據由於施加按照前述第一電壓指令之電壓至前述旋轉電機而流動的第一旋轉電機電流、及由於施加按照前述第二電壓指令之電壓至前述旋轉電機而流動的第二旋轉電機電流,演算前述誤差修正量基準值之修正量基準值演算手段。 A control device for a rotating electrical machine controls a rotating electric machine including a rotor and a stator, the rotor having a magnetic pole formed of a permanent magnet, the stator having an armature winding, the control device being configured to detect flow to the foregoing a current detecting means for a current of an armature winding of the rotating electrical machine; a command value for outputting a voltage to be applied to an armature winding of the rotating electrical machine, that is, a control means of the voltage command; and applying the voltage command outputted from the control means Electricity a voltage applying means for pressing the armature winding of the rotating electrical machine; a position estimating means for estimating a rotational position of the rotor of the rotating electrical machine; and an error correcting amount of a reference value as an error of the estimated position estimated by the position estimating means The reference value is output to the correction amount output means of the position estimating means in response to the current being the error correction amount, and the position estimating means is configured to estimate the rotor based on the current flowing through the armature winding and the error correction amount. In the position, the control means includes a first voltage command generating unit that outputs an arbitrary direction of [m×n] (m is a natural number of “1” or more) as a voltage command; Outputting a second voltage command generating unit of an arbitrary size and including a second voltage command in n directions as a voltage command; and a first rotating electric machine current flowing according to a voltage applied to the rotating electric machine according to a voltage of the first voltage command, And flowing by applying a voltage according to the aforementioned second voltage command to the rotating electric machine Correcting the rotary electric machine currents, calculating the error correction amount reference value amount reference value calculation means. 如申請專利範圍第4項所述之旋轉電機的控制裝置,其中,前述控制手段係構成為:以在使前述第一電壓指令產生部輸出[m×n]個第一電壓指令之中的一個之後,使 前述第二電壓指令產生部輸出前述n個方向的第二電壓指令之中的一個之動作作為電壓輸出模式,而進行[m×n]次前述電壓輸出模式。 The control device for a rotating electrical machine according to claim 4, wherein the control means is configured to cause the first voltage command generating unit to output one of [m × n] first voltage commands. After making The second voltage command generating unit outputs one of the second voltage commands in the n directions as a voltage output mode, and performs the (m×n)th voltage output mode. 如申請專利範圍第4項所述之旋轉電機的控制裝置,其中,前述控制手段係構成為:在使前述第一電壓指令產生部輸出[m×n]個第一電壓指令之中的一個之後,使前述第二電壓指令產生部輸出前述n個方向的第二電壓指令之中的一個,前述第一電壓指令產生部係構成為:以在前述第二電壓指令被輸出之後輸出與在前述第二電壓指令之前輸出的前述第一電壓指令為反方向之第一反電壓指令之動作作為電壓輸出模式,而進行[m×n]次前述電壓輸出模式。 The control device for a rotating electrical machine according to claim 4, wherein the control means is configured to: after the first voltage command generating unit outputs one of [m × n] first voltage commands The second voltage command generating unit outputs one of the second voltage commands in the n directions, and the first voltage command generating unit is configured to output the second voltage command after the second voltage command is output. The first voltage command outputted before the two voltage command is an operation of the first reverse voltage command in the reverse direction as the voltage output mode, and the voltage output mode is performed [m×n] times. 如申請專利範圍第4項所述之旋轉電機的控制裝置,其中,前述控制手段係構成為:在使前述第一電壓指令產生部輸出[m×n]個第一電壓指令之中的一個之後,使前述第二電壓指令產生部輸出前述n個方向的第二電壓指令之中的一個,前述第一電壓指令產生部係構成為:在前述第二電壓指令被輸出之後輸出與在前述第二電壓指令之前輸出的前述第一電壓指令為反方向之第一反電壓指令,前述第二電壓指令產生部係構成為:以在前述第一 反電壓指令被輸出之後輸出n個n個方向的第二電壓指令之動作作為電壓輸出模式,而進行[m×n]次前述電壓輸出模式。 The control device for a rotating electrical machine according to claim 4, wherein the control means is configured to: after the first voltage command generating unit outputs one of [m × n] first voltage commands And causing the second voltage command generating unit to output one of the second voltage commands in the n directions, wherein the first voltage command generating unit is configured to output the second voltage command and output the second voltage command The first voltage command outputted before the voltage command is a first reverse voltage command in a reverse direction, and the second voltage command generating portion is configured to be in the first After the back voltage command is output, the operation of the nth voltage command in the n n directions is output as the voltage output mode, and the voltage output mode is performed [m×n] times. 如申請專利範圍第4至7項中任一項所述之旋轉電機的控制裝置,其中,前述[m×n]個第一電壓指令係構成為:大小及方向有m種類,且[m×n]個之中相同大小且相同方向之第一電壓指令為n個。 The control device for a rotating electrical machine according to any one of claims 4 to 7, wherein the [m×n] first voltage commands are configured to have m types in size and direction, and [m× The first voltage commands of the same size and the same direction among n are n. 如申請專利範圍第5至7項中任一項所述之旋轉電機的控制裝置,其中,前述控制手段輸出之前述[m×n]個電壓輸出模式係構成為:各電壓模式中之前述第一電壓指令的方向及大小、與前述第二電壓指令的方向及大小之組合,係在前述[m×n]個全都不相同。 The control device for a rotating electrical machine according to any one of claims 5 to 7, wherein the [m×n] voltage output modes output by the control means are configured as described in each of the voltage modes. The combination of the direction and size of a voltage command and the direction and size of the second voltage command are all different in the above [m×n]. 如申請專利範圍第9項所述之旋轉電機的控制裝置,其中,前述修正量基準值演算手段係構成為:針對m種類的第一電壓指令的每一個分別進行下列處理:將按照在大小及方向相同之n個第一電壓指令被輸出之後輸出的前述n個方向的第二電壓指令而流至前述旋轉電機之n個前述第二旋轉電機電流予以座標轉換到正交的二軸上而得到的n個第二旋轉電機電流的軌跡視為橢圓,然後根據前述正交的二軸的任一方的軸與橢圓的長軸或短軸的任一方所成之角度,演算前述誤差修正量 基準值之處理,以演算與按照前述m種類的第一電壓指令而流至前述旋轉電機之m種類的第一旋轉電機電流相對應之m個誤差修正量基準值。 The control device for a rotating electrical machine according to claim 9, wherein the correction amount reference value calculation means is configured to perform the following processing for each of the m type first voltage commands: The n first voltage commands outputted in the same direction are outputted, and the second voltage commands in the n directions are output to the n second rotating motor currents of the rotating electrical machine, and the coordinates are converted to orthogonal two axes to obtain The trajectory of the n second rotating electrical machine currents is regarded as an ellipse, and then the error correction amount is calculated according to the angle formed by either one of the orthogonal two axes and one of the major or minor axes of the ellipse. The processing of the reference value calculates the m error correction amount reference values corresponding to the first rotating electric machine current of the m type of the rotating electric machine in accordance with the first voltage command of the m type. 如申請專利範圍第9項所述之旋轉電機的控制裝置,其中,前述修正量基準值演算手段係構成為:針對m種類的第一電壓指令的每一個分別下述處理:將按照在大小及方向相同之n個第一電壓指令被輸出之後輸出的前述n個方向的第二電壓指令而流至前述旋轉電機之n個前述第二旋轉電機電流予以座標轉換到正交的二軸上而得到的n個第二旋轉電機電流的軌跡視為橢圓,然後根據前述橢圓的長軸與短軸的長度、以及正交的二軸的任一方的軸與橢圓的長軸或短軸的任一方所成之角度,演算前述誤差修正量基準值之處理,以演算與按照m種類的第一電壓指令而流至前述旋轉電機之m種類的第一旋轉電機電流相對應之m個誤差修正量基準值。 The control device for a rotating electrical machine according to claim 9, wherein the correction amount reference value calculation means is configured to perform processing for each of the m type first voltage commands: The n first voltage commands outputted in the same direction are outputted, and the second voltage commands in the n directions are output to the n second rotating motor currents of the rotating electrical machine, and the coordinates are converted to orthogonal two axes to obtain The trajectory of the n second rotating electrical machine currents is regarded as an ellipse, and then according to the length of the major axis and the minor axis of the ellipse, and either one of the orthogonal two axes and one of the major or minor axes of the ellipse From the perspective of the calculation, the calculation of the error correction amount reference value is performed to calculate m error correction amount reference values corresponding to the m type first rotating electric machine currents of the m type according to the m type first voltage command . 如申請專利範圍第2至7項中任一項所述之旋轉電機的控制裝置,其中,前述控制手段係構成為:在按照在前述第二電壓指令之前輸出之前述第一電壓指令而流至前述旋轉電機之第一旋轉電機電流流動的期間,輸出前述第二電壓指令。 The control device for a rotating electrical machine according to any one of claims 2 to 7, wherein the control means is configured to flow to the first voltage command outputted before the second voltage command The second voltage command is output while the first rotating electrical machine current of the rotating electrical machine flows. 如申請專利範圍第1至7項中任一項所述之旋轉電機的控制裝置,其中, 前述第一電壓指令的大小,係設定成讓前述電壓施加手段的容許範圍內的電流流至前述旋轉電機的電樞。 The control device for a rotating electrical machine according to any one of claims 1 to 7, wherein The magnitude of the first voltage command is set such that a current within an allowable range of the voltage application means flows to an armature of the rotating electrical machine. 如申請專利範圍第8項所述之旋轉電機的控制裝置,其中,前述m種類的第一電壓指令係構成為:在變更其種類時,使前述第一電壓指令的大小漸漸增大、或漸漸減小。 The control device for a rotating electrical machine according to claim 8, wherein the m type first voltage command is configured to gradually increase a size of the first voltage command or gradually increase the type of the first voltage command. Reduced. 如申請專利範圍第1至7項中任一項所述之旋轉電機的控制裝置,其中,前述第二電壓指令的大小係全都相同。 The control device for a rotating electrical machine according to any one of claims 1 to 7, wherein the second voltage command has the same size. 如申請專利範圍第1至7項中任一項所述之旋轉電機的控制裝置,其中,前述第二電壓指令的方向,係在電氣角上相間隔360/n度之n個方向。 The control device for a rotating electrical machine according to any one of claims 1 to 7, wherein the direction of the second voltage command is in the n directions of 360/n degrees in the electrical angle. 如申請專利範圍第1至7項中任一項所述之旋轉電機的控制裝置,其中,前述控制手段係構成為具有:演算要施加至前述旋轉電機之電壓的目標值,亦即驅動電壓指令之電壓指令產生部;產生包含與前述旋轉電機的驅動頻率不同的頻率之高頻電壓指令之高頻電壓指令產生部;將前述驅動電壓指令與前述高頻電壓指令相加而作為電壓指令予以輸出之加法部;以及將前述加法部的輸出、前述第一電壓指令產生部的輸出及前述第二電壓指令產生部的輸出予以輸入之電壓指令選擇部;在演算前述誤差修正 量基準值時,由前述電壓指令選擇部選擇前述第一電壓指令產生部的輸出及前述第二電壓指令產生部的輸出之中的任一者,以之作為前述電壓指令而輸出至前述電壓施加手段,在演算前述誤差修正量基準值時以外的時期,係由前述電壓指令選擇部選擇前述加法部的輸出並以之作為前述電壓指令而予以輸出,前述位置推測手段係構成為:根據按照前述電壓指令而產生之前述旋轉電機的前述旋轉電機電流中包含的與前述高頻電壓指令為相同頻率的成分之旋轉電機電流、及前述誤差修正量來推測前述旋轉電機的前述轉子位置。 The control device for a rotating electrical machine according to any one of claims 1 to 7, wherein the control means is configured to have a target value for calculating a voltage to be applied to the rotating electrical machine, that is, a driving voltage command a voltage command generating unit that generates a high-frequency voltage command generating unit that includes a high-frequency voltage command having a frequency different from a driving frequency of the rotating electrical machine; and adds the driving voltage command to the high-frequency voltage command to output the voltage command And an addition unit that inputs an output of the addition unit, an output of the first voltage command generation unit, and an output of the second voltage command generation unit; and the error correction is performed When the reference value is used, the voltage command selection unit selects one of the output of the first voltage command generating unit and the output of the second voltage command generating unit, and outputs the voltage command to the voltage application as the voltage command. In a period other than when the error correction amount reference value is calculated, the voltage command selection unit selects an output of the addition unit and outputs the result as a voltage command, and the position estimation means is configured to The rotor motor current of the component having the same frequency as the high-frequency voltage command included in the rotating electric machine current of the rotating electric machine generated by the voltage command and the error correction amount are used to estimate the rotor position of the rotating electrical machine. 如申請專利範圍第1至7項中任一項所述之旋轉電機的控制裝置,其中,演算前述誤差修正量基準值之處理,係在初次驅動前述旋轉電機時,只在驅動前述旋轉電機之前進行。 The control device for a rotating electrical machine according to any one of claims 1 to 7, wherein the calculation of the error correction amount reference value is performed only when the rotary motor is driven for the first time before the rotary motor is driven. get on.
TW105132878A 2016-08-02 2016-10-12 Control device for rotating electrical machine TWI631812B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
??PCT/JP2016/072590 2016-08-02
PCT/JP2016/072590 WO2018025319A1 (en) 2016-08-02 2016-08-02 Control device for rotating electric machine

Publications (2)

Publication Number Publication Date
TW201806305A true TW201806305A (en) 2018-02-16
TWI631812B TWI631812B (en) 2018-08-01

Family

ID=61073813

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105132878A TWI631812B (en) 2016-08-02 2016-10-12 Control device for rotating electrical machine

Country Status (3)

Country Link
JP (1) JP6541887B2 (en)
TW (1) TWI631812B (en)
WO (1) WO2018025319A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7161319B2 (en) 2018-06-20 2022-10-26 キヤノン株式会社 Motor control device and image forming device
CN111049434B (en) * 2019-11-26 2021-08-03 北方工业大学 Position demodulation method of permanent magnet synchronous motor
DE102021109779A1 (en) 2021-04-19 2022-10-20 Schaeffler Technologies AG & Co. KG Procedure for determining the rotor position for electric motors

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5745105B2 (en) * 1973-12-28 1982-09-25
US6552509B2 (en) * 2000-05-10 2003-04-22 Gti Electroproject B.V. Method and a device for sensorless estimating the relative angular position between the stator and rotor of a three-phase synchronous motor
US6825637B2 (en) * 2001-04-24 2004-11-30 Mitsubishi Denki Kabushiki Kaisha System for controlling synchronous motor
JP2003037990A (en) * 2001-07-24 2003-02-07 Hitachi Ltd Motor control device
JP4063166B2 (en) * 2002-07-31 2008-03-19 日産自動車株式会社 Electric motor control device
JP3695436B2 (en) * 2002-09-18 2005-09-14 株式会社日立製作所 Position sensorless motor control method and apparatus
ES2658576T3 (en) * 2007-09-27 2018-03-12 Mitsubishi Electric Corporation Rotary electric machine controller
RU2577529C1 (en) * 2012-01-24 2016-03-20 Мицубиси Электрик Корпорейшн Control unit for ac rotating machine
CN104094516B (en) 2012-02-02 2017-02-22 三菱电机株式会社 Device for controlling alternating current rotating machine

Also Published As

Publication number Publication date
JPWO2018025319A1 (en) 2018-09-13
WO2018025319A1 (en) 2018-02-08
TWI631812B (en) 2018-08-01
JP6541887B2 (en) 2019-07-10

Similar Documents

Publication Publication Date Title
JP5324159B2 (en) Motor control device
JP5916342B2 (en) Motor control device and motor control method
CN102386837B (en) Vector control apparatus and motor control system
JP2009268267A (en) Motor controller and generator controller
JPH10229699A (en) Method of estimating position for magnetic pole of synchronous motor, and motor controller, and electric rolling stock
CN101154910A (en) Controller and constant measuring apparatus for AC motor
JP2009268268A (en) Motor controller and generator controller
JP2008187797A (en) Controller for alternating-current rotary machines, and measuring method for electric constant of alternating-current rotary machine using this controller
JP5753474B2 (en) Synchronous motor controller
JP2001204190A (en) Device for estimating initial magnetic pole position and its error adjustment method
JP3707528B2 (en) AC motor control method and control apparatus therefor
TWI631812B (en) Control device for rotating electrical machine
JP2010045914A (en) Synchronous motor drive control device
JP3253004B2 (en) Method of estimating speed of permanent magnet type synchronous motor, method of estimating rotor misalignment angle, and method of correcting rotor position
US9331618B2 (en) Magnetic pole position detector for synchronous motor
EP2493067A1 (en) Method and apparatus for estimating rotor angle of synchronous reluctance motor
JP4207810B2 (en) PM motor evaluation test equipment
JP2014110708A5 (en)
WO2022009599A1 (en) Motor control device and motor control method
JP3625291B2 (en) Magnetic pole position estimation method for synchronous motor, motor control device, and electric vehicle
JP2010035352A (en) Device for estimating rotor position of synchronous electric motor
JP5768255B2 (en) Control device for permanent magnet synchronous motor
JP5423343B2 (en) Magnetic pole position estimation device for synchronous motor
JP5396910B2 (en) Motor control device
WO2016199444A1 (en) Power conversion device for induction machine, secondary time constant measurement method and speed control method