TW201805418A - 抗肥胖微生物叢組合物及其製備方法與用途 - Google Patents

抗肥胖微生物叢組合物及其製備方法與用途 Download PDF

Info

Publication number
TW201805418A
TW201805418A TW106112695A TW106112695A TW201805418A TW 201805418 A TW201805418 A TW 201805418A TW 106112695 A TW106112695 A TW 106112695A TW 106112695 A TW106112695 A TW 106112695A TW 201805418 A TW201805418 A TW 201805418A
Authority
TW
Taiwan
Prior art keywords
dusp6
substantially purified
composition
mice
hfd
Prior art date
Application number
TW106112695A
Other languages
English (en)
Other versions
TWI749004B (zh
Inventor
高承源
阮振維
Original Assignee
財團法人國家衛生研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人國家衛生研究院 filed Critical 財團法人國家衛生研究院
Publication of TW201805418A publication Critical patent/TW201805418A/zh
Application granted granted Critical
Publication of TWI749004B publication Critical patent/TWI749004B/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/135Bacteria or derivatives thereof, e.g. probiotics
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/30Dietetic or nutritional methods, e.g. for losing weight
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2207/00Modified animals
    • A01K2207/20Animals treated with compounds which are neither proteins nor nucleic acids
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/035Animal model for multifactorial diseases
    • A01K2267/0362Animal model for lipid/glucose metabolism, e.g. obesity, type-2 diabetes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Mycology (AREA)
  • Medicinal Chemistry (AREA)
  • Nutrition Science (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Microbiology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Obesity (AREA)
  • Diabetes (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Physiology (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

本發明係關於微生物叢組合物及其製備方法和用途。 具體而言,本發明提供從雙特異性磷酸酶6(dusp6)缺陷型哺乳動物收集的微生物叢組合物,其有效改變腸道微生物叢的相對豐度,並且還可用於降低體重、脂肪量及/或脂肪細胞大小,並且增加氧消耗和/或能量消耗,因此,可以用於在有需要的個體中治療或預防肥胖或其相關疾病或病症。

Description

抗肥胖微生物叢組合物及其製備方法與用途
本案主張2016年4月15日提交的美國臨時申請案第62/323,053號的優先權,其全部內容通過引用併入本文。
本發明係關於一種微生物叢組合物及其製備方法和用途。 具體而言,本發明提供從雙特異性磷酸酶6(dusp6)缺陷型哺乳動物收集的微生物叢組合物,其有效改變腸道微生物叢的相對豐度,並且還可用於降低體重、脂肪量及/或脂肪細胞大小,並且增加氧消耗和/或能量消耗,因此,可以用於在有需要的個體中治療或避免肥胖或其相關疾病或病症。
肥胖是目前已開發國家和許多發展中國家的災難40 。由於肥胖會增加包括心血管疾病,中風,2型糖尿病,脂肪肝和某些癌症在內的許多健康狀況的風險41 ,故了解肥胖發展的詳細機制並尋找新的治療肥胖的方法是重要的。
雙特異性磷酸酶(DUSP)被正式規範的特徵是絲裂原活化蛋白激酶(MAPK)途徑的負調節劑1,2 。一些研究已經證明,DUSP6,也稱為MKP-3,其藉由去磷酸化以負調節ERK1 / 2活性,儘管該去磷酸化活性可能是域境依赖的(context-dependent)。 Dusp6缺陷小鼠已被證明具有增大的心臟和對某些心髒病的抗性增加4 。近來,已報導dusp6在肥胖和糖尿病小鼠的肝臟中向上調節(upregulated),並促進培養的肝細胞和小鼠肝臟中的葡萄糖輸出5 。此外,已經顯示全身性dusp6缺乏可以顯著降低血糖水平,改善胰島素敏感性並增加對飲食引起的肥胖(DIO)的抵抗6 。除宿主遺傳和環境因素外,腸道微生物叢已被公認為發展肥胖的主要調節因素7-9 。然而,dusp6-缺乏所介導之對於肥胖功能之作用是否通過腸道微生物群仍然不清楚。
本發明基於不可預期的發現,當投予個體從雙特異性磷酸酶6(dusp6)缺陷型哺乳動物收集的腸道微生物叢時,可以改變該個體的胃腸道中的微生物叢的相關豐度。在本發明中也發現,從雙特異性磷酸酶6(dusp6)缺陷型哺乳動物收集的腸道微生物叢展現抗肥胖活性,其有效降低體重、脂肪量及/或脂肪細胞大小,並且增加氧消耗和/或能量消耗,因此,可以用於在有需要的個體中治療或避免的肥胖或其相關疾病或病症。本發明還提供了平台技術,從dusp6缺陷型哺乳動物獲得微生物叢,並從其中鑑定/分離抗肥胖微生物,供治療/避免肥胖或其相關疾病或病症。
在一方面,本發明提供一種獲得微生物叢的方法,其包含: (a)提供雙特異性磷酸酶6(dusp6)缺陷的非人類動物;及 (b)自該dusp6缺陷的動物收集腸道微生物叢。
在部分具體實施例中,本發明的方法進一步包含培養該腸道微生物叢以獲得可培養的微生物叢。
在部分具體實施例中,本發明的方法進一步包含測量該腸道微生物叢的抗肥胖活性。
在部分具體實施例中,本發明的方法進一步包含自該腸道微生物叢中鑑別出瘦相關微生物。
在部分具體實施例中,瘦相關微生物是藉由測量在投予微生物後,該等微生物是否有效於降低個體體重、脂肪量及/或脂肪細胞大小,而予以鑑別。
在特定具體實施例中,瘦相關微生物是藉由測量在投予微生物後,該等微生物是否有效於增加個體氧消耗及/或能量消耗,而予以鑑別。
在本發明中,進一步鑑別來自dusp6缺陷型哺乳動物的腸道微生物叢譜。
因此,本發明也提供一種組合物,其包含:   (i)實質純化的放線菌門細菌(Actinobacteria)、(ii)實質純化的擬桿菌門細菌(Bacteroidetes)、(iii)實質純化的藍菌門細菌(Cyanobacteria)、(iv)實質純化的脫鐵桿菌門細菌(Deferribacteres)、(v)實質純化的厚壁菌門細菌(Firmicutes)、(vi)實質純化的變形菌門細菌(Proteobacteria)、(vii)實質純化的TM7細菌、(viii)實質純化的軟壁菌門細菌(Tenericutes),及/或其任何組合:及/或   (a)實質純化的擬桿菌科細菌(Bacteroidaceae)、 (b)實質純化的S24-7細菌、(c)實質純化的理研菌科細菌(Rikenellaceae)、(d)實質純化的紫單胞菌科細菌(Porphyromonadaceae)、(e)實質純化的臭味菌科細菌(Odoribacteraceae)、(f)實質純化的瘤胃球菌科細菌(Ruminococcaceae)、(g)實質純化的丹毒絲菌科細菌(Erysipelotrichaceae)、(h)毛螺旋菌科細菌(Lachnospiraceae)、(i)乳酸桿菌科細菌(Lactobacillaceae)、(j)梭菌科細菌(Clostridiaceae),及其任何組合。
在部分具體實施例中,本發明的組合物包含(iv)實質純化的脫鐵桿菌門細菌(Deferribacteres)或(v)實質純化的厚壁菌門細菌(Firmicutes)或其組合。
在部分具體實施例中,本發明的組合物包含(f)實質純化的瘤胃球菌科細菌(Ruminococcaceae)或(h)毛螺旋菌科細菌(Lachnospiraceae),或其組合。
在部分具體實施例中,在本發明的組合物中,(ii)實質純化的擬桿菌門細菌(Bacteroidetes)和(v)實質純化的厚壁菌門細菌(Firmicutes)係以約1:1.2的比例存在。
在部分具體實施例中,在本發明的組合物中,(i)實質純化的放線菌門細菌(Actinobacteria)、(iv)實質純化的脫鐵桿菌門細菌(Deferribacteres)、及(vi)實質純化的變形菌門細菌(Proteobacteria)係以約1:120:20的比例存在。
在部分具體實施例中,在本發明的組合物中,(i)實質純化的放線菌門細菌(Actinobacteria)、(ii)實質純化的擬桿菌門細菌(Bacteroidetes)、(iv)實質純化的脫鐵桿菌門細菌(Deferribacteres)、(v)實質純化的厚壁菌門細菌(Firmicutes)、(vi)實質純化的變形菌門細菌(Proteobacteria)係以約1:1400:120:1770: 20的比例存在。
在部分具體實施例中,本發明的組合物可以根據本文所述的方法從dusp6缺陷型動物獲得。
在部分具體實施例中,本發明的組合物是調配成食品或膳食補充劑。
在特定具體實施例中,本發明的組合物是用於改變個體中微生物叢的相對豐度。
在特定具體實施例中,本發明的組合物是用於在個體中減輕體重及/或體脂肪、避免體重及/或體脂肪增加、及/或治療或避免肥胖或其相關疾病或病症。
本發明進一步提供一種使用本文所述的組合物的方法。
具體而言,本發明提供一種用於改變有需要的個體中的微生物叢的相對豐度的方法,其係藉由對個體投用有效量的本文所述的組合物而達成。也在本發明的範圍內的是本文所述的組合物用於製備食品、膳食補充劑或藥物的用途,以改變有需要的個體的微生物叢的相對豐度。
在部分具體實施例中,本發明的方法使用的組合物的量有效於減少個體中TM7的相對豐度。
在部分具體實施例中,本發明的方法使用的組合物的量有效於減少個體中鏈球菌科(Streptococcaceae)相對豐度。
在部分具體實施例中,本發明的方法使用的組合物的量有效增加個體中大腸桿菌屬(Escherichia )、副擬桿菌屬細菌(Parabacteroides )及/或乳酸桿菌屬細菌(Lactobacillus )的相對豐度。
在部分具體實施例中,本發明的方法使用的組合物的量有效於對於增加個體中變形菌門(Proteobacteria)的相對豐度。
本發明也提供一種在有需要的個體中減少體重及/或體脂肪及/或防止體重及/或體脂肪增加的方法,其係藉由對個體投用有效量的本文所述的組合物而達成。本發明也提供一種在有需要的個體中治療或避免肥胖或其相關疾病或病症的方法,其係藉由對個體投用有效量的本文所述的組合物而達成。也在本發明範圍內的是本文所述的組合物用於製備食品、膳食補充劑或藥物的用途,以降低體重及/或體脂肪、避免體重及/或體脂肪之增加、及/或治療或避免肥胖或其相關疾病或病症。
在部分具體實施例中,將被治療的肥胖是飲食引起的肥胖(DIO)。
在部分具體實施例中,肥胖相關的疾病或病症係選自於由第2型糖尿病、高血糖症、葡萄糖不耐症、血脂異常、胰島素阻抗、高胰島素血症、脂肪肝、心血管疾病、中風及癌症。
在下面的描述中闡述了本發明的一個或多個具體實施例的細節。 本發明的其它特徵或優點將從以下幾個具體實施例的詳細描述以及來自所附之申請專利範圍變得顯而易見。
除非另有定義,本文使用的所有技術和科學術語具有與本發明所屬領域的技術人員通常理解的相同的含義。
如本文所用,定冠詞「一(a)」與「一(an)」係指物品的語法對象中的一個或多於一個(即至少一個)。作為示例,「一元素」係指一個元素或多於一個元素。
「包含(comprise)」或「包含(comprising)」等詞通常被用在包括(include)/包括(including)的意義上,其係表示允許存在一個或多個特徵、成分或組分。「包含(comprise)」或「包含(comprising)」等詞包括「組成(consists)」或「由...組成(consisting of)」。
如本文所用,「約」乙詞意指一特定值+/- 10%的範圍值。
I. 雙特異性磷酸酶 6 dusp6 )缺陷型哺乳動物
在本發明中,提供了dusp6缺陷型動物作為用於提供益生菌微生物叢的模型或平台。
如本文所用,術語「微生物群(microbiota)」是指可以在身體的位置發現或可以存在(集落,çolonize)的一種或多種微生物群落或微生物群。具體而言,如本文所述的微生物叢包括在哺乳動物的胃腸道內發現的菌群及更具體而言的腸菌群。本文使用的微生物叢可以是具有相同類型的微生物,或者可以是不同類型的微生物(例如,門、綱、目、科、屬、種、株)的混合。 具體而言,所揭示的微生物叢可以是益生菌微生物叢,其包括可以賦予宿主健康益處的益生菌的、非病原性菌(例如,改變腸道微生物叢譜(gut microbiota profile)及/或提供抗肥胖作用)。
如本文所用,術語「動物」包括哺乳動物,特別是非人哺乳動物。 在部分具體實施例中,動物是囓齒動物(例如,小鼠,大鼠,花栗鼠,草原狗,松鼠,海狸,地鼠,倉鼠,田鼠,沙鼠,豪豬,豚鼠等)。 在部分具體實施例中,動物是家畜動物(例如,豬,牛,山羊,鹿,羊,犛牛等)。在部分具體實施例中,動物是伴侶動物(例如,貓,狗等)。在部分具體實施例中,動物是靈長類(例如狐猴,猴,猿等)。
如本文所用,雙特異性磷酸酶(dusp6),也稱為MKP3,是絲裂原活化蛋白激酶(MAPK)磷酸酶,其藉由去磷酸化以負調節ERK1 / 2活性。具體而言,dusp6是含有約381個胺基酸且具分子量約40kDa的多肽。Dusp6在N末端MAPK結合結構域和其C末端催化結構域之間具有連接區,其在相關DUSP中高度保守。各物種的dusp6的胺基酸序列是本領域公知的。例如,在小鼠中,示例性的dusp6如SEQ ID NO:1所示,其中其N末端MAPK結合結構域從位置64至74(SEQ ID NO:3),以及其C末端催化結構域從位置206至381(SEQ ID NO:4);編碼小鼠dusp6的相應核苷酸序列是SEQ ID NO:2。如本文所述的Dusp6還可以包括含有與SEQ ID NO:1的胺基酸序列高度相同的胺基酸序列的多肽,特別是含有胺基酸序列與SEQ ID NO:1的C末端催化結構域高度相同,並且具有實質相同磷酸酶催化活性。磷酸酶催化活性可以通過本領域已知的方法來測定,例如,螢光測定或發光測量。
如本文所用,術語「蛋白質」或「多肽」是指由通過肽鍵連接的胺基酸殘基組成的聚合物,例如,含有約2,000或更少,1,000或更少,500或更少,400或更少。胺基酸可以由本領域已知的三個字母或一個字母表示。
如本文所用,術語「聚核苷酸」或「核酸」是指由核苷酸單位所組成之聚合物。聚核苷酸包括天然存在之核酸,例如,去氧核醣核酸(DNA)及核醣核酸(RNA),以及核酸類似物,包括該等具有非天然存在之核苷酸。聚核苷酸可被合成,例如,使用自動DNA合成儀。「核酸」典型地是指較大的聚苷酸。應可理解的是,當核苷酸序列以DNA序列(即A、T、G、C)表示時,亦包括了RNA序列(即A、U、G、C),其中U取代了T。「基因」是指含有至少一個開放閱讀框(ORF)的聚核苷酸,其能夠在轉錄和翻譯後能夠編碼特定的多肽或蛋白質。如本文所用,術語「編碼」是指於聚核苷酸中(如基因、cDNA、或mRNA)之特定核苷酸序列之固有特性,可於生物性反應過程中,作為合成其它聚合物及巨分子之模板,其可能具有明確之核苷酸序列(即rRNA、tRNA及mRNA),或所衍生之明確的胺基酸序列及生物性產物。技藝人士可理解的是多種不同的聚核苷酸可編碼相同的多肽,係因基因密碼之簡併性。對於技藝人士亦應可理解的是,使用常規技術,可進行核苷酸置換,其不會影響到該等多核苷酸所編碼之多胜肽序列,藉此置換以反映於各種特定宿主生物體中欲表現該多胜肽所需使用之密碼子。因此,除非特別另有說明,「核苷酸序列或基因編碼胺基酸序列」包含所有核苷酸序列,其可能互為簡併版本,但編碼相同之胺基酸序列。核苷酸序列編碼蛋白,以及RNA可能包含內含子。
如本文所用,術語「編碼dusp6的基因或與該基因同源的基因」可以包括編碼含有SEQ ID NO:1的胺基酸序列的多肽的基因、該基因在相同物種的多態性基因、或編碼具有與跨物種保守的多肽相同的磷酸酶活性的多肽之基因。它還包括天然存在的DNA,其與SEQ ID NO:2的核苷酸序列高度相同並含有編碼磷酸酶的核苷酸序列;或編碼多肽之天然存在的DNA,該多肽包含與SEQ ID NO:1的胺基酸序列高度相同的胺基酸序列,特別是包含與SEQ ID NO:1的C-末端催化結構域高度相同的胺基酸序列,並且具有實質相同的磷酸酶催化活性。
包含與SEQ ID NO:1的胺基酸序列「高度相同」的胺基酸序列的多肽的天然存在的DNA,特別是包含與SEQ ID NO:1的C-末端催化結構域高度相同的胺基酸序列。 並且具有基本上相同的磷酸酶催化活性。
如本文所用,術語「高度相同」是指序列相同度,例如,70%或更多,較佳80%或更多,85%或更多,90%或更多,最佳95%或更多(例如, 96%,97%,98%或99%以上)。為了決定兩個胺基酸序列之相同性百分比,將序列以最佳比較方式進行排列比對(如可引入間隔於第一胺基酸序列,以與第二胺基酸序列有較佳之排列比對)。於計算相同性百分比時,一般計算完美對應者。兩序列間之同源性或相同性之百分比的決定,可使用該領域所熟知之數學演算法進行,如BLAST及Gapped BLAST程式、NBLAST及XBLAST程式、或ALIGN程式。
如本文所用,「dusp6缺陷型動物」是指缺乏功能性dusp6的動物。 術語「功能性dusp6」是指如上所述保留其磷酸酶活性的dusp6。 功能性dusp6的缺乏可能意味著通常在腸上皮細胞和/或上皮內免疫細胞中觀察到的dusp6的實質損失或不存在,並且可以通過常規測定分析予以測定,例如,免疫染色,定量逆轉錄(qRT)聚合物鏈反應(PCR)分析。「實質損失或不存在」具體而言是指在野生型腸上皮和/或上皮內免疫細胞中檢測到的dusp6的量是50%或更少,25%或更少,10%或更少,5%或更少 ,甚至特別是低於檢測限值(或背景水平)的量。
動物的功能性dusp6缺乏可通過靶向破壞動物相應的dusp6基因而達成。靶向破壞可表示將突變引入目標基因中的技術,其涉及向細胞中引入其中突變已經引入目標基因的核甘酸序列的DNA,較佳地是已***選擇標記的DNA,以及更佳地已***抗藥基因的DNA;以及選擇引入的DNA與靶基因之間已發生同源重組的細胞。更特定地,當通過靶向破壞來刪除編碼dusp6的基因時,整個或一部分基因係被用外源核酸替換以達靶向破壞。外源核酸可以簡單地是來自編碼dusp6的基因已經被缺失的基因組的序列,或者可以含有所需的序列。 例如,核酸可以含有所需的標記基因,較佳地是抗藥性基因。
具體而言,靶向載體可用於破壞編碼dusp6的基因。 靶向載體含有一部分編碼dusp6的DNA,並含有通過缺失,添加,取代等而改變遺傳序列的DNA,以防止功能性dusp6的表現。較佳地,編碼dusp6的基因的靶向載體在編碼dusp6的DNA的一部分中含有外源核酸,較佳地是所需標記基因,及較佳地是抗藥基因。更佳地,靶向載體含有負面標記物(negative marker),例如,胸苷激酶基因或白喉毒素基因。
根據本發明,靶向載體可用於產生dusp6剔除動物。本文所用的術語「基因剔除」是指通過本領域已知的任何轉基因技術實現的功能完全喪失的體內基因的靶向破壞。在一具體實施例中,具有基因剔除的轉殖基因動物是其中目標基因不起作用的轉殖基因動物,其係通過同源重組(homologous recombination)藉由靶向欲不起作用之基因的***而達成。
簡言之,用適當的限制酶切割靶向載體以獲得線性DNA,純化,然後轉染到胚胎幹細胞(ES細胞),例如,由(C57BL / 6)產生的TT2ES細胞。轉染方法包括但不限於電穿孔和脂質轉染。然後將轉染的細胞在任何合適的選擇培養基中培養。例如,當構建靶向載體以倂入新黴素抗性基因和胸苷激酶基因時,將細胞在含有新黴素和更昔洛韋的選擇性培養基中培養。將引入的基因(例如新黴素抗性基因)併入ES細胞,其顯示對兩種藥物有抗性且可增生者,可以通過PCR容易地證實。此外,是否發生同源重組可以通過南方墨點法予以確認,係使用靶向載體外部的上游5'側或下游3'側的DNA的一部分作為探針。此外,可以使用南方墨點法來確認靶向載體未被隨機***,例如,使用在靶向載體內的DNA作為探針。已經進行同源重組的ES細胞可以通過組合這些方法獲得。隨後,可以通過以下步驟產生剔除小鼠:受精後收集8細胞階段的胚胎或胚泡;顯微注射發生同源重組的ES細胞;將此操縱的卵移植到假懷孕小鼠中;允許假孕小鼠生產和養育後代;通過PCR和南方墨點法選擇轉基因小鼠;以及建立具有轉基因的小鼠品系。
可選擇地,可以通過使用dusp6拮抗劑來達成動物之功能性dusp6缺乏。如本文所用,術語「dusp6拮抗劑」是指可以顯著降低,抑制或阻斷dusp6功能的物質或藥劑,例如, 其磷酸酶活性。用於產生如本文所述的dusp6缺陷型動物的Dusp6拮抗劑可包括抗dusp6抗體,針對dusp6 基因的反義核酸分子,針對dusp6 核酸的小干擾RNA(siRNA)或 小分子dusp6抑制化合物。
抗dusp6抗體是能夠結合dusp6並抑制dusp6生物活性的抗體。術語「抗體」不僅包括完整的(例如,全長)多株或單株抗體,還包括其抗原結合片段(例如,Fab,Fab',F(ab')2和Fv),單鏈(scFv ),其突變體,包含抗體部分的融合蛋白,人源化抗體,嵌合抗體,雙抗體,線性抗體,單鏈抗體,多特異性抗體(例如,雙特異性抗體),以及免疫球蛋白分子的任何其它修飾構型,其包含具有所需特異性的抗原識別位點,包括抗體的糖基化變體、抗體的胺基酸序列變體,以及共價修飾的抗體。抗體包括任何類別的抗體,例如IgD、IgE、IgG、IgA或IgM (或其亞類),且抗體不需要具有任何特定的類別。本文所述的抗體可以是單株或多株。抗體可以通過常規技術製備。例如,單株抗體可以通過雜合瘤方法製備,或者可以使用重組DNA方法在細菌,真核動物或植物細胞中製備。也可以從噬菌體抗體庫中分離單株抗體。
在部分具體實施例中,dusp6拮抗劑可以是能夠阻斷或降低功能性dusp6表現的反義核酸分子。 dusp6基因的核苷酸序列是已知的,並且可從公開獲得的資料庫中容易獲得。 製備將與目標mRNA特異性結合但不與其他聚核苷酸交叉反應的反義寡核苷酸分子是常規方法。靶向的示例性位點可以是起始密碼子,5'調節區,編碼序列和3'非轉譯區。在部分具體實施例中,寡核苷酸長度為約10至100個核苷酸,長度為約20至50個核苷酸,或長度為約15至30個核苷酸。
在部分具體實施例中,可以使用小干擾RNA(siRNA或RNAi)或微RNA或核酶(ribozyme)來減少dusp6表現,其方法是本領域公知的。 RNA干擾(RNAi)是dsRNA引導信使RNA的同源序列特異性降解的過程。在哺乳動物細胞中,RNAi可以由小干擾RNA(siRNA)的21個核苷酸雙股體觸發而不激活宿主干擾素反應。此處所示方法中使用的dsRNA可以是siRNA(含有兩個單獨的和互補的RNA股)或短髮夾RNA(即,形成緊髮夾結構的RNA股),它們都可以基於目標基因而設計。 siRNA可以是包含兩個核苷酸股的雙股核酸分子,每股具有約19至約28個核苷酸。短髮夾RNA(shRNA)是一種RNA序列,可形成緊密髮卡環(tight hairpin turn),可用於通過RNA干擾而造成基因表現沉默。通常使用載體將shRNA引入細胞並使用啟動子(例如,U6啟動子)來確保shRNA表現。 shRNA髮夾結構被細胞機制切割成siRNA,然後將其與RNA誘導的沉默複合物(RISC)結合。該複合物結合至並切割與其結合的siRNA匹配的mRNA。 微RNA(miRNA)是一種內源性、單股或雙股,約22個核苷酸長的RNA分子,其調節多達約30%的哺乳動物基因,在調節細胞分化,增殖和凋亡中具有重要作用。 各種人類腫瘤類型中miRNA的向上調節和向下調節的特定模式可予確認。miRNA通過阻斷轉譯或引起轉錄物降解來抑制蛋白質產生。
在部分具體實施例中,dusp6拮抗劑可以是dusp6抑制化合物。 如本文所用,Ddusp6抑制化合物可以是抗體或核酸以外的化合物,其可以通過在磷酸酶結構域內起作用以減少,抑制或阻斷dusp6的功能,以防止例如磷酸酶活性的催化刺激,舉例而言。 Dusp6抑制化合物可以具有約100至20,000道爾頓,150至10,000道爾頓或250至500道爾頓中的任何一種的分子量。 dusp6抑制化合物的典型實例包括(E)-2-亞芐基-3-(環己基氨基)-2,3-二氫-1H-茚-1-酮((E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro- 1H-inden-1-one,BCI)。
II. dusp6 缺陷型動物的特徵
根據本發明的dusp6缺陷型動物與野生型動物相比表現出一或多種特徵。
肥胖抗性
Dusp6缺乏的動物表現出對肥胖的抵抗力,特別是飲食誘導的肥胖。
茲發現dusp6缺乏的動物表現由高脂肪飲食誘導之體重的降低,脂肪墊量的減少,脂肪細胞大小的變小,和肝衰竭症狀的減輕。 還發現,dusp6缺乏的動物顯示出比野生型更高的攝食量。 因此,建議dusp6缺陷不是通過食物消耗減少來保護小鼠免受飲食誘導的肥胖。
腸道微生物叢譜的改變
Dusp6缺陷型動物展現出腸道微生物叢譜的改變。具體而言,當該動物被餵食低脂肪飲食或當動物接受高脂肪飲食(HFD)處理時,一種或多種微生物叢的相對豐度被改變。
如本文所用,高脂肪飲食(HFD)是具有來自飲食的脂肪部分的豐富脂肪含量或卡路里的飲食。 在一個例子中,高脂肪飲食含有40%或更多的來自脂肪的熱量。 低脂肪飲食是指一種飲食,其提供低於40%,特別是10%至40%的來自脂肪的總卡路里,例如,不超過來自脂肪的總卡路里的40%,30%,25%,15%或10%。 應當理解,該範圍可以根據動物而變化。
改變微生物叢可以包括通過增加及/或減少一種或多種微生物叢的相對豐度來改變微生物叢的相對豐度。 如本文所用,術語「相對豐度(relative abundance)」是指微生物相對於定義位置或群落中的其他微生物的常見性或稀有性。例如,相對豐度可以通過一般測量特定微生物的存在來確定,相較於樣本中微生物的總存在而言。如本文所用,「總豐度」通常係關於樣本中的總微生物。如本文所用,「微生物叢譜」是指個體或來自個體的樣本中一種或多種微生物叢的相對豐度的表示方式,例如,圖(graph)。可以例如通過基於培養的方法(直接測量),或比較比較身份分子指示物(如核糖體RNA(rRNA)基因序列)的廣泛性,所 述身份分子指示物相對於整體樣本來說對於某一生物體或生物體組是特異性的。例如,可以使用從糞便樣本獲得的rRNA基因序列的總數中之對於放線菌門細菌(Actinobacteria)、擬桿菌門細菌(Bacteroidetes)、藍菌門細菌(Cyanobacteria)、脫鐵桿菌門細菌(Deferribacteres)、厚壁菌門細菌(Firmicutes)、變形菌門細菌(Proteobacteria)、TM7或軟壁菌門細菌(Tenericutes)為特異性的rRNA的比例,以確定在糞便樣本中放線菌門細菌(Actinobacteria)、擬桿菌門細菌(Bacteroidetes)、藍菌門細菌(Cyanobacteria)、脫鐵桿菌門細菌(Deferribacteres)、厚壁菌門細菌(Firmicutes)、變形菌門細菌(Proteobacteria)、TM7細菌或軟壁菌門細菌(Tenericutes)的相對豐度。
在部分具體實施例中,與野生型動物相比,根據本發明的dusp6缺陷型動物中微生物的改變的豐度如表A.1至表A.3所示(也見下文實施例中的表1)。
表A.1(門)
表A.2(科)
表A.3(屬)
這顯示dusp6缺乏不僅改變了腸道微生物叢的組成,也改變了腸道微生物叢對HFD的反應。
基本腸轉錄組( transcripsome )的變化
Dusp6缺乏的動物也表現出改變的基本腸轉錄組。大多數向上生物過程涉及代謝(例如,棕色脂肪細胞分化,脂肪酸和甘油三酯代謝)和粘附/細胞結構(例如,細胞粘附和細胞外基質組織)。 此外,許多與過氧化物酶體增生子活化受體加瑪(Ppaγ)信號傳遞和緊密連接(TJ)信號途徑相關的許多基因係顯著向上調節。 這建議dusp6缺乏在腸道屏障通透性的調節中發揮作用。
脂肪飲食改變的腸道轉錄組的逆轉
Dusp6缺陷動物展現出高脂肪飲食特異性的轉錄組反應,以逆轉涉及微生物體內穩態(homeostasis)的腸屏障功能和粘膜免疫相關基因的表現,至少包括(1)抑制由HFD誘導的CD3+T細胞的增加,抑制的HFD誘導的CD4基因表現,以及避免HFD增加的CD3+和CD4+ T細胞的浸潤(這建議dusp6缺乏改變了HFD誘導的腸粘膜免疫中T淋巴細胞的行為)。(2)Ltα和Ltb表現的向下調節,ZO-1的連接結構的增強和對HFD誘導的內毒素血症的抗性(這建議dusp6缺乏可以協調腸TJ的形成並保護腸上皮屏障免受FHD誘發中斷);(3)避免HFD介導的Defa5 誘導,避免HFD介導的RegIIb和RegIIIγ誘導(這建議dusp6缺乏可以通過維持特異性抗微生物肽(AMP)的生理學水平來調節對FHD的腸道微生物群反應:以及(4)誘導***絲狀菌(SFB)。
III. 來自 dusp6 缺陷型動物的腸道微生物叢
根據本發明,從dusp6缺陷型動物收集的腸道微生物叢可以是具有賦予益處作用(例如,改變腸道微生物叢譜並提供抗肥胖效應)的益生菌性質。
因此,本發明的方法包括提供雙特異性磷酸酶6(dusp6)缺陷型非人類動物;並從該dusp6缺陷型動物收集腸道微生物群。
在一具體實施例中,腸道微生物叢是從dusp6缺陷型動物的糞便樣本中收集的,其可以懸浮在鹽水中並離心,以在給予個體之前獲得上清液。 在另一具體實施例中,將收集的腸道微生物群體經培養基培養一段時間,以在給予個體之前獲得可培養的微生物叢。
在部分具體實施例中,本發明的方法還包括從dusp6缺陷型動物收集的樣品中鑑定至少一種微生物叢。 特定地,這樣的用於鑑定樣品中的微生物叢的方法可以包括提供樣本,例如, 糞便樣本,其包含一種或多種微生物叢,並且檢測樣本中的至少一個微生物,係基於可以鑑定該微生物叢的特定分子指示物而達成。 例如,該方法可以包括製備至少一個核酸樣本,以及所使用的分子指示物可以是多態性聚核苷酸,例如,rRNA基因(例如,16S rRNA基因),其可以通過測定多態性的聚核苷酸的核苷酸序列而檢測。 本發明的方法可以進一步提供在dusp6缺陷型動物中發現的微生物群。
在部分具體實施例中,本發明的方法還可以包括測量一種或多種微生物叢的相對豐度,以產生在dusp6缺陷動物中發現的微生物叢譜。可以將一種或多種微生物叢的相對豐度或微生物叢譜與參考豐度(reference abundance)或參考譜(reference profile)進行比較。 例如,參考譜可以是從具有相似條件(例如,體重,年齡和性別)的相同物種的健康動物(例如,沒有dusp6缺陷的野生型動物)獲得的標準化(或校正後的)微生物叢譜。
在部分具體實施例中,本發明的方法包括測量從dusp6缺陷型動物獲得的微生物叢的抗肥胖活性。
在部分具體實施例中,本發明的方法包括自腸道微生物叢中鑑別出與瘦相關的微生物。
在部分具體實施例中,通過測量微生物在施用微生物時是否有效於降低個體體重、脂肪量及/或脂肪細胞大小,以鑑定瘦相關的微生物。
在部分具體實施例中,通過測量微生物在施用微生物時是否有效於增加個體氧消耗及/或能量消耗,以鑑定瘦相關的微生物。
在部分具體實施例中,本發明的方法包括從腸道微生物叢中分離瘦相關的微生物。
III. 微生物叢組合物及其用途
根據本發明,可以鑑定dusp6缺陷動物的腸道微生物群中的微生物群,然後予以實質純化/分離。 術語「實質純化的」或「實質分離的」可以互換使用,如本文所用,其是指一種細菌類型(例如,門、綱、目、科、屬、種、株)或多於一種細菌類型的混合物係實質富集於樣本中。 應當理解,術語「純化的」或「分離的」不一定反映了肽被絕對純化或分離的程度。 例如,對於細菌菌株或有興趣的菌株的混合物係實質純化的/分離的或富集的樣本可以是指該樣本具有至少約50%,60%,70%,80%,90%或更多的所需細菌菌株或少於約40%,30%,20%,10%,5%,2%,1%或更少的存在的不需要的或其他的細菌菌株。
因此,本發明提供一種菌叢組合物及其用途。
在部分具體實施例中,本發明的組合物包含一種或多種實質純化的菌門,其選自以下所組成之群組:(i)放線菌門細菌(Actinobacteria)、(ii)擬桿菌門細菌(Bacteroidetes)、(iii)藍菌門細菌(Cyanobacteria)、(iv)實質純化的脫鐵桿菌門細菌(Deferribacteres)、(v)實質純化的厚壁菌門細菌(Firmicutes)、(vi)實質純化的變形菌門細菌(Proteobacteria)、(vii)實質純化的TM7細菌、(viii)實質純化的軟壁菌門細菌(Tenericutes),及其任何組合。
在部分具體實施例中,本發明的組合物包含一種或多種實質純化的菌科,其選自以下所組成之群組:(a)實質純化的擬桿菌科細菌(Bacteroidaceae)、 (b)實質純化的S24-7細菌、(c)實質純化的理研菌科細菌(Rikenellaceae)、(d)實質純化的紫單胞菌科細菌(Porphyromonadaceae)、(e)實質純化的臭味菌科細菌(Odoribacteraceae)、(f)實質純化的瘤胃球菌科細菌(Ruminococcaceae)、(g)實質純化的丹毒絲菌科細菌(Erysipelotrichaceae)、(h)毛螺旋菌科細菌(Lachnospiraceae)、(i)乳酸桿菌科細菌(Lactobacillaceae)、(j)梭菌科細菌(Clostridiaceae),及其任何組合。
在部分具體實施例中,本發明的組合物包含一種或多種實質純化的菌門和一種或多種實質純化的菌科,如本文所述。
在部分具體實施例中,本發明的組合物包含(iv)實質純化的脫鐵桿菌門細菌(Deferribacteres)或(v)實質純化的厚壁菌門細菌(Firmicutes)或其組合。
在部分具體實施例中,本發明的組合物包含(f)實質純化的瘤胃球菌科細菌(Ruminococcaceae)或(h)毛螺旋菌科細菌(Lachnospiraceae),或其組合。
在部分具體實施例中,在本發明的組合物中,(ii)實質純化的擬桿菌門細菌(Bacteroidetes)和(v)實質純化的厚壁菌門細菌(Firmicutes)係以約1:1.2的比例存在。
在部分具體實施例中,在本發明的組合物中,(i)實質純化的放線菌門細菌(Actinobacteria)、(iv)實質純化的脫鐵桿菌門細菌(Deferribacteres)、(vi)實質純化的變形菌門(Proteobacteria)係以約1:120:20的比例存在。
在部分具體實施例中,在本發明的組合物中,(i)實質純化的放線菌門細菌(Actinobacteria)、(iv)實質純化的脫鐵桿菌門細菌(Deferribacteres)、(vi)實質純化的變形菌門細菌(Proteobacteria)係以約1:120:20的比例存在。
在部分具體實施例中,在本發明的組合物中,(i)實質純化的放線菌門細菌(Actinobacteria)、(ii)實質純化的擬桿菌門細菌(Bacteroidetes)、(iv)實質純化的脫鐵桿菌門細菌(Deferribacteres)、(v)實質純化的厚壁菌門細菌(Firmicutes)、(vi)實質純化的變形菌門細菌(Proteobacteria)係以約1:1400:120:1770: 20的比例存在。
在部分具體實施例中,本發明的組合物可以根據本文所述的方法從dusp6缺陷型動物獲得。
例如,組合物可以通過將活性成分(例如,益生菌微生物叢)與生理上可接受的載體調配而製備,使得組合物以適當的形式用於遞送的目的。本發明的組合物特別包含約0.1重量%至約100重量%的活性成分,其中基於整個組合物的重量計算重量百分比。在部分具體實施例中,本發明的組合物可以調配成用於治療的醫藥組合物或藥物。在部分具體實施例中,本發明的組合物可以調配成食品或膳食補充劑。
如本文所用,「生理上可接受的」是指載體與組合物中的活性成分相容,並且較佳地可穩定所述活性成分,並且對接受治療的個體是安全的。 所述載體可以是活性成分的稀釋劑、載體、賦形劑或基質。 組合物可另外包含潤滑劑、潤濕劑、乳化劑和懸浮劑、防腐劑、甜味劑、和調味劑。 本發明的組合物可以提供投予患者後活性成分之快速,持續或延遲釋放的效果。
根據本發明,所述組合物的形式可以是錠劑、丸劑、粉末、***錠、包裝、***片、酏劑、懸浮液、洗劑、溶液、糖漿、軟和硬明膠膠囊、栓劑、流體和包裝粉末。
本發明的組合物可以通過任何生理上可接受的途徑,特別是口服遞送。 在無菌條件下製備合適的腸胃外組合物可以用本領域技術人員熟知的標準藥理學技術來完成。
在部分具體實施例中,本發明的組合物可用於改變有需要的個體中微生物叢的相對豐度。
在部分具體實施例中,本發明的組合物可用於減輕體重及/或體脂肪,或用於避免體重及/或體脂肪增加,或增加氧消耗及/或能量消耗,以促進體重及/或體脂肪之減少。本發明的組合物還可用於治療或避免在有需要的個體中的肥胖或其相關疾病或病症。
具體而言,本發明的組合物不會降低接受組合物的個體的食慾和食物攝入。更具體而言,本發明的組合物不會減少個體的淨體重(lean body mass)。
. 根據本發明的另一方面,提供了一種方法,其施用有效量的如本文所述的組合物,以在有需要的個體中賦予期望效果的方法。
具體而言,提供了一種用於改變有需要的個體中的微生物叢的相對豐度的方法。還提供了一種在有需要的個體中減少體重及/或體脂肪或防止體重及/或體脂肪增加的方法。
本文使用的術語「有效量」是指在治療的個體或細胞中賦予預期生物學作用的活性成分的量。 有效量可以根據各種原因改變,例如,給藥途徑和頻率,體重和接受所述藥物的個體的種類以及給藥目的。 基於本文的揭示內容,已建立的方法以及它們自己的經驗,本領域技術人員可以確定每種情況下的劑量。
如本文所用,與對照個體的相應豐度相比,改變個體中微生物叢的相對豐度可包括增加及/或減少個體中一種或多種微生物叢的相對豐度。
如本文所用,對照個體可以是施用本文所述的組合物之前的相同個體,或者較佳地是具有類似體重的年齡、性別、種族及/或已經歷類似的飲食程序的個體,其具有沒有接受如本文所述的組合物。
在部分具體實施例中,組合物的量有效於減少個體中TM7的相對豐度。 特別地,該個體消耗低脂肪的飲食。
在部分具體實施例中,組合物的量有效於減少個體中鏈球菌科(Streptococcaceae )相對豐度。 特別地,該個體消耗高脂肪飲食。
在部分具體實施例中,組合物的量有效增加個體中大腸桿菌屬細菌(Escherichia )、副擬桿菌屬細菌(Parabacteroides )及/或乳酸桿菌屬細菌(Lactobacillus )的相對豐度。 特別地,該受試者消耗低脂肪的飲食。
在部分具體實施例中,組合物的量有效於對於增加個體中變形菌門細菌(Proteobacteria)的相對豐度。 特別地,該受試者消耗高脂肪飲食。
如本文所用,術語「體脂肪(body fat)」是指稱為「脂肪組織」的鬆散結締組織。體脂肪可以存在於個體的整個身體。 個體中的體脂肪的量可以通過本領域技術人員可識別的多種方法來確定及/或估算,例如,超聲測量、磁共振成像、電腦斷層攝影。此外,個體的身體質量指數(BMI)也可以指示個體身體脂肪的量。
如本文所用,術語「淨體重(lean body weight)」是指個體的重量減去與脂肪含量相關的重量,並且通常表示為個體總重量的百分比。 瘦體重通常是身體的骨骼、器官、肌肉及蛋白質(如膠原蛋白)的重量。
本文所用的術語「治療」是指將包含一種或多種活性劑的組合物施用或投用於患有疾病的個體(例如,肥胖或其相關疾病或病症)、疾病的症狀或病症、或疾病的進展或傾向,其目的是治愈、癒合、緩減、緩解、改變、補救,改善,改善或影響病症,疾病的症狀或病症,由該疾病引起的殘疾,或疾病進展或傾向。因此,術語「治療」還可以包括,取決於待治療個體的狀況,預防疾病,包括預防疾病或與之相關的任何症狀之發作,以及在發生前降低或緩減疾病或其任何症狀的嚴重性。在一個示例性具體實施例中,一種治療或預防肥胖的方法可以包括減少所需個體中的體重、脂肪量及/或脂肪細胞大小,及/或增加氧消耗及/或能量消耗。對照個體可以是施用本文所述的組合物之前的相同個體,或者較佳地是具有類似體重的年齡、性別、種族及/或已經歷類似的飲食程序的個體,其具有沒有接受如本文所述的組合物。
通過本文所述的方法治療的個體可以是哺乳動物,特別是人類。 哺乳動物的實例可以包括囓齒動物(例如,小鼠、大鼠、花栗鼠、草原狗、松鼠、海狸、小鼠、倉鼠、田鼠、沙鼠,豪豬、豚鼠等),家畜動物(例如,豬、牛、 山羊、鹿、羊、犛牛等),伴侶動物(例如,貓、狗等)或靈長類動物(例如,狐猴、猴子、猿類、人類等)。 特別地,需要本文所述的治療方法的個體可以是人類個體,具有目標疾病/病症/病症、懷疑具有目標疾病/病症/病症、或具有目標疾病/病症/病症的風險,例如,超重或肥胖或消耗高脂肪飲食或對飲食誘導的肥胖敏感的人,或具有肥胖或其相關疾病或病症的家族史。
本文所用的術語「肥胖」通常是指個體有過量的體重。典型地,身體質量指數(BMI)為30kg / m 2以上的人類個體被認為具有過量的體重。「病態肥胖」具有個體身體質量指數大於35 kg / m2。肥胖也可以基於身體脂肪含量或體脂百分比來定義。肥胖通常定義為男性體脂含量大於25%,女性體脂含量超過30%。在一個示例性具體實施例中,肥胖是指飲食誘導的肥胖。非肥胖或正常個體可以具有在建議水平或接近推薦水平(也稱為「正常」水平)的體重指數和/或身體脂肪百分比。建議的BMI範圍從18.5-25。關於建議的體脂百分比,女性高達25-30%,男性高達18-25%,是可接受的。在一個示例性具體實施例中,一種治療肥胖的方法可以包括將需要的個體的體重指數(BMI)及/或體脂百分比降低到正常水平。
肥胖與各種醫學病症相關。特別地,本發明的方法可有效於治療肥胖相關疾病或病症,例如,2型糖尿病、高血糖症、葡萄糖不耐受、血脂異常、胰島素抵抗、高胰島素血症、脂肪肝、心血管疾病、中風和癌症。
根據本發明的方法,可以通過適當的途徑將組合物施用於需要的受試者。 在一個示例性具體實施例中,組合物通過口服途徑給藥(例如,通過固體,例如,丸劑,片劑或膠囊,或通過液體)。 組合物可以遞送到個體內的一個或多個區域。這些區域可以包括但不限於胃腸道系統內的區域,例如,口腔、胃、小腸、大腸或結腸。 給藥途徑的實例包括但不限於直腸給藥(例如,通過栓劑、灌腸劑、上內鏡檢查、上推腸鏡檢查或結腸鏡檢查),或通過鼻或口插管(例如,通過鼻胃管,鼻內管, 或鼻空腸管)。
透過以下實施例進一步說明本發明,這些實施例是為了演示而不是為了限制目的而提供的。鑑於本案揭示內容,本領域技術人員應該理解,在不脫離本發明的精神和範圍的情況下,可以在所揭示的具體實施例中進行許多改變,並且仍然獲得類似或相似的結果。
實例
在本研究,使用無菌之老鼠模型,我們找到衍生自dusp6 缺乏的小鼠的糞便/腸道微生物叢,在餵予高脂肪飲食之野生型小鼠,顯著地增加能量消耗及減少體重增加。分析dusp6 缺乏的小鼠的腸道轉錄組,我們發現dusp6 缺乏主要誘導生物過程包含代謝以及細胞外基質,特別是過氧化物酶體增殖物激活受體γ(Pparγ)路徑及緊密連接基因。再者,dusp6 缺乏的小鼠有專一高脂肪飲食的轉錄反應,來逆轉涉及微生物組生態平衡(microbiome homeostasis)的腸道障礙功能及黏膜免疫的相關基因表現。本研究證明dusp6 缺乏為形成腸道微生物叢的強大基因因素,通過改善腸道微生物叢對飲食介導的反應來賦予肥胖保護作用。
1. 材料與方法
1.1 小鼠
C57BL/6J dusp6-/-小鼠(產自dusp6-/-胚胎幹細胞,購買自Jackson Laboratory),及野生型C57BL/6J小鼠維持在半特屬無菌的狀態。同樣基因型的小鼠來自於不同窩合併為一籠有相似的初始體重(無盲),養育12小時之光週期後給予高溫滅菌過的飼料,分為10%卡路里對照組飲食(CD)及45%卡路里高脂肪飲食。五到六周代之無菌之雄性C57BL/6J小鼠購買自國家實驗動物中心(NLAC),且由NLAC認證其***症,之後由qPCR確認真細菌之16S rRNA基因。五到八周大之公鼠組別用來做以下實驗,DIO實驗組之樣本大小選自於試驗性實驗,至少80%能量在α = 0.05之閾值。所有的小鼠實驗都按照制度化的動物照顧步驟及台灣健康研究中心委員會。
1.2 葡萄糖及胰島素耐受測式
在葡萄糖耐受測式,小鼠禁食12小時並給予水,腹腔注射葡萄糖,以每公斤2公克之劑量。血糖水平係在葡萄糖注射前及注射15、30、60、90、120分鐘後,立即由葡萄糖測量儀(Johnson & Johnson)測量。胰島素耐受性測試方面,小鼠禁食6小時並給予水,腹腔注射胰島素,以每公斤0.75U之劑量,血糖水平係在胰島素注射前及注射15、30、60、90、120分鐘後,立即由葡萄糖測量儀測量。
1.3 糞便 DNA 萃取, 16SRNA 核醣體定序及微生物分析
糞便DNA由PowerFecal DNA Isolation Kit (Mo Bio Laboratories)萃取,V3到V5區域的16SRNA核醣體基因由條形碼引子放大。條形碼擴增子使用Illumina MiSeq平台來定序。16S rRNA分析使用開放資源軟體Quantitative Insights Into Microbial Ecology (QIIME), v.1.8.0來進行。引子序列之修剪為移除品質分數低於20的低品質序列。基於0.99相似度,使用UClust集成到運營分類單位(OTU)中,使用2010年5月的Greengenes版本,作為基於封閉參考的OTU採集的參考序列,以聚集序列39,40 。從每個OTU中選擇代表性的序列,並使用核醣體數據庫項目分類器將分類法分配給代表序列,使用以99%身份聚類的Greengenes參考數據庫作為訓練集41 。使用1,000個序列的稀疏進行了阿法(Shannon和Good's)和貝塔多樣性(加權和未加權UniFrac)分析42 。 PERMANOVA/Adonis試驗之實施使用純素:Community Ecology Package (R package version 2.3–4; http://CRAN.R-project.org/package=vegan)。糞便樣本收集來自於野生型及D6KO小鼠,在切換到CD或HFD(T0)和HFD或CD(T16)之後16週時,從WT和D6KO小鼠收集糞便樣品。 然後對從這些糞便樣品提取的基因組DNA進行細菌16S核醣體DNA基因的V3-V5區域的次世代定序。
1.4 DIO FMT CFMT
DIO之模型,六到八周大之雄性dusp6-/-小鼠給予對照組飲食(10%卡路里來自於脂肪)或HFD(45%卡路里來自於脂肪),共16週。每週監測體重和攝食量。無菌之雄性C57BL / 6J小鼠購買自台灣國家實驗動物中心。在FMT,將六至八週大之雄性小鼠五到八隻置於高壓滅菌的籠中,並在30分鐘內收集0.5公克的新鮮糞便。立即將糞便重新懸浮於5毫升無菌磷酸鹽緩衝鹽水(PBS)中並離心30秒以沉澱顆粒物質。收集上清液漿液並口服給予五至六週大的無菌受體小鼠。在CFMT,將10微升的PBS漿液(如上所述)注入3ml BHI broth,並在厭氧罐中在37℃下培養48小時。然後將培養物用於執行CFMT。FMT和CFMT每週進行三次,持續四周(共12次),受體小鼠在FMT的2週後給予CD或HFD 16週。在第一次FMT或CFMT之後,將先前無菌的FMT / CFMT受體小鼠保持在半SPF條件下,對FMT和CFMT受體小鼠的實驗小心地分開操作,以防止糞便微生物群的交叉污染。
1.5 RNA 分離、 RNA 定序及生物資訊學
總RNA分離自20毫克盲腸鄰近的勻漿腸組織,來自於每組4-5隻小鼠並根據製造商的說明書使用RNeasy Plus迷你試劑盒(Qiagen)。 RNA萃取後,按照製造商的說明,在Nanodrop分光光度計(Thermoscientific)和Agilent 2100 Bioanalyzer(Agilent Technologies)上測定RNA完整性(RIN評分> 9.0)和數量。總RNA樣品(2微克)由北京基因組學研究所(BGI)用寡核苷酸(dT)磁珠進行mRNA豐富處理,使用Illumina TruSeq RNA樣品製備試劑盒(Illumina)建構的索引dsDNA資料庫在HiSeq2000上運行SR50,根據BGI實驗管線。HiSeq2000之讀取為使用Bioconductor 導入R,來自Ensembl的Mus_musculus.GRCm38 release-79對齊後,使用Splicing Transcripts Alignment to Reference(STAR)軟體43,並使用DESeq2 package44完成計數數據的差異分析。使用DAVID v6.7和X2K Expression2Kinases軟體(豐富截止值至少為5 DEGs),選擇具有調整P小於0.05的基因作為差異表現基因(DEG)用於進一步的基因本體和途徑豐富分析。該網路分析使用GeneMANIA應用程序進行,其可視化使用Cytoscape 3.2.1所建立。
1.6 細菌偵測之即時反轉錄聚合酶鏈鎖反應及即時聚合酶鏈鎖反應
通過M-MLV反轉錄酶(Promega)從1微克的總RNA合成cDNA。在LightCycler 480系統(Roche Applied Science)快速啟動Universal SYBR GreenMaster(Rox)(Roche Applied Science)上,進行即時聚合酶鏈鎖反應。對於所有腸道基因之表現標準化到tbp-1。使用含有A. muciniphila腸道菌的16S序列的的質體(GenBank:LC071790.1,核苷酸1089-1418)作為標準來評估A. muciniphila腸道菌的豐度。有關本研究中使用的引子的詳細訊息,詳見補充表4。
1.7 組織收集及組織學
小鼠死亡後,收集腸,肝和側腹脂肪組織,以4%甲醛固定。將組織石蠟包埋,切片並用蘇木精和伊紅(H&E)染色。如先前描述進行免疫組織化。加入適當體積的稀釋的初級抗DUSP6(LS-B5975,LifeSpan BioSciences),抗CD3(C7930,Sigma-Aldrich)或抗CD4(14-9766-82,eBioscience)抗體,以覆蓋樣品,樣品在4℃下培養過夜。然後用蘇木精複染細胞核。對於螢光免疫組織化學,切除與盲腸相鄰的腸組織,直接嵌入冷凍切片培養基(Leica)中,並在液態氮中快速冷凍。收集6微米厚的切片並將其固定在冰丙酮中。使用抗ZO-1之抗體(61-7300,Invitrogen),接著Alexa Fluor-488之二抗(Invitrogen)對固定的組織做免疫染色。細胞核用含有固定液(Invitrogen)的4,6-二脒基-2-苯基吲哚(DAPI)染色。本研究中的所有圖像皆由Leica DM2500顯微鏡拍攝。
1.8 生成 D6KO Caco-2 細胞
使用CRISPR / Cas9系統生成D6KO Caco-2細胞。將引導RNA(標靶序列:GATCGCCATTTCCGACGCGAAGG(SEQ ID NO:5),指向dusp6基因的Exon1)和Cas9基因的表現載體共同轉入人類Caco-2細胞(來自CHUNG-Tong Chen,NHRI),透過使用Lipofectamine LTX&PLUS Reagent(153​​38-100,Thermo Fisher Scientific)。轉染72小時後,細胞進行潮黴素選擇。透過適當稀釋分離單細胞,並保持直到獲得細胞集落。通過T7E1測定篩選剔除候選的選殖株,並通過DNA定序證實DUSP6基因之無義突變。刪除之DUSP6表現DUSP6 KO Caco-2細胞透過免疫墨印分析(ab76310,Abcam)來證實。 Caco-2細胞株透過Promega StemElite ID系統認證,並檢測支原體污染。
1.9 跨上皮電阻 (TEER)
維持Caco-2細胞並按照前述步驟分化。簡言之,為了分化,將1×104 個細胞接種在聚酯膜***物(costar 3470,Corning)上,每週更換培養基3次。分化21天後,通過電壓表(Millicell ERS-2,Millipore)測量TEER。
1.10 小鼠腸道滲透壓測試
在測定前,八週大的雄性野生型和D6KO小鼠禁食水,持續4小時。使用異硫氰酸螢光素共軛的4kDa葡聚醣(每100克體重給50毫克) (46944,Sigma-Aldrich)口服給小鼠。在餵食後2小時,從面部靜脈收集血液,製備血清用於螢光測量(激發,490nm;發射,520nm)。
1.11 內毒素檢測測試
用PBS稀釋小鼠血清,稀釋1:10後用1/200 (vol / vol)PYROSPERSE分散劑(F188,Lonza)分解。根據製造商的說明書,將PYROSPERSE分解的血清樣品進行終點顯色LAL測定(QCL-1000,Lonza)以測定血清內毒素指數。
1.12 統計分析
使用Prism 5.0(GraphPad Software)進行統計學分析,包括RNA-seq和微生物叢。不符合預先測定標準的動物被排除在分析之外。以生物學重複的平均值進行統計學分析。使用雙尾Mann-Whitney檢驗分析兩組之間沒有在動物實驗上有分配假設的比較。使用不成對的雙尾t測試分析兩組之間體外細胞培養實驗的比較。通過分析單因素,進行Tukey的事後檢驗,進行兩個以上數據的比較。差異有統計學上的意義(P <0.05)。
1.13 資料可用性
原始定序數據已上傳至NCBI,目錄號為:PRJNA320922(SRA:SRP074626)。從C.Y.K.之要求,該數據支持本研究獲得支持結果的數據。
2. 結果
2.1 D6KO 糞便微生物叢對 DIO( 飲食誘發肥胖 ) 之貢獻
我們發現D6KO小鼠表現出對DIO的耐受性(圖1a-c),和以前的研究結果一致6 。我們觀察到D6KO小鼠在對照組飲食(CD)上比野生型(WT)控制的小鼠有更高的攝食量,並觀察到用高脂飲食(HFD)餵食的D6KO和WT小鼠也有相似趨勢(圖1d)。這些結果說明dusp6缺陷不是通過減少食物消耗來保護小鼠免於DIO。Dusp6缺陷也改善了HFD餵食小鼠的葡萄糖耐受性和胰島素之敏感性,而HFD餵食的WT小鼠顯示出嚴重的葡萄糖不耐受性,胰島素抗性和較高的空腹血糖水平(圖7a-c)。此外,dusp6缺陷減弱HFD所誘導的脂肪墊質量增加(圖7d),減小脂肪細胞大小(圖7e)和保護的小鼠免於發展成HFD誘導的肝硬化(圖7f)。
為了得知dusp6是否通過調節腸道微生物叢的反應來調節DIO抗性,我們用無菌的小鼠進行糞便 - 微生物叢移植(FMT)(圖8a)。我們的研究結果指出,與接受來自WT小鼠的糞便微生物叢的HFD餵食小鼠相比,D6KO小鼠來源的糞便微生物叢顯著降低了HFD受體小鼠的體重增加率(圖1e -g)。與D6KO小鼠相似,D6KO-微生物叢並沒有減少受體小鼠的24小時食物攝取,CD或HFD皆然(圖1h)。我們進一步發現,當用HFD處理8週,與WT-微生物叢受體小鼠相比,D6KO-微生物叢之受體小鼠的脂肪量降低(圖1i)。然而,體重在任一組受體小鼠中都不受影響(圖1j)。對FMT受體小鼠的間接做熱量分析顯示,D6KO-微生物叢受體小鼠的O2 消耗量(圖1k)和能量消耗都增加了約15%(圖11)。此外,D6KO-微生物叢減輕HFD所誘導的肝細胞損傷(圖1m)的發展,並減少HFD受體小鼠中脂肪細胞的大小(圖1n)。這些結果證明dusp6缺乏可以透過腸道微生物叢調節對DIO的耐受性。
2.2 Dusp6 缺陷改變腸道微生物叢
我們評估了總腸道細菌之載量,發現HFD餵食的WT小鼠其細菌載量增加,但dusp6缺陷的小鼠無此現象(圖8b)。這意味著dusp6缺乏可能調節腸道微生物叢對HFD的反應,因此我們調查了dusp6缺乏是否改變了腸道微生物叢。
HFD已經顯示能改變小鼠的腸道微生物組織,並且我們在WT和dusp6缺陷小鼠中也有類似的發現(圖8c,d)。加權和未加權的UniFrac-主要坐標分析(PCoA)分析顯示,在HFD處理之前(T0)和之後(T16),dusp6缺陷小鼠中的糞便/腸道微生物叢與WT小鼠係各別聚集(圖2a,b)。使用變異多變量分析(PERMANOVA)/ Adonis檢驗獲得的β多樣性,在WT和dusp6缺陷小鼠之間的糞便/腸道微生物叢,在這兩個時間點顯示有顯著差異(表1)。
表1. 在HFD處理前和後,WT和dusp6 KO小鼠的糞便/腸道微生物叢之門和科層面的分類組成。
這些結果說明在HFD處理前和後,在dusp6缺陷型和WT小鼠之間的腸微生物叢中存在定性和定量之差異。
在HFD處理之前,dusp6缺陷小鼠具有較高豐度的厚壁菌門(P = 0.015)和脫鐵桿菌門(P = 0.003)和較低豐度的擬桿菌門(P = 0.013)、放線菌門(P = 0.043)和變形菌門( P = 0.021)(表1和圖2c,d)。我們發現HFD在WT小鼠中增加了厚壁菌門 /擬桿菌門的比例(表1和圖2c),如前所述7,8,13 ,而D6KO小鼠顯示了厚壁菌門 /擬桿菌門比例的降低。進一步分析科級別的厚壁菌門 /擬桿菌門組合後,我們發現在HFD處理前,dusp6缺陷型小鼠具有降低的S24-7的水平(P = 0.0031)和增加的瘤胃球菌科(P = 0.0205)和毛螺旋菌科(P = 0.0091)的水平。 HFD處理後,與WT小鼠相比,dusp6缺陷型小鼠的擬桿菌門增多(與D6-T0相比P = 0.0011,與WT-T16相比P = 0.0022),具有較低豐度的丹毒絲菌科(P = 0.0043)(表1和圖2e,f)。值得注意的是,D6KO小鼠表現出HFD改變厚壁菌門及擬桿菌門的抗性(圖2g)。我們進一步對微生物數據應用線性判別分析(LDA)效應大小(LEfSe)分析發現,CD處理後的WT和dusp6缺陷小鼠(圖2h)有17個差異豐富的進化枝(α= 0.05),以及HFD處理的小鼠有15個差異豐富的進化枝(圖2j)。在CD-餵食的dusp6缺陷小鼠中,觀察到薩特菌和粘放菌的屬的減少和嗜甲基菌屬、毛螺旋菌屬和羅斯氏菌屬的增加(圖2h)。羅斯氏菌屬顯示DIO14的宿主代謝參數之改善呈現正相關。在HFD餵食的dusp6缺陷小鼠中,在伯克氏菌目的產鹼菌科的薩特菌則維持減少(圖2i)。在dusp6缺陷小鼠中,沒有觀察到WT小鼠丹毒絲菌目的丹毒絲菌科的支原體屬經HFD誘導的增加(圖2j)。在HFD攻毒下,dusp6缺乏增加了擬桿菌目的擬桿菌科中的擬桿菌屬的豐度(圖2j)。
我們的實驗結果與以前的研究結果一致,顯示HFD增加了丹毒絲菌科的豐度,降低了小鼠中擬桿菌門的相對豐度,進一步在肥胖人類觀察到富集的丹毒絲菌科的豐度16 。總括來說,我們的研究結果說明dusp6缺乏症不僅改變了腸道微生物叢之組成,而且改變了腸道微生物叢對HFD的反應。
2.3 D6KO 微生物叢影響宿主微生物叢的 HFD 反應
為了研究移植的微生物叢如何對HFD反應,我們在FMT受體小鼠中,HFD處理前和後,分析糞便微生物叢譜。在WT微生物叢和D6KO微生物叢受體小鼠中,以PERMANOVA / Adonis測試分析糞便/腸道微生物叢的β多樣性,在時間點0顯示出顯著差異(表2)。
表2. 在HFD處理前和後,WT和D6KO微生物叢受體小鼠的糞便/腸道微生物叢之門和科層面的分類組成。
具有加權及未加權的UniFrac-PCoA分析的可視化顯示,T0分離的WT微生物叢和D6KO微生物叢受體小鼠中的糞便/腸微生物叢係分開聚集(圖3a,b)。此一結果指出,受體小鼠被一些獨特的微生物叢所聚集。經過HFD處理後,即使在相同的WT遺傳背景下,通過加權和未加權的UniFrac-PCoA分析分別聚集WT-微生物叢和D6KO-微生物叢受體小鼠的腸微生物叢(圖3a,b),說明不同群聚有助於在受體小鼠中對不同腸道微生物叢的HFD反應。我們發現,與D6KO小鼠不同,在HFD處理之前,D6KO-微生物群受體小鼠在大多數門中表現出相似的分類組成,與WT微生物群受體小鼠相比,僅TM7較少(P = 0.0014)(表2和圖3c,d)。在WT微生物叢和D6KO微生物叢受體小鼠中,HFD強烈地干預以在門層面之腸道微生物叢,特別是增加了厚壁菌門 /擬桿菌門的比例(圖3c,d,g)。
我們進一步分析科層面的擬桿菌門、厚壁菌門和變形桿菌門的組成(表2,圖3e,f和圖8e,f)。在WT微生物叢和D6KO微生物叢受體小鼠中,HFD降低富含於HFD餵食的dusp6缺陷小鼠的擬桿菌門的比例,但不影響S24-7的豐度(圖3e)。雖然HFD處理增加了來自WT和D6KO的微生物叢受體小鼠中厚壁菌門的比例,但幾個厚壁菌門的科成員在D6KO微生物叢受體中比WT微生物叢受體來的少,特別是鏈球菌科(P = 0.0047)(圖8e)。在HFD處理前後,WT受體小鼠中觀察到在紅椿菌科內的粘放線屬的顯著豐度(圖3h-i)。因為以LEfSe分析預設設定,在D6KO微生物叢受體小鼠中沒有發現富集細菌進化枝(clade),因此進一步調整了設定(Kruskal-Wallis檢驗α= 0.1)以尋找與肥胖抵抗相關的可能進化枝。結果顯示,在正常食物飲食下,D6KO微生物叢受體小鼠,接受6次口服FMT後,大腸桿菌屬,副擬桿菌屬和乳酸桿菌屬的豐度增加(圖3j)。在HFD處理後, D6KO微生物叢受體小鼠中觀察到變形菌門的增加(圖8g)。由於親粘阿氏菌(Akkermansia muciniphila)最近被證實與DIO之抗性相關,我們進行了定量聚合酶鏈反應(qPCR)分析來分析親粘阿氏菌(A. muciniphila),但是在我們的動物設施中,在WT和dusp6缺陷小鼠中,並沒有檢測到(Ct值> 35或不可檢測),HFD處理前或後皆然。
為了進一步證實來自dusp6缺陷小鼠的潛在瘦相關微生物的差異有助於DIO抗性,我們通過使用腦心臟輸注(BHI)培養來自WT和dusp6缺陷小鼠的糞便微生物叢,並對無菌受體WT小鼠進行可培養的糞便微生物叢移植(CFMT)。我們發現,與WT-CFMT小鼠相比,來自dusp6缺陷小鼠的可培養糞便微生物叢,降低了HFD處理16週後移植小鼠的體重增加量(圖8h,i)。這些結果支持D6KO微生物叢可以賦予WT受體小鼠DIO抗性。
2.4 Dusp6 缺陷調節基底腸道轉錄組
通過免疫組織化學(IHC)分析,我們發現DUSP6蛋白主要在腸上皮以及一些上皮內免疫細胞中表現(圖4a)。通過IHC和定量反轉錄聚合酶鏈鎖反應分析證實D6KO小鼠中DUSP6蛋白的消耗和基因表現(圖9a,b)。為了研究dusp6缺陷如何影響腸道微生物並賦予DIO抗性,我們用RNA-seq進行腸轉錄組圖譜。來自HFD的差異表現基因(DEG)與WT小鼠中的CD通常在dusp6缺陷小鼠中以相反的方式調節。在CD餵食的小鼠中,與WT小鼠相比,在dusp6缺陷小鼠中發現889個顯著上調基因和854個顯著下調基因(被稱為基礎DEG)(圖9c)。這些基礎DEG用基因本體(GO)增長分析進行了研究,其中生物過程被視為顯著增長(指定為上升或下降生物過程)。 dusp6缺陷小鼠腸中的生物學過程主要參與代謝(例如,棕色脂肪細胞分化,脂肪酸和甘油三酯代謝)和粘附/細胞結構(例如細胞粘附和細胞外基質組織),而下降生物過程主要與細胞週期和核酸加工有關。此外,這些上升調節代謝,細胞到細胞之粘附和細胞外結構相關的生物過程僅在dusp6缺陷小鼠中發現。我們還發現了富含於dusp6缺陷小鼠或WT小鼠的受HFD調節的生物過程有所不同,我們觀察到dusp6缺陷小鼠中上升調節基因之間的整體潛在連結,P擴增信號和緊密連接(TJ)信號通路在放大框架中呈現。進一步驗證了Ppar信號途徑和TJ途徑的一些代表性基因(圖4b,c)。TJ基因的上升調節意味著dusp6缺乏在腸道屏障通透性的調節中起重要作用。為了研究此假設,我們在人類結腸Caco-2上皮細胞株中製造了DUSP6基因缺陷(圖9d),並評估WT和DUSP6-KO Caco-2細胞的跨上皮電阻(TEER)。研究結果說明,當與WT Caco-2細胞相比時,DUSP6刪除賦予了DUSP6-KO Caco-2細胞中TEER的顯著增加(圖9e)。我們進一步使用螢光素異硫氰酸酯(FITC) 葡聚醣來檢查dusp6缺陷是否影響體內腸道滲透性,發現dusp6缺陷小鼠在食物餵食期間表現出腸道通透性降低(圖9f)。這些結果說明,dusp6缺陷對調節TJ基因表現和腸道滲透性具有重要作用。為了進一步了解dusp6缺乏是否通過腸道微生物調節Ppar和TJ路徑,我們分析在CD上餵食的FMT受體小鼠中相同基因的腸道表現。結果指出,幾個基因的表現如Pparγ和Ppm1j對D6KO微生物叢的反應(圖9g,h)。這些結果指出,一部分dusp6缺乏的作用是繼發於腸道微生物叢變化,dusp6在保持腸粘膜和微生物叢之間的體內平衡方面發揮重要作用。
2.5 Dusp6 缺陷反轉 HFD 所改變的腸轉錄組
在HFD餵食的D6KO小鼠的腸中,上升生物過程涉及細胞骨架調節,代謝和GTPase信號傳導。因為Ras GTPase為維持腸道屏障完整性方面重要的角色,dusp6缺陷也可能在HFD壓力下增強腸屏障完整性。 HFD餵食的dusp6缺陷小鼠腸道中許多下降生物過程與免疫系統調節相關,特別是淋巴細胞調節和T細胞分化和激活(圖5b)。我們通過qRT-PCR分析檢測了WT和dusp6缺陷小鼠中CD3 + T細胞,CD19 + B細胞和F4 / 80 +巨噬細胞的差異(圖5a-c)。我們發現HFD增加HFD餵食的WT小鼠中CD3 + T細胞的量,但不增加HFD餵食的dusp6缺陷小鼠(圖5a-c)。我們還研究了小鼠腸中T細胞CD4的表現水平,發現dusp6缺乏抑制HFD介導的CD4基因表現誘導(圖5d)。 IHC分析還顯示HFD增加WT小鼠CD3 +和CD4 + T細胞的浸潤,但dusp6缺陷小鼠不增加(圖5e,f)。這些結果說明dusp6缺乏改變了HFD誘導的腸粘膜免疫中T淋巴細胞的行為。
我們還從相同的比較中應用DAVID KEGG路徑分析對下降調節的DEG,並且在細胞因子與細胞因子受體相互作用路徑中有39個dusp6缺陷下降調節的基因。在這一途徑中,幾種基因屬於腫瘤壞死因子(TNF)超家族,包括淋巴毒素-α(Ltα),淋巴毒素-β(Ltβ)和LIGHT(TNF超家族成員14)。因為TNF-淋巴毒素-γ基因座的多態性也與肥胖和II型糖尿病相關聯,而缺乏淋巴毒素的小鼠也顯示改變的腸道微生物叢,並對DIO22具有抗性,我們在腸中檢查了Ltα的基因表現、Ltβ和Ltβ受體(LTβR)。我們發現dusp6缺乏下調HFD餵食小鼠的Ltα和Ltβ表現,但LTβR的表現沒有改變(圖10)。
為了評估dusp6缺陷是否發揮腸道HFD特異性反應以抵消HFD,我們比較了WT和dusp6缺陷小鼠其HFD相關的DEGs。我們發現,通過HFD在WT小鼠中下降調節的761個基因中,有423個在HFD餵食的dusp6缺陷小鼠中是上升調節。此外,在HFD餵食的dusp6缺陷小鼠中,WT小鼠中的201個HFD上升調節基因中的140個被下降調節。這些結果說明dusp6缺乏逆轉了腸道轉錄HFD介導的作用。這些dusp6缺陷反轉基因的DAVID路徑分析發現,AJ路徑和TJ路徑被富集。在TJ和AJ路徑中,TJP-1基因(編碼ZO-1蛋白)在腸屏障的結構中具有關鍵作用。儘管我們在WT或dusp6缺陷小鼠(圖11a)中HFD治療後TJP-1基因表現沒有發現任何顯著變化,但在HFD餵食的dusp6缺陷小鼠中ZO-1蛋白的連接結構增強(圖6a)。因為HFD可以增加小鼠的腸道滲透性和誘導內毒素血症24,我們檢測了WT和dusp6缺陷小鼠的血清內毒素水平。事實上,我們發現HFD在WT小鼠中增加了血清內毒素水平,dusp6缺陷小鼠對這種HFD誘導的內毒素血症具有抗性(圖11b)。這些結果共同指出dusp6缺陷在協調腸TJs的形成中是重要的,並且保護腸上皮屏障免受HFD誘導的中斷。
由dusp6缺陷回復幾個潛在重要的HFD誘導基因如抗微生物肽(AMP)。已知DEFA5影響共生組成,因此DEFA5的良好控制表現對於維持共生體內平衡至關重要。我們發現dusp6缺陷反轉HFD介導的Defa5誘導(圖6b),並且顯示反轉HFD介導的RegIIIβ和RegIIIγ誘導的趨勢(圖11c,d)。這些結果表示dusp6缺陷透係過維持特定AMP的生理程度的表現來調節對HFD的腸道微生物叢反應。另外,由於HFD可以減少分割的絲狀細菌(SFB)的比例,並且已經證明Ltbr或DEFA5表現的中斷維持SFB的豐度,我們檢查了WT和dusp6缺陷型糞便微生物叢中SFB的豐度。發現在HFD治療前後,dusp6缺陷小鼠比WT小鼠具有更高量的SFB(圖6c)。總之,我們的研究證明,貧血相關微生物叢的生長(D6KO-FMT / CFMT受體小鼠部分顯露DIO抗性)和維持(dusp6缺陷小鼠對HFD具有獨特的腸道微生物叢反應)在抵抗肥胖中起作用(圖6d)。
3. 討論
腸道免疫的體內平衡由腸上皮​​細胞、免疫細胞和微生物叢組成。我們發現dusp6缺陷可以緩解HFD誘導的T細胞浸潤進入腸上皮細胞。有趣的是,dusp6在CD4 + T細胞表現,此表現可以透過Toll-like受體4進一步誘導脂多醣。在Il10缺陷小鼠結腸炎模型中的隨機研究揭露Il10-/- dusp6-/- 儘管dusp6缺陷小鼠沒有顯示任何結腸炎相關表型,雙重剔除小鼠顯示出增加結腸炎的嚴重程度。因為IL-10是影響許多不同免疫細胞功能的關鍵因素,IL-10缺乏可以改變與腸炎相關的腸道微生物叢,腸道微生物叢可能會混淆Il10-/- dusp6-/-剔除小鼠在Il10缺陷小鼠結腸炎模型中的dusp6研究確實表現腸道微生物叢可能影響小鼠的結腸炎,但不進行進一步的微生物分析和因果關係實驗來解剖腸道微生物叢的作用。因為Il10缺陷小鼠結腸炎研究也顯示dusp6在不同CD4 + T細胞(Th1和Th17)亞型的發育中的相反作用,dusp6的功能是情境特異性(例如,HFD與結腸炎)和細胞型特異性(例如,腸上皮細胞,Th1和Th17細胞)。此外,我們的TJ和腸屏障滲透性結果表明,dusp6也可能在協調腸上皮細胞和免疫細胞之間的相互作用方面發揮關鍵作用。我們的研究提供了dusp6缺乏如何調節腸上皮,粘膜免疫和微生物群之間的內環境平衡的綜合觀點。
從我們的腸轉錄組圖譜中抽出的一個KEGG途徑是Ppar途徑,被稱為調節脂肪酸和脂質代謝穩態的脂肪組織營養傳感器。雖然Pparγ的活化通常與脂肪細胞的脂質積累和肥胖的病因相關,但Pparγ可以通過與PGC-1和UCP-134的相互作用誘導棕色脂肪細胞分化。由於dusp6已顯示通過PGC-1α/ FOXO1信號通路促進肝臟糖異生,dusp6缺陷誘導的Pparγ表現可能在抗肥胖中具有情境特異性作用。最近的體外證據報告顯示DUSP6的過度表現下降調節Pparγ並抑制棕色脂肪細胞分化。這些結果與在dusp6缺陷小鼠中從腸道轉錄組鑑定的Pparγ相關途徑的上升調節一致。最近,腸道微生物叢被證實可增強血腦屏障完整性,增加TJ蛋白的表現。我們發現一些TJ路徑基因被DUSP6調節,並且在dusp6缺陷小鼠中的腸道屏障完整性得到增強。磷酸蛋白質組學分析研究顯示,HFD6中來自dusp6缺陷小鼠的肝臟中ZO-1和ZO-2的磷酸化增加。儘管在dusp6缺陷小鼠的腸中ZO-1和ZO-2的磷酸化程度變化需要進一步研究,但是這些結果表示dusp6可以參與各種程度的基因表現和或蛋白磷酸化。通過重塑腸道屏障完整性,dusp6缺乏可以賦予對HFD誘導的微生物叢抗性的改變。
我們的研究顯示宿主dusp6基因缺陷和HFD之競爭用於形成腸道微生物叢,營養、微生物和宿主之間的相互作用比以前更為複雜。我們發現HFD餵食的D6KO小鼠的糞便/腸道微生物叢的一個重要指標是減少厚壁菌門 /擬桿菌門的比例。 dusp6缺乏的干預維持耐受HFD處理之穩定的厚壁菌門 /擬桿菌門的比率,說明dusp6是治療肥胖或尋找瘦相關微生物的合適靶標。總之,我們的研究是DIO中D6KO小鼠的首次報導。鑑於dusp6在肥胖背景下的功能是複雜多方面的,我們認為這項研究為進一步調查dusp6缺乏能賦予肥胖保護和發展微生物叢治療肥胖/肥胖症的準確機制奠定了堅實的基礎與代謝疾病。
當結合圖式閱讀時,將更好地理解上述概述以及本發明的以下詳細描述。為了說明本發明之目的,在附圖中示出了目前較佳的具體實施例。然而,應當理解的是,本發明不限於所示的精確排列與手段。
在圖式中:
圖1顯示
圖1顯示,dusp6缺陷小鼠來源的糞便微生物叢增加糞便微生物叢移植(FMT)受體小鼠的DIO抗性。 a,e,16週高脂食物(HFD)餵食後的小鼠的代表性圖像:野生型(WT)和dusp6剔除小鼠(命名為D6KO)(a)和FMT受體小鼠(e)。刻度棒,10mm。 b,f,雄性小鼠餵食CD或HFD 16週,每週監測體重:6-8週齡WT和D6KO小鼠(b)和5-6週齡FMT受體小鼠(f )。 c,g,CD或HFD處理16週後小鼠的體重增加:WT和D6KO小鼠(c)和FMT受體小鼠(g)。 d,h,個體雄性WT / D6KO小鼠(d)和WT / D6KO-微生物叢受體小鼠(h)的24小時食物攝取。b-d中每組的小鼠數:WT-CD,N = 10; WT-HFD,N = 8; D6KO-CD,N = 10; D6KO-HFD,N = 6。在f中,供體:WT-CD,N = 12;供體:WT-HFD,N = 12;供體:D6KO-CD,N = 13;供體:D6KO-HFD,N = 13。在g,h中,每組N = 8隻小鼠。 i,j,在CD / HFD處理8週後,在WT / D6KO FMT受體小鼠上進行核磁共振脂肪/瘦體組成分析:供體:WT-CD,N = 4;供體:WT-HFD,N = 4;供體:D6KO-CD,N = 5;供體:D6KO-HFD,N = 5。 k,l,通過間接量熱法測定的代表性小鼠的O2 消耗(VO2 )(k)和能量消耗(l)24小時。 24小時平均值顯示在右側。每組小鼠數:供體:WT-HFD,N = 4;供體:D6KO-HFD,N = 5。 *根據Mann-Whitney分析,P <0.05。m,n,來自經CD或HFD飲食 16週的雄性WT和D6KO小鼠的肝臟組織(m)和側腹脂肪組織(n)的H&E染色切片。刻度棒,100μm。 NS,統計學無顯著性。 * P <0.05,*** P <0.0005,根據單因素方差分析和Tukey事後檢驗。數值表示為平均值±s.e.m。的每個組。
圖2顯示dusp6缺陷小鼠對HFD介導的腸微生物組織的改變具有耐受性。a,b,加權UniFrac(a)和未加權UniFrac(b)PCoA圖,表示正常飲食(T0)或HFD(T16 )餵食的WT及D6KO小鼠之間的變化。c,d,腸道微生物叢的組成,在門層次,HFD處理16週之前和之後。e,f,每個條件和時間點的擬桿菌門(Bacteroidetes)(e)和厚壁菌門(Firmicutes)( f)的科的成員的豐度。g,WT和D6KO小鼠HFD處理後細菌門的變化。數值是每個組的平均值。另見表1。h,j,不同豐度的微生物分類進化枝(differentially abundant microbial clades)的LDA評分( LDA評分> 2,並且通過Kruskal-Wallis檢驗確定α<0.05的顯示性)。每組小鼠數:T0:WT-CD,N = 11和D6KO-CD,N = 13; T16:WT-HFD,N = 6和D6KO-HFD,N = 6。
圖3顯示,來自dusp6缺陷小鼠的腸道微生物群的集落有助於FMT受體小鼠的肥胖耐受。a,b,加權UniFrac(a)和未加權UniFrac(b)PCoA圖,表示正常飲食(T0)或HFD(T16)餵食的WT和D6KO FMT受體小鼠之間的變化。 c,d,FMT受體小鼠的腸道微生物叢的組成,在門層次,HFD治療16週之前和之後。 e,f,每個條件和時間點的擬桿菌門(Bacteroidetes)和厚壁菌門(Firmicutes)的科成員的豐度。 g,WT和D6KO FMT小鼠HFD處理後細菌門的變化。數值是每個組的平均。參見表2。h,i,不同豐度的微生物分類進化枝(differentially abundant microbial clades)的LDA評分(LDA評分> 2,並且通過Kruskal-Wallis檢驗確定α<0.05的顯著性)。 j,不同豐度的微生物分類進化枝(differentially abundant microbial clades)的LDA評分(LDA評分> 2,並且通過Kruskal-Wallis檢驗確定α<0.1的顯著性)。每組小鼠數:T0:WT-CD,N = 16; D6KO-CD,N = 16; T16:WT-HFD,N = 8; D6KO-HFD,N = 8。
圖4顯示了dusp6缺陷型和WT小鼠的腸轉錄組分析。 a,左圖:16週CD或HFD處理後WT小鼠腸中DUSP6蛋白的免疫組織化學分析。 刻度棒,100μm。 右圖:左側面板所示區域的縮放圖像。箭頭表示DUSP6表現的上皮內免疫細胞。 刻度棒,20μm。 b,c,KEGG Ppar途徑和TJ途徑的驗證(來自qRT-PCR),其顯著富集了dusp6缺陷小鼠與CD中的WT小鼠的比較的上調基因。每組N = 5隻小鼠。數據以平均值±s.e.m表示。NS,統計學無顯著性; *根據Mann-Whitney分析,P <0.05。
圖5顯示dusp6缺乏係調節腸粘膜免疫以適應HFD的挑戰。 a-d,使用qRTPCR的每個代表性處理的小鼠中CD3d(a),CD19(b),F4 / 80(c)和CD4(d)的分析。 數據表示為平均值±s.e.m。每組小鼠數:WT-CD,N = 9; WT-HFD,N = 9; D6KO-CD,N = 7; D6KO-HFD,N = 6。* P <0.05,根據單因素方差分析和Tukey事後檢驗。e-f,在CD或HFD處理16週後,WT和D6KO小鼠小腸中CD3(e)和CD4(f)T細胞標記蛋白的IHC分析。放大倍率×200比例尺,200μm。
圖6顯示dusp6缺陷賦予HFD特異性調節以維持生理屏障功能。a,HFD餵食的WT和dusp6缺陷小鼠的ZO-1蛋白的螢光IHC分析。刻度棒,50μm。 b。使用qRT-PCR分析HFD處理前後WT / dusp6缺陷型小鼠小腸Defa5基因。每組小鼠數:WT-CD,N = 10; WT-HFD,N = 9; D6KO-CD,N = 8; D6KO-HFD,N = 7。數據以平均值±s.e.m表示。 * P <0.05,根據單因素方差分析和Tukey事後檢驗。 c,使用qPCR在16週的HFD處理前後驗證分節絲狀菌(SFB)的16S rRNA基因。使用SFB質體CTL5-6作為標準來驗證每個樣品的絕對複製數。每組的小鼠數:HFD處理前:WT,N = 18和D6KO,N = 17; HFD處理16週後:WT,N = 8和D6KO,N = 7。中間線表示每組的平均值。 *根據Mann-Whitney分析,P <0.05。 d,dusp6缺陷在調節微生物群反應和肥胖耐受性方面的潛在作用的圖形總結。
圖7顯示dusp6缺乏增加小鼠的葡萄糖耐受性和減輕的肥胖相關表型。a,葡萄糖耐受性試驗,雄性WT / dusp6 KO小鼠禁食12小時以CD或HFD餵食16週後。數據表示為每個時間點的平均值±SEM。 WT-CD,N = 17; WT-HFD,N = 15; dusp6 KO-CD,N = 17; dusp6 KO-HFD,N = 13。 b,胰島素耐受性試驗,雄性WT / dusp6-KO小鼠禁食6小時後,以CD或HFD上餵食16週。數據表示為每個時間點的平均值±SEM。WT-CD,N = 7; WT-HFD,N = 7; dusp6 KO-CD,N = 5; dusp6 KO-HFD,N = 5。c,血糖水平,雄性WT / dusp6-KO小鼠禁食6小時後,以CD或HFD餵食16週。數據表示為平均值±SEM。 WT-CD,N = 7; WT-HFD,N = 7; dusp6 KO-CD,N = 7; dusp6 KO-HFD,N = 6。 d,側腹脂肪組織的重量,雄性WT / dusp6-KO小鼠,CD或HFD餵食16週。數據表示為平均值±SEM。 WT-CD,N = 10; WT-HFD,N = 8; dusp6 KO-CD,N = 9; dusp6 KO-HFD,N = 7。對於(c)和(d),根據單因素方差分析和Tukey事後檢驗,星號表示統計學差異(* P <0.05,*** P <0.0005)。 e-f,從CD或高脂肪飲食HFD餵食16週的雄性WT和dusp6-KO小鼠的側腹脂肪組織(e)和肝組織(f)的蘇木精和伊紅(H&E)染色切片。刻度棒,100μm。
圖8顯示了FMT受體小鼠的糞便/腸道微生物組成。 a,WT / D6KO微生物群受體小鼠的糞便微生物移植,代謝檢測和組織取樣示意圖。 b。在HFD治療16週之前和之後,所有真細菌的16S rRNA基因的定量PCR驗證。質體含有16S rDNA序列的細菌用作標準,以驗證每個樣品的絕對複製數。每組的小鼠數:HFD處理前,WT,N = 18,dusp6KO,N = 17;在HFD治療16週後,WT,N = 8和dusp6KO,N = 7。中間線表示每組的平均值。根據Mann-Whitney分析,雙星號和三星號表示平均值±SEM的統計學差異(P <0.005和P <0.0005)。 c-d,加權UniFrac(c)和未加權UniFrac(d)原理坐標分析(PCoA)圖表示餵食野生型和dusp6剔除小鼠正常飲食(T0)和HFD(T16)之間的變化。每組小鼠數:T0:WT-CD,N = 11; dusp6 KO-CD,N = 13; T16:WT-HFD,N = 6; dusp6 KO-HFD,N = 6。 e,在HFD處理16週之前和之後,WT / dusp6 KO微生物叢受體小鼠的厚壁菌門(Firmicutes)的科的組成。 f,在HFD處理16週之前和之後,WT / dusp6 KO微生物叢受體小鼠的變形菌門細菌(Proteobacteria)的科的組成。 g,不同豐度的微生物分類進化枝(LDA評分> 2,Kruskal-Wallis檢驗確定的α<0.1的顯著性)。 h,5-6週齡的雄性無菌小鼠,用來自代表性供體的糞便微生物的BHI肉湯培養物口服,然後餵食HFD 16週。每週監測體重。數據表示為每個時間點的平均值±SEM。 CFMT-WT,N = 11; CFMT-dusp6 KO,N = 12。 i,在HFD處理16週後WT / dusp6 KO CFMT受體小鼠的體重增加。數據表示為平均值±SEM。根據Mann-Whitney分析,星號表示統計學差異(P <0.05)。 CFMT-WT,N = 11; CFMT-dusp6 KO,N = 12。
圖9顯示CD或HFD處理的WT / dusp6-KO小鼠的轉錄組譜。 a-b,免疫組織化學分析(a)和qRT-PCR分析(b),DUSP6蛋白或dusp6基因表現,在餵食正常飲食或HFD的dusp6 KO小鼠的小腸中。刻度棒,100μm。 c,在HFD餵食的WT和dusp6-KO小鼠的比較中,在上調基因或下調基因中顯著富集的總DEG(c)的數量。 d,WT和DUSP6 KO Caco-2細胞中DUSP6蛋白的免疫印墨分析。e,21天分化後,WT和DUSP6 KO Caco-2細胞的TEER分析。數據表示為平均值±SEM(N = 3個獨立實驗)。星號表示統計學差異(P <0.05),根據雙尾t檢驗。 f,用FITC共軛的4kDa葡聚醣口服後2小時,收集小鼠血清用於螢光測量。數據表示為平均值±SEM。每組N = 11。根據Mann-Whitney分析,星號表示統計學差異(P <0.05)。 gh,KEGG Ppar途徑(g)和緊密連接途徑(h)的qRT-PCR驗證,其在dPT6缺陷小鼠與野生型小鼠比較的上調基因中顯著富集,於正常飲食的對照飲食餵食的FMT受體小鼠。數據表示為平均值±SEM。 FMT-WT受體小鼠N = 8,FMT-Dusp6 KO受體小鼠N = 7。根據Mann-Whitney分析,星號表示統計學差異(P <0.05)。 Ns表示統計學上無顯著性。
圖10顯示,在HFD餵食的dusp6缺陷型小鼠中KEGG免疫學途徑下調。HFD處理前後,WT和dusp6缺陷小鼠Ltα,Ltβ和LTβR的qRT-PCR分析。數據表示為平均值±SEM。 星號(P <0.05)和雙星號(P <0.005)表示根據單因素方差分析和Tukey事後檢驗的統計學差異。 每組的小鼠數:WT-CD,N = 7; WT-HFD,N = 8; Dusp6KO-CD,N = 7; Dusp6KO-HFD,N = 8。
圖11顯示dusp6缺乏逆轉HFD介導的腸抗菌肽(AMP)的誘導。a,HFD處理前後WT / dusp6缺陷小鼠腸TJP-1基因的qRT-PCR分析。數據表示為平均值±SEM。 ns表示統計學無顯著性,根據單因素方差分析和Tukey事後檢驗。每組N = 5。 b,通過LAL試驗測定HFD治療前後,WT / dusp6缺陷小鼠血清內毒素水平。數據以平均值±SEM表示。根據單因素方差分析和Tukey事後檢驗,雙星號表示統計學差異(P <0.005)。每組的小鼠數:WT-CD,N = 9; WT-HFD,N = 13; Dusp6KO-CD,N = 9; Dusp6KO-HFD,N = 13。 c-d,RegIIIβ(c)和RegIIIγ(d)的定量RT-PCR驗證。數據表示為平均值±SEM。每組的小鼠數:WT-CD,N = 10; WT-HFD,N = 8; Dusp6 KO-CD,N = 9; Dusp6 KO-HFD,N = 7。根據單因素方差分析和Tukey事後檢驗,ns表示統計學上無顯著性差異。
Figure TW201805418AD00001
Figure TW201805418AD00002
Figure TW201805418AD00003
Figure TW201805418AD00004
Figure TW201805418AD00005
Figure TW201805418AD00006

Claims (31)

  1. 一種用於獲得微生物叢的方法,其包含: (a)提供雙特異性磷酸酶6(dusp6)缺陷的非人類動物;及 (b)自該dusp6缺陷的動物收集腸道微生物叢。
  2. 如請求項1之方法,其中編碼dusp6的基因被破壞,藉此造成引起dusp6的功能喪失。
  3. 如請求項1之方法,其中該動物為囓齒類動物。
  4. 如請求項1之方法,其包含培養該腸道微生物叢,以獲得可培養的微生物叢。
  5. 如請求項1之方法,其包含測量該腸道微生物叢的抗肥胖活性。
  6. 如請求項1之方法,其包含自該腸道微生物叢中鑑別出瘦相關微生物。
  7. 如請求項6之方法,其中該等瘦相關微生物係藉由以下方式鑑別:測量在投予微生物後該等微生物是否有效於在個體中減低體重、脂肪量及/或脂肪細胞大小。
  8. 如請求項6之方法,其中該等瘦相關微生物係藉由以下方式鑑別:測量在投予微生物後該等微生物是否有效於在個體中增加氧消耗及/或能量消耗。
  9. 如請求項6之方法,其包含自該腸道微生物叢中分離出該等瘦相關微生物。
  10. 一種組合物,其包含: (i)實質純化的放線菌門細菌(Actinobacteria)、(ii)實質純化的擬桿菌門細菌(Bacteroidetes)、(iii)實質純化的藍菌門細菌(Cyanobacteria)、(iv)實質純化的脫鐵桿菌門細菌(Deferribacteres)、(v)實質純化的厚壁菌門細菌(Firmicutes)、(vi)實質純化的變形菌門細菌(Proteobacteria)、(vii)實質純化的TM7細菌、(viii)實質純化的軟壁菌門細菌(Tenericutes),及/或其任何組合:及/或 (a)實質純化的擬桿菌科細菌(Bacteroidaceae)、 (b)實質純化的S24-7細菌、(c)實質純化的理研菌科細菌(Rikenellaceae)、(d)實質純化的紫單胞菌科細菌(Porphyromonadaceae)、(e)實質純化的臭味菌科細菌(Odoribacteraceae)、(f)實質純化的瘤胃球菌科細菌(Ruminococcaceae)、(g)實質純化的丹毒絲菌科細菌(Erysipelotrichaceae)、(h)毛螺旋菌科細菌(Lachnospiraceae)、(i)乳酸桿菌科細菌(Lactobacillaceae)、(j)梭菌科細菌(Clostridiaceae),及其任何組合。
  11. 如請求項10之組合物,其包含(iv)實質純化的脫鐵桿菌門細菌(Deferribacteres)或(v)厚壁菌門細菌(Firmicutes),或其組合。
  12. 如請求項10之組合物,其包含(f)實質上純化的瘤胃球菌科細菌(Ruminococcaceae)或(h)毛螺旋菌科細菌(Lachnospiraceae),或其組合。
  13. 如請求項10之組合物,其中(ii)實質純化的擬桿菌門細菌(Bacteroidetes)和(v)實質純化的厚壁菌門細菌(Firmicutes)係以約1:1.2的比例存在於該組合物中。
  14. 如請求項10之組合物,其中(i)實質純化的放線菌門細菌(Actinobacteria)、(iv)實質純化的脫鐵桿菌門細菌(Deferribacteres)、及(vi)實質純化的變形菌門(Proteobacteria)係以約1:120:20的比例存在於該組合物中。
  15. 如請求項10之組合物,其中,(i)實質純化的放線菌門細菌(Actinobacteria)、(ii)實質純化的擬桿菌門細菌(Bacteroidetes)、(iv)實質純化的脫鐵桿菌門細菌(Deferribacteres)、(v)實質純化的厚壁菌門細菌(Firmicutes)、及(vi)實質純化的變形菌門細菌(Proteobacteria)係以約1:1400:120:1770: 20的比例存在。
  16. 如請求項10之組合物,其藉由如請求項1-9中任一項之方法製備。
  17. 如請求項10之組合物,其係調配為食品、膳食補充劑或藥物。
  18. 如請求項10之組合物,其中該組合物用於在個體中改變微生物叢的相對豐度。
  19. 如請求項10之組合物,其中該組合物用於在個體中減低體重及/或體脂肪,避免體重及/或體脂肪增加,及/或治療肥胖或其相關疾病或病症。
  20. 一種用於在有需要的個體中改變微生物叢的相對豐度之方法,其包含對該個體投予有效量的如請求項10-17中任一項之組合物。
  21. 如請求項20之方法,其中該組合物的量可有效於在該個體中減少TM7細菌的相對豐度。
  22. 如請求項20之方法,其中該組合物的量可有效在該個體中減少鏈球菌科細菌(Streptococcaceae )的相對豐度。
  23. 如請求項20之方法,其中該組合物的量可有效於在該個體中增加大腸桿菌屬(Escherichia )、副擬桿菌屬(Parabacteroides )及/或乳酸桿菌屬(Lactobacillus )細菌的相對豐度。
  24. 如請求項20之方法,其中該組合物的量可有效於在該個體中增加變形菌門(Proteobacteria)的相對豐度。
  25. 一種用於在有需要的個體中減低體重及/或體脂肪或避免體重及/或體脂肪增加之方法,其包含對該個體投予有效量的如請求項10-17中任一項之組合物。
  26. 一種用於在有需要的個體中治療肥胖或其相關疾病或病症之方法,其包含對該個體投予有效量的如請求項10-17中任一項之組合物。
  27. 如請求項26之方法,其中該肥胖為飲食引起的肥胖。
  28. 如請求項26之方法,其中肥胖相關疾病或病症係選自於由第2型糖尿病、高血糖症、葡萄糖不耐症、血脂異常、胰島素阻抗、高胰島素血症、脂肪肝、心血管疾病、中風及癌症所組成之族群。
  29. 如請求項26-28中任一項之方法,其中該組合物的量對減低食物攝取無效,或對減低淨體重(lean body mass)無效
  30. 一種如請求項10-17中任一項之組合物在製備用於在個體中改變微生物叢的相對豐度之食品、膳食補充劑或藥物的用途。
  31. 一種如請求項10-17中任一項之組合物在製備用於在個體中減低體重及/或體脂肪、避免體重及/或體脂肪增加、及/或治療肥胖或其相關疾病或病症之食品、膳食補充劑或藥物的用途。
TW106112695A 2016-04-15 2017-04-14 抗肥胖微生物叢組合物及其製備方法與用途 TWI749004B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662323053P 2016-04-15 2016-04-15
US62/323,053 2016-04-15

Publications (2)

Publication Number Publication Date
TW201805418A true TW201805418A (zh) 2018-02-16
TWI749004B TWI749004B (zh) 2021-12-11

Family

ID=60042281

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106112695A TWI749004B (zh) 2016-04-15 2017-04-14 抗肥胖微生物叢組合物及其製備方法與用途

Country Status (4)

Country Link
US (1) US10960030B2 (zh)
EP (1) EP3442546A4 (zh)
TW (1) TWI749004B (zh)
WO (1) WO2017180987A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2557823A (en) 2016-03-04 2018-06-27 Univ California Microbial consortium and uses thereof
EP3758723A1 (en) * 2018-03-01 2021-01-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for prognosing and treating metabolic diseases
EP3773645A4 (en) 2018-04-10 2021-11-24 Siolta Therapeutics, Inc. MICROBIAL CONSORTIA
WO2021071864A1 (en) 2019-10-07 2021-04-15 Siolta Therapeutics, Inc. Therapeutic pharmaceutical compositions
WO2022150656A1 (en) * 2021-01-09 2022-07-14 Be Rich Biotechnology Co., Ltd. Blood glucose control and anti-obesity probiotics compositions in a specific selection and ratio
WO2023121955A1 (en) * 2021-12-20 2023-06-29 Tainnovation Inc. The methods of and compositions for treating obesity, obesity-related diseases or cancers using a n6-methyllysine/l-lysine mixture

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010108058A2 (en) * 2009-03-20 2010-09-23 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Small molecule inhibitors of dusp6 and uses therefor
US20110207190A1 (en) * 2010-02-04 2011-08-25 University Of Iowa Research Foundation Methods of xylitol preparation
EP2836224A4 (en) * 2012-02-29 2015-12-16 Ethicon Endo Surgery Inc COMPOSITIONS OF BIOZOOSE AND RELATED METHODS
WO2016033439A2 (en) * 2014-08-28 2016-03-03 Yale University Compositions and methods for the treating an inflammatory disease or disorder

Also Published As

Publication number Publication date
EP3442546A4 (en) 2020-03-25
WO2017180987A1 (en) 2017-10-19
US20190076485A1 (en) 2019-03-14
EP3442546A1 (en) 2019-02-20
TWI749004B (zh) 2021-12-11
US10960030B2 (en) 2021-03-30

Similar Documents

Publication Publication Date Title
TWI749004B (zh) 抗肥胖微生物叢組合物及其製備方法與用途
Chen et al. NLRP12 attenuates colon inflammation by maintaining colonic microbial diversity and promoting protective commensal bacterial growth
Zhao et al. Host-microbiota interaction-mediated resistance to inflammatory bowel disease in pigs
US11266698B2 (en) Bacterium for use as a probiotic for nutritional and medical applications
Ruan et al. Dual-specificity phosphatase 6 deficiency regulates gut microbiome and transcriptome response against diet-induced obesity in mice
Sasaki et al. Endotoxemia by Porphyromonas gingivalis injection aggravates non-alcoholic fatty liver disease, disrupts glucose/lipid metabolism, and alters gut microbiota in mice
Lu et al. Butyrate-producing Eubacterium rectale suppresses lymphomagenesis by alleviating the TNF-induced TLR4/MyD88/NF-κB axis
Liu et al. Zinc sequestration by the neutrophil protein calprotectin enhances Salmonella growth in the inflamed gut
Bindels et al. Restoring specific lactobacilli levels decreases inflammation and muscle atrophy markers in an acute leukemia mouse model
Chang et al. Identification of a gut microbiota member that ameliorates DSS-induced colitis in intestinal barrier enhanced Dusp6-deficient mice
Pérez-Ramos et al. β-Glucan-producing Pediococcus parvulus 2.6: test of probiotic and immunomodulatory properties in zebrafish models
US20160319332A1 (en) Non-coding rna of salmonella and identification and use thereof
Birchenough et al. Altered innate defenses in the neonatal gastrointestinal tract in response to colonization by neuropathogenic Escherichia coli
Zhang et al. Increased hyaluronan by naked mole-rat Has2 improves healthspan in mice
Shen et al. Methamphetamine-induced alterations in intestinal mucosal barrier function occur via the microRNA-181c/TNF-α/tight junction axis
JPWO2018084172A1 (ja) Th1細胞を誘導する細菌
US20140017268A1 (en) Composition and Methods for Detecting or Preventing Lawsonia intracellularis Infections
de Buhr et al. Analysis of Cd14 Genetic Modifier of Experimental Inflammatory Bowel Disease (IBD) in Mice
Han et al. Gut microbiota-related bile acid metabolism-FXR/TGR5 axis impacts the response to anti-α4β7-integrin therapy in humanized mice with colitis
EP4260908A1 (en) Composition for preventing or treating deterioration in brain function or maintaining or improving brain function
Xue et al. miR-485 regulates Th17 generation and pathogenesis in experimental autoimmune encephalomyelitis through targeting STAT3
Lou et al. Tumor Necrosis Factor-α–Induced Protein 8-Like 2 Fosters Tumor-Associated Microbiota to Promote the Development of Colorectal Cancer
CN116474096A (zh) 靶向牙龈卟啉单胞菌RgpB在结直肠癌的治疗及预防中的应用
Zhou et al. Catechol-O-methyltransferase loss drives cell-specific nociceptive signaling via the enteric catechol-O-methyltransferase/microRNA-155/tumor necrosis factor α axis
Willits et al. Spinal cord injury-induced neurogenic bowel: A role for host-microbiome interactions in bowel pain and dysfunction