TW201803674A - Laser processing apparatus and methods of laser-processing workpieces - Google Patents

Laser processing apparatus and methods of laser-processing workpieces Download PDF

Info

Publication number
TW201803674A
TW201803674A TW106125299A TW106125299A TW201803674A TW 201803674 A TW201803674 A TW 201803674A TW 106125299 A TW106125299 A TW 106125299A TW 106125299 A TW106125299 A TW 106125299A TW 201803674 A TW201803674 A TW 201803674A
Authority
TW
Taiwan
Prior art keywords
workpiece
laser
pulse
less
laser pulse
Prior art date
Application number
TW106125299A
Other languages
Chinese (zh)
Inventor
達瑞 芬恩
麥可 凱斯林卓
Original Assignee
伊雷克托科學工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 伊雷克托科學工業股份有限公司 filed Critical 伊雷克托科學工業股份有限公司
Publication of TW201803674A publication Critical patent/TW201803674A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/3568Modifying rugosity
    • B23K26/3576Diminishing rugosity, e.g. grinding; Polishing; Smoothing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/56Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26 semiconducting

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Dicing (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

A method of processing a workpiece having a first surface and a second surface opposite the first surface includes: generating a first beam of laser pulses having a pulse duration less than 200 ps at a pulse repetition rate greater than 500 kHz, directing the first beam of laser pulses along a beam axis intersecting the workpiece, and scanning the beam axis along a processing trajectory. The beam axis is scanned such that consecutively-directed laser pulses impinge upon the workpiece at a non-zero bite size to form a feature at the first surface of the workpiece. One or more parameters such as bite size, pulse duration, pulse repetition rate, laser pulse spot size and laser pulse energy is selected to ensure that the feature has a processed workpiece surface with a mean surface roughness (Ra) of less than or equal to 1.0 [mu]m.

Description

雷射處理設備和雷射處理工件的方法 Laser processing equipment and method for laser processing workpiece

本揭示內容大體上關於脈衝式雷射以及利用高重複率脈衝式雷射加工材料。 This disclosure relates generally to pulsed lasers and the processing of materials using high repetition rate pulsed lasers.

相關申請案之交叉參考 Cross-reference of related applications

本申請案主張2016年7月28日提申的美國臨時專利申請案第62/368,053號的權利,本文以引用的方式將其完全併入。 This application claims the rights of US Provisional Patent Application No. 62 / 368,053 filed on July 28, 2016, which is fully incorporated by reference.

數種材料處理應用皆涉及雷同的材料處理技術與問題,舉例來說,該些材料處理應用包含薄矽晶圓切片、印刷電路板(Printed Circuit Board,PCB)鑽鑿、太陽能電池製造以及平板顯示器製造。早期解決方案包含機械式與微影式處理技術。然而,縮減裝置尺寸、提高裝置複雜性以及化學處理的環境成本則讓業界轉向雷射處理方法。目前運用的高功率二極體激發固態雷射具有1μm的典型波長,或者具有綠光或UV波長的頻率轉換型式。於某些應用中運用的方法包含以相對高的掃描速度利用重複性動作逐步切穿一工件。於此些應用中,有三個主要問題:(a)在一處理部位或附近產生與累積碎屑;(b)產生大型熱影響區(Heat-Affected Zone,HAZ);以 及(c)達到具有商業可行性的非常高體積材料移除速率。如本文中用法,「碎屑(debris)」一詞表示在雷射處理期間從一處理部位(以固體、液體或氣體的任何形式)射出的工件材料,並且通常也利用其它術詞來描述,例如,再鑄料(recast)、料渣(slag)、再沉積料(redeposit)、…等。HAZ表示該工件中的微結構或是其它化學特性、電氣特性或物理特性因雷射處理期間所產生的熱而改變的區域。 Several material processing applications involve similar material processing technologies and problems. For example, these material processing applications include thin silicon wafer slicing, printed circuit board (PCB) drilling, solar cell manufacturing, and flat panel displays Manufacturing. Early solutions included mechanical and lithographic processing technologies. However, reducing the size of the device, increasing the complexity of the device, and the environmental cost of chemical processing have led the industry to turn to laser processing methods. The currently used high-power diode-excited solid-state lasers have a typical wavelength of 1 μm , or a frequency conversion type with green or UV wavelengths. Methods used in some applications include stepwise cutting through a workpiece with repetitive motion at a relatively high scanning speed. In these applications, there are three main problems: (a) the generation and accumulation of debris at or near a treatment site; (b) the generation of large heat-affected zones (HAZ); and (c) Feasibility of very high volumetric material removal rate. As used herein, the term "debris" refers to the workpiece material that is ejected from a processing site (in any form of solid, liquid, or gas) during laser processing, and is usually also described using other terms, For example, recast, slag, redeposit, etc. HAZ represents the area where the microstructure or other chemical, electrical or physical properties in the workpiece are changed due to the heat generated during laser processing.

各種作法已被提出以達成工件的有效及高品質雷射加工,其包含使用雷射產生具有以高重複率下超短脈衝時間持續長度的雷射脈衝,其產生的碎屑少於具有相對長脈衝寬度的雷射脈衝,並且在該工件中產生相對小的HAZ。然而,涉及使用於高重複率產生的超短雷射脈衝的技術仍會產生碎屑。於特定的應用中,已生成碎屑的累積如果產生非所希望的粗糙或不均勻表面、如果產生非所希望的應力集中點以及類似情況,便會有問題。 Various methods have been proposed to achieve efficient and high-quality laser processing of the workpiece, which includes the use of lasers to generate laser pulses with ultra-short pulse durations at high repetition rates, which produce less debris than relatively long Laser pulses with a pulse width, and a relatively small HAZ is generated in the workpiece. However, techniques involving ultra-short laser pulses used for high repetition rates still produce debris. In certain applications, the accumulation of generated debris can be problematic if undesired rough or uneven surfaces are generated, if undesired stress concentration points are generated, and the like.

習知,累積的碎屑能夠藉由將該經處理工件曝露於化學蝕刻劑中、藉由在超音波浴(舉例來說,有DI水)中清洗該經處理工件或是類似方法來移除。以一犧牲材料層塗佈該工件亦能夠解決該問題,所產生的碎屑在雷射處理期間係累積在該犧牲材料層上並且該犧牲材料層能夠在雷射處理完成後被移除。然而此些技術因增加額外的處理步驟和額外的消耗材料而降低處理量並且提高成本。因此,較佳的解決方式不需要進行此碎屑移除。 It is known that accumulated debris can be removed by exposing the treated workpiece to a chemical etchant, by cleaning the treated workpiece in an ultrasonic bath (for example, with DI water), or similar methods . Coating the workpiece with a sacrificial material layer can also solve the problem. The generated debris accumulates on the sacrificial material layer during the laser processing and the sacrificial material layer can be removed after the laser processing is completed. However, these technologies reduce the processing volume and increase the cost by adding additional processing steps and additional consumable materials. Therefore, the preferred solution does not require this debris removal.

本發明的其中一實施例可以特徵化為一種方法,其包含:提 供一工件,具有一第一表面以及和該第一表面反向的一第二表面;產生一第一雷射脈衝射束,其具有以大於500kHz的脈衝重複率時小於200ps的脈衝時間持續長度;沿著與該工件相交的一射束軸引導該第一雷射脈衝射束;以及沿著一處理軌線掃描該射束軸。該射束軸被掃描使得連續引導的雷射脈衝以非零咬合尺寸(bite size)照射在該工件上,以便在該工件的該第一表面形成一特徵元件。例如咬合尺寸、脈衝時間持續長度、脈衝重複率、雷射脈衝點尺寸以及雷射脈衝能量之一或更多個參數係被選擇用以確保該特徵元件的經處理工件表面的平均表面粗糙度(Ra)小於或等於1.0μm。 One of the embodiments of the present invention can be characterized as a method, which includes: Provides a workpiece with a first surface and a second surface opposite to the first surface; generates a first laser pulse beam with a pulse duration of less than 200 ps at a pulse repetition rate greater than 500 kHz Guide the first laser pulse beam along a beam axis that intersects the workpiece; and scan the beam axis along a processing trajectory. The beam axis is scanned so that continuously guided laser pulses are irradiated on the workpiece with a non-zero bite size to form a feature on the first surface of the workpiece. One or more parameters such as bite size, pulse duration, pulse repetition rate, laser pulse point size, and laser pulse energy are selected to ensure the average surface roughness of the feature's treated workpiece surface ( Ra) is less than or equal to 1.0 μm.

於某些實施例中,該第一雷射脈衝射束中的每一道雷射脈衝的脈衝時間持續長度小於或等於1ps、小於或等於800fs、小於或等於750fs、小於或等於700fs、小於或等於650fs或者小於或等於600fs。 In some embodiments, the duration of each laser pulse in the first laser pulse beam is less than or equal to 1 ps, less than or equal to 800 fs, less than or equal to 750 fs, less than or equal to 700 fs, less than or equal to 650fs or less than or equal to 600fs.

於某些實施例中,該第一雷射脈衝射束中的雷射脈衝的脈衝重複率大於1200kHz、大於1250kHz、大於1300kHz、大於1400kHz、大於1500kHz、大於1600kHz、大於1700kHz、大於1800kHz、大於1900kHz、大於2000kHz或者大於3000kHz。 In some embodiments, the pulse repetition rate of the laser pulse in the first laser pulse beam is greater than 1200kHz, greater than 1250kHz, greater than 1300kHz, greater than 1400kHz, greater than 1500kHz, greater than 1600kHz, greater than 1700kHz, greater than 1800kHz, greater than 1900kHz , Greater than 2000kHz or greater than 3000kHz.

於某些實施例中,平均表面粗糙度(Ra)小於或等於0.75μm、小於或等於0.5μm、小於或等於0.4μm、小於或等於0.3μm、小於或等於0.25μm、小於或等於0.2μm、小於或等於0.15μm、…等,或者介於任何此些數值之間。 In some embodiments, the average surface roughness (Ra) is less than or equal to 0.75 μm, less than or equal to 0.5 μm, less than or equal to 0.4 μm, less than or equal to 0.3 μm, less than or equal to 0.25 μm, less than or equal to 0.2 μm, Less than or equal to 0.15 μm, ... etc., or between any of these values.

於其中一實施例中,該方法可以進一步特徵化為包含下面額外動作:產生一第二雷射脈衝射束(在該特徵元件被形成於該工件的第一表面之後);聚焦該第二雷射脈衝射束裡面的雷射脈衝用以產生一束腰;沿著 與該經處理工件表面相交的一射束軸引導該聚焦的第二雷射脈衝射束,俾使得該束腰被排列在該工件內或在該工件的第二表面;以及在該束腰處或附近處理該工件。於其中一實施例中,相較於該第一雷射脈衝射束內的雷射脈衝的波長,該工件對該第二雷射脈衝射束內的雷射脈衝的波長來說為更透明。 In one of the embodiments, the method can be further characterized as including the following additional actions: generating a second laser pulse beam (after the feature element is formed on the first surface of the workpiece); focusing the second laser The laser pulse inside the pulsed beam is used to create a waist; along A beam axis that intersects the surface of the treated workpiece directs the focused second laser pulse beam so that the beam waist is arranged within the workpiece or on the second surface of the workpiece; and at the beam waist Or handle the workpiece nearby. In one of the embodiments, the workpiece is more transparent to the wavelength of the laser pulse in the second laser pulse beam than the wavelength of the laser pulse in the first laser pulse beam.

100‧‧‧設備 100‧‧‧Equipment

102‧‧‧工件 102‧‧‧Workpiece

104‧‧‧雷射源 104‧‧‧Laser source

106‧‧‧第一*** 106‧‧‧First locator

108‧‧‧第二*** 108‧‧‧Second positioner

110‧‧‧第三*** 110‧‧‧third positioner

112‧‧‧掃描透鏡 112‧‧‧scan lens

114‧‧‧控制器 114‧‧‧Controller

116‧‧‧射束路徑 116‧‧‧ Beam path

600‧‧‧代表產生明顯碎屑的參數空間的區域之圖案 600‧‧‧pattern representing the area of the parameter space where obvious debris is generated

602‧‧‧代表沒有產生任何明顯碎屑的參數空間的區域之圖案 602‧‧‧ represents the pattern of the area of the parameter space without any obvious debris

604‧‧‧代表區域600與602在參數空間中重疊的區域之圖案 604‧‧‧ represents the pattern of the area where the areas 600 and 602 overlap in the parameter space

900a‧‧‧上表面 900a‧‧‧upper surface

900b‧‧‧下表面 900b‧‧‧Lower surface

902‧‧‧基板 902‧‧‧Substrate

904‧‧‧裝置層 904‧‧‧ device layer

906‧‧‧特徵元件/經處理的工件表面 906‧‧‧Feature element / treated workpiece surface

906a‧‧‧經處理的工件表面 906a‧‧‧treated workpiece surface

908‧‧‧工件裡面的材料 908‧‧‧The material inside the workpiece

910‧‧‧溝渠或下凹部 910‧‧‧Ditch or depression

圖1概略圖解根據本發明其中一實施例之用於處理工件的設備。 FIG. 1 schematically illustrates an apparatus for processing workpieces according to one embodiment of the present invention.

圖2與3圖解被形成在一矽晶圓的表面中的溝渠的顯微照片(從俯視平面圖中攝得)。 2 and 3 illustrate photomicrographs (taken from a top plan view) of trenches formed in the surface of a silicon wafer.

圖4圖解經雷射處理特徵元件的顯微照片(從俯視平面圖中攝得),每一個特徵元件包含被形成在一矽晶圓的表面中的一組交叉切割線。 4 illustrates a photomicrograph of laser-processed feature elements (taken from a top plan view), each feature element containing a set of cross-cut lines formed in the surface of a silicon wafer.

圖5圖解在不同脈衝重複率處沿著一掃描射束軸傳播雷射脈衝於被形成在一矽晶圓中的溝渠中的經處理工件表面的平均表面粗糙度(Ra)以及在該溝渠形成過程期間的材料移除速率之間的關係的一組關係圖,其隨著咬口大小和能量密度(fluence)變化。 FIG. 5 illustrates the average surface roughness (Ra) of laser pulses propagating along the axis of a scanning beam at different pulse repetition rates on a processed workpiece surface formed in a trench in a silicon wafer and the formation of the trench A set of graphs of the relationship between the rate of material removal during the process, which varies with the size of the bite and the energy density.

圖6圖解用於在一矽晶圓中形成溝渠的製程視窗的一組圖片,其會形成具有特定特徵之經處理工件表面。 FIG. 6 illustrates a set of pictures of a process window used to form trenches in a silicon wafer, which will form a processed workpiece surface with specific characteristics.

圖7圖解一矽晶圓的顯微照片(從側面剖視圖中攝得),其以產生平滑處理工件表面的方式被處理以便形成一溝渠。 7 illustrates a photomicrograph of a silicon wafer (taken from a side cross-sectional view), which is processed in such a way as to produce a smooth processed workpiece surface to form a trench.

圖8A與8B圖解如圖7中所示的經處理矽晶圓的顯微照片(從側面剖視圖中攝得),該矽晶圓已經過進一步處理用以於該矽晶圓內形成溝渠裂縫。 圖8A顯示跨越圖7中所示的溝渠的寬度的圖式。圖8B顯示沿著圖7中所示的溝渠的長度的圖式。 8A and 8B illustrate photomicrographs (taken from a side cross-sectional view) of a processed silicon wafer as shown in FIG. 7 which has been further processed to form trench cracks in the silicon wafer. FIG. 8A shows a diagram spanning the width of the trench shown in FIG. 7. FIG. 8B shows a diagram along the length of the trench shown in FIG. 7.

圖9A至9D概略圖解根據某些實施例用於處理一工件的方法。 9A to 9D schematically illustrate a method for processing a workpiece according to some embodiments.

本文中會參考隨附圖式來說明範例實施例。除非另外明確敘述;否則,圖式中的器件、特徵元件、元件、…等的尺寸、定位、…等以及它們之間的任何距離未必依照比例繪製;相反地,為清楚起見,會放大繪製。 In this article, reference is made to the accompanying drawings to illustrate example embodiments. Unless explicitly stated otherwise, the dimensions, positioning, etc. of the devices, characteristic elements, elements, etc. in the drawings and any distance between them are not necessarily drawn to scale; on the contrary, for clarity, they will be enlarged .

本文中所使用的術語僅係為達說明特殊範例實施例的目的,而並沒有限制的意圖。除非文中另外明確表示,否則本文中所用到的單數形式「一」、「一個」、以及「該」均希望包含複數形式。應該明瞭的係,當說明書中用到「包括」及/或其變化形式時僅係表示所述特點、事物、步驟、操作、元件及/或器件的存在,而並不排除有或者另外還有一或更多個其它特點、事物、步驟、操作、元件、器件及/或它們的群組的存在。除非另外詳述,否則,當敘述到一數值範圍時,其包含上限範圍與下限範圍以及介於其間的任何子範圍。除非另外表示,否則,諸如「第一」、「第二」、…等詞語僅係用來區分其中一元件與另一元件。舉例來說,其中一個節點可被稱為「第一節點」;且同樣地,另一個節點則可被稱為「第二節點」,反之亦可。本文中所用到的段落標題僅為達組織的目的,而不應被視為限制所述主旨。 The terminology used herein is for the purpose of illustrating particular example embodiments only, and is not intended to be limiting. Unless otherwise expressly stated in the text, the singular forms "a", "an", and "the" used in this article are intended to include the plural forms. It should be understood that when "include" and / or its variations are used in the specification, it only indicates the existence of the described features, things, steps, operations, elements and / or devices, and does not exclude the existence of or another The existence of one or more other features, things, steps, operations, elements, devices, and / or their groups. Unless otherwise specified, when a numerical range is stated, it includes an upper range and a lower range and any sub-ranges therebetween. Unless otherwise stated, words such as "first", "second", ... are only used to distinguish one element from another element. For example, one of the nodes can be called the "first node"; and likewise, the other node can be called the "second node", and vice versa. The paragraph headings used in this article are for organizational purposes only and should not be considered as limiting the subject matter.

除非另外表示,否則,「關於」、「與其有關」、…等詞語的意義為數額、尺寸、公式、參數以及其它定量與特徵並不精確而且不需要精 確;相反地,必要時,可以為近似及/或較大或較小,以便反映公差、轉換係數、捨入、量測誤差與類似物以及熟習本技術的人士已知的其它係數。 Unless otherwise stated, the meanings of the words "about", "related to", ... are amounts, sizes, formulas, parameters and other quantifications and characteristics are not precise and do not require precision Indeed; on the contrary, if necessary, it may be approximate and / or larger or smaller, so as to reflect tolerances, conversion factors, rounding, measurement errors and the like and other factors known to those skilled in the art.

如圖中所示,為達方便說明起見,本文中可能使用諸如「之下」、「底下」、「下方」、「之上」、「上方」的空間相對詞語以及類似詞語來說明其中一元件或特徵元件和另一元件或特徵元件關係;但是,應該明瞭的係,除了圖中所描繪的配向之外,該些空間相對詞語亦希望涵蓋不同的配向。舉例來說,倘若圖中的一物體被翻轉的話,那麼,被描述為位在其它元件或特徵元件「之下」或「底下」的元件便被配向在該些其它元件或特徵元件「之上」。因此,示範性詞語「之下」能夠涵蓋之上與之下兩種配向。一物體可以有其它配向(舉例來說,旋轉90度或是位於其它配向),並且可據以詮釋本文中所使用的空間相對描述符。 As shown in the figure, for convenience of explanation, this article may use spatial relative words such as "below", "below", "below", "above", "above" and similar words to illustrate one of them The relationship between an element or a characteristic element and another element or a characteristic element; however, it should be understood that in addition to the alignment depicted in the figures, these spatial relative words are also intended to cover different alignments. For example, if an object in the figure is turned over, then the element described as being "below" or "underneath" another element or feature is aligned "above" the other element or feature ". Therefore, the exemplary word "below" can cover both the above and below orientations. An object can have other orientations (for example, rotated 90 degrees or located in other orientations), and the spatial relative descriptors used in this article can be interpreted accordingly.

全文中相同的元件符號表示相同的元件。因此,相同或雷同的符號可以參考其它圖式來說明,即使在對應圖式中沒有被提及或說明。另外,即使沒有以元件符號表示的元件仍可以參考其它圖式來說明。 Throughout the text, the same element symbol indicates the same element. Therefore, the same or similar symbols can be explained with reference to other drawings, even if they are not mentioned or explained in the corresponding drawings. In addition, even if there is no element represented by an element symbol, it can be explained with reference to other drawings.

應該明白的是,可以有許多不同的形式以及實施例,其並沒有脫離本揭示內容的精神與教示內容,且因此,此教示內容不應被視為受限於本文中所提出的範例實施例。確切地說,此些範例與實施例係被提供俾便此揭示內容為透徹與完整,並且傳達本揭示內容的範疇給熟習本技術的人士。 It should be understood that there can be many different forms and embodiments, which do not deviate from the spirit and teaching content of the present disclosure, and therefore, this teaching content should not be considered as limited to the example embodiments presented herein . Specifically, these examples and embodiments are provided so that this disclosure is thorough and complete, and convey the scope of this disclosure to those skilled in the art.

I.概述I. Overview

本文中所述實施例大體上關於用於工件之基於雷射的加工(本文中亦稱為雷射處理,或者,最簡單的說為「處理」)的方法和設備。一 般來說,該處理全部或部分藉由以雷射輻射照射該工件來完成,用以對工件加熱、熔融、蒸發、燒蝕、碎裂、研磨、…等。可以藉由所示設備來進行的處理的特定範例包含通孔鑽鑿、切片、雕刻、…等。因此,可以因為該處理而被形成在工件之上或裡面的特徵元件會包含:開口、通孔(舉例來說,盲孔、貫穿孔、狹槽通孔)、溝槽、溝渠、切割線、刻口、下凹區、或是類似物、或是前述的任何組合。 The embodiments described herein generally relate to methods and apparatus for laser-based processing of workpieces (also referred to herein as laser processing, or, most simply, "processing"). One Generally speaking, all or part of the treatment is completed by irradiating the workpiece with laser radiation to heat, melt, evaporate, ablate, fragment, grind, etc. the workpiece. Specific examples of processing that can be performed by the equipment shown include through-hole drilling, slicing, engraving, etc. Therefore, the feature elements that can be formed on or in the workpiece due to the process include: openings, through holes (for example, blind holes, through holes, slot through holes), trenches, trenches, cutting lines, Notch, recessed area, or the like, or any combination of the foregoing.

可被處理的工件的一般特徵係金屬、聚合物、陶瓷、合成物或是前述的任何組合。可被處理的工件的特定範例包含:積體電路(Integrated Circuit,IC)、IC封裝(IC Package,ICP)、發光二極體(Light-Emitting Diode,LED)、LED封裝、半導體晶圓、電子或光學裝置基板(舉例來說,由下面所形成的基板:Al2O3、AlN、BeO、Cu、GaAs、GaN、Ge、InP、Si、SiO2、SiC、Si1-xGex(其中,0.0001<x<0.9999)、或是類似物、或是前述的任何組合或合金)、由塑膠、玻璃(舉例來說,無強化,或是熱強化、化學強化、或是其它強化方式)、石英、藍寶石、塑膠、矽、…等形成的物品。據此,可被處理的材料包含:一或更多種金屬(舉例來說,Al、Ag、Au、Cu、Fe、In、Mg、Pt、Sn、Ti、或是類似物、或是前述的組合或合金)、導體金屬氧化物(舉例來說,ITO、…等)、透明的導體聚合物、陶瓷、蠟、樹脂、基板材料(舉例來說,Al2O3、AlN、BeO、Cu、GaAs、GaN、Ge、InP、Si、SiO2、SiC、Si1-xGex、或是類似物、或是前述的任何組合或合金)、無機介電材料(舉例來說,作為層間介電結構,例如,氧化矽、氮化矽、氮氧化矽、或是類似物、或是前述的任何組合)、低k介電材料(舉例來說,甲基倍半矽氧烷(methyl silsesquioxane,MSQ)、氫化倍半氧矽烷(hydrogen silsesquioxane,HSQ)、氟化 四乙氧基矽烷(fluorinated tetraethyl orthosilicate,FTEOS)、或是類似物、或是前述的任何組合)、有機介電材料(舉例來說,SILK、環苯丁烯、Nautilus(全部由Dow所製造)、聚氟四乙烯(由DuPont所製造)、FLARE(由Allied Chemical所製造)、或是類似物、或是前述的任何組合)、玻璃纖維;聚合材料(聚醯胺、聚醯亞胺、聚酯、聚縮醛、聚碳酸酯、改質的聚苯醚、聚對苯二甲酸丁二酯、聚硫化苯、聚醚碸、聚醚醯亞胺、聚醚醚酮、液晶聚合物、丙烯腈-丁二烯-苯乙烯共聚物、以及前述的任何化合物、合成物、或是合金)、或是類似物、或是前述的任何組合。 The general characteristics of workpieces that can be processed are metals, polymers, ceramics, composites, or any combination of the foregoing. Specific examples of workpieces that can be processed include: Integrated Circuit (IC), IC Package (IC), Light-Emitting Diode (LED), LED package, semiconductor wafer, electronics Or an optical device substrate (for example, a substrate formed of: Al 2 O 3 , AlN, BeO, Cu, GaAs, GaN, Ge, InP, Si, SiO 2 , SiC, Si 1-x Ge x (where , 0.0001 <x <0.9999), or the like, or any combination or alloy of the foregoing), made of plastic, glass (for example, no strengthening, or thermal strengthening, chemical strengthening, or other strengthening methods), Articles formed of quartz, sapphire, plastic, silicon, etc. Accordingly, the materials that can be processed include: one or more metals (for example, Al, Ag, Au, Cu, Fe, In, Mg, Pt, Sn, Ti, or the like, or the aforementioned Combination or alloy), conductive metal oxides (for example, ITO, ..., etc.), transparent conductive polymers, ceramics, waxes, resins, substrate materials (for example, Al 2 O 3 , AlN, BeO, Cu, GaAs, GaN, Ge, InP, Si, SiO 2 , SiC, Si 1-x Ge x , or the like, or any combination or alloy of the foregoing), inorganic dielectric materials (for example, as interlayer dielectric Structures, such as silicon oxide, silicon nitride, silicon oxynitride, or the like, or any combination of the foregoing, low-k dielectric materials (for example, methyl silsesquioxane, MSQ ), Hydrogen silsesquioxane (HSQ), fluorinated tetraethyl orthosilicate (FTEOS), or the like, or any combination of the foregoing), organic dielectric materials (for example , SILK, cyclostyrene, Nautilus (all manufactured by Dow), polytetrafluoroethylene (manufactured by DuPont ), FLARE (manufactured by Allied Chemical), or the like, or any combination of the foregoing), glass fiber; polymeric materials (polyamide, polyimide, polyester, polyacetal, polycarbonate, Modified polyphenylene ether, polybutylene terephthalate, polysulfide benzene, polyether sock, polyether amide imine, polyether ether ketone, liquid crystal polymer, acrylonitrile-butadiene-styrene copolymer , And any of the aforementioned compounds, composites, or alloys), or the like, or any combination of the foregoing.

II.系統-概述II. System-Overview

圖1概略圖解根據本發明其中一實施例之用於處理工件的設備。 FIG. 1 schematically illustrates an apparatus for processing workpieces according to one embodiment of the present invention.

參考圖1中所示的實施例,一種用於處理工件102的設備100包含:一雷射源104,用於產生雷射脈衝;一第一***106;一第二***108;一第三***110;一掃描透鏡112;以及一控制器114。有鑒於下面的說明,應該明瞭的是,在該設備100包含該第二***108的前提下,第一***106的併入為非必要(也就是,該設備100不需要包含該第一***106)。同樣地,應該明瞭的是,在該設備100包含該第一***106的前提下,第二***108的併入為非必要(也就是,該設備100不需要包含該第二***108)。最後,同樣應該明瞭的是,第三***110的併入為非必要(也就是,該設備100不需要包含該第三***110)。 Referring to the embodiment shown in FIG. 1, an apparatus 100 for processing a workpiece 102 includes: a laser source 104 for generating laser pulses; a first positioner 106; a second positioner 108; a first Three positioners 110; a scanning lens 112; and a controller 114. In view of the following description, it should be understood that, under the premise that the device 100 includes the second locator 108, the incorporation of the first locator 106 is unnecessary (that is, the device 100 does not need to include the first locator Locator 106). Likewise, it should be understood that, under the premise that the device 100 includes the first locator 106, the incorporation of the second locator 108 is unnecessary (that is, the device 100 does not need to include the second locator 108 ). Finally, it should also be clear that the incorporation of the third positioner 110 is unnecessary (that is, the device 100 need not include the third positioner 110).

圖中雖然並未顯示;不過,該設備100還包含一或更多個光學器件(舉例來說,射束擴展器、射束塑形器、孔徑、諧波生成晶體、濾波 器、準直器、透鏡、面鏡、偏振器、波板、繞射性光學元件、或是類似物、或是前述的任何組合),以便沿著通往掃描透鏡112的一或更多條射束路徑(舉例來說,射束路徑116)來聚焦、擴展、準直、塑形、偏振、濾波、分光、組合、裁切、或是以其它方式修飾、調整、或是引導由雷射源104所產生的雷射脈衝。應該進一步明白的是,前面提及的器件中的一或更多者可以被提供,或者,該設備100可以進一步包含額外的器件,如在下面的專利案中的揭示:美國專利案第4,912,487號、第5,633,747號、第5,638,267號、第5,751,585號、第5,847,960號、第5,917,300號、第6,314,473號、第6,430,465號、第6,700,600號、第6,706,998號、第6,706,999號、第6,816,294號、第6,947,454號、第7,019,891號、第7,027,199號、第7,133,182號、第7,133,186號、第7,133,187號、第7,133,188號、第7,245,412號、第7,259,354號、第7,611,745號、第7,834,293號、第8,026,158號、第8,076,605號、第8,158,493號、第8,288,679號、第8,404,998號、第8,497,450號、第8,648,277號、第8,680,430號、第8,847,113號、第8,896,909號、第8,928,853號;或是在前面提及的美國專利申請公開案第2014/0026351號、第2014/0197140號、第2014/0263201號、第2014/0263212號、第2014/0263223號、第2014/0312013號中的揭示;或是在德國專利案第DE102013201968B4號中的揭示;或是在國際專利申請公開案第WO2009/087392號中的揭示;或是前述案件的任何組合。本文以引用的方式將前述案件中的每一案完全併入。 Although not shown in the figure; however, the device 100 also includes one or more optical devices (for example, beam expander, beam shaper, aperture, harmonic generation crystal, filtering Collimator, collimator, lens, mirror, polarizer, wave plate, diffractive optical element, or the like, or any combination of the foregoing), so as to follow one or more lines leading to the scanning lens 112 Beam path (for example, beam path 116) to focus, expand, collimate, shape, polarize, filter, split, combine, crop, or otherwise modify, adjust, or guide by laser Laser pulses generated by the source 104. It should be further understood that one or more of the aforementioned devices may be provided, or that the device 100 may further include additional devices, as disclosed in the following patent case: US Patent No. 4,912,487 , No. 5,633,747, No. 5,638,267, No. 5,751,585, No. 5,847,960, No. 5,917,300, No. 6,314,473, No. 6,430,465, No. 6,700,600, No. 6,706,998, No. 6,706,999, No. 6,816,294, No. 6,947,454 No. 7,019,891, No. 7,027,199, No. 7,133,182, No. 7,133,186, No. 7,133,187, No. 7,133,188, No. 7,245,412, No. 7,259,354, No. 7,611,745, No. 7,834,293, No. 8,026,158, No. 8,076,605, No. 8,158,493 , No. 8,288,679, No. 8,404,998, No. 8,497,450, No. 8,648,277, No. 8,680,430, No. 8,847,113, No. 8,896,909, No. 8,928,853; or the aforementioned U.S. Patent Application Publication No. 2014/0026351 , No. 2014/0197140, No. 2014/0263201, No. 2014/0263212, No. 2014/0263223, No. 2014/0312013 ; Or disclosed in German Patent No. DE102013201968B4 in; or disclosed in application No. WO2009 / 087392 in International Patent Publication; or any combination of the foregoing cases. This article fully incorporates each of the aforementioned cases by reference.

透射穿過掃描透鏡112的雷射脈衝會沿著一射束軸傳播,以便被傳遞至工件102。被傳遞至工件102的雷射脈衝可以被特徵化為具有高斯或是經過塑形的(舉例來說,「高帽形」)空間強度輪廓。該空間強度輪廓 亦能夠被特徵化成沿著該射束軸(或是射束路徑116)傳播的雷射脈衝的剖面形狀,該形狀可以為圓形、橢圓形、矩形、三角形、六角形、環狀、…等或是任意形狀。此外,此些被傳遞的雷射脈衝能夠以落在從2μm至200μm的範圍中的光點尺寸照射該工件102。如本文中的用法,「光點尺寸」一詞係表示在該射束軸橫切要被該被傳遞雷射脈衝處理的該工件102的某一區域的位置處的被傳遞雷射脈衝的直徑或是最大空間寬度(亦被稱為「處理部位」、「處理光點」、「光點位置」,或者,更簡單的說法是,「光點」)。為達本文中討論的目的,光點尺寸的量測係從該射束軸至該光學強度下降至位在該射束軸處的光學強度的1/e2的徑向或橫向距離。一般來說,一雷射脈衝的光點尺寸在束腰(beam waist)處為最小。然而,應該明白的是,光點尺寸亦能夠小於2μm或是大於200μm。因此,被傳遞至工件102的至少一雷射脈衝會具有小於、大於、或等於下面數值的光點尺寸:2μm、3μm、5μm、7μm、10μm、15μm、30μm、35μm、40μm、45μm、50μm、55μm、80μm、100μm、150μm、200μm、…等;或是介於任何此些數值之間。於其中一實施例中,被傳遞至工件102的雷射脈衝會具有落在從25μm至60μm的範圍中的光點尺寸。於另一實施例中,被傳遞至工件102的雷射脈衝會具有落在從35μm至50μm的範圍中的光點尺寸。 The laser pulse transmitted through the scanning lens 112 propagates along a beam axis so as to be transmitted to the workpiece 102. The laser pulse delivered to the workpiece 102 may be characterized as having a Gaussian or shaped (for example, "high hat") spatial intensity profile. The spatial intensity profile can also be characterized as a cross-sectional shape of a laser pulse propagating along the beam axis (or beam path 116), which can be circular, elliptical, rectangular, triangular, hexagonal, ring-shaped Shape, ... etc. or any shape. In addition, these transmitted laser pulses can illuminate the workpiece 102 with a spot size falling in the range from 2 μm to 200 μm . As used herein, the term "spot size" refers to the diameter of the transmitted laser pulse at a position of the beam axis transverse to a certain area of the workpiece 102 to be processed by the transmitted laser pulse Or the maximum space width (also known as "processing site", "processing light spot", "light spot position", or, more simply, "light spot"). For the purposes discussed herein, the measurement of the spot size is a radial or lateral distance from the beam axis to the optical intensity that drops to 1 / e 2 of the optical intensity at the beam axis. In general, the spot size of a laser pulse is the smallest at the beam waist. However, it should be understood that the spot size can also be less than 2 μm or greater than 200 μm . Therefore, at least one laser pulse delivered to the workpiece 102 will have a spot size smaller than, greater than, or equal to the following values: 2 μm , 3 μm , 5 μm , 7 μm , 10 μm , 15 μ m, 30 μm , 35 μm , 40 μm , 45 μm , 50 μm , 55 μm , 80 μm , 100 μm , 150 μm , 200 μm , etc .; or between any Between these values. In one of the embodiments, the laser pulse delivered to the workpiece 102 will have a spot size falling in the range from 25 μm to 60 μm . In another embodiment, the laser pulse delivered to the workpiece 102 will have a spot size that falls in the range from 35 μm to 50 μm .

A.雷射源A. Laser source

一般來說,雷射源104可操作用以產生雷射脈衝。因此,該雷射源104可以包含一脈衝雷射源、一QCW雷射源或是一CW雷射源。於該雷射源104包含QCW或CW雷射源的情況中,該雷射源104可以進一步包含一脈衝閘控單元(舉例來說,聲光(AO)調變器(AO Modulator,AOM)、射 束斬波器、…等),用以在時間上調變從該QCW或CW雷射源處所輸出的雷射輻射射束。圖中雖然並未顯示;不過,該設備100可以視情況包含一或更多個諧波生成晶體(亦稱為「波長轉換晶體」),其被配置成用以轉換由該雷射源104所輸出的光的波長。據此,最終被傳遞至工件102的雷射脈衝可以被特徵化成具有位於下面電磁頻譜範圍中的一或更多者之中的一或更多個波長:紫外光(UV)、可見光(舉例來說,綠光)、紅外光(InfraRed,IR)、近IR光(Near-IR,NIR)、短波長IR光(Short-Wavelength IR,SWIR)、中波長IR光(Mid-Wavelength IR,MWIR)、或是長波長IR光(LWIR)、或是前述的任何組合。 In general, the laser source 104 is operable to generate laser pulses. Therefore, the laser source 104 may include a pulsed laser source, a QCW laser source, or a CW laser source. In the case where the laser source 104 includes a QCW or CW laser source, the laser source 104 may further include a pulse gate control unit (for example, an acousto-optic (AO) modulator (AO Modulator, AOM), Shoot Beam chopper, ... etc.) to modulate the laser radiation beam output from the QCW or CW laser source in time. Although not shown in the figure; however, the device 100 may optionally include one or more harmonic generating crystals (also known as "wavelength conversion crystals"), which are configured to convert the laser source 104 The wavelength of the output light. Accordingly, the laser pulse that is ultimately delivered to the workpiece 102 may be characterized as having one or more wavelengths in one or more of the following electromagnetic spectrum ranges: ultraviolet light (UV), visible light (for example, Said, green light), infrared light (InfraRed, IR), near IR light (Near-IR, NIR), short wavelength IR light (Short-Wavelength IR, SWIR), mid-wavelength IR light (Mid-Wavelength IR, MWIR) , Or long wavelength IR light (LWIR), or any combination of the foregoing.

由該雷射源104所輸出的雷射脈衝會具有落在從30fs至500ps的範圍中的脈衝寬度或脈衝時間持續長度。然而,應該明白的是,該脈衝時間持續長度亦能夠小於10fs,或是大於500ps。因此,由雷射源104所輸出的至少一雷射脈衝會具有小於、大於、或等於下面數值的脈衝時間持續長度:10fs、15fs、30fs、50fs、75fs、100fs、150fs、200fs、300fs、500fs、700fs、750fs、800fs、850fs、900fs、1ps、2ps、3ps、4ps、5ps、7ps、10ps、15ps、25ps、50ps、75ps、100ps、200ps、500ps、…等、或是介於任何此些數值之間。於其中一實施例中,由雷射源104所輸出的雷射脈衝的脈衝時間持續長度落在從10fs至1ps的範圍中。於另一實施例中,由雷射源104所輸出的雷射脈衝的脈衝時間持續長度落在從500fs至900fs的範圍中。 The laser pulse output by the laser source 104 will have a pulse width or pulse duration that falls in the range from 30 fs to 500 ps. However, it should be understood that the duration of the pulse time can also be less than 10fs, or greater than 500ps. Therefore, at least one laser pulse output by the laser source 104 will have a pulse duration less than, greater than, or equal to the following values: 10fs, 15fs, 30fs, 50fs, 75fs, 100fs, 150fs, 200fs, 300fs, 500fs , 700fs, 750fs, 800fs, 850fs, 900fs, 1ps, 2ps, 3ps, 4ps, 5ps, 7ps, 10ps, 15ps, 25ps, 50ps, 75ps, 100ps, 200ps, 500ps, etc., or any value in between between. In one of the embodiments, the pulse duration of the laser pulse output by the laser source 104 falls within a range from 10 fs to 1 ps. In another embodiment, the pulse duration of the laser pulse output by the laser source 104 falls in the range from 500 fs to 900 fs.

由雷射源104所輸出的雷射脈衝會具有落在從100mW至50kW的範圍中的平均功率。然而,應該明白的是,該平均功率亦能夠小於100mW,或是大於50kW。因此,由雷射源104所輸出的雷射脈衝會具有大 於或等於下面數值的平均功率:100mW、300mW、500mW、800mW、1W、2W、3W、4W、5W、6W、7W、10W、15W、25W、30W、50W、60W、100W、150W、200W、250W、500W、2kW、3kW、20kW、50kW、…等、或是介於任何此些數值之間。 The laser pulse output by the laser source 104 will have an average power falling in the range from 100 mW to 50 kW. However, it should be understood that the average power can also be less than 100mW, or greater than 50kW. Therefore, the laser pulse output by the laser source 104 will have a large Average power at or equal to the following values: 100mW, 300mW, 500mW, 800mW, 1W, 2W, 3W, 4W, 5W, 6W, 7W, 10W, 15W, 25W, 30W, 50W, 60W, 100W, 150W, 200W, 250W , 500W, 2kW, 3kW, 20kW, 50kW, etc., or between any of these values.

雷射脈衝能夠由雷射源104以落在從5kHz至1GHz的範圍中的脈衝重複率來輸出。然而,應該明白的是,該脈衝重複率亦能夠小於5kHz,或是大於1GHz。因此,雷射脈衝能夠由雷射源104以小於、大於、或等於下面數值的脈衝重複率來輸出:5kHz、50kHz、100kHz、250kHz、500kHz、800kHz、900kHz、1MHz、1.5MHz、1.8MHz、1.9MHz、2MHz、2.5MHz、3MHz、4MHz、5MHz、10MHz、20MHz、50MHz、70MHz、100MHz、150MHz、200MHz、250MHz、300MHz、350MHz、500MHz、550MHz、700MHz、900MHz、2GHz、10GHz、…等、或是介於任何此些數值之間。於某些實施例中,該脈衝重複率會在從1.5MHz至10MHz的範圍中。 Laser pulses can be output by the laser source 104 at a pulse repetition rate falling in the range from 5 kHz to 1 GHz. However, it should be understood that the pulse repetition rate can also be less than 5 kHz or greater than 1 GHz. Therefore, the laser pulse can be output by the laser source 104 with a pulse repetition rate less than, greater than, or equal to the following values: 5kHz, 50kHz, 100kHz, 250kHz, 500kHz, 800kHz, 900kHz, 1MHz, 1.5MHz, 1.8MHz, 1.9 MHz, 2MHz, 2.5MHz, 3MHz, 4MHz, 5MHz, 10MHz, 20MHz, 50MHz, 70MHz, 100MHz, 150MHz, 200MHz, 250MHz, 300MHz, 350MHz, 500MHz, 550MHz, 700MHz, 900MHz, 2GHz, 10GHz, etc., or Between any of these values. In some embodiments, the pulse repetition rate may range from 1.5 MHz to 10 MHz.

除了波長、脈衝時間持續長度、平均功率以及脈衝重複率之外,被傳遞至工件102的雷射脈衝還能夠被特徵化成諸如脈衝能量、尖峰功率、…等的一或更多項其它特徵,其能夠以一或更多項其它參數為基礎來選擇,以便以足以具有處理該工件102或是其器件的光學強度(單位為W/cm2)、能量密度(單位為J/cm2)、…等的處理光點來照射該工件102,用以形成具有一或更多個所希望特徵的一或更多個特徵元件。此些其它參數的範例包含前面提及特徵中的一或更多者,例如:波長、脈衝時間持續長度、平均功率、以及脈衝重複率、…等,以及工件102的材料特性、咬合尺寸、所希望的處理量、或是類似特徵、或是前述的任何組合。如本文中的用法, 「咬合尺寸」係指被連續傳遞雷射脈衝照射的光點區域之間的中心至中心距離。 In addition to the wavelength, pulse duration, average power, and pulse repetition rate, the laser pulse delivered to the workpiece 102 can also be characterized as one or more other characteristics such as pulse energy, peak power, ... It can be selected on the basis of one or more other parameters so as to have sufficient optical intensity (unit W / cm 2 ), energy density (unit J / cm 2 ) to process the workpiece 102 or its device, ... A processing light spot or the like is used to irradiate the workpiece 102 to form one or more feature elements having one or more desired features. Examples of such other parameters include one or more of the aforementioned characteristics, such as: wavelength, duration of pulse duration, average power, and pulse repetition rate, etc., as well as the material characteristics, bite size, and The desired throughput, or similar features, or any combination of the foregoing. As used in this article, "bite size" refers to the center-to-center distance between areas of a spot illuminated by a continuous delivery laser pulse.

舉例來說,被傳遞至工件102的雷射脈衝會有落在從1μJ至20μJ的範圍中的脈衝能量。於其中一實施例中,任何被傳遞的雷射脈衝會有落在從2μJ至10μJ的範圍中的脈衝能量。於另一實施例中,任何被傳遞的雷射脈衝會有落在從3μJ至6μJ的範圍中的脈衝能量。然而,應該明白的是,被傳遞的雷射脈衝的脈衝能量會小於1μJ或大於20μJ。於另一範例中,被傳遞至工件102的雷射脈衝會有落在從1μJ至20μJ的範圍中的能量密度。於其中一實施例中,任何被傳遞的雷射脈衝會有落在從2μJ至10μJ的範圍中的脈衝能量。於另一實施例中,任何被傳遞的雷射脈衝會有落在從2μJ至6μJ的範圍中的脈衝能量。然而,應該明白的是,被傳遞的雷射脈衝的脈衝能量會小於1μJ或大於20μJ。 For example, the laser pulse delivered to the workpiece 102 will have a pulse energy that falls in the range from 1 μJ to 20 μJ. In one of the embodiments, any transmitted laser pulse will have a pulse energy that falls in the range from 2 μJ to 10 μJ. In another embodiment, any transmitted laser pulse will have a pulse energy that falls in the range from 3 μJ to 6 μJ. However, it should be understood that the pulse energy of the delivered laser pulse will be less than 1 μJ or greater than 20 μJ. In another example, the laser pulse delivered to the workpiece 102 will have an energy density falling in the range from 1 μJ to 20 μJ. In one of the embodiments, any transmitted laser pulse will have a pulse energy that falls in the range from 2 μJ to 10 μJ. In another embodiment, any transmitted laser pulse will have a pulse energy that falls in the range from 2 μJ to 6 μJ. However, it should be understood that the pulse energy of the delivered laser pulse will be less than 1 μJ or greater than 20 μJ.

雷射源104的雷射類型的範例可以被特徵化成:氣體雷射(舉例來說,二氧化碳雷射、一氧化碳雷射、準分子雷射、…等)、固態雷射(舉例來說,Nd:YAG雷射、…等)、棒雷射、光纖雷射、光子晶體棒/光纖雷射、被動式鎖模固態體雷射或光纖雷射、染料雷射、鎖模二極體雷射、脈衝式雷射(舉例來說,ms脈衝式雷射、ns脈衝式雷射、ps脈衝式雷射、fs脈衝式雷射)、CW雷射、QCW雷射、或是類似雷射、或是前述的任何組合。可以被提供作為雷射源104的雷射源的特定範例包含下面一或更多種雷射源,例如:由EOLITE所製造的BOREAS、HEGOA、SIROCCO、或是CHINOOK雷射系列;由PYROPHOTONICS所製造的PYROFLEX雷射系列;由COHERENT所製造的PALADIN Advanced 355或DIAMOND雷射系列;由 TRUMPF所製造的TRUFLOW雷射系列(舉例來說,TRUFLOW 2000、2700、3200、3600、4000、5000、6000、7000、8000、10000、12000、15000、20000),或是TRUDISK雷射系列、TRUPULSE雷射系列、TRUDIODE雷射系列、TRUFIBER雷射系列、或是TRUMICRO雷射系列;由IMRA AMERICA所製造的FCPA μJEWEL雷射系列或FEMTOLITE雷射系列;由AMPLITUDE SYSTEMES所製造的TANGERINE雷射系列與SATSUMA雷射系列;由IPG PHOTONICS所製造的CL雷射系列、CLPF雷射系列、CLPN雷射系列、CLPNT雷射系列、CLT雷射系列、ELM雷射系列、ELPF雷射系列、ELPN雷射系列、ELPP雷射系列、ELR雷射系列、ELS雷射系列、FLPN雷射系列、FLPNT雷射系列、FLT雷射系列、GLPF雷射系列、GLPN雷射系列、GLR雷射系列、HLPN雷射系列、HLPP雷射系列、RFL雷射系列、TLM雷射系列、TLPN雷射系列、TLR雷射系列、ULPN雷射系列、ULR雷射系列、VLM雷射系列、VLPN雷射系列、YLM雷射系列、YLPF雷射系列、YLPN雷射系列、YLPP雷射系列、YLR雷射系列、YLS雷射系列、FLPM雷射系列、FLPMT雷射系列、DLM雷射系列、BLM雷射系列、或是DLR雷射系列(舉例來說,其包含GPLN-100-M、GPLN-500-QCW、GPLN-500-M、GPLN-500-R、GPLN-2000-S、…等);或是類似的雷射、或是前述的任何組合。 Examples of laser types of the laser source 104 can be characterized as: gas laser (for example, carbon dioxide laser, carbon monoxide laser, excimer laser, ..., etc.), solid-state laser (for example, Nd: YAG laser, ... etc.), rod laser, fiber laser, photonic crystal rod / fiber laser, passive mode-locked solid-state laser or fiber laser, dye laser, mode-locked diode laser, pulsed Laser (for example, ms pulse laser, ns pulse laser, ps pulse laser, fs pulse laser), CW laser, QCW laser, or similar laser, or the aforementioned Any combination. Specific examples of laser sources that can be provided as the laser source 104 include one or more of the following laser sources, for example: BOREAS, HEGOA, SIROCCO, or CHINOOK laser series manufactured by EOLITE; manufactured by PYROPHOTONICS PYROFLEX laser series; PALADIN Advanced 355 or DIAMOND laser series manufactured by COHERENT; by The TRUFLOW laser series manufactured by TRUMPF (for example, TRUFLOW 2000, 2700, 3200, 3600, 4000, 5000, 6000, 7000, 8000, 10000, 12000, 15000, 20000), or TRUDISK laser series, TRUPULSE laser Laser series, TRUDIODE laser series, TRUFIBER laser series, or TRUMICRO laser series; FCPA μJEWEL laser series or FEMTOLITE laser series manufactured by IMRA AMERICA; TANGERINE laser series and SATSUMA laser manufactured by AMPLITUDE SYSTEMES Laser series; CL laser series, CLPF laser series, CLPN laser series, CLPNT laser series, CLT laser series, ELM laser series, ELPF laser series, ELPN laser series, ELPP manufactured by IPG PHOTONICS Laser Series, ELR Laser Series, ELS Laser Series, FLPN Laser Series, FLPNT Laser Series, FLT Laser Series, GLPF Laser Series, GLPN Laser Series, GLR Laser Series, HLPN Laser Series, HLPP Laser Series, RFL Laser Series, TLM Laser Series, TLPN Laser Series, TLR Laser Series, ULPN Laser Series, ULR Laser Series, VLM Laser Series, VLPN Laser Series, YLM Laser Series, YLPF Laser Column, YLPN laser series, YLPP laser series, YLR laser series, YLS laser series, FLPM laser series, FLPMT laser series, DLM laser series, BLM laser series, or DLR laser series (for example For example, it includes GPLN-100-M, GPLN-500-QCW, GPLN-500-M, GPLN-500-R, GPLN-2000-S, etc.); or similar lasers, or the aforementioned Any combination.

B.第一***B. First locator

該第一***106被設置在射束路徑116之中,並且可操作用以對由雷射源104所產生的雷射脈衝進行繞射、反射、折射、或是類似作用、或是前述的任何組合,以便以掃描透鏡112為基準移動該射束路徑116,且結果,以便以該工件102為基準來移動該射束軸。一般來說,該第 一***106被配置成用以沿著X軸(或方向)與Y軸(或方向),以該工件102為基準來移動該射束軸。圖中雖然並未顯示;不過,Y軸(或Y方向)應被理解為正交於圖中所示之X軸(或方向)與Z軸(或方向)的軸(或方向)。 The first locator 106 is disposed in the beam path 116 and is operable to diffract, reflect, refract, or the like the laser pulse generated by the laser source 104, or the aforementioned Any combination to move the beam path 116 with the scanning lens 112 as a reference, and as a result, to move the beam axis with the workpiece 102 as a reference. Generally speaking, the first A positioner 106 is configured to move the beam axis along the X axis (or direction) and the Y axis (or direction) with the workpiece 102 as a reference. Although not shown in the figure; however, the Y axis (or Y direction) should be understood as the axis (or direction) orthogonal to the X axis (or direction) and Z axis (or direction) shown in the figure.

由該第一***106所賦予之以該工件102為基準來移動該射束軸通常會受到限制,俾使得該處理光點能夠被掃描、被移動、或是被定位在一第一掃描場或「第一掃描範圍」裡面,該第一掃描場或「第一掃描範圍」延伸在X方向與Y方向之中的0.01mm至4.0mm之間。然而,應該明白的是,該第一掃描範圍可以延伸在X方向或Y方向的任一者之中小於0.01mm,或是大於4.0mm(舉例來說,相依於一或更多項係數,例如,第一***106的配置、第一***106在射束路徑116中的位置、入射於該第一***106上的雷射脈衝的射束尺寸、光點尺寸、…等)。因此,該第一掃描範圍可以延伸在X方向與Y方向的任一者之中大於或等於下面數值的距離:0.04mm、0.1mm、0.5mm、1.0mm、1.4mm、1.5mm、1.8mm、2mm、2.5mm、3.0mm、3.5mm、4.0mm、4.2mm、…等;或是介於任何此些數值之間。如本文中的用法,「射束尺寸」一詞係表示一雷射脈衝的直徑或寬度,並且能夠被量測成從該射束軸至該光學強度下降至位在該射束軸處的光學強度的1/e2的徑向或橫向距離。 The movement of the beam axis given by the first positioner 106 with the workpiece 102 as a reference is usually limited, so that the processing spot can be scanned, moved, or positioned in a first scanning field Or in the "first scan range", the first scan field or "first scan range" extends between 0.01 mm and 4.0 mm in the X direction and the Y direction. However, it should be understood that the first scanning range may extend in either the X direction or the Y direction to be less than 0.01 mm or greater than 4.0 mm (for example, depending on one or more coefficients, such as , The configuration of the first positioner 106, the position of the first positioner 106 in the beam path 116, the beam size of the laser pulse incident on the first positioner 106, the spot size, etc.). Therefore, the first scanning range may extend a distance greater than or equal to the following values in either the X direction and the Y direction: 0.04mm, 0.1mm, 0.5mm, 1.0mm, 1.4mm, 1.5mm, 1.8mm, 2mm, 2.5mm, 3.0mm, 3.5mm, 4.0mm, 4.2mm, etc .; or between any of these values. As used herein, the term "beam size" refers to the diameter or width of a laser pulse and can be measured from the beam axis to the optical intensity drop to the optical position at the beam axis The radial or lateral distance of 1 / e 2 of the intensity.

一般來說,該第一***106能夠用來移動該射束軸,並且因而定位該處理光點,的頻寬(也就是,第一定位頻寬)係落在從50kHz(或是大約50kHz)至10MHz(或是大約10MHz)的範圍之中。因此,該第一***106能夠藉由一落在從每20μs(或是大約20μs)一個光點位置至每0.1μs(或是大約0.1μs)一個光點位置的範圍之中的定位速率(從該第一定位頻寬中推 知)將該處理光點定位在該第一掃描範圍內的任何位置。本文中的定位速率的倒數稱為「定位週期」並且係表示用以將該處理光點的位置從於該第一掃描範圍內的其中一個位置改變至任何其它位置的必要時間週期。因此,該第一***106能夠藉由一落在從20μs(或是大約20μs)至0.1μs(或是大約0.1μs)的範圍之中的定位週期來特徵化。於其中一實施例中,該第一定位頻寬落在從100kHz(或是大約100kHz)至2MHz(或是大約2MHz)的範圍之中。舉例來說,1MHz(或是大約1MHz)的第一定位頻寬。 In general, the first locator 106 can be used to move the beam axis, and thus locate the processing spot, the bandwidth (ie, the first positioning bandwidth) falls from 50 kHz (or about 50 kHz ) To 10MHz (or about 10MHz). Therefore, the first positioner 106 can range from a spot position every 20 μs (or about 20 μs ) to a spot position every 0.1 μs (or about 0.1 μs ). The positioning rate (inferred from the first positioning bandwidth) among them locates the processing spot at any position within the first scanning range. The reciprocal of the positioning rate herein is referred to as a "positioning period" and represents the time period necessary to change the position of the processing spot from one of the positions within the first scanning range to any other position. Therefore, the first positioner 106 can be characterized by a positioning period that falls within a range from 20 μs (or about 20 μs ) to 0.1 μs (or about 0.1 μs ). In one of the embodiments, the first positioning bandwidth falls within a range from 100 kHz (or about 100 kHz) to 2 MHz (or about 2 MHz). For example, the first positioning bandwidth of 1 MHz (or about 1 MHz).

該第一***106能夠被提供成為一微機電系統(Micro-Electro-Mechanical-System,MEMS)面鏡或面鏡陣列、一AO偏轉器(AOD)系統、一電光偏轉器(Electro-Optic Deflector,EOD)系統、一快速操控面鏡(Fast-Steering Mirror,FSM)元件,其併入一壓電式致動器、電致伸縮式致動器、音圈致動器、…等、或是類似物、或是前述的任何組合。於其中一實施例中,該第一***106被提供成為一AOD系統,其包含至少一(舉例來說,一個、兩個、…等)單元件AOD系統、至少一(舉例來說,一個、兩個、…等)相位陣列AOD系統、或是類似物、或是前述的任何組合。兩種AOD系統皆包含一由諸如下面材料所形成的AO胞體:結晶Ge、PbMoO4、TeO2、玻璃質的SiO2、石英、As2O3、…等;然而,前者包含被音頻耦接至該AO胞體的單超音波換能器元件,而後者包含由被共同音頻耦接至該AO胞體的至少兩個超音波換能器元件組成的相位陣列。 The first positioner 106 can be provided as a Micro-Electro-Mechanical-System (MEMS) mirror or mirror array, an AO deflector (AOD) system, an electro-optic deflector (Electro-Optic Deflector) , EOD) system, a fast-steering mirror (FSM) element, which incorporates a piezoelectric actuator, electrostrictive actuator, voice coil actuator, etc., or Analogs, or any combination of the foregoing. In one embodiment, the first locator 106 is provided as an AOD system, which includes at least one (for example, one, two, ..., etc.) unit AOD system, at least one (for example, one , Two, ... etc.) phase array AOD system, or the like, or any combination of the foregoing. Both AOD systems include an AO cell formed from materials such as: crystalline Ge, PbMoO 4 , TeO 2 , vitreous SiO 2 , quartz, As 2 O 3 , etc .; however, the former includes audio coupling A single ultrasonic transducer element connected to the AO cell body, and the latter includes a phase array composed of at least two ultrasonic transducer elements that are commonly audio-coupled to the AO cell body.

該些AOD系統中的任一者可被提供成為單軸AOD系統(舉例來說,被配置成用以沿著單一方向來移動該射束軸)或是藉由偏折該射束路徑116而被提供成為多軸AOD系統(舉例來說,被配置成用以沿著多個方 向,舉例來說,X方向與Y方向,來移動該射束軸)。一般來說,多軸AOD系統能夠被提供成為多胞體系統或是單胞體系統。多胞體、多軸系統通常包含多個AOD系統,每一個AOD系統皆被配置成用以沿著一不同軸來移動該射束軸。舉例來說,多胞體、多軸系統會包含:一第一AOD系統(舉例來說,一單元件或相位陣列AOD系統),其被配置成用以沿著該X方向來移動該射束軸(舉例來說,「X軸AOD系統」);以及一第二AOD系統(舉例來說,一單元件或相位陣列AOD系統),其被配置成用以沿著該Y方向來移動該射束軸(舉例來說,「Y軸AOD系統」)。單胞體、多軸系統(舉例來說,「X/Y軸AOD系統」)通常包含單一AOD系統,其被配置成用以沿著該X方向與Y方向來移動該射束軸。舉例來說,單胞體系統會包含至少兩個超音波換能器元件,其被音頻耦接至一共同AO胞體的不同平面、小面、側邊、…等。 Any of the AOD systems can be provided as a single-axis AOD system (for example, configured to move the beam axis in a single direction) or by deflecting the beam path 116 Is provided as a multi-axis AOD system (for example, configured to To, for example, the X direction and the Y direction, move the beam axis). In general, a multi-axis AOD system can be provided as a multicellular system or a unicellular system. Multicellular, multi-axis systems usually include multiple AOD systems, each of which is configured to move the beam axis along a different axis. For example, a multicellular, multi-axis system would include: a first AOD system (for example, a single-element or phase array AOD system) configured to move the beam along the X direction Axis (for example, "X-axis AOD system"); and a second AOD system (for example, a single-element or phase array AOD system), which is configured to move the beam along the Y direction Beam axis (for example, "Y axis AOD system"). A single-cell, multi-axis system (for example, "X / Y-axis AOD system") generally includes a single AOD system configured to move the beam axis along the X and Y directions. For example, a unit cell system will include at least two ultrasonic transducer elements that are audio-coupled to different planes, facets, sides, etc. of a common AO cell.

C.第二***C. Second locator

和第一***106相同,該第二***108被設置在射束路徑116之中,並且可操作用以對由雷射源104所產生並且通過該第一***106的雷射脈衝進行繞射、反射、折射、或是類似作用、或是前述的任何組合,以便透過以掃描透鏡112為基準移動該射束路徑116而以該工件102為基準來移動該射束軸(舉例來說,沿著X方向及Y方向)。由該第二***108所賦予之以該工件102為基準來移動該射束軸通常會受到限制,俾使得該處理光點能夠被掃描、被移動、或是被定位在一第二掃描場或「第二掃描範圍」裡面,該第二掃描場或「第二掃描範圍」延伸在X方向及/或Y方向之中,其面積大於該第一掃描範圍。有鑒於本文中所述的配置,應該明 瞭的係,由該第一***106所賦予的射束軸的移動會疊加由該第二***108所賦予的射束軸的移動。因此,該第二***108可操作用以於該第二掃描範圍裡面掃描該第一掃描範圍。 Like the first locator 106, the second locator 108 is disposed in the beam path 116 and is operable to perform laser pulses generated by the laser source 104 and passing through the first locator 106 Diffraction, reflection, refraction, or similar effects, or any combination of the foregoing, to move the beam axis by moving the beam path 116 with the scan lens 112 as a reference and the workpiece 102 as a reference (for example , Along the X and Y directions). The movement of the beam axis based on the workpiece 102 as a reference given by the second positioner 108 is usually restricted so that the processing spot can be scanned, moved, or positioned in a second scanning field Or in the "second scanning range", the second scanning field or "second scanning range" extends in the X direction and / or the Y direction, and its area is larger than the first scanning range. Given the configuration described in this article, it should be clear In addition, the movement of the beam axis imparted by the first positioner 106 will superimpose the movement of the beam axis imparted by the second positioner 108. Therefore, the second positioner 108 is operable to scan the first scanning range in the second scanning range.

於其中一實施例中,該第二掃描範圍延伸在X方向及/或Y方向之中的1mm至50mm之間。然而,應該明白的係,該第二***108亦可以被配置成使得該第二掃描範圍延伸在X方向或Y方向的任一者之中小於1mm,或是大於50mm。因此,於某些實施例中,該第二掃描範圍的最大維度(舉例來說,在X方向或Y方向之中,或是其它方向之中)可以大於或等於要被形成在該工件102之中的特徵元件(舉例來說,通孔、溝渠、切割線、下凹區、導體線路、…等)的對應最大維度(於X-Y平面中所測得)。然而,於另一實施例中,該第二掃描範圍的最大維度可以小於要被形成的特徵元件的最大維度。 In one embodiment, the second scanning range extends between 1 mm and 50 mm in the X direction and / or Y direction. However, it should be understood that the second positioner 108 may also be configured so that the second scanning range extends in either the X direction or the Y direction to be less than 1 mm, or greater than 50 mm. Therefore, in some embodiments, the largest dimension of the second scanning range (for example, in the X direction or Y direction, or in other directions) may be greater than or equal to the one to be formed on the workpiece 102 The corresponding maximum dimension (measured in the XY plane) of the feature elements in (for example, through holes, trenches, cutting lines, recessed areas, conductor lines, ..., etc.). However, in another embodiment, the maximum dimension of the second scanning range may be smaller than the maximum dimension of the feature element to be formed.

一般來說,該第二***108能夠用以移動該射束軸並且因而定位該處理光點(以及因而於該第二掃描範圍裡面掃描該第一掃描範圍)的頻寬(也就是,第二定位頻寬)小於該第一定位頻寬。於其中一實施例中,該第二定位頻寬係落在從900Hz至5kHz的範圍之中。於另一實施例中,該第一定位頻寬係落在從2kHz至3kHz的範圍之中(舉例來說,約2.5kHz)。舉例來說,該第二***108被提供成為一檢流計面鏡系統,其包含兩個檢流計面鏡器件,其中,其中一個檢流計面鏡器件被排列成用以沿著該X方向以該工件102為基準來移動該射束軸,而另一個檢流計面鏡器件則被排列成用以沿著該Y方向以該工件102為基準來移動該射束軸。然而,於其它實施例中,該第二***108亦可以被提供成為一旋轉多邊形面鏡系 統、…等。因此,應該明白的是,端視該第二***108與該第一***106的特定配置而定,該第二定位頻寬可以大於或等於該第一定位頻寬。 In general, the second locator 108 can be used to move the beam axis and thus locate the bandwidth of the processing spot (and thus scan the first scan range within the second scan range) (that is, the first The second positioning bandwidth is smaller than the first positioning bandwidth. In one embodiment, the second positioning bandwidth falls within a range from 900 Hz to 5 kHz. In another embodiment, the first positioning bandwidth falls within a range from 2 kHz to 3 kHz (for example, about 2.5 kHz). For example, the second locator 108 is provided as a galvanometer mirror system, which includes two galvanometer mirror devices, wherein one of the galvanometer mirror devices is arranged to be used along the The beam axis is moved with the workpiece 102 as a reference in the X direction, and another galvanometer mirror device is arranged to move the beam axis with the workpiece 102 as a reference along the Y direction. However, in other embodiments, the second positioner 108 can also be provided as a rotating polygon mirror system System, ... etc. Therefore, it should be understood that, depending on the specific configuration of the second locator 108 and the first locator 106, the second positioning bandwidth may be greater than or equal to the first positioning bandwidth.

D.第三***D. Third locator

該第三***110可操作用以以掃描透鏡112為基準移動該工件102,且因此,以該射束軸為基準來移動該工件102。以該射束軸為基準來移動該工件102通常會受到限制,俾使得該處理光點能夠被掃描、被移動、或是被定位在一第三掃描場或「第三掃描範圍」裡面,該第三掃描場或「第三掃描範圍」延伸在X方向及/或Y方向之中,其面積大於該第二掃描範圍。於其中一實施例中,該第三掃描範圍延伸在X方向及/或Y方向之中的25mm至2mm之間。於另一實施例中,該第二掃描範圍延伸在X方向及/或Y方向之中的0.5mm至1.5mm之間。一般來說,該第三掃描範圍的最大維度(舉例來說,在X方向或Y方向之中,或是其它方向之中)會大於或等於要被形成在該工件102之中的任何特徵元件的對應最大維度(於X-Y平面中所測得)。視情況,該第三***110可以被配置成用以於延伸在Z方向之中的掃描範圍裡面以該射束軸為基準來移動該工件102(舉例來說,落在1mm與50mm之間的範圍中)。因此,該第三掃描範圍可以沿著X方向、Y方向、及/或Z方向延伸。 The third positioner 110 is operable to move the workpiece 102 with the scanning lens 112 as a reference, and therefore, move the workpiece 102 with the beam axis as a reference. Moving the workpiece 102 with the beam axis as a reference is usually limited, so that the processing spot can be scanned, moved, or positioned within a third scanning field or "third scanning range", the The third scanning field or "third scanning range" extends in the X direction and / or the Y direction, and its area is larger than the second scanning range. In one embodiment, the third scanning range extends between 25 mm and 2 mm in the X direction and / or Y direction. In another embodiment, the second scanning range extends between 0.5 mm and 1.5 mm in the X direction and / or Y direction. Generally speaking, the largest dimension of the third scanning range (for example, in the X direction, Y direction, or other directions) will be greater than or equal to any feature element to be formed in the workpiece 102 Corresponds to the largest dimension (measured in the XY plane). Optionally, the third positioner 110 may be configured to move the workpiece 102 with the beam axis as a reference within a scanning range extending in the Z direction (for example, falling between 1 mm and 50 mm In the range). Therefore, the third scanning range may extend along the X direction, Y direction, and / or Z direction.

有鑒於本文中所述的配置,應該明瞭的是,由該第一***106及/或該第二***108所賦予的射束軸的移動會疊加由該第三***110所賦予的射束軸的移動。因此,該第三***110可操作用以於該第三掃描範圍裡面掃描該第一掃描範圍及/或該第二掃描範圍。一般來說,該第三***110能夠用以定位該處理光點(以及因而於該第三掃描範圍裡面移 動該第一掃描範圍及/或第二掃描範圍)的頻寬(也就是,第三定位頻寬)小於該第二定位頻寬(舉例來說,10Hz,或是大約10Hz,或是更小)。 In view of the configuration described herein, it should be clear that the movement of the beam axis imparted by the first locator 106 and / or the second locator 108 will superimpose the movement imparted by the third locator 110 The movement of the beam axis. Therefore, the third positioner 110 is operable to scan the first scanning range and / or the second scanning range within the third scanning range. In general, the third positioner 110 can be used to position the processing spot (and thus move within the third scanning range Moving the first scanning range and / or the second scanning range) (that is, the third positioning bandwidth) is less than the second positioning bandwidth (for example, 10 Hz, or about 10 Hz, or less ).

於其中一實施例中,該第三***110被提供成為一或更多個線性載台(舉例來說,每一者皆能夠沿著該些X方向、Y方向、及/或Z方向來平移移動該工件102)、一或更多個旋轉載台(舉例來說,每一者皆能夠繞著平行於該些X方向、Y方向、及/或Z方向的軸線旋轉移動該工件102)、或是類似物、或是前述的任何組合。於其中一實施例中,該第三***110包含:一X載台,用於沿著該X方向來移動該工件102;以及一Y載台,其受到該X載台支撐(且因此,可藉由該X載台而沿著該X方向移動)用於沿著該Y方向來移動該工件102。圖中雖然並未顯示;不過,設備100還可能包含一非必要的夾盤,其被耦接至該第三***110,工件102能夠被鉗止、固定、固持、固鎖、或是以其它方式被支撐於該夾盤。圖中雖然並未顯示;不過,設備100還可能包含一非必要的基底,用以支撐該第三***110。 In one of the embodiments, the third positioner 110 is provided as one or more linear stages (for example, each can be along the X direction, Y direction, and / or Z direction Translate the workpiece 102), one or more rotating stages (for example, each can rotate the workpiece 102 about an axis parallel to the X, Y, and / or Z directions) , Or similar, or any combination of the foregoing. In one of the embodiments, the third positioner 110 includes: an X stage for moving the workpiece 102 along the X direction; and a Y stage that is supported by the X stage (and therefore, It can be moved along the X direction by the X stage) for moving the workpiece 102 along the Y direction. Although not shown in the figure; however, the device 100 may also include an unnecessary chuck, which is coupled to the third positioner 110, and the workpiece 102 can be clamped, fixed, held, locked, or Other methods are supported by the chuck. Although not shown in the figure; however, the device 100 may also include an unnecessary substrate for supporting the third positioner 110.

如目前已述,設備100運用一所謂的「堆疊式」定位系統,其中,諸如第一***106、第二***108、掃描透鏡112、…等器件的位置係以該工件102為基準保持靜止於該設備100裡面(舉例來說,如本技術中已知般,透過一或更多個支撐架、框架、…等),該工件102會透過該第三***110被移動。於另一實施例中,該第三***110可以被排列並且被配置成用以移動諸如第一***106、第二***108、掃描透鏡112、…等的一或更多個器件,而工件102則可以保持靜止。於又一實施例中,該設備100能夠運用一分光軸定位系統,其中,諸如第一***106、第二定 位器108、掃描透鏡112、…等的一或更多個器件係由一或更多個線性載台或旋轉載台來攜載,並且一或更多個線性載台或旋轉載台被排列並且被配置成用以移動工件102。因此,該第三***110會移動該工件102以及移動第一***106、第二***108、掃描透鏡112、…等的一或更多者。可以有利或卓越地運用在設備100之中的分光軸定位系統的某些範例包含下面所揭示範例中的任何範例:美國專利案第5,751,585號、第5,798,927號、第5,847,960號、第6,706,999號、第7,605,343號、第8,680,430號、第8,847,113號;或是美國專利申請公開案第2014/0083983號;或是前述的任何組合。本文以引用的方式將前述每一案完全併入。 As described so far, the apparatus 100 uses a so-called "stacked" positioning system, in which the positions of devices such as the first positioner 106, the second positioner 108, the scanning lens 112, ... are maintained on the basis of the workpiece 102 Resting inside the device 100 (for example, as known in the art, through one or more support frames, frames, ..., etc.), the workpiece 102 is moved through the third positioner 110. In another embodiment, the third positioner 110 may be arranged and configured to move one or more devices such as the first positioner 106, the second positioner 108, the scanning lens 112, ..., etc., The workpiece 102 can remain stationary. In yet another embodiment, the device 100 can use a beam-splitting positioning system, such as the first positioning device 106, the second positioning One or more devices of the positioner 108, the scanning lens 112, ... etc. are carried by one or more linear stages or rotating stages, and the one or more linear stages or rotating stages are arranged And is configured to move the workpiece 102. Therefore, the third positioner 110 will move the workpiece 102 and one or more of the first positioner 106, the second positioner 108, the scanning lens 112, etc. Some examples of beam-splitting positioning systems that can be used advantageously or excellently in the device 100 include any of the examples disclosed below: US Patent Nos. 5,751,585, 5,798,927, 5,847,960, 6,706,999, No. Nos. 7,605,343, 8,680,430, and 8,847,113; or US Patent Application Publication No. 2014/0083983; or any combination of the foregoing. This article fully incorporates each of the aforementioned cases by reference.

於另一實施例中,諸如第一***106、第二***108、掃描透鏡112、…等的一或更多個器件可以由一鉸接式多軸自動手臂(舉例來說,2軸手臂、3軸手臂、4軸手臂、5軸手臂、或是6軸手臂)來攜載。於此實施例中,該第二***108及/或掃描透鏡112可以視情況由該自動手臂的一末端效果器來攜載。於又一實施例中,該工件102可以直接被攜載於一鉸接式多軸自動手臂的一末端效果器之上(也就是,沒有第三***110)。於再一實施例中,該第三***110可以被攜載於一鉸接式多軸自動手臂的一末端效果器之上。 In another embodiment, one or more devices such as the first positioner 106, the second positioner 108, the scanning lens 112, ... may be an articulated multi-axis robotic arm (for example, a 2-axis arm , 3-axis arm, 4-axis arm, 5-axis arm, or 6-axis arm). In this embodiment, the second positioner 108 and / or the scanning lens 112 may be carried by an end effector of the automatic arm as appropriate. In yet another embodiment, the workpiece 102 can be directly carried on an end effector of an articulated multi-axis robotic arm (ie, without the third positioner 110). In yet another embodiment, the third positioner 110 can be carried on an end effector of an articulated multi-axis robotic arm.

D.掃描透鏡D. Scanning lens

掃描透鏡112(舉例來說,被提供成為一簡易透鏡或是一複合透鏡)通常被配置成用以聚焦沿著該射束路徑被引導的雷射脈衝,一般來說,以便產生一能夠被定位在該所希望處理光點處的束腰。該掃描透鏡112可以被提供成為一f-希塔(f-theta)透鏡、一遠心透鏡、一軸錐透鏡(於此情況 中,一連串的束腰會被產生,從而沿著該射束軸產生彼此有位移的複數個處理光點)、或是類似物、或是前述的任何組合。 The scanning lens 112 (for example, provided as a simple lens or a compound lens) is generally configured to focus the laser pulses directed along the beam path, generally in order to produce a position that can be positioned The beam waist at the desired treatment spot. The scanning lens 112 can be provided as an f-theta lens, a telecentric lens, and an axicon lens (in this case In this case, a series of beam waists will be generated, thereby generating a plurality of treatment spots displaced from each other along the beam axis, or the like, or any combination of the foregoing.

E.控制器E. Controller

一般來說,控制器114被通訊耦接至(舉例來說,在一或更多條有線或無線通訊鏈路上,例如,USB、乙太網路、火線(Firewire)、Wi-Fi、RFID、NFC、藍牙、Li-Fi、或是類似鏈路、或是前述的任何組合)設備100中的一或更多個器件,例如,雷射源104、第一***106、第二***108、第三***110、透鏡致動器、…等,並且因此可響應於由該控制器114所輸出的一或更多個控制訊號來操作。 In general, the controller 114 is communicatively coupled to (for example, one or more wired or wireless communication links, such as USB, Ethernet, Firewire, Wi-Fi, RFID, NFC, Bluetooth, Li-Fi, or similar links, or any combination of the foregoing) one or more devices in the device 100, for example, the laser source 104, the first locator 106, the second locator 108 , The third positioner 110, the lens actuator, ..., and so on, and thus can be operated in response to one or more control signals output by the controller 114.

舉例來說,控制器114可以控制第一***106、第二***108或是第三***110的操作,以便在該射束軸與該工件之間賦予相對移動,俾便導致該處理光點與該工件102之間沿著該工件102裡面的一軌線(於本文中亦稱為「處理軌線」)的相對移動。應該明白的係,此些***中的任兩者或是此些***中的全部三者可以受到控制,俾使得兩個***(舉例來說,第一***106與第二***108、第一***106與第三***110、或是第二***108與第三***110)或是全部三個***同時賦予該處理光點與該工件102之間的相對移動(從而賦予該射束軸與該工件之間的「複合相對移動」)。當然,於任何時間,亦可能僅控制其中一個***(舉例來說,第一***106、第二***108、或是第三***110),用以賦予該處理光點與該工件102之間的相對移動(從而賦予該射束軸與該工件之間的「非複合相對移動」)。用以命令複合或非複合相對移動的控制訊號可以事先算出,或者,可以即時決定。 For example, the controller 114 can control the operation of the first positioner 106, the second positioner 108, or the third positioner 110 so as to impart relative movement between the beam axis and the workpiece, so as to cause the processing The relative movement between the light spot and the workpiece 102 along a trajectory inside the workpiece 102 (also referred to herein as "processing trajectory"). It should be understood that any two of these positioners or all three of these positioners can be controlled so that two positioners (for example, the first positioner 106 and the second positioner 108, the first positioner 106 and the third positioner 110, or the second positioner 108 and the third positioner 110) or all three positioners simultaneously impart relative movement between the processing spot and the workpiece 102 (Thus giving a "composite relative movement" between the beam axis and the workpiece). Of course, at any time, only one of the positioners (for example, the first positioner 106, the second positioner 108, or the third positioner 110) may be controlled to give the processing spot and the workpiece Relative movement between 102 (thus giving "non-composite relative movement" between the beam axis and the workpiece). The control signal for commanding compound or non-compound relative movement can be calculated in advance, or can be determined immediately.

一般來說,控制器114包含一或更多個處理器,其被配置成用以在執行指令時產生前面提及的控制訊號。一處理器能夠被提供成為被配置成用以執行該些指令的可程式化處理器(舉例來說,其包含一或更多個一般用途電腦處理器、微處理器、數位訊號處理器、或是類似物、或是前述的任何組合)。可由該(些)處理器來執行的指令可以以軟體、韌體、…等來施行,或是以任何合宜形式的電路系統來施行,其包含:可程式化邏輯裝置(Programmable Logic Device,PLD);可場程式化閘陣列(Field Programmable Gate Array,FPGA);可場程式化物體陣列(Field Programmable Object Array,FPOA);特定應用積體電路(Application-Specific Integrated Circuit,ASIC),其包含數位電路系統、類比電路系統、以及混合式類比/數位電路系統;或是類似物;或是前述的任何組合。指令的執行能夠在一處理器上被實施、分散於多個處理器之間、平行跨越一裝置裡面的多個處理器或是跨越一由多個裝置所組成的網路、或是類似方式、或是前述的任何組合。 Generally speaking, the controller 114 includes one or more processors configured to generate the aforementioned control signals when executing instructions. A processor can be provided as a programmable processor configured to execute the instructions (for example, it includes one or more general-purpose computer processors, microprocessors, digital signal processors, or Is an analog, or any combination of the foregoing). The instructions that can be executed by the processor (s) can be executed in software, firmware, ..., or any suitable form of circuit system, including: Programmable Logic Device (PLD) ; Field Programmable Gate Array (FPGA); Field Programmable Object Array (FPOA); Application-Specific Integrated Circuit (ASIC), which contains digital circuits Systems, analog circuits, and hybrid analog / digital circuits; or similar; or any combination of the foregoing. The execution of instructions can be implemented on a processor, distributed among multiple processors, parallel across multiple processors in a device or across a network of multiple devices, or the like, Or any combination of the foregoing.

於其中一實施例中,控制器114包含可讓該處理器存取(舉例來說,透過一或更多條有線或無線通訊鏈路)的有形媒體,例如,電腦記憶體。如本文中的用法,「電腦記憶體」包含:磁性媒體(舉例來說,磁帶、硬碟機、…等)、光碟;揮發性或非揮發性半導體記憶體(舉例來說,RAM、ROM、NAND型快閃記憶體、NOR型快閃記憶體、SONOS記憶體、…等)、…等,並且可以區域性存取、遠端存取(舉例來說,跨越一網路)、或是前述的任何組合。一般來說,該些指令可以以本文中所提供的描述(舉例來說,以C、C++、Visual Basic、Java、Python、Tel、Perl、Scheme、Ruby、…等撰寫而成)被儲存成為能夠由技師輕易編寫的電腦軟體(舉例來說,可執行碼、檔 案、指令、…等、程式庫檔案、…等)。電腦軟體經常被儲存在由電腦記憶體所傳達的一或更多個資料結構中。 In one embodiment, the controller 114 includes tangible media that can be accessed by the processor (for example, through one or more wired or wireless communication links), such as computer memory. As used in this article, "computer memory" includes: magnetic media (for example, tapes, hard drives, ..., etc.), optical discs; volatile or non-volatile semiconductor memory (for example, RAM, ROM, NAND-type flash memory, NOR-type flash memory, SONOS memory, ... etc.), etc., and can be accessed regionally, remotely (for example, across a network), or the aforementioned Any combination. In general, these instructions can be stored as capable with the description provided in this article (for example, written in C, C ++, Visual Basic, Java, Python, Tel, Perl, Scheme, Ruby, etc.) Computer software easily written by a technician (for example, executable code, file Programs, instructions, ..., library files, ... etc.). Computer software is often stored in one or more data structures conveyed by computer memory.

圖中雖然並未顯示;不過,一或更多個驅動器(舉例來說,RF驅動器、伺服驅動器、行驅動器、電源、…等)亦能夠被通訊耦接至一或更多個器件(例如,雷射源104、第一***106、第二***108、第三***110、透鏡致動器、…等)的輸入。於其中一實施例中,每一個驅動器通常包含一被通訊耦接至控制器114的輸入,且因此,該控制器114可以操作用以產生一或更多個控制訊號(舉例來說,觸發訊號、…等),該些控制訊號能夠被傳送至和設備100的一或更多個器件相關聯的一或更多個驅動器的輸入。因此,諸如該雷射源104、該第一***106、該第二***108、該第三***110、該透鏡致動器、…等的器件會響應於由該控制器114所產生的控制訊號。 Although not shown in the figure; however, one or more drivers (for example, RF drivers, servo drivers, row drivers, power supplies, etc.) can also be communicatively coupled to one or more devices (eg, Laser source 104, first positioner 106, second positioner 108, third positioner 110, lens actuator, ... etc.). In one embodiment, each driver usually includes an input that is communicatively coupled to the controller 114, and therefore, the controller 114 is operable to generate one or more control signals (for example, a trigger signal , ..., etc.), these control signals can be transmitted to the input of one or more drivers associated with one or more devices of the device 100. Therefore, devices such as the laser source 104, the first locator 106, the second locator 108, the third locator 110, the lens actuator, etc. will respond to the generation by the controller 114 Control signal.

於另一實施例中,圖中雖然並未顯示;不過,一或更多個額外的控制器(舉例來說,器件特定控制器)可以視情況被通訊耦接至一被通訊耦接至器件(例如,雷射源104、第一***106、第二***108、第三***110、以及透鏡致動器、…等)且因此與該器件相關聯的驅動器的輸入。於此實施例中,每一個器件特定控制器會被通訊耦接至該控制器114並且可操作用以響應於接收自該控制器114的一或更多個控制訊號而產生一或更多個控制訊號(舉例來說,觸發訊號、…等),該些控制訊號接著能夠被傳送至與其通訊耦接的驅動器的輸入。於此實施例中,一器件特定控制器可以如同針對控制器114所述般的方式被配置。 In another embodiment, although not shown in the figure; however, one or more additional controllers (for example, device-specific controllers) can be communicatively coupled to a communicatively coupled device (Eg, the laser source 104, the first positioner 106, the second positioner 108, the third positioner 110, and the lens actuator, ..., etc.) and therefore the input of the driver associated with the device. In this embodiment, each device-specific controller is communicatively coupled to the controller 114 and is operable to generate one or more in response to one or more control signals received from the controller 114 Control signals (for example, trigger signals, ..., etc.), these control signals can then be transmitted to the input of the driver communicatively coupled thereto. In this embodiment, a device-specific controller may be configured as described for the controller 114.

於提供一或更多個器件特定控制器的另一實施例中,和其中 一個器件(舉例來說,雷射源104)相關聯的器件特定控制器會被通訊耦接至和其中一個器件(舉例來說,第一***106、…等)相關聯的器件特定控制器。於此實施例中,該些器件特定控制器中的一或更多者能夠操作用以響應於接收自一或更多個其它器件特定控制器的一或更多個控制訊號而產生一或更多個控制訊號(舉例來說,觸發訊號、…等)。 In another embodiment that provides one or more device-specific controllers, and A device-specific controller associated with a device (eg, laser source 104) is communicatively coupled to a device-specific controller associated with one of the devices (eg, first locator 106, ..., etc.) . In this embodiment, one or more of the device-specific controllers are operable to generate one or more in response to one or more control signals received from one or more other device-specific controllers Multiple control signals (for example, trigger signals, ..., etc.).

III.關於移除工件材料的實驗結果III. Experimental results on removal of workpiece materials

根據某些實施例,並且如下面更詳細討論,設備100具備一雷射源104,被配置成藉由移除工件102的一部分來處理該工件102,以便形成一或更多個特徵元件(舉例來說,開口、狹槽、通孔、溝槽、溝渠、切割線、刻口、下凹區、或是類似物、或是前述的任何組合)。因該處理的結果所產生的表面在下文中稱為「經處理的工件表面」,並且會包含一側壁、一底表面、或是類似物、或是前述的任何部分或組合。於此些實施例中,材料係藉由以高重複率將具有超短脈衝時間持續長度的雷射脈衝傳遞至工件102而從該工件102處被移除。 According to some embodiments, and as discussed in more detail below, the apparatus 100 is provided with a laser source 104 configured to process the workpiece 102 by removing a portion of the workpiece 102 to form one or more feature elements (for example In particular, openings, slots, through holes, trenches, trenches, cutting lines, notches, recessed areas, or the like, or any combination of the foregoing). The surface produced as a result of this treatment is hereinafter referred to as the "treated workpiece surface" and will include a side wall, a bottom surface, or the like, or any part or combination of the foregoing. In these embodiments, the material is removed from the workpiece 102 by delivering a laser pulse with an ultra-short pulse duration to the workpiece 102 at a high repetition rate.

各種研究已經顯示,相較於較長的脈衝,超短脈衝範圍中的雷射材料處理(使用脈衝時間持續長度小於數10ps的雷射脈衝)提供許多優點。皮秒和飛秒雷射相互作用的熱衝擊大幅受到限制,以最小附帶性損壞將雷射能量消散限制在小光學穿透深度。此精確限制的雷射「加熱」最小化進入下方體材料之中的能量損失,從而提供有效且可控制的燒蝕處理。該超短脈衝時間持續長度進一步確保大部分的雷射能量在產生明顯的燒蝕羽煙及/或電漿之前被傳遞至該工件102;因為電漿反射、電漿與羽煙散射、以及羽煙加熱的關係,以較長脈衝時間持續長度的雷射脈衝無法達成此有 效的能量耦接。一般還知道的係,當超短雷射脈衝以高脈衝重複率(也就是,100kHz以上)被傳遞時,由先前被傳遞至一處理光點的雷射脈衝所產生的熱不會從該光點處完全消散,並且該熱量的至少一部分會在下一道雷射脈衝被傳遞時於該光點附近出現在該工件102中。據此,熱量傾向將熱量累積在一先前被照射的處理光點附近的該工件102的一區域裡面,因此,一連續性傳遞的雷射脈衝會被傳遞至該工件102的一受熱區。當一超短雷射脈衝於後面被傳遞至該受熱區時,高溫有助於正面影響該雷射材料相互作用,用以增強有效的材料移除,同時有助於減少碎屑的產生。 Various studies have shown that laser material processing in the ultra-short pulse range (using laser pulses with a pulse duration less than a few 10 ps) provides many advantages over longer pulses. The thermal shock of picosecond and femtosecond laser interactions is greatly limited, with minimal incidental damage to limit laser energy dissipation to a small optical penetration depth. This precisely limited laser "heating" minimizes the energy loss into the underlying bulk material, thereby providing an effective and controllable ablation process. The duration of the ultra-short pulse time further ensures that most of the laser energy is transferred to the workpiece 102 before significant ablation plume and / or plasma is generated; because of plasma reflection, plasma and plume scattering, and plume The relationship between smoke heating and laser pulses with longer pulse durations cannot achieve this Effective energy coupling. It is also generally known that when an ultrashort laser pulse is transmitted at a high pulse repetition rate (that is, above 100 kHz), the heat generated by the laser pulse previously transmitted to a processing spot will not be emitted from the light The point is completely dissipated, and at least a portion of the heat will appear in the workpiece 102 near the spot when the next laser pulse is delivered. According to this, the heat tends to accumulate heat in an area of the workpiece 102 near the previously irradiated processing spot, and therefore, a continuously transmitted laser pulse is transmitted to a heated area of the workpiece 102. When an ultra-short laser pulse is transmitted to the heated area later, the high temperature helps positively affect the laser material interaction to enhance effective material removal and at the same time helps reduce the generation of debris.

然而,本案發明人已將發現,在超短、高脈衝重複率範圍內,諸如能量密度、平均功率、脈衝能量、咬合尺寸、以及光點尺寸(以及脈衝重複率)的特定參數以及此些參數中二或更多者的各種組合會影響該經處理工件表面的表面形態,並且於某些情況中會在處理期間影響碎屑的產生。下面為在本案發明人密集實驗研究過程中發現到的新穎且非預期關係的範例。於此些實驗中所處理的工件102的材料對被傳遞的雷射脈衝中的光波長為不「透明」(或者為「非透明」)。在本文中,如果一材料在該些被傳遞雷射脈衝的一特殊頻寬內的線性吸收頻譜以及厚度使得透射穿過(沿著射束軸)該材料的光的百分比小於99%、小於97%、小於95%、小於90%、小於75%、小於50%、小於25%、小於15%、小於10%、小於5%、或是小於1%的話,該材料便被視為「非透明」。 However, the inventors of the present invention have discovered that within the ultra-short, high pulse repetition rate range, specific parameters such as energy density, average power, pulse energy, bite size, and spot size (and pulse repetition rate) and these parameters Various combinations of the two or more will affect the surface morphology of the treated workpiece surface, and in some cases will affect the generation of debris during processing. The following are examples of novel and unexpected relationships discovered during the intensive experimental research by the inventors of the present case. The material of the workpiece 102 processed in these experiments is not "transparent" (or "non-transparent") to the wavelength of light in the transmitted laser pulse. In this article, if the linear absorption spectrum and thickness of a material within a particular bandwidth of the transmitted laser pulses are such that the percentage of light transmitted through (along the beam axis) is less than 99%, less than 97 %, Less than 95%, less than 90%, less than 75%, less than 50%, less than 25%, less than 15%, less than 10%, less than 5%, or less than 1%, the material is considered "non-transparent ".

A.咬合尺寸與碎屑產生之間的關係A. Relationship between bite size and debris generation

圖2圖解被形成在一工件102(此圖中為一矽晶圓)的表面中的溝渠(a)至(e)的顯微照片(從俯視平面圖中攝得),其中,雷射脈衝被傳遞同 時在該射束軸與該工件102之間造成相對移動,俾使得雷射脈衝沿著從左邊延伸至右邊的處理軌線被傳遞。因此,每一條溝渠的起始端顯示在顯微照片的左行,而溝渠(a)至(c)的結束端則顯示在右行。溝渠(d)至(e)的結束端的外觀實質上和溝渠(c)的結束端的外觀完全相同。 2 illustrates micrographs (taken from a top plan view) of trenches (a) to (e) formed in the surface of a workpiece 102 (a silicon wafer in this figure), in which laser pulses are Pass the same At this time, a relative movement is caused between the beam axis and the workpiece 102, so that the laser pulse is transmitted along the processing trajectory extending from the left to the right. Therefore, the starting end of each trench is shown in the left row of the photomicrograph, and the ending ends of the trenches (a) to (c) are shown in the right row. The appearance of the end ends of the trenches (d) to (e) is substantially the same as the appearance of the end ends of the trenches (c).

溝渠(a)至(e)中每一者係藉由沿著該射束軸以1855kHz的脈衝重複率傳播光點尺寸為35μm、脈衝時間持續長度為800fs、以及脈衝能量為6μJ的雷射脈衝所形成。該射束軸和該工件102之間的相對移動受到影響而導致連續傳遞雷射脈衝於溝渠(a)中以0.5μm的咬合尺寸、於溝渠(b)中以0.475μm的咬合尺寸、於溝渠(c)中以0.5μm的咬合尺寸、於溝渠(d)中以0.425μm的咬合尺寸、以及於溝渠(e)中以0.4μm的咬合尺寸照射在該工件102上。溝渠(a)至(e)係藉由在單次操作中沿著該處理軌線掃描該些被傳遞雷射脈衝而形成。 Trench (a) to (e) of each of lines along the beam axis by a pulse repetition rate of propagation 1855kHz spot size of 35 μ m, the pulse duration is of 800fs, and a pulse energy of 6 μ J Formed by the laser pulse. The relative movement between the beam axis and the workpiece 102 is affected, resulting in continuous transmission of laser pulses in the trench (a) with a bite size of 0.5 μm , and in the trench (b) with a bite size of 0.475 μm , The workpiece 102 is irradiated with a bite size of 0.5 μm in the trench (c), a bite size of 0.425 μm in the trench (d), and a bite size of 0.4 μm in the trench (e). The trenches (a) to (e) are formed by scanning the transmitted laser pulses along the processing trajectory in a single operation.

如圖2中所示,被選擇用以形成溝渠(a)的參數在該溝渠內外形成非常明顯的碎屑,造成粗糙的經處理工件表面,以及沿著該溝渠邊緣於該經處理區域外面形成粗糙的工件表面。當將咬合尺寸從0.5μm縮減至0.475μm時可以看見,該溝渠形成製程沿著大部分的溝渠(b)的長度產生碎屑,但是在溝渠(b)的末端處或附近則沒有偵測到任何碎屑。據估計,在開始形成溝渠(b)之後,直到停止產生任何明顯碎屑為止,約經過850μs(也就是,碎屑過渡期約850μs)。當在形成溝渠(c)、(d)、以及(e)期間分別進一步將咬合尺寸縮減至0.45μm、0.425μm、0.4μm,碎屑過渡期分別縮短至約600μs、約320μs以及約305μs。 As shown in FIG. 2, the parameters selected to form the trench (a) form very obvious debris inside and outside the trench, resulting in a rough treated workpiece surface, and forming along the trench edge outside the treated area Rough workpiece surface. When reducing the bite size from 0.5 μm to 0.475 μm , it can be seen that the ditch formation process generates debris along most of the length of the ditch (b), but there is no detection at or near the end of the ditch (b) Any debris was detected. It is estimated that after the ditch (b) begins to form, until the generation of any obvious debris ceases, approximately 850 μs elapses (that is, the debris transition period is approximately 850 μs ). When the trenches (c), (d), and (e) were further reduced to 0.45 μm , 0.425 μm , and 0.4 μm respectively, the debris transition period was shortened to about 600 μs and about 320, respectively. μ s and about 305 μ s.

雖然不希望受限任何特殊理論;但是,本案發明人相信,碎 屑過渡期隨著縮減咬合尺寸(但是保持光點尺寸、脈衝時間持續長度、脈衝能量、以及脈衝重複率常數)而縮短,因為雷射脈衝被連續傳遞進去的該工件中的空間區域係縮減。這可以讓局部圍繞該些照射處理光點的工件102裡面的區域累積熱能。在經過該碎屑過渡期之後,此些區域中一部分(也就是,位於該處理軌線中的區域)的溫度保持高溫(也就是,介於要被移除的材料的熔化溫度和蒸發溫度之間)。殘留在該工件102的此些區域裡面的殘熱可有效的燒蝕其中的材料,而不會產生任何明顯的碎屑。 Although we do not wish to be bound by any particular theory; however, the inventor of this case believes that The chip transition period shortens as the bite size is reduced (but the spot size, pulse duration, pulse energy, and pulse repetition rate constant are maintained) because the spatial area in the workpiece into which the laser pulse is continuously transferred is reduced. This allows heat to accumulate locally in the area inside the workpiece 102 that irradiates the treatment spot. After passing the debris transition period, the temperature of a part of these areas (that is, the area located in the processing trajectory) remains high (that is, between the melting temperature and the evaporation temperature of the material to be removed) between). The residual heat remaining in these areas of the workpiece 102 can effectively ablate the material therein without generating any obvious debris.

B.脈衝能量與碎屑產生之間的關係B. Relationship between pulse energy and debris generation

圖3圖解被形成在一工件102(此圖中為一矽晶圓)的表面中的溝渠(a)至(e)的顯微照片(從俯視平面圖中攝得),其中,雷射脈衝被傳遞同時在該射束軸與該工件102之間造成相對移動,俾使得雷射脈衝沿著從左邊延伸至右邊的處理軌線被傳遞。圖中僅顯示每一條溝渠的起始端。 3 illustrates micrographs (taken from a top plan view) of trenches (a) to (e) formed in the surface of a workpiece 102 (a silicon wafer in this figure), in which laser pulses are The transfer also causes relative movement between the beam axis and the workpiece 102 so that the laser pulse is transferred along the processing trajectory extending from the left to the right. The figure shows only the starting end of each trench.

溝渠(a)至(e)中每一者係藉由沿著該射束軸以1979kHz的脈衝重複率傳播光點尺寸為35μm、脈衝時間持續長度為800fs的雷射脈衝所形成。該射束軸和該工件102之間的相對移動受到影響而導致連續傳遞雷射脈衝在每一條溝渠中以0.5μm的咬合尺寸照射於該工件102上。被傳遞至該工件102的雷射脈衝於溝渠(a)的形成期間的脈衝能量為6μJ、於溝渠(b)中的脈衝能量為5μJ、於溝渠(c)中的脈衝能量為4μJ、於溝渠(d)中的脈衝能量為3μJ、於溝渠(e)中的脈衝能量為2μJ。溝渠(a)至(e)係藉由在單次操作中沿著該處理軌線掃描該些被傳遞雷射脈衝而形成。 Each of the trenches (a) to (e) is formed by propagating a laser pulse with a spot size of 35 μm and a pulse duration of 800 fs along the beam axis at a pulse repetition rate of 1979 kHz. The relative movement between the beam axis and the workpiece 102 is affected, resulting in the continuous delivery of laser pulses irradiating the workpiece 102 with a bite size of 0.5 μm in each trench. The pulse energy transmitted to the workpiece 102 during the formation of the trench (a) is 6 μJ , the pulse energy in the trench (b) is 5 μJ , and the pulse energy in the trench (c) is 4 μJ , the pulse energy in the ditch (d) is 3 μJ , and the pulse energy in the ditch (e) is 2 μJ . The trenches (a) to (e) are formed by scanning the transmitted laser pulses along the processing trajectory in a single operation.

如圖3中所示,被選擇用以形成溝渠(a)的參數在該溝渠外面靠近起始端形成非常明顯的碎屑,在該經處理區域外面造成粗糙的工件表 面(在該溝渠中較遠離該起始端處較不明顯),但是在該溝渠裡面形成相對平滑的經處理工件表面。當將脈衝能量從6μJ降至5μJ時可以看見,該溝渠形成製程在該溝渠外面靠近起始端產生非常明顯的碎屑(並且在該溝渠中較遠離該起始端處產生明顯的碎屑),在該經處理區域外面造成粗糙的工件表面。經觀察,溝渠(b)裡面的經處理工件表面的平滑性小於溝渠(a)裡面的經處理工件表面。當將脈衝能量進一步降至4μJ時,該溝渠形成製程在溝渠(c)的起始端中產生非常明顯的碎屑,在該經處理區域外面造成粗糙的工件表面並且在溝渠(c)裡面造成粗糙的經處理工件表面。碎屑同樣出現在溝渠(a)至(c)的縱向側中,形式為由從起始端至結束端的再鑄料製成的脊狀部。當將脈衝能量進一步降至3μJ時可以看見,該溝渠形成製程在溝渠(d)的起始端中或附近產生明顯的碎屑,在該經處理區域外面造成粗糙的工件表面並且在溝渠(d)裡面造成粗糙的經處理工件表面;然而,在相對短的碎屑過渡期之後不會看見任何明顯的碎屑產生。由再鑄料製成的脊狀部同樣隨著和溝渠(d)的起始端的相隔距離增加而消失。當將脈衝能量進一步降至2μJ時可以看見,該溝渠形成製程在溝渠(e)外面於溝渠(e)的起始端處或附近產生非常少量的碎屑,並且在該溝渠裡面沒有任何明顯的碎屑。然而,溝渠(e)裡面的經處理工件表面則看似平滑,沒有看見任何顯著的碎屑。在溝渠(e)外面沒有看見由再鑄料製成的任何脊狀部。 As shown in Figure 3, the parameters selected to form the trench (a) form very obvious debris outside the trench near the starting end, causing a rough workpiece surface outside the treated area (farther away in the trench This is less obvious at the starting end), but a relatively smooth surface of the treated workpiece is formed inside the trench. When the pulse energy is reduced from 6 μ J to 5 μ J, it can be seen that the trench formation process produces very obvious debris outside the trench near the starting end (and produces obvious debris in the trench farther away from the starting end Chips), causing a rough workpiece surface outside the treated area. It has been observed that the smoothness of the surface of the treated workpiece in the ditch (b) is less than that of the treated workpiece in the ditch (a). When the pulse energy is further reduced to 4 μJ , the trench formation process generates very obvious debris in the beginning of the trench (c), causing a rough workpiece surface outside the treated area and inside the trench (c) Cause rough surface of processed workpiece. Debris also appears in the longitudinal sides of the trenches (a) to (c) in the form of ridges made of recast material from the start end to the end end. When the pulse energy is further reduced to 3 μJ , it can be seen that the trench formation process produces obvious debris in or near the starting end of the trench (d), causing a rough workpiece surface outside the treated area and in the trench ( d) Rough surface of the treated workpiece is caused inside; however, after the relatively short chip transition period, no obvious chip generation is seen. The ridge made of recast material also disappears as the distance from the starting end of the ditch (d) increases. When the pulse energy is further reduced to 2 μJ , it can be seen that the trench formation process produces a very small amount of debris outside the trench (e) at or near the beginning of the trench (e), and there is no obvious inside the trench Detritus. However, the surface of the treated workpiece in the ditch (e) appeared smooth, without any noticeable debris. Outside the ditch (e), no ridges made of recast material were seen.

C.縮放對碎屑產生造成的效應C. Effects of scaling on debris

圖4圖解經雷射處理特徵元件(a)與(b)的顯微照片(從俯視平面圖中攝得),每一個特徵元件包含被形成在一工件102,此圖中為一矽晶圓,的表面中的一組交叉切割線。 FIG. 4 illustrates micrographs of laser-processed feature elements (a) and (b) (taken from a top plan view). Each feature element includes a workpiece 102 formed in this figure, which is a silicon wafer, A set of cross-cut lines in the surface of

為形成特徵元件(a)與(b),雷射脈衝被傳遞至工件102同時在該射束軸與該工件102之間造成相對移動,俾使得雷射脈衝沿著一處理軌線被傳遞,在每一條切割線中包含三條平行掃描線,並且每一條掃描線係在單次操作中被定址。特徵元件(a)與(b)中每一者係藉由沿著該射束軸以1855kHz的脈衝重複率傳播脈衝時間持續長度為800fs的雷射脈衝所形成。在形成特徵元件(a)期間被傳遞至工件102的雷射脈衝的光點尺寸為25μm以及脈衝能量為3.14μJ,並且該射束軸和該工件102之間的相對移動受到影響而導致連續傳遞雷射脈衝以0.1μm的咬合尺寸照射於該工件102上。在形成特徵元件(b)期間被傳遞至工件102的雷射脈衝的光點尺寸為35μm以及脈衝能量為6.16μJ,並且該射束軸和該工件102之間的相對移動受到影響而導致連續傳遞雷射脈衝以0.25μm的咬合尺寸照射於該工件102上。 To form the characteristic elements (a) and (b), the laser pulse is transmitted to the workpiece 102 while causing relative movement between the beam axis and the workpiece 102, so that the laser pulse is transmitted along a processing trajectory, There are three parallel scan lines in each cutting line, and each scan line is addressed in a single operation. Each of the characteristic elements (a) and (b) is formed by propagating a laser pulse with a pulse duration of 800 fs along the beam axis at a pulse repetition rate of 1855 kHz. The laser spot transmitted to the workpiece 102 during the formation of the feature element (a) has a spot size of 25 μm and a pulse energy of 3.14 μJ , and the relative movement between the beam axis and the workpiece 102 is affected and This results in continuous delivery of laser pulses on the workpiece 102 with a bite size of 0.1 μm . The laser spot transmitted to the workpiece 102 during the formation of the feature element (b) has a spot size of 35 μm and a pulse energy of 6.16 μJ , and the relative movement between the beam axis and the workpiece 102 is affected and This results in continuous delivery of laser pulses irradiating the workpiece 102 with a bite size of 0.25 μm .

從圖4中顯見,在形成特徵元件(a)期間產生大量碎屑,導致具有粗糙經處理工件表面的切割線,具有可見的小坑以及其它損壞。相反地,在形成特徵元件(b)期間實質上沒有產生任何碎屑,並且所產生的切割線呈現實質上沒有累積碎屑的平滑經處理工件表面。請注意:顯著的碎屑被產生並且累積在由橢圓虛線所封閉的特徵元件(b)的區域中。此區域對應於被處理兩次的該特徵元件中的區域。 It is apparent from FIG. 4 that a large amount of debris is generated during the formation of the feature element (a), resulting in cutting lines with rough treated workpiece surfaces, with visible pits and other damage. In contrast, substantially no debris is generated during the formation of the feature element (b), and the resulting cutting line presents a smooth treated workpiece surface that is substantially free of accumulated debris. Please note that significant debris is generated and accumulated in the area of the characteristic element (b) enclosed by the elliptical dashed line. This area corresponds to the area in the characteristic element that is processed twice.

D.咬合尺寸、能量密度和脈衝重複率與表面粗糙度以及材料移除速率的關係D. Relationship between bite size, energy density and pulse repetition rate with surface roughness and material removal rate

圖5圖解以兩種脈衝重複率(也就是,~927kHz以及~1855kHz)中其中一者沿著射束軸傳播雷射脈衝同時在單次操作中沿著一處理軌線掃描被傳遞的雷射脈衝被形成在一工件102(此圖中為一矽晶圓)中的溝渠之中 的經處理工件表面的平均表面粗糙度(Ra)以及在該溝渠形成過程期間的材料移除速率(μm2-Area)之間的關係的一組關係圖,隨咬合尺寸(單位為μm)以及能量密度(單位為J/cm2)變化。平均表面粗糙度(Ra)係利用具有50x物鏡的Keyence 3D共焦顯微鏡來量測。 Figure 5 illustrates the propagation of laser pulses along the beam axis at one of two pulse repetition rates (ie, ~ 927kHz and ~ 1855kHz) while scanning the transmitted laser along a processing trajectory in a single operation material removal rate m2 during a pulse is formed in the workpiece 102 (in this figure as a silicon wafer) average surface roughness of the workpiece surface being treated in the trench (Ra) and during the formation of the trench -Area) A set of graphs of the relationship between the occlusion size (in μm ) and energy density (in J / cm 2 ). The average surface roughness (Ra) is measured using a Keyence 3D confocal microscope with a 50x objective lens.

如圖5中顯見,在大於0.2μm的咬合尺寸處,該經處理工件表面的平均表面粗糙度下降至約0.25μm以下,接近鏡面平滑表面拋光。在所有測試咬合尺寸以及能量密度位準中,利用以~1855kHz的脈衝重複率傳遞的雷射脈衝所形成的經處理工件表面的平均表面粗糙度通常低於利用以~927kHz的脈衝重複率傳遞的雷射脈衝所形成的對應經處理工件表面。μm2-Area數值代表該些切割的剖面積,並且顯示材料移除速率隨著增加咬合尺寸而下降。以~927kHz的脈衝重複率形成溝渠期間所達成材料移除速率雷同於以~1855kHz的脈衝重複率形成溝渠期間所達成材料移除速率。 As is apparent from FIG. 5, at a bite size greater than 0.2 μm , the average surface roughness of the treated workpiece surface drops below about 0.25 μm , which is close to a mirror-surface smooth surface finish. In all test bite sizes and energy density levels, the average surface roughness of the treated workpiece surface formed by laser pulses transmitted at a pulse repetition rate of ~ 1855kHz is generally lower than that transmitted by a pulse repetition rate of ~ 927kHz The corresponding processed workpiece surface formed by the laser pulse. The μm2 -Area value represents the cross-sectional area of these cuts and shows that the material removal rate decreases with increasing bite size. The material removal rate achieved during trench formation with a pulse repetition rate of ~ 927 kHz is similar to the material removal rate achieved during trench formation with a pulse repetition rate of ~ 1855 kHz.

E.咬合尺寸、能量密度、脈衝重複率和平均功率與碎屑產生的關係E. Relationship between bite size, energy density, pulse repetition rate and average power with debris generation

圖6圖解用於在一工件102(此圖中為一矽晶圓)中形成溝渠的製程視窗的一組圖片,其:i)形成沒有明顯產生碎屑的經處理工件表面(也就是,產生其上沒有累積任何明顯碎屑的經處理工件表面,如配合圖2至5的討論);以及ii)形成有明顯產生碎屑的經處理工件表面(也就是,產生其上累積明顯碎屑的經處理工件表面,如配合圖2至5的討論)。元件符號600所示圖案標記的區域代表產生明顯碎屑的參數空間,元件符號602所示圖案標記的區域代表沒有產生任何明顯碎屑的參數空間。所看見的溝渠係以五種脈衝重複率(也就是,927.55kHz、1264kHz、1855kHz、2022kHz、以及3051kHz)中其中一者沿著射束軸傳播雷射脈衝同時在單次操作中沿著一處 理軌線掃描被傳遞的雷射脈衝所形成。在每一個脈衝重複率處形成多條溝渠,每一條溝渠係利用咬合尺寸(單位為μm)、能量密度(單位為J/cm2)、以及平均功率(單位為W)的不同組合所形成。 FIG. 6 illustrates a set of pictures of a process window used to form a trench in a workpiece 102 (a silicon wafer in this figure), which: i) forms a surface of a processed workpiece that does not significantly generate debris (ie, produces The surface of the treated workpiece on which no obvious debris has accumulated, as discussed in conjunction with Figures 2 to 5); and ii) The surface of the treated workpiece with obvious debris formed (ie, the one on which obvious debris has accumulated Treated workpiece surface, as discussed in conjunction with Figures 2 to 5). The area of the pattern mark shown by the element symbol 600 represents the parameter space where obvious debris is generated, and the area of the pattern mark shown by the element symbol 602 represents the parameter space where no obvious debris is generated. The ditch seen is one of five pulse repetition rates (ie, 927.55kHz, 1264kHz, 1855kHz, 2022kHz, and 3051kHz) propagating the laser pulse along the beam axis while processing along The trajectory scan is formed by the transmitted laser pulses. Multiple trenches are formed at each pulse repetition rate, and each trench is formed using different combinations of bite size (unit: μ m), energy density (unit: J / cm 2 ), and average power (unit: W) .

如圖6中所示,在927.55kHz以及1264kHz處看見,所測試的咬合尺寸、能量密度、以及平均功率數值的所有組合產生中量至大量碎屑;反之,在1855kHz、2022kHz、以及3051kHz處發現,部分(並非全部)參數數值組合產生具有很少至毫無任何累積碎屑的經處理工件表面。此發現傾向於表示,對要被處理的一特殊材料來說會有一臨界脈衝重複率,於此臨界脈衝重複率以下無法避免碎屑產生。然而,於此臨界脈衝重複率以上則有某些其它一般的觀察結果:在相對低的能量密度或平均功率數值處,工件102能夠利用相對寬範圍的咬合尺寸來處理,用以形成特徵元件,而不會產生中量或大量碎屑;以及當能量密度或平均功率增加時,此咬合尺寸範圍則縮減。 As shown in Figure 6, at 927.55kHz and 1264kHz, all combinations of the tested bite size, energy density, and average power values produced medium to large amounts of debris; conversely, found at 1855kHz, 2022kHz, and 3051kHz The combination of some (but not all) parameter values produces a treated workpiece surface with little to no accumulated debris. This finding tends to indicate that for a particular material to be processed there will be a critical pulse repetition rate below which the generation of debris cannot be avoided. However, there are some other general observations above this critical pulse repetition rate: at relatively low energy density or average power values, the workpiece 102 can be processed with a relatively wide range of bite sizes to form feature elements, No medium or large amount of debris is produced; and as the energy density or average power increases, the range of this bite size decreases.

區域600與602在某些參數空間中重疊。舉例來說,參見元件符號604所示圖案標記的區域。此重疊通常會被理解成表示:(1)在大量或明顯碎屑產生以及非大量或不明顯碎屑產生之間的過渡;或者(2)針對給定的能量密度、功率、以及咬合尺寸,會有製程能夠產生一乾淨、平滑的特徵元件或是伴隨著碎屑的產生而產生特徵元件。於一範例中,在1855kHz處,在符合該功率與能量密度的製程中,有光點尺寸和脈衝能量的組合會產生不同的結果(也就是,乾淨、平滑的特徵元件或是伴隨著碎屑產生的特徵元件)。換言之,於區域600與602重疊的一參數空間內的給定座標處會形成具有乾淨、平滑表面的特徵元件或是伴隨著碎屑產生的特徵元件,端 視該些被傳遞雷射脈衝的光點尺寸與脈衝能量而定。 Regions 600 and 602 overlap in certain parameter spaces. For example, see the area marked by the pattern shown by element symbol 604. This overlap is usually understood to mean: (1) the transition between large or obvious debris generation and non-large or non-obvious debris generation; or (2) for a given energy density, power, and bite size, There will be processes that can produce a clean, smooth feature or a feature that accompanies the generation of debris. In an example, at 1855kHz, in a process that meets this power and energy density, a combination of spot size and pulse energy will produce different results (that is, clean, smooth features or accompanied by debris The resulting characteristic elements). In other words, at a given coordinate in a parameter space where the areas 600 and 602 overlap, a characteristic element with a clean and smooth surface or a characteristic element accompanied by debris will be formed. It depends on the spot size and pulse energy of these transmitted laser pulses.

IV.基於實驗結果的範例實施例IV. Example embodiments based on experimental results

基於上面在段落III中所述的實驗結果,子段落A至E,本發明的其中一實施例能夠特徵化為藉由在移除製程期間移除材料(其對被傳遞至工件102的雷射脈衝中的光的波長為非透明)用以在工件102中形成特徵元件(舉例來說,切割線或是其它溝渠或下凹部、…等)的一種雷射方法。舉例來說,並且參考圖9A中所示的實施例,一工件102可被提供為一種半導體晶圓,具有一上表面(舉例來說,表面900a)以及和該上表面反向的一下表面(舉例來說,表面900b)。該半導體晶圓可以包含一基板902(舉例來說,由諸如矽、鍺、Si1-xGex(其中,0.0001<x<0.9999)、GaAs、GaN、InP、或是類似物、或是前述的任何組合的材料形成)以及一裝置層904(舉例來說,由一或更多個場效電晶體、介電層、互連金屬結構、鈍化層、或是類似物、或是前述的任何組合的材料形成)。應該明瞭的係,工件102能夠以上面討論的半導體晶圓以外的任何方式提供。舉例來說,工件102能夠被提供為任何單層式或多層式結構,包含:由Al2O3、AlN、BeO、Cu、GaAs、GaN、Ge、InP、Si、SiO2、SiC、Si1-xGex(其中,0.0001<x<0.9999)、或是類似物、或是前述的任何組合或合金形成的基板(舉例來說,電子基板、半導體基板、光學基板、…等);由下面形成的物品,塑膠、玻璃(舉例來說,無強化玻璃、熱強化玻璃、化學強化玻璃、或是其它玻璃)、石英、藍寶石、塑膠、矽、…等;一或更多種金屬(舉例來說,Al、Ag、Au、Cu、Fe、In、Mg、Pt、Sn、Ti、或是類似物、或是前述的任何組合或合金);導體金屬氧化物(舉例來說,ITO、…等);透明的導體聚合物;陶瓷;蠟;樹脂;無機介電材料(舉例來 說,作為層間介電結構,例如,氧化矽、氮化矽、氮氧化矽、或是類似物、或是前述的任何組合);低k介電材料(舉例來說,甲基倍半矽氧烷(MSQ)、氫化倍半氧矽烷(HSQ)、氟化四乙氧基矽烷(fluorinated tetraethyl orthosilicate,TEOS)、或是類似物、或是前述的任何組合);有機介電材料(舉例來說,SILK、環苯丁烯、Nautilus(全部由Dow所製造)、聚氟四乙烯(由DuPont所製造)、FLARE(由Allied Chemical所製造)、或是類似物、或是前述的任何組合);玻璃纖維;聚合材料(聚醯胺、聚醯亞胺、聚酯、聚縮醛、聚碳酸酯、改質的聚苯醚、聚對苯二甲酸丁二酯、聚硫化苯、聚醚碸、聚醚醯亞胺、聚醚醚酮、液晶聚合物、丙烯腈-丁二烯-苯乙烯共聚物、以及前述的任何化合物、合成物、或是合金);或是類似物;或是前述的任何組合。 Based on the experimental results described in paragraph III above, subparagraphs A to E, one of the embodiments of the present invention can be characterized by removing the material (which has a laser beam that is delivered to the workpiece 102 during the removal process) The wavelength of the light in the pulse is non-transparent) is a laser method used to form feature elements (for example, cutting lines or other trenches or depressions, etc.) in the workpiece 102. For example, and referring to the embodiment shown in FIG. 9A, a workpiece 102 may be provided as a semiconductor wafer having an upper surface (for example, surface 900a) and a lower surface opposite to the upper surface ( For example, surface 900b). The semiconductor wafer may include a substrate 902 (for example, from silicon, germanium, Si 1-x Ge x (where 0.0001 <x <0.9999), GaAs, GaN, InP, or the like, or the aforementioned Any combination of materials) and a device layer 904 (for example, one or more field effect transistors, dielectric layers, interconnected metal structures, passivation layers, or the like, or any of the foregoing Combined materials form). It should be understood that the workpiece 102 can be provided in any manner other than the semiconductor wafer discussed above. For example, the workpiece 102 can be provided as any single-layer or multi-layer structure, including: Al 2 O 3 , AlN, BeO, Cu, GaAs, GaN, Ge, InP, Si, SiO 2 , SiC, Si 1 -x Ge x (where 0.0001 <x <0.9999), or the like, or any combination or alloy of the foregoing substrates (for example, electronic substrates, semiconductor substrates, optical substrates, etc.); by the following Formed items, plastic, glass (for example, unreinforced glass, thermally strengthened glass, chemically strengthened glass, or other glass), quartz, sapphire, plastic, silicon, ... etc .; one or more metals (for example, Say, Al, Ag, Au, Cu, Fe, In, Mg, Pt, Sn, Ti, or the like, or any combination or alloy of the foregoing); conductor metal oxide (for example, ITO, ... etc. ); Transparent conductive polymer; ceramic; wax; resin; inorganic dielectric material (for example, as an interlayer dielectric structure, for example, silicon oxide, silicon nitride, silicon oxynitride, or the like, or the aforementioned Any combination); low-k dielectric materials (for example, methyl silsesquioxane (MSQ), hydrogen Sesquioxane (HSQ), fluorinated tetraethyl orthosilicate (TEOS), or the like, or any combination of the foregoing); organic dielectric materials (for example, SILK, cyclobenzene Butene, Nautilus (manufactured by Dow), Teflon (manufactured by DuPont), FLARE (manufactured by Allied Chemical), or the like, or any combination of the foregoing; glass fiber; polymeric materials (Polyamide, polyimide, polyester, polyacetal, polycarbonate, modified polyphenylene ether, polybutylene terephthalate, polysulfide benzene, polyether sulfone, polyether amide imine , Polyetheretherketone, liquid crystal polymer, acrylonitrile-butadiene-styrene copolymer, and any of the aforementioned compounds, composites, or alloys); or the like; or any combination of the foregoing.

該移除製程的參數(舉例來說,能量密度、平均功率、脈衝重複率、脈衝能量、光點尺寸、咬合尺寸、…等中的一或更多者)係被選擇、控制、或是以其它方式設定,以便確保工件102的一部分係以有利方式達成下面之中一或更多者的方式被移除:在處理期間最小或零產生碎屑;創造一平滑的經處理工件表面;創造具有少量缺陷、瑕疵、或裂痕的經處理工件表面;在相鄰於該經處理工件表面的工件102中創造均勻的HAZ。舉例來說,在該移除製程期間,一雷射脈衝射束可沿著和該工件102相交的一射束軸被引導,並且該雷射脈衝射束可被掃描成使得被連續引導的雷射脈衝以非零咬合尺寸照射在該工件102上,以便在工件102的上表面900a形成一特徵元件(舉例來說,特徵元件906,如圖9B中所示,其可以為下凹部、溝渠、…等)。 The parameters of the removal process (for example, one or more of energy density, average power, pulse repetition rate, pulse energy, spot size, bite size, ...) are selected, controlled, or based on Set in other ways to ensure that part of the workpiece 102 is removed in an advantageous manner to achieve one or more of the following: minimal or zero debris generation during processing; creating a smooth processed workpiece surface; creating A small number of defects, flaws, or cracks on the surface of the treated workpiece; create a uniform HAZ in the workpiece 102 adjacent to the surface of the treated workpiece. For example, during the removal process, a laser pulse beam may be directed along a beam axis that intersects the workpiece 102, and the laser pulse beam may be scanned such that the laser is continuously guided The pulse is irradiated on the workpiece 102 with a non-zero bite size, so as to form a feature element on the upper surface 900a of the workpiece 102 (for example, the feature element 906, as shown in FIG. …Wait).

於圖9B中所示的實施例中,特徵元件906完全延伸貫穿裝 置層904並且部分延伸至基板902之中(舉例來說,延伸至從基板902的上表面處量測為d的深度)。於某些實施例中,深度d可以落在5μm(或是大約5μm)至22μm(或是大約22μm)的範圍中。舉例來說,深度d可以為5μm、5.5μm、6.0μm、6.5μm、7.0μm、7.5μm、8.0μm、8.5μm、10μm、12μm、15μm、17μm、20μm、22μm、…等,或是介於任何此些數值之間。應該明瞭的係,深度d亦可小於5μm或是大於22μm。於另一實施例中,特徵元件906 In the embodiment shown in FIG. 9B, the feature element 906 extends completely through the device layer 904 and partially into the substrate 902 (for example, to a depth measured as d from the upper surface of the substrate 902). In some embodiments, the depth d may fall within the range of 5 μm (or about 5 μm ) to 22 μm (or about 22 μm ). For example, the depth d may be 5 μm , 5.5 μm , 6.0 μm , 6.5 μm , 7.0 μm , 7.5 μm , 8.0 μm , 8.5 μm , 10 μm , 12 μm , 15 μ m, 17 μ m, 20 μ m, 22 μ m, etc., or somewhere between these values. It should be understood that the depth d may also be less than 5 μm or greater than 22 μm . In another embodiment, the feature element 906

如果參數係被選擇用以產生非常平滑的一經處理工件表面(舉例來說,經處理的工件表面906)的話,該經處理的工件表面可以被用來促成後續處理,例如:工件102的內部處理、工件102的貫穿工件處理、或是類似處理;或是前述的任何組合。一經處理工件表面(舉例來說,經處理的工件表面906)如果平均表面粗糙度(Ra)小於或等於1.0μm的話,該經處理工件表面會被視為「非常平滑」足以促成後續處理。於某些實施例中,該經處理工件表面的平均表面粗糙度(Ra)小於1.0μm、小於0.75μm、小於0.5μm、小於0.4μm、小於0.3μm、小於0.25μm、小於0.2μm、小於0.15μm、…等,或是介於任何此些數值之間。 If the parameters are selected to produce a very smooth processed workpiece surface (for example, processed workpiece surface 906), the processed workpiece surface can be used to facilitate subsequent processing, such as: internal processing of workpiece 102 , Workpiece 102 through workpiece processing, or similar processing; or any combination of the foregoing. If the average surface roughness (Ra) of a treated workpiece surface (for example, the treated workpiece surface 906) is less than or equal to 1.0 μm , the treated workpiece surface is considered to be “very smooth” enough to facilitate subsequent processing. In some embodiments, the average surface roughness (Ra) of the treated workpiece surface is less than 1.0 μm , less than 0.75 μm , less than 0.5 μm , less than 0.4 μm , less than 0.3 μm , less than 0.25 μm , Less than 0.2 μm , less than 0.15 μm , etc., or between any of these values.

工件102的內部處理能夠藉由引導另一雷射脈衝射束先通過該經處理工件表面而後進入該工件之中來實現。於此情況中,被引導的雷射脈衝射束係被聚焦,俾使得該些雷射脈衝的束腰位於該工件102內。相較於在該經處理工件表面的初始形成期間所使用的波長,在工件102的內部處理期間所使用的雷射脈衝的波長比較通透於正在被處理的工件102裡面的材料。和此內部處理相關聯的參數(舉例來說,能量密度、平均功率、 脈衝重複率、脈衝能量、光點尺寸、咬合尺寸、…等中的一或更多者)係被選擇,以便誘發該工件102裡面的材料非線性吸收該些被引導的雷射脈衝,從而處理(舉例來說,熔融、蒸發、燒蝕、碎裂、變色、…等,或是以其它方式修飾一或更多項特性或特徵,例如,化學成分、晶體結構、電子結構、微米結構、奈米結構、密度、黏稠性、折射率、磁導率、相對電容率、…等)位於該些被傳遞雷射脈衝的束腰處或附近的該工件102裡面的材料的一部分(舉例來說,908部分,如圖9C中所示)。舉例來說,於工件102(例如,矽晶圓)中形成一溝渠之後,為產生非常平滑的經處理工件表面(舉例來說,如圖7的顯微照片中所示),內部處理會如上述般被實行用以於該矽晶圓內形成一系列的裂痕(舉例來說,如圖8A與8B的顯微照片中所示,其中,圖8A顯示圖7中所示的溝渠的寬度的圖式。圖8B顯示沿著圖7中所示的溝渠的長度的圖式)。 The internal processing of the workpiece 102 can be achieved by directing another laser pulse beam through the surface of the processed workpiece and then into the workpiece. In this case, the guided laser pulse beam is focused so that the beam waist of the laser pulses is located within the workpiece 102. The wavelength of the laser pulse used during the internal processing of the workpiece 102 is more transparent to the material inside the workpiece 102 being processed than the wavelength used during the initial formation of the surface of the processed workpiece. The parameters associated with this internal processing (for example, energy density, average power, One or more of pulse repetition rate, pulse energy, spot size, bite size, etc.) are selected to induce the material inside the workpiece 102 to nonlinearly absorb the guided laser pulses for processing (For example, melting, evaporation, ablation, fragmentation, discoloration, etc., or otherwise modify one or more characteristics or features, for example, chemical composition, crystal structure, electronic structure, microstructure, nano Meter structure, density, viscosity, refractive index, magnetic permeability, relative permittivity, etc.) part of the material inside the workpiece 102 at or near the waist of the transmitted laser pulses (for example, Part 908, as shown in Figure 9C). For example, after forming a trench in the workpiece 102 (for example, a silicon wafer), in order to produce a very smooth processed workpiece surface (for example, as shown in the photomicrograph in FIG. 7), the internal processing would be as follows The above is implemented to form a series of cracks in the silicon wafer (for example, as shown in the micrographs of FIGS. 8A and 8B, where FIG. 8A shows the width of the trench shown in FIG. 7 Drawing. FIG. 8B shows a drawing along the length of the trench shown in FIG. 7).

參考圖9D,工件102的貫穿工件處理能夠藉由引導另一雷射脈衝射束先通過該經處理工件表面(舉例來說,經處理的工件表面906a)而後進入該工件之中來實現。被引導的雷射脈衝射束係被聚焦,俾使得該些雷射脈衝的束腰位於該工件102的下表面900b處或附近。相較於在該經處理工件表面的初始形成期間所使用的波長,在工件102的內部處理期間所使用的雷射脈衝的波長比較通透於正在被處理的工件102裡面的材料。和此貫穿工件處理相關聯的參數(舉例來說,能量密度、平均功率、脈衝重複率、脈衝能量、光點尺寸、咬合尺寸、…等中的一或更多者)係被選擇,以便誘發下表面900b處的工件102的材料線性或非線性吸收該些被引導的雷射脈衝,從而處理位於該些被傳遞雷射脈衝的束腰處或附近的該工件102 的一部分(舉例來說,用以在下表面900b處形成一溝渠或下凹部910)。可被實施的工件102的貫穿工件處理的某些範例在美國專利案第9,610,653號中說明過,本文以引用的方式將其完全併入。 Referring to FIG. 9D, the through-workpiece processing of the workpiece 102 can be achieved by directing another laser pulse beam through the processed workpiece surface (for example, the processed workpiece surface 906a) and then into the workpiece. The guided laser pulse beam is focused so that the beam waist of the laser pulses is located at or near the lower surface 900b of the workpiece 102. The wavelength of the laser pulse used during the internal processing of the workpiece 102 is more transparent to the material inside the workpiece 102 being processed than the wavelength used during the initial formation of the surface of the processed workpiece. The parameters associated with this through-workpiece processing (for example, one or more of energy density, average power, pulse repetition rate, pulse energy, spot size, bite size, ..., etc.) are selected to induce The material of the workpiece 102 at the lower surface 900b absorbs the guided laser pulses linearly or non-linearly, thereby processing the workpiece 102 located at or near the waist of the transmitted laser pulses Part (for example, to form a trench or recess 910 at the lower surface 900b). Some examples of through-workpiece processing of the work piece 102 that can be implemented are described in US Patent No. 9,610,653, which is fully incorporated herein by reference.

V.結論V. Conclusion

前面係解釋本發明的實施例和範例,而不應被視為限制本發明。本文雖然已經參考圖式說明數個特定實施例和範例;不過,熟習本技術的人士便很容易明白,可以對該些已揭實施例和範例以及其它實施例進行許多修正,其並不會實質上脫離本發明的新穎教示內容以及優點。 The foregoing explains embodiments and examples of the present invention and should not be considered as limiting the present invention. Although a few specific embodiments and examples have been described with reference to the drawings, those skilled in the art will easily understand that many modifications can be made to the disclosed embodiments and examples and other embodiments, which are not essential. It deviates from the novel teaching content and advantages of the present invention.

舉例來說,上面段落III中討論的實驗雖然在裸矽晶圓上實施;不過,應該明瞭的係,當利用超短雷射脈衝處理(矽晶圓以外)含有材料的工件時,前提係要被處理的材料相對於該些被傳遞雷射脈衝的波長為不透明。因此,應該明瞭的係,前面提及的實施例能夠有利地被調適成用以處理矽以外的材料所形成的半導體晶圓;電子或光學裝置基板(舉例來說,由下面所形成的基板:Al2O3、AlN、BeO、Cu、GaAs、GaN、Ge、InP、Si、SiO2、SiC、Si1-xGex(其中,0.0001<x<0.9999)、或是類似物、或是前述的任何組合或合金);由下面形成的物品,塑膠、玻璃(舉例來說,無強化玻璃、熱強化玻璃、化學強化玻璃、或是其它玻璃)、石英、藍寶石、塑膠、矽、…等;一或更多種金屬(舉例來說,Al、Ag、Au、Cu、Fe、In、Mg、Pt、Sn、Ti、或是類似物、或是前述的任何組合或合金);導體金屬氧化物(舉例來說,ITO、…等);透明的導體聚合物;陶瓷;蠟;樹脂;無機介電材料(舉例來說,作為層間介電結構,例如,氧化矽、氮化矽、氮氧化矽、或是類似物、或是前述的任何組合);低k介電材料(舉例來說,甲基倍半矽氧烷(MSQ)、 氫化倍半氧矽烷(HSQ)、氟化四乙氧基矽烷(FTEOS)、或是類似物、或是前述的任何組合);有機介電材料(舉例來說,SILK、環苯丁烯、Nautilus(全部由Dow所製造)、聚氟四乙烯(由DuPont所製造)、FLARE(由Allied Chemical所製造)、或是類似物、或是前述的任何組合);玻璃纖維;聚合材料(聚醯胺、聚醯亞胺、聚酯、聚縮醛、聚碳酸酯、改質的聚苯醚、聚對苯二甲酸丁二酯、聚硫化苯、聚醚碸、聚醚醯亞胺、聚醚醚酮、液晶聚合物、丙烯腈-丁二烯-苯乙烯共聚物、以及前述的任何化合物、合成物、或是合金);或是類似物;或是前述的任何組合。 For example, although the experiments discussed in paragraph III above were conducted on bare silicon wafers; however, it should be clear that when using ultra-short laser pulses to process workpieces containing materials (other than silicon wafers), the premise is that The processed material is opaque with respect to the wavelength of these transmitted laser pulses. Therefore, it should be understood that the aforementioned embodiments can be advantageously adapted to process semiconductor wafers formed of materials other than silicon; electronic or optical device substrates (for example, substrates formed by: Al 2 O 3 , AlN, BeO, Cu, GaAs, GaN, Ge, InP, Si, SiO 2 , SiC, Si 1-x Ge x (where 0.0001 <x <0.9999), or the like, or the aforementioned Any combination or alloy); objects formed from plastic, glass (for example, unreinforced glass, thermally strengthened glass, chemically strengthened glass, or other glass), quartz, sapphire, plastic, silicon, ... etc .; One or more metals (for example, Al, Ag, Au, Cu, Fe, In, Mg, Pt, Sn, Ti, or the like, or any combination or alloy of the foregoing); conductor metal oxide (For example, ITO, ..., etc.); transparent conductive polymers; ceramics; waxes; resins; inorganic dielectric materials (for example, as interlayer dielectric structures, such as silicon oxide, silicon nitride, silicon oxynitride , Or similar, or any combination of the foregoing); low-k dielectric materials (for example Say, methyl silsesquioxane (MSQ), hydrogenated silsesquioxane (HSQ), fluorinated tetraethoxysilane (FTEOS), or the like, or any combination of the foregoing); organic dielectric materials (For example, SILK, cyclobutene, Nautilus (manufactured by Dow), PTFE (manufactured by DuPont), FLARE (manufactured by Allied Chemical), or the like, or the aforementioned Any combination); glass fiber; polymeric materials (polyamide, polyimide, polyester, polyacetal, polycarbonate, modified polyphenylene ether, polybutylene terephthalate, polysulfide benzene, (Polyether ash, polyether amide imine, polyether ether ketone, liquid crystal polymer, acrylonitrile-butadiene-styrene copolymer, and any of the aforementioned compounds, composites, or alloys); or the like; Or any combination of the foregoing.

據此,所有此些修正皆希望涵蓋於申請專利範圍之中所定義的本發明的範疇裡面。舉例來說,熟習的人士便會明白,任何語句、段落、範例、或是實施例的主要內容皆能夠結合某些或是所有其它語句、段落、範例、或是實施例的主要內容,除非此些結合彼此互斥。所以,本發明的範疇應該由下面的申請專利範圍來決定,其涵蓋該些申請專利範圍的等效範圍。 Accordingly, all such amendments are intended to be covered by the scope of the invention as defined in the scope of the patent application. For example, those familiar with the subject will understand that the main content of any sentence, paragraph, example, or embodiment can be combined with the main content of some or all other sentences, paragraphs, examples, or embodiments, unless this These combinations are mutually exclusive. Therefore, the scope of the present invention should be determined by the following patent application scope, which covers the equivalent scope of these patent application scopes.

100‧‧‧設備 100‧‧‧Equipment

102‧‧‧工件 102‧‧‧Workpiece

104‧‧‧雷射源 104‧‧‧Laser source

106‧‧‧第一*** 106‧‧‧First locator

108‧‧‧第二*** 108‧‧‧Second positioner

110‧‧‧第三*** 110‧‧‧third positioner

112‧‧‧掃描透鏡 112‧‧‧scan lens

114‧‧‧控制器 114‧‧‧Controller

116‧‧‧射束路徑 116‧‧‧ Beam path

Claims (15)

一種方法,包括:提供工件,具有第一表面以及和該第一表面反向的第二表面;產生第一雷射脈衝射束,其具有以大於500kHz的脈衝重複率時小於200ps的脈衝時間持續長度、光點尺寸以及脈衝能量;以及沿著與該工件相交的射束軸引導該第一雷射脈衝射束;沿著處理軌線掃描該射束軸,使得連續引導的雷射脈衝以非零咬合尺寸照射在該工件上,以便在該工件的該第一表面形成特徵元件,並且使得該特徵元件的特徵為經處理工件表面的平均表面粗糙度(Ra)小於1.0μm。 A method comprising: providing a workpiece having a first surface and a second surface opposite to the first surface; generating a first laser pulse beam having a pulse duration of less than 200 ps at a pulse repetition rate greater than 500 kHz Length, spot size, and pulse energy; and guiding the first laser pulse beam along the beam axis that intersects the workpiece; scanning the beam axis along the processing trajectory so that the continuously guided laser pulse The zero bite size is irradiated on the workpiece so as to form a feature on the first surface of the workpiece, and the feature is characterized by an average surface roughness (Ra) of the surface of the treated workpiece of less than 1.0 μm. 根據申請專利範圍第1項的方法,其中,該脈衝時間持續長度小於或等於1ps。 The method according to item 1 of the patent application scope, wherein the duration of the pulse time is less than or equal to 1 ps. 根據申請專利範圍第1至2項中任一項的方法,其中,該脈衝時間持續長度小於或等於800fs。 The method according to any one of items 1 to 2 of the patent application range, wherein the duration of the pulse time is less than or equal to 800 fs. 根據申請專利範圍第1至3項中任一項的方法,其中,該脈衝重複率大於1264kHz。 The method according to any one of items 1 to 3 of the patent application range, wherein the pulse repetition rate is greater than 1264 kHz. 根據申請專利範圍第1至4項中任一項的方法,其中,該脈衝重複率大於或等於1800kHz。 The method according to any one of items 1 to 4 of the patent application range, wherein the pulse repetition rate is greater than or equal to 1800 kHz. 根據申請專利範圍第1至5項中任一項的方法,其中,該脈衝重複率大於或等於1900kHz。 The method according to any one of items 1 to 5 of the patent application range, wherein the pulse repetition rate is greater than or equal to 1900 kHz. 根據申請專利範圍第1至6項中任一項的方法,其中,該脈衝重複率大於或等於2000kHz。 The method according to any one of claims 1 to 6, wherein the pulse repetition rate is greater than or equal to 2000 kHz. 根據申請專利範圍第1至7項中任一項的方法,其中,該脈衝重複率 大於或等於3000kHz。 The method according to any one of items 1 to 7 of the patent application range, wherein the pulse repetition rate Greater than or equal to 3000kHz. 根據申請專利範圍第1至8項中任一項的方法,其中,該平均表面粗糙度(Ra)小於0.75μm。 The method according to any one of items 1 to 8 of the patent application range, wherein the average surface roughness (Ra) is less than 0.75 μm. 根據申請專利範圍第1至9項中任一項的方法,其中,該平均表面粗糙度(Ra)小於0.5μm。 The method according to any one of items 1 to 9 of the patent application range, wherein the average surface roughness (Ra) is less than 0.5 μm. 根據申請專利範圍第1至10項中任一項的方法,其中,該平均表面粗糙度(Ra)小於0.4μm。 The method according to any one of items 1 to 10 of the patent application range, wherein the average surface roughness (Ra) is less than 0.4 μm. 根據申請專利範圍第1至11項中任一項的方法,其中,該平均表面粗糙度(Ra)小於0.3μm。 The method according to any one of claims 1 to 11, wherein the average surface roughness (Ra) is less than 0.3 μm. 根據申請專利範圍第1至12項中任一項的方法,其中,該平均表面粗糙度(Ra)小於0.25μm。 The method according to any one of claims 1 to 12, wherein the average surface roughness (Ra) is less than 0.25 μm. 根據申請專利範圍第1至13項中任一項的方法,其進一步包括:產生第二雷射脈衝射束;聚焦該第二雷射脈衝射束裡面的雷射脈衝用以產生束腰;沿著與該經處理工件表面相交的射束軸引導經聚焦的該第二雷射脈衝射束,俾使得該束腰被排列在該工件內或在該工件的該第二表面;以及在該束腰處處理該工件。 The method according to any one of items 1 to 13 of the patent application scope, which further includes: generating a second laser pulse beam; focusing the laser pulse in the second laser pulse beam to generate a beam waist; Directing the focused second laser pulse beam along a beam axis that intersects the surface of the treated workpiece so that the beam waist is aligned within the workpiece or on the second surface of the workpiece; and at the beam Process the workpiece at the waist. 根據申請專利範圍第14項的方法,其中,相較於該第一雷射脈衝射束內的雷射脈衝的波長,該工件對該第二雷射脈衝射束內的雷射脈衝的波長來說為更透明。 The method according to item 14 of the patent application scope, in which the workpiece is compared to the wavelength of the laser pulse in the first laser pulse beam compared to the wavelength of the laser pulse in the first laser pulse beam Said it was more transparent.
TW106125299A 2016-07-28 2017-07-27 Laser processing apparatus and methods of laser-processing workpieces TW201803674A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662368053P 2016-07-28 2016-07-28
US62/368,053 2016-07-28

Publications (1)

Publication Number Publication Date
TW201803674A true TW201803674A (en) 2018-02-01

Family

ID=61016598

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106125299A TW201803674A (en) 2016-07-28 2017-07-27 Laser processing apparatus and methods of laser-processing workpieces

Country Status (6)

Country Link
EP (1) EP3490750A4 (en)
JP (1) JP2019532815A (en)
KR (1) KR20190025721A (en)
CN (1) CN109862991A (en)
TW (1) TW201803674A (en)
WO (1) WO2018022441A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI826980B (en) * 2022-03-25 2023-12-21 國立陽明交通大學 Method for fabricating an liquid-crystal-aligning electrode and method for fabricating a liquid crystal cell using the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019183237A1 (en) * 2018-03-22 2019-09-26 Applied Materials, Inc. Laser polishing ceramic surfaces of processing components to be used in the manufacturing of semiconductor devices
JP7336465B2 (en) * 2018-05-08 2023-08-31 ラム リサーチ コーポレーション Atomic Layer Etching and Atomic Layer Deposition Processing Systems Including Telecentric Lenses, Optical Beam Folding Assemblies, or Lens Circuits with Polygon Scanners
KR102655354B1 (en) 2018-06-05 2024-04-08 일렉트로 싸이언티픽 인더스트리이즈 인코포레이티드 Laser processing device, its operation method and method of processing workpieces using it
US20220134480A1 (en) * 2019-02-19 2022-05-05 Asml Holding N.V. Laser roughening: engineering the roughness of the burl top
CN113977099B (en) * 2021-12-07 2023-12-19 北京卫星制造厂有限公司 Ultrafast laser milling method for fiber composite material

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2009514C (en) * 1990-02-07 1995-04-25 Mahmud U. Islam Laser rough and finish machining of hard materials
JP2005116844A (en) * 2003-10-09 2005-04-28 Matsushita Electric Ind Co Ltd Method for manufacturing semiconductor device
US20060000814A1 (en) * 2004-06-30 2006-01-05 Bo Gu Laser-based method and system for processing targeted surface material and article produced thereby
US20060039419A1 (en) * 2004-08-16 2006-02-23 Tan Deshi Method and apparatus for laser trimming of resistors using ultrafast laser pulse from ultrafast laser oscillator operating in picosecond and femtosecond pulse widths
JP2007021527A (en) * 2005-07-15 2007-02-01 Matsushita Electric Ind Co Ltd Laser beam machining method
US9138913B2 (en) * 2005-09-08 2015-09-22 Imra America, Inc. Transparent material processing with an ultrashort pulse laser
FI20060177L (en) * 2006-02-23 2007-08-24 Picodeon Ltd Oy The method produces good quality surfaces and a product with a good quality surface
CN105583526B (en) * 2008-03-21 2018-08-17 Imra美国公司 Material processing method based on laser and system
GB2459669A (en) * 2008-04-30 2009-11-04 Xsil Technology Ltd Dielectric layer pulsed laser scribing and metal layer and semiconductor wafer dicing
US20110287217A1 (en) * 2010-05-21 2011-11-24 Prantik Mazumder Superoleophobic substrates and methods of forming same
JP2012156168A (en) * 2011-01-21 2012-08-16 Disco Abrasive Syst Ltd Division method
US8685599B1 (en) * 2011-02-24 2014-04-01 Sandia Corporation Method of intrinsic marking
US10357850B2 (en) * 2012-09-24 2019-07-23 Electro Scientific Industries, Inc. Method and apparatus for machining a workpiece
EP3077149A4 (en) * 2013-12-05 2017-09-20 Electro Scientific Industries, Inc. Method and apparatus for internally marking a substrate having a rough surface
US9850160B2 (en) * 2013-12-17 2017-12-26 Corning Incorporated Laser cutting of display glass compositions
CN105108343B (en) * 2015-09-22 2017-08-22 武汉金顿激光科技有限公司 A kind of process of surface treatment of container soldering joint
CN105468873B (en) * 2015-12-24 2018-08-14 中北大学 The surface-smoothing emulation mode of silicon substrate laser optical waveguide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI826980B (en) * 2022-03-25 2023-12-21 國立陽明交通大學 Method for fabricating an liquid-crystal-aligning electrode and method for fabricating a liquid crystal cell using the same

Also Published As

Publication number Publication date
EP3490750A4 (en) 2020-04-29
KR20190025721A (en) 2019-03-11
WO2018022441A1 (en) 2018-02-01
EP3490750A1 (en) 2019-06-05
JP2019532815A (en) 2019-11-14
CN109862991A (en) 2019-06-07

Similar Documents

Publication Publication Date Title
JP6921057B2 (en) Laser processing equipment, method of laser processing workpieces and related configurations
TW201803674A (en) Laser processing apparatus and methods of laser-processing workpieces
TWI774721B (en) Method and system for extending optics lifetime in laser processing apparatus
Adelmann et al. Rapid micro hole laser drilling in ceramic substrates using single mode fiber laser
JP6220775B2 (en) Laser direct ablation at high pulse repetition frequency using picosecond laser pulses
JP5432285B2 (en) Method of laser processing glass into a shape with chamfered edges
TWI647187B (en) Method of separating a glass sheet from a carrier
KR20120098869A (en) Laser machining and scribing systems and methods
JP2007508946A (en) Laser processing of locally heated target materials
JP2021526973A (en) Laser machining equipment, how to operate it, and how to machine workpieces with it
JP2022536649A (en) Laser processing apparatus, method of operating same, and method of processing workpieces using same
Žemaitis et al. Efficient ablation by ultra-short pulse lasers
US20210331273A1 (en) Laser processing apparatus and methods of laser-processing workpieces
JP2022504439A (en) Systems and methods for drilling vias in permeable materials
Patel et al. High speed micromachining with high power UV laser
JP2004074211A (en) Laser beam machining method
Lott et al. Enhanced drilling of transparent materials with ultrashort pulses
JP4640945B2 (en) Laser processing method
JP2003260577A (en) Laser beam machining method
CN116615299A (en) Laser processing apparatus, method of operating the apparatus, and method of processing workpiece using the apparatus
CN117359130A (en) Ultrasonic vibration assisted ultrafast laser invisible wafer cutting device and method