TW201729433A - Light-emitting device and manufacturing method thereof - Google Patents

Light-emitting device and manufacturing method thereof Download PDF

Info

Publication number
TW201729433A
TW201729433A TW106118158A TW106118158A TW201729433A TW 201729433 A TW201729433 A TW 201729433A TW 106118158 A TW106118158 A TW 106118158A TW 106118158 A TW106118158 A TW 106118158A TW 201729433 A TW201729433 A TW 201729433A
Authority
TW
Taiwan
Prior art keywords
metal
layer
connection structure
light
metal element
Prior art date
Application number
TW106118158A
Other languages
Chinese (zh)
Other versions
TWI633680B (en
Inventor
蔡富鈞
廖文祿
陳世益
許嘉良
呂志強
Original Assignee
晶元光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晶元光電股份有限公司 filed Critical 晶元光電股份有限公司
Priority to TW106118158A priority Critical patent/TWI633680B/en
Publication of TW201729433A publication Critical patent/TW201729433A/en
Application granted granted Critical
Publication of TWI633680B publication Critical patent/TWI633680B/en

Links

Landscapes

  • Led Devices (AREA)

Abstract

This application discloses a light-emitting device comprises: a substrate; a metal connecting structure on the substrate; a barrier layer on the metal connecting structure, and the barrier layer comprising a first multi-layer metal layer on the metal connecting structure and a second multi-layer metal layer on the first multi-layer metal layer; a metal reflective layer on the barrier layer; and a light-emitting stack on the metal reflective layer; wherein the first multi-layer metal layer comprises a first metal layer consisting of a first metal element and a second metal layer consisting of a second metal element, the first metal layer is closer to the metal connecting structure than the second metal layer; and the second multi-layer metal layer comprises a third metal layer comprising a third metal element and a fourth metal layer comprising a fourth metal element; wherein the first metal element is different from the second metal element, and the third metal element is different from the fourth metal element.

Description

發光元件及其製造方法Light-emitting element and method of manufacturing same

本發明係關於一種發光元件及其製造方法;特別是關於一種具有阻障層之發光元件及其製造方法。The present invention relates to a light-emitting element and a method of fabricating the same; and more particularly to a light-emitting element having a barrier layer and a method of fabricating the same.

圖1所示為一習知之發光二極體結構,包含一永久基板109,於其上方由上往下依序有一發光疊層102,一金屬反射層106,一阻障層107,及一金屬連接結構108。此外,一第一電極110E1及其延伸電極110E1’設置於發光疊層102上,及一第二電極110E2設置於永久基板109上用以傳遞電流。1 shows a conventional light-emitting diode structure comprising a permanent substrate 109 having a light-emitting layer 102, a metal reflective layer 106, a barrier layer 107, and a metal thereon from top to bottom. Connection structure 108. In addition, a first electrode 110E1 and its extension electrode 110E1' are disposed on the light emitting layer 102, and a second electrode 110E2 is disposed on the permanent substrate 109 for transmitting current.

其中金屬反射層106用以反射發光疊層102所發出之光線,金屬連接結構108係由兩層材料相接合形成合金以使永久基板109與阻障層107相接合。而阻障層107位於金屬反射層106與金屬連接結構108間,用以阻止金屬反射層106與金屬連接結構108間之金屬擴散(diffusion)。然而,金屬連接結構108一般是用高溫接合,即接合溫度高於300℃,故金屬連接結構108之材料成份通常與金屬反射層106之材料成份不同,即金屬連接結構108之材料成份與金屬反射層106不具有相同之金屬元素。例如習知之金屬反射層106採用銀(Ag);而金屬連接結構108採用鋅(Zn)為主要含量的合金,例如鋅(Zn)與鋁(Al)的合金,以利高溫接合。當金屬反射層106之材料與金屬連接結構108不具有相同之金屬元素時,習知之阻障層107之設計採薄阻障層(小於100nm)之設計均能達成阻止金屬反射層106與金屬連接結構108間之金屬擴散之效果。The metal reflective layer 106 is used to reflect the light emitted by the light emitting layer 102. The metal connecting structure 108 is joined by two layers of materials to form an alloy to bond the permanent substrate 109 and the barrier layer 107. The barrier layer 107 is located between the metal reflective layer 106 and the metal connection structure 108 to prevent metal diffusion between the metal reflective layer 106 and the metal connection structure 108. However, the metal connection structure 108 is generally joined by high temperature, that is, the bonding temperature is higher than 300 ° C, so the material composition of the metal connection structure 108 is generally different from the material composition of the metal reflection layer 106, that is, the material composition and metal reflection of the metal connection structure 108. Layer 106 does not have the same metal element. For example, the conventional metal reflective layer 106 is made of silver (Ag); and the metal connection structure 108 is made of zinc (Zn) as a main content alloy, such as an alloy of zinc (Zn) and aluminum (Al), for high temperature bonding. When the material of the metal reflective layer 106 does not have the same metal element as the metal connection structure 108, the design of the conventional barrier layer 107 can be achieved by preventing the metal reflective layer 106 from being connected to the metal by a thin barrier layer (less than 100 nm). The effect of metal diffusion between structures 108.

然而,隨著發光二極體應用之發展,對於性能之要求漸漸提高,例如當發光二極體應用於汽車領域時,因為汽車與人身安全息息相關,因此對於車用之發光二極體的可靠度要求也比一般應用如顯示屏(display)等來得高,故需使用穩定性較佳的反射鏡材料。而相較於銀金屬恐有銀金屬電致遷移(migration)之疑慮,以其他金屬材料製作金屬反射層106有其優勢。另外,隨著金屬連接結構108往低溫接合的方向發展,金屬連接結構108之材料同樣需要更多的選擇變化。故當金屬反射層106之材料與金屬連接結構108選擇具有相同之金屬元素時,因為阻障層107之兩側所具有相同之金屬元素,使得金屬連接結構108合金中之其他元素在阻障層107之兩側均特別容易結合,故薄阻障層之設計將無法有效阻止金屬反射層106與金屬連接結構108間之金屬擴散,當發光二極體因為經過製程中的高溫處理步驟後,容易出現金屬連接結構108合金中之金屬擴散至金屬反射層106,導致金屬反射層106反射率降低,而使發光二極體亮度降低。However, with the development of LED applications, the requirements for performance are gradually increasing. For example, when the LED is used in the automotive field, the reliability of the LED for the vehicle is closely related to the safety of the vehicle. The requirements are also higher than general applications such as display, etc., so it is necessary to use a mirror material with better stability. Compared with silver metal, there is a fear of silver metal electromigration, and it is advantageous to form the metal reflective layer 106 from other metal materials. In addition, as the metal connection structure 108 develops in the direction of low temperature bonding, the material of the metal connection structure 108 also requires more selection changes. Therefore, when the material of the metal reflective layer 106 and the metal connection structure 108 are selected to have the same metal element, since the two sides of the barrier layer 107 have the same metal element, the other elements in the metal connection structure 108 are in the barrier layer. The sides of the 107 are particularly easy to bond, so the design of the thin barrier layer will not effectively prevent the metal diffusion between the metal reflective layer 106 and the metal connection structure 108, and the light-emitting diode is easy to pass after the high-temperature processing step in the process. It appears that the metal in the alloy of the metal connection structure 108 diffuses to the metal reflective layer 106, resulting in a decrease in the reflectance of the metal reflective layer 106 and a decrease in the brightness of the light-emitting diode.

本發明係揭露一種發光元件及其製造方法。本發明所揭露之發光元件包含:一種發光元件,包含:一基板;一金屬連接結構位於該基板上;一阻障層位於該金屬連接結構之上,包含一第一多層金屬層位於該金屬連接結構之上及一第二多層金屬層位於該第一多層金屬層之上;一金屬反射層位於該阻障層之上;以及一發光疊層位於該金屬反射層之上,且該阻障層位於該基板及該發光疊層之間;其中該第一多層金屬層包含由一第一金屬元素構成之一第一金屬層及由一第二金屬元素構成之一第二金屬層,該第一金屬層較該第二金屬層接近該金屬連接結構,且該第二多層金屬層包含一第三金屬層具有一第三金屬元素及一第四金屬層具有一第四金屬元素,該第三金屬層較該第四金屬層接近該第二金屬層,且該第一金屬元素和該第二金屬元素不同,該第三金屬元素和該第四金屬元素不同,且該第一金屬元素與該第三金屬元素相同,或者該第二金屬元素與該第四金屬元素相同。The invention discloses a light-emitting element and a method of manufacturing the same. The light-emitting element disclosed in the present invention comprises: a light-emitting element comprising: a substrate; a metal connection structure on the substrate; a barrier layer on the metal connection structure, comprising a first plurality of metal layers on the metal Above the connection structure and a second plurality of metal layers over the first plurality of metal layers; a metal reflective layer over the barrier layer; and a light emitting layer over the metal reflective layer, and the a barrier layer is disposed between the substrate and the light emitting laminate; wherein the first multilayer metal layer comprises a first metal layer composed of a first metal element and a second metal layer composed of a second metal element The first metal layer is closer to the metal connection structure than the second metal layer, and the second multilayer metal layer includes a third metal layer having a third metal element and a fourth metal layer having a fourth metal element The third metal layer is closer to the second metal layer than the fourth metal layer, and the first metal element is different from the second metal element, the third metal element is different from the fourth metal element, and the first Metal element The same as the third metal element or a metal element of the second and the fourth elements of the same metal.

本發明更揭露一發光元件,包含:一基板;一金屬連接結構位於該基板上;一阻障層包含至少兩層多層金屬層位於該金屬連接結構之上;一金屬反射層位於該阻障層之上;以及一發光疊層位於該金屬反射層之上,且該阻障層位於該基板及該發光疊層之間;其中任一該多層金屬層具有由一第一金屬元素構成之一第一金屬層及由一第二金屬元素構成之一第二金屬層,且該第一金屬層較該第二金屬層接近該金屬連接結構,且該第一金屬元素與該第二金屬元素不同。The present invention further discloses a light emitting device comprising: a substrate; a metal connection structure on the substrate; a barrier layer comprising at least two layers of a plurality of metal layers on the metal connection structure; a metal reflective layer located on the barrier layer And a light emitting layer is disposed on the metal reflective layer, and the barrier layer is located between the substrate and the light emitting layer; any one of the plurality of metal layers has a first metal element a metal layer and a second metal layer formed of a second metal element, and the first metal layer is closer to the metal connection structure than the second metal layer, and the first metal element is different from the second metal element.

本發明另揭露一發光元件,包含:一金屬連接結構;一阻障層位於該金屬連接結構之上,包含一第一多層金屬層位於該金屬連接結構之上及一第二多層金屬層位於該第一多層金屬層之上;一抗氧化層位於該第一多層金屬層及該第二多層金屬層之間;一金屬反射層位於該阻障層之上;以及一發光疊層位於該金屬反射層之上;其中該第一多層金屬層包含一第一金屬層具有一第一金屬元素及一第二金屬層具有一第二金屬元素,該第一金屬層較該第二金屬層接近該金屬連接結構,且該第二多層金屬層包含一第三金屬層具有一第三金屬元素及一第四金屬層具有一第四金屬元素,該第三金屬層較該第四金屬層接近該第二金屬層,且該第一金屬元素和該第二金屬元素不同,該第三金屬元素和該第四金屬元素不同,且該第一金屬元素與該第三金屬元素相同,或者該第二金屬元素與該第四金屬元素相同。The invention further discloses a light emitting device comprising: a metal connecting structure; a barrier layer on the metal connecting structure, comprising a first multilayer metal layer on the metal connecting structure and a second multilayer metal layer Located above the first plurality of metal layers; an oxidation resistant layer between the first plurality of metal layers and the second plurality of metal layers; a metal reflective layer above the barrier layer; and a light stack The layer is located above the metal reflective layer; wherein the first plurality of metal layers comprise a first metal layer having a first metal element and a second metal layer having a second metal element, the first metal layer being The second metal layer is adjacent to the metal connection structure, and the second metal layer comprises a third metal layer having a third metal element and a fourth metal layer having a fourth metal element, the third metal layer being a fourth metal layer is adjacent to the second metal layer, and the first metal element is different from the second metal element, the third metal element is different from the fourth metal element, and the first metal element is the same as the third metal element Or the Two metal elements the same as the fourth metal element.

本發明又揭露一發光元件,包含:一金屬連接結構;一阻障層位於該金屬連接結構之上,包含一第一多層金屬層位於該金屬連接結構之上及一第二多層金屬層位於該第一多層金屬層之上,其中該第一多層金屬層直接接觸於該金屬連接結構;一金屬反射層位於該阻障層之上;以及一發光疊層電性連接該金屬反射層;其中該金屬連接結構與該金屬反射層包含一相同之金屬元素,且該阻障層包含與該金屬反射層相異之金屬元素。The invention further discloses a light emitting device comprising: a metal connecting structure; a barrier layer on the metal connecting structure, comprising a first multilayer metal layer on the metal connecting structure and a second multilayer metal layer Located on the first multi-layer metal layer, wherein the first multi-layer metal layer is in direct contact with the metal connection structure; a metal reflective layer is located on the barrier layer; and a light-emitting layer is electrically connected to the metal reflection layer a layer; wherein the metal connection structure and the metal reflection layer comprise a same metal element, and the barrier layer comprises a metal element different from the metal reflection layer.

圖2為本發明第一實施例之發光元件及其製造方法,如圖2A所示,首先提供一成長基板201,並於其上形成一發光疊層202,發光疊層202包括一半導體疊層,由下而上依序包括一第一電性半導體層202a;一發光層202b位於第一電性半導體層202a之上;以及一第二電性半導體層202c位於發光層202b之上。第一電性半導體層202a和第二電性半導體層202c電性相異,例如第一電性半導體層202a是n型半導體層,而第二電性半導體層202c是p型半導體層。第一電性半導體層202a、發光層202b、及第二電性半導體層202c為III-V族材料所形成,例如為磷化鋁鎵銦(AlGaInP)系列材料。2 is a light emitting device according to a first embodiment of the present invention, and a method of fabricating the same. As shown in FIG. 2A, a growth substrate 201 is first provided, and a light emitting laminate 202 is formed thereon. The light emitting laminate 202 includes a semiconductor laminate. A first electrical semiconductor layer 202a is sequentially included from bottom to bottom; a light emitting layer 202b is located on the first electrical semiconductor layer 202a; and a second electrical semiconductor layer 202c is located above the light emitting layer 202b. The first electrical semiconductor layer 202a and the second electrical semiconductor layer 202c are electrically different, for example, the first electrical semiconductor layer 202a is an n-type semiconductor layer, and the second electrical semiconductor layer 202c is a p-type semiconductor layer. The first electrical semiconductor layer 202a, the light-emitting layer 202b, and the second electrical semiconductor layer 202c are formed of a III-V material, such as an aluminum gallium indium phosphide (AlGaInP) series material.

接著,如圖2B所示,形成一介電層203於發光疊層202上,介電層203具有一折射率小於與發光疊層202之折射率。介電層203之材料例如包含一材料選自氧化矽(SiOx )、氟化鎂(MgF2 ),及氮化矽(SiNx )所構成之群組,介電層203之厚度約為50nm至150nm之間,本實施例之介電層203之厚度為100nm。接著,如圖2C所示,以黃光及蝕刻製程,在介電層203中形成複數之穿孔2031穿透介電層203,穿孔2031由上視大致為圓形(圖未示)並具有一直徑D,直徑D約介於5μm至15μm之間,在本實施例中,直徑D約為10μm。Next, as shown in FIG. 2B, a dielectric layer 203 is formed on the light-emitting layer 202. The dielectric layer 203 has a refractive index lower than that of the light-emitting layer 202. The material of the dielectric layer 203 includes, for example, a material selected from the group consisting of yttrium oxide (SiO x ), magnesium fluoride (MgF 2 ), and tantalum nitride (SiN x ), and the thickness of the dielectric layer 203 is about 50 nm. Between 150 nm, the dielectric layer 203 of the present embodiment has a thickness of 100 nm. Next, as shown in FIG. 2C, a plurality of vias 2031 are formed in the dielectric layer 203 to penetrate the dielectric layer 203 by a yellow light and an etching process. The through holes 2031 are substantially circular in shape from the top view (not shown) and have a The diameter D, the diameter D is between about 5 μm and 15 μm, and in the present embodiment, the diameter D is about 10 μm.

接著,如圖2D所示,形成一第一透明導電氧化層204位於介電層203上並填入穿孔2031中,以使第一透明導電氧化層204與發光疊層202形成歐姆接觸,第一透明導電氧化層204之厚度約為25Å至100Å之間,本實施例之第一透明導電氧化層204之厚度為75Å。然後,形成一第二透明導電氧化層205位於第一透明導電氧化層204上,其中第二透明導電氧化層205主要用以提供橫向(與各層堆疊方向相垂直之方向)電流擴散之功能,其材料與第一透明導電氧化層204之材料不同。第二透明導電氧化層205之厚度約為0.5μm至3μm之間,本實施例之第二透明導電氧化層205之厚度為1.0μm。值得注意的是,第二透明導電氧化層205之厚度相較於第一透明導電氧化層204及介電層203之厚度明顯較厚,故如圖所示意,第二透明導電氧化層205形成後,可填平穿孔2031,並使因為穿孔2031造成之高低差不平整回到一較平整之表面。第一透明導電氧化層204與第二透明導電氧化層205包含一材料選自氧化銦錫(Indium Tin Oxide, ITO)、氧化鋁鋅(Aluminum Zinc Oxide, AZO)、氧化鎘錫、氧化銻錫、氧化鋅(ZnO)、氧化鋅錫、及氧化銦鋅(Indium Zinc Oxide, IZO)所構成之群組。在本實施例中,第一透明導電氧化層204之材料為氧化銦錫(Indium Tin Oxide, ITO),第二透明導電氧化層205之材料為氧化銦鋅(Indium Zinc Oxide, IZO)。Next, as shown in FIG. 2D, a first transparent conductive oxide layer 204 is formed on the dielectric layer 203 and filled in the vias 2031 to form an ohmic contact between the first transparent conductive oxide layer 204 and the light emitting layer 202. The transparent conductive oxide layer 204 has a thickness of about 25 Å to 100 Å, and the first transparent conductive oxide layer 204 of the present embodiment has a thickness of 75 Å. Then, a second transparent conductive oxide layer 205 is formed on the first transparent conductive oxide layer 204, wherein the second transparent conductive oxide layer 205 is mainly used to provide a function of lateral diffusion (direction perpendicular to the stacking direction of each layer). The material is different from the material of the first transparent conductive oxide layer 204. The thickness of the second transparent conductive oxide layer 205 is between about 0.5 μm and 3 μm, and the thickness of the second transparent conductive oxide layer 205 of the present embodiment is 1.0 μm. It should be noted that the thickness of the second transparent conductive oxide layer 205 is significantly thicker than that of the first transparent conductive oxide layer 204 and the dielectric layer 203. Therefore, as shown in the figure, after the second transparent conductive oxide layer 205 is formed, The perforation 2031 can be filled in, and the height difference caused by the perforation 2031 is returned to a relatively flat surface. The first transparent conductive oxide layer 204 and the second transparent conductive oxide layer 205 comprise a material selected from the group consisting of Indium Tin Oxide (ITO), Aluminium Zinc Oxide (AZO), cadmium tin oxide, and antimony tin oxide. A group consisting of zinc oxide (ZnO), zinc tin oxide, and indium zinc oxide (Indium Zinc Oxide, IZO). In this embodiment, the material of the first transparent conductive oxide layer 204 is Indium Tin Oxide (ITO), and the material of the second transparent conductive oxide layer 205 is Indium Zinc Oxide (IZO).

接著,如圖2E所示,形成一金屬反射層206位於第二透明導電氧化層205之上,金屬反射層206包含一金屬材料用以反射發光疊層202所發出之光線。在本實施例中,金屬反射層206可對發光疊層所發出之光線有大於90%的反射率,例如為金(Au)。Next, as shown in FIG. 2E, a metal reflective layer 206 is formed on the second transparent conductive oxide layer 205. The metal reflective layer 206 includes a metal material for reflecting the light emitted by the light-emitting layer 202. In this embodiment, the metal reflective layer 206 can have a reflectance greater than 90% of the light emitted by the light-emitting stack, such as gold (Au).

接著,如圖2F所示,形成一阻障層207位於金屬反射層206上,阻障層207用以阻止金屬反射層206與金屬連接結構208(將於後續說明)間之金屬擴散(diffusion)。阻障層207之實施例如圖3A或圖3B所示,亦將於後續詳細說明。接著,形成第一接合層2081位於阻障層207上,及第二接合層2082位於第一接合層2081上。接著,如圖2G所示,提供一永久基板209,並形成一第三接合層2083位於永久基板209上,並使第三接合層2083與第二接合層2082對接(bonding),且接合後將成長基板201移除,其情形如圖2H所示。第一接合層2081,第二接合層2082,及第三接合層2083形成一金屬連接結構208。金屬連接結構208包含一熔點小於或等於300℃之低溫熔合材料。低溫熔合材料例如包含銦(In)或錫(Sn),在本實施例中,低溫熔合材料包含銦(In),例如當第一接合層2081之材料為金(Au),第二接合層2082之材料為銦(In),第三接合層2083之材料為金(Au)時,此第一接合層2081,第二接合層2082,及第三接合層2083可在一低溫下,例如溫度小於或等於300℃下,因共晶(eutectic)效應而形成合金並接合,形成一金屬連接結構208,而金屬連接結構208包含銦(In)及金(Au)之合金。在另一實施例中,第二接合層2082可以是形成在第一接合層2081上,並與永久基板209上之第三接合層2083接合形成金屬連接結構208。Next, as shown in FIG. 2F, a barrier layer 207 is formed on the metal reflective layer 206, and the barrier layer 207 is used to prevent metal diffusion between the metal reflective layer 206 and the metal connection structure 208 (to be described later). . The implementation of the barrier layer 207, as shown in FIG. 3A or FIG. 3B, will also be described in detail later. Next, the first bonding layer 2081 is formed on the barrier layer 207, and the second bonding layer 2082 is located on the first bonding layer 2081. Next, as shown in FIG. 2G, a permanent substrate 209 is provided, and a third bonding layer 2083 is formed on the permanent substrate 209, and the third bonding layer 2083 is bonded to the second bonding layer 2082, and after bonding, The growth substrate 201 is removed, as shown in FIG. 2H. The first bonding layer 2081, the second bonding layer 2082, and the third bonding layer 2083 form a metal connection structure 208. The metal connection structure 208 comprises a low temperature fused material having a melting point of less than or equal to 300 °C. The low-temperature fusion material includes, for example, indium (In) or tin (Sn). In the present embodiment, the low-temperature fusion material contains indium (In), for example, when the material of the first bonding layer 2081 is gold (Au), the second bonding layer 2082 The material is indium (In), and when the material of the third bonding layer 2083 is gold (Au), the first bonding layer 2081, the second bonding layer 2082, and the third bonding layer 2083 can be at a low temperature, for example, the temperature is less than At or equal to 300 ° C, an alloy is formed and bonded due to the eutectic effect to form a metal connection structure 208, and the metal connection structure 208 comprises an alloy of indium (In) and gold (Au). In another embodiment, the second bonding layer 2082 may be formed on the first bonding layer 2081 and bonded to the third bonding layer 2083 on the permanent substrate 209 to form a metal connection structure 208.

接著,如圖2I所示,形成第一電極210E1及其延伸電極210E1’於發光疊層202上。然後,藉由一黃光及蝕刻製程將發光疊層202之外圍一部份移除並曝露部份之介電層203,並可選擇性地實施一發光疊層202表面之粗化製程,以於第一電性半導體層202a上形成粗化結構212r,然後形成保護層211於發光疊層202及曝露之介電層203上,保護層211未覆蓋第一電極210E1及其延伸電極210E1’。最後形成第二電極210E2於永久基板209上。Next, as shown in FIG. 2I, a first electrode 210E1 and its extension electrode 210E1' are formed on the light-emitting layer 202. Then, a portion of the periphery of the light-emitting layer 202 is removed by a yellow light and etching process to expose a portion of the dielectric layer 203, and a surface roughening process of the light-emitting layer 202 can be selectively performed to A roughened structure 212r is formed on the first electrical semiconductor layer 202a, and then a protective layer 211 is formed on the light emitting laminate 202 and the exposed dielectric layer 203. The protective layer 211 does not cover the first electrode 210E1 and the extended electrode 210E1' thereof. Finally, the second electrode 210E2 is formed on the permanent substrate 209.

圖3A用以說明上述實施例中阻障層207。圖3A例示圖2I之阻障層207,請同時參看圖3A及圖2I。如前所提及,阻障層207位於金屬反射層206與金屬連接結構208間,用以阻止兩者間之金屬擴散。本實施例之阻障層207包含一第一多層金屬層2071位於金屬連接結構208之上及一第二多層金屬層2072位於第一多層金屬層2071之上;其中第一多層金屬層2071包含由一第一金屬材料構成之一第一金屬層2071a及由一第二金屬材料構成之一第二金屬層2071b,第一金屬層2071a較第二金屬層2071b接近金屬連接結構208;而第二多層金屬層2072包含由一第三金屬材料構成之一第三金屬層2072a及由一第四金屬材料構成之一第四金屬層2072b,第三金屬層2072a較第四金屬層2072b接近第二金屬層2071b。在材料選擇上,第一金屬材料和第二金屬材料不同,第三金屬材料和第四金屬材料不同,且上述各金屬材料之材料選擇使阻障層207包含與金屬反射層206相異之金屬元素。在本實施例中,第一金屬層2071a及第三金屬層2072a之材料包含鉑(Pt),第二金屬層2071b及第四金屬層2072b之材料包含鈦(Ti)。第一金屬層2071a及第三金屬層2072a之鉑(Pt)用為主要阻止金屬反射層206與金屬連接結構208間金屬擴散之材料,而第二金屬層2071b及第四金屬層2072b之材料採用鈦(Ti)則可增加黏接力(adhesion),特別是第四金屬層2072b的鈦(Ti)與金屬反射層206相接提供了整體阻障層207與金屬反射層206間良好的黏接,亦即材料的選擇排列上,較佳之選擇為第四金屬層2072b之材料與金屬反射層206之黏接力大於第三金屬層2072a與金屬反射層206之黏接力,以加強第三金屬層2072a與金屬反射層206之間之黏接力。在厚度上,第一金屬層2071a及第三金屬層2072a之厚度約為100Å至500Å之間,第二金屬層2071b及第四金屬層2072b之厚度約為200Å至800Å之間。在本實施例中,第一金屬層2071a及第三金屬層2072a之厚度約為200Å至800Å之間,第二金屬層2071b及第四金屬層2072b之厚度約為100Å至500Å之間。上述厚度範圍所構成之第一多層金屬層2071及第二多層金屬層2072結構可以有效地阻止金屬反射層206與金屬連接結構208間之金屬擴散,並且不至於因厚度過厚造成應力,而影響前述提及之後續金屬連接結構208中接合層間之接合製程。FIG. 3A is a view for explaining the barrier layer 207 in the above embodiment. FIG. 3A illustrates the barrier layer 207 of FIG. 2I, please refer to FIG. 3A and FIG. 2I at the same time. As mentioned previously, the barrier layer 207 is located between the metal reflective layer 206 and the metal connection structure 208 to prevent metal diffusion therebetween. The barrier layer 207 of the present embodiment includes a first multilayer metal layer 2071 over the metal connection structure 208 and a second multilayer metal layer 2072 over the first multilayer metal layer 2071; wherein the first multilayer metal layer The layer 2071 comprises a first metal layer 2071a composed of a first metal material and a second metal layer 2071b formed of a second metal material, the first metal layer 2071a is closer to the metal connection structure 208 than the second metal layer 2071b; The second multilayer metal layer 2072 includes a third metal layer 2072a composed of a third metal material and a fourth metal layer 2072b formed of a fourth metal material. The third metal layer 2072a is smaller than the fourth metal layer 2072b. Approaching the second metal layer 2071b. In the material selection, the first metal material is different from the second metal material, the third metal material is different from the fourth metal material, and the material of each of the metal materials is selected such that the barrier layer 207 comprises a metal different from the metal reflective layer 206. element. In this embodiment, the material of the first metal layer 2071a and the third metal layer 2072a comprises platinum (Pt), and the material of the second metal layer 2071b and the fourth metal layer 2072b comprises titanium (Ti). The platinum (Pt) of the first metal layer 2071a and the third metal layer 2072a is used as a material for mainly preventing metal diffusion between the metal reflective layer 206 and the metal connection structure 208, and the materials of the second metal layer 2071b and the fourth metal layer 2072b are used. Titanium (Ti) can increase the adhesion. In particular, the titanium (Ti) of the fourth metal layer 2072b is in contact with the metal reflective layer 206 to provide a good adhesion between the overall barrier layer 207 and the metal reflective layer 206. That is, the material is selectively arranged, preferably, the adhesion of the material of the fourth metal layer 2072b to the metal reflective layer 206 is greater than the adhesion of the third metal layer 2072a and the metal reflective layer 206 to strengthen the third metal layer 2072a and The adhesion between the metal reflective layers 206. The thickness of the first metal layer 2071a and the third metal layer 2072a is between 100 Å and 500 Å, and the thickness of the second metal layer 2071b and the fourth metal layer 2072b is between 200 Å and 800 Å. In this embodiment, the first metal layer 2071a and the third metal layer 2072a have a thickness of about 200 Å to 800 Å, and the second metal layer 2071b and the fourth metal layer 2072b have a thickness of about 100 Å to 500 Å. The structures of the first multi-layer metal layer 2071 and the second multi-layer metal layer 2072 formed by the above thickness range can effectively prevent metal diffusion between the metal reflective layer 206 and the metal connection structure 208, and are not caused by excessive thickness. It affects the bonding process between the bonding layers in the subsequent metal connection structure 208 mentioned above.

故而以圖2I之最終結構,並配合參看圖3A,則本發明第一實施例之發光元件至少包含一金屬連接結構208;一阻障層207位於金屬連接結構208之上,包含一第一多層金屬層2071位於金屬連接結構208之上及一第二多層金屬層2072位於第一多層金屬層2071之上;一金屬反射層206位於阻障層207之上;以及一發光疊層203電性連接金屬反射層206;其中第一多層金屬層2071包含由第一金屬材料鉑(Pt)構成之第一金屬層2071a及由第二金屬材料鈦(Ti)構成之一第二金屬層2071b,第一金屬層2071a較第二金屬層2071b接近金屬連接結構208,且第二多層金屬層2072包含由第三金屬材料鉑(Pt)構成之第三金屬層2072a及由第四金屬材料鈦(Ti)構成之第四金屬層2072b,第三金屬層2072a較第四金屬層2072b接近第二金屬層2071b。第一金屬材料和第二金屬材料不同,第三金屬材料和第四金屬材料不同。另外,如前所述,在本實施例中,金屬連接結構208包含銦(In)及金(Au)之合金,而金屬反射層206包含金(Au),故金屬連接結構208與金屬反射層206包含一相同之金屬元素金(Au)。如同先前技術中所述,因為阻障層207之兩側所具有相同之金屬元素,使得金屬連接結構208合金中之其他元素(在本實施例為銦(In))在阻障層207之兩側均容易結合,故若採先前技術之薄阻障層之設計將無法有效阻止銦(In)在金屬反射層206與金屬連接結構208間之金屬擴散。對於上述實施例圖2I之結構,若阻障層207改採薄阻障層之結構,例如以單層500Å之鉑(Pt)作為阻障層207,以能譜分析儀-線掃描(EDS line scan)進行元素分析,量測到金屬反射層206中之銦(In)的含量與金屬連接結構208中銦(In)的含量接近,兩者皆約5至10個A.U. (Arbitrary Unit) (平均值約7.5個A.U.),證明了採薄阻障層之設計無法有效阻止銦(In)在金屬反射層206與金屬連接結構208間之金屬擴散。而當阻障層207採上述圖3A之結構時,由於上述圖3A之阻障層207包含第一多層金屬層2071及第二多層金屬層2072之複數組多層結構,且阻障層207包含與金屬反射層206相異之金屬元素,故可以有效阻止銦(In)在金屬反射層206與金屬連接結構208間之金屬擴散,並且相較於單純以增加厚度企圖提高阻障層阻止金屬擴散能力之方法而言,可以免去阻障層厚度加厚產生應力之問題。故當同樣以能譜分析儀-線掃描進行元素分析時,可量測到金屬反射層206中之銦(In)的含量明顯降低,與金屬連接結構208中銦(In)的含量已不同,而金屬反射層206中之銦(In)的含量與發光疊層202中之銦(In)的含量大致相同,兩者皆約小於5個A.U. (Arbitrary Unit),平均值約僅2個A.U. (Arbitrary Unit)。亦即銦(In)在金屬反射層206中之含量(平均值約2個A.U.)相較於其在金屬連接結構208中之含量(平均值約7.5個A.U.),約小於其二分之一。證明了採本發明實施例之阻障層之設計能有效阻止銦(In)在金屬反射層206與金屬連接結構208間之金屬擴散。Therefore, with the final structure of FIG. 2I and with reference to FIG. 3A, the light-emitting element of the first embodiment of the present invention includes at least one metal connection structure 208; a barrier layer 207 is located above the metal connection structure 208, including a first plurality. The metal layer 2071 is located above the metal connection structure 208 and a second multilayer metal layer 2072 is located above the first multilayer metal layer 2071; a metal reflective layer 206 is disposed over the barrier layer 207; and a light emitting layer 203 Electrically connecting the metal reflective layer 206; wherein the first multilayer metal layer 2071 comprises a first metal layer 2071a composed of a first metal material platinum (Pt) and a second metal layer composed of a second metal material titanium (Ti) 2071b, the first metal layer 2071a is closer to the metal connection structure 208 than the second metal layer 2071b, and the second multilayer metal layer 2072 includes the third metal layer 2072a composed of the third metal material platinum (Pt) and the fourth metal material. The fourth metal layer 2072b composed of titanium (Ti) is closer to the second metal layer 2071b than the fourth metal layer 2072b. The first metal material is different from the second metal material, and the third metal material is different from the fourth metal material. In addition, as described above, in the present embodiment, the metal connection structure 208 includes an alloy of indium (In) and gold (Au), and the metal reflection layer 206 contains gold (Au), so the metal connection structure 208 and the metal reflection layer 206 contains an identical metal element gold (Au). As described in the prior art, since both sides of the barrier layer 207 have the same metal element, the other elements in the alloy of the metal connection structure 208 (in this embodiment, indium (In)) are in the barrier layer 207. The sides are all easily bonded, so the design of the thin barrier layer of the prior art would not effectively prevent the diffusion of indium (In) between the metal reflective layer 206 and the metal connection structure 208. For the structure of FIG. 2I of the above embodiment, if the barrier layer 207 is changed to the structure of the thin barrier layer, for example, a single layer of 500 Å platinum (Pt) is used as the barrier layer 207, and the spectrum analyzer (EDS line) is used. Scan) Performing elemental analysis, measuring the content of indium (In) in the metal reflective layer 206 is close to the content of indium (In) in the metal connection structure 208, both of which are about 5 to 10 AU (Arbitrary Unit) (average A value of about 7.5 AU) demonstrates that the design of the thin barrier layer does not effectively prevent metal diffusion between indium (In) between the metal reflective layer 206 and the metal connection structure 208. When the barrier layer 207 adopts the structure of FIG. 3A, the barrier layer 207 of FIG. 3A includes a multi-layer multilayer structure of the first multilayer metal layer 2071 and the second multilayer metal layer 2072, and the barrier layer 207 The metal element is different from the metal reflective layer 206, so that the metal diffusion between the metal reflective layer 206 and the metal connection structure 208 can be effectively prevented, and the barrier layer is prevented from increasing the thickness by simply increasing the thickness. In the method of diffusion ability, the problem that the thickness of the barrier layer is thickened can be eliminated. Therefore, when elemental analysis is also performed by an energy spectrum analyzer-line scan, the content of indium (In) in the metal reflective layer 206 can be significantly reduced, and the content of indium (In) in the metal connection structure 208 is different. The content of indium (In) in the metal reflective layer 206 is substantially the same as the content of indium (In) in the light-emitting layer 202, both of which are less than about 5 AU (Arbitrary Unit), and the average value is only about 2 AU ( Arbitrary Unit). That is, the content of indium (In) in the metal reflective layer 206 (average of about 2 AU) is less than about one-half of its content in the metal connection structure 208 (average value of about 7.5 AU). . It is proved that the design of the barrier layer of the embodiment of the present invention can effectively prevent metal diffusion between indium (In) between the metal reflective layer 206 and the metal connection structure 208.

須注意的是,上述圖3A阻障層207之說明係以圖2I,即發光元件的最終結構進行說明,然圖2I係經過前述將成長基板201翻轉並與永久基板209接合而形成,故在形成方法上,例如以中間過程之圖2F來看,則為第四金屬層2072b,第三金屬層2072a,第二金屬層2071b,以及第一金屬層2071a依序形成於金屬反射層206上。It should be noted that the description of the barrier layer 207 of FIG. 3A is described in FIG. 2I, that is, the final structure of the light-emitting element. However, FIG. 2I is formed by inverting the growth substrate 201 and bonding with the permanent substrate 209. In the formation method, for example, as shown in FIG. 2F of the intermediate process, the fourth metal layer 2072b, the third metal layer 2072a, the second metal layer 2071b, and the first metal layer 2071a are sequentially formed on the metal reflective layer 206.

圖3B為本發明之另一阻障層之實施例。圖3B為圖3A之變化型,圖3B同樣例示圖2I之阻障層207,請同時參看圖3A及圖2I。同樣地,阻障層207位於金屬反射層206與金屬連接結構208間,用以阻止兩者間之金屬擴散。在本實施例之阻障層207與圖3A之阻障層207大致相同,但第一金屬層2071a'之材料在本實施例包含鎳(Ni),並且在第一多層金屬層2071與第二多層金屬層2072位於第一多層金屬層2071間增加了一抗氧化層207i,用以防止第二多層金屬層2072在製程中被氧化,抗氧化層207i之材料例如包含金(Au),厚度約為3000Å至7000Å之間。其餘關於材料或厚度等,則與上述圖3A相同,不再贅述。同樣須注意的是,在形成方法上,例如以中間過程之圖2F來看,則為第四金屬層2072b,第三金屬層2072a,抗氧化層207i,第二金屬層2071b,以及第一金屬層2071a依序形成於金屬反射層206上。抗氧化層207i在第二多層金屬層2072與第一多層金屬層2071非於相同機台中連續形成時,能有效地防止第二多層金屬層2072在製程中被氧化。3B is an embodiment of another barrier layer of the present invention. FIG. 3B is a variation of FIG. 3A, and FIG. 3B also illustrates the barrier layer 207 of FIG. 2I. Please refer to FIG. 3A and FIG. Similarly, a barrier layer 207 is positioned between the metal reflective layer 206 and the metal connection structure 208 to prevent metal diffusion therebetween. The barrier layer 207 of the present embodiment is substantially the same as the barrier layer 207 of FIG. 3A, but the material of the first metal layer 2071a' includes nickel (Ni) in the present embodiment, and in the first multilayer metal layer 2071 and The second multi-layer metal layer 2072 is provided with an anti-oxidation layer 207i between the first multi-layer metal layer 2071 to prevent the second multi-layer metal layer 2072 from being oxidized in the process, and the material of the anti-oxidation layer 207i includes, for example, gold (Au). ), the thickness is between 3,000 Å and 7000 Å. The rest of the material or thickness and the like are the same as those of FIG. 3A above, and will not be described again. It should also be noted that, in terms of the formation method, for example, as shown in FIG. 2F of the intermediate process, the fourth metal layer 2072b, the third metal layer 2072a, the oxidation resistant layer 207i, the second metal layer 2071b, and the first metal. The layer 2071a is sequentially formed on the metal reflective layer 206. When the second multilayer metal layer 2072 and the first multilayer metal layer 2071 are not formed continuously in the same machine, the oxidation resistant layer 207i can effectively prevent the second multilayer metal layer 2072 from being oxidized in the process.

上述實施例僅為例示性說明本發明之原理及其功效,而非用於限制本發明。任何本發明所屬技術領域中具有通常知識者均可在不違背本發明之技術原理及精神的情況下,對上述實施例進行修改及變化。因此本發明之權利保護範圍如後述之申請專利範圍所列。The above embodiments are merely illustrative of the principles of the invention and its advantages, and are not intended to limit the invention. Modifications and variations of the above-described embodiments can be made without departing from the spirit and scope of the invention. Therefore, the scope of the invention is as set forth in the appended claims.

102‧‧‧發光疊層
106‧‧‧金屬反射層
107‧‧‧阻障層
108‧‧‧金屬連接結構
109‧‧‧永久基板
110E1‧‧‧第一電極
110E1’‧‧‧延伸電極
110E2‧‧‧第二電極
201‧‧‧成長基板
202‧‧‧發光疊層
202a‧‧‧第一電性半導體層
202b‧‧‧發光層
202c‧‧‧第二電性半導體層
203‧‧‧介電層
2031‧‧‧穿孔
204‧‧‧第一透明導電氧化層
205‧‧‧第二透明導電氧化層
206‧‧‧金屬反射層
207‧‧‧阻障層
2071a,2071a’‧‧‧第一金屬層
2071b‧‧‧第二金屬層
2072a‧‧‧第三金屬層
2072b‧‧‧第四金屬層
207i‧‧‧抗氧化層
208‧‧‧金屬連接結構
2081‧‧‧第一接合層
2082‧‧‧第二接合層
2083‧‧‧第三接合層
209‧‧‧永久基板
210E1‧‧‧第一電極
210E1’‧‧‧延伸電極
210E2‧‧‧第二電極
211‧‧‧保護層
212r‧‧‧粗化結構
102‧‧‧Lighting laminate
106‧‧‧Metal reflector
107‧‧‧Barrier layer
108‧‧‧Metal connection structure
109‧‧‧Permanent substrate
110E1‧‧‧first electrode
110E1'‧‧‧Extended electrode
110E2‧‧‧second electrode
201‧‧‧ Growth substrate
202‧‧‧Lighting laminate
202a‧‧‧First electrical semiconductor layer
202b‧‧‧Lighting layer
202c‧‧‧Second electrical semiconductor layer
203‧‧‧ dielectric layer
2031‧‧‧Perforation
204‧‧‧First transparent conductive oxide layer
205‧‧‧Second transparent conductive oxide layer
206‧‧‧Metal reflector
207‧‧‧Barrier layer
2071a, 2071a'‧‧‧ first metal layer
2071b‧‧‧Second metal layer
2072a‧‧‧ third metal layer
2072b‧‧‧fourth metal layer
207i‧‧‧Antioxidant layer
208‧‧‧Metal connection structure
2081‧‧‧First joint layer
2082‧‧‧Second joint layer
2083‧‧‧ third joint layer
209‧‧‧Permanent substrate
210E1‧‧‧first electrode
210E1'‧‧‧Extended electrode
210E2‧‧‧second electrode
211‧‧‧protection layer
212r‧‧‧ rough structure

第1圖所示為一習知之發光二極體結構。Figure 1 shows a conventional light-emitting diode structure.

第2A圖至第2I圖所示為本發明第一實施例之發光元件及其製造方法。2A to 2I are diagrams showing a light-emitting element according to a first embodiment of the present invention and a method of manufacturing the same.

第3A圖及第3B圖用以說明第一實施例中之阻障層。3A and 3B are for explaining the barrier layer in the first embodiment.

202‧‧‧發光疊層 202‧‧‧Lighting laminate

202a‧‧‧第一電性半導體層 202a‧‧‧First electrical semiconductor layer

202b‧‧‧發光層 202b‧‧‧Lighting layer

202c‧‧‧第二電性半導體層 202c‧‧‧Second electrical semiconductor layer

203‧‧‧介電層 203‧‧‧ dielectric layer

204‧‧‧第一透明導電氧化層 204‧‧‧First transparent conductive oxide layer

205‧‧‧第二透明導電氧化層 205‧‧‧Second transparent conductive oxide layer

206‧‧‧金屬反射層 206‧‧‧Metal reflector

207‧‧‧阻障層 207‧‧‧Barrier layer

208‧‧‧金屬連接結構 208‧‧‧Metal connection structure

209‧‧‧永久基板 209‧‧‧Permanent substrate

210E1‧‧‧第一電極 210E1‧‧‧first electrode

210E1’‧‧‧延伸電極 210E1'‧‧‧Extended electrode

210E2‧‧‧第二電極 210E2‧‧‧second electrode

211‧‧‧保護層 211‧‧‧protection layer

212r‧‧‧粗化結構 212r‧‧‧ rough structure

Claims (23)

一發光元件,包含: 一基板; 一金屬連接結構位於該基板上; 一阻障層位於該金屬連接結構之上,包含一第一多層金屬層位於該金屬連接結構之上及一第二多層金屬層位於該第一多層金屬層之上; 一金屬反射層位於該阻障層之上;以及 一發光疊層位於該金屬反射層之上,且該阻障層位於該基板及該發光疊層之間; 其中該第一多層金屬層包含由一第一金屬元素構成之一第一金屬層及由一第二金屬元素構成之一第二金屬層,該第一金屬層較該第二金屬層接近該金屬連接結構,且該第二多層金屬層包含一第三金屬層具有一第三金屬元素及一第四金屬層具有一第四金屬元素,該第三金屬層較該第四金屬層接近該第二金屬層,且該第一金屬元素和該第二金屬元素不同,該第三金屬元素和該第四金屬元素不同,且該第一金屬元素與該第三金屬元素相同,或者該第二金屬元素與該第四金屬元素相同。a light-emitting element comprising: a substrate; a metal connection structure on the substrate; a barrier layer on the metal connection structure, comprising a first plurality of metal layers on the metal connection structure and a second a metal layer is disposed on the first plurality of metal layers; a metal reflective layer is disposed on the barrier layer; and a light emitting layer is disposed on the metal reflective layer, and the barrier layer is located on the substrate and the light emitting layer Between the laminations; wherein the first plurality of metal layers comprise a first metal layer composed of a first metal element and a second metal layer composed of a second metal element, the first metal layer being The second metal layer is adjacent to the metal connection structure, and the second metal layer comprises a third metal layer having a third metal element and a fourth metal layer having a fourth metal element, the third metal layer being a fourth metal layer is adjacent to the second metal layer, and the first metal element is different from the second metal element, the third metal element is different from the fourth metal element, and the first metal element is the same as the third metal element ,or The second metal element of the same elemental fourth metal. 如請求項第1項所述的發光元件,其中該第三金屬層由該第三金屬元素所構成,且該第四金屬層由該第四金屬元素所構成。The illuminating element of claim 1, wherein the third metal layer is composed of the third metal element, and the fourth metal layer is composed of the fourth metal element. 如請求項第1項所述的發光元件,其中該第一金屬元素與該第三金屬元素相同,且該第二金屬元素與該第四金屬元素相同。The light-emitting element of claim 1, wherein the first metal element is the same as the third metal element, and the second metal element is the same as the fourth metal element. 如請求項第1項所述的發光元件,其中該第一金屬元素及該第三金屬元素包含鎳(Ni)或鉑(Pt),且該第二金屬元素及該第四金屬元素包含鈦(Ti)。The illuminating element of claim 1, wherein the first metal element and the third metal element comprise nickel (Ni) or platinum (Pt), and the second metal element and the fourth metal element comprise titanium ( Ti). 如請求項第1項所述的發光元件,其中該金屬連接結構與該金屬反射層包含一相同之金屬元素。The illuminating element of claim 1, wherein the metal connecting structure and the metal reflective layer comprise a same metal element. 如請求項第1項所述的發光元件,其中該金屬連接結構與該金屬反射層包含一相同之金屬元素,該金屬元素不同於該第一金屬元素、該第二金屬元素、該第三金屬元素及該第四金屬元素。The illuminating element of claim 1, wherein the metal connecting structure and the metal reflective layer comprise a same metal element different from the first metal element, the second metal element, and the third metal Element and the fourth metal element. 如請求項第5項所述的發光元件,其中該金屬連接結構包含一銦(In)金(Au)合金,且該金屬連接結構與該金屬反射層包含該相同之金屬元素為金(Au)。The light-emitting element of claim 5, wherein the metal connection structure comprises an indium (A) gold (Au) alloy, and the metal connection structure and the metal reflective layer comprise the same metal element as gold (Au) . 如請求項第1項所述的發光元件,其中該金屬連接結構包含一熔點小於或等於300℃之低溫熔合材料。The illuminating element of claim 1, wherein the metal connecting structure comprises a low temperature fused material having a melting point of less than or equal to 300 °C. 如請求項第8項所述的發光元件,其中該低溫熔合材料包含銦(In)。The light-emitting element of claim 8, wherein the low-temperature fusion material comprises indium (In). 如請求項第1項所述的發光元件,其中該第一金屬層及該第三金屬層之厚度約為200Å至800Å之間。The illuminating element of claim 1, wherein the first metal layer and the third metal layer have a thickness of between about 200 Å and 800 Å. 如請求項第1項所述的發光元件,其中該第二金屬層及該第四金屬層之厚度約為100Å至500Å之間。The illuminating element of claim 1, wherein the second metal layer and the fourth metal layer have a thickness of between about 100 Å and about 500 Å. 如請求項第1項所述的發光元件,其中更包含一介電層位於該金屬反射層與該發光疊層之間,該介電層具有一折射率小於與該發光疊層之折射率。The illuminating device of claim 1, further comprising a dielectric layer between the metal reflective layer and the luminescent laminate, the dielectric layer having a refractive index less than a refractive index of the luminescent laminate. 如請求項第12項所述的發光元件,其中該介電層包含複數之穿孔穿透該介電層。The illuminating element of claim 12, wherein the dielectric layer comprises a plurality of perforations penetrating the dielectric layer. 如請求項第13項所述的發光元件,更包含一第一透明導電氧化層位於該金屬反射層與該介電層之間,該第一透明導電氧化層填入該複數之穿孔。The illuminating device of claim 13, further comprising a first transparent conductive oxide layer between the metal reflective layer and the dielectric layer, the first transparent conductive oxide layer filling the plurality of through holes. 如請求項第14項所述的發光元件,更包含一第二透明導電氧化層位於該金屬反射層與該第一透明導電氧化層之間,且該第二透明導電氧化層之材料與該第一透明導電氧化層之材料不同。The illuminating device of claim 14, further comprising a second transparent conductive oxide layer between the metal reflective layer and the first transparent conductive oxide layer, and the second transparent conductive oxide layer and the first transparent conductive oxide layer The material of a transparent conductive oxide layer is different. 一發光元件,包含: 一基板; 一金屬連接結構位於該基板上; 一阻障層包含至少兩層多層金屬層位於該金屬連接結構之上; 一金屬反射層位於該阻障層之上;以及 一發光疊層位於該金屬反射層之上,且該阻障層位於該基板及該發光疊層之間; 其中任一該多層金屬層具有由一第一金屬元素構成之一第一金屬層及由一第二金屬元素構成之一第二金屬層,且該第一金屬層較該第二金屬層接近該金屬連接結構,且該第一金屬元素與該第二金屬元素不同。a light-emitting element comprising: a substrate; a metal connection structure on the substrate; a barrier layer comprising at least two layers of a plurality of metal layers over the metal connection structure; a metal reflective layer over the barrier layer; a light emitting layer is disposed on the metal reflective layer, and the barrier layer is located between the substrate and the light emitting layer; any one of the plurality of metal layers has a first metal layer formed of a first metal element and A second metal layer is formed by a second metal element, and the first metal layer is closer to the metal connection structure than the second metal layer, and the first metal element is different from the second metal element. 如請求項第16項所述的發光元件,其中該第一金屬元素包含鎳(Ni)或鉑(Pt),且該第二金屬元素包含鈦(Ti)。The light-emitting element of claim 16, wherein the first metal element comprises nickel (Ni) or platinum (Pt), and the second metal element comprises titanium (Ti). 如請求項第16項所述的發光元件,其中該第一金屬層之厚度約為200Å至800Å之間,且該第二金屬層之厚度約為100Å至500Å之間。The light-emitting element of claim 16, wherein the first metal layer has a thickness of between about 200 Å and about 800 Å, and the second metal layer has a thickness of between about 100 Å and about 500 Å. 一發光元件,包含: 一金屬連接結構; 一阻障層位於該金屬連接結構之上,包含一第一多層金屬層位於該金屬連接結構之上及一第二多層金屬層位於該第一多層金屬層之上; 一抗氧化層位於該第一多層金屬層及該第二多層金屬層之間; 一金屬反射層位於該阻障層之上;以及 一發光疊層位於該金屬反射層之上; 其中該第一多層金屬層包含一第一金屬層具有一第一金屬元素及一第二金屬層具有一第二金屬元素,該第一金屬層較該第二金屬層接近該金屬連接結構,且該第二多層金屬層包含一第三金屬層具有一第三金屬元素及一第四金屬層具有一第四金屬元素,該第三金屬層較該第四金屬層接近該第二金屬層,且該第一金屬元素和該第二金屬元素不同,該第三金屬元素和該第四金屬元素不同,且該第一金屬元素與該第三金屬元素相同,或者該第二金屬元素與該第四金屬元素相同。a light-emitting element comprising: a metal connection structure; a barrier layer on the metal connection structure, comprising a first plurality of metal layers on the metal connection structure and a second plurality of metal layers on the first Above the multi-layer metal layer; an anti-oxidation layer is located between the first multi-layer metal layer and the second multi-layer metal layer; a metal reflective layer is located over the barrier layer; and a light-emitting layer is located on the metal layer Above the reflective layer; wherein the first plurality of metal layers comprise a first metal layer having a first metal element and a second metal layer having a second metal element, the first metal layer being closer to the second metal layer The metal connection structure, and the second multilayer metal layer comprises a third metal layer having a third metal element and a fourth metal layer having a fourth metal element, the third metal layer being closer to the fourth metal layer The second metal layer, and the first metal element and the second metal element are different, the third metal element is different from the fourth metal element, and the first metal element is the same as the third metal element, or the first Two metal The same as the fourth element a metal element. 如請求項第19項所述的發光元件,其中該抗氧化層包含金(Au)。The light-emitting element of claim 19, wherein the oxidation resistant layer comprises gold (Au). 一發光元件,包含: 一金屬連接結構; 一阻障層位於該金屬連接結構之上,包含一第一多層金屬層位於該金屬連接結構之上及一第二多層金屬層位於該第一多層金屬層之上,其中該第一多層金屬層直接接觸於該金屬連接結構; 一金屬反射層位於該阻障層之上;以及 一發光疊層電性連接該金屬反射層; 其中該金屬連接結構與該金屬反射層包含一相同之金屬元素,且該阻障層包含與該金屬反射層相異之金屬元素。a light-emitting element comprising: a metal connection structure; a barrier layer on the metal connection structure, comprising a first plurality of metal layers on the metal connection structure and a second plurality of metal layers on the first a plurality of layers of metal, wherein the first plurality of metal layers are in direct contact with the metal connection structure; a metal reflective layer is over the barrier layer; and a light-emitting layer is electrically connected to the metal reflective layer; The metal connection structure and the metal reflective layer comprise a same metal element, and the barrier layer comprises a metal element different from the metal reflective layer. 如請求項第21項所述的發光元件,其中另包含一基板為連接於該金屬連接結構,且該阻障層位於該基板及該發光疊層之間。The illuminating device of claim 21, further comprising a substrate connected to the metal connecting structure, wherein the barrier layer is located between the substrate and the light emitting laminate. 如請求項第21項所述的發光元件,其中該第一多層金屬層包含一第一金屬層及一第二金屬層,該第一金屬層較該第二金屬層接近該金屬連接結構,該第一金屬層之厚度約為200Å至800Å之間,且該第二金屬層之厚度約為100Å至500Å之間。The light-emitting element of claim 21, wherein the first plurality of metal layers comprise a first metal layer and a second metal layer, the first metal layer being closer to the metal connection structure than the second metal layer, The first metal layer has a thickness between about 200 Å and 800 Å, and the second metal layer has a thickness between about 100 Å and 500 Å.
TW106118158A 2013-11-28 2013-11-28 Light-emitting device and manufacturing method thereof TWI633680B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106118158A TWI633680B (en) 2013-11-28 2013-11-28 Light-emitting device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106118158A TWI633680B (en) 2013-11-28 2013-11-28 Light-emitting device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW201729433A true TW201729433A (en) 2017-08-16
TWI633680B TWI633680B (en) 2018-08-21

Family

ID=60186537

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106118158A TWI633680B (en) 2013-11-28 2013-11-28 Light-emitting device and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI633680B (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007184411A (en) * 2006-01-06 2007-07-19 Sony Corp Light emitting diode and its manufacturing method, integrated light emitting diode and its manufacturing method, light emitting diode backlight, light emitting diode lighting apparatus, light emitting diode display, electronic equipment, and electronic device and its manufacturing method
TWI458122B (en) * 2011-11-23 2014-10-21 Toshiba Kk Semiconductor light emitting device

Also Published As

Publication number Publication date
TWI633680B (en) 2018-08-21

Similar Documents

Publication Publication Date Title
TWI591848B (en) Light-emitting device and manufacturing method thereof
TWI446589B (en) A semiconductor light-emitting element, a light-emitting device using a semiconductor light-emitting element, and an electronic device
US9660146B2 (en) Light-emitting element
WO2011162367A1 (en) Semiconductor light-emitting element
TWI572054B (en) High brightness light emitting diode structure and the manufacturing method thereof
US9153747B2 (en) Light-emitting element
TWI604633B (en) Light-emitting element
TW202107732A (en) Light-emitting diode device and method for manufacturing the same
CN110265517B (en) Light-emitting element
TW201937656A (en) Light emitting element
JP2007258323A (en) Semiconductor light emitting element
CN103035812B (en) substrate
CN110731016A (en) Light emitting diode
TWI754617B (en) Light-emitting element
TWI633680B (en) Light-emitting device and manufacturing method thereof
CN113363373B (en) Semiconductor light-emitting element and light-emitting device
TWI449210B (en) Light emitting device
CN104701435A (en) Lighting element and production method thereof
TWI644451B (en) Light-emitting element
TWM468017U (en) Semiconductor light emitting chip with light reflecting layer
TWI611600B (en) Light-emitting device
TWM468018U (en) Semiconductor light emittingelement with light reflecting layer
CN114038964A (en) Flip light-emitting chip and preparation method thereof
JP2014099434A (en) Semiconductor light-emitting element
TW201907582A (en) Light-emitting element