TW201727760A - 半導體裝置以及其製造方法 - Google Patents

半導體裝置以及其製造方法 Download PDF

Info

Publication number
TW201727760A
TW201727760A TW105136724A TW105136724A TW201727760A TW 201727760 A TW201727760 A TW 201727760A TW 105136724 A TW105136724 A TW 105136724A TW 105136724 A TW105136724 A TW 105136724A TW 201727760 A TW201727760 A TW 201727760A
Authority
TW
Taiwan
Prior art keywords
insulator
transistor
oxide
conductor
oxygen
Prior art date
Application number
TW105136724A
Other languages
English (en)
Other versions
TWI710029B (zh
Inventor
山崎舜平
Original Assignee
半導體能源硏究所股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 半導體能源硏究所股份有限公司 filed Critical 半導體能源硏究所股份有限公司
Publication of TW201727760A publication Critical patent/TW201727760A/zh
Application granted granted Critical
Publication of TWI710029B publication Critical patent/TWI710029B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • H01L27/1207Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI combined with devices in contact with the semiconductor body, i.e. bulk/SOI hybrid circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02178Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02266Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by physical ablation of a target, e.g. sputtering, reactive sputtering, physical vapour deposition or pulsed laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76822Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
    • H01L21/76826Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc. by contacting the layer with gases, liquids or plasmas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76822Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
    • H01L21/76828Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc. thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/84Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5222Capacitive arrangements or effects of, or between wiring layers
    • H01L23/5223Capacitor integral with wiring layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5226Via connections in a multilevel interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/5329Insulating materials
    • H01L23/53295Stacked insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78603Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the insulating substrate or support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8221Three dimensional integrated circuits stacked in different levels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/8258Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using a combination of technologies covered by H01L21/8206, H01L21/8213, H01L21/822, H01L21/8252, H01L21/8254 or H01L21/8256

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Thin Film Transistor (AREA)
  • Semiconductor Memories (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Bipolar Transistors (AREA)

Abstract

本發明提供一種適合於微型化.高密度化的高可靠性的半導體裝置。在基板上包括第一絕緣體、第一絕緣體上的具有氧化物半導體的電晶體、電晶體上的第二絕緣體以及第二絕緣體上的第三絕緣體,其中,第一絕緣體及第三絕緣體對氧及氫具有阻擋性,第二絕緣體包括過量氧區域,並且,因在設置有電晶體的區域的邊緣中第一絕緣體與第三絕緣體接觸,而電晶體被第一絕緣體及第三絕緣體包圍。

Description

半導體裝置以及其製造方法
本發明係關於一種物體、方法或製造方法。或者,本發明係關於一種製程(process)、機器(machine)、產品(manufacture)或組合物(composition of matter)。本發明的一個實施方式係關於一種半導體裝置、發光裝置、顯示裝置、電子裝置以及其製造方法。本發明的一個實施方式尤其係關於一種利用有機電致發光(Electroluminescence,以下也稱為EL)現象的發光裝置以及其製造方法。例如,本發明的一個實施方式係關於:LSI;CPU;安裝在電源電路中的功率裝置;包括記憶體、閘流體、轉換器、影像感測器等的半導體集成電路;以及作為部件安裝有上述電路或裝置的電子裝置。
注意,本發明的一個實施方式不侷限於上述技術領域。
在本說明書中,半導體裝置是指能藉由利用半導體特性起作用的所有裝置。電光裝置、半導體電路及電子裝置有時包括半導體裝置。
近年來,已對半導體裝置進行開發,主要使用LSI、CPU、記憶體。CPU是包括從半導體晶圓分開的半導體集成電路(至少包括電晶體及 記憶體)且形成有作為連接端子的電極的半導體元件的集合體。
LSI、CPU、記憶體等的半導體電路(IC晶片)安裝在電路基板例如印刷線路板上,並用作各種電子裝置的部件之一。
此外,藉由使用形成在具有絕緣表面的基板上的半導體薄膜構成電晶體的技術受到注目。該電晶體被廣泛地應用於集成電路(IC)、影像顯示裝置(簡單地記載為顯示裝置)等的電子裝置。作為可以應用於電晶體的半導體薄膜,矽類半導體材料被廣泛地周知。但是,作為其他材料,氧化物半導體受到關注。
已知使用氧化物半導體的電晶體的非導通狀態下的洩漏電流極小。例如,應用了使用氧化物半導體的電晶體的洩漏電流低的特性的低功耗CPU等已被公開(參照專利文獻1)。
雖然使用氧化物半導體的電晶體的工作速度比使用非晶矽的電晶體的工作速度快,且與使用多晶矽的電晶體相比更容易製造,但是,已知使用氧化物半導體的電晶體具有電特性容易變動而導致其可靠性低的問題。例如,在偏壓-熱壓力測試(BT測試)的前後,電晶體的臨界電壓會變動。
[專利文獻1]日本專利申請公開第2012-257187號公報
本發明的一個實施方式的目的是提高使用氧化物半導體的半導體裝置的可靠性。此外,使用氧化物半導體的電晶體具有如下問題:容易具有常開啟特性;以及在驅動電路中難以設置適當地工作的邏輯電 路。於是,本發明的一個實施方式的目的是在使用氧化物半導體的電晶體中得到常關閉特性。
此外,本發明的一個實施方式的目的之一是提供一種可靠性高的電晶體。或者,本發明的一個實施方式的目的之一是提供一種在非導通狀態下洩漏電流被抑制為極小的電晶體。
本發明的一個實施方式的目的之一是提供一種可靠性高的半導體裝置。本發明的一個實施方式的目的之一是提供一種生產率高的半導體裝置。本發明的一個實施方式的目的之一是提供一種良率高的半導體裝置。或者,本發明的一個實施方式的目的之一是提供一種佔有面積小的半導體裝置。
本發明的一個實施方式的目的之一是提供一種集成度高的半導體裝置。本發明的一個實施方式的目的之一是提供一種工作速度快的半導體裝置。或者,本發明的一個實施方式的目的之一是提供一種低功耗的半導體裝置。
本發明的一個實施方式的目的之一是提供一種新穎的半導體裝置。本發明的一個實施方式的目的之一是提供一種包括該半導體裝置的模組。或者,本發明的一個實施方式的目的之一是提供一種包括該半導體裝置或該模組的電子裝置。
此外,這些目的的記載不妨礙其他目的的存在。此外,本發明的一個實施方式並不需要實現所有上述目的。另外,從說明書、圖式、申請專利範圍等的記載中可明顯看出這些目的以外的目的,而可以從說明書、圖式、申請專利範圍等的記載中衍生這些目的以外的目的。
本發明的一個實施方式在基板上包括第一絕緣體、第一絕緣體上 的具有氧化物半導體的電晶體、電晶體上的第二絕緣體以及第二絕緣體上的第三絕緣體,其中,第一絕緣體及第三絕緣體對氧及氫具有阻擋性,第二絕緣體包括過量氧區域,並且,因在設置有電晶體的區域的邊緣中第一絕緣體和第三絕緣體接觸,而電晶體被第一絕緣體和第三絕緣體包圍。
本發明的一個實施方式在基板上包括第一絕緣體、第一絕緣體上的第四絕緣體、第一絕緣體上的具有氧化物半導體的電晶體、電晶體上的第二絕緣體、第二絕緣體上的第三絕緣體以及第三絕緣體上的第五絕緣體,其中,第一絕緣體、第三絕緣體、第四絕緣體及第五絕緣體對氧及氫具有阻擋性,第二絕緣體包括過量氧區域,在設置有電晶體的區域的邊緣中第四絕緣體和第五絕緣體接觸,在第四絕緣體和第五絕緣體接觸的區域的邊緣中第一絕緣體和第二絕緣體接觸,電晶體被第四絕緣體和第五絕緣體包圍,並且,第四絕緣體和第五絕緣體被第一絕緣體和第二絕緣體包圍。
在上述結構中,第四絕緣體及第五絕緣體是氧化鋁。
在上述結構中,第一絕緣體及第三絕緣體是利用TDS分析的在50℃至500℃的範圍中換算為氫原子的氫的脫離量為10×1020atoms/cm3以下,較佳為5×1020atoms/cm3以下的氮化矽。
在上述結構中,第一絕緣體及第三絕緣體是氧化鋁。
本發明的一個實施方式是包括上述半導體裝置的電子裝置。
在本發明的一個實施方式中,在基板上形成第一絕緣體,在第一絕緣體上形成具有氧化物半導體的電晶體,在電晶體上形成第二絕緣體,在第二絕緣體上形成第三絕緣體,並且在藉由第三絕緣體對第二 絕緣體進行氧引入處理之後進行加熱處理。
在上述結構中,反復進行氧引入處理及加熱處理。
在上述結構中,第三絕緣體對氧及氫具有阻擋性,且藉由濺射法形成。
在上述結構中,第三絕緣體對氧及氫具有阻擋性,且藉由CVD法形成。
本發明的一個實施方式在使用具有氧化物半導體的電晶體的半導體裝置中可以抑制電特性變動且提高可靠性。本發明的一個實施方式可以提供一種通態電流大的具有氧化物半導體的電晶體。本發明的一個實施方式可以提供一種關閉電流小的具有氧化物半導體的電晶體。或者,本發明的一個實施方式可以提供一種低功耗的半導體裝置。
本發明的一個實施方式可以提供一種新穎的半導體裝置。本發明的一個實施方式可以提供一種包括該半導體裝置的模組。或者,本發明的一個實施方式可以提供一種包括該半導體裝置或該模組的電子裝置。
此外,這些效果的記載不妨礙其他效果的存在。此外,本發明的一個實施方式並不需要具有所有上述效果。另外,從說明書、圖式、申請專利範圍等的記載中可明顯看出這些效果以外的效果,而可以從說明書、圖式、申請專利範圍等的記載中衍生這些效果以外的效果。
10‧‧‧絕緣體
12‧‧‧絕緣體
20‧‧‧導電體
22‧‧‧導電體
30‧‧‧絕緣體
100‧‧‧電容器
102‧‧‧絕緣體
103‧‧‧絕緣體
104‧‧‧絕緣體
112‧‧‧導電體
114‧‧‧絕緣體
116‧‧‧導電體
120‧‧‧絕緣體
122‧‧‧絕緣體
124‧‧‧導電體
126‧‧‧導電體
128‧‧‧導電體
128a‧‧‧導電體
128b‧‧‧導電體
128c‧‧‧導電體
128d‧‧‧導電體
200‧‧‧電晶體
205‧‧‧導電體
205a‧‧‧導電體
205b‧‧‧導電體
210‧‧‧絕緣體
212‧‧‧絕緣體
214‧‧‧絕緣體
216‧‧‧絕緣體
218‧‧‧導電體
218a‧‧‧導電體
218b‧‧‧導電體
218c‧‧‧導電體
220‧‧‧絕緣體
222‧‧‧絕緣體
224‧‧‧絕緣體
230‧‧‧氧化物
230a‧‧‧氧化物
230b‧‧‧氧化物
230c‧‧‧氧化物
240a‧‧‧導電體
240b‧‧‧導電體
241a‧‧‧導電體
241b‧‧‧導電體
244‧‧‧導電體
244a‧‧‧導電體
244b‧‧‧導電體
244c‧‧‧導電體
244d‧‧‧導電體
244e‧‧‧導電體
245a‧‧‧區域
245b‧‧‧區域
250‧‧‧絕緣體
260‧‧‧導電體
260a‧‧‧導電體
260b‧‧‧導電體
270‧‧‧絕緣體
280‧‧‧絕緣體
282‧‧‧絕緣體
284‧‧‧絕緣體
286‧‧‧絕緣體
300‧‧‧電晶體
301‧‧‧基板
302‧‧‧半導體區域
304‧‧‧絕緣體
306‧‧‧導電體
308a‧‧‧低電阻區域
308b‧‧‧低電阻區域
320‧‧‧絕緣體
322‧‧‧絕緣體
324‧‧‧絕緣體
326‧‧‧絕緣體
328‧‧‧導電體
328a‧‧‧導電體
328b‧‧‧導電體
328c‧‧‧導電體
330‧‧‧導電體
330a‧‧‧導電體
330b‧‧‧導電體
330c‧‧‧導電體
350‧‧‧絕緣體
352‧‧‧絕緣體
354‧‧‧絕緣體
356‧‧‧導電體
358‧‧‧導電體
358a‧‧‧導電體
358b‧‧‧導電體
358c‧‧‧導電體
700‧‧‧基板
701‧‧‧絕緣體
702‧‧‧絕緣體
703‧‧‧半導體
704‧‧‧導電體
705‧‧‧導電體
705a‧‧‧區域
706‧‧‧絕緣體
707a‧‧‧導電體
707b‧‧‧導電體
708‧‧‧絕緣體
709‧‧‧絕緣體
710‧‧‧絕緣體
714a‧‧‧導電體
714b‧‧‧絕緣體
714c‧‧‧導電體
716‧‧‧絕緣體
719‧‧‧發光元件
720‧‧‧絕緣體
721‧‧‧絕緣體
731‧‧‧端子
732‧‧‧FPC
733a‧‧‧佈線
734‧‧‧密封材料
735‧‧‧驅動電路
736‧‧‧驅動電路
737‧‧‧像素
741‧‧‧電晶體
742‧‧‧電容器
743‧‧‧切換元件
744‧‧‧信號線
750‧‧‧基板
751‧‧‧電晶體
752‧‧‧電容器
753‧‧‧液晶元件
754‧‧‧掃描線
755‧‧‧信號線
781‧‧‧導電體
782‧‧‧發光層
783‧‧‧導電體
784‧‧‧分隔壁
791‧‧‧導電體
792‧‧‧絕緣體
793‧‧‧液晶層
794‧‧‧絕緣體
795‧‧‧間隔物
796‧‧‧導電體
797‧‧‧基板
901‧‧‧外殼
902‧‧‧外殼
903‧‧‧顯示部
904‧‧‧顯示部
905‧‧‧麥克風
906‧‧‧揚聲器
907‧‧‧操作鍵
908‧‧‧觸控筆
911‧‧‧外殼
912‧‧‧外殼
913‧‧‧顯示部
914‧‧‧顯示部
915‧‧‧連接部
916‧‧‧操作鍵
921‧‧‧外殼
922‧‧‧顯示部
923‧‧‧鍵盤
924‧‧‧指向裝置
931‧‧‧外殼
932‧‧‧冷藏室門
933‧‧‧冷凍室門
941‧‧‧外殼
942‧‧‧外殼
943‧‧‧顯示部
944‧‧‧操作鍵
945‧‧‧鏡頭
946‧‧‧連接部
951‧‧‧車體
952‧‧‧車輪
953‧‧‧儀表板
954‧‧‧燈
1189‧‧‧ROM介面
1190‧‧‧基板
1191‧‧‧ALU
1192‧‧‧ALU控制器
1193‧‧‧指令解碼器
1194‧‧‧中斷控制器
1195‧‧‧時序控制器
1196‧‧‧暫存器
1197‧‧‧暫存器控制器
1198‧‧‧匯流排介面
1199‧‧‧ROM
1200‧‧‧記憶元件
1201‧‧‧電路
1202‧‧‧電路
1203‧‧‧開關
1204‧‧‧開關
1206‧‧‧邏輯元件
1207‧‧‧電容器
1208‧‧‧電容器
1209‧‧‧電晶體
1210‧‧‧電晶體
1213‧‧‧電晶體
1214‧‧‧電晶體
1220‧‧‧電路
3001‧‧‧佈線
3002‧‧‧佈線
3003‧‧‧佈線
3004‧‧‧佈線
3005‧‧‧佈線
在圖式中:圖1是說明根據實施方式的半導體裝置的剖面結構的圖;圖2是說明根據實施方式的半導體裝置的剖面結構的圖;圖3是說明根據實施方式的半導體裝置的剖面結構的圖;圖4是說明根據實施方式的半導體裝置的剖面結構的圖;圖5A和圖5B是說明根據實施方式的半導體裝置的剖面結構的圖;圖6A至圖6C是說明根據實施方式的半導體裝置的剖面結構的圖;圖7A至圖7C是根據實施方式的電晶體的俯視圖及說明其剖面結構的圖;圖8A至圖8C是根據實施方式的電晶體的俯視圖及說明其剖面結構的圖;圖9A至圖9C是根據實施方式的電晶體的俯視圖及說明其剖面結構的圖;圖10是根據實施方式的半導體裝置的製程流程圖;圖11A至圖11C是說明根據實施方式的半導體裝置的製造方法實例的圖;圖12A至圖12C是說明根據實施方式的半導體裝置的製造方法實例的圖;圖13A和圖13B是說明根據實施方式的半導體裝置的製造方法實例的圖;圖14A和圖14B是說明根據實施方式的半導體裝置的製造方法實例的圖;圖15A和圖15B是說明根據實施方式的半導體裝置的製造方法實例的圖;圖16是說明根據實施方式的半導體裝置的製造方法實例的圖;圖17是說明根據實施方式的半導體裝置的製造方法實例的圖;圖18是說明根據實施方式的半導體裝置的製造方法實例的圖; 圖19是說明根據實施方式的半導體裝置的製造方法實例的圖;圖20是說明根據實施方式的半導體裝置的製造方法實例的圖;圖21是根據實施方式的半導體裝置的製程流程圖;圖22A和圖22B是根據實施方式的半導體裝置的電路圖;圖23A至圖23C是說明根據本發明的氧化物的原子個數比的範圍的圖;圖24是說明InMZnO4的結晶的圖;圖25A至圖25C是氧化物半導體的疊層結構的帶圖;圖26A至圖26E是說明利用XRD的CAAC-OS及單晶氧化物半導體的結構解析的圖以及示出CAAC-OS的選區電子繞射圖案的圖;圖27A至圖27E是CAAC-OS的剖面TEM影像、平面TEM影像及其影像分析;圖28A至圖28D是示出nc-OS的電子繞射圖案的圖及nc-OS的剖面TEM影像;圖29A和圖29B是a-like OS的剖面TEM影像;圖30是示出因電子照射導致的In-Ga-Zn氧化物的結晶部的變化的圖;圖31是示出根據本發明的一個實施方式的半導體裝置的方塊圖;圖32是示出根據本發明的一個實施方式的半導體裝置的電路及方塊圖;圖33A至圖33C是示出根據本發明的一個實施方式的半導體裝置的電路圖、俯視圖及剖面圖;圖34A和圖34B是示出根據本發明的一個實施方式的半導體裝置的電路圖及剖面圖;圖35A至圖35F是示出根據本發明的一個實施方式的電子裝置的透視圖;圖36是在實施例1中進行的模擬結果的輪廓;圖37A至圖37C是在實施例1中測定的TDS分析的結果的圖表;圖38是說明根據本發明的半導體裝置的概念的圖。
下面,參照圖式對實施方式進行說明。但是,所屬技術領域的通常知識者可以很容易地理解一個事實,就是實施方式可以以多個不同形式來實施,其方式和詳細內容可以在不脫離本發明的精神及其範圍的條件下被變換為各種各樣的形式。因此,本發明不應該被解釋為僅限定在下面的實施方式所記載的內容中。
在圖式中,為便於清楚地說明,有時誇大表示大小、層的厚度或區域。因此,本發明並不一定限定於上述尺寸。此外,在圖式中,示意性地示出理想的例子,因此本發明不侷限於圖式所示的形狀或數值等。另外,在圖式中,在不同的圖式之間共同使用相同的元件符號來表示相同的部分或具有相同功能的部分,而省略其重複說明。此外,當表示具有相同功能的部分時有時使用相同的陰影線,而不特別附加元件符號。
此外,在本說明書等中,為了方便起見,附加了第一、第二等序數詞,而其並不表示製程順序或疊層順序。因此,例如可以將“第一”適當地替換為“第二”或“第三”等來進行說明。此外,本說明書等所記載的序數詞與用於指定本發明的一個實施方式的序數詞有時不一致。
在本說明書中,為方便起見,使用了“上”、“下”等表示配置的詞句,以參照圖式說明組件的位置關係。另外,組件的位置關係根據描述各組件的方向適當地改變。因此,不侷限於本說明書中所說明的詞句,可以根據情況適當地更換。
此外,在本說明書等中,半導體裝置是指能夠藉由利用半導體特性而工作的所有裝置。除了電晶體等半導體元件之外,半導體電路、 算術裝置或記憶體裝置也是半導體裝置的一個實施方式。攝像裝置、顯示裝置、液晶顯示裝置、發光裝置、電光裝置、發電裝置(包括薄膜太陽能電池、有機薄膜太陽能電池等)及電子裝置有時包括半導體裝置。
在本說明書等中,電晶體是指至少包括閘極、汲極以及源極這三個端子的元件。電晶體在汲極(汲極端子、汲極區域或汲極電極)與源極(源極端子、源極區域或源極電極)之間具有通道區域,並且電流能夠流過汲極、通道區域以及源極。注意,在本說明書等中,通道區域是指電流主要流過的區域。
另外,在使用極性不同的電晶體的情況或電路工作中的電流方向變化的情況等下,源極及汲極的功能有時相互調換。因此,在本說明書等中,源極和汲極可以相互調換。
另外,在本說明書等中,“氧氮化矽膜”是指在其組成中氧含量多於氮含量的物質,較佳為具有如下濃度範圍的物質:氧濃度為55原子%以上且65原子%以下,氮濃度為1原子%以上且20原子%以下,矽濃度為25原子%以上且35原子%以下,並且氫濃度為0.1原子%以上且10原子%以下。另外,“氮氧化矽膜”是指在其組成中氮含量多於氧含量的物質,較佳為具有如下濃度範圍的物質:氮濃度為55原子%以上且65原子%以下,氧濃度為1原子%以上且20原子%以下,矽濃度為25原子%以上且35原子%以下,並且氫濃度為0.1原子%以上且10原子%以下。
另外,在本說明書等中,可以將“膜”和“層”相互調換。例如,有時可以將“導電層”變換為“導電膜”。此外,例如,有時可以將“絕緣膜”變換為“絕緣層”。
在本說明書等中,“平行”是指兩條直線形成的角度為-10°以上且10°以下的狀態。因此,也包括該角度為-5°以上且5°以下的狀態。“大致平行”是指兩條直線形成的角度為-30°以上且30°以下的狀態。另外,“垂直”是指兩條直線的角度為80°以上且100°以下的狀態。因此,也包括該角度為85°以上且95°以下的狀態。“大致垂直”是指兩條直線形成的角度為60°以上且120°以下的狀態。
例如,在本說明書等中,當明確地記載為“X與Y連接”時,意味著如下情況:X與Y電連接;X與Y在功能上連接;X與Y直接連接。因此,不侷限於規定的連接關係(例如,圖式或文中所示的連接關係等),圖式或文中所示的連接關係以外的連接關係也包含於圖式或文中所記載的內容中。
這裡,X和Y為物件(例如,裝置、元件、電路、佈線、電極、端子、導電膜及層等)。
作為X與Y直接連接的情況的一個例子,可以舉出在X與Y之間沒有連接能夠電連接X與Y的元件(例如開關、電晶體、電容器、電感器、電阻器、二極體、顯示元件、發光元件及負載等),並且X與Y沒有藉由能夠電連接X與Y的元件(例如開關、電晶體、電容器、電感器、電阻器、二極體、顯示元件、發光元件及負載等)連接的情況。
作為X與Y電連接的情況的一個例子,例如可以在X與Y之間連接一個以上的能夠電連接X與Y的元件(例如開關、電晶體、電容器、電感器、電阻器、二極體、顯示元件、發光元件及負載等)。另外,開關具有控制開啟和關閉的功能。換言之,藉由使開關處於導通狀態(開啟狀態)或非導通狀態(關閉狀態)來控制是否使電流流過。或者,開關具有選擇並切換電流路徑的功能。另外,X與Y電連接的情 況包括X與Y直接連接的情況。
作為X與Y在功能上連接的情況的一個例子,例如可以在X與Y之間連接一個以上的能夠在功能上連接X與Y的電路(例如,邏輯電路(反相器、NAND電路、NOR電路等)、信號轉換電路(DA轉換電路、AD轉換電路、伽瑪校正電路等)、電位位準轉換電路(電源電路(升壓電路、降壓電路等)、改變信號的電位位準的位準轉移電路等)、電壓源、電流源、切換電路、放大電路(能夠增大信號振幅或電流量等的電路、運算放大器、差動放大電路、源極隨耦電路、緩衝電路等)、信號生成電路、記憶體電路、控制電路等)。注意,例如,即使在X與Y之間夾有其他電路,當從X輸出的信號傳送到Y時,也可以說X與Y在功能上是連接著的。另外,X與Y在功能上連接的情況包括X與Y直接連接的情況及X與Y電連接的情況。
此外,當明確地記載為“X與Y電連接”時,在本說明書等中意味著如下情況:X與Y電連接(亦即,以中間夾有其他元件或其他電路的方式連接X與Y);X與Y在功能上連接(亦即,以中間夾有其他電路的方式在功能上連接X與Y);X與Y直接連接(亦即,以中間不夾有其他元件或其他電路的方式連接X與Y)。亦即,當明確地記載為“電連接”時與只明確地記載為“連接”時的情況相同。
注意,例如,在電晶體的源極(或第一端子等)藉由Z1(或沒有藉由Z1)與X電連接,電晶體的汲極(或第二端子等)藉由Z2(或沒有藉由Z2)與Y電連接的情況下以及在電晶體的源極(或第一端子等)與Z1的一部分直接連接,Z1的另一部分與X直接連接,電晶體的汲極(或第二端子等)與Z2的一部分直接連接,Z2的另一部分與Y直接連接的情況下,可以表示為如下。
例如,可以表示為“X、Y、電晶體的源極(或第一端子等)與電 晶體的汲極(或第二端子等)互相電連接,X、電晶體的源極(或第一端子等)、電晶體的汲極(或第二端子等)、Y依次電連接”。或者,可以表示為“電晶體的源極(或第一端子等)與X電連接,電晶體的汲極(或第二端子等)與Y電連接,X、電晶體的源極(或第一端子等)、電晶體的汲極(或第二端子等)、Y依次電連接”。或者,可以表示為“X藉由電晶體的源極(或第一端子等)及汲極(或第二端子等)與Y電連接,X、電晶體的源極(或第一端子等)、電晶體的汲極(或第二端子等)、Y依次設置為相互連接”。藉由使用與這種例子相同的表示方法規定電路結構中的連接順序,可以區別電晶體的源極(或第一端子等)與汲極(或第二端子等)而決定技術範圍。
另外,作為其他表示方法,例如可以表示為“電晶體的源極(或第一端子等)至少經過第一連接路徑與X電連接,所述第一連接路徑不具有第二連接路徑,所述第二連接路徑是電晶體的源極(或第一端子等)與電晶體的汲極(或第二端子等)之間的路徑,所述第一連接路徑是經過Z1的路徑,電晶體的汲極(或第二端子等)至少經過第三連接路徑與Y電連接,所述第三連接路徑不具有所述第二連接路徑,所述第三連接路徑是經過Z2的路徑”。或者,也可以表示為“電晶體的源極(或第一端子等)至少經過第一連接路徑,藉由Z1與X電連接,所述第一連接路徑不具有第二連接路徑,所述第二連接路徑具有藉由電晶體的連接路徑,電晶體的汲極(或第二端子等)至少經過第三連接路徑,藉由Z2與Y電連接,所述第三連接路徑不具有所述第二連接路徑”。或者,也可以表示為“電晶體的源極(或第一端子等)至少經過第一電路徑,藉由Z1與X電連接,所述第一電路徑不具有第二電路徑,所述第二電路徑是從電晶體的源極(或第一端子等)到電晶體的汲極(或第二端子等)的電路徑,電晶體的汲極(或第二端子等)至少經過第三電路徑,藉由Z2與Y電連接,所述第三電路徑不具有第四電路徑,所述第四電路徑是從電晶體的汲極(或第二端子等)到電晶體的源極(或第一端子等)的電路徑”。藉由使用與這種例子同樣的表示方 法規定電路結構中的連接路徑,可以區別電晶體的源極(或第一端子等)和汲極(或第二端子等)來決定技術範圍。
注意,這種表示方法只是一個例子而已,不侷限於上述表示方法。在此,X、Y、Z1及Z2為物件(例如,裝置、元件、電路、佈線、電極、端子、導電膜及層等)。
另外,即使圖式示出在電路圖上獨立的組件彼此電連接,也有一個組件兼有多個組件的功能的情況。例如,在佈線的一部分被用作電極時,一個導電膜兼有佈線和電極的兩個組件的功能。因此,本說明書中的“電連接”的範疇內還包括這種一個導電膜兼有多個組件的功能的情況。
實施方式1
在本實施方式中,參照圖1至圖9C及圖22A和圖22B說明半導體裝置的一個實施方式。
[結構實例]
圖1至圖9C及圖22A和圖22B示出使用本發明的一個實施方式的電容器的半導體裝置(記憶體裝置)的一個例子。此外,圖22A是圖1至圖4所示的半導體裝置的電路圖。圖5A至圖6C示出圖1至圖4所示的半導體裝置的形成區域的端部。圖7A至圖9C示出可用於圖1至圖3的電晶體的結構實例。
〈半導體裝置的電路結構〉
圖1至圖4以及圖22A所示的半導體裝置包括電晶體300、電晶體200及電容器100。
電晶體200是其通道形成在包含氧化物半導體的半導體層中的電 晶體。因為電晶體200的關態電流小,所以藉由將該電晶體用於半導體裝置(記憶體裝置),可以長期保持存儲內容。換言之,因為可以形成不需要更新工作或更新工作的頻率極低的半導體裝置(記憶體裝置),所以可以充分降低功耗。
在圖22A中,第一佈線3001與電晶體300的源極電連接,第二佈線3002與電晶體300的汲極電連接。此外,第三佈線3003與電晶體200的源極和汲極中的一個電連接,第四佈線3004與電晶體200的閘極電連接。再者,電晶體300的閘極及電晶體200的源極和汲極中的另一個與電容器100的一個電極電連接,第五佈線3005與電容器100的另一個電極電連接。
圖22A所示的半導體裝置藉由具有能夠保持電晶體300的閘極的電位的特徵,可以如下所示進行資料的寫入、保持以及讀出。
對資料的寫入及保持進行說明。首先,將第四佈線3004的電位設定為使電晶體200處於導通狀態的電位,而使電晶體200處於導通狀態。由此,第三佈線3003的電位施加到與電晶體300的閘極及電容器100的一個電極電連接的節點FG。換言之,對電晶體300的閘極施加規定的電荷(寫入)。這裡,施加賦予兩種不同電位位準的電荷(以下,稱為低位準電荷、高位準電荷)中的任一個。然後,藉由將第四佈線3004的電位設定為使電晶體200成為非導通狀態的電位而使電晶體200處於非導通狀態,使電荷保持在節點FG(保持)。
在電晶體200的關態電流較小時,節點FG的電荷被長時間保持。
接著,對資料的讀出進行說明。當在對第一佈線3001施加規定的電位(恆電位)的狀態下對第五佈線3005施加適當的電位(讀出電位)時,第二佈線3002具有對應於保持在節點FG中的電荷量的電位。這 是因為:在電晶體300為n通道電晶體的情況下,對電晶體300的閘極施加高位準電荷時的外觀上的臨界電壓Vth_H低於對電晶體300的閘極施加低位準電荷時的外觀上的臨界電壓Vth_L。在此,外觀上的臨界電壓是指為了使電晶體300成為“導通狀態”而需要的第五佈線3005的電位。由此,藉由將第五佈線3005的電位設定為Vth_H與Vth_L之間的電位V0,可以辨別施加到節點FG的電荷。例如,在寫入時節點FG被供應高位準電荷的情況下,若第五佈線3005的電位為V0(>Vth_H),電晶體300則成為“導通狀態”。另一方面,當節點FG被供應低位準電荷時,即便第五佈線3005的電位為V0(<Vth_L),電晶體300也保持“非導通狀態”。因此,藉由辨別第二佈線3002的電位,可以讀出節點FG所保持的資料。
藉由將圖22A所示的半導體裝置配置為矩陣狀,可以構成記憶體裝置(記憶單元陣列)。
注意,當將記憶單元設置為陣列狀時,在讀出時必須讀出所希望的記憶單元的資料。例如,在不讀出資料的記憶單元中,可以藉由對第五佈線3005施加不管施加到節點FG的電位如何都使電晶體300成為“非導通狀態”的電位(亦即,低於Vth_H的電位),來僅讀出所希望的記憶單元的資料。或者,在不讀出資料的記憶單元中,可以藉由對第五佈線3005施加不管施加到節點FG的電荷如何都使電晶體300成為“導通狀態”的電位(亦即,高於Vth_L的電位),來僅讀出所希望的記憶單元的資料。
〈半導體裝置的電路結構2〉
圖22B所示的半導體裝置與圖22A所示的半導體裝置不同之處為圖22B所示的半導體裝置不包括電晶體300。在此情況下也可以藉由與圖22A所示的半導體裝置相同的工作進行資料的寫入及保持工作。
下面,說明圖22B所示的半導體裝置中的資料讀出。在電晶體200成為導通狀態時,處於浮動狀態的第三佈線3003和電容器100導通,且在第三佈線3003和電容器100之間再次分配電荷。其結果是,第三佈線3003的電位產生變化。第三佈線3003的電位的變化量根據電容器100的電極的一個的電位(或積累在電容器100中的電荷)而具有不同的值。
例如,在電容器100的電極的一個的電位為V,電容器100的電容為C,第三佈線3003所具有的電容成分為CB,在再次分配電荷之前的第三佈線3003的電位為VB0時,再次分配電荷之後的第三佈線3003的電位為(CB×VB0+CV)/(CB+C)。因此,在假定作為記憶單元的狀態,電容器100的電極的一個的電位成為兩種狀態,亦即V1和V0(V1>V0)時,可以知道保持電位V1時的第三佈線3003的電位(=(CB×VB0+CV1)/(CB+C))高於保持電位V0時的第三佈線3003的電位(=(CB×VB0+CV0)/(CB+C))。
而且,藉由對第三佈線3003的電位和規定的電位進行比較可以讀出資料。
在此情況下,可以採用一種結構,其中將作為半導體應用上述氧化物的電晶體用於用來驅動記憶單元的驅動電路,且作為電晶體200,將上述氧化物被用作半導體的電晶體層疊於驅動電路上。
上述半導體裝置可以應用使用氧化物半導體的關態電流小的電晶體來長期間地保持存儲內容。也就是說,不需要更新工作或可以使更新工作的頻率極低,從而可以實現低耗電的半導體裝置。此外,在沒有電力的供應時(但是,較佳為固定電位)也可以長期間地保持存儲內容。
此外,因為該半導體裝置在寫入資料時不需要高電壓,所以其中不容易產生元件的劣化。由於例如不如習知的非揮發性記憶體那樣地對浮動閘極注入電子或從浮動閘極抽出電子,因此不會發生如絕緣體的劣化等的問題。換言之,與習知的非揮發性記憶體不同,根據本發明的一個實施方式的半導體裝置是對重寫的次數沒有限制而其可靠性得到極大提高的半導體裝置。再者,根據電晶體的導通狀態或非導通狀態而進行資料寫入,從而可以進行高速工作。
〈半導體裝置的結構1〉
如圖1所示,本發明的一個實施方式的半導體裝置包括電晶體300、電晶體200、電容器100。電晶體200設置在電晶體300的上方,電容器100設置在電晶體300及電晶體200的上方。
電晶體300設置在基板301上,並包括:導電體306、絕緣體304、由基板301的一部分構成的半導體區域302;以及被用作源極區域或汲極區域的低電阻區域308a及低電阻區域308b。
電晶體300可以為p通道型電晶體或n通道型電晶體。
半導體區域302的形成有通道的區域或其附近的區域、被用作源極區域或汲極區域的低電阻區域308a及低電阻區域308b等較佳為包含矽類半導體等半導體,更佳為包含單晶矽。另外,也可以使用包含Ge(鍺)、SiGe(矽鍺)、GaAs(砷化鎵)、GaAlAs(鎵鋁砷)等的材料形成。可以使用對晶格施加應力,改變晶面間距而控制有效質量的矽。此外,電晶體300也可以是使用GaAs和GaAlAs等的HEMT(High Electron Mobility Transistor:高電子移動率電晶體)。
在低電阻區域308a及低電阻區域308b中,除了應用於半導體區域302的半導體材料之外,還包含砷、磷等賦予n型導電性的元素或 硼等賦予p型導電性的元素。
作為被用作閘極電極的導電體306,可以使用包含砷、磷等賦予n型導電性的元素或硼等賦予p型導電性的元素的矽等半導體材料、金屬材料、合金材料或金屬氧化物材料等導電材料。
另外,藉由根據導電體的材料設定功函數,可以調整臨界電壓。明確而言,作為導電體較佳為使用氮化鈦或氮化鉭等材料。為了兼具導電性和埋入性,作為導電體較佳為使用鎢或鋁等金屬材料的疊層,尤其在耐熱性方面上較佳為使用鎢。
另外,在圖1所示的電晶體300中,形成有通道的半導體區域302(基板301的一部分)具有凸形狀。另外,以隔著絕緣體304覆蓋半導體區域302的側面及頂面的方式設置導電體306。另外,導電體306可以使用調整功函數的材料。因為利用半導體基板的凸部,所以這種電晶體300也被稱為FIN型電晶體。另外,也可以以與凸部的上表面接觸的方式具有用作用來形成凸部的遮罩的絕緣體。此外,雖然在此示出對半導體基板的一部分進行加工來形成凸部的情況,但是也可以對SOI基板進行加工來形成具有凸部的半導體膜。
注意,圖1所示的電晶體300的結構只是一個例子,不侷限於上述結構,根據電路結構或驅動方法使用適當的電晶體即可。例如,如圖2所示,作為電晶體300的結構可以採用平面型結構。另外,在採用圖22B所示的電路結構的情況下,也可以不設置電晶體300。
以覆蓋電晶體300的方式依次層疊有絕緣體320、絕緣體322、絕緣體324及絕緣體326。
作為絕緣體320、絕緣體322、絕緣體324及絕緣體326,例如可 以使用氧化矽、氧氮化矽、氮氧化矽、氮化矽、氧化鋁、氧氮化鋁、氮氧化鋁及氮化鋁等。
絕緣體322被用作使因設置在其下方的電晶體300等而產生的步階平坦化的平坦化膜。為了提高絕緣體322的頂面的平坦性,其頂面也可以藉由利用化學機械拋光(CMP:Chemical Mechanical Polishing)法等的平坦化處理被平坦化。
作為絕緣體324,例如較佳為使用能夠防止氫或雜質從基板301或電晶體300等擴散到設置有電晶體200的區域中的具有阻擋性的膜。
例如,作為對氫具有阻擋性的膜的一個例子,可以使用藉由CVD法形成的氮化矽。在此,有時氫擴散到電晶體200等具有氧化物半導體的半導體元件中導致該半導體元件的特性下降。因此,較佳為在電晶體200與電晶體300之間設置抑制氫的擴散的膜。明確而言,抑制氫的擴散的膜是指氫的脫離量少的膜。
氫的脫離量例如可以利用熱脫附譜分析(TDS(Thermal Desorption Spectroscopy))等測定。例如,在TDS分析中的50℃至500℃的範圍內,當將換算為氫原子的脫離量換算為絕緣體324的每個面積的量時,絕緣體324中的氫的脫離量為10×1015atoms/cm2以下,較佳為5×1015atoms/cm2以下,即可。
注意,絕緣體326的介電常數較佳為比絕緣體324低。例如,絕緣體326的相對介電常數較佳為低於4,更佳為低於3。例如,絕緣體324的相對介電常數較佳為絕緣體326的相對介電常數的0.7倍以下,更佳為0.6倍以下。藉由將介電常數低的材料用於層間膜,可以減少產生在佈線之間的寄生電容。
另外,在絕緣體320、絕緣體322、絕緣體324及絕緣體326中嵌入與電容器100或電晶體200電連接的導電體328、導電體330等。另外,導電體328及導電體330被用作插頭或佈線。注意,如後面說明,有時使用同一元件符號表示被用作插頭或佈線的多個導電體。此外,在本說明書等中,佈線、與佈線電連接的插頭也可以是一個組件。就是說,導電體的一部分有時被用作佈線,並且導電體的一部分有時被用作插頭。
作為各插頭及佈線(導電體328及導電體330等)的材料,可以使用金屬材料、合金材料、金屬氮化物材料或金屬氧化物材料等導電材料的單層或疊層。明確而言,較佳為使用兼具耐熱性和導電性的鎢或鉬等高熔點材料,尤其較佳為使用鎢。或者,較佳為使用鋁或銅等低電阻導電材料。藉由使用低電阻導電材料可以降低佈線電阻。
此外,也可以在絕緣體326及導電體330上形成佈線層。例如,在圖1中,依次層疊有絕緣體350、絕緣體352及絕緣體354。另外,在絕緣體350、絕緣體352及絕緣體354中形成有導電體356及導電體358。導電體356及導電體358被用作插頭或佈線。此外,導電體356及導電體358可以使用與導電體328及導電體330同樣的材料形成。
另外,與絕緣體324同樣,絕緣體350例如較佳為使用對氫具有阻擋性的絕緣體。此外,導電體356及導電體358較佳為包含對氫具有阻擋性的導電體。尤其是,在對氫具有阻擋性的絕緣體350所具有的開口部中形成對氫具有阻擋性的導電體。藉由採用該結構,可以使障壁層將電晶體300與電晶體200分離,從而可以抑制氫從電晶體300擴散到電晶體200中。
注意,作為對氫具有阻擋性的導電體,例如較佳為使用氮化鉭等。 另外,藉由層疊氮化鉭和導電性高的鎢,可以在保持作為佈線的導電性的狀態下抑制氫從電晶體300擴散。此時,對氫具有阻擋性的氮化鉭層較佳為與對氫具有阻擋性的絕緣體350接觸。
在絕緣體354上,依次層疊有絕緣體210、絕緣體212及絕緣體214。作為絕緣體210、絕緣體212及絕緣體214中的任何一個或全部,較佳為使用對氧或氫具有阻擋性的物質。
作為絕緣體210,例如較佳為使用能夠防止氫或雜質從設置有基板301或電晶體300的區域等擴散到設置有電晶體200的區域中的具有阻擋性的膜。因此,上述膜可以使用與絕緣體324同樣的材料。
例如,作為對氫具有阻擋性的膜的一個例子,可以使用藉由CVD法形成的氮化矽。在此,有時氫擴散到電晶體200等具有氧化物半導體的半導體元件中導致該半導體元件的特性下降。因此,較佳為在電晶體200與電晶體300之間設置抑制氫的擴散的膜。明確而言,抑制氫的擴散的膜是指氫的脫離量少的膜。
例如,作為絕緣體212及絕緣體214,較佳為使用氧化鋁、氧化鉿、氧化鉭等金屬氧化物。
尤其是,氧化鋁的不使膜透過氧及導致電晶體的電特性變動的氫、水分等雜質的阻擋效果高。因此,在電晶體的製程中及製程之後,氧化鋁可以防止氫、水分等雜質混入電晶體200中。另外,氧化鋁可以抑制氧從構成電晶體200的氧化物釋放。因此,氧化鋁適合用作電晶體200的保護膜。
在絕緣體214上設置絕緣體216。作為絕緣體216,可以使用與絕緣體320同樣的材料。例如,作為絕緣體216,可以使用氧化矽膜和氧 氮化矽膜等。
另外,在絕緣體210、絕緣體212、絕緣體214及絕緣體216中嵌入導電體218及構成電晶體200的導電體等。此外,導電體218被用作與電容器100或電晶體300電連接的插頭或佈線。導電體218可以使用與導電體328及導電體330同樣的材料形成。
尤其是,與絕緣體210、絕緣體212及絕緣體214接觸的區域的導電體218較佳為對氧、氫及水具有阻擋性的導電體。藉由採用該結構,可以利用對氧、氫及水具有阻擋性的層完全將電晶體300與電晶體200分離,從而可以抑制氫從電晶體300擴散到電晶體200中。
在絕緣體214的上方設置有電晶體200。另外,下面參照圖7A至圖9C描述電晶體200的結構。注意,圖1所示的電晶體200的結構只是一個例子,不侷限於上述結構,根據電路結構或驅動方法使用適當的電晶體即可。
在電晶體200的上方設置絕緣體280。作為絕緣體280較佳為使用其氧含量超過滿足化學計量組成的氧化物。就是說,在絕緣體280中,較佳為形成有比滿足化學計量組成的氧多的氧存在的區域(以下,也稱為過量氧區域)。尤其是,在將氧化物半導體用於電晶體200時,作為電晶體200附近的層間膜等形成具有過量氧區域的絕緣體,降低電晶體200的氧缺陷,而可以提高電晶體200的可靠性。
明確而言,作為具有過量氧區域的絕緣體,較佳為使用藉由加熱使一部分的氧脫離的氧化物材料。藉由加熱使氧脫離的氧化物是指在TDS分析中換算為氧原子的氧的脫離量為1.0×1018atoms/cm3以上,較佳為3.0×1020atoms/cm3以上的氧化物膜。另外,進行上述TDS分析時的膜的表面溫度較佳為在100℃以上且700℃以下,或者100℃以上且 500℃以下的範圍內。
例如,作為這種材料,較佳為使用包含氧化矽或氧氮化矽的材料。另外,也可以使用金屬氧化物。注意,在本說明書中,“氧氮化矽”是指作為其組成氧含量多於氮含量的材料,而“氮氧化矽”是指作為其組成氮含量多於氧含量的材料。
另外,覆蓋電晶體200的絕緣體280也可以被用作覆蓋其下方的凹凸形狀的平坦化膜。
在絕緣體280上依次層疊地設置有絕緣體282、絕緣體284及絕緣體102。此外,在絕緣體220、絕緣體222、絕緣體224、絕緣體280、絕緣體282、絕緣體284及絕緣體102中嵌入導電體244等。此外,導電體244被用作與電容器100、電晶體200或電晶體300電連接的插頭或佈線。導電體244可以使用與導電體328及導電體330同樣的材料形成。
作為絕緣體282、絕緣體284及絕緣體102中的任何一個或全部較佳為使用對氧或氫具有阻擋性的物質。因此,作為絕緣體282可以使用與絕緣體214同樣的材料。另外,作為絕緣體284可以使用與絕緣體212同樣的材料。此外,作為絕緣體102可以使用與絕緣體210同樣的絕緣體。
例如,作為絕緣體282及絕緣體284,較佳為使用氧化鋁、氧化鉿、氧化鉭等的金屬氧化物。
特別是,氧化鋁的不使氧和電晶體的電特性的變動原因的氫及水分等雜質的兩者透過膜的遮斷效果高。因此,氧化鋁可以防止在電晶體的製程中及製造後氫、水分等雜質混入到電晶體200中。此外,還 可以抑制從構成電晶體200的氧化物釋放的氧。由此,氧化鋁適合於電晶體200的保護膜。
作為絕緣體102,較佳為使用能夠防止氫或雜質從設置有電容器100的區域擴散到形成有電晶體200的區域中的具有阻擋性的膜。因此,上述膜可以使用與絕緣體324同樣的材料。
例如,作為具有對氫的阻擋性的膜的一個例子,可以使用藉由CVD法形成的氮化矽。在此,當氫擴散到電晶體200等的具有氧化物半導體的半導體元件時,該半導體元件的特性有時降低。因此,較佳為在電晶體200和電晶體300之間使用抑制氫的擴散的膜。抑制氫的擴散的膜具體的是氫的脫離量少的膜。
因此,可以由絕緣體210、絕緣體212和絕緣體214的疊層結構與絕緣體282、絕緣體284和絕緣體102的疊層結構夾住電晶體200及包含過量氧區域的絕緣體280。絕緣體210、絕緣體212、絕緣體214、絕緣體282、絕緣體284及絕緣體102具有抑制氧或氫及水等雜質的擴散的阻擋性。
可以抑制從絕緣體280及電晶體200釋放的氧擴散到形成有電容器100的層或形成有電晶體300的層中。或者,可以抑制氫及水等雜質從絕緣體282的上方的層及絕緣體214的下方的層擴散到電晶體200中。
就是說,可以將氧從絕緣體280的過量氧區域高效地供應到電晶體200中的形成有通道的氧化物,而可以減少氧缺陷。另外,可以防止由於雜質而在電晶體200中的形成有通道的氧化物中形成氧缺陷。因此,可以將電晶體200中的形成有通道的氧化物形成為缺陷態密度低且特性穩定的氧化物半導體。就是說,可以在抑制電晶體200的電 特性變動的同時提高可靠性。
在此,圖5A及圖5B示出分割線附近的剖面圖。
例如,如圖5A所示,在與設置在包括電晶體200的記憶單元的邊緣的分割線(在圖1中以點劃線表示)重疊的區域附近,在絕緣體216、絕緣體220、絕緣體222、絕緣體224及絕緣體280中形成開口。另外,以覆蓋絕緣體216、絕緣體220、絕緣體222、絕緣體224及絕緣體280的側面的方式設置絕緣體282、絕緣體284及絕緣體102。因此,在該開口中絕緣體214與絕緣體282接觸,並形成絕緣體210、絕緣體212、絕緣體214、絕緣體282、絕緣體284和絕緣體102的疊層結構。此時,藉由使用相同材料及相同方法形成絕緣體214和絕緣體282,可以實現它們之間的緊密性高的疊層結構。
藉由採用該結構,可以由絕緣體210、絕緣體212、絕緣體214、絕緣體282、絕緣體284及絕緣體102包圍絕緣體216、絕緣體220、絕緣體222、絕緣體224及絕緣體280。因為絕緣體210、絕緣體212、絕緣體214、絕緣體282、絕緣體284及絕緣體102具有抑制氧、氫及水的擴散的功能,所以即使分割本實施方式所示的半導體裝置,也可以防止氫或水從絕緣體216、絕緣體220、絕緣體222、絕緣體224及絕緣體280的側面侵入而擴散到電晶體200中。
另外,藉由採用該結構,可以防止絕緣體280中的過量氧擴散到絕緣體282及絕緣體214的外部。因此,絕緣體280中的過量氧高效地被供應到電晶體200中的形成有通道的氧化物中。該氧可以減少電晶體200中的形成有通道的氧化物中的氧缺陷。由此,可以將電晶體200中的形成有通道的氧化物形成為缺陷態密度低且具有穩定的特性的氧化物半導體。換言之,可以在抑制電晶體200的電特性變動的同時提高可靠性。
另外,例如,如圖5B所示,在與分割線(在圖1中以點劃線表示)重疊的區域附近,在絕緣體216、絕緣體220、絕緣體222、絕緣體224及絕緣體280中形成開口。此外,以覆蓋絕緣體216、絕緣體220、絕緣體222、絕緣體224及絕緣體280的側面的方式設置絕緣體282及絕緣體284。再者,在絕緣體212、絕緣體214、絕緣體282及絕緣體284中設置開口,以覆蓋絕緣體212、絕緣體214、絕緣體282及絕緣體284的側面的方式設置絕緣體102。
也就是說,在開口中,絕緣體214和絕緣體282接觸。再者,在其外側,絕緣體210和絕緣體102接觸。此時,藉由使用相同材料及相同方法形成絕緣體214及絕緣體282,實現它們之間的緊密性高的疊層結構。此外,藉由使用相同材料及相同方法形成絕緣體210及絕緣體102,實現它們之間的緊密性高的疊層結構。
藉由採用該結構,可以嚴密地密封電晶體200與絕緣體280。因此,可以將電晶體200中的形成有通道的氧化物形成為缺陷態密度低且特性穩定的氧化物半導體。就是說,可以在抑制電晶體200的電特性變動的同時提高可靠性。
在絕緣體284的上方形成有電容器100及導電體124。電容器100形成在絕緣體102上,並包括導電體112、絕緣體114及導電體116。導電體124被用作與電容器100、電晶體200或電晶體300電連接的插頭或佈線。
作為導電體112可以使用金屬材料、合金材料、金屬氧化物材料等導電材料。較佳為使用兼具耐熱性和導電性的鎢或鉬等高熔點材料,尤其較佳為使用鎢。當與導電體等其他結構同時形成該導電體112時,使用低電阻金屬材料的Cu(銅)或Al(鋁)等即可。
此外,可以使用與用作電容器的電極的導電體112相同的材料設置導電體124。
在導電體124及導電體112上形成絕緣體114。作為絕緣體114例如可以使用氧化矽、氧氮化矽、氮氧化矽、氮化矽、氧化鋁、氧氮化鋁、氮氧化鋁、氮化鋁、氧化鉿、氧氮化鉿、氮氧化鉿、氮化鉿等,且以疊層或單層形成。
例如,當使絕緣體114具有疊層結構時,較佳為使用氧化鋁等介電常數高(high-k)的材料和氧氮化矽等絕緣強度高的材料來設置疊層結構。在具有該結構的電容器100中,由於介電常數高(high-k)的絕緣體而可以確保充分的電容,並且在包括介電強度大的絕緣體時絕緣強度得到提高而可以抑制電容器100的靜電放電。
在導電體112上隔著絕緣體114形成導電體116。作為導電體116可以使用金屬材料、合金材料、金屬氧化物材料等導電材料。較佳為使用兼具耐熱性和導電性的鎢或鉬等高熔點材料,尤其較佳為使用鎢。當與導電體等其他結構同時形成該導電體116時,使用低電阻金屬材料的Cu(銅)或Al(鋁)等即可。
例如,如圖1所示,以覆蓋導電體112的頂面及側面的方式設置絕緣體114。再者,以隔著絕緣體114並覆蓋導電體112的頂面及側面的方式設置導電體116。藉由採用該結構,導電體116隔著絕緣體114與導電體112的側面相對。也就是說,因為在導電體112的側面也形成電容,所以可以增加電容器的每個投影面積的電容。由此,可以實現半導體裝置的小面積化、高集成化及微型化。
在導電體116及絕緣體114上依次層疊地設置有絕緣體120及絕 緣體122。此外,導電體126嵌入於絕緣體120及絕緣體114中。此外,導電體128嵌入於絕緣體122中。另外,導電體126及導電體128被用作與電晶體200或電晶體300電連接的插頭或佈線。可以使用與導電體328及導電體330相同的材料設置導電體126。
可以使用與絕緣體320相同的材料設置絕緣體120及絕緣體122。此外,覆蓋電容器100的絕緣體120也可以被用作覆蓋其下方的凹凸狀的平坦化膜。
以上是結構實例的說明。也就是說,如圖38所示,在本實施方式中,電晶體200和絕緣體30被絕緣體10、絕緣體12、導電體20及導電體22包圍。
在此,絕緣體10相當於圖1所示的絕緣體210、絕緣體212及絕緣體216。絕緣體12相當於圖1所示的絕緣體282及絕緣體284。絕緣體30相當於圖1所示的絕緣體280。導電體20相當於圖1所示的導電體218。導電體22相當於圖1所示的導電體244。
也就是說,絕緣體30具有過量氧。此外,絕緣體10、絕緣體12、導電體20及導電體22對氧、氫及水具有阻擋性。此外,導電體20或導電體22與電容器100或電晶體300電連接。
電晶體200和具有過量氧的絕緣體30被具有阻擋性的導電體或具有阻擋性的絕緣體密封。因此,絕緣體30所具有的過量氧只擴散到被密封的區域中而不被釋放到絕緣體10、絕緣體12、導電體20及導電體22的外側,從而高效地供應到電晶體200。此外,可以防止在絕緣體10、絕緣體12、導電體20及導電體22的外側存在的作為雜質的氫及水擴散到電晶體200。
藉由採用本結構,在使用具有氧化物半導體的電晶體的半導體裝置中,可以抑制電特性的變動並提高可靠性。此外,可以提供通態電流大的具有氧化物半導體的電晶體。此外,可以提供關閉電流小的具有氧化物半導體的電晶體。再者,可以提供低功耗的半導體裝置。
〈變形實例1〉
作為本實施方式的變形實例,如圖2所示,也可以不設置絕緣體210。此外,也可以使用絕緣體103代替絕緣體102。絕緣體103的介電常數較佳為與絕緣體326同樣地比絕緣體102低。例如,絕緣體103的相對介電常數較佳為低於4,更佳為低於3。例如,絕緣體103的相對介電常數較佳為絕緣體102的相對介電常數的0.7倍以下,更佳為0.6倍以下。藉由將介電常數低的材料用於層間膜,可以減少產生在佈線之間的寄生電容。
此外,也可以由絕緣體212和絕緣體214的疊層結構與絕緣體282和絕緣體284的疊層結構夾住電晶體200及包含過量氧區域的絕緣體280。絕緣體212、絕緣體214、絕緣體282及絕緣體284具有抑制氧或氫及水等雜質的擴散的阻擋性。
因此,可以抑制從絕緣體280及電晶體200釋放的氧擴散到形成有電容器100的層或形成有電晶體300的層中。或者,可以抑制氫及水等雜質從絕緣體282的上方的層及絕緣體214的下方的層擴散到電晶體200中。
就是說,可以將氧從絕緣體280的過量氧區域高效地供應到電晶體200中的形成有通道的氧化物,而可以減少氧缺陷。另外,可以防止由於雜質而在電晶體200中的形成有通道的氧化物中形成氧缺陷。因此,可以將電晶體200中的形成有通道的氧化物形成為缺陷態密度低且特性穩定的氧化物半導體。就是說,可以在抑制電晶體200的電 特性變動的同時提高可靠性。
另外,圖6A示出本變形實例中的分割線附近的剖面圖。
例如,如圖6A所示,在與分割線(在圖1中以點劃線表示)重疊的區域附近絕緣體214與絕緣體282接觸,形成絕緣體212、絕緣體214、絕緣體282和絕緣體284的疊層結構。此時,藉由使用相同材料及相同方法形成絕緣體214和絕緣體282,可以實現它們之間的緊密性高的疊層結構。
藉由採用該結構,可以由絕緣體212、絕緣體214、絕緣體282及絕緣體284包圍絕緣體216、絕緣體220、絕緣體222、絕緣體224及絕緣體280。因為絕緣體212、絕緣體214、絕緣體282及絕緣體284具有抑制氧、氫及水的擴散的功能,所以即使分割本實施方式所示的半導體裝置,也可以防止氫或水從絕緣體216、絕緣體220、絕緣體222、絕緣體224及絕緣體280的側面侵入而擴散到電晶體200中。
另外,藉由採用該結構,可以防止絕緣體280中的過量氧擴散到絕緣體282及絕緣體214的外部。因此,絕緣體280中的過量氧高效地被供應到電晶體200中的形成有通道的氧化物中。該氧可以減少電晶體200中的形成有通道的氧化物中的氧缺陷。由此,可以將電晶體200中的形成有通道的氧化物形成為缺陷態密度低且具有穩定的特性的氧化物半導體。換言之,可以在抑制電晶體200的電特性變動的同時提高可靠性。
〈變形實例2〉
作為本實施方式的變形實例,如圖3所示,也可以不設置絕緣體212、絕緣體214、絕緣體282及絕緣體284。
可以由絕緣體210和絕緣體102夾住電晶體200及包含過量氧區域的絕緣體280。此外,絕緣體210及絕緣體102具有抑制氧或氫及水等雜質的擴散的阻擋性。
因此,可以抑制從絕緣體280及電晶體200釋放的氧擴散到形成有電容器100的層或形成有電晶體300的層中。或者,可以抑制氫及水等雜質從絕緣體282的上方的層及絕緣體214的下方的層擴散到電晶體200中。
就是說,可以將氧從絕緣體280的過量氧區域高效地供應到電晶體200中的形成有通道的氧化物,從而可以減少氧缺陷。另外,可以防止由於雜質而在電晶體200中的形成有通道的氧化物中形成氧缺陷。因此,可以將電晶體200中的形成有通道的氧化物形成為缺陷態密度低且特性穩定的氧化物半導體。就是說,可以在抑制電晶體200的電特性變動的同時提高可靠性。
另外,圖6B示出本變形實例中的分割線附近的剖面圖。
例如,如圖6B所示,在與分割線(在圖1中以點劃線表示)重疊的區域附近絕緣體210與絕緣體102接觸,形成絕緣體210和絕緣體102的疊層結構。此時,藉由使用相同材料及相同方法形成絕緣體210和絕緣體102,可以實現它們之間的緊密性高的疊層結構。
可以由絕緣體210及絕緣體102包圍絕緣體216、絕緣體220、絕緣體222、絕緣體224及絕緣體280。因為絕緣體210及絕緣體102具有抑制氧、氫及水的擴散的功能,所以即使分割本實施方式所示的半導體裝置,也可以防止氫或水從絕緣體216、絕緣體220、絕緣體222、絕緣體224及絕緣體280的側面侵入而擴散到電晶體200中。
另外,可以防止絕緣體280中的過量氧擴散到絕緣體282及絕緣體210的外部。因此,絕緣體280中的過量氧高效地被供應到電晶體200中的形成有通道的氧化物中。該氧可以減少電晶體200中的形成有通道的氧化物中的氧缺陷。由此,可以將電晶體200中的形成有通道的氧化物形成為缺陷態密度低且具有穩定的特性的氧化物半導體。換言之,可以在抑制電晶體200的電特性變動的同時提高可靠性。
〈變形實例3〉
另外,作為本實施方式的變形實例,如圖4所示,也可以不設置絕緣體212、絕緣體214及絕緣體284。
此外,也可以由絕緣體210、絕緣體282和絕緣體102的疊層結構夾住電晶體200及包含過量氧區域的絕緣體280。絕緣體210、絕緣體282及絕緣體102具有抑制氧或氫及水等雜質的擴散的阻擋性。
因此,可以抑制從絕緣體280及電晶體200釋放的氧擴散到形成有電容器100的層或形成有電晶體300的層中。或者,可以抑制氫及水等雜質從絕緣體282的上方的層及絕緣體210的下方的層擴散到電晶體200中。
就是說,可以將氧從絕緣體280的過量氧區域高效地供應到電晶體200中的形成有通道的氧化物,從而可以減少氧缺陷。另外,可以防止由於雜質而在電晶體200中的形成有通道的氧化物中形成氧缺陷。因此,可以將電晶體200中的形成有通道的氧化物形成為缺陷態密度低且特性穩定的氧化物半導體。就是說,可以在抑制電晶體200的電特性變動的同時提高可靠性。
另外,圖6C示出本變形實例中的分割線附近的剖面圖。
例如,如圖6C所示,在與分割線(在圖1中以點劃線表示)重疊的區域附近絕緣體210與絕緣體282接觸,形成絕緣體210、絕緣體282和絕緣體102的疊層結構。
藉由採用該結構,可以由絕緣體210、絕緣體282及絕緣體102包圍絕緣體216、絕緣體220、絕緣體222、絕緣體224及絕緣體280。因為絕緣體210、絕緣體282及絕緣體102具有抑制氧、氫及水的擴散的功能,所以即使分割本實施方式所示的半導體裝置,也可以防止氫或水從絕緣體216、絕緣體220、絕緣體222、絕緣體224及絕緣體280的側面侵入而擴散到電晶體200中。
另外,藉由採用該結構,可以防止絕緣體280中的過量氧擴散到絕緣體282及絕緣體210的外部。因此,絕緣體280中的過量氧高效地被供應到電晶體200中的形成有通道的氧化物中。該氧可以減少電晶體200中的形成有通道的氧化物中的氧缺陷。由此,可以將電晶體200中的形成有通道的氧化物形成為缺陷態密度低且具有穩定的特性的氧化物半導體。換言之,可以在抑制電晶體200的電特性變動的同時提高可靠性。
本實施方式的至少一部分可以與本說明書所記載的其他實施方式適當地組合而實施。
實施方式2
在本實施方式中,參照圖7A至圖9C說明半導體裝置的一個實施方式。
〈電晶體結構1〉
下面說明根據本發明的一個實施方式的電晶體的一個例子。圖7A、 圖7B及圖7C是根據本發明的一個實施方式的電晶體的俯視圖及剖面圖。圖7A是俯視圖,圖7B是對應於圖7A所示的點劃線X1-X2的剖面圖,圖7C是對應於點劃線Y1-Y2的剖面圖。另外,在圖7A的俯視圖中,為了明確起見,省略一部分的組件。
電晶體200包括:被用作閘極電極的導電體205及導電體260;被用作閘極絕緣層的絕緣體220、絕緣體222、絕緣體224及絕緣體250;具有形成有通道的區域的氧化物230;被用作源極和汲極中的一個的導電體240a及導電體241a;被用作源極和汲極中的另一個的導電體240b及導電體241b;絕緣體270;以及包含過量氧的絕緣體280。
氧化物230包括氧化物230a、氧化物230a上的氧化物230b、以及氧化物230b上的氧化物230c。當使電晶體200導通時,電流主要流過氧化物230b(形成通道)。另一方面,在氧化物230a及氧化物230c中,有時在與氧化物230b之間的介面附近(有時成為混合區域)電流流過,但是其他區域被用作絕緣體。
另外,在圖7A至圖7C所示的半導體裝置中,對具有與構成圖1所示的半導體裝置的結構相同的功能的結構附加相同元件符號。
導電體205可以使用包含選自鉬、鈦、鉭、鎢、鋁、銅、鉻、釹、鈧中的元素的金屬膜或以上述元素為成分的金屬氮化物膜(氮化鈦膜、氮化鉬膜、氮化鎢膜)等。或者,作為導電體205,也可以使用銦錫氧化物、包含氧化鎢的銦氧化物、包含氧化鎢的銦鋅氧化物、包含氧化鈦的銦氧化物、包含氧化鈦的銦錫氧化物、銦鋅氧化物、添加有氧化矽的銦錫氧化物等導電材料。
在圖7A至圖7C中,示出導電體205a和導電體205b的兩層結構,但是也可以不侷限於此,既可以是單層又可以是三層以上的疊層結構。 例如,作為導電體205a可以使用具有對氫的阻擋性的導電體的氮化鉭等,作為導電體205b可以層疊導電性高的鎢。藉由使用該組合,可以在保持作為佈線的導電性的同時抑制氫擴散到氧化物230。
絕緣體220及絕緣體224較佳為氧化矽膜或氧氮化矽膜等包含氧的絕緣體。尤其是,作為絕緣體224較佳為使用包含過量氧(含有超過化學計量組成的氧)的絕緣體。藉由以與構成電晶體200的氧化物接觸的方式設置上述包含過量氧的絕緣體,可以填補氧化物中的氧缺陷。注意,絕緣體222及絕緣體224不一定必須要使用相同材料形成。
作為絕緣體222,例如較佳為使用包含氧化矽、氧氮化矽、氮氧化矽、氧化鋁、氧化鉿、氧化鉭、氧化鋯、鋯鈦酸鉛(PZT)、鈦酸鍶(SrTiO3)或(Ba,Sr)TiO3(BST)等所謂的high-k材料的絕緣體的單層或疊層。或者,例如也可以對這些絕緣體添加氧化鋁、氧化鉍、氧化鍺、氧化鈮、氧化矽、氧化鈦、氧化鎢、氧化釔、氧化鋯。此外,也可以對這些絕緣體進行氮化處理。還可以在上述絕緣體上層疊氧化矽、氧氮化矽或氮化矽而使用。
絕緣體222也可以具有兩層以上的疊層結構。此時,不侷限於使用相同材料構成的疊層結構,也可以是使用不同材料形成的疊層結構。
當在絕緣體220和絕緣體224之間包括包含high-k材料的絕緣體222時,在特定條件下,絕緣體222俘獲電子,可以增大臨界電壓。就是說,絕緣體222有時帶負電。
例如,當將氧化矽用於絕緣體220及絕緣體224,並將氧化鉿、氧化鋁、氧化鉭等電子俘獲態多的材料用於絕緣體222時,在比半導體裝置的使用溫度或保存溫度高的溫度(例如,125℃以上且450℃以下, 典型的是150℃以上且300℃以下)下保持導電體205的電位高於源極電極或汲極電極的電位的狀態10毫秒以上,典型是1分鐘以上,由此電子從構成電晶體200的氧化物向導電體205移動。此時,移動的電子的一部分被絕緣體222的電子俘獲態俘獲。
在絕緣體222的電子俘獲態俘獲所需要的電子的電晶體的臨界電壓向正一側漂移。藉由控制導電體205的電壓可以控制電子的俘獲量,由此可以控制臨界電壓。藉由採用該結構,電晶體200成為在閘極電壓為0V的情況下也處於非導通狀態(也稱為關閉狀態)的常關閉型電晶體。
另外,俘獲電子的處理在電晶體的製造過程中進行即可。例如,在形成與電晶體的源極導電體或汲極導電體連接的導電體之後、前製程(晶圓處理)結束之後、晶圓切割製程之後或者封裝之後等發貨之前的任一個步驟進行俘獲電子的處理即可。不管在上述哪一種情況下,都較佳為在該處理之後不將電晶體放置在125℃以上的溫度下1小時以上。
此外,也可以在絕緣體220及絕緣體224由氧化矽構成且絕緣體222由氧化鉿構成時,絕緣體220及絕緣體224藉由化學氣相沉積法(包括CVD法、原子層沉積(ALD)法)形成,絕緣體222藉由濺射法形成。此外,藉由濺射法形成絕緣體222,絕緣體222在低溫下容易晶化,有時所產生的固定電荷量較大。
藉由適當地調整絕緣體220、絕緣體222、絕緣體224的厚度,可以控制臨界電壓。另外,本發明的一個實施方式可以提供一種關閉狀態時的洩漏電流小的電晶體。另外,本發明的一個實施方式可以提供一種具有穩定的電特性的電晶體。另外,本發明的一個實施方式可以提供一種通態電流大的電晶體。另外,本發明的一個實施方式可以提 供一種次臨界擺幅值小的電晶體。另外,本發明的一個實施方式可以提供一種可靠性高的電晶體。
絕緣體222較佳為使用對於氧或氫具有阻擋性的物質。藉由使用這種材料形成絕緣體222時,可以防止從構成電晶體200的氧化物釋放氧或從外部混入氫等雜質。
氧化物230a、氧化物230b及氧化物230c使用In-M-Zn氧化物(M為Al、Ga、Y或Sn)等金屬氧化物形成。作為氧化物230,也可以使用In-Ga氧化物、In-Zn氧化物。
下面說明根據本發明的氧化物230。
用作氧化物230的氧化物較佳為至少包含銦或鋅。特別較佳為包含銦及鋅。另外,較佳的是,除此之外,還包含鋁、鎵、釔或錫等。另外,也可以包含硼、矽、鈦、鐵、鎳、鍺、鋯、鉬、鑭、鈰、釹、鉿、鉭、鎢或鎂等中的一種或多種。
在此考慮氧化物包含銦、元素M及鋅的情況。注意,元素M為鋁、鎵、釔或錫等。作為其他的可用於元素M的元素,除了上述元素以外,還有硼、矽、鈦、鐵、鎳、鍺、鋯、鉬、鑭、鈰、釹、鉿、鉭、鎢、鎂等。注意,作為元素M有時可以組合多個上述元素。
首先,參照圖23A至圖23C說明根據本發明的氧化物所包含的銦、元素M及鋅的較佳的原子個數比範圍。注意,在圖23A至圖23C中,沒有記載氧的原子個數比。將氧化物所包含的銦、元素M及鋅的原子個數比的各項分別稱為[In]、[M]及[Zn]。
在圖23A至圖23C中,虛線表示[In]:[M]:[Zn]=(1+α):(1-α):1 的原子個數比(-1α1)的線、[In]:[M]:[Zn]=(1+α):(1-α):2的原子個數比的線、[In]:[M]:[Zn]=(1+α):(1-α):3的原子個數比的線、[In]:[M]:[Zn]=(1+α):(1-α):4的原子個數比的線及[In]:[M]:[Zn]=(1+α):(1-α):5的原子個數比的線。
點劃線表示[In]:[M]:[Zn]=1:1:β的原子個數比的(β0)的線、[In]:[M]:[Zn]=1:2:β的原子個數比的線、[In]:[M]:[Zn]=1:3:β的原子個數比的線、[In]:[M]:[Zn]=1:4:β的原子個數比的線、[In]:[M]:[Zn]=2:1:β的原子個數比的線及[In]:[M]:[Zn]=5:1:β的原子個數比的線。
此外,雙點劃線示出原子個數比為[In]:[M]:[Zn]=(1+γ):2:(1-γ)(-1γ1)的線。此外,圖23A至圖23C所示的具有[In]:[M]:[Zn]=0:2:1的原子個數比或其近似值的氧化物容易具有尖晶石型結晶結構。
圖23A和圖23B示出本發明的一個實施方式的氧化物所包含的銦、元素M及鋅的較佳的原子個數比範圍的例子。
作為一個例子,圖24示出[In]:[M]:[Zn]=1:1:1的InMZnO4的結晶結構。圖24是在從平行於b軸的方向上觀察時的InMZnO4的結晶結構。圖24所示的包含M、Zn、氧的層(以下、(M,Zn)層)中的金屬元素表示元素M或鋅。此時,元素M和鋅的比例相同。元素M和鋅可以相互置換,其排列不規則。
InMZnO4具有層狀結晶結構(也稱為層狀結構),如圖24所示,包含銦及氧的層(下面稱為In層):包含元素M、鋅及氧的(M,Zn)層=1:2。
銦和元素M可以相互置換。因此,可以用銦取代(M,Zn)層中的元素M,將該層表示為(In,M,Zn)層。在此情況下,具有In層: (In,M,Zn)層=1:2的層狀結構。
具有[In]:[M]:[Zn]=1:1:2的原子個數比的氧化物具有In層:(M,Zn)層=1:3的層狀結構。就是說,當[Zn]相對於[In]及[M]增大時,在氧化物晶化的情況下,相對於In層的(M,Zn)層的比例增加。
注意,在氧化物中,在In層:(M,Zn)層=1:非整數時,有時具有多種In層:(M,Zn)層=1:整數的層狀結構。例如,在[In]:[M]:[Zn]=1:1:1.5的情況下,有時具有In層:(M,Zn)層=1:2的層狀結構和In層:(M,Zn)層=1:3的層狀結構混在一起的結構。
例如,當使用濺射裝置形成氧化物時,形成其原子個數比與靶材的原子個數比錯開的膜。尤其是,根據成膜時的基板溫度,有時膜的[Zn]小於靶材的[Zn]。
有時在氧化物中,多個相共存(例如,二相共存、三相共存等)。例如,在是[In]:[M]:[Zn]=0:2:1的原子個數比的附近值的原子個數比的情況下,尖晶石型結晶結構和層狀結晶結構的二相容易共存。在是[In]:[M]:[Zn]=1:0:0的原子個數比的附近值的原子個數比的情況下,方鐵錳礦型結晶結構和層狀結晶結構的二相容易共存。當在氧化物中多個相共存時,在不同的結晶結構之間有時形成晶界(也稱為grain boundary)。
藉由增高銦含量,可以提高氧化物的載子移動率(電子移動率)。 這是因為:在包含銦、元素M及鋅的氧化物中,重金屬的s軌域主要有助於載子傳導,藉由增高銦含量,s軌域重疊的區域變大,由此銦含量高的氧化物的載子移動率比銦含量低的氧化物高。
另一方面,氧化物的銦含量及鋅含量變低時,載子移動率變低。 因此,在是[In]:[M]:[Zn]=0:1:0的原子個數比及其附近值的原子個數比(例如,圖23C中的區域C)的情況下,絕緣性變高。
因此,本發明的一個實施方式的氧化物較佳為具有圖23A的以區域A表示的原子個數比,此時該氧化物容易具有載子移動率高且晶界少的層狀結構。
圖23B中的區域B示出[In]:[M]:[Zn]=4:2:3至4.1的原子個數比及其附近值。附近值例如包含[In]:[M]:[Zn]=5:3:4的原子個數比。具有以區域B表示的原子個數比的氧化物尤其是具有高的結晶性及優異的載子移動率的氧化物。
注意,氧化物形成層狀結構的條件不是根據原子個數比唯一決定的。根據原子個數比,形成層狀結構的難以有差異。另一方面,即使在原子個數比相同的情況下,也根據形成條件,有時具有層狀結構,有時不具有層狀結構。因此,圖示的區域是表示氧化物具有層狀結構時的原子個數比的區域,區域A至區域C的境界不嚴格。
接著,說明將上述氧化物用於電晶體的情況。
藉由將氧化物用於電晶體,可以減少晶界中的載子散亂等,因此可以實現場效移動率高的電晶體。另外,可以實現可靠性高的電晶體。
此外,作為電晶體較佳為使用載子密度低的氧化物。例如,將氧化物的載子密度設定為低於8×1011/cm3,較佳為低於1×1011/cm3,更佳為低於1×1010/cm3且1×10-9/cm3以上。
另外,因為在高純度本質或實質上高純度本質的氧化物中,載子發生源少,所以可以降低載子密度。此外,高純度本質或實質上高純 度本質的氧化物的缺陷態密度低,所以有時其陷阱態密度也降低。
此外,被氧化物的缺阱態俘獲的電荷到消失需要較長的時間,有時像固定電荷那樣動作。因此,有時在陷阱態密度高的氧化物中形成有通道區域的電晶體的電特性不穩定。
因此,為了使電晶體的電特性穩定,降低氧化物中的雜質濃度是有效的。為了降低氧化物中的雜質濃度,較佳為還降低靠近的膜中的雜質濃度。作為雜質有氫、氮、鹼金屬、鹼土金屬、鐵、鎳、矽等。
在此,說明氧化物中的各雜質的影響。
在氧化物包含第14族元素之一的矽或碳時,在氧化物中形成缺陷態。因此,將氧化物中的矽或碳的濃度、與氧化物的介面附近的矽或碳的濃度(藉由二次離子質譜分析法(SIMS:Secondary Ion Mass Spectrometry)測得的濃度)設定為2×1018atoms/cm3以下,較佳為2×1017atoms/cm3以下。
另外,當氧化物包含鹼金屬或鹼土金屬時,有時形成缺陷態而形成載子。因此,使用包含鹼金屬或鹼土金屬的氧化物的電晶體容易具有常開啟特性。由此,較佳為降低氧化物中的鹼金屬或鹼土金屬的濃度。明確而言,使藉由SIMS測得的氧化物中的鹼金屬或鹼土金屬的濃度為1×1018atoms/cm3以下,較佳為2×1016atoms/cm3以下。
當氧化物包含氮時,產生作為載子的電子,並載子密度增加,而氧化物容易被n型化。其結果是,將含有氮的氧化物用於半導體的電晶體容易具有常開啟特性。因此,較佳為儘可能地減少氧化物中的氮,例如,利用SIMS測得的氧化物中的氮濃度較佳為小於5×1019atoms/cm3、更佳為5×1018atoms/cm3以下,進一步較佳為1×1018atoms/cm3以下,還 較佳為5×1017atoms/cm3以下。
包含在氧化物中的氫與鍵合於金屬原子的氧起反應生成水,因此有時形成氧缺陷。當氫進入該氧缺陷時,有時產生作為載子的電子。另外,有時由於氫的一部分與鍵合於金屬原子的氧鍵合,產生作為載子的電子。因此,使用包含氫的氧化物的電晶體容易具有常開啟特性。由此,較佳為儘可能減少氧化物中的氫。明確而言,在氧化物中,利用SIMS測得的氫濃度低於1×1020atoms/cm3,較佳為低於1×1019atoms/cm3,更佳為低於5×1018atoms/cm3,進一步較佳為低於1×1018atoms/cm3
藉由將雜質充分得到降低的氧化物用於電晶體的通道區域,可以賦予穩定的電特性。
接著,對該氧化物具有兩層結構或三層結構的情況進行說明。參照圖25A至圖25C說明與氧化物S1、氧化物S2和氧化物S3的疊層結構接觸的絕緣體的帶圖、與氧化物S1和氧化物S2的疊層結構接觸的絕緣體的帶圖以及與氧化物S2和氧化物S3的疊層結構接觸的絕緣體的帶圖。
圖25A是包括絕緣體I1、氧化物S1、氧化物S2、氧化物S3和絕緣體I2的疊層結構的厚度方向上的帶圖的一個例子。另外,圖25B是包括絕緣體I1、氧化物S2、氧化物S3和絕緣體I2的疊層結構的厚度方向上的帶圖的一個例子。另外,圖25C是包括絕緣體I1、氧化物S1、氧化物S2和絕緣體I2的疊層結構的厚度方向上的帶圖的一個例子。注意,為了便於理解,帶圖示出絕緣體I1、氧化物S1、氧化物S2、氧化物S3及絕緣體I2的導帶底的能階(Ec)。
較佳的是,氧化物S1、氧化物S3的導帶底的能階比氧化物S2更 靠近真空能階,典型的是,氧化物S2的導帶底的能階與氧化物S1、氧化物S3的導帶底的能階之差為0.15eV以上、0.5eV以上且2eV以下、或者1eV以下。就是說,較佳的是,氧化物S2的電子親和力大於氧化物S1及氧化物S3的電子親和力,且氧化物S1及氧化物S3的電子親和力與氧化物S2的電子親和力之差為0.15eV以上、0.5eV以上且2eV以下、或者1eV以下。
如圖25A至圖25C所示,在氧化物S1、氧化物S2、氧化物S3中,導帶底的能階平滑地變化。換言之,也可以將上述情況表達為導帶底的能階連續地變化或者連續地接合。為了實現這種能帶圖,較佳為降低形成在氧化物S1與氧化物S2的介面或者氧化物S2與氧化物S3的介面的混合層的缺陷態密度。
明確而言,藉由使氧化物S1和氧化物S2、氧化物S2和氧化物S3包含氧之外的共同元素(主要成分),可以形成缺陷態密度低的混合層。例如,在氧化物S2為In-Ga-Zn氧化物的情況下,作為氧化物S1、氧化物S3較佳為使用In-Ga-Zn氧化物、Ga-Zn氧化物、氧化鎵等。
此時,載子的主要路徑成為氧化物S2。因為可以降低氧化物S1與氧化物S2的介面以及氧化物S2與氧化物S3的介面的缺陷態密度,所以介面散射給載子傳導帶來的影響小,從而可以得到大通態電流。
在電子被陷阱態俘獲時,被俘獲的電子像固定電荷那樣動作,導致電晶體的臨界電壓向正方向漂移。藉由設置氧化物S1、氧化物S3,可以使陷阱態遠離氧化物S2。藉由採用該結構,可以防止電晶體的臨界電壓向正方向漂移。
作為氧化物S1、氧化物S3,使用其導電率比氧化物S2充分低的材料。此時,氧化物S2、氧化物S2與氧化物S1的介面以及氧化物S2 與氧化物S3的介面主要被用作通道區域。例如,作為氧化物S1、氧化物S3,使用具有在圖23C中以絕緣性高的區域C表示的原子個數比的氧化物即可。注意,圖23C所示的區域C表示[In]:[M]:[Zn]=0:1:0或其附近值的原子個數比。
尤其是,當作為氧化物S2使用具有以區域A表示的原子個數比的氧化物時,作為氧化物S1及氧化物S3較佳為使用[M]/[In]為1以上,較佳為2以上的氧化物。另外,作為氧化物S3,較佳為使用能夠得到充分高的絕緣性的[M]/([Zn]+[In])為1以上的氧化物。
作為絕緣體250,例如可以使用包含氧化矽、氧氮化矽、氮氧化矽、氧化鋁、氧化鉿、氧化鉭、氧化鋯、鋯鈦酸鉛(PZT)、鈦酸鍶(SrTiO3)或(Ba,Sr)TiO3(BST)等所謂的high-k材料的絕緣體的單層或疊層。或者,例如也可以對這些絕緣體添加氧化鋁、氧化鉍、氧化鍺、氧化鈮、氧化矽、氧化鈦、氧化鎢、氧化釔、氧化鋯。此外,也可以對這些絕緣體進行氮化處理。還可以在上述絕緣體上層疊氧化矽、氧氮化矽或氮化矽而使用。
另外,與絕緣體224同樣,作為絕緣體250較佳為使用其氧含量超過滿足化學計量組成的氧化物絕緣體。藉由以與氧化物230接觸的方式設置上述包含過量氧的絕緣體,可以減少氧化物230中的氧缺陷。
絕緣體250可以使用氧化鋁、氧氮化鋁、氧化鎵、氧氮化鎵、氧化釔、氧氮化釔、氧化鉿、氧氮化鉿、氮化矽等具有對氧或氫的阻擋性的絕緣膜。當使用這種材料形成絕緣體250時,絕緣體250被用作防止從氧化物230釋放氧或從外部混入氫等雜質的層。
絕緣體250也可以具有與絕緣體220、絕緣體222及絕緣體224同樣的疊層結構。當絕緣體250具有在電子俘獲態俘獲所需要的電子 的絕緣體時,電晶體200的臨界電壓可以向正一側漂移。藉由採用該結構,電晶體200成為在閘極電壓為0V的情況下也處於非導通狀態(也稱為關閉狀態)的常關閉型電晶體。
另外,在圖7A至圖7C所示的半導體裝置中,可以在氧化物230和導電體260之間除了絕緣體250以外還可以設置障壁膜。或者,作為氧化物230c,也可以使用具有阻擋性的材料。
例如,藉由以與氧化物230接觸的方式設置包含過量氧的絕緣膜,且由障壁膜包圍這些膜,可以使氧化物為與化學計量組成大致一致的狀態或者超過化學計量組成的氧的過飽和狀態。此外,可以防止對氧化物230侵入氫等雜質。
導電體240a和導電體241a中的一個及導電體240b和導電體241b中的一個被用作源極電極,而導電體240a和導電體241a中的另一個及導電體240b和導電體241b中的另一個被用作汲極電極。
導電體240a、導電體241a、導電體240b、導電體241b可以使用鋁、鈦、鉻、鎳、銅、釔、鋯、鉬、銀、鉭或鎢等金屬或者以這些元素為主要成分的合金。雖然圖7A至圖7C示出兩層結構,但是也可以採用單層結構或三層以上的的疊層結構。
例如,將鈦膜用於導電體240a及導電體240b,且將鋁膜用於導電體241a及導電體241b而層疊它們。另外,也可以採用在鎢膜上層疊鋁膜的兩層結構、在銅-鎂-鋁合金膜上層疊銅膜的兩層結構、在鈦膜上層疊銅膜的兩層結構、在鎢膜上層疊銅膜的兩層結構。
另外,也可以使用:在鈦膜或氮化鈦膜上層疊鋁膜或銅膜並在其上形成鈦膜或氮化鈦膜的三層結構、在鉬膜或氮化鉬膜上層疊鋁膜或 銅膜而並在其上形成鉬膜或氮化鉬膜的三層結構等。另外,也可以使用包含氧化銦、氧化錫或氧化鋅的透明導電材料。
被用作閘極電極的導電體260a及導電體260b例如可以使用選自鋁、鉻、銅、鉭、鈦、鉬、鎢中的金屬、以上述金屬為成分的合金或組合上述金屬的合金等而形成。另外,也可以使用選自錳、鋯中的一個或多個的金屬。此外,也可以使用以摻雜有磷等雜質元素的多晶矽為代表的半導體、鎳矽化物等矽化物。
例如,較佳為採用其中將鋁用於導電體260a且將鈦膜用於導電體260b的兩層結構。另外,也可以採用在氮化鈦膜上層疊鈦膜的兩層結構、在氮化鈦膜上層疊鎢膜的兩層結構、在氮化鉭膜或氮化鎢膜上層疊鎢膜的兩層結構。
還有在鈦膜上層疊鋁膜,在其上層疊鈦膜的三層結構等。此外,也可以使用組合鋁與選自鈦、鉭、鎢、鉬、鉻、釹、鈧中的一種或多種的合金膜或氮化膜。
此外,作為導電體260,也可以使用銦錫氧化物、包含氧化鎢的銦氧化物、包含氧化鎢的銦鋅氧化物、包含氧化鈦的銦氧化物、包含氧化鈦的銦錫氧化物、銦鋅氧化物、添加有氧化矽的銦錫氧化物等具有透光性的導電材料。另外,也可以採用上述具有透光性的導電材料和上述金屬的疊層結構。
另外,也可以以覆蓋導電體260的方式形成絕緣體270。當將氧脫離的氧化物材料用於絕緣體280時,作為絕緣體270使用具有對氧的阻擋性的物質,以防止由於脫離的氧導電體260氧化。
例如,作為絕緣體270可以使用氧化鋁等金屬氧化物。以防止導 電體260的氧化的程度的厚度形成絕緣體270即可。例如,以1nm以上且10nm以下、較佳為3nm以上且7nm以下的厚度形成絕緣體270。
因此,可以抑制導電體260的氧化,並且可以將從絕緣體280脫離的氧高效率地供應到氧化物230。
此外,在該結構中,可以由用作閘極電極的導電體260的電場電性上圍繞氧化物230b中的形成有通道的區域。因為具有s-channel結構,所以有時隔著絕緣體250在與導電體260相對的氧化物230b的區域整體形成通道。在s-channel結構中,可以在電晶體的源極-汲極之間流過大電流,從而可以增加通態電流。此外,對形成有通道的區域從所有方向施加電壓,所以可以提供洩漏電流得到抑制的電晶體。
〈電晶體結構2〉
圖8A至圖8C示出可以應用於電晶體200的結構的一個例子。圖8A示出電晶體200的頂面。注意,為了明確起見,省略圖8A中的部分膜。圖8B是對應於圖8A所示的點劃線X1-X2的剖面圖,圖8C是對應於圖8A所示的點劃線Y1-Y2的剖面圖。
注意,在圖8A至圖8C所示的電晶體200中,對具有構成與圖7A至圖7C所示的電晶體200的結構相同的功能的結構附加相同元件符號。
圖8A至圖8C所示的結構在形成於絕緣體280的開口部中形成有氧化物230c、絕緣體250及導電體260。另外,導電體240a、導電體240b、導電體241a及導電體241b中的一個端部與形成在絕緣體280中的開口部的端部一致。再者,導電體240a、導電體240b、導電體241a及導電體241b的三個端部與氧化物230a及氧化物230b的端部的一部分一致。由此,可以在與氧化物230或絕緣體280的開口部同時形成 導電體240a、導電體240b、導電體241a及導電體241b。由此,可以減少遮罩及製程的數量。此外,可以提高良率及生產性。
再者,由於圖8A至圖8C所示的電晶體200具有導電體240a、導電體240b、導電體241a及導電體241b與導電體260幾乎不重疊的結構,所以可以減小導電體260的寄生電容。也就是說,可以提供一種工作頻率高的電晶體200。
〈電晶體結構3〉
圖9A至圖9C示出可以應用於電晶體200的結構的一個例子。圖9A示出電晶體200的頂面。注意,為了明確起見,省略圖9A中的部分膜。圖9B是對應於圖9A所示的點劃線X1-X2的剖面圖,圖9C是對應於圖9A所示的點劃線Y1-Y2的剖面圖。
注意,在圖9A至圖9C所示的電晶體200中,對具有構成與圖7A至圖7C所示的電晶體200的結構相同的功能的結構附加相同元件符號。
在圖9A至圖9C所示的結構中,氧化物230設置有用作源極區域和汲極區域中的一個的區域245a及用作源極區域和汲極區域中的另一個的區域245b。該區域可以藉由以導電體260為遮罩對氧化物230添加硼、磷、氬等雜質來形成。此外,藉由作為絕緣體280使用氮化矽膜等的含氫的絕緣體,可以使氫擴散到氧化物230的一部分來形成。因此,可以縮減遮罩或製程。此外,還可以提高良率及生產率。
以上,本實施方式所示的結構、方法等可以與其他實施方式及其他實施例所示的結構、方法等適當地組合而使用。
實施方式3
在本實施方式中,參照圖10至圖21說明上述結構實例所示的半導體裝置的製造方法的一個例子。
〈絕緣體中的過量氧區域的製造方法1〉
在此,參照圖10至圖20說明本發明中的絕緣體中的過量氧區域的製造方法。圖10是說明半導體裝置的製造方法中的在絕緣體中形成過量氧區域的製程的一個例子的製程流程圖。
[第一製程]
第一製程包括形成電晶體200的製程(參照圖10的步驟S01)。在下面示出電晶體200的製造方法的詳細內容。
[第二製程]
第二製程包括形成絕緣體280的製程(參照圖10的步驟S02)。
[第三製程]
第三製程包括形成絕緣體282的製程(參照圖10的步驟S03)。絕緣體280使用對氧、氫或水具有阻擋性的材料。
此外,較佳為使用濺射裝置形成絕緣體282。藉由利用濺射法,可以更容易地在絕緣體282的下方的絕緣體280中形成過量氧區域。
在藉由濺射法進行成膜時,在靶材與基板之間存在離子和被濺射的粒子。例如,靶材與電源連接,並被施加電位E0。另外,基板被施加接地電位等電位E1。但是,基板也可以處於電浮動狀態。另外,在靶材與基板之間存在成為電位E2的區域。各電位的大小關係滿足E2>E1>E0。
藉由使電漿中的離子由於電位差E2-E0加速而該離子碰撞到靶材,被濺射的粒子從靶材被彈出。並且,藉由該被濺射的粒子附著於成膜表面上而形成絕緣體282。另外,有時離子的一部分由靶材反沖,並且作為反沖離子經過絕緣體282被吸收到位於所形成的膜的下方的絕緣體280。此外,有時電漿中的離子由於電位差E2-E1而加速,衝擊到成膜表面。此時,離子的一部分到達絕緣體280的內部。藉由離子被吸收到絕緣體280,在絕緣體280中形成離子被吸收的區域。換言之,在離子是包含氧的離子的情況下,在絕緣體280中形成過量氧區域。
[第四製程]
第四製程包括進行藉由絕緣體282對絕緣體280引入氧的處理的製程(參照圖10的步驟S04)。作為對絕緣體280引入氧的處理,可以採用離子植入法、離子摻雜法、電漿浸沒離子佈植技術、電漿處理等。藉由本製程,超過滿足化學計量組成的氧被引入到絕緣體280中,且在該絕緣體280中形成過量氧區域
[第五製程]
第五製程包括進行加熱處理的製程(參照圖10的步驟S05)。較佳為在250℃以上且650℃以下,較佳為在300℃以上且500℃以下,更佳為在350℃以上且400℃以下進行加熱處理。此外,在惰性氛圍或包含10ppm以上,1%以上或10%以上的氧化氣體的氛圍下進行加熱處理。也可以在減壓狀態下進行加熱處理。在加熱處理中,可以使用利用燈加熱的RTA裝置。
藉由進行加熱處理,以第四製程被引入的氧擴散到絕緣體280的膜中及電晶體200中。供應到構成電晶體200的氧化物230的氧減少氧化物230的氧缺陷。由此,可以將電晶體200中的形成有通道的氧化物形成為缺陷態密度低且具有穩定特性的氧化物半導體。也就是說,可以抑制電晶體200的電特性變動且提高可靠性。
另外,也可以同時進行第四製程及第五製程。也就是說,藉由一邊對基板進行加熱,一邊進行氧引入處理,可以提高生產率。
[第六製程]
在第六製程中,判斷是否在絕緣體280中充分地形成過量氧區域(參照圖10的步驟S06)。在充分地形成有過量氧區域的情況下,較佳為進行用來形成絕緣體284或電容器100等的製程。另一方面,在不充分地形成過量氧區域時,進行第七製程。
[第七製程]
在第七製程中,判斷是否絕緣體282充分地保持對氧、氫或水的阻擋性(參照圖10的步驟S07)。在絕緣體282充分地保持對氧、氫或水的阻擋性的情況下,較佳為直到充分地形成過量氧區域為止反復進行第四製程及第五製程。另一方面,在因在第四製程中產生的衝擊等而絕緣體282被破壞的情況下,進行第八製程。
[第八製程]
第八製程包括在絕緣體282上形成絕緣體284的製程(參照圖10的步驟S08)。較佳為藉由採用ALD法形成絕緣體284。藉由採用ALD法,可以形成裂縫或針孔等缺陷少或具有均勻厚度的緻密的絕緣體284。此外,可以減少在形成絕緣體284時加工部材所受到的損傷。
[第九製程]
第九製程包括進行藉由絕緣體282及絕緣體284對絕緣體280引入氧的處理的製程(參照圖10的步驟S09)。作為對絕緣體280引入氧的處理,可以採用離子植入法、離子摻雜法、電漿浸沒離子佈植技術、電漿處理等。藉由本製程,超過滿足化學計量組成的氧被引入絕緣體280中,且在該絕緣體280中形成過量氧區域。
[第十製程]
第十製程包括進行加熱處理的製程(參照圖10的步驟S10)。較佳為在250℃以上且650℃以下,較佳為在300℃以上且500℃以下,更佳為在350℃以上且400℃以下進行加熱處理。此外,在包含10ppm以上、1%以上或10%以上的惰性氛圍或氧化氣體的氛圍下進行加熱處理。也可以在減壓狀態下進行加熱處理。在加熱處理中,可以使用利用燈加熱的RTA裝置。
藉由進行加熱處理,以第八製程被引入的氧擴散到絕緣體280的膜中及電晶體200中。供應到構成電晶體200的氧化物230的氧減少氧化物230的氧缺陷。由此,可以將電晶體200中的形成有通道的氧化物形成為缺陷態密度低且具有穩定特性的氧化物半導體。也就是說,可以抑制電晶體200的電特性變動且提高可靠性。
另外,也可以同時進行第九製程及第十製程。也就是說,藉由一邊對基板進行加熱,一邊進行氧引入處理,可以提高生產率。
[第十一製程]
在第十一製程中,判斷是否在絕緣體280中充分地形成過量氧區域(參照圖10的步驟S11)。在充分地形成有過量氧區域的情況下,較佳為進行用來形成絕緣體102或電容器100等的製程。另一方面,在不充分地形成過量氧區域時,較佳為直到充分地形成過量氧區域為止反復進行第九製程及第十製程。
如此,在本發明的一個實施方式的半導體裝置的製造方法中,藉由對絕緣體280反復進行氧引入處理及加熱處理,可以形成過量氧區域。此外,藉由經過絕緣體282或絕緣體282及絕緣體284進行氧引入處理,可以抑制絕緣體280的損壞且高效地引入氧。由此,在具有 氧化物半導體的電晶體中,可以抑制電特性變動且提高可靠性。
〈半導體裝置的製造方法1〉
接著,參照圖11A至圖20說明採用圖10所示的過量氧區域的製造方法的本發明的半導體裝置的製造方法的一個例子。
首先,準備基板301。作為基板301,使用半導體基板。例如可以使用單晶矽基板(包括p型半導體基板或n型半導體基板)、以碳化矽或氮化鎵為材料的化合物半導體基板等。另外,作為基板301,也可以使用SOI基板。以下,對作為基板301使用單晶矽的情況進行說明。
接著,在基板301中形成元件分離層。元件分離層可以利用LOCOS(Local Oxidation of Silicon:矽局部氧化)法或STI(Shallow Trench Isolation:淺溝槽隔離)法等形成。
另外,當在同一基板上形成p型電晶體和n型電晶體時,也可以在基板301的一部分形成n井或p井。例如,也可以對n型基板301添加賦予p型導電性的硼等雜質元素形成p井,並在同一基板上形成n型電晶體和p型電晶體。
接著,在基板301上形成成為絕緣體304的絕緣膜。例如,也可以在表面氮化處理之後進行氧化處理,使矽與氮化矽之間的介面氧化而形成氧氮化矽膜。例如,在NH3氛圍中以700℃在表面上形成熱氮化矽膜,然後進行氧自由基氧化,由此得到氧氮化矽膜。
該絕緣體也可以藉由濺射法、CVD(Chemical Vapor Deposition)法(包括熱CVD法、MOCVD(Metal Organic CVD)法、PECVD(Plasma Enhanced CVD)法等)、MBE(Molecular Beam Epitaxy)法,ALD(Atomic Layer Deposition)法或PLD(Pulsed Laser Deposition)法等形成。
接著,形成成為導電體306的導電膜。作為導電膜,較佳為使用選自鉭、鎢、鈦、鉬、鉻、鈮等的金屬或以這些金屬為主要成分的合金材料或化合物材料。另外,還可以使用添加有磷等雜質的多晶矽。此外,還可以使用金屬氮化物膜和上述金屬膜的疊層結構。作為金屬氮化物,可以使用氮化鎢、氮化鉬或氮化鈦。藉由設置金屬氮化物膜,可以提高金屬膜的緊密性,從而能夠防止剝離。另外,因為藉由設定導電體306的功函數來調整電晶體300的臨界電壓,所以較佳為根據電晶體300被要求的特性適當地選擇導電膜的材料。
導電膜可以藉由濺射法、蒸鍍法、CVD法(包括熱CVD法、MOCVD法、PECVD法等)等形成。另外,為了減少電漿所導致的損傷,較佳為利用熱CVD法、MOCVD法或ALD法。
接著,藉由光微影法等在該導電膜上形成光阻遮罩,來去除該導電膜的不需要的部分。然後,去除光阻遮罩,由此可以形成導電體306。
在此,對被加工膜的加工方法進行說明。當對被加工膜進行微細加工時,可以使用各種微細加工技術。例如,也可以採用對藉由光微影法等形成的光阻遮罩進行縮小處理的方法。另外,也可以藉由光微影法等形成假圖案,在該假圖案處形成側壁之後去除假圖案,將殘留的側壁用作光阻遮罩,對被加工膜進行蝕刻。此外,為了實現高縱橫比,作為被加工膜的蝕刻較佳為利用各向異性乾蝕刻。另外,也可以使用由無機膜或金屬膜構成的硬遮罩。
作為用來形成光阻遮罩的光,例如可以使用i線(波長365nm)、g線(波長436nm)、h線(波長405nm)或將這些光混合的光。此外,還可以使用紫外線、KrF雷射或ArF雷射等。此外,也可以利用液浸曝光技術進行曝光。作為用於曝光的光,也可以使用極紫外光(EUV: Extreme Ultra-violet)或X射線。此外,代替用於曝光的光,也可以使用電子束。當使用極紫外光、X射線或電子束時,可以進行極其精細的加工,所以是較佳的。注意,在藉由利用電子束等光束進行掃描而進行曝光時,不需要光罩。
此外,也可以在形成將成為光阻遮罩的光阻膜之前,形成具有提高被加工膜與光阻膜的密接性的功能的有機樹脂膜。可以利用旋塗法等以覆蓋其下方的步階而使其表面平坦化的方式形成該有機樹脂膜,而可以降低形成在該有機樹脂膜的上方的光阻遮罩的厚度的偏差。尤其是,在進行微細的加工時,作為該有機樹脂膜較佳為使用具有對用於曝光的光的反射防止膜的功能的材料。作為具有這種功能的有機樹脂膜,例如有BARC(Bottom Anti Reflection Coating:底部抗反射塗料)膜等。在去除光阻遮罩的同時或在去除光阻遮罩之後去除該有機樹脂膜即可。
在形成導電體306之後,也可以形成覆蓋導電體306的側面的側壁。在形成比導電體306的厚度厚的絕緣體之後,進行各向異性蝕刻,只殘留導電體306的側面部分的該絕緣體,由此可以形成側壁。
在形成側壁的同時,成為絕緣體304的絕緣膜也被蝕刻,由此在導電體306及側壁的下部形成絕緣體304。另外,也可以在形成導電體306之後以導電體306或用來形成導電體306的光阻遮罩為蝕刻遮罩對該絕緣膜進行蝕刻,由此形成絕緣體304。在此情況下,在導電體306的下方形成絕緣體304。或者,也可以將該絕緣膜用作絕緣體304而不對該絕緣膜進行蝕刻。
接著,對基板301的沒有設置導電體306(及側壁)的區域添加磷等賦予n型導電性的元素或硼等賦予p型導電性的元素。
接著,在形成絕緣體320之後,進行用來使上述賦予導電性的元素活化的加熱處理。
絕緣體320例如可以利用氧化矽、氧氮化矽、氮氧化矽、氮化矽、氧化鋁、氧氮化鋁、氮氧化鋁、氮化鋁等,以疊層或單層設置。另外,當使用包含氧和氫的氮化矽(SiNOH)時,因為可以增大藉由加熱脫離的氫量,所以是較佳的。此外,使用使TEOS(Tetra-Ethyl-Ortho-Silicate:四乙氧基矽烷)或矽烷等與氧或一氧化二氮等起反應而形成的步階覆蓋性良好的氧化矽。
絕緣體320可以藉由例如濺射法、CVD法(包括熱CVD法、MOCVD法、PECVD法等)、MBE法、ALD法或PLD法等形成。尤其是,當藉由CVD法、較佳為藉由電漿CVD法形成該絕緣體時,可以提高覆蓋性,所以是較佳的。另外,為了減少電漿所導致的損傷,較佳為利用熱CVD法、MOCVD法或ALD法。
可以在稀有氣體或氮氣體等惰性氛圍下或者在減壓氛圍下,例如以400℃以上且低於基板的應變點的溫度進行加熱處理。
在這階段中形成電晶體300。另外,在採用圖22B所示的電路結構時,可以不設置電晶體300。在此情況下,對可用作基板的基板沒有特別的限制。例如,可以使用玻璃基板如硼矽酸鋇玻璃基板和硼矽酸鋁玻璃基板等、陶瓷基板、石英基板、藍寶石基板等。此外,也可以利用:使用矽或碳化矽等的單晶半導體基板或多晶半導體基板;使用矽鍺、砷化鎵、砷化銦、砷化銦鎵的化合物半導體基板;SOI(Silicon On Insulator)基板;或GOI(Germanium on Insulator)基板等,並且也可以使用在這些基板上設置有半導體元件的基板。
另外,作為基板也可以使用撓性基板。既可以在撓性基板上直接 製造電晶體,也可以在其他製造基板上製造電晶體,然後從製造基板剝離電晶體並將其轉置到撓性基板上。另外,為了從製造基板剝離電晶體並將其轉置到撓性基板上,較佳為在製造基板與包括氧化物半導體的電晶體之間設置剝離層。
接著,在絕緣體320上形成絕緣體322。絕緣體322可以藉由採用與絕緣體320同樣的材料及方法製造。此外,藉由CMP法等對絕緣體322的頂面進行平坦化(圖11A)。
接著,藉由光微影法等在絕緣體320及絕緣體322中形成到達低電阻區域308a、低電阻區域308b及導電體306等的開口部(圖11B)。然後,以填埋開口部的方式形成導電膜(圖11C)。例如可以藉由濺射法、CVD法(包括熱CVD法、MOCVD法、PECVD法等)、MBE法、ALD法或PLD法等形成導電膜。
接著,藉由以使絕緣體322的頂面露出的方式對該導電膜進行平坦化處理,形成導電體328a、導電體328b及導電體328c等(圖12A)。另外,圖中的箭頭表示CMP處理。此外,在說明書及圖式中,導電體328a、導電體328b及導電體328c用作插頭或佈線,有時將它們總稱為導電體328。另外,在本說明書中,同樣地處理具有插頭或佈線的功能的導電體。
接著,在絕緣體320上藉由採用鑲嵌法等形成導電體330a、導電體330b及導電體330c(圖12B)。
絕緣體324及絕緣體326可以藉由採用與絕緣體320同樣的材料及方法形成。
作為絕緣體324,例如較佳為使用能夠防止氫或雜質從基板301 或電晶體300等擴散到設置有電晶體200的區域中的具有阻擋性的膜。例如,作為對氫具有阻擋性的膜的一個例子,可以使用藉由CVD法形成的氮化矽。
此外,絕緣體326較佳為介電常數低的絕緣體(Low-k材料)。例如,可以使用藉由CVD法形成的氧化矽。藉由將介電常數低的材料用於層間膜,可以減少在佈線之間產生的寄生電容。
此外,成為導電體330的導電膜可以藉由採用與導電體328同樣的材料及方法形成。
另外,在導電體330採用疊層結構時,作為與絕緣體324接觸的導電體,較佳為使用氮化鉭等的對氧、氫或水具有阻擋性的導電體。例如,具有阻擋性的氮化鉭膜可以以250℃的基板溫度使用不包含氯的沉積氣體且利用ALD法形成。藉由採用ALD法,可以形成裂縫或針孔等缺陷少或具有均勻厚度的緻密的導電體。此外,藉由使對氧、氫或水具有阻擋性的絕緣體324和對氧、氫或水具有阻擋性的導電體接觸,可以確實地抑制氧、氫或水的拡散。
接著,形成絕緣體352、絕緣體354、導電體358a、導電體358b及導電體358c(圖12C)。絕緣體352及絕緣體354可以藉由採用與絕緣體320同樣的材料及方法形成。此外,導電體358可以藉由採用雙鑲嵌法等並使用與導電體328同樣的材料形成。
接著,形成電晶體200。
在形成絕緣體210之後,形成對氫或氧具有阻擋性的絕緣體212及絕緣體214。絕緣體210、絕緣體212及絕緣體214可以藉由採用與絕緣體320同樣的材料及方法形成。
例如,作為絕緣體210,較佳為使用能夠防止氫或雜質從基板301或電晶體300等擴散到設置有電晶體200的區域中的具有阻擋性的膜。例如,作為對氫具有阻擋性的膜的一個例子,可以使用藉由CVD法形成的氮化矽。
此外,作為對氫具有阻擋性的膜的一個例子,絕緣體212可以使用藉由採用ALD法形成的氧化鋁。藉由採用ALD法,可以形成裂縫或針孔等缺陷少或具有均勻厚度的緻密的絕緣體。
另外,作為對氫具有阻擋性的膜的一個例子,絕緣體214可以使用藉由採用濺射法形成的氧化鋁。
接著,在絕緣體214上形成絕緣體216。絕緣體216可以藉由採用與絕緣體210同樣的材料及方法形成(圖13A)。
接著,在絕緣體210、絕緣體212、絕緣體214和絕緣體216的疊層結構中,在與導電體358a、導電體358b及導電體358c等重疊的區域中形成凹部(圖13B)。另外,該凹部較佳為具有至少在使用難蝕刻材料的絕緣體中形成開口部的程度的深度。在此,難蝕刻材料是指金屬氧化物等的難以被蝕刻的材料。作為難蝕刻材料的金屬氧化膜的典型例子有氧化鋁、氧化鋯、氧化鉿、包含它們的矽化物(HfSixOy、ZrSixOy等)以及包含它們中的兩個以上的複合氧化物(Hf1-xAlxOy、Zr1-xAlxOy等)。
接著,在絕緣體210、絕緣體212、絕緣體214和絕緣體216的疊層結構中,在要形成導電體205的區域中形成開口部,且去除形成在絕緣體210、絕緣體212、絕緣體214和絕緣體216的疊層結構中的凹部的底部,由此形成到達導電體358a、導電體358b及導電體358c的 開口部(圖14A)。此時,藉由擴大形成在凹部的上部,例如形成在絕緣體216中的開口部,可以對在後面的製程中形成的插頭或佈線確保充分的設計餘地。
然後,以填埋開口部的方式形成導電膜(圖14B)。導電膜可以藉由採用與導電體328同樣的材料及方法形成。接著,藉由對導電膜進行平坦化處理,使絕緣體216的頂面露出且形成導電體218a、導電體218b、導電體218c及導電體205(圖15A)。圖式中的箭頭表示CMP處理。
接著,形成絕緣體220、絕緣體222及絕緣體224。
絕緣體220、絕緣體222及絕緣體224可以藉由採用與絕緣體320同樣的材料及方法形成。特別是,作為絕緣體222,較佳為使用氧化鉿等的high-k材料。
接著,依次形成成為氧化物230a的氧化物及成為氧化物230b的氧化物。該氧化物較佳為以不暴露於大氣的方式連續地形成。
較佳為在形成成為氧化物230b的氧化物之後進行加熱處理。加熱處理以250℃以上且650℃以下的溫度,較佳為以300℃以上且500℃以下的溫度在惰性氛圍、包含10ppm以上的氧化氣體的氛圍或減壓狀態下進行即可。另外,在惰性氛圍下進行加熱處理之後,為了填補脫離的氧,也可以在包含10ppm以上的氧化氣體的氛圍下進行另一個加熱處理。加熱處理既可以在形成成為氧化物230b的氧化物之後立即進行,又可以在對成為氧化物230b的氧化物進行加工而形成島狀的氧化物230b之後進行。藉由進行加熱處理,氧從形成在氧化物230a的下方的絕緣體被供應到氧化物230a及氧化物230b,而可以降低氧化物中的氧缺陷。
然後,在成為氧化物230b的氧化物上形成成為導電體240a及導電體240b的導電膜。接著,藉由採用與上述同樣的方法形成光阻遮罩,且藉由蝕刻去除導電膜的不需要的部分。接著,以導電膜為遮罩藉由蝕刻去除氧化物的不需要的部分。之後,藉由去除光阻遮罩,可以形成島狀的氧化物230a、島狀的氧化物230b和島狀的導電膜的疊層結構。
接著,在島狀的導電膜上藉由採用與上述同樣的方法形成光阻遮罩,且藉由蝕刻去除導電膜的不需要的部分。然後,藉由去除光阻遮罩,形成導電體240a及導電體240b。
接著,依次形成成為氧化物230c的氧化物、成為絕緣體250的絕緣體及成為導電體260的導電膜。例如,成為導電體260的導電膜可以層疊藉由ALD法形成的氮化鉭和導電率大的鎢而使用。當形成該導電膜時,較佳為使用不包含氯的沉積氣體。藉由以與絕緣體250接觸的方式形成對氧、氫及水具有阻擋性的氮化鉭,可以由擴散到絕緣體250的過量氧防止鎢的氧化。
接著,藉由採用與上述同樣的方法在該導電膜上形成光阻遮罩,且藉由蝕刻去除導電膜的不需要的部分,從而形成導電體260。
接著,在成為絕緣體250的絕緣體及導電體260上形成成為絕緣體270的絕緣體。作為成為絕緣體270的絕緣體,較佳為使用對氫及氧具有阻擋性的材料。接著,藉由採用與上述同樣的方法在該絕緣體上形成光阻遮罩,且藉由蝕刻去除成為絕緣體270的絕緣體、成為絕緣體250的絕緣體及成為氧化物230c的氧化物各個的不需要的部分。然後,藉由去除光阻遮罩,形成電晶體200。
接著,形成絕緣體280。絕緣體280較佳為使用其氧含量超過滿足化學計量組成的氧化物。此外,在形成成為絕緣體280的絕緣體之後,也可以進行採用CMP法等的平坦化處理以提高該絕緣體的頂面的平坦性(圖15B)。
另外,為了使絕緣體280包含過剩的氧,例如在氧氛圍下形成絕緣體280,即可。或者,可以將氧引入到成膜之後的絕緣體280來形成包含過剩的氧的區域,也可以組合兩者的方法。
此外,作為氧引入處理的一個例子,有利用濺射裝置在絕緣體280上層疊氧化物的方法。例如,作為形成絕緣體282的方法利用濺射裝置在氧氣體氛圍下進行成膜,從而可以一邊形成絕緣體282,一邊對絕緣體280引入氧。
接著,藉由絕緣體282對絕緣體280引入氧(至少包含氧自由基、氧原子、氧離子中的任一個),來形成包含過剩的氧的區域。作為氧的引入方法,可以使用離子植入法、離子摻雜法、離子體浸沒離子植入法、電漿處理等。藉由經過絕緣體282進行氧引入處理,可以在保護絕緣體280的狀態下形成過量氧區域(圖16)。另外,圖式中的箭頭表示氧引入處理。
此外,作為氧引入處理,可以使用包含氧的氣體。作為包含氧的氣體,可以使用氧、一氧化二氮、二氧化氮、二氧化碳、一氧化碳等。另外,也可以在氧引入處理中使含氧的氣體包含稀有氣體,例如,可以使用二氧化碳、氫和氬的混合氣體。
接著,進行加熱處理。加熱處理以250℃以上且650℃以下的溫度,較佳為以300℃以上且500℃以下的溫度,更佳為以350℃以上且400℃以下的溫度在惰性氛圍、包含10ppm以上的氧化氣體的氛圍或減壓 狀態下進行即可。此外,作為加熱處理的氛圍,在惰性氛圍下進行加熱處理之後,還可以在包含10ppm以上的氧化氣體的氛圍下進行以填補脫離的氧。加熱處理也可以使用利用燈加熱的RTA裝置(圖17)。注意,圖式中的箭頭表示加熱處理。
藉由加熱處理被引入到絕緣體280的過量氧擴散到絕緣體280中。在此,絕緣體280被對氧具有阻擋性的絕緣體282及絕緣體210包圍。因此,防止引入到絕緣體280的過量氧釋放到外部,且該過量氧高效地被供應到氧化物230。
此外,因加熱處理而絕緣體280中的氫移動並被引入到絕緣體282中。因被引入到絕緣體282中的氫與絕緣體282中的氧起反應,而可能生成水。所生成的水從絕緣體282的頂面釋放。由此,可以減少絕緣體280中的作為雜質的氫及水。另外,在絕緣體282使用氧化鋁時,可以認為絕緣體282被用作催化劑。
供應到氧化物230的氧填補氧化物230中的氧缺陷。因此,可以將電晶體200中的形成有通道的氧化物形成為缺陷態密度低且具有穩定的特性的氧化物半導體。也就是說,可以抑制電晶體200的電特性變動且提高可靠性。
此外,以充分地形成過量氧區域或不使絕緣體282的阻擋性因氧引入處理所導致的損壞而失掉的程度多次反復氧引入處理和加熱處理。
在此,在絕緣體282的阻擋性降低或失掉時,也可以在形成絕緣體284之後進行氧引入處理和加熱處理。藉由絕緣體282及絕緣體284進行氧引入處理,從而可以在保護絕緣體280的狀態下形成過量氧區域。
另外,作為絕緣體284,例如較佳為藉由採用ALD法形成具有阻擋性的氧化鋁膜。藉由採用ALD法,可以形成裂縫或針孔等缺陷少或具有均勻厚度的緻密的絕緣體。
此外,藉由在絕緣體282上層疊膜質量緻密的絕緣體284,可以將引入到絕緣體280中的過量氧有效地密封到電晶體200一側(圖18)。
接著,形成電容器100。首先,在絕緣體284上形成絕緣體102。絕緣體102可以藉由採用與絕緣體210同樣的材料及方法形成。
例如,作為絕緣體102,較佳為使用能夠防止氫或雜質從電容器100等不擴散到設置有電晶體200的區域的具有阻擋性的膜。例如,作為對氫具有阻擋性的膜的一個例子,可以使用藉由CVD法形成的氮化矽。
接著,在絕緣體220、絕緣體222、絕緣體224、絕緣體280、絕緣體282及絕緣體284中形成到達導電體218a、導電體218b、導電體218c、導電體240a及導電體240b等的開口部。
然後,藉由以填埋開口部的方式形成導電膜,並對導電膜進行平坦化處理,使絕緣體102的頂面露出,從而形成導電體244a、導電體244b、導電體244c、導電體244d及導電體244e。另外,導電膜可以藉由採用與導電體328同樣的材料及方法形成(圖19)。
另外,在導電體244採用疊層結構時,作為與絕緣體104接觸的導電體,藉由採用ALD法形成氮化鉭等的對氧、氫或水具有阻擋性的導電體。藉由採用ALD法,可以形成裂縫或針孔等缺陷少或具有均勻厚度的緻密的導電體。此外,藉由使對氧、氫或水具有阻擋性的絕緣 體104與對氧、氫或水具有阻擋性的導電體244接觸,確實地抑制氧、氫或水的拡散。
接著,在絕緣體102上形成導電體112及導電體124。另外,導電體112及導電體124可以藉由採用與導電體240及導電體260等的其他導電體同樣的材料及方法形成。在形成導電體112及導電體124時去除絕緣體102的頂面,此時所去除的厚度較佳為大於絕緣體114的厚度。例如,藉由進行過蝕刻處理,可以同時去除絕緣體102的一部分。另外,藉由利用過蝕刻處理形成導電體112等,可以以不殘留蝕刻殘渣的方式進行蝕刻。
另外,藉由在該蝕刻處理的中途切換蝕刻氣體的種類,可以高效地去除絕緣體102的一部分。
例如,也可以在形成導電體112之後,以導電體112為硬遮罩去除絕緣體102的一部分。
另外,在形成導電體112之後,也可以對導電體112的表面進行清洗處理。藉由進行清洗處理,可以去除蝕刻殘渣等。
接著,形成覆蓋導電體112的側面及頂面的絕緣體114。絕緣體114例如可以使用氧化矽、氧氮化矽、氮氧化矽、氮化矽、氧化鋁、氧氮化鋁、氮氧化鋁、氮化鋁、氧化鉿、氧氮化鉿、氮氧化鉿、氮化鉿等,並採用疊層或單層。
例如,較佳為採用氧化鋁等的high-k材料和氧氮化矽等的絕緣強度大的材料的疊層結構。藉由採用該結構,電容器100可以具有high-k材料而確保充分的電容器,並因絕緣強度大的材料而其絕緣強度提高,從而可以抑制電容器100的靜電破壞且提高電容器100的可靠性。
接著,在絕緣體114上形成導電體116。另外,導電體116可以藉由採用與導電體112同樣的材料及方法形成。
導電體116較佳為以藉由絕緣體114覆蓋導電體112的側面及頂面的方式設置。藉由採用該結構,導電體112的側面藉由絕緣體114與導電體116相對。因此,可以形成每個投影面積的電容大的電容器。
接著,形成覆蓋電容器100的絕緣體120。成為絕緣體120的絕緣體可以藉由採用與絕緣體320等同樣的材料及方法形成。
在絕緣體120上形成導電體128a、導電體128b、導電體128c及導電體128d。導電體128藉由採用與導電體328同樣的材料及製造方法形成,即可。
接著,在絕緣體120上形成絕緣體122(圖20)。成為絕緣體122的絕緣體可以藉由採用與絕緣體122等同樣的材料及方法形成。
藉由上述製程,可以製造本發明的一個實施方式的半導體裝置。
在藉由上述製程製造的使用具有氧化物半導體的電晶體的半導體裝置中,可以抑制電特性變動且提高可靠性。可以提供一種通態電流大的具有氧化物半導體的電晶體。可以提供一種關閉電流小的具有氧化物半導體的電晶體。再者,可以提供一種低功耗的半導體裝置。
〈絕緣體中的過量氧區域的製造方法2〉
參照圖21說明本發明中的絕緣體中的過量氧區域的製造方法。圖21是說明半導體裝置的製造方法中的在絕緣體中形成過量氧區域的製程的一個例子的製程流程圖。
[第一製程]
第一製程包括形成電晶體200的製程(參照圖21的步驟S01)。
[第二製程]
第二製程包括形成絕緣體280的製程(參照圖21的步驟S02)。
[第十二製程]
第十二製程包括形成絕緣體102的製程(參照圖21的步驟S12)。絕緣體280使用對氧、氫或水具有阻擋性的材料。
例如,作為對氫具有阻擋性的膜的一個例子,可以使用藉由CVD法形成的氮化矽。在此,有時氫擴散到電晶體200等具有氧化物半導體的半導體元件中導致該半導體元件的特性下降。因此,較佳為在電晶體200與電晶體300之間設置抑制氫的擴散的膜。明確而言,抑制氫的擴散的膜是指氫的脫離量少的膜。
氫的脫離量例如可以利用熱脫附譜分析法(TDS(Thermal Desorption Spectroscopy))等測定。例如,在TDS分析中的50℃至500℃的範圍內,當將換算為氫原子的脫離量換算為絕緣體324的每個面積的量時,絕緣體324中的氫的脫離量為10×1015atoms/cm2以下,較佳為5×1015atoms/cm2以下,即可。
絕緣體102的厚度為10nm以上且80nm以下,較佳為20nm以上且60nm以下。即使反復進行第十三製程及第十四製程,也以不失掉阻擋性的程度的厚度形成絕緣體102。此外,以在第十三製程的氧引入處理中摻雜物穿過的程度的厚度形成。
[第十三製程]
第十三製程包括進行藉由絕緣體102對絕緣體280引入氧的處理的製程(參照圖21的步驟S13)。作為對絕緣體280引入氧的處理,可以採用離子植入法、離子摻雜法、電漿浸沒離子佈植技術、電漿處理等。藉由本製程,超過滿足化學計量組成的氧被引入到絕緣體280中,且在該絕緣體280中形成過量氧區域。
[第十四製程]
第十四製程包括進行加熱處理的製程(參照圖21的步驟S05)。較佳為在250℃以上且650℃以下,較佳為在300℃以上且500℃以下,更佳為在350℃以上且400℃以下進行加熱處理。此外,在包含10ppm以上、1%以上或10%以上的惰性氛圍或氧化氣體的氛圍下進行加熱處理。也可以在減壓狀態下進行加熱處理。在加熱處理中,可以使用利用燈加熱的RTA裝置。
藉由進行加熱處理,以第十三製程被引入的氧擴散到絕緣體280的膜中及電晶體200中。供應到構成電晶體200的氧化物230的氧減少氧化物230的氧缺陷。由此,可以將電晶體200中的形成有通道的氧化物形成為缺陷態密度低且具有穩定特性的氧化物半導體。也就是說,可以抑制電晶體200的電特性變動且提高可靠性。
另外,也可以同時進行第十三製程及第十四製程。也就是說,藉由一邊對基板進行加熱,一邊進行氧引入處理,可以提高生產率。
[第十五製程]
在第十五製程中,判斷是否在絕緣體280中充分地形成過量氧區域(參照圖21的步驟S06)。在充分地形成有過量氧區域的情況下,較佳為進行用來形成電容器100等的製程。另一方面,在不充分地形成過量氧區域時,較佳為直到充分地形成過量氧區域為止反復進行第十三製程及第十四製程。
如此,在本發明的一個實施方式的半導體裝置的製造方法中,藉由對絕緣體280反復進行氧引入處理及加熱處理,可以形成過量氧區域。此外,藉由經過絕緣體102進行氧引入處理,可以抑制絕緣體280的損壞且高效地引入氧。由此,在具有氧化物半導體的電晶體中,可以抑制電特性變動且提高可靠性。
本實施方式的至少一部分可以與本說明書所記載的其他實施方式適當地組合而實施。
實施方式4
在本實施方式中,下面說明參照圖26A至圖30包括在上述實施方式所例示的電晶體中的氧化物半導體。
〈氧化物半導體的結構〉
下面,說明氧化物半導體的結構。
氧化物半導體被分為單晶氧化物半導體和非單晶氧化物半導體。作為非單晶氧化物半導體有CAAC-OS(c-axis-aligned crystalline oxide semiconductor)、多晶氧化物半導體、nc-OS(nanocrystalline oxide semiconductor)、a-like OS(amorphous-like oxide semiconductor)及非晶氧化物半導體等。
從其他觀點看來,氧化物半導體被分為非晶氧化物半導體和結晶氧化物半導體。作為結晶氧化物半導體,有單晶氧化物半導體、CAAC-OS、多晶氧化物半導體以及nc-OS等。
一般而言,非晶結構具有如下特徵:具有各向同性而不具有不均 勻結構;處於準穩態且原子的配置沒有被固定化;鍵角不固定;具有短程有序而不具有長程有序;等。
亦即,不能將穩定的氧化物半導體稱為完全非晶(completely amorphous)氧化物半導體。另外,不能將不具有各向同性(例如,在微小區域中具有週期結構)的氧化物半導體稱為完全非晶氧化物半導體。另一方面,a-like OS不具有各向同性但卻是具有空洞(void)的不穩定結構。在不穩定這一點上,a-like OS在物性上接近於非晶氧化物半導體。
〈CAAC-OS〉
首先,說明CAAC-OS。
CAAC-OS是包含多個c軸配向的結晶部(也稱為顆粒)的氧化物半導體之一。
說明使用X射線繞射(XRD:X-Ray Diffraction)裝置對CAAC-OS進行分析時的情況。例如,當利用out-of-plane法分析包含分類為空間群R-3m的InGaZnO4結晶的CAAC-OS的結構時,如圖26A所示,在繞射角(2θ)為31°附近出現峰值。由於該峰值來源於InGaZnO4結晶的(009)面,由此可確認到在CAAC-OS中結晶具有c軸配向性,並且c軸朝向大致垂直於形成CAAC-OS的膜的面(也稱為被形成面)或頂面的方向。注意,除了2θ為31°附近的峰值以外,有時在2θ為36°附近時也出現峰值。2θ為36°附近的峰值起因於分類為空間群Fd-3m的結晶結構。因此,較佳的是,在CAAC-OS中不出現該峰值。
另一方面,當利用從平行於被形成面的方向使X射線入射到樣本的in-plane法分析CAAC-OS的結構時,在2θ為56°附近出現峰值。該峰值來源於InGaZnO4結晶的(110)面。並且,即使將2θ固定為56° 附近並在以樣本面的法線向量為軸(Φ軸)旋轉樣本的條件下進行分析(Φ掃描),也如圖26B所示的那樣觀察不到明確的峰值。另一方面,當對單晶InGaZnO4將2θ固定為56°附近來進行Φ掃描時,如圖26C所示,觀察到來源於相等於(110)面的結晶面的六個峰值。因此,由使用XRD的結構分析可以確認到CAAC-OS中的a軸和b軸的配向沒有規律性。
接著,說明利用電子繞射分析的CAAC-OS。例如,當對包含InGaZnO4結晶的CAAC-OS在平行於CAAC-OS的被形成面的方向上入射束徑為300nm的電子束時,有可能出現圖26D所示的繞射圖案(也稱為選區電子繞射圖案)。在該繞射圖案中包含起因於InGaZnO4結晶的(009)面的斑點。因此,電子繞射也示出CAAC-OS所包含的顆粒具有c軸配向性,並且c軸朝向大致垂直於被形成面或頂面的方向。另一方面,圖26E示出對相同的樣本在垂直於樣本面的方向上入射束徑為300nm的電子束時的繞射圖案。從圖26E觀察到環狀的繞射圖案。因此,使用束徑為300nm的電子束的電子繞射也示出CAAC-OS所包含的顆粒的a軸和b軸不具有配向性。可以認為圖26E中的第一環起因於InGaZnO4結晶的(010)面和(100)面等。另外,可以認為圖26E中的第二環起因於(110)面等。
另外,在利用穿透式電子顯微鏡(TEM:Transmission Electron Microscope)觀察所獲取的CAAC-OS的明視野影像與繞射圖案的複合分析影像(也稱為高解析度TEM影像)中,可以觀察到多個顆粒。然而,即使在高解析度TEM影像中,有時也觀察不到顆粒與顆粒之間的明確的邊界,亦即晶界(grain boundary)。因此,可以說在CAAC-OS中,不容易發生起因於晶界的電子移動率的降低。
圖27A示出從大致平行於樣本面的方向觀察所獲取的CAAC-OS的剖面的高解析度TEM影像。利用球面像差校正(Spherical Aberration Corrector)功能得到高解析度TEM影像。尤其將利用球面像差校正功能獲取的高解析度TEM影像稱為Cs校正高解析度TEM影像。例如可以使用日本電子株式會社製造的原子解析度分析型電子顯微鏡JEM-ARM200F等觀察Cs校正高解析度TEM影像。
從圖27A可確認到其中金屬原子排列為層狀的顆粒。並且可知一個顆粒的尺寸為1nm以上或者3nm以上。因此,也可以將顆粒稱為奈米晶(nc:nanocrystal)。另外,也可以將CAAC-OS稱為具有CANC(C-Axis Aligned nanocrystals:c軸配向奈米晶)的氧化物半導體。顆粒反映CAAC-OS的被形成面或頂面的凸凹並平行於CAAC-OS的被形成面或頂面。
另外,圖27B及圖27C示出從大致垂直於樣本面的方向觀察所獲取的CAAC-OS的平面的Cs校正高解析度TEM影像。圖27D及圖27E是藉由對圖27B及圖27C進行影像處理得到的影像。下面說明影像處理的方法。首先,藉由對圖27B進行快速傳立葉變換(FFT:Fast Fourier Transform)處理,獲取FFT影像。接著,以保留所獲取的FFT影像中的離原點2.8nm-1至5.0nm-1的範圍的方式進行遮罩處理。接著,對經過遮罩處理的FFT影像進行快速傅立葉逆變換(IFFT:Inverse Fast Fourier Transform)處理而獲取經過處理的影像。將所獲取的影像稱為FFT濾波影像。FFT濾波影像是從Cs校正高解析度TEM影像中提取出週期分量的影像,其示出晶格排列。
在圖27D中,以虛線示出晶格排列被打亂的部分。由虛線圍繞的區域是一個顆粒。並且,以虛線示出的部分是顆粒與顆粒的聯結部。虛線呈現六角形,由此可知顆粒為六角形。注意,顆粒的形狀並不侷限於正六角形,不是正六角形的情況較多。
在圖27E中,以點線示出晶格排列一致的區域與其他晶格排列一 致的區域之間的晶格排列的方向變化的部分,以虛線示出晶格排列的方向變化。在點線附近也無法確認到明確的晶界。當以點線附近的晶格點為中心周圍的晶格點相接時,可以形成畸變的六角形、五角形或/及七角形等。亦即,可知藉由使晶格排列畸變,可抑制晶界的形成。這可能是由於CAAC-OS可容許因如下原因而發生的畸變:在a-b面方向上的原子排列的低密度或因金屬元素被取代而使原子間的鍵合距離產生變化等。
如上所示,CAAC-OS具有c軸配向性,其多個顆粒(奈米晶)在a-b面方向上連結而結晶結構具有畸變。因此,也可以將CAAC-OS稱為具有CAA crystal(c-axis-aligned a-b-plane-anchored crystal)的氧化物半導體。
CAAC-OS是結晶性高的氧化物半導體。氧化物半導體的結晶性有時因雜質的混入或缺陷的生成等而降低,因此可以說CAAC-OS是雜質或缺陷(氧缺陷等)少的氧化物半導體。
此外,雜質是指氧化物半導體的主要成分以外的元素,諸如氫、碳、矽和過渡金屬元素等。例如,與氧的鍵合力比構成氧化物半導體的金屬元素強的矽等元素會奪取氧化物半導體中的氧,由此打亂氧化物半導體的原子排列,導致結晶性下降。另外,由於鐵或鎳等重金屬、氬、二氧化碳等的原子半徑(或分子半徑)大,所以會打亂氧化物半導體的原子排列,導致結晶性下降。
當氧化物半導體包含雜質或缺陷時,其特性有時會因光或熱等發生變動。例如,包含於氧化物半導體的雜質有時會成為載子陷阱或載子發生源。例如,氧化物半導體中的氧缺陷有時會成為載子陷阱或因俘獲氫而成為載子發生源。
雜質及氧缺陷少的CAAC-OS是載子密度低的氧化物半導體。明確而言,可以使用載子密度小於8×1011/cm3,較佳為小於1×1011/cm3,更佳為小於1×1010/cm3,且是1×10-9/cm3以上的氧化物半導體。將這樣的氧化物半導體稱為高純度本質或實質上高純度本質的氧化物半導體。CAAC-OS的雜質濃度和缺陷態密度低。亦即,可以說CAAC-OS是具有穩定特性的氧化物半導體。
<nc-OS>
接著,對nc-OS進行說明。
說明使用XRD裝置對nc-OS進行分析的情況。例如,當利用out-of-plane法分析nc-OS的結構時,不出現表示配向性的峰值。換言之,nc-OS的結晶不具有配向性。
另外,例如,當使包含InGaZnO4結晶的nc-OS薄片化,並在平行於被形成面的方向上使束徑為50nm的電子束入射到厚度為34nm的區域時,觀察到如圖28A所示的環狀繞射圖案(奈米束電子繞射圖案)。另外,圖28B示出將束徑為1nm的電子束入射到相同的樣本時的繞射圖案(奈米束電子繞射圖案)。從圖28B觀察到環狀區域內的多個斑點。因此,nc-OS在入射束徑為50nm的電子束時觀察不到秩序性,但是在入射束徑為1nm的電子束時確認到秩序性。
另外,當使束徑為1nm的電子束入射到厚度小於10nm的區域時,如圖28C所示,有時觀察到斑點被配置為準正六角形的電子繞射圖案。由此可知,nc-OS在厚度小於10nm的範圍內包含秩序性高的區域,亦即結晶。注意,因為結晶朝向各種各樣的方向,所以也有觀察不到有規律性的電子繞射圖案的區域。
圖28D示出從大致平行於被形成面的方向觀察到的nc-OS的剖面 的Cs校正高解析度TEM影像。在nc-OS的高解析度TEM影像中有如由輔助線所示的部分那樣能夠觀察到結晶部的區域和觀察不到明確的結晶部的區域。nc-OS所包含的結晶部的尺寸為1nm以上且10nm以下,尤其大多為1nm以上且3nm以下。注意,有時將其結晶部的尺寸大於10nm且是100nm以下的氧化物半導體稱為微晶氧化物半導體(microcrystalline oxide semiconductor)。例如,在nc-OS的高解析度TEM影像中,有時無法明確地觀察到晶界。注意,奈米晶的來源有可能與CAAC-OS中的顆粒相同。因此,下面有時將nc-OS的結晶部稱為顆粒。
如此,在nc-OS中,微小的區域(例如1nm以上且10nm以下的區域,特別是1nm以上且3nm以下的區域)中的原子排列具有週期性。另外,nc-OS在不同的顆粒之間觀察不到結晶定向的規律性。因此,在膜整體中觀察不到配向性。所以,有時nc-OS在某些分析方法中與a-like OS或非晶氧化物半導體沒有差別。
另外,由於在顆粒(奈米晶)之間結晶定向沒有規律性,所以也可以將nc-OS稱為包含RANC(Random Aligned nanocrystals:無規配向奈米晶)的氧化物半導體或包含NANC(Non-Aligned nanocrystals:無配向奈米晶)的氧化物半導體。
nc-OS是規律性比非晶氧化物半導體高的氧化物半導體。因此,nc-OS的缺陷態密度比a-like OS或非晶氧化物半導體低。但是,在nc-OS中的不同的顆粒之間觀察不到晶體配向的規律性。所以,nc-OS的缺陷態密度比CAAC-OS高。
〈a-like OS〉
a-like OS是具有介於nc-OS與非晶氧化物半導體之間的結構的氧化物半導體。
圖29A和圖29B示出a-like OS的高解析度剖面TEM影像。圖29A示出電子照射開始時的a-like OS的高解析度剖面TEM影像。圖29B示出照射4.3×108e-/nm2的電子(e-)之後的a-like OS的高解析度剖面TEM影像。由圖29A和圖29B可知,a-like OS從電子照射開始時被觀察到在縱向方向上延伸的條狀明亮區域。另外,可知明亮區域的形狀在照射電子之後變化。明亮區域被估計為空洞或低密度區域。
由於a-like OS包含空洞,所以其結構不穩定。為了證明與CAAC-OS及nc-OS相比a-like OS具有不穩定的結構,下面示出電子照射所導致的結構變化。
作為樣本,準備a-like OS、nc-OS和CAAC-OS。每個樣本都是In-Ga-Zn氧化物。
首先,取得各樣本的高解析度剖面TEM影像。由高解析度剖面TEM影像可知,每個樣本都具有結晶部。
已知InGaZnO4結晶的單位晶格具有所包括的三個In-O層和六個Ga-Zn-O層共計九個層在c軸方向上以層狀層疊的結構。這些彼此靠近的層之間的間隔與(009)面的晶格表面間隔(也稱為d值)幾乎相等,由結晶結構分析求出其值為0.29nm。由此,以下可以將晶格條紋的間隔為0.28nm以上且0.30nm以下的部分看作InGaZnO4結晶部。晶格條紋對應於InGaZnO4結晶的a-b面。
圖30示出調查了各樣本的結晶部(22至30處)的平均尺寸的例子。注意,結晶部尺寸對應於上述晶格條紋的長度。由圖30可知,在a-like OS中,結晶部根據有關取得TEM影像等的電子的累積照射量逐漸變大。由圖30可知,在利用TEM的觀察初期尺寸為1.2nm左右的 結晶部(也稱為初始晶核)在電子(e-)的累積照射量為4.2×108e-/nm2時生長到1.9nm左右。另一方面,可知nc-OS和CAAC-OS在開始電子照射時到電子的累積照射量為4.2×108e-/nm2的範圍內,結晶部的尺寸都沒有變化。由圖30可知,無論電子的累積照射量如何,nc-OS及CAAC-OS的結晶部尺寸分別為1.3nm左右及1.8nm左右。此外,使用日立穿透式電子顯微鏡H-9000NAR進行電子束照射及TEM的觀察。作為電子束照射條件,加速電壓為300kV;電流密度為6.7×105e-/(nm2.s);照射區域的直徑為230nm。
如此,有時電子照射引起a-like OS中的結晶部的生長。另一方面,在nc-OS和CAAC-OS中,幾乎沒有電子照射所引起的結晶部的生長。也就是說,a-like OS與CAAC-OS及nc-OS相比具有不穩定的結構。
此外,由於a-like OS包含空洞,所以其密度比nc-OS及CAAC-OS低。具體地,a-like OS的密度為具有相同組成的單晶氧化物半導體的78.6%以上且小於92.3%。nc-OS的密度及CAAC-OS的密度為具有相同組成的單晶氧化物半導體的92.3%以上且小於100%。注意,難以形成其密度小於單晶氧化物半導體的密度的78%的氧化物半導體。
例如,在原子數比滿足In:Ga:Zn=1:1:1的氧化物半導體中,具有菱方晶系結構的單晶InGaZnO4的密度為6.357g/cm3。因此,例如,在原子數比滿足In:Ga:Zn=1:1:1的氧化物半導體中,a-like OS的密度為5.0g/cm3以上且小於5.9g/cm3。另外,例如,在原子數比滿足In:Ga:Zn=1:1:1的氧化物半導體中,nc-OS的密度和CAAC-OS的密度為5.9g/cm3以上且小於6.3g/cm3
注意,當不存在相同組成的單晶氧化物半導體時,藉由以任意比例組合組成不同的單晶氧化物半導體,可以估計出相當於所希望的組成的單晶氧化物半導體的密度。根據組成不同的單晶氧化物半導體的 組合比例使用加權平均估計出相當於所希望的組成的單晶氧化物半導體的密度即可。注意,較佳為儘可能減少所組合的單晶氧化物半導體的種類來估計密度。
如上所述,氧化物半導體具有各種結構及各種特性。注意,氧化物半導體例如可以是包括非晶氧化物半導體、a-like OS、nc-OS和CAAC-OS中的兩種以上的疊層膜。
本實施方式所示的結構可以與其他實施方式所示的結構適當地組合而使用。
實施方式5
在本實施方式中,對包括本發明的一個實施方式的電晶體及上述記憶體裝置等半導體裝置的CPU的一個例子進行說明。
〈CPU的結構〉
圖31是示出其一部分使用上述電晶體的CPU的一個結構實例的方塊圖。
圖31所示的CPU在基板1190上具有:ALU1191(ALU:Arithmetic logic unit:算術邏輯單元)、ALU控制器1192、指令解碼器1193、中斷控制器1194、時序控制器1195、暫存器1196、暫存器控制器1197、匯流排介面1198、能夠重寫的ROM1199以及ROM介面1189。作為基板1190使用半導體基板、SOI基板、玻璃基板等。ROM1199及ROM介面1189也可以設置在不同的晶片上。當然,圖31所示的CPU只是簡化其結構而所示的一個例子而已,所以實際上的CPU根據其用途具有各種各樣的結構。例如,也可以以包括圖31所示的CPU或算術電路的結構為核心,設置多個該核心並使其同時工作。另外,在CPU的 內部算術電路或資料匯流排中能夠處理的位元數例如可以為8位元、16位元、32位元、64位元等。
藉由匯流排介面1198輸入到CPU的指令在輸入到指令解碼器1193並被解碼後輸入到ALU控制器1192、中斷控制器1194、暫存器控制器1197、時序控制器1195。
ALU控制器1192、中斷控制器1194、暫存器控制器1197、時序控制器1195根據被解碼的指令進行各種控制。明確而言,ALU控制器1192生成用來控制ALU1191的工作的信號。另外,中斷控制器1194在執行CPU的程式時,根據其優先度或遮罩狀態來判斷來自外部的輸入/輸出裝置或週邊電路的中斷要求而對該要求進行處理。暫存器控制器1197生成暫存器1196的位址,並對應於CPU的狀態來進行暫存器1196的讀出或寫入。
另外,時序控制器1195生成用來控制ALU1191、ALU控制器1192、指令解碼器1193、中斷控制器1194以及暫存器控制器1197的工作時序的信號。例如,時序控制器1195具有根據基準時脈信號來生成內部時脈信號的內部時脈生成器,並將內部時脈信號供應到上述各種電路。
在圖31所示的CPU中,在暫存器1196中設置有記憶單元。可以將上述電晶體或記憶體裝置等用於暫存器1196的記憶單元。
在圖31所示的CPU中,暫存器控制器1197根據ALU1191的指令進行暫存器1196中的保持工作的選擇。換言之,暫存器控制器1197在暫存器1196所具有的記憶單元中選擇由正反器保持資料還是由電容器保持資料。在選擇由正反器保持資料的情況下,對暫存器1196中的記憶單元供應電源電壓。在選擇由電容器保持資料的情況下,對電容 器進行資料的重寫,而可以停止對暫存器1196中的記憶單元供應電源電壓。
圖32是可以用作暫存器1196的記憶元件1200的電路圖的一個例子。記憶元件1200包括在電源關閉時失去存儲資料的電路1201、在電源關閉時不失去存儲資料的電路1202、開關1203、開關1204、邏輯元件1206、電容器1207以及具有選擇功能的電路1220。電路1202包括電容器1208、電晶體1209及電晶體1210。另外,記憶元件1200根據需要還可以包括其他元件諸如二極體、電阻器或電感器等。
在此,電路1202可以使用上述記憶體裝置。在停止對記憶元件1200供應電源電壓時,GND(0V)或使電晶體1209關閉的電位持續被輸入到電路1202中的電晶體1209的閘極。例如,電晶體1209的閘極藉由電阻器等負載接地。
在此示出開關1203為具有一導電型(例如,n通道型)的電晶體1213,而開關1204為具有與此相反的導電型(例如,p通道型)的電晶體1214的例子。這裡,開關1203的第一端子對應於電晶體1213的源極和汲極中的一個,開關1203的第二端子對應於電晶體1213的源極和汲極中的另一個,並且開關1203的第一端子與第二端子之間的導通或非導通(亦即,電晶體1213的導通狀態或關閉狀態)由輸入到電晶體1213的閘極中的控制信號RD選擇。開關1204的第一端子對應於電晶體1214的源極和汲極中的一個,開關1204的第二端子對應於電晶體1214的源極和汲極中的另一個,並且開關1204的第一端子與第二端子之間的導通或非導通(亦即,電晶體1214的導通狀態或關閉狀態)由輸入到電晶體1214的閘極中的控制信號RD選擇。
電晶體1209的源極和汲極中的一個電連接到電容器1208的一對電極的一個及電晶體1210的閘極。在此,將連接部分稱為節點M2。 電晶體1210的源極和汲極中的一個電連接到能夠供應低電源電位的佈線(例如,GND線),而另一個電連接到開關1203的第一端子(電晶體1213的源極和汲極中的一個)。開關1203的第二端子(電晶體1213的源極和汲極中的另一個)電連接到開關1204的第一端子(電晶體1214的源極和汲極中的一個)。開關1204的第二端子(電晶體1214的源極和汲極中的另一個)電連接到能夠供應電源電位VDD的佈線。開關1203的第二端子(電晶體1213的源極和汲極中的另一個)、開關1204的第一端子(電晶體1214的源極和汲極中的一個)、邏輯元件1206的輸入端子和電容器1207的一對電極的一個是電連接的。在此,將連接部分稱為節點M1。可以對電容器1207的一對電極的另一個輸入固定電位。例如,可以對其輸入低電源電位(GND等)或高電源電位(VDD等)。電容器1207的一對電極的另一個電連接到能夠供應低電源電位的佈線(例如,GND線)。可以對電容器1208的一對電極的另一個輸入固定電位。例如,可以對其輸入低電源電位(GND等)或高電源電位(VDD等)。電容器1208的一對電極的另一個電連接到能夠供應低電源電位的佈線(例如,GND線)。
另外,當積極地利用電晶體或佈線的寄生電容等時,可以不設置電容器1207及電容器1208。
控制信號WE輸入到電晶體1209的閘極。開關1203及開關1204的第一端子與第二端子之間的導通狀態或非導通狀態由與控制信號WE不同的控制信號RD選擇,當一個開關的第一端子與第二端子之間處於導通狀態時,另一個開關的第一端子與第二端子之間處於非導通狀態。
對應於保持在電路1201中的資料的信號輸入到電晶體1209的源極和汲極中的另一個。圖32示出從電路1201輸出的信號輸入到電晶體1209的源極和汲極中的另一個的例子。由邏輯元件1206使從開關 1203的第二端子(電晶體1213的源極和汲極中的另一個)輸出的信號的邏輯值反轉而成為反轉信號,將其經由電路1220輸入到電路1201。
雖然圖32示出從開關1203的第二端子(電晶體1213的源極和汲極中的另一個)輸出的信號藉由邏輯元件1206及電路1220輸入到電路1201的例子,但是不侷限於此。另外,也可以不使從開關1203的第二端子(電晶體1213的源極和汲極中的另一個)輸出的信號的邏輯值反轉而輸入到電路1201。例如,當電路1201包括其中保持使從輸入端子輸入的信號的邏輯值反轉的信號的節點時,可以將從開關1203的第二端子(電晶體1213的源極和汲極中的另一個)輸出的信號輸入到該節點。
在圖32所示的用於記憶元件1200的電晶體中,電晶體1209以外的電晶體也可以使用其通道形成在由氧化物半導體以外的半導體構成的膜或基板1190中的電晶體。例如,可以使用其通道形成在矽膜或矽基板中的電晶體。另外,用於記憶元件1200的電晶體可以都是其通道由氧化物半導體形成的電晶體。或者,記憶元件1200除了電晶體1209以外還可以包括其通道由氧化物半導體形成的電晶體,並且作為其餘的電晶體可以使用其通道形成在由氧化物半導體以外的半導體構成的層或基板1190中的電晶體。
圖32所示的電路1201例如可以使用正反器電路。另外,作為邏輯元件1206例如可以使用反相器或時脈反相器等。
在本發明的一個實施方式的半導體裝置中,在不向記憶元件1200供應電源電壓的期間,可以由設置在電路1202中的電容器1208保持儲存在電路1201中的資料。
另外,其通道形成在氧化物半導體中的電晶體的關態電流極小。 例如,其通道形成在氧化物半導體中的電晶體的關態電流比其通道形成在具有結晶性的矽中的電晶體的關態電流小得多。因此,藉由將該電晶體用作電晶體1209,即便在不向記憶元件1200供應電源電壓的期間也可以長期間儲存電容器1208所保持的信號。因此,記憶元件1200在停止供應電源電壓的期間也可以保持存儲內容(資料)。
另外,由於該記憶元件藉由設置開關1203及開關1204進行預充電工作,因此可以縮短在再次開始供應電源電壓之後直到電路1201重新保持原來的資料為止所需要的時間。
另外,在電路1202中,電容器1208所保持的信號被輸入到電晶體1210的閘極。因此,在再次開始向記憶元件1200供應電源電壓之後,根據由電容器1208所保持的信號決定電晶體1210的狀態(導通狀態或關閉狀態),並可以從電路1202讀出信號。因此,即便對應於保持在電容器1208中的信號的電位稍有變動,也可以準確地讀出原來的信號。
藉由將這種記憶元件1200用於處理器所具有的暫存器或快取記憶體等記憶體裝置,可以防止記憶體裝置內的資料因停止電源電壓的供應而消失。另外,可以在再次開始供應電源電壓之後在短時間內恢復到停止供應電源之前的狀態。因此,在處理器整體或構成處理器的一個或多個邏輯電路中在短時間內也可以停止電源,從而可以抑制功耗。
雖然說明將記憶元件1200用於CPU的例子,但也可以將記憶元件1200應用於LSI諸如DSP(Digital Signal Processor:數位信號處理器)、定製LSI、RF(Radio Frequency:射頻)裝置。此外,也可以將記憶元件1200應用於LSI諸如可程式邏輯電路,該可程式邏輯電路包括FPGA(Field Programmable Gate Array:現場可程式邏輯閘陣列)或 CPLD(Complex Programmable Logic Device:複雜可程式邏輯裝置)。
本實施方式所示的結構可以與其他實施方式所示的結構適當地組合而使用。
實施方式6
在本實施方式中,將參照圖33A至圖33C以及圖34A及圖34B對利用本發明的一個實施方式的電晶體等的顯示裝置進行說明。
〈顯示裝置的結構〉
作為用於顯示裝置的顯示元件,可以使用液晶元件(也稱為液晶顯示元件)、發光元件(也稱為發光顯示元件)等。發光元件在其範疇內包括其亮度由電流或電壓控制的元件,明確而言,包括無機EL(Electroluminescence:電致發光)元件、有機EL元件等。下面,作為顯示裝置的一個例子對使用EL元件的顯示裝置(EL顯示裝置)及使用液晶元件的顯示裝置(液晶顯示裝置)進行說明。
另外,下面示出的顯示裝置包括密封有顯示元件的面板及在該面板中安裝有包括控制器的IC等的模組。
另外,下面示出的顯示裝置是指影像顯示裝置或光源(包括照明設備)。此外,顯示裝置還包括:安裝有連接器諸如FPC或TCP的模組;在TCP的端部設置有印刷線路板的模組;或者藉由COG方式將IC(集成電路)直接安裝到顯示元件的模組。
圖33A至圖33C是根據本發明的一個實施方式的EL顯示裝置的一個例子。圖33A示出EL顯示裝置的像素的電路圖。圖33B是示出EL顯示裝置整體的俯視圖。此外,圖33C是對應於圖33B的點劃線 M-N的一部分的剖面圖。
圖33A是用於EL顯示裝置的像素的電路圖的一個例子。
在本說明書等中,有時即使不指定主動元件(電晶體、二極體等)、被動元件(電容器、電阻器等)等所具有的所有端子的連接位置,所屬技術領域的通常知識者也能夠構成發明的一個實施方式。就是說,即使未指定連接位置,也可以說發明的一個實施方式是明確的,並且,當在本說明書等記載有指定連接位置的內容時,有時可以判斷為在本說明書等中記載有該方式。尤其是,在端子的連接位置有多個的情況下,不一定必須要將該端子的連接位置限於指定的部分。因此,有時藉由僅指定主動元件(電晶體、二極體等)、被動元件(電容器、電阻器等)等所具有的一部分的端子的連接位置,就能夠構成發明的一個實施方式。
在本說明書等中,當至少指定某個電路的連接位置時,有時所屬技術領域的通常知識者能夠指定發明。或者,當至少指定某個電路的功能時,有時所屬技術領域的通常知識者能夠指定發明。也就是說,只要指定功能,就可以說是發明的一個實施方式是明確的,而判斷為在本說明書等中記載有該方式。因此,即使只指定某個電路的連接位置而不指定其功能時,也可以判斷為該電路作為發明的一個實施方式公開而構成發明的一個實施方式。或者,即使只指定某個電路的功能而不指定其連接位置時,也可以判斷為該電路作為發明的一個實施方式公開而構成發明的一個實施方式。
圖33A所示的EL顯示裝置包括切換元件743、電晶體741、電容器742、發光元件719。
另外,由於圖33A等是電路結構的一個例子,所以還可以追加設 置電晶體。與此相反,在圖33A的各節點中,也可以不追加電晶體、開關、被動元件等。
電晶體741的閘極與切換元件743的一個端子及電容器742的一個電極電連接。電晶體741的源極與電容器742的另一個電極及發光元件719的一個電極電連接。電晶體741的源極被供應電源電位VDD。切換元件743的另一個端子與信號線744電連接。發光元件719的另一個電極被供應恆電位。另外,恆電位為等於或低於接地電位GND的電位。
作為切換元件743,較佳為使用電晶體。藉由使用電晶體,可以減小像素的面積,由此可以提供解析度高的EL顯示裝置。作為切換元件743,使用藉由與電晶體741同一製程形成的電晶體,由此可以提高EL顯示裝置的生產率。作為電晶體741及/或切換元件743,例如可以適用上述電晶體。
圖33B是EL顯示裝置的俯視圖。EL顯示裝置包括基板700、基板750、密封材料734、驅動電路735、驅動電路736、像素737以及FPC732。密封材料734以包圍像素737、驅動電路735以及驅動電路736的方式配置在基板700與基板750之間。另外,驅動電路735及/或驅動電路736也可以配置在密封材料734的外側。
圖33C是對應於圖33B的點劃線M-N的一部分的EL顯示裝置的剖面圖。
在圖33C中,作為電晶體741示出具有基板700上的導電體705、嵌入有導電體705的絕緣體701、絕緣體701上的絕緣體702、絕緣體702上的半導體703、半導體703上的導電體707a及導電體707b、半導體703上的絕緣體706、絕緣體706上的導電體704的結構。注意, 電晶體741的結構只是一個例子,也可以採用與圖33C所示的結構不同的結構。
因此,在圖33C所示的電晶體741中,導電體704及導電體705具有閘極電極的功能,絕緣體702及絕緣體706具有閘極絕緣體的功能,導電體707a及導電體707b具有源極電極或汲極電極的功能。注意,半導體703有時因光照射而其電特性發生變動。因此,較佳的是導電體705和導電體704中的任何一個以上具有遮光性。
在電晶體741上包括具有過量氧區域的絕緣體709。此外,電晶體741設置在具有阻擋性的絕緣體710和絕緣體708之間。
在圖33C中,作為電容器742示出具有絕緣體710上的導電體714c、導電體714c上的絕緣體714b以及絕緣體714b上的導電體714a的結構。
在電容器742中,將導電體714c用作一個電極,將導電體714a用作另一個電極。
圖33C所示的電容器742是相對於佔有面積的電容大的電容器。因此,圖33C是顯示品質高的EL顯示裝置。
在電晶體741及電容器742上配置有絕緣體720。在此,絕緣體716及絕緣體720也可以具有到達用作電晶體741的源極的區域705a的開口部。在絕緣體720上配置有導電體781。導電體781藉由絕緣體720中的開口部與電晶體741電連接。
在導電體781上配置有包含到達導電體781的開口部的分隔壁784。在分隔壁784上配置有在分隔壁784的開口部中與導電體781接觸的 發光層782。在發光層782上配置有導電體783。導電體781、發光層782和導電體783重疊的區域被用作發光元件719。
至此,說明了EL顯示裝置的例子。接著,將說明液晶顯示裝置的例子。
圖34A是示出液晶顯示裝置的像素的結構實例的電路圖。圖34A和圖34B所示的像素包括電晶體751、電容器752、在一對電極之間填充有液晶的元件(液晶元件)753。
電晶體751的源極和汲極中的一個與信號線755電連接,電晶體751的閘極與掃描線754電連接。
電容器752的一個電極與電晶體751的源極和汲極中的另一個電連接,電容器752的另一個電極與供應共用電位的佈線電連接。
液晶元件753的一個電極與電晶體751的源極和汲極中的另一個電連接,液晶元件753的另一個電極與供應共用電位的佈線電連接。此外,供應到與上述電容器752的另一個電極電連接的佈線的共用電位與供應到液晶元件753的另一個電極的共用電位可以不同。
假設液晶顯示裝置的俯視圖與EL顯示裝置相同來進行說明。圖34B示出對應於沿著圖33B的點劃線M-N的液晶顯示裝置的剖面圖。在圖34B中,FPC732藉由端子731與佈線733a連接。佈線733a也可以使用與構成電晶體751的導電體或半導體同種的導電體或半導體。
電晶體751參照關於電晶體741的記載。電容器752參照關於電容器742的記載。注意,圖34B示出具有對應於圖33C所示的電容器742之結構的電容器752之結構,但是電容器752之結構不侷限於此。
當將氧化物半導體用於電晶體751的半導體時,可以實現關態電流極小的電晶體。因此,保持在電容器752中的電荷不容易洩漏,而可以長期間保持施加到液晶元件753的電壓。因此,當顯示動作少的動態影像、靜態影像時,藉由使電晶體751處於關閉狀態,不需要用來使電晶體751工作的電力,由此可以實現低功耗的液晶顯示裝置。另外,因為可以縮小電容器752的佔有面積,所以可以提供一種高開口率的液晶顯示裝置或高解析度的液晶顯示裝置。
在電晶體751及電容器752上配置有絕緣體721。在此,絕緣體721具有到達電晶體751的開口部。在絕緣體721上配置有導電體791。導電體791藉由絕緣體721中的開口部與電晶體751電連接。
在導電體791上配置有用作配向膜的絕緣體792。在絕緣體792上配置有液晶層793。在液晶層793上配置有用作配向膜的絕緣體794。在絕緣體794上配置有間隔物795。在間隔物795及絕緣體794上配置有導電體796。在導電體796上配置有基板797。
作為液晶的驅動方式,可以使用TN(Twisted Nematic:扭轉向列)模式、STN(Super Twisted Nematic:超扭曲向列)模式、IPS(In-Plane-Switching:平面內切換)模式、FFS(Fringe Field Switching:邊緣場切換)模式、MVA(Multi-domain Vertical Alignment:多象限垂直配向)模式、PVA(Patterned Vertical Alignment:垂直配向構型)模式、ASV(Advanced Super View:高級超視覺)模式、ASM(Axially Symmetric aligned Micro-cell:軸對稱排列微單元)模式、OCB(Optically Compensated Birefringence:光學補償雙折射)模式、ECB(Electrically Controlled Birefringence:電控雙折射)模式、FLC(Ferroelectric Liquid Crystal:鐵電液晶)模式、AFLC(AntiFerroelectric Liquid Crystal:反鐵電液晶)模式、PDLC(Polymer Dispersed Liquid Crystal:聚合物分 散液晶)模式、賓主模式、藍相(Blue Phase)模式等。但是並不侷限於此,作為液晶元件及其驅動方法可以使用各種液晶元件及其驅動方法。
藉由採用上述結構,可以提供一種包括佔有面積小的電容器的顯示裝置。或者,可以提供一種顯示品質高的顯示裝置。或者,可以提供一種高解析度顯示裝置。
例如,在本說明書等中,顯示元件、作為包括顯示元件的裝置的顯示裝置、發光元件以及作為包括發光元件的裝置的發光裝置可以採用各種方式或者包括各種元件。顯示元件、顯示裝置、發光元件或發光裝置例如包括白色、紅色、綠色或藍色等的發光二極體(LED:Light Emitting Diode)、電晶體(根據電流而發光的電晶體)、電子發射元件、液晶元件、電子墨水、電泳元件、柵光閥(GLV)、電漿顯示面板(PDP)、使用微機電系統(MEMS)的顯示元件、數位微鏡裝置(DMD)、數位微快門(DMS)、IMOD(干涉測量調節)元件、快門方式的MEMS顯示元件、光干涉方式的MEMS顯示元件、電潤濕(electrowetting)元件、壓電陶瓷顯示器或使用碳奈米管的顯示元件等中的至少一個。除此以外,還可以包括其對比度、亮度、反射率、透射率等因電或磁作用而變化的顯示媒體。
作為使用EL元件的顯示裝置的例子,有EL顯示器等。作為使用電子發射元件的顯示裝置的例子,有場致發射顯示器(FED)或SED方式平面型顯示器(SED:Surface-conduction Electron-emitter Display:表面傳導電子發射顯示器)等。作為使用液晶元件的顯示裝置的例子,有液晶顯示器(透射式液晶顯示器、半透射式液晶顯示器、反射式液晶顯示器、直觀式液晶顯示器、投射式液晶顯示器)等。作為使用電子墨水或電泳元件的顯示裝置的例子,有電子紙等。注意,當實現半透射式液晶顯示器或反射式液晶顯示器時,使像素電極的一部分或全 部具有作為反射電極的功能即可。例如,使像素電極的一部分或全部包含鋁、銀等即可。並且,此時也可以將SRAM等記憶體電路設置在反射電極下。由此,可以進一步降低功耗。
注意,當使用LED時,也可以在LED的電極或氮化物半導體下配置石墨烯或石墨。石墨烯或石墨也可以為層疊有多個層的多層膜。如此,藉由設置石墨烯或石墨,可以更容易地在其上形成氮化物半導體,如具有結晶的n型GaN半導體等。並且,在其上設置具有結晶的p型GaN半導體等,能夠構成LED。此外,也可以在石墨烯或石墨與具有晶體的n型GaN半導體之間設置AlN層。可以利用MOCVD形成LED所包括的GaN半導體。注意,當設置石墨烯時,可以以濺射法形成LED所包括的GaN半導體。
本實施方式所示的結構可以與其他實施方式所示的結構適當地組合而使用。
實施方式7
在本實施方式中,對利用本發明的一個實施方式的電晶體等的電子裝置進行說明。
〈電子裝置〉
本發明的一個實施方式的半導體裝置可以用於顯示裝置、個人電腦或具備儲存媒體的影像再現裝置(典型的是,能夠再現如數位影音光碟(DVD:Digital Versatile Disc)等儲存媒體的內容並具有可以顯示該再現影像的顯示器的裝置)中。另外,作為可以使用本發明的一個實施方式的半導體裝置的電子裝置,可以舉出行動電話、包括可攜式的遊戲機、可攜式資料終端、電子書閱讀器終端、拍攝裝置諸如視頻攝影機或數位相機等、護目鏡型顯示器(頭戴式顯示器)、導航系統、 音頻再生裝置(汽車音響系統、數位聲訊播放機等)、影印機、傳真機、印表機、多功能印表機、自動櫃員機(ATM)以及自動販賣機等。圖35A至圖35F示出這些電子裝置的具體例子。
圖35A是可攜式遊戲機,其包括外殼901、外殼902、顯示部903、顯示部904、麥克風905、揚聲器906、操作鍵907以及觸控筆908等。注意,雖然圖35A所示的可攜式遊戲機包括兩個顯示部903和顯示部904,但是可攜式遊戲機所包括的顯示部的個數不限於此。
圖35B是可攜式資料終端,其包括第一外殼911、第二外殼912、第一顯示部913、第二顯示部914、連接部915、操作鍵916等。第一顯示部913設置在第一外殼911中,而第二顯示部914設置在第二外殼912中。而且,第一外殼911和第二外殼912由連接部915連接,可以藉由連接部915改變第一外殼911和第二外殼912之間的角度。第一顯示部913的影像也可以根據連接部915所形成的第一外殼911和第二外殼912之間的角度切換。另外,也可以對第一顯示部913和第二顯示部914中的至少一個使用附加有位置輸入功能的顯示裝置。另外,可以藉由在顯示裝置中設置觸控面板來附加位置輸入功能。或者,也可以藉由在顯示裝置的像素部中設置還稱為光感測器的光電轉換元件來附加位置輸入功能。
圖35C是膝上型個人電腦,其包括外殼921、顯示部922、鍵盤923以及指向裝置924等。
圖35D是電冷藏冷凍箱,其包括外殼931、冷藏室門932、冷凍室門933等。
圖35E是視頻攝影機,其包括第一外殼941、第二外殼942、顯示部943、操作鍵944、鏡頭945、連接部946等。操作鍵944及鏡頭945 設置在第一外殼941中,而顯示部943設置在第二外殼942中。並且,第一外殼941和第二外殼942由連接部946連接,可以藉由連接部946改變第一外殼941和第二外殼942之間的角度。顯示部943的影像也可以根據連接部946所形成的第一外殼941和第二外殼942之間的角度切換。
圖35F是汽車,其包括車體951、車輪952、儀表板953及燈954等。
本實施方式所示的結構可以與其他實施方式所示的結構適當地組合而使用。
注意,在本實施方式中,對本發明的一個實施方式進行說明。但是,本發明的一個實施方式不侷限於此。換而言之,在本實施方式等中,記載有各種各樣的發明的方式,因此本發明的一個實施方式不侷限於特定的方式。例如,作為本發明的一個實施方式,示出了在電晶體的通道形成區域、源極區域或汲極區域等中包括氧化物半導體的情況的例子,但是本發明的一個實施方式不侷限於此。根據情形或狀況,本發明的一個實施方式中的各種各樣的電晶體、電晶體的通道形成區域或者電晶體的源極區域或汲極區域等也可以包括各種各樣的半導體。根據情形或狀況,本發明的一個實施方式中的各種各樣的電晶體、電晶體的通道形成區域或者電晶體的源極區域或汲極區域等例如也可以包含矽、鍺、矽鍺、碳化矽、砷化鎵、鋁砷化鎵、磷化銦、氮化鎵和有機半導體等中的至少一個。或者,例如,根據情形或狀況,本發明的一個實施方式中的各種各樣的電晶體、電晶體的通道形成區域或者電晶體的源極區域或汲極區域等也可以不包括氧化物半導體。
實施例1
在本實施例中說明利用離子植入法藉由氧氮化矽膜上的採用濺射法形成的氧化鋁膜對氧氮化矽膜引入氧的樣本的TDS分析結果。
首先,為了設定在離子植入法中使用的加速電壓,進行對在氧氮化矽膜(在圖式中表示為SiON)上設置有氧化鋁(在圖式中表示為AlOx)的疊層膜添加氧離子的模擬。在本模擬中,使用離子植入法的加速電壓不同的模型A至模型E。模型A的加速電壓為10kV,模型B的加速電壓為15kV,模型C的加速電壓為20kV,模型D的加速電壓為25kV,模型E的加速電壓為30kV。此外,氧化鋁膜的厚度為30nm,密度為3.05g/cm3,並且氧氮化矽膜的厚度為120nm,密度為2.2g/cm3。要添加的氧離子為16O+,劑量為1.0×1016ions/cm2
作為模擬用軟體,使用SRIM(the Stopping and Range of Ions in Matter)。SRIM是藉由蒙地卡羅法的離子導入過程的模擬實驗軟體。
圖36示出藉由模型A至模型E的模擬而得到的輪廓。在圖36中,橫軸表示離氧化鋁膜表面的深度[nm],縱軸表示氧原子(16O)的濃度[atoms/cm3]。
如圖36所示,在模型A中,引入到氧氮化矽膜中的氧量少。此外,在模型D及模型E中,氧更深地引入到氧氮化矽膜中。因此,在本實施例中採用在氧化鋁膜和氧氮化矽膜的介面附近觀察到輪廓的峰值的模型B的加速電壓15kV及輪廓從該介面附近擴大到氧氮化矽膜中的模型C的加速電壓20kV。
在本實施例中,對在以下條件下利用離子植入法引入氧的樣本1A至樣本1C進行TDS分析。下面,說明樣本1A至樣本1C的製造方法。
首先,對矽晶圓進行熱氧化,在矽晶圓表面上形成厚度為100nm 的熱氧化膜。以950℃進行4小時的熱氧化,並且熱氧化的氛圍是包含3vol.%HCl的氧氛圍。
接著,在熱氧化膜上藉由採用DC濺射法形成5nm的In-Ga-Zn氧化物膜(下面稱為IGZO膜)。在IGZO膜的成膜中,使用In-Ga-Zn氧化物(原子數比為In:Ga:Zn=1:3:2)靶材,作為沉積氣體使用30sccm的氬氣體及15sccm的氧氣體,成膜壓力為0.7Pa,成膜功率為500W,基板溫度為200℃,並且靶材-基板間距離為60mm。
接著,在IGZO膜上藉由採用PECVD法形成50nm的氧氮化矽膜。在氧氮化矽膜的成膜中,作為沉積氣體使用5sccm的SiH4氣體及1000sccm的N2O氣體,成膜壓力為133.3Pa,電源頻率為13.56MHz,RF電源的功率為45W,並且基板溫度為325℃。
接著,在氧氮化矽膜上藉由RF濺射法形成30nm的氧化鋁膜。氧化鋁膜的成膜條件為如下:使用Al2O3靶材,作為沉積氣體使用25sccm的氬氣體及25sccm的氧氣體,成膜壓力為0.4Pa,成膜功率為2500W,基板溫度為250℃,並且靶材-基板間距離為60mm。
接著,在樣本1B及樣本1C中,使用離子植入裝置以1.0×1016ions/cm2的劑量添加質量數為16的氧離子(16O+)。在此,樣本1B的加速電壓為15kV,而樣本1C的加速電壓為20kV。注意,不對樣本1A進行利用離子植入法的氧離子添加。
接著,使用混合磷酸、醋酸和硝酸的90℃左右的溶液進行濕蝕刻來去除氧化鋁膜。
圖37A至圖37C示出對藉由上述步驟製造的樣本1A至樣本1C進行TDS分析而得到的結果。另外,在該TDS分析中,測定相當於氧分 子的質量電荷比為M/z=32的氣體釋放量。在圖37A至圖37C中,橫軸表示基板的加熱溫度[℃],縱軸表示與質量電荷比M/z=32的釋放量成比例的強度。
如圖37A至圖37C所示,在樣本1A至樣本1C中觀察到氧分子的釋放。樣本1A的氧分子的釋放量為3.1×1015molecules/cm2,樣本1B的氧分子的釋放量為5.2×1015molecules/cm2,樣本1C的氧分子的釋放量為7.3×1015molecules/cm2。此外,在將上述各氧分子的釋放量換算為氧原子的釋放量時,樣本1A為6.3×1015atoms/cm2,樣本1B為1.0×1016atoms/cm2,樣本1C為1.5×1016atoms/cm2。此外,當根據氧原子的釋放量求得厚度為50nm的氧氮化矽膜中的氧濃度時,樣本1A為1.3×1021atoms/cm3,樣本1B為2.1×1021atoms/cm3,樣本1C為2.9×1021atoms/cm3。另外,樣本1B及樣本1C的氧氮化矽膜中的氧濃度與圖36所示的模擬較優良地一致。
在樣本1A中被釋放的氧分子被認為起因於在藉由採用濺射法形成氧化鋁膜時引入到氧氮化矽膜的氧。另一方面,在藉由採用離子植入法添加氧離子的樣本1B及樣本1C中觀察到更多的氧分子釋放。
由此可知,藉由在氧氮化矽膜上採用濺射法形成氧化鋁膜,可以對氧氮化矽膜引入氧。再者,還可知利用離子植入法藉由氧氮化矽膜上的氧化鋁膜添加氧離子,從而可以將更多量的氧引入到氧氮化矽膜中。
100‧‧‧電容器
102‧‧‧絕緣體
112‧‧‧導電體
114‧‧‧絕緣體
116‧‧‧導電體
120‧‧‧絕緣體
122‧‧‧絕緣體
124‧‧‧導電體
126‧‧‧導電體
128‧‧‧導電體
200‧‧‧電晶體
210‧‧‧絕緣體
212‧‧‧絕緣體
214‧‧‧絕緣體
216‧‧‧絕緣體
218‧‧‧導電體
220‧‧‧絕緣體
222‧‧‧絕緣體
224‧‧‧絕緣體
244‧‧‧導電體
280‧‧‧絕緣體
282‧‧‧絕緣體
284‧‧‧絕緣體
300‧‧‧電晶體
301‧‧‧基板
302‧‧‧半導體區域
304‧‧‧絕緣體
306‧‧‧導電體
308a‧‧‧低電阻區域
308b‧‧‧低電阻區域
322‧‧‧絕緣體
324‧‧‧絕緣體
326‧‧‧絕緣體
328‧‧‧導電體
330‧‧‧導電體
350‧‧‧絕緣體
352‧‧‧絕緣體
354‧‧‧絕緣體
356‧‧‧導電體
358‧‧‧導電體

Claims (11)

  1. 一種半導體裝置,包括:基板上的第一絕緣體;該第一絕緣體上的電晶體,該電晶體包括氧化物半導體;該電晶體上的第二絕緣體;以及該第二絕緣體上的第三絕緣體,其中,該第一絕緣體及該第三絕緣體對氧及氫具有阻擋性,該第二絕緣體包括過量氧區域,並且,該電晶體被在設置有該電晶體的區域的邊緣中互相接觸的該第一絕緣體和該第三絕緣體包圍。
  2. 根據申請專利範圍第1項之半導體裝置,其中在TDS分析中的50℃至500℃的溫度範圍內,換算為氫原子的從該第一絕緣體及該第三絕緣體的各個脫離的氫量為10×1015atoms/cm2以下,較佳為5×1015atoms/cm2以下。
  3. 根據申請專利範圍第1項之半導體裝置,其中該第一絕緣體及該第三絕緣體為氧化鋁。
  4. 一種半導體裝置,包括:基板上的第一絕緣體;該第一絕緣體上的第四絕緣體;該第一絕緣體上的電晶體,該電晶體包括氧化物半導體;該電晶體上的第二絕緣體;該第二絕緣體上的第三絕緣體;以及該第三絕緣體上的第五絕緣體,其中,該第一絕緣體、該第三絕緣體、該第四絕緣體及該第五絕 緣體對氧及氫具有阻擋性,該第二絕緣體包括過量氧區域,該第四絕緣體和該第五絕緣體在設置有該電晶體的區域的邊緣中互相接觸,該第一絕緣體和該第二絕緣體在該第四絕緣體和該第五絕緣體互相接觸的區域的邊緣中互相接觸,該電晶體被該第四絕緣體和該第五絕緣體包圍,並且,該第四絕緣體和該第五絕緣體被該第一絕緣體和該第二絕緣體包圍。
  5. 根據申請專利範圍第4項之半導體裝置,其中該第四絕緣體及該第五絕緣體為氧化鋁。
  6. 根據申請專利範圍第4項之半導體裝置,其中在TDS分析中的50℃至500℃的溫度範圍內,換算為氫原子的從該第一絕緣體及該第三絕緣體的各個脫離的氫量為10×1015atoms/cm2以下,較佳為5×1015atoms/cm2以下。
  7. 根據申請專利範圍第4項之半導體裝置,其中該第一絕緣體及該第三絕緣體為氧化鋁。
  8. 一種半導體裝置的製造方法,包括如下步驟:在基板上形成第一絕緣體;在該第一絕緣體上形成包括氧化物半導體的電晶體;在該電晶體上形成第二絕緣體;在該第二絕緣體上形成第三絕緣體;以及在藉由該第三絕緣體對該第二絕緣體進行氧引入處理之後進行熱處理。
  9. 根據申請專利範圍第8項之半導體裝置的製造方法, 其中反復進行該氧引入處理及該熱處理。
  10. 根據申請專利範圍第8項之半導體裝置的製造方法,其中該第三絕緣體對氧及氫具有阻擋性並藉由濺射法形成。
  11. 根據申請專利範圍第8項之半導體裝置的製造方法,其中該第三絕緣體對氧及氫具有阻擋性並藉由CVD法形成。
TW105136724A 2015-11-13 2016-11-10 半導體裝置以及其製造方法 TWI710029B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-222731 2015-11-13
JP2015222731 2015-11-13

Publications (2)

Publication Number Publication Date
TW201727760A true TW201727760A (zh) 2017-08-01
TWI710029B TWI710029B (zh) 2020-11-11

Family

ID=58691622

Family Applications (3)

Application Number Title Priority Date Filing Date
TW110149729A TWI781865B (zh) 2015-11-13 2016-11-10 半導體裝置以及其製造方法
TW105136724A TWI710029B (zh) 2015-11-13 2016-11-10 半導體裝置以及其製造方法
TW109138097A TWI752702B (zh) 2015-11-13 2016-11-10 半導體裝置以及其製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW110149729A TWI781865B (zh) 2015-11-13 2016-11-10 半導體裝置以及其製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW109138097A TWI752702B (zh) 2015-11-13 2016-11-10 半導體裝置以及其製造方法

Country Status (4)

Country Link
US (2) US10784284B2 (zh)
JP (2) JP2017098545A (zh)
TW (3) TWI781865B (zh)
WO (1) WO2017081579A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI723763B (zh) * 2019-09-10 2021-04-01 台灣積體電路製造股份有限公司 圖像感測器及其形成方法
US11949017B2 (en) 2019-04-08 2024-04-02 Kepler Computing Inc. Doped polar layers and semiconductor device incorporating same

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9917207B2 (en) 2015-12-25 2018-03-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
CN108886021B (zh) * 2016-02-12 2023-07-25 株式会社半导体能源研究所 半导体装置及其制造方法
JP6968567B2 (ja) * 2016-04-22 2021-11-17 株式会社半導体エネルギー研究所 半導体装置の作製方法
KR102613288B1 (ko) 2016-07-26 2023-12-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
US10910407B2 (en) * 2017-01-30 2021-02-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2019066872A1 (en) * 2017-09-28 2019-04-04 Intel Corporation MONOLITHIC INTEGRATION OF A THIN FILM TRANSISTOR ON A COMPLEMENTARY TRANSISTOR
WO2019150224A1 (ja) * 2018-02-01 2019-08-08 株式会社半導体エネルギー研究所 表示装置および電子機器
WO2019166906A1 (ja) 2018-02-28 2019-09-06 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法
JP7046692B2 (ja) * 2018-04-17 2022-04-04 株式会社半導体エネルギー研究所 半導体装置
CN110875257B (zh) * 2018-09-03 2021-09-28 联华电子股份有限公司 射频装置以及其制作方法
KR20200045878A (ko) * 2018-10-23 2020-05-06 삼성전자주식회사 얼라인 패턴을 포함하는 반도체 칩
US11211461B2 (en) 2018-12-28 2021-12-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and memory device
CN112786447B (zh) * 2021-01-22 2022-08-30 长江存储科技有限责任公司 氧化铝的去除方法及三维存储器的制备方法

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003332536A (ja) * 2002-05-10 2003-11-21 Fujitsu Ltd 半導体装置の製造方法
KR100615085B1 (ko) * 2004-01-12 2006-08-22 삼성전자주식회사 노드 콘택 구조체들, 이를 채택하는 반도체소자들, 이를채택하는 에스램 셀들 및 이를 제조하는 방법들
US7518196B2 (en) * 2005-02-23 2009-04-14 Intel Corporation Field effect transistor with narrow bandgap source and drain regions and method of fabrication
WO2009057225A1 (ja) * 2007-11-02 2009-05-07 Fujitsu Microelectronics Limited 半導体装置とその製造方法
KR20120084751A (ko) 2009-10-05 2012-07-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법
CN102668096B (zh) 2009-10-30 2015-04-29 株式会社半导体能源研究所 半导体装置及其制造方法
KR102220873B1 (ko) 2010-07-02 2021-02-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
US8519387B2 (en) 2010-07-26 2013-08-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing
WO2012017843A1 (en) 2010-08-06 2012-02-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor integrated circuit
US8912080B2 (en) 2011-01-12 2014-12-16 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of the semiconductor device
TW202320146A (zh) 2011-01-26 2023-05-16 日商半導體能源研究所股份有限公司 半導體裝置及其製造方法
TWI570920B (zh) 2011-01-26 2017-02-11 半導體能源研究所股份有限公司 半導體裝置及其製造方法
US9023684B2 (en) 2011-03-04 2015-05-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
TWI521612B (zh) 2011-03-11 2016-02-11 半導體能源研究所股份有限公司 半導體裝置的製造方法
TWI658516B (zh) 2011-03-11 2019-05-01 日商半導體能源研究所股份有限公司 半導體裝置的製造方法
JP5797922B2 (ja) 2011-03-30 2015-10-21 株式会社東芝 薄膜トランジスタアレイ基板、その製造方法、および表示装置
US9082860B2 (en) 2011-03-31 2015-07-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8383490B2 (en) * 2011-07-27 2013-02-26 International Business Machines Corporation Borderless contact for ultra-thin body devices
JP6016532B2 (ja) 2011-09-07 2016-10-26 株式会社半導体エネルギー研究所 半導体装置
TWI567985B (zh) 2011-10-21 2017-01-21 半導體能源研究所股份有限公司 半導體裝置及其製造方法
US8969130B2 (en) 2011-11-18 2015-03-03 Semiconductor Energy Laboratory Co., Ltd. Insulating film, formation method thereof, semiconductor device, and manufacturing method thereof
US8785258B2 (en) 2011-12-20 2014-07-22 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8748240B2 (en) 2011-12-22 2014-06-10 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP5917385B2 (ja) 2011-12-27 2016-05-11 株式会社半導体エネルギー研究所 半導体装置の作製方法
KR102100425B1 (ko) 2011-12-27 2020-04-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 제작 방법
KR102103913B1 (ko) 2012-01-10 2020-04-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 제작 방법
US9099560B2 (en) * 2012-01-20 2015-08-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR102097171B1 (ko) 2012-01-20 2020-04-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
TWI562361B (en) * 2012-02-02 2016-12-11 Semiconductor Energy Lab Co Ltd Semiconductor device
US8916424B2 (en) * 2012-02-07 2014-12-23 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP6148024B2 (ja) * 2012-02-09 2017-06-14 株式会社半導体エネルギー研究所 半導体装置
US20140027762A1 (en) * 2012-07-27 2014-01-30 Semiconductor Energy Laboratory Co. Ltd. Semiconductor device
KR102222344B1 (ko) 2013-05-02 2021-03-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
US9773915B2 (en) 2013-06-11 2017-09-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP6345023B2 (ja) 2013-08-07 2018-06-20 株式会社半導体エネルギー研究所 半導体装置およびその作製方法
CN105659369B (zh) 2013-10-22 2019-10-22 株式会社半导体能源研究所 半导体装置及半导体装置的制造方法
KR102529174B1 (ko) * 2013-12-27 2023-05-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
KR20220046701A (ko) 2013-12-27 2022-04-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 장치
KR102325158B1 (ko) 2014-01-30 2021-11-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치, 전자 기기, 및 반도체 장치의 제작 방법
DE112015001878B4 (de) 2014-04-18 2021-09-09 Semiconductor Energy Laboratory Co., Ltd. Halbleitervorrichtung und elektronisches Gerät
JP6295802B2 (ja) * 2014-04-18 2018-03-20 ソニー株式会社 高周波デバイス用電界効果トランジスタおよびその製造方法、ならびに高周波デバイス
US9773919B2 (en) * 2015-08-26 2017-09-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11949017B2 (en) 2019-04-08 2024-04-02 Kepler Computing Inc. Doped polar layers and semiconductor device incorporating same
US11949018B2 (en) 2019-04-08 2024-04-02 Kepler Computing Inc. Doped polar layers and semiconductor device incorporating same
TWI723763B (zh) * 2019-09-10 2021-04-01 台灣積體電路製造股份有限公司 圖像感測器及其形成方法

Also Published As

Publication number Publication date
TW202221796A (zh) 2022-06-01
TWI710029B (zh) 2020-11-11
US20200411565A1 (en) 2020-12-31
TW202111819A (zh) 2021-03-16
JP7204829B2 (ja) 2023-01-16
US11271013B2 (en) 2022-03-08
JP2021170651A (ja) 2021-10-28
TWI781865B (zh) 2022-10-21
WO2017081579A1 (en) 2017-05-18
TWI752702B (zh) 2022-01-11
US10784284B2 (en) 2020-09-22
JP2017098545A (ja) 2017-06-01
US20170141130A1 (en) 2017-05-18

Similar Documents

Publication Publication Date Title
JP7204829B2 (ja) 半導体装置
JP6884569B2 (ja) 半導体装置及びその作製方法
JP7337233B2 (ja) 半導体装置
TWI730041B (zh) 半導體裝置及其製造方法
TWI796574B (zh) 半導體裝置及其製造方法
JP6925809B2 (ja) 半導体装置、モジュール、電子機器および半導体ウエハ
TWI662653B (zh) 半導體裝置、電子裝置及半導體裝置的製造方法
JP6608648B2 (ja) 半導体装置及びその作製方法
TW201738978A (zh) 半導體裝置、半導體晶圓、模組、電子裝置以及其製造方法
JP6845692B2 (ja) 半導体装置
JP6851814B2 (ja) トランジスタ
JP7300042B2 (ja) 半導体装置
TW201626550A (zh) 半導體裝置及電子裝置