TW201707519A - High efficiency laser-sustained plasma light source - Google Patents

High efficiency laser-sustained plasma light source Download PDF

Info

Publication number
TW201707519A
TW201707519A TW105119595A TW105119595A TW201707519A TW 201707519 A TW201707519 A TW 201707519A TW 105119595 A TW105119595 A TW 105119595A TW 105119595 A TW105119595 A TW 105119595A TW 201707519 A TW201707519 A TW 201707519A
Authority
TW
Taiwan
Prior art keywords
plasma
gas
assembly
pump
optical elements
Prior art date
Application number
TW105119595A
Other languages
Chinese (zh)
Other versions
TWI700965B (en
Inventor
馬修 達斯汀
伊爾亞 畢札爾
亞納圖里 斯奇密利尼
尤金 雪芬
Original Assignee
克萊譚克公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/187,590 external-priority patent/US10887974B2/en
Application filed by 克萊譚克公司 filed Critical 克萊譚克公司
Publication of TW201707519A publication Critical patent/TW201707519A/en
Application granted granted Critical
Publication of TWI700965B publication Critical patent/TWI700965B/en

Links

Abstract

A system for generating laser sustained broadband light includes a pump source configured to generate a pumping beam, a gas containment structure for containing a gas and a multi-pass optical assembly. The multi-pass optical assembly includes one or more optical elements configured to perform a plurality of passes of the pumping beam through a portion of the gas to sustain a broadband-light-emitting plasma. The one or more optical elements are arranged to collect an unabsorbed portion of the pumping beam transmitted through the plasma and direct the collected unabsorbed portion of the pumping beam back into the portion of the gas.

Description

高效率雷射支持之電漿光源 High efficiency laser supported plasma source [優先權][priority]

本申請案與下列(若干)申請案(「相關申請案」)相關且主張該(等)申請案之最早可用有效申請日之權利(例如,主張除臨時專利申請案以外之(若干)相關申請案之任何及全部父母代申請案、祖父母代申請案、曾祖父母代申請案等等之最早可用優先權日,或根據35 USC § 119(e)主張臨時專利申請案、(若干)相關申請案之任何及全部父母代申請案、祖父母代申請案、曾祖父母代申請案等等之最早可用優先權日)。 This application is related to the following (several) applications ("Related Applications") and claims the right of the earliest available valid filing date for the (or other) application (for example, claiming (s) related applications other than provisional patent applications) The earliest available priority date of any and all parental applications, grandparent applications, and grandparents' applications, or the provisional patent application, (several) related applications under 35 USC § 119(e) The earliest available priority date for any and all parental applications, grandparent applications, and grandparents' applications.

[相關申請案][Related application]

為滿足USPTO法外要求,本申請案構成名為Ilya Bezel、Anatoly Shchemelinin Eugene Shifrin及Matthew Derstine之發明者於2015年6月22申請之名稱為「MULTIPASS LASER-SUSTAINED PLASMA PUMP GEOMETRIES」之美國臨時專利申請案(申請案第62/183,069號,其全文以引用的方式併入本文中)之一正式(非臨時)專利申請案。 In order to meet the USPTO extra-legal requirements, this application constitutes a US provisional patent application entitled "MULTIPASS LASER-SUSTAINED PLASMA PUMP GEOMETRIES", filed on June 22, 2015 by the inventors of Ilya Bezel, Anatoly Shchemelinin Eugene Shifrin and Matthew Derstine. One of the official (non-provisional) patent applications (Application No. 62/183,069, the entire disclosure of which is incorporated herein by reference).

為滿足USPTO法外要求,本申請案構成名為Matthew Derstine及Ilya Bezel之發明者於2016年2月3申請之名稱為「OPTICAL WAFER INSPECTOR」之美國臨時專利申請案(申請案第62/290,593號,其全文以引用的方式併入本文中)之一正式(非臨時)專利申請案。 In order to meet the USPTO extra-legal requirements, this application constitutes a US Provisional Patent Application entitled "OPTICAL WAFER INSPECTOR" filed on February 3, 2016 by the inventor of Matthew Derstine and Ilya Bezel (Application No. 62/290,593) , the entire text of which is hereby incorporated by reference in its entirety in its entirety in its entire entire entire entire entire entire entire entire entire entire entire entire entire content

本發明大體上係關於雷射支持之電漿光源,且更特定言之,本發明係關於一種多通雷射支持之電漿光源。 The present invention is generally directed to laser supported plasma sources and, more particularly, to a multi-pass laser supported plasma source.

隨著對具有日益小型化裝置特徵之積體電路之需求不斷增加,對用於檢測此等不斷縮小裝置之改良照明源之要求亦不斷提高。一此類照明源包含一雷射支持之電漿源。雷射支持之電漿光源能夠產生高功率寬頻光。雷射支持之光源藉由將雷射輻射聚焦至一氣體容積中以將諸如氬氣或氙氣之氣體激發成一電漿狀態(其能夠發射光)來操作。此效應通常指稱「泵」電漿。 As the demand for integrated circuits with increasingly miniaturized device features continues to increase, the need for improved illumination sources for detecting such ever-decreasing devices continues to increase. One such illumination source includes a laser supported plasma source. Laser-supported plasma sources are capable of producing high power broadband light. A laser-supported light source operates by focusing laser radiation into a gas volume to excite a gas such as argon or helium into a plasma state that is capable of emitting light. This effect is usually referred to as the "pump" plasma.

使用連續波(CW)輻射來支持之電漿通常依足以使所使用之泵光實質上穿透電漿之低密度操作。因此,由電漿發射之寬頻光之亮度遠小於理論黑體限制。 Plasma supported using continuous wave (CW) radiation is typically operated at a low density sufficient for the pump light used to substantially penetrate the plasma. Therefore, the brightness of the broadband light emitted by the plasma is much smaller than the theoretical blackbody limit.

已採用若干方法來解決低展度光學系統之此問題。一方法涉及:藉由使用較高壓燈來解決電漿之低密度。此方法之成效有限,因為其導致電漿生長。另一方法涉及:使用一低數值孔徑(NA)雷射來泵(灌注)電漿以產生一伸長電漿。可藉由沿伸長方向收集寬頻光來理論上獲得接近黑體之一亮度。已提出使泵及收集分離之幾何模型來解決雷射吸收與DUV/VUV發射之間之失配問題。在兩個實施方案中,伸長電漿發射決不使用之大量光。因此,可期望提供一種用於克服先前方法之缺點(諸如以上所識別之缺點)之系統及方法。 Several methods have been employed to solve this problem in low-spread optical systems. One method involves addressing the low density of the plasma by using a higher pressure lamp. The effectiveness of this method is limited because it leads to plasma growth. Another method involves pumping (perfusing) the plasma using a low numerical aperture (NA) laser to produce an elongated plasma. The brightness of one of the black bodies can be theoretically obtained by collecting the broadband light in the direction of elongation. A geometric model of pump and collection separation has been proposed to address the mismatch between laser absorption and DUV/VUV emissions. In both embodiments, the elongated plasma emits a significant amount of light that is never used. Accordingly, it would be desirable to provide a system and method for overcoming the shortcomings of the prior methods, such as the disadvantages identified above.

根據本發明之一或多項實施例來揭示一種用於產生寬頻光之多通雷射支持之電漿系統。在一實施例中,該系統包含經組態以產生一泵光束之一泵源。在另一實施例中,該系統包含用於容納一氣體之一氣體容納結構。在另一實施例中,該系統包含一多通光學總成。在另一實施例中,該多通光學總成包含經組態以執行該泵光束複數次穿過 該氣體之一部分來支持一發射寬頻光之電漿的一或多個光學元件。在另一實施例中,該一或多個光學元件經配置以收集透射穿過該電漿之該泵光束之一未吸收部分且將所收集之該泵光束之未吸收部分導引回至該氣體之該部分中。 A plasma system for generating multi-pass laser support for broadband light is disclosed in accordance with one or more embodiments of the present invention. In an embodiment, the system includes a pump source configured to generate a pump beam. In another embodiment, the system includes a gas containment structure for containing a gas. In another embodiment, the system includes a multi-pass optical assembly. In another embodiment, the multi-pass optical assembly includes a configuration configured to perform the pump beam multiple times through One portion of the gas supports one or more optical components that emit plasma of broadband light. In another embodiment, the one or more optical elements are configured to collect an unabsorbed portion of the pump beam transmitted through the plasma and to direct the collected unabsorbed portion of the pump beam back to the In this part of the gas.

根據本發明之一或多項實施例來揭示一種用於產生寬頻光之多通雷射支持之電漿系統。在一實施例中,該系統包含經組態以產生一泵光束之一泵源。在另一實施例中,該系統包含用於容納一氣體之一氣體容納結構。在另一實施例中,該系統包含一光學總成。在另一實施例中,該光學子系統包含經組態以執行該泵光束一或多次穿過該氣體之一部分來支持一發射寬頻光之電漿的一或多個光學元件。在另一實施例中,該系統包含一集光總成,其包含一或多個集光器件。在另一實施例中,該系統包含經組態以將由該電漿發射之寬頻輻射之至少一部分導引至一或多個下游光學元件的一或多個集光器件。在另一實施例中,該系統包含經組態以收集由該電漿發射之寬頻輻射之至少一部分且將其導引回至該電漿的一或多個集光元件。 A plasma system for generating multi-pass laser support for broadband light is disclosed in accordance with one or more embodiments of the present invention. In an embodiment, the system includes a pump source configured to generate a pump beam. In another embodiment, the system includes a gas containment structure for containing a gas. In another embodiment, the system includes an optical assembly. In another embodiment, the optical subsystem includes one or more optical elements configured to perform one or more passes of the pump beam through a portion of the gas to support a plasma that emits broadband light. In another embodiment, the system includes a collection assembly that includes one or more light collecting devices. In another embodiment, the system includes one or more light collecting devices configured to direct at least a portion of the broadband radiation emitted by the plasma to one or more downstream optical components. In another embodiment, the system includes one or more light collecting elements configured to collect at least a portion of the broadband radiation emitted by the plasma and direct it back to the plasma.

根據本發明之一或多項實施例來揭示一種用於產生寬頻光之多通雷射支持之電漿系統。在一實施例中,該系統包含經組態以產生一泵光束之一泵源。在另一實施例中,該系統包含經組態以容納一氣體之一反射器總成。在另一實施例中,該反射器總成包含用於自該泵源接收該泵光束之一或多個入口孔隙。在另一實施例中,該泵光束支持該氣體之一部分內之一電漿。在另一實施例中,該電漿發射寬頻輻射。在另一實施例中,該反射器總成之內表面經組態以收集由該電漿發射之該寬頻輻射之至少一部分且將該收集之寬頻發射導引回至該電漿。 A plasma system for generating multi-pass laser support for broadband light is disclosed in accordance with one or more embodiments of the present invention. In an embodiment, the system includes a pump source configured to generate a pump beam. In another embodiment, the system includes a reflector assembly configured to receive a gas. In another embodiment, the reflector assembly includes one or more inlet apertures for receiving the pump beam from the pump source. In another embodiment, the pump beam supports a plasma within a portion of the gas. In another embodiment, the plasma emits broadband radiation. In another embodiment, the inner surface of the reflector assembly is configured to collect at least a portion of the broadband radiation emitted by the plasma and direct the collected broadband emissions back to the plasma.

應瞭解,以上一般描述及以下詳細描述兩者僅供例示及說明且未必限制所主張之發明。併入本說明書中且構成本說明書之一部分的 附圖繪示本發明之實施例且與一般描述一起用以解釋本發明之原理。 The above general description and the following detailed description are intended to be illustrative and not restrictive. Incorporating this specification and forming part of this specification The drawings illustrate embodiments of the invention and, together with the

100‧‧‧多通系統 100‧‧‧Multiple system

101‧‧‧泵光束/泵照明 101‧‧‧Pump beam/pump illumination

102‧‧‧多通光學總成/多通光學元件 102‧‧‧Multiple optical assembly/multi-pass optical components

103‧‧‧集光器件/集光總成/集光器總成 103‧‧‧Light collecting device/light collecting assembly/concentrator assembly

104‧‧‧泵源/泵照明/照明源 104‧‧‧Source/pump illumination/illumination source

104a至104d‧‧‧泵源/照明源 104a to 104d‧‧‧ pump source/illumination source

105‧‧‧下游光學元件 105‧‧‧Down optical components

106‧‧‧電漿 106‧‧‧ Plasma

106a‧‧‧電漿/電漿區域 106a‧‧‧Plastic/plasma area

106b‧‧‧電漿/電漿區域 106b‧‧‧Plastic/plasma area

107‧‧‧氣體 107‧‧‧ gas

108a至108d‧‧‧通路 108a to 108d‧‧‧ pathway

110a至110f‧‧‧光學元件/反射鏡 110a to 110f‧‧‧Optical components/mirrors

111a至111f‧‧‧集光元件 111a to 111f‧‧‧Light collecting elements

113a至113f‧‧‧反射部分 113a to 113f‧‧‧reflection

115‧‧‧寬頻輻射/寬頻光/寬頻照明/寬頻輸出 115‧‧‧Broadband Radiation/Broadband/Broadband/Broadband Output

116‧‧‧回向反射器 116‧‧‧Reflective reflector

116a‧‧‧第一回向反射器 116a‧‧‧First retroreflector

116b‧‧‧第二回向反射器 116b‧‧‧second retroreflector

117‧‧‧區域 117‧‧‧ area

118‧‧‧自適應光學元件 118‧‧‧Adaptive optics

121‧‧‧伸長電漿區域 121‧‧‧Elongated plasma area

124‧‧‧透鏡 124‧‧‧ lens

125‧‧‧偏光板 125‧‧‧Polar plate

126‧‧‧四分之一波片 126‧‧‧ quarter wave plate

128‧‧‧波前感測器 128‧‧‧ wavefront sensor

130‧‧‧自適應回向反射器/自適應光學元件 130‧‧‧Adaptive retroreflector/adaptive optics

140‧‧‧電漿泡/電漿胞/氣體容納結構 140‧‧‧Electric plasma/plasma/gas containment structure

142‧‧‧入射窗 142‧‧‧Injection window

144‧‧‧出射窗 144‧‧‧Output window

150‧‧‧氣體容納結構/腔室 150‧‧‧Gas containment structure/chamber

201a‧‧‧第一焦點 201a‧‧‧ first focus

201b‧‧‧第二焦點 201b‧‧‧second focus

202‧‧‧反射器總成 202‧‧‧ reflector assembly

203‧‧‧內反射面 203‧‧‧ internal reflection surface

204‧‧‧入口孔隙 204‧‧‧ Entrance aperture

206‧‧‧出口孔隙 206‧‧‧Export pores

209‧‧‧氣體循環總成 209‧‧‧ gas circulation assembly

210‧‧‧氣體輸入口/氣體輸入管 210‧‧‧ gas inlet / gas inlet

212‧‧‧氣體輸出口/氣體輸出管 212‧‧‧ gas outlet / gas outlet

220‧‧‧電絕緣區段 220‧‧‧Electrical insulation section

224‧‧‧電饋通 224‧‧‧Electric feedthrough

225‧‧‧高電壓源 225‧‧‧High voltage source

230‧‧‧頂部部分/組件 230‧‧‧Top part/component

232‧‧‧底部部分/組件 232‧‧‧Bottom part/component

熟悉技術者可藉由參考附圖來較佳地理解本發明之諸多優點,其中: Those skilled in the art can better understand the many advantages of the present invention by referring to the figures, in which:

圖1A至圖1F繪示根據本發明之一或多項實施例之一多通雷射支持之電漿系統之簡化示意圖。 1A-1F illustrate simplified schematic diagrams of a multi-pass laser supported plasma system in accordance with one or more embodiments of the present invention.

圖1G繪示根據本發明之一或多項實施例之配備有一或多個離軸反射鏡之多通光學總成。 1G illustrates a multi-pass optical assembly equipped with one or more off-axis mirrors in accordance with one or more embodiments of the present invention.

圖1H繪示根據本發明之一或多項實施例之配置成一光學穿透組態之多通光學總成。 1H illustrates a multi-pass optical assembly configured in an optically penetrating configuration in accordance with one or more embodiments of the present invention.

圖1I繪示根據本發明之一或多項實施例之經配置使得照明之NA在一或多次連續穿過電漿之後減小之多通光學總成。 1I illustrates a multi-pass optical assembly configured to reduce the NA of an illumination after one or more successive passes through the plasma, in accordance with one or more embodiments of the present invention.

圖1J至圖1K繪示根據本發明之一或多項實施例之使用多通光學總成來控制電漿之形狀。 1J-1K illustrate the use of a multi-pass optical assembly to control the shape of a plasma in accordance with one or more embodiments of the present invention.

圖1L繪示根據本發明之一或多項實施例之配備有一或多個回向反射器總成之多通光學總成。 1L illustrates a multi-pass optical assembly equipped with one or more retroreflector assemblies in accordance with one or more embodiments of the present invention.

圖1M至圖1N繪示根據本發明之一或多項實施例之包含配置成一諧振器組態之一或多個回向反射器總成之多通光學總成。 1M-1N illustrate a multi-pass optical assembly including one or more retroreflector assemblies configured in a resonator configuration in accordance with one or more embodiments of the present invention.

圖1O繪示根據本發明之一或多項實施例之配備有一或多個偏光板元件之多通光學總成。 FIG. 10 illustrates a multi-pass optical assembly equipped with one or more polarizing plate elements in accordance with one or more embodiments of the present invention.

圖1P至圖1Q繪示根據本發明之一或多項實施例之配備有用於量測多通光學總成之像差之一或多個波前感測器之多通光學總成。 1P-1Q illustrate a multi-pass optical assembly equipped with one or more wavefront sensors for measuring aberrations of a multi-pass optical assembly, in accordance with one or more embodiments of the present invention.

圖2A至圖2H繪示根據本發明之一或多項實施例之配備有一反射器總成之一多通系統。 2A-2H illustrate a multi-pass system equipped with a reflector assembly in accordance with one or more embodiments of the present invention.

現將詳細參考附圖中所繪示之揭示標的。 Reference will now be made in detail to the disclosure of the drawings.

儘管已繪示本發明之特定實施例,但應明白,熟悉技術者可在不背離前述揭示內容之範疇及精神之情況下實現本發明之各種修改及實施例。據此,本發明之範疇應僅受限於本發明之隨附申請專利範圍。 While the invention has been described with respect to the specific embodiments of the present invention, it is understood that the various modifications and embodiments of the invention may be practiced without departing from the scope and spirit of the invention. Accordingly, the scope of the invention should be limited only by the scope of the appended claims.

大體上參考圖1A至圖2H,根據本發明之一或多項實施例來揭示一高效率雷射支持電漿(LSP)光源。本發明之實施例係針對包含用於使泵照明及/或寬頻光再循環之多個離散光學元件之一多通雷射支持之電漿系統。本發明之額外實施例係針對包含用於使泵照明及/或寬頻光再循環之一橢圓體反射器總成之一多通雷射支持之電漿系統。使泵照明及/或電漿發射寬頻再循環回至電漿中以進一步泵電漿導致比非再循環系統提高之本發明之實施例之效率。另外,使用本發明之離散光學元件或反射器總成來組合電漿之多個影像可導致寬頻輸出之亮度提高。 Referring generally to Figures 1A through 2H, a high efficiency laser supported plasma (LSP) source is disclosed in accordance with one or more embodiments of the present invention. Embodiments of the present invention are directed to a plasma system that includes multi-pass laser support for one of a plurality of discrete optical components for recirculating pump illumination and/or wideband light. Additional embodiments of the present invention are directed to a plasma system including multi-pass laser support for one of ellipsoidal reflector assemblies for pump illumination and/or wideband light recycling. Recycling the pump illumination and/or plasma emission broadband back into the plasma to further pump the plasma results in an efficiency of embodiments of the present invention that is greater than non-recirculation systems. Additionally, the use of the discrete optical elements or reflector assemblies of the present invention to combine multiple images of the plasma can result in increased brightness of the broadband output.

2008年10月14日發佈之美國專利第7,435,982號中亦大體上描述一光支持之電漿之產生,該專利之全文以引用的方式併入本文中。2010年8月31日發佈之美國專利第7,786,455號中亦大體上描述電漿之產生,該專利之全文以引用的方式併入本文中。2011年8月2日發佈之美國專利第7,989,786號中亦大體上描述電漿之產生,該專利之全文以引用的方式併入本文中。2012年5月22日發佈之美國專利第8,182,127號中亦大體上描述電漿之產生,該專利之全文以引用的方式併入本文中。2012年11月13日發佈之美國專利第8,309,943號中亦大體上描述電漿之產生,該專利之全文以引用的方式併入本文中。2013年2月9日發佈之美國專利第8,525,138號中亦大體上描述電漿之產生,該專利之全文以引用的方式併入本文中。2014年12月30日發佈之美國專利第8,921,814號中亦大體上描述電漿之產生,該專利之全文以引用的方式併入本文中。2016年4月19日發佈之美國專利第9,318,311號中亦大體 上描述電漿之產生,該專利之全文以引用的方式併入本文中。2014年3月25日申請之美國專利公開案第2014/029154號中亦大體上描述電漿之產生,該案之全文以引用的方式併入本文中。2015年3月31日申請之美國專利公開案第2015/0282288號中亦大體上描述一光支持之電漿之橫向泵,該案之全文以引用的方式併入本文中。一般而言,本發明之各種實施例應被解譯為其適用範圍擴及此項技術中已知之任何基於電漿之光源。2010年4月27日發佈之美國專利第7,705,331號中大體上描述在電漿產生之背景下使用之一光學系統,該專利之全文以引用的方式併入本文中。 The production of a photo-supported plasma is also generally described in U.S. Patent No. 7,435,982, issued to A.S. The generation of plasma is also generally described in U.S. Patent No. 7,786,455, issued to A.S. The generation of plasma is also generally described in U.S. Patent No. 7,989,786, issued on Aug. 2, 2011, which is incorporated herein in its entirety by reference. The generation of plasma is also generally described in U.S. Patent No. 8,182,127, issued on May 22, 2012, which is incorporated herein by reference. The generation of plasma is also generally described in U.S. Patent No. 8,309,943, issued on Nov. 13, 2012, which is incorporated herein by reference. The generation of plasma is also generally described in U.S. Patent No. 8,525,138, issued Feb. 9, 2013, which is incorporated herein in its entirety by reference. The generation of plasma is also generally described in U.S. Patent No. 8,921,814, issued on Dec. 30, 2014, which is incorporated herein in its entirety by reference. U.S. Patent No. 9,318,311, issued on April 19, 2016, is also generally The generation of plasma is described above and is incorporated herein by reference in its entirety. The generation of plasma is also generally described in U.S. Patent Publication No. 2014/029154, filed on March 25, 2014, which is incorporated herein by reference. A laterally supported plasma-pumped plasma pump is also generally described in U.S. Patent Publication No. 2015/0282288, filed on Mar. 31, the entire disclosure of which is hereby incorporated by reference. In general, the various embodiments of the invention should be interpreted as broadly applicable to any plasma-based light source known in the art. One of the optical systems used in the context of plasma generation is generally described in U.S. Patent No. 7,705,331, issued to A.S.

圖1A至圖1O繪示根據本發明之一或多項實施例之用於高效產生LSP電漿之一多通系統100。在一實施例中,如圖1A中所展示,系統100包含經組態以產生用於支持電漿106之泵照明之一光束101的泵源104(例如一或多個雷射)。泵光束101適合用於支持氣體107之一容積內之一電漿106。電漿106回應於來自泵光束101之光學泵而發射寬頻輻射115。在另一實施例中,系統100包含一多通光學總成102。在一實施例中,多通光學總成102包含經組態以執行泵光束多次穿過(108a至108d)氣體107之一部分來支持電漿106的一或多個光學元件110a至110f。在另一實施例中,一或多個光學元件110a至110f經配置以收集透射穿過電漿106之泵光束之一未吸收部分且將所收集之泵光束之未吸收部分導引回至電漿106及/或靠近電漿106之氣體107中。如本文中先前所提及,多通光學總成102尤其用於其中由電漿106吸收之泵照明較少的低壓設置中。多通總成102之一或多個光學元件110a至110f提供泵照明之「再循環」,藉此泵光束之未吸收部分將未吸收泵光束重新導引回至電漿106及/或接近電漿106之氣體107中。 1A-1O illustrate a multi-pass system 100 for efficiently generating LSP plasma in accordance with one or more embodiments of the present invention. In one embodiment, as shown in FIG. 1A, system 100 includes a pump source 104 (eg, one or more lasers) configured to generate a beam of light 101 for supporting pump illumination of plasma 106. The pump beam 101 is adapted to support one of the plasmas 106 in one of the volumes of the gas 107. The plasma 106 emits broadband radiation 115 in response to an optical pump from the pump beam 101. In another embodiment, system 100 includes a multi-pass optical assembly 102. In one embodiment, the multi-pass optical assembly 102 includes one or more optical elements 110a-110f that are configured to perform a plurality of portions of the gas 107 through the pump beam multiple times (108a-108d) to support the plasma 106. In another embodiment, the one or more optical elements 110a-110f are configured to collect an unabsorbed portion of the pump beam transmitted through the plasma 106 and direct the unabsorbed portion of the collected pump beam back to electricity The slurry 106 and/or the gas 107 adjacent to the plasma 106. As previously mentioned herein, the multi-pass optical assembly 102 is particularly useful in low pressure settings where the pump absorbed by the plasma 106 is less illuminated. One or more optical elements 110a-110f of the multi-pass assembly 102 provide "recycling" of pump illumination whereby the unabsorbed portion of the pump beam redirects the unabsorbed pump beam back to the plasma 106 and/or near power The slurry 106 is in the gas 107.

在一實施例中,如圖1A中所展示,多通光學總成102包含兩個或兩個以上光學元件110a至110f。兩個或兩個以上光學元件110a至110f 可包含此項技術中已知之任何光學元件,其等能夠收集透射穿過電漿106之電漿照明且能夠將泵照明重新導引回至電漿106及/或靠近電漿106之氣體107中。例如,兩個或兩個以上光學元件110a至110f可包含(但不限於)一或多個反射光學元件(例如反射鏡)及/或一或多個透射光學元件(例如透鏡)。例如,如圖1A中所描繪,兩個或兩個以上光學元件110a至110f可包含(但不限於)一組反射鏡110a至110f。例如,反射鏡組110a至110f可包含(但不限於)一或多個轉彎鏡。反射鏡組110a至110f可包含此項技術中已知之任何類型之反射鏡。例如,反射鏡組110a至110f可包含以下之一或多者:一或多個橢圓鏡、一或多個拋物面鏡、一或多個球面鏡或一或多個平面鏡。 In an embodiment, as shown in FIG. 1A, the multi-pass optical assembly 102 includes two or more optical elements 110a-110f. Two or more optical elements 110a to 110f Any optical component known in the art can be included that is capable of collecting plasma illumination transmitted through the plasma 106 and capable of redirecting pump illumination back to the plasma 106 and/or to the gas 107 adjacent to the plasma 106. . For example, two or more optical elements 110a-110f can include, but are not limited to, one or more reflective optical elements (eg, mirrors) and/or one or more transmissive optical elements (eg, lenses). For example, as depicted in FIG. 1A, two or more optical elements 110a-110f can include, but are not limited to, a set of mirrors 110a-110f. For example, mirror sets 110a through 110f can include, but are not limited to, one or more turning mirrors. The mirror sets 110a through 110f can comprise any type of mirror known in the art. For example, mirror sets 110a through 110f can include one or more of: one or more elliptical mirrors, one or more parabolic mirrors, one or more spherical mirrors, or one or more planar mirrors.

如圖1A中所展示,泵光束101執行電漿106之第一次穿過108a。首次穿過108a之泵光束101之一第一部分由電漿106及/或接近電漿106之氣體107吸收。首次穿過108a之光束101之一第二部分經透射穿過部分透明電漿106而由反射鏡110a收集。接著,反射鏡110a將所收集之照明導引至一第二反射鏡110b,第二反射鏡110b接著執行泵光束101第二次穿過(108b)電漿106。第二次穿過108b之光束101之一第一部分亦由電漿106及/或接近電漿106之氣體107吸收,而第二次穿過108b之光束101之一第二部分經透射穿過電漿106。經由反射鏡110c至110f多次重複此程序以執行泵光束101穿過(108c及108d)電漿106。應注意,本發明之範疇不受限於圖1A中所描繪之反射鏡之數目或配置(其僅供說明)。應認識到,在本文中,多通總成102可包含依任何方式定位及定向以實現泵照明多次穿過電漿106之任何數目個光學元件(例如反射的及/或透射的)。 As shown in FIG. 1A, pump beam 101 performs the first pass of 108a of plasma 106. The first portion of one of the pump beams 101 passing through 108a for the first time is absorbed by the plasma 106 and/or the gas 107 proximate to the plasma 106. The second portion of one of the beams 101 passing through 108a for the first time is transmitted through the partially transparent plasma 106 and collected by the mirror 110a. Next, mirror 110a directs the collected illumination to a second mirror 110b, which in turn performs a second pass of pump beam 101 through (108b) plasma 106. The first portion of the beam 101 of the second pass 108b is also absorbed by the plasma 106 and/or the gas 107 proximate to the plasma 106, while the second portion of the beam 101 passing through the 108b for the second time is transmitted through the second portion. Slurry 106. This procedure is repeated multiple times via mirrors 110c through 110f to perform pump beam 101 through (108c and 108d) plasma 106. It should be noted that the scope of the invention is not limited by the number or configuration of mirrors depicted in Figure 1A (which is for illustrative purposes only). It will be appreciated that herein, the multi-pass assembly 102 can include any number of optical elements (eg, reflective and/or transmissive) that are positioned and oriented in any manner to effect pump illumination through the plasma 106 multiple times.

在另一實施例中,泵源104包含一或多個雷射。泵源104可包含此項技術中已知之任何雷射系統。例如,泵源104可包含能夠發射電磁波譜之紅外線、可見光及/或紫外線部分中之輻射之此項技術中已 知之任何雷射系統。 In another embodiment, pump source 104 includes one or more lasers. Pump source 104 can comprise any of the laser systems known in the art. For example, pump source 104 can comprise a technology capable of emitting radiation in the infrared, visible, and/or ultraviolet portions of the electromagnetic spectrum. Know any laser system.

在一實施例中,泵源104可包含經組態以發射連續波(CW)雷射輻射之一雷射系統。例如,泵源104可包含一或多個CW紅外線雷射源。例如,在其中氣體107係或包含氬氣的設置中,泵源104可包含經組態以發射1069nm之輻射之一CW雷射(例如光纖雷射或盤形Yb雷射)。應注意,此波長適合於氬氣之一1068nm吸收譜線且因而尤其用於泵氬氣。應注意,在本文中,一CW雷射之以上描述不具限制性且可在本發明之背景下實施此項技術中已知之任何雷射。 In an embodiment, pump source 104 may include a laser system configured to emit continuous wave (CW) laser radiation. For example, pump source 104 can include one or more CW infrared laser sources. For example, in an arrangement in which the gas 107 is or contains argon, the pump source 104 can include a CW laser (eg, a fiber laser or a disk shaped Yb laser) configured to emit 1069 nm of radiation. It should be noted that this wavelength is suitable for one of the 1068 nm absorption lines of argon and thus is especially useful for pumping argon. It should be noted that the above description of a CW laser is not limiting and any laser known in the art can be implemented in the context of the present invention.

在另一實施例中,泵源104可包含經組態以將雷射光依實質上恆定之一功率提供至電漿106之一或多個雷射。在另一實施例中,泵源104可包含經組態以將調變雷射光提供至電漿106之一或多個調變雷射。在另一實施例中,泵源104可包含經組態以將脈衝雷射光提供至電漿之一或多個脈衝雷射。 In another embodiment, pump source 104 can include one or more lasers configured to provide laser light to one or more of the plasma 106 at a substantially constant power. In another embodiment, pump source 104 can include one or more modulated lasers configured to provide modulated laser light to plasma 106. In another embodiment, pump source 104 can include one or more pulsed lasers configured to provide pulsed laser light to the plasma.

在另一實施例中,泵源104可包含一或多個二極體雷射。例如,泵源104可包含依與氣體107之物種之任何一或多個吸收譜線對應之一波長發射輻射之一或多個二極體雷射。可選擇實施泵源104之一二極體雷射,使得該二極體雷射之波長依據任何電漿之任何吸收譜線(例如離子躍遷線)或此項技術中已知之電漿產生氣體之任何吸收譜線(例如高度激發中性粒子躍遷線)來調諧。因而,一給定二極體雷射(或二極體雷射組)之選擇將取決於系統100中所使用之氣體107之類型。 In another embodiment, pump source 104 can include one or more diode lasers. For example, pump source 104 can include one or more diode lasers that emit radiation at one wavelength corresponding to any one or more absorption lines of the species of gas 107. Optionally, a diode laser of one of the pump sources 104 can be implemented such that the wavelength of the diode laser is based on any absorption line of any plasma (eg, an ion transition line) or a plasma generated gas known in the art. Any absorption line (such as a highly excited neutral particle transition line) is tuned. Thus, the choice of a given diode laser (or diode laser set) will depend on the type of gas 107 used in system 100.

在另一實施例中,泵源104可包含一離子雷射。例如,泵源104可包含此項技術中已知之任何稀有氣體離子雷射。例如,就一基於氬氣之電漿而言,用於泵氬離子之泵源104可包含一Ar+雷射。在另一實施例中,泵源104可包含一或多個頻率轉換雷射系統。例如,泵源104可包含具有超過100瓦特之一功率位準之一Nd:YAG或Nd:YLF雷射。在另一實施例中,泵源104可包含一盤形雷射。在另一實施例中,泵 源104可包含一光纖雷射。在另一實施例中,泵源104可包含一寬頻雷射。 In another embodiment, pump source 104 can include an ion laser. For example, pump source 104 can comprise any rare gas ion laser known in the art. For example, in the case of an argon-based plasma, the pump source 104 for pumping argon ions can comprise an Ar + laser. In another embodiment, pump source 104 can include one or more frequency converted laser systems. For example, pump source 104 can include a Nd:YAG or Nd:YLF laser having one of more than 100 watts of power level. In another embodiment, pump source 104 can include a disk shaped laser. In another embodiment, pump source 104 can include a fiber laser. In another embodiment, pump source 104 can include a wide frequency laser.

在另一實施例中,泵源104可包含一或多個非雷射源。泵源104可包含此項技術中已知之任何非雷射光源。例如,泵源104可包含能夠離散地或連續地發射電磁波譜之紅外線、可見光或紫外線部分中之輻射之此項技術中已知之任何非雷射系統。 In another embodiment, pump source 104 can include one or more non-laser sources. Pump source 104 can comprise any non-laser source known in the art. For example, pump source 104 can comprise any non-laser system known in the art that is capable of discretely or continuously emitting radiation in the infrared, visible or ultraviolet portions of the electromagnetic spectrum.

在另一實施例中,泵源104可包含兩個或兩個以上光源。在一實施例中,泵源104可包含兩個或兩個以上雷射。例如,泵源104(或「若干泵源」)可包含多個二極體雷射。在另一實施例中,兩個或兩個以上雷射之各者可發射依據系統100內之氣體或電漿之一不同吸收譜線來調諧之雷射輻射。 In another embodiment, pump source 104 can include two or more light sources. In an embodiment, pump source 104 may include two or more lasers. For example, pump source 104 (or "several pump sources") can include multiple diode lasers. In another embodiment, each of two or more lasers can emit laser radiation tuned according to a different absorption line of gas or plasma within system 100.

圖1B繪示根據本發明之一或多項實施例之由一單一反射面組成之多通總成102。在一實施例中,多通總成102包含具有一第一部分及至少一第二部分之一反射面,其經配置以收集泵光束101之一未吸收部分且將所收集之泵光束之未吸收部分重新導引回至電漿106及/或接近電漿106之氣體107中。在此實施例中,反射面可由具有一複雜形狀之一單一反射鏡組成,藉此反射鏡之第一部分及反射鏡之至少第二部分充當獨立反射鏡以執行泵照明多次穿過電漿106。單一反射面可經構造以依類似於包含獨立反射鏡之本發明之實施例之任何者的一方式起作用。就此而言,單一反射面可包含複製本發明之各種實施例之獨立反射鏡的多個部分。例如,如圖1B中所展示,反射面可包含(但不限於)多個部分113a至113f,其等用於收集透射穿過電漿106之未吸收泵照明且將所收集之泵照明重新導引回至電漿106及/或接近電漿106之氣體107中。圖1B之單一反射面之形狀及組態不應被解譯為對本發明之限制,而是僅供說明。應注意,在本文中,圖1B之單一反射面之反射部分之組態可擴展至多個反射部分(例如113a至113f)之任何形 狀、數目及/或位置。在另一實施例中,單一反射面可由配合在一起之多個組件(例如上半部及下半部)形成。在另一實施例中,單一反射面可經組態以充當用於容納氣體107之一氣體容納元件或容器。 FIG. 1B illustrates a multi-pass assembly 102 comprised of a single reflective surface in accordance with one or more embodiments of the present invention. In one embodiment, the multi-pass assembly 102 includes a reflective surface having a first portion and at least a second portion configured to collect an unabsorbed portion of the pump beam 101 and unabsorb the collected pump beam Partially redirected back to the plasma 106 and/or to the gas 107 of the plasma 106. In this embodiment, the reflective surface may be comprised of a single mirror having a complex shape whereby the first portion of the mirror and at least a second portion of the mirror act as a separate mirror to perform pump illumination multiple times across the plasma 106. . The single reflective surface can be configured to function in a manner similar to any of the embodiments of the present invention that include a separate mirror. In this regard, a single reflective surface can include portions that replicate individual mirrors of various embodiments of the present invention. For example, as shown in FIG. 1B, the reflective surface can include, but is not limited to, a plurality of portions 113a-113f that are used to collect unabsorbed pump illumination transmitted through the plasma 106 and redirect the collected pump illumination It is led back to the plasma 106 and/or to the gas 107 of the plasma 106. The shape and configuration of the single reflecting surface of Figure 1B should not be construed as limiting the invention, but only for purposes of illustration. It should be noted that the configuration of the reflective portion of the single reflecting surface of FIG. 1B can be extended to any of a plurality of reflecting portions (for example, 113a to 113f). Shape, number and/or position. In another embodiment, a single reflective surface can be formed from a plurality of components that are mated together, such as the upper and lower halves. In another embodiment, a single reflective surface can be configured to act as a gas containment element or container for containing gas 107.

圖1C繪示根據本發明之一或多項實施例之配備有一組集光器件103之系統100。在一實施例中,集光器件組103包含一或多個集光元件111a至111f經組態以將由電漿106發射之寬頻輻射115導引至一或多個下游光學元件105(諸如(但不限於)一均光器、透鏡、反射鏡、濾波器及/或一孔隙)。就此意義而言,集光元件111a至111f用於組合電漿106之多個影像,此導致具有提高亮度之一寬頻輸出。 FIG. 1C illustrates a system 100 equipped with a set of light collecting devices 103 in accordance with one or more embodiments of the present invention. In one embodiment, light collecting device group 103 includes one or more light collecting elements 111a through 111f configured to direct broadband radiation 115 emitted by plasma 106 to one or more downstream optical elements 105 (such as (but Not limited to) a homogenizer, a lens, a mirror, a filter, and/or a void). In this sense, the light collecting elements 111a through 111f are used to combine multiple images of the plasma 106, which results in a broadband output with increased brightness.

在一實施例中,如圖1C中所描繪,集光元件111a至111f可經配置於相同於多通光學元件110a至110f之平面中。在此實施例中,集光元件111a至111f散佈於多通光學元件110a至110f之間以避免干擾與多通光學元件110a至110f相關聯之標記線。當寬頻光115由電漿106發射時,光115之一部分由一第一集光元件111a收集且經由一第二集光元件111b導引回至電漿106及/或接近電漿106之氣體107。可經由額外集光元件111c至111f重複此程序任何數目次以實施額外穿過電漿106及/或接近電漿106之氣體107。 In an embodiment, as depicted in FIG. 1C, the light collecting elements 111a through 111f can be configured in the same plane as the multi-pass optical elements 110a through 110f. In this embodiment, the light collecting elements 111a to 111f are interspersed between the multi-pass optical elements 110a to 110f to avoid interference with the marking lines associated with the multi-pass optical elements 110a to 110f. When the broadband light 115 is emitted by the plasma 106, a portion of the light 115 is collected by a first light collecting element 111a and directed back to the plasma 106 and/or the gas 107 proximate to the plasma 106 via a second light collecting element 111b. . This procedure can be repeated any number of times via additional light collecting elements 111c through 111f to effect additional gas 107 passing through the plasma 106 and/or near the plasma 106.

應注意,圖中僅已展示收集寬頻輻射115之一單一反射路徑(以集光元件111a開始)。應認識到,在本文中,寬頻輻射可由集光元件111b至111f之任何者首先收集(在任何重新導引之前)。應進一步注意,以元件111b至111f之任何者開始一反射路徑之寬頻光將經歷比以集光元件111a開始之寬頻光少之電漿106之穿過。 It should be noted that only one single reflection path for collecting broadband radiation 115 (starting with light collecting element 111a) has been shown in the figures. It will be appreciated that in this context, broadband radiation may be collected first by any of the light collecting elements 111b through 111f (before any homing). It should be further noted that the broadband light that begins a reflection path with any of the elements 111b through 111f will experience the passage of the plasma 106 that is less than the broadband light that begins with the light collecting element 111a.

圖1C之集光元件111a至111f之數目及組態不應被解譯為對本發明之範疇之一限制。確切而言,圖1C中所描繪之配置僅供說明。應注意,集光器件103可由適合用於收集由電漿106發射之寬頻光115且組合電漿之多個影像以提高寬頻輸出之亮度的任何光學配置組成。 The number and configuration of the light collecting elements 111a to 111f of Fig. 1C should not be construed as limiting one of the scope of the invention. Specifically, the configuration depicted in Figure 1C is for illustrative purposes only. It should be noted that the light collecting device 103 can be composed of any optical configuration suitable for collecting the broadband light 115 emitted by the plasma 106 and combining the multiple images of the plasma to increase the brightness of the broadband output.

在一實施例中,儘管圖中未展示,但集光器件103可經配置於由多通光學元件102界定之平面外。在此實施例中,集光元件111a至111f可經配置於不同於由多通光學元件110a至110f界定之光學平面的一光學平面中。例如,集光元件111a至111f之平面可經配置成相對於由多通光學元件110a至110f界定之平面成90°。 In an embodiment, although not shown in the figures, the light collecting device 103 can be disposed out of plane defined by the multi-pass optical element 102. In this embodiment, the light collecting elements 111a through 111f can be configured in an optical plane that is different from the optical plane defined by the multi-pass optical elements 110a through 110f. For example, the plane of the light collecting elements 111a to 111f can be configured to be at 90° with respect to a plane defined by the multi-pass optical elements 110a to 110f.

在另一實施例中,儘管圖中未展示,但集光器件103可包含一單一集光器元件。例如,單一集光元件可由一單一反射面組成(類似於圖1B之實施例),且經組態以收集由電漿106發射之寬頻光115。接著,集光器元件之反射面可用於組合電漿106之多個影像以提供具有提高亮度之一寬頻輸出。在一實施例中,多通總成102可經定位於單一集光器元件之一內部容積內。 In another embodiment, although not shown in the figures, the light collecting device 103 can comprise a single concentrator element. For example, a single light collecting element can be comprised of a single reflective surface (similar to the embodiment of FIG. 1B) and configured to collect broadband light 115 emitted by plasma 106. The reflective surface of the concentrator element can then be used to combine multiple images of the plasma 106 to provide a broadband output with increased brightness. In an embodiment, the multi-pass assembly 102 can be positioned within an interior volume of one of the single concentrator elements.

在另一實施例中,多通總成102及集光總成103可整合於一單一單元內。就此而言,一單一反射面可執行泵光束101多次穿過電漿106及/或接近電漿106之氣體,同時亦用於組合電漿106之多個影像以提高寬頻輸出之總亮度。就此而言,單一反射單元充當多通總成102及集光總成103兩者。一此類配置包含本文中將進一步討論之一橢圓體反射器總成(參閱圖2A至圖2H)。 In another embodiment, the multi-pass assembly 102 and the collection assembly 103 can be integrated into a single unit. In this regard, a single reflective surface can perform multiple passes of the pump beam 101 through the plasma 106 and/or near the plasma 106, as well as combining multiple images of the plasma 106 to increase the overall brightness of the broadband output. In this regard, the single reflective unit acts as both the multi-pass assembly 102 and the collection assembly 103. One such configuration includes an ellipsoidal reflector assembly (see Figures 2A-2H) that will be discussed further herein.

圖1D繪示根據本發明之一或多項實施例之在一單一泵穿過模式中組態之一系統100。例如,如圖1D中所展示,泵照明104可穿過電漿106僅一次。在另一實施例中,集光總成103可收集由泵照明發射之寬頻光115且將其重新導引回至電漿106。 1D illustrates one system 100 configured in a single pump pass mode in accordance with one or more embodiments of the present invention. For example, as shown in FIG. 1D, pump illumination 104 can pass through plasma 106 only once. In another embodiment, the collection assembly 103 can collect the broadband light 115 emitted by the pump illumination and redirect it back to the plasma 106.

集光器總成103(或整合式多通/集光器總成)可收集由電漿106發射之可見光、NUV、UV、DUV、VUV及/或EUV輻射之一或多者且將寬頻照明115導引至一或多個下游光學元件。就此而言,集光器總成103可將可見光、NUV、UV、DUV、VUV及/或EUV輻射傳遞至此項技術中已知之任何光學特性系統之下游光學元件,諸如(但不限於)一 檢測工具或一度量工具。就此而言,寬頻輸出115可耦合至一檢測工具及/或度量工具之照明光學器件。 The concentrator assembly 103 (or integrated multi-pass/concentrator assembly) can collect one or more of the visible, NUV, UV, DUV, VUV, and/or EUV radiation emitted by the plasma 106 and will illuminate the broadband 115 is directed to one or more downstream optical components. In this regard, the concentrator assembly 103 can transmit visible light, NUV, UV, DUV, VUV, and/or EUV radiation to downstream optical components of any optical characteristic system known in the art, such as, but not limited to, a A detection tool or a measurement tool. In this regard, the broadband output 115 can be coupled to illumination optics of a detection tool and/or metrology tool.

再次參考圖1C,在一實施例中,多通總成102之光學元件110a至110f之一或多者及/或集光總成103之集光元件111a至111f之一或多者選擇性地透射光之一或多個選定波長。例如,光學元件110a至110f之一或多者及/或集光元件111a至111f之一或多者可透射由電漿106發射之寬頻輻射115之一或多個光譜區。例如,光學元件110a至110f之一或多者可透射作為集光總成103之收集對象之寬頻輻射115之一或多個光譜區。在一實施例中,多通總成102之光學元件110a至110f之一或多者及/或集光總成103之集光元件111a至111f之一或多者選擇性地吸收光之一或多個選定波長。例如,光學元件110a至110f之一或多者及/或集光元件111a至111f之一或多者可吸收由電漿106發射之寬頻輻射115之一或多個光譜區。在另一實施例中,多通總成102之光學元件110a至110f之一或多者及/或集光總成103之一或多個集光元件111a至111f選擇性地反射光之一或多個選定波長。例如,光學元件110a至110f之一或多者及/或一或多個集光器件111a至111f可將由電漿106發射之寬頻輻射115之一或多個光譜區反射回至電漿106。此外,多通總成102之光學元件110a至110f之一或多者及/或集光總成103之一或多個集光元件111a至111f可將寬頻光115之一或多個選定波長選擇性地反射回至電漿106,同時選擇性地透射寬頻光115之一或多個額外選定波長(使得光之額外選定波長不被反射回至電漿)。例如,多通總成102之光學元件110a至110f之一或多者可吸收作為集光總成103之收集對象之寬頻光115之一或多個光譜區。 Referring again to FIG. 1C, in one embodiment, one or more of the optical elements 110a-110f of the multi-pass assembly 102 and/or one or more of the light-collecting elements 111a-111f of the collection assembly 103 are selectively One or more selected wavelengths of transmitted light. For example, one or more of optical elements 110a-110f and/or one or more of light-collecting elements 111a-111f can transmit one or more spectral regions of broadband radiation 115 emitted by plasma 106. For example, one or more of the optical elements 110a to 110f may transmit one or more spectral regions of the broadband radiation 115 as a collection object of the collection assembly 103. In one embodiment, one or more of the optical elements 110a-110f of the multi-pass assembly 102 and/or one or more of the light-collecting elements 111a-111f of the collection assembly 103 selectively absorbs one of the light or Multiple selected wavelengths. For example, one or more of optical elements 110a-110f and/or one or more of light-collecting elements 111a-111f can absorb one or more spectral regions of broadband radiation 115 emitted by plasma 106. In another embodiment, one or more of the optical elements 110a-110f of the multi-pass assembly 102 and/or one or more of the light-collecting elements 111a-111f of the light collecting assembly 103 selectively reflect one of the light or Multiple selected wavelengths. For example, one or more of optical elements 110a-110f and/or one or more light collecting devices 111a-111f can reflect one or more spectral regions of broadband radiation 115 emitted by plasma 106 back to plasma 106. In addition, one or more of the optical elements 110a to 110f of the multi-pass assembly 102 and/or one or more of the light collecting elements 111a to 111f of the light collecting assembly 103 may select one or more selected wavelengths of the broadband light 115. It is reflected back to the plasma 106 while selectively transmitting one or more additional selected wavelengths of the broadband light 115 (so that the additional selected wavelength of light is not reflected back to the plasma). For example, one or more of the optical elements 110a-110f of the multi-pass assembly 102 can absorb one or more spectral regions of the broadband light 115 that are the collection objects of the collection assembly 103.

應注意,在本文中,自其引發及維持電漿106之氣體107之容積可容納於電漿產生技術中已知之任何氣體容納結構或容器中。 It should be noted that herein, the volume of gas 107 from which plasma 106 is initiated and maintained may be contained in any gas containment structure or vessel known in the plasma generation art.

圖1E繪示根據本發明之一實施例之配備有用於容納氣體107之一 電漿泡及/或電漿胞140之系統100。在一實施例中,氣體容納結構係一電漿泡。至少在2007年4月2日申請之美國專利申請案第11/695,348號、2006年3月31日申請之美國專利申請案第11/395,523號及2012年10月9日申請之美國專利申請案第13/647,680號中描述一電漿泡之用法,該等申請案之全文先前各以引用的方式併入本文中。在另一實施例中,氣體容納結構係一電漿胞。就一電漿胞而言,電漿胞可包含(但不限於)經配置成與用於容納氣體107之一或多個凸緣組合之一透射元件。至少在2014年3月31日申請之美國專利申請案第14/231,196號及2014年5月27日申請之美國專利申請案第14/288,092號中描述一帶凸緣電漿胞之用法,該等申請案之全文先前各以引用的方式併入本文中。 FIG. 1E illustrates one of the devices 107 for accommodating gas 107 according to an embodiment of the present invention. System 100 of plasma bubbles and/or plasma cells 140. In one embodiment, the gas containment structure is a plasma bubble. U.S. Patent Application Serial No. 11/695,348, filed on Apr. 2, 2007, and U.S. Patent Application Serial No. 11/395,523, filed on Mar. The use of a plasma bubble is described in U.S. Patent Application Serial No. 13/647, the entire disclosure of each of which is hereby incorporated by reference. In another embodiment, the gas containment structure is a plasmonic cell. In the case of a plasma cell, the plasma cell can include, but is not limited to, a transmissive element configured to be combined with one or more flanges for containing gas 107. The use of a flanged plasma cell is described in at least U.S. Patent Application Serial No. 14/231,196, filed on March 31, 2014, and U.S. Patent Application Serial No. 14/288,092, filed on May 27, 2014. The entire text of the application is hereby incorporated by reference in its entirety.

圖1F繪示根據本發明之一實施例之配備有用於容納氣體107之一腔室150之系統100。如圖1F中所展示,多通光學總成102及/或集光總成103可佈置於腔室150內。在另一實施例中,腔室150包含用於自泵源104接收泵照明101之一或多個入射窗142。在另一實施例中,腔室150包含用於將寬頻光115透射至一或多個下游光學元件105之一或多個出射窗144。2010年5月26日申請之美國專利申請案第12/787,827號、2015年3月17日申請之美國專利申請案第14/660,846號、2015年3月26日申請之美國專利申請案第14/670,210號及2014年3月25日申請之美國專利申請案第14/224,945號中描述作為一氣體容納結構之一氣體腔室之用法,該等申請案之全文各以引用的方式併入本文中。 FIG. 1F illustrates a system 100 equipped with a chamber 150 for containing a gas 107 in accordance with an embodiment of the present invention. As shown in FIG. 1F, the multi-pass optical assembly 102 and/or the collection assembly 103 can be disposed within the chamber 150. In another embodiment, the chamber 150 includes one or more entrance windows 142 for receiving pump illumination 101 from the pump source 104. In another embodiment, the chamber 150 includes one or more exit windows 144 for transmitting the broadband light 115 to one or more of the downstream optical elements 105. U.S. Patent Application Serial No. 12, filed on May 26, 2010 U.S. Patent Application Serial No. 14/660,846, filed on March 17, 2015, and U.S. Patent Application Serial No. 14/670,210, filed on Mar. The use of a gas chamber as a gas containment structure is described in the application Serial No. 14/224,945, the entireties of each of each of which is incorporated herein by reference.

系統100之氣體容納結構之透射部分(例如透射元件、透射泡或透射窗)可由至少部分透射由電漿106產生之寬頻光115及/或泵照明101之此項技術中已知之任何材料形成。在一實施例中,氣體容納結構之一或多個透射部分(例如透射元件、透射泡或透射窗)可由至少部分透射產生於氣體容納結構內之EUV輻射、VUV輻射、DUV輻射、UV輻射、NUV輻射及/或可見光之此項技術中已知之任何材料形成。此 外,氣體容納結構之一或多個透射部分可由至少部分透射來自泵源104之IR輻射、可見光及/或UV光之此項技術中已知之任何材料形成。在另一實施例中,氣體容納結構之一或多個透射部分可由透射來自泵源104(例如IR源)之輻射及由電漿106發射之輻射(例如EUV、VUV、DUV、UV、NUV輻射及/或可見光)兩者之此項技術中已知之任何材料形成。 The transmissive portion of the gas containment structure of system 100 (e.g., transmissive element, transmissive bubble or transmissive window) can be formed from any material known in the art that at least partially transmits broadband light 115 and/or pump illumination 101 produced by plasma 106. In an embodiment, one or more of the transmissive portions (eg, transmissive elements, transmissive bubbles, or transmissive windows) of the gas containment structure may be at least partially transmissive to EUV radiation, VUV radiation, DUV radiation, UV radiation generated in the gas containment structure, Any material known in the art of NUV radiation and/or visible light is formed. this Additionally, one or more of the transmissive portions of the gas containment structure may be formed of any material known in the art that at least partially transmits IR radiation, visible light, and/or UV light from pump source 104. In another embodiment, one or more of the transmissive portions of the gas containment structure may be radiated from radiation from pump source 104 (eg, an IR source) and from plasma 106 (eg, EUV, VUV, DUV, UV, NUV radiation) And/or visible light) are formed from any of the materials known in the art.

在一些實施例中,氣體容納結構之(若干)透射部分可由一低OH含量之熔融矽石玻璃材料形成。在其他實施例中,氣體容納結構之(若干)透射部分可由高OH含量之熔融矽石玻璃材料形成。例如,氣體容納結構140、150之透射元件、透射泡或透射窗可包含(但不限於)SUPRASIL 1、SUPRASIL 2、SUPRASIL 300、SUPRASIL 310、HERALUX PLUS、HERALUX-VUV及其類似者。在其他實施例中,氣體容納結構140、150之透射元件、透射泡或透射窗可包含(但不限於)氟化鈣、氟化鎂、氟化鋰、結晶石英及藍寶石。A.Schreiber等人於「Radiation Resistance of Quartz Glass for VUV Discharge Lamps」(J.Phys.D:Appl.Phys.38(2005),3242-3250)(其全文以引用的方式併入本文中)中詳細討論適合實施於本發明之氣體容納結構中之各種玻璃。 In some embodiments, the transmission portion(s) of the gas containment structure may be formed from a low OH content molten vermiculite glass material. In other embodiments, the transmission portion(s) of the gas containment structure may be formed from a high OH content molten vermiculite glass material. For example, the transmissive elements, transmissive bubbles, or transmissive windows of the gas containment structures 140, 150 can include, but are not limited to, SUPRASIL 1, SUPRASIL 2, SUPRASIL 300, SUPRASIL 310, HERALUX PLUS, HERALUX-VUV, and the like. In other embodiments, the transmissive elements, transmissive bubbles, or transmissive windows of the gas containment structures 140, 150 can include, but are not limited to, calcium fluoride, magnesium fluoride, lithium fluoride, crystalline quartz, and sapphire. A. Schreiber et al., "Radiation Resistance of Quartz Glass for VUV Discharge Lamps" (J. Phys. D: Appl. Phys. 38 (2005), 3242-3250), which is incorporated herein in its entirety by reference. Various glasses suitable for implementation in the gas containment structure of the present invention are discussed in detail.

在一實施例中,氣體容納結構140及/或150可容納適合用於在吸收泵照明之後產生一電漿之此項技術中已知之任何選定氣體(例如氬氣、氙氣、汞或其類似者)。在一實施例中,將來自泵源104之泵照明101聚焦至氣體107之容積中引起能量由氣體容納結構內之氣體或電漿吸收(例如,穿過一或多個選定吸收譜線),藉此「泵(灌注)」氣體物種以產生及/或支持一電漿106。在另一實施例中,儘管圖中未展示,但氣體容納結構可包含用於引發氣體容納結構之內部容積內之電漿106之一組電極,藉此來自泵源104之照明維持由電極點燃之後之電漿 106。 In one embodiment, the gas containment structures 140 and/or 150 can accommodate any selected gas known in the art (eg, argon, helium, mercury, or the like) suitable for use in generating a plasma after absorption pump illumination. ). In one embodiment, focusing pump illumination 101 from pump source 104 into the volume of gas 107 causes energy to be absorbed by the gas or plasma within the gas containment structure (eg, through one or more selected absorption lines), Thereby "pumping" the gas species to produce and/or support a plasma 106. In another embodiment, although not shown, the gas containment structure can include a set of electrodes for inducing plasma 106 within the interior volume of the gas containment structure, whereby illumination from pump source 104 remains ignited by the electrodes Plasma after 106.

可設想,在本文中,系統100可用於引發及/或支持各種氣體環境中之一電漿106。在一實施例中,用於引發及/或維持電漿106之氣體可包含一惰性氣體(例如稀有氣體或非稀有氣體)或一非惰性氣體(例如汞)。在另一實施例中,用於引發及/或維持一電漿106之氣體可包含氣體之一混合物(例如惰性氣體之混合物、惰性氣體與非惰性氣體之混合物或非惰性氣體之一混合物)。例如,適合實施於本發明之系統100中之氣體可包含(但不限於)Xe、Ar、Ne、Kr、He、N2、H2O、O2、H2、D2、F2、CH4、一或多個金屬鹵化物、一鹵素、Hg、Cd、Zn、Sn、Ga、Fe、Li、Na、Ar:Xe、ArHg、KrHg、XeHg及其等之任何混合物。本發明應被解譯為其適用範圍擴及任何光泵電漿產生系統且應進一步被解譯為其適用範圍擴及適合用於支持一氣體容納結構內之一電漿的任何類型之氣體。 It is contemplated that system 100 can be used herein to initiate and/or support one of the various plasma environments 106. In one embodiment, the gas used to initiate and/or maintain the plasma 106 may comprise an inert gas (eg, a rare or non-rare gas) or a non-inert gas (eg, mercury). In another embodiment, the gas used to initiate and/or maintain a plasma 106 may comprise a mixture of gases (eg, a mixture of inert gases, a mixture of inert and non-inert gases, or a mixture of non-inert gases). For example, gases suitable for implementation in the system 100 of the present invention may include, but are not limited to, Xe, Ar, Ne, Kr, He, N 2 , H 2 O, O 2 , H 2 , D 2 , F 2 , CH 4. Any mixture of one or more metal halides, monohalogen, Hg, Cd, Zn, Sn, Ga, Fe, Li, Na, Ar: Xe, ArHg, KrHg, XeHg, and the like. The present invention should be interpreted to extend its scope of application to any optical pump plasma generating system and should be further interpreted to include any type of gas suitable for use in supporting a plasma within a gas containment structure.

圖1G繪示根據本發明之一或多項實施例之配備有一或多個離軸反射鏡之多通光學總成102。在一實施例中,反射鏡之一或多者係一離軸拋物面鏡。在一實施例中,反射鏡之一或多者係一離軸橢圓鏡。在一實施例中,反射鏡之一或多者係一平面鏡。在圖1G所描繪之實例中,多通光學總成102包含離軸拋物面鏡110a、110b、離軸橢圓鏡110c及平面鏡110d。應注意,穿行於離軸拋物面鏡110a與110b之間之照明可實質上為準直的。相比而言,自離軸橢圓鏡110c反射之照明被聚焦至電漿106上(經由來自平面鏡110d之反射)。應注意,圖1G之反射鏡110a至110d之數目、類型及定位不限制本發明之範疇,而是僅供說明。 1G illustrates a multi-pass optical assembly 102 equipped with one or more off-axis mirrors in accordance with one or more embodiments of the present invention. In one embodiment, one or more of the mirrors is an off-axis parabolic mirror. In one embodiment, one or more of the mirrors are an off-axis elliptical mirror. In one embodiment, one or more of the mirrors are a flat mirror. In the example depicted in FIG. 1G, the multi-pass optical assembly 102 includes off-axis parabolic mirrors 110a, 110b, an off-axis elliptical mirror 110c, and a planar mirror 110d. It should be noted that the illumination passing between the off-axis parabolic mirrors 110a and 110b can be substantially collimated. In contrast, the illumination reflected from the off-axis elliptical mirror 110c is focused onto the plasma 106 (via reflection from the plane mirror 110d). It should be noted that the number, type, and positioning of the mirrors 110a to 110d of FIG. 1G are not intended to limit the scope of the present invention, but are merely illustrative.

圖1H繪示根據本發明之一或多項實施例之配置成一光學穿透組態之多通光學總成102。在一實施例中,一或多個較高次通路108c可穿行於與較低次通路108b相關聯之光學元件之間。例如,多通光學總 成102可包含與泵光束101第一次穿過(108b)電漿106及/或接近電漿106之氣體107相關聯之一第一組光學元件110a、110b。另外,多通光學總成102可包含與泵光束101再次穿過(108c)電漿106及/或接近電漿106之氣體107相關聯之另一組光學元件110c、110d。在另一實施例中,第一組光學元件110a、110b及另一組光學元件110c、110d經配置使得再次穿過108c之泵光束101之照明橫穿第一組光學元件之反射鏡110a與110b之間之一區域117。圖1H中所描繪之組態不應被解譯為對本發明範疇之一限制,而是僅供說明。應認識到,在本文中,圖1H之實施例可適用於其中來自高次反射之照明穿透低次光學元件的任何設置,如圖1H中所展示。 FIG. 1H illustrates a multi-pass optical assembly 102 configured in an optically penetrating configuration in accordance with one or more embodiments of the present invention. In an embodiment, one or more higher order passages 108c may pass between the optical elements associated with the lower secondary passage 108b. For example, multi-pass optical total The 102 may include a first set of optical elements 110a, 110b associated with the first time the pump beam 101 passes through (108b) the plasma 106 and/or the gas 107 proximate to the plasma 106. Additionally, the multi-pass optical assembly 102 can include another set of optical elements 110c, 110d associated with the pump beam 101 again passing through (108c) the plasma 106 and/or the gas 107 proximate to the plasma 106. In another embodiment, the first set of optical elements 110a, 110b and the other set of optical elements 110c, 110d are configured such that illumination of the pump beam 101 again through 108c traverses the mirrors 110a and 110b of the first set of optical elements One of the areas 117. The configuration depicted in Figure 1H should not be construed as limiting one of the scope of the invention, but only for purposes of illustration. It will be appreciated that herein, the embodiment of FIG. 1H is applicable to any arrangement in which illumination from high-order reflections penetrates low-order optical elements, as shown in FIG. 1H.

應注意,圖1H中所描繪之實施例尤其用於其中NA(數值孔徑)空間受限制(其常見於LSP應用期間)的設置中。例如,對可用NA空間之此一約束可起因於期望為了電漿效能而使泵照明NA與收集照明NA分離(或其他技術原因)。此外,一般可期望為了電漿泵而使用儘可能大之NA空間來最小化電漿之大小。通常亦可期望具有NA空間之一特定泵強度分佈,諸如(但不限於)一均勻強度分佈。以上所描述之光學穿透實施例之實施方案係尤其有用的,藉此來自一較高次通路之照明被導引於一早先較低次通路之光學元件(例如轉向鏡)之間。此一組態有助於最大化可用於LSP泵之NA空間。 It should be noted that the embodiment depicted in Figure 1H is particularly useful in settings where the NA (numerical aperture) space is limited, which is common during LSP applications. For example, this constraint on available NA space may result from the desire to separate the pump illumination NA from the collection illumination NA for plasma performance (or other technical reasons). In addition, it is generally desirable to use as large a NA space as possible for the plasma pump to minimize the size of the plasma. It is also generally desirable to have a specific pump intensity distribution for one of the NA spaces, such as, but not limited to, a uniform intensity distribution. Embodiments of the optically penetrating embodiments described above are particularly useful whereby illumination from a higher order path is directed between optical elements (e.g., turning mirrors) of an earlier lower order path. This configuration helps maximize the NA space available for the LSP pump.

圖1I繪示根據本發明之一或多項實施例之多通光學總成102,其經配置使得照明之NA在一或多次連續穿過電漿106之後減小。例如,多通總成102之一或多個光學元件110a及110b可經配置使得泵光束101在第二次穿過(108b)電漿106及/或接近電漿106之氣體107期間之NA低於泵光束101在第一次穿過(108a)電漿106及/或接近電漿106之氣體107期間之NA。應注意,歸因於沿各連續路徑吸收泵光束101,連續較高次通路之聚焦NA可經減小以維持大致相同於較低次通路之NA空間之 強度分佈的NA空間之強度分佈。此一配置允該泵照明更均勻地分佈於指定用於電漿泵之NA空間中。在另一實施例中,多通光學總成102之光學元件可經配置以建立泵光束101之連續通路之NA之一變動以產生NA空間之一選定泵強度分佈。 1I illustrates a multi-pass optical assembly 102 configured to reduce the NA of illumination after one or more consecutive passes through the plasma 106, in accordance with one or more embodiments of the present invention. For example, one or more of the optical components 110a and 110b of the multi-pass assembly 102 can be configured such that the pump beam 101 has a low NA during the second pass (108b) of the plasma 106 and/or the gas 107 of the plasma 106. The NA of the pump beam 101 during the first pass through (108a) the plasma 106 and/or the gas 107 near the plasma 106. It should be noted that due to the absorption of the pump beam 101 along each successive path, the focus NA of successive higher order paths can be reduced to maintain substantially the same NA space as the lower order path. The intensity distribution of the NA space of the intensity distribution. This configuration allows the pump illumination to be more evenly distributed in the NA space designated for the plasma pump. In another embodiment, the optical elements of the multi-pass optical assembly 102 can be configured to establish one of the NAs of the continuous path of the pump beam 101 to produce a selected pump intensity distribution for the NA space.

圖1J及圖1K繪示根據本發明之一或多項實施例之使用多通光學總成102來控制電漿106之形狀。多通光學總成102之一或多個光學元件可經配置以藉由控制與泵光束101對電漿106及/或接近電漿106之氣體107之各穿過相關聯之各焦點之一位置來控制電漿106之一形狀。在一實施例中,如本文中先前所展示,一或多個光學元件110a、110b經配置使得泵光束101之通路之各者之焦點實質上重疊以形成一光點。在另一實施例中,如圖1J中所展示,一或多個光學元件110a、110b經配置以使泵光束之第一通路108a之一焦點相對於泵光束之至少一額外通路108b之一焦點位移來形成一伸長電漿區域121。在另一實施例中,如圖1K中所展示,一或多個光學元件110a、110b經配置以將來自各連續路徑108a、108b之照明聚焦至一線,藉此形成一伸長電漿區域121。在一實施例中,多通總成102之光學元件之一或多者可經配置於相同於泵源104之平面中。在另一實施例中,多通總成102之光學元件之一或多者可經配置於由泵源104界定之平面外,藉此形成NA空間中之泵光束101之三維分佈。 1J and 1K illustrate the use of a multi-pass optical assembly 102 to control the shape of the plasma 106 in accordance with one or more embodiments of the present invention. One or more of the optical elements of the multi-pass optical assembly 102 can be configured to control the position of each of the focal points associated with each of the plasma 106 and/or the gas 107 proximate to the plasma 106 by the pump beam 101. To control the shape of one of the plasmas 106. In an embodiment, as previously shown herein, the one or more optical elements 110a, 110b are configured such that the focal points of the respective paths of the pump beam 101 substantially overlap to form a spot. In another embodiment, as shown in FIG. 1J, the one or more optical elements 110a, 110b are configured to focus one of the first paths 108a of the pump beam with respect to one of the at least one additional path 108b of the pump beam. Displacement to form an elongated plasma region 121. In another embodiment, as shown in FIG. 1K, one or more optical elements 110a, 110b are configured to focus illumination from each of the continuous paths 108a, 108b to a line, thereby forming an elongated plasma region 121. In an embodiment, one or more of the optical components of the multi-pass assembly 102 can be configured in the same plane as the pump source 104. In another embodiment, one or more of the optical components of the multi-pass assembly 102 can be disposed out of plane defined by the pump source 104, thereby forming a three-dimensional distribution of the pump beam 101 in the NA space.

應注意,以上所描述之配置及電漿形狀不限制本發明之範疇,而是僅供說明。可依任何適合方式控制多個通路之焦點之定位以形成具有任何適合形狀之一電漿區域。 It should be noted that the configurations and plasma shapes described above are not intended to limit the scope of the invention, but are merely illustrative. The positioning of the focus of the plurality of vias can be controlled in any suitable manner to form a plasma region having any suitable shape.

圖1L繪示根據本發明之一或多項實施例之配備有一或多個回向反射器總成之多通光學總成102。在一實施例中,多通光學總成102之光學元件之一或多者包含一或多個回向反射器總成。例如,多通光學總成102可包含(但不限於)回向反射器116。回向反射器116可包含(但 不限於)一球面鏡。在此實施例中,在泵照明101第一次穿過電漿106之後,反射鏡110a、110b收集未吸收之泵照明101且導引其反向穿過電漿106來執行第二次穿過。接著,回向反射器116自第二通路接收未吸收之泵照明且使泵照明經反射而反向穿過電漿106來執行泵照明101第三次穿過電漿106。應注意,一回向反射器之利用有效地使穿過一給定光學系統之次數加倍。 1L illustrates a multi-pass optical assembly 102 equipped with one or more retroreflector assemblies in accordance with one or more embodiments of the present invention. In one embodiment, one or more of the optical components of the multi-pass optical assembly 102 include one or more retroreflector assemblies. For example, the multi-pass optical assembly 102 can include, but is not limited to, a retroreflector 116. The retroreflector 116 can include (but Not limited to) a spherical mirror. In this embodiment, after the pump illumination 101 passes through the plasma 106 for the first time, the mirrors 110a, 110b collect the unabsorbed pump illumination 101 and direct it through the plasma 106 for a second pass. . Next, the retroreflector 116 receives the unabsorbed pump illumination from the second path and causes the pump illumination to be reflected and reversed through the plasma 106 to perform the pump illumination 101 for a third pass through the plasma 106. It should be noted that the use of a retroreflector effectively doubles the number of passes through a given optical system.

圖1M至圖1N繪示根據本發明之一或多項實施例之包含配置成一諧振器組態之一或多個回向反射器總成之多通光學總成102。在一實施例中,如圖1M中所展示,多通光學總成102可包含(但不限於)配置成一諧振器組態之兩個或兩個以上回向反射器116a、116b。就此而言,第一回向反射器116a及第二回向反射器116b形成一諧振器。在此實施例中,在泵照明101第一次穿過電漿106之後,反射鏡110a、110b收集未吸收之泵照明101且導引其反向穿過電漿106來執行第二次穿過。接著,第一回向反射器116a(例如球面鏡)自第二通路接收未吸收之泵照明且使泵照明經反射而反向穿過電漿106來執行泵照明101第三次穿過電漿106。接著,反射鏡110b、110a使第三次穿過光反向穿過電漿106來執行第四次穿過電漿106。接著,第二回向反射器116b自第四通路接收光且重複光學路徑序列。 1M-1N illustrate a multi-pass optical assembly 102 including one or more retroreflector assemblies configured in a resonator configuration in accordance with one or more embodiments of the present invention. In an embodiment, as shown in FIG. 1M, the multi-pass optical assembly 102 can include, but is not limited to, two or more retroreflectors 116a, 116b configured in a resonator configuration. In this regard, the first retroreflector 116a and the second retroreflector 116b form a resonator. In this embodiment, after the pump illumination 101 passes through the plasma 106 for the first time, the mirrors 110a, 110b collect the unabsorbed pump illumination 101 and direct it through the plasma 106 for a second pass. . Next, the first retroreflector 116a (eg, a spherical mirror) receives unabsorbed pump illumination from the second path and causes the pump illumination to be reflected and reversed through the plasma 106 to perform pump illumination 101 for a third pass through the plasma 106. . Next, the mirrors 110b, 110a reverse the third pass through the plasma 106 for a fourth pass through the plasma 106. Next, the second retroreflector 116b receives light from the fourth via and repeats the optical path sequence.

在一實施例中,如圖1N中所展示,多通光學總成102可包含(但不限於)配置成一簡單諧振器組態之兩個或兩個以上回向反射器116a、116b。就此而言,第一回向反射器116a及第二回向反射器116b形成一簡單諧振器。在此實施例中,在泵照明101第一次穿過電漿106之後,第一回向反射器116a(例如球面鏡)自第一通路接收未吸收之泵照明且使泵照明經反射而反向穿過電漿106來執行泵照明101第二次穿過電漿106。接著,第二回向反射器116b自第二通路接收光且重複光學路徑序列。應注意,以上所提供之回向反射器之數目及配置不限制 本發明之範疇,而是僅供說明。 In an embodiment, as shown in FIG. 1N, the multi-pass optical assembly 102 can include, but is not limited to, two or more retroreflectors 116a, 116b configured in a simple resonator configuration. In this regard, the first retroreflector 116a and the second retroreflector 116b form a simple resonator. In this embodiment, after the pump illumination 101 passes through the plasma 106 for the first time, the first retroreflector 116a (eg, a spherical mirror) receives unabsorbed pump illumination from the first path and reverses the pump illumination through reflection. Pump illumination 101 is performed through plasma 106 for a second pass through plasma 106. Next, the second retroreflector 116b receives light from the second via and repeats the optical path sequence. It should be noted that the number and configuration of the retroreflectors provided above are not limited. The scope of the invention is intended to be illustrative only.

圖1O繪示根據本發明之一或多項實施例之配備有一或多個偏光板元件之多通光學總成102。在一實施例中,多通光學總成102包含用於執行多通總成102中之偏光旋轉之一偏光板125及一四分之一波片126。在一實施例中,泵照明101經水平偏光且穿過偏光板125至透鏡124,透鏡124將照明101聚焦至電漿106中。接著,反射鏡110a及110b收集未吸收之照明且重新導引其反向穿過電漿106來執行第二次穿過。接著,來自第二通路之未吸收照明穿過四分之一波片126至回向反射器116a且經反射而反向穿過四分之一波片126以引起偏光翻轉為垂直偏光。接著,垂直偏光之泵照明折回至光學總成,執行第三次穿過及第四次穿過以返回至偏光板125,偏光板125將垂直偏光照明反射至回向反射器116b(例如平面鏡)。接著,回向反射器116b將照明反射回至偏光板125且照明經透射以反向穿過光學總成102。應注意,以上所提供之回向反射器及偏光/波片元件之數目及配置不限制本發明之範疇,而是僅供說明。在另一實施例中,可使用來自配置於由來自泵源104之泵照明界定之平面外之反射鏡之多次反射來實施多通光學總成102中之偏光旋轉。 FIG. 10 illustrates a multi-pass optical assembly 102 equipped with one or more polarizing plate elements in accordance with one or more embodiments of the present invention. In one embodiment, the multi-pass optical assembly 102 includes a polarizing plate 125 and a quarter-wave plate 126 for performing polarization rotation in the multi-pass assembly 102. In an embodiment, the pump illumination 101 is horizontally polarized and passes through a polarizer 125 to a lens 124 that focuses the illumination 101 into the plasma 106. Next, mirrors 110a and 110b collect the unabsorbed illumination and redirect it back through plasma 106 to perform a second pass. Next, the unabsorbed illumination from the second pass passes through the quarter-wave plate 126 to the retroreflector 116a and is reflected back through the quarter-wave plate 126 to cause the polarized light to flip into a vertical polarized light. Then, the vertically polarized pump illumination is folded back to the optical assembly, performing a third pass and a fourth pass to return to the polarizer 125, and the polarizer 125 reflects the vertical polarized illumination to the retroreflector 116b (eg, a mirror) . Next, the retroreflector 116b reflects the illumination back to the polarizer 125 and the illumination is transmitted through the optical assembly 102 in the opposite direction. It should be noted that the number and configuration of the retroreflector and polarizing/wave plate components provided above are not intended to limit the scope of the invention, but are merely illustrative. In another embodiment, the polarization rotation in the multi-pass optical assembly 102 can be implemented using multiple reflections from a mirror disposed off-plane defined by pump illumination from the pump source 104.

圖1P至圖1Q繪示根據本發明之一或多項實施例之配備有用於量測多通光學總成之像差之一或多個波前感測器之多通光學總成102。應注意,多通總成102之像差可在多次穿過電漿106之後累積於透射泵雷射波前中。像差可起因於電漿及周圍氣體之折射率之變動。此等像差阻止將雷射高效聚焦於後續穿行上。在一實施例中,多通光學總成102可經組態以校正或至少減少此等像差。在一實施例中,多通總成102包含一或多個波前感測器128及通信地耦合至波前感測器128之一或多個自適應光學元件118。在另一實施例中,一或多個波前感測器128可沿多通總成102之泵路徑之一或多者收集照明且量測像差。接 著,波前感測器128可將此量測傳輸至一或多個自適應光學元件118,自適應光學元件118可接著調整由自適應光學元件118反射之光束之波前以補償波前感測器128處所量測之像差。自適應光學元件可包含此項技術中已知之任何自適應光學元件,諸如(但不限於)一數位微鏡陣列裝置。 1P-1Q illustrate a multi-pass optical assembly 102 equipped with one or more wavefront sensors for measuring aberrations of a multi-pass optical assembly, in accordance with one or more embodiments of the present invention. It should be noted that the aberration of the multi-pass assembly 102 may be accumulated in the transmission pump laser wavefront after passing through the plasma 106 multiple times. The aberration can be caused by a change in the refractive index of the plasma and the surrounding gas. These aberrations prevent the laser from being efficiently focused on subsequent passes. In an embodiment, the multi-pass optical assembly 102 can be configured to correct or at least reduce such aberrations. In an embodiment, the multi-pass assembly 102 includes one or more wavefront sensors 128 and one or more adaptive optical elements 118 communicatively coupled to the wavefront sensor 128. In another embodiment, one or more wavefront sensors 128 may collect illumination and measure aberrations along one or more of the pump paths of the multi-pass assembly 102. Connect The wavefront sensor 128 can transmit this measurement to one or more adaptive optical elements 118, which can then adjust the wavefront of the beam reflected by the adaptive optical element 118 to compensate for the wavefront sensation The aberration measured at the detector 128. The adaptive optical element can comprise any adaptive optical element known in the art such as, but not limited to, a digital micromirror array device.

在另一實施例中,如圖1Q中所展示,自適應光學元件可包含一自適應回向反射器130(例如自適應球面鏡)。就此而言,自適應回向反射器130可用於將泵照明反射回至電漿106中,同時亦用於校正由一或多個波前感測器128量測之像差。 In another embodiment, as shown in FIG. 1Q, the adaptive optical element can include an adaptive retroreflector 130 (eg, an adaptive spherical mirror). In this regard, adaptive retroreflector 130 can be used to reflect pump illumination back into plasma 106 while also being used to correct aberrations measured by one or more wavefront sensors 128.

在另一實施例中,儘管圖中未展示,但系統100可包含通信地耦合至一或多個波前感測器128及一或多個自適應光學元件118及/或130之一或多個控制器。就此而言,一或多個控制器可自一或多個波前感測器128接收波前資料且分析關於像差之資料。接著,控制器可將一或多個控制信號發送至一或多個自適應光學器件以指導一或多個自適應光學器件補償量測像差。控制器可包含一或多個處理器及用於儲存程式指令之一或多個記憶體。程式指令可經預程式化以引起一或多個處理器執行有關步驟。 In another embodiment, although not shown in the figures, system 100 can include one or more communicatively coupled to one or more wavefront sensors 128 and one or more adaptive optical elements 118 and/or 130 Controllers. In this regard, one or more controllers can receive wavefront data from one or more wavefront sensors 128 and analyze the information about the aberrations. The controller can then send one or more control signals to one or more adaptive optics to direct one or more adaptive optics to compensate for the measured aberrations. The controller can include one or more processors and one or more memories for storing program instructions. The program instructions can be pre-programmed to cause one or more processors to perform the relevant steps.

圖2A至圖2H繪示根據本發明之一或多項實施例之配備有一反射器總成202之一多通系統100。此實施例之反射器總成202可提供更接近黑體限制之輻射。多次穿過一電漿之收集允許最佳化氣壓,宛如電漿變大很多。因此,可降低每次穿過電漿時之所要寬頻輸出波長之吸收率/發射率。在一類似幾何形狀用於泵照明之情況中,亦可減少吸收泵照明以允許一較低氣壓。依較低氣壓操作系統100有助於減少「氣體搖擺」(其起因於導致折射率變動之強度梯度及溫度梯度)。 2A-2H illustrate a multi-pass system 100 equipped with a reflector assembly 202 in accordance with one or more embodiments of the present invention. The reflector assembly 202 of this embodiment can provide radiation that is closer to the black body limit. Multiple passes through a plasma collection allow for optimal gas pressure, as if the plasma is much larger. Therefore, the absorption/emissivity of the desired wide-band output wavelength each time the plasma is passed can be reduced. In the case of a similar geometry for pump illumination, the absorption pump illumination can also be reduced to allow for a lower air pressure. Operating the lower pressure operating system 100 helps to reduce "gas sway" (which results from intensity gradients and temperature gradients that cause refractive index changes).

另外,由反射器總成202之電漿106依不會將光帶至一輸出口之角度發射之光總是被聚焦回至(若干)電漿(或(若干)電漿接近處)。因 此,將被正常損耗之光部分用於泵(若干)電漿。此一組態導致系統100之效率高於單通系統且允許一較低功率泵源104達成一給定寬頻輻射。 In addition, the plasma 106 emitted by the reflector assembly 202 is always focused back to (several) plasma (or (several) plasma proximity) by light that is not emitted at an angle that is brought to an output. because Thus, the portion of the light that is normally lost is used for the pump (several) plasma. This configuration results in system 100 being more efficient than a single pass system and allowing a lower power pump source 104 to achieve a given broadband radiation.

圖2A至圖2B繪示根據本發明之一或多項實施例之系統100之反射器總成202之橫截面圖。應注意,圖2A表示垂直於圖2B之橫截面之一橫截面。 2A-2B are cross-sectional views of a reflector assembly 202 of system 100 in accordance with one or more embodiments of the present invention. It should be noted that Fig. 2A shows a cross section perpendicular to the cross section of Fig. 2B.

在一實施例中,系統100包含泵源104及反射器總成202。泵源104可包含一或多個照明源。例如,泵源104可包含一單一照明源或多個離散照明源(參閱圖2G至圖2H)。應注意,泵源104可由本文中先前所討論之泵源104之任何者組成。在一實施例中,反射器總成202充當用於容納氣體107之一壓力容器。應注意,反射器總成202可容納本發明中所描述之任何氣體,其包含(但不限於)Ar、Xe、Ne、N2、H2或其等之混合物。在另一實施例中,反射器總成202可將氣體107之一壓力維持於1atm至100atm之間。 In an embodiment, system 100 includes a pump source 104 and a reflector assembly 202. Pump source 104 can include one or more illumination sources. For example, pump source 104 can include a single illumination source or multiple discrete illumination sources (see Figures 2G-2H). It should be noted that the pump source 104 can be comprised of any of the pump sources 104 previously discussed herein. In an embodiment, the reflector assembly 202 acts as a pressure vessel for containing a gas 107. It should be noted, the reflective assembly 202 can accommodate any gas of the present invention is described, comprising (but not limited to) Ar, Xe, Ne, N 2, H 2 , etc., or a mixture thereof. In another embodiment, the reflector assembly 202 can maintain a pressure of one of the gases 107 between 1 atm and 100 atm.

在另一實施例中,泵照明之波長可經調整以與氣體107之一吸收譜線匹配,使得氣體高效吸收泵照明101。此方法尤其用於低密度設置中。 In another embodiment, the wavelength of the pump illumination can be adjusted to match the absorption line of one of the gases 107 such that the gas absorbs the pump illumination 101 efficiently. This method is especially useful in low density settings.

在另一實施例中,反射器總成202包含用於自照明源104接收泵光束101(參閱圖2A)之一或多個入口孔隙204。在另一實施例中,反射器總成202包含用於將寬頻輻射115之至少一部分(參閱圖2B)自反射器總成之一內部容積傳至一或多個下游光學元件105之一或多個出口孔隙206。 In another embodiment, the reflector assembly 202 includes one or more inlet apertures 204 for receiving a pump beam 101 (see FIG. 2A) from the illumination source 104. In another embodiment, the reflector assembly 202 includes means for transmitting at least a portion of the broadband radiation 115 (see FIG. 2B) from one of the interior volumes of the reflector assembly to one or more of the one or more downstream optical elements 105. An exit aperture 206.

在一實施例中,反射器總成202係具有一內反射面203之一橢圓形殼體。在一實施例中,如圖2A中所展示,泵照明101進入反射器總成202且由內反射面203聚焦至反射器總成202之一第一焦點201a。回應於來自泵照明101之激發能而在第一焦點201a處支持(引發及/或維 持)一電漿。接著,如圖2B中所展示,自電漿106發射寬頻光115。在另一實施例中,反射器總成202之內反射面經組態以收集由電漿發射之寬頻輻射之至少一部分且將所收集之寬頻輻射導引回至電漿106。重複此程序,直至寬頻光115之一給定部分由電漿106吸收或自出口孔隙206射出。就此而言,反射器總成202之內反射面203用於組合電漿106之兩個或兩個以上影像,使得寬頻輻射115之一輸出部分具有大於電漿106之一單一影像之一亮度的一亮度。應注意,重新導引之寬頻光115之路徑可在到達第一焦點201a之前第一次穿過第二焦點201b。 In one embodiment, the reflector assembly 202 has an elliptical housing having an inner reflective surface 203. In an embodiment, as shown in FIG. 2A, pump illumination 101 enters reflector assembly 202 and is focused by internal reflection surface 203 to one of first reflectors 201a of reflector assembly 202. Supported at the first focus 201a in response to excitation energy from the pump illumination 101 (trigger and/or dimension) Hold) a plasma. Next, as shown in FIG. 2B, broadband light 115 is emitted from plasma 106. In another embodiment, the inner reflective surface of the reflector assembly 202 is configured to collect at least a portion of the broadband radiation emitted by the plasma and direct the collected broadband radiation back to the plasma 106. This procedure is repeated until a given portion of the broadband light 115 is absorbed by the plasma 106 or exits from the exit aperture 206. In this regard, the inner reflective surface 203 of the reflector assembly 202 is used to combine two or more images of the plasma 106 such that one of the output portions of the broadband radiation 115 has a brightness greater than one of the single images of the plasma 106. A brightness. It should be noted that the path of the redirected broadband light 115 may pass through the second focus 201b for the first time before reaching the first focus 201a.

在一實施例中,橢圓形反射器總成202包含一單一橢圓殼。在另一實施例中,橢圓形反射器總成202包含一部分橢圓殼。應注意,透過出口孔隙206來耦合之光來自橢圓體上之一有限覆蓋區。因而,未必總是需要整個橢圓殼。在此情況中,可實施一部分橢圓殼,其由多個元件形成以覆蓋光將照射之橢圓體之部分。例如,部分橢圓殼可包含整個橢圓體表面之任何兩個或兩個以上區段。 In an embodiment, the elliptical reflector assembly 202 includes a single elliptical shell. In another embodiment, the elliptical reflector assembly 202 includes a portion of an elliptical shell. It should be noted that the light coupled through the exit aperture 206 is from a limited coverage area on the ellipsoid. Thus, the entire elliptical shell is not always required. In this case, a portion of the elliptical shell may be implemented that is formed from a plurality of elements to cover portions of the ellipsoid that the light will illuminate. For example, a partial elliptical shell may comprise any two or more sections of the entire ellipsoidal surface.

在一實施例中,輸出角及焦點201a、201b分離可經選擇使得橢圓體之中間部分不接收寬頻光。在此情況中,反射器總成202可包含兩個橢圓形收集光器,其等表示一完整橢圓體之頂部部分及底部部分。此一組態亦允許使用一第二較大橢圓體來環繞橢圓形集光器以將來自所有方向之雷射光引領至電漿106,從而提供一較小較熱電漿106。利用橢圓形集光器而非整個橢圓體將放寬對內反射面之塗覆程序之要求。 In an embodiment, the output angle and the separation of the focus points 201a, 201b may be selected such that the middle portion of the ellipsoid does not receive broadband light. In this case, the reflector assembly 202 can include two elliptical collectors that represent the top and bottom portions of a complete ellipsoid. This configuration also allows a second larger ellipsoid to be used to surround the elliptical concentrator to direct laser light from all directions to the plasma 106 to provide a smaller hot plasma 106. The use of an elliptical concentrator rather than the entire ellipsoid will relax the requirements of the coating procedure for the inner reflective surface.

入口孔隙204及/或出口孔隙206可裝配有一或多個窗。入口孔隙204及/或出口孔隙206之窗可由此項技術中已知之任何材料形成。例如,入口孔隙204之窗及/或出口孔隙206之窗可包含以下材料之一或多者:藍寶石、熔融矽石、結晶石英、氟化鎂、氟化鈣、氟化鋰。在另一實施例中,入口孔隙204之窗可經彎曲以塑形及/或聚焦泵照明 101。 The inlet aperture 204 and/or the outlet aperture 206 can be fitted with one or more windows. The window of inlet aperture 204 and/or outlet aperture 206 can be formed from any material known in the art. For example, the window of the entrance aperture 204 and/or the window of the exit aperture 206 may comprise one or more of the following materials: sapphire, fused vermiculite, crystalline quartz, magnesium fluoride, calcium fluoride, lithium fluoride. In another embodiment, the window of the inlet aperture 204 can be curved to shape and/or focus the pump illumination 101.

泵源104可包含一或多個照明源。例如,泵源104可包含一單一照明源或多個離散照明源(參閱圖2G至圖2H)。應注意,泵源104可由本文中先前所討論之任何一或多個泵源104組成。在另一實施例中,泵源104可包含一直接耦合泵源(例如直接耦合雷射二極體)。在另一實施例中,泵源104可包含一光纖耦合泵源。 Pump source 104 can include one or more illumination sources. For example, pump source 104 can include a single illumination source or multiple discrete illumination sources (see Figures 2G-2H). It should be noted that pump source 104 may be comprised of any one or more of pump sources 104 previously discussed herein. In another embodiment, pump source 104 can include a direct coupled pump source (eg, a direct coupled laser diode). In another embodiment, pump source 104 can include a fiber coupled pump source.

在圖2A未展示之一實施例中,泵照明101可執行單次穿過定位於橢圓體反射器總成202之一第一焦點201a處之電漿106。在此實施例中,反射器總成202可包含用於將透射穿過電漿106之未吸收泵照明傳至反射器總成202外之一區域的一額外出口孔隙。 In one embodiment not shown in FIG. 2A, pump illumination 101 can perform a single pass through plasma 106 positioned at a first focus 201a of one of ellipsoidal reflector assemblies 202. In this embodiment, the reflector assembly 202 can include an additional exit aperture for transmitting unabsorbed pump illumination transmitted through the plasma 106 to a region outside of the reflector assembly 202.

在另一實施例中,如圖2A中所展示,反射器總成202經組態以使泵照明101再循環。就此而言,反射器總成202之內反射面203經組態以收集透射穿過定位於第一焦點201a處之電漿106的泵光束101之一未吸收部分且將所收集之泵光束之未吸收部分導引回至電漿106或定位於電漿106附近之氣體107中。應注意,重新導引之泵照明101之路徑可在到達第一焦點201a之前第一次穿過第二焦點201b。 In another embodiment, as shown in FIG. 2A, the reflector assembly 202 is configured to recirculate the pump illumination 101. In this regard, the inner reflective surface 203 of the reflector assembly 202 is configured to collect an unabsorbed portion of the pump beam 101 transmitted through the plasma 106 positioned at the first focus 201a and to collect the collected pump beam. The unabsorbed portion is directed back to the plasma 106 or to the gas 107 positioned adjacent the plasma 106. It should be noted that the path of the redirected pump illumination 101 may first pass through the second focus 201b before reaching the first focus 201a.

在另一實施例中,儘管圖中未展示,但系統100可包含一或多個電漿點火單元。例如,系統100可包含佈置於反射器總成202內以引發電漿106之一或多個電極總成。作為另一實例,系統100可包含用於引發電漿106之一或多個RF電漿產生器。作為另一實例,系統100可使用來自泵源104之雷射光或來自專用於電漿點火之一額外雷射源之雷射光來引發電漿106。 In another embodiment, system 100 may include one or more plasma firing units, although not shown. For example, system 100 can include being disposed within reflector assembly 202 to initiate one or more electrode assemblies of plasma 106. As another example, system 100 can include one or more RF plasma generators for initiating plasma 106. As another example, system 100 can initiate plasma 106 using laser light from pump source 104 or laser light from an additional laser source dedicated to one of the plasma ignitions.

在另一實施例中,氣體107可在注入至橢圓體反射器總成202中之前被預離子化。例如,可經由電離、雷射離子化或RF離子化之一或多者來將氣體107預離子化。例如,系統100可包含一組額外電極、一額外雷射點火單元或一RF點火單元之一或多者,其等經組態以在 氣體107進入反射器總成202之內部容積之前將氣體107預離子化。 In another embodiment, the gas 107 can be pre-ionized prior to injection into the ellipsoidal reflector assembly 202. For example, gas 107 can be pre-ionized via one or more of ionization, laser ionization, or RF ionization. For example, system 100 can include one or more additional electrodes, an additional laser firing unit, or an RF firing unit, which are configured to Gas 107 is pre-ionized prior to entering the internal volume of reflector assembly 202.

在一實施例中,如圖2A及圖2B中所展示,橢圓體反射器總成之一內表面經組態以在橢圓體反射器總成202之焦點201a之一者處形成一單一電漿106。 In one embodiment, as shown in Figures 2A and 2B, one of the inner surfaces of the ellipsoidal reflector assembly is configured to form a single plasma at one of the focal points 201a of the ellipsoidal reflector assembly 202. 106.

在另一實施例中,橢圓體反射器總成之半長軸可經垂直配置。在另一實施例中,橢圓體反射器總成之半長軸可經水平配置。在另一實施例中,橢圓體反射器總成之半長軸可依相對於垂直或水平方向之一選定角度配置。此外,由其形成單一電漿106之焦點之選擇可基於一或多個因數。例如,在橢圓體反射器總成之半長軸經垂直配置之情況中,單一電漿106可基於氣流幾何形狀(參閱圖2D至圖2E)而形成於頂部焦點201a或底部焦點201b處。應注意,可由引發電漿(例如,經由電極、RF點火單元或雷射點火單元來引發)之位置控制電漿106之位置(在焦點201a或焦點201b處)。 In another embodiment, the semi-major axis of the ellipsoidal reflector assembly can be vertically configured. In another embodiment, the semi-major axis of the ellipsoidal reflector assembly can be horizontally configured. In another embodiment, the semi-major axis of the ellipsoidal reflector assembly can be configured at a selected angle relative to one of the vertical or horizontal directions. Moreover, the selection of the focus from which a single plasma 106 is formed may be based on one or more factors. For example, where the semi-major axis of the ellipsoidal reflector assembly is vertically disposed, a single plasma 106 can be formed at the top focus 201a or the bottom focus 201b based on the gas flow geometry (see Figures 2D-2E). It should be noted that the position of the plasma 106 (at the focus 201a or focus 201b) can be controlled by the location of the initiating plasma (e.g., via an electrode, RF firing unit, or laser firing unit).

在另一實施例中,如圖2C中所展示,兩個電漿區域106a、106b可由橢圓體反射器總成202形成。例如,一第一電漿106a形成於橢圓體反射器總成202之一第一焦點201a處且一第二電漿形成於橢圓體反射器總成202之一第二焦點201b處。此一雙電漿組態減少穿過電漿之行程之間之反射次數。圖2C之雙電漿組態尤其有利於其中反射面203小於一理想反射器之光譜體系(例如100nm至200nm)。在此等設置中,若減少穿過電漿106a、106b之行程之間之反射次數,則由系統100收集之寬頻光115之量將升高。 In another embodiment, as shown in FIG. 2C, the two plasma regions 106a, 106b may be formed from an ellipsoidal reflector assembly 202. For example, a first plasma 106a is formed at one of the first focal points 201a of the ellipsoidal reflector assembly 202 and a second plasma is formed at one of the second focal points 201b of the ellipsoidal reflector assembly 202. This double plasma configuration reduces the number of reflections between strokes through the plasma. The dual plasma configuration of Figure 2C is particularly advantageous where the reflective surface 203 is smaller than the spectral system of an ideal reflector (e.g., 100 nm to 200 nm). In such an arrangement, the amount of broadband light 115 collected by system 100 will increase if the number of reflections between the passes through plasma 106a, 106b is reduced.

在另一實施例中,就兩個電漿106a、106b而言,可依序引發兩個電漿106a、106b。例如,在一垂直組態中,可藉由以上所討論之任何方式(例如電、RF或雷射)來引發下電漿106b。接著,來自第一電漿106a之捲流可用於點燃上電漿106b。 In another embodiment, for the two plasmas 106a, 106b, two plasmas 106a, 106b can be sequentially activated. For example, in a vertical configuration, the lower plasma 106b can be initiated by any of the methods discussed above (eg, electrical, RF, or laser). Next, the plume from the first plasma 106a can be used to ignite the upper plasma 106b.

圖2D及圖2E繪示根據本發明之一或多項實施例之配備有一氣體 循環總成209之反射器總成202。應注意,反射器總成202中之受限輸出口/路徑導致注入泵照明光束101中之大多數能量由氣體107及/或內反射面203吸收。因此,可實施一或多個冷卻方法來使反射器總成202之溫度維持為或維持低於品質電漿操作所需之一溫度。在一實施例中,氣體循環總成209包含用於使氣體循環通過反射器總成202之一氣體輸入口210及一氣體輸出口212。 2D and 2E illustrate the provision of a gas in accordance with one or more embodiments of the present invention. The reflector assembly 202 of the cycle assembly 209. It should be noted that the limited output port/path in the reflector assembly 202 causes most of the energy in the injection pump illumination beam 101 to be absorbed by the gas 107 and/or the internal reflection surface 203. Thus, one or more cooling methods can be implemented to maintain or maintain the temperature of the reflector assembly 202 at a temperature below that required for quality plasma operation. In one embodiment, the gas circulation assembly 209 includes a gas input port 210 and a gas output port 212 for circulating gas through the reflector assembly 202.

如圖2D至圖2F中所展示,氣體輸入口210將一氣流提供至電漿106a及/或106b。接著,氣體輸出口212將氣體107自反射器總成202排出。儘管圖2D及圖2E之實施例描繪沿相同方向配置之氣體輸入口210及氣體輸出口212,但此並非為對本發明之一限制。在另一實施例中,氣體輸入口210及氣體輸出口212可經配置使得流入至反射器總成202中之氣體依相對於自反射器總成202流出之氣體之一選定角度定向。在另一實施例中,氣流可經加壓且耦合至駐留於反射器總成202外之一散熱器。在另一實施例中,反射器總成202包含經配置以經由對流來冷卻反射器總成202之一或多個對流裝置及/或一散熱器。2014年5月27日申請之美國專利申請案第14/288,092號中大體上描述基於對流之冷卻,該案之全文先前以引用的方式併入本文中。 As shown in Figures 2D-2F, the gas input port 210 provides a gas stream to the plasma 106a and/or 106b. Next, gas outlet 212 discharges gas 107 from reflector assembly 202. Although the embodiment of FIGS. 2D and 2E depicts the gas input port 210 and the gas output port 212 disposed in the same direction, this is not a limitation of the present invention. In another embodiment, the gas input port 210 and the gas output port 212 can be configured such that gas flowing into the reflector assembly 202 is oriented at a selected angle relative to one of the gases flowing from the reflector assembly 202. In another embodiment, the gas stream can be pressurized and coupled to a heat sink that resides outside of the reflector assembly 202. In another embodiment, the reflector assembly 202 includes one or more convection devices and/or a heat sink configured to cool the reflector assembly 202 via convection. The convection-based cooling is generally described in U.S. Patent Application Serial No. 14/288,092, the entire disclosure of which is incorporated herein by reference.

在一實施例中,如圖2F中所展示,氣體輸入口210/氣體輸出口212亦可充當電漿點火電極。例如,系統100可包含一或多個電饋通224。一或多個電饋通224可用於使金屬氣體輸入管210/金屬氣體輸出管212絕緣。此外,氣體輸入管210/氣體輸出管212可電耦合至用於將電能傳遞至氣體107以點燃電漿106之一高電壓源225。另外,系統100可包含用於使氣體循環系統209之剩餘部分與電化氣體輸入管210/電化氣體輸出管212絕緣之一或多個電絕緣區段220。 In an embodiment, as shown in FIG. 2F, gas input port 210/gas outlet port 212 may also function as a plasma ignition electrode. For example, system 100 can include one or more electrical feedthroughs 224. One or more electrical feedthroughs 224 can be used to insulate the metal gas input tube 210 / metal gas output tube 212. Additionally, gas input tube 210 / gas output tube 212 may be electrically coupled to a high voltage source 225 for delivering electrical energy to gas 107 to ignite plasma 106. Additionally, system 100 can include one or more electrically insulating sections 220 for insulating the remainder of gas circulation system 209 from electrochemical gas input tube 210 / electrochemical gas output tube 212.

在另一實施例中,反射器總成202係一多組件反射器總成。就此而言,總成202之橢圓殼可由兩個或兩個以上組件形成。例如,如圖 2F中所展示,反射器總成202可包含一頂部部分230及一底部部分232,其等在配合一起時形成反射器總成202之橢圓殼。 In another embodiment, the reflector assembly 202 is a multi-component reflector assembly. In this regard, the elliptical shell of assembly 202 can be formed from two or more components. For example, as shown As shown in FIG. 2F, the reflector assembly 202 can include a top portion 230 and a bottom portion 232 that, when mated together, form an elliptical shell of the reflector assembly 202.

在另一實施例中,可冷卻個別組件230及/或232。例如,可液體冷卻反射器總成202之頂部部分230及/或底部部分232。例如,反射器總成202之頂部部分230及/或底部部分232可包含用於使一液體冷卻劑(例如水)通過組件230、232之本體的一液體流動系統(例如一或多個管)。此外,液體流動系統可耦合至一外部散熱器,藉此將熱量自反射器總成202之頂部部分230及/或底部部分232經由流動系統中之液體流動來轉移至散熱器。 In another embodiment, individual components 230 and/or 232 may be cooled. For example, the top portion 230 and/or the bottom portion 232 of the reflector assembly 202 can be liquid cooled. For example, the top portion 230 and/or the bottom portion 232 of the reflector assembly 202 can include a liquid flow system (eg, one or more tubes) for passing a liquid coolant (eg, water) through the bodies of the assemblies 230, 232. . Additionally, the liquid flow system can be coupled to an external heat sink whereby heat is transferred from the top portion 230 and/or the bottom portion 232 of the reflector assembly 202 to the heat sink via liquid flow in the flow system.

圖2G至圖2H繪示根據本發明之一或多項實施例之配備有多個照明源104a至104d之一反射器總成202。圖2G及圖2H分別繪示反射器總成202之一俯視圖及一側視圖。應注意,在本文中,使用多個離散源104a至104d可有助於達成反射器總成202內之高NA電漿泵。 2G-2H illustrate one of the reflector assemblies 202 equipped with a plurality of illumination sources 104a-104d in accordance with one or more embodiments of the present invention. 2G and 2H illustrate a top view and a side view, respectively, of the reflector assembly 202. It should be noted that the use of multiple discrete sources 104a through 104d herein may help achieve a high NA plasma pump within the reflector assembly 202.

在一實施例中,反射器總成202包含用於自分佈於反射器總成202周圍之離散泵源104a至104d接收光之一單一入口204。 In an embodiment, the reflector assembly 202 includes a single inlet 204 for receiving light from discrete pump sources 104a through 104d distributed around the reflector assembly 202.

在另一實施例中,反射器總成202包含分佈於反射器總成202周圍之多個入口204。在一實施例中,多個入口204可依不同角度配置於橢圓體反射器總成202之相對側上,使得與各源104相關聯之覆蓋區係交錯的。此一組態導致具有隨立體角之一更均勻強度變動之泵照明。 In another embodiment, the reflector assembly 202 includes a plurality of inlets 204 distributed around the reflector assembly 202. In an embodiment, the plurality of inlets 204 can be disposed on opposite sides of the ellipsoidal reflector assembly 202 at different angles such that the footprints associated with the respective sources 104 are staggered. This configuration results in pump illumination having a more uniform intensity variation with one of the solid angles.

在一實施例中,多個入口204可經配置使得由各照明反射對向之立體角小於先前反射。此一組態可有助於在隨著泵照明101橫穿電漿106而由電力吸收電漿106時維持照明之強度。 In an embodiment, the plurality of inlets 204 can be configured such that the solid angles reflected by the respective illuminations are less than the previous reflections. This configuration can help maintain the intensity of the illumination as it is absorbed by the power 106 as the pump illumination 101 traverses the plasma 106.

參考圖2A至圖2F,在一實施例中,反射器總成202包含用於雷射輸入及寬頻輸出之一單一孔隙。在此實施例中,泵照明101可透過孔隙來進入反射器總成202,與出射寬頻光115相反。可利用一冷光鏡來使泵照明101與出射寬頻光115分離。 Referring to Figures 2A-2F, in one embodiment, the reflector assembly 202 includes a single aperture for the laser input and broadband output. In this embodiment, pump illumination 101 can pass through the apertures into reflector assembly 202, as opposed to exiting broadband light 115. A cold mirror can be utilized to separate pump illumination 101 from outgoing broadband light 115.

本文中所描述之標的有時繪示含於其他組件內或與其他組件連接之不同組件。應瞭解,此等描繪架構僅供例示,且事實上可實施達成相同功能性之諸多其他架構。在一概念意義上,用於達成相同功能性之組件之任何配置經有效「相關聯」使得所要功能性得以達成。因此,本文中經組合以達成一特定功能性之任何兩個組件可被視為彼此「相關聯」,使得無論架構或中間組件如何,所要功能性均被達成。同樣地,如此相關聯之任何兩個組件可被視為彼此「連接」或「耦合」以達成所要功能性,且能夠如此相關聯之任何兩個組件亦可被視為彼此「可耦合」以達成所要功能性。「可耦合」之具體實例包含(但不限於)使組件可實體互動及/或實體互動、及/或使組件可無線互動及/或無線互動、及/或使組件可邏輯互動及/或邏輯互動。 The subject matter described herein sometimes depicts different components that are included within or connected to other components. It should be understood that such depictive architectures are for illustrative purposes only, and in fact many other architectures that achieve the same functionality can be implemented. In a conceptual sense, any configuration of components used to achieve the same functionality is effectively "associated" such that the desired functionality is achieved. Thus, any two components herein combined to achieve a particular functionality can be considered "associated" with each other such that the desired functionality is achieved regardless of the architecture or intermediate components. Similarly, any two components so associated are considered to be "connected" or "coupled" to each other to achieve the desired functionality, and any two components that are so associated are also considered to be "coupled" to each other. Achieve the desired functionality. Specific examples of "coupled" include, but are not limited to, enabling components to be physically and/or physically interacting, and/or enabling components to be wirelessly and/or wirelessly interacting, and/or to enable logical interaction and/or logic of components. interactive.

據信,將藉由以上描述來理解本發明及其諸多伴隨優點,且將明白,可在不脫離所揭示標的或不犧牲全部其材料優點之情況下對組件之形式、構造及配置作出各種改變。所描述之形式僅供解釋,且以下申請專利範圍意欲涵蓋及包含此等改變。此外,應瞭解,本發明由隨附專利申請範圍界定。 The invention and its many attendant advantages are believed to be understood by the foregoing description, and it is understood that various changes in the form, configuration and configuration of the components can be made without departing from the scope of the disclosure or the advantages of the material. . The form described is for illustrative purposes only, and the following claims are intended to cover and cover such modifications. In addition, it is to be understood that the invention is defined by the scope of the accompanying patent application.

100‧‧‧多通*** 100‧‧‧Multiple system

101‧‧‧泵光束/泵照明 101‧‧‧Pump beam/pump illumination

102‧‧‧多通光學總成/多通光學元件 102‧‧‧Multiple optical assembly/multi-pass optical components

103‧‧‧集光器件/集光總成/集光器總成 103‧‧‧Light collecting device/light collecting assembly/concentrator assembly

104‧‧‧泵源/照明源/泵照明 104‧‧‧Source/illumination source/pump illumination

105‧‧‧下游光學元件 105‧‧‧Down optical components

106‧‧‧電漿 106‧‧‧ Plasma

107‧‧‧氣體 107‧‧‧ gas

110a至110f‧‧‧光學元件/反射鏡 110a to 110f‧‧‧Optical components/mirrors

111a至111f‧‧‧集光元件 111a to 111f‧‧‧Light collecting elements

142‧‧‧入射窗 142‧‧‧Injection window

144‧‧‧出射窗 144‧‧‧Output window

150‧‧‧腔室/氣體容納結構 150‧‧‧Case/gas containment structure

Claims (57)

一種系統,其包括:一泵源,其經組態以產生一泵光束;一氣體容納結構,其用於容納一氣體;及一多通光學總成,其中該多通光學總成包含經組態以執行該泵光束複數次穿過該氣體之一部分來支持一發射寬頻光之電漿的一或多個光學元件,其中該一或多個光學元件經配置以收集透射穿過該電漿之該泵光束之一未吸收部分且將所收集之該泵光束之該未吸收部分導引回至該氣體之該部分中。 A system comprising: a pump source configured to generate a pump beam; a gas containment structure for containing a gas; and a multi-pass optical assembly, wherein the multi-pass optical assembly comprises a group Performing a plurality of passes of the pump beam through a portion of the gas to support one or more optical elements of a plasma that emits broadband light, wherein the one or more optical elements are configured to collect transmission through the plasma One of the pump beams does not absorb the portion and directs the collected unabsorbed portion of the pump beam back into the portion of the gas. 如請求項1之系統,其中該一或多個光學元件包括:一第一光學元件;及至少一額外光學元件,其中該第一光學元件及該至少一額外光學元件經配置以收集該泵光束之一未吸收部分且將所收集之該泵光束之該未吸收部分導引至該氣體之該部分中。 The system of claim 1, wherein the one or more optical components comprise: a first optical component; and at least one additional optical component, wherein the first optical component and the at least one additional optical component are configured to collect the pump beam One of the unabsorbed portions directs the collected unabsorbed portion of the pump beam into the portion of the gas. 如請求項1之系統,其中該一或多個光學元件包括:一反射面,其具有一第一部分及至少一額外部分,其中該第一部分及該至少一額外部分經配置以收集該泵光束之一未吸收部分且將所收集之該泵光束之該未吸收部分重新導引至該氣體之該部分中。 The system of claim 1, wherein the one or more optical elements comprise: a reflective surface having a first portion and at least one additional portion, wherein the first portion and the at least one additional portion are configured to collect the pump beam An unabsorbed portion and redirects the unabsorbed portion of the collected pump beam into the portion of the gas. 如請求項1之系統,其中該一或多個光學元件包括:一或多個反射光學元件或一或多個透射光學元件之至少一者。 The system of claim 1, wherein the one or more optical elements comprise: at least one of one or more reflective optical elements or one or more transmissive optical elements. 如請求項4之系統,其中該一或多個反射光學元件包括:一橢圓鏡、一拋物面鏡、一球面鏡或一平面鏡之至少一者。 The system of claim 4, wherein the one or more reflective optical elements comprise: at least one of an elliptical mirror, a parabolic mirror, a spherical mirror, or a planar mirror. 如請求項4之系統,其中使該一或多個反射光學元件相對於由來 自該照明源之該泵光束之一入射通路界定之光軸而離軸配置。 The system of claim 4, wherein the one or more reflective optical elements are relative to the origin An optical axis defined by one of the pump beams of the illumination source is disposed off-axis. 如請求項4之系統,其中該一或多個反射光學元件包括:一或多個反射鏡,其等選擇性地透射光之一或多個選定波長。 The system of claim 4, wherein the one or more reflective optical elements comprise: one or more mirrors that selectively transmit one or more selected wavelengths of light. 如請求項4之系統,其中該一或多個反射光學元件包括:一或多個反射鏡,其等選擇性地吸收光之一或多個選定波長。 The system of claim 4, wherein the one or more reflective optical elements comprise: one or more mirrors that selectively absorb one or more selected wavelengths of light. 如請求項4之系統,其中該一或多個透射光學元件包括:一或多個透鏡。 The system of claim 4, wherein the one or more transmissive optical elements comprise: one or more lenses. 如請求項1之系統,其中該一或多個光學元件經配置使得該泵光束至少在第二次穿過該電漿期間之數值孔徑低於該泵光束在第一次穿過該電漿期間之數值孔徑。 The system of claim 1, wherein the one or more optical elements are configured such that the pump beam has a numerical aperture that is lower than the pump beam during the first pass through the plasma during the second pass through the plasma The numerical aperture. 如請求項1之系統,其中該一或多個光學元件包括:一第一組光學元件,其與該泵光束第一次穿過該電漿相關聯;及一額外組光學元件,其與該泵光束再次穿過該電漿相關聯,其中該第一組光學元件及該額外組光學元件經配置使得該泵光束之該額外通路之照明橫穿該第一組光學元件之一或多個部分之間之一區域。 The system of claim 1, wherein the one or more optical components comprise: a first set of optical elements associated with the first pass of the pump beam through the plasma; and an additional set of optical elements associated therewith The pump beam is again associated through the plasma, wherein the first set of optical elements and the additional set of optical elements are configured such that illumination of the additional path of the pump beam traverses one or more portions of the first set of optical elements One area between. 如請求項1之系統,其中該一或多個光學元件經組態以藉由控制該泵光束之各通路之各焦點之一位置來控制該電漿之一形狀。 The system of claim 1, wherein the one or more optical components are configured to control a shape of the plasma by controlling a position of each of the focal points of the respective paths of the pump beam. 如請求項12之系統,其中該一或多個光學元件經配置使得該泵光束之各通路之焦點實質上重疊而形成一光點。 The system of claim 12, wherein the one or more optical elements are configured such that the focal points of the respective paths of the pump beam substantially overlap to form a spot. 如請求項12之系統,其中該一或多個光學元件經配置以使該泵光束之一第一通路之一焦點相對於該泵光束之至少一額外通路之一焦點位移而形成一伸長電漿。 The system of claim 12, wherein the one or more optical elements are configured to focus a focus of one of the first paths of the pump beam with respect to a focus of at least one additional path of the pump beam to form an elongated plasma . 如請求項1之系統,其中該一或多個光學元件包括:至少一回向反射器總成。 The system of claim 1 wherein the one or more optical components comprise: at least one retroreflector assembly. 如請求項1之系統,其中該一或多個光學元件包括:至少一諧振器總成。 The system of claim 1, wherein the one or more optical components comprise: at least one resonator assembly. 如請求項1之系統,其進一步包括:一或多個波前感測器,其等經配置以量測在該泵光束一或多次穿過該氣體之該部分期間引起之像差。 The system of claim 1, further comprising: one or more wavefront sensors configured to measure aberrations caused during one or more passes of the pump beam through the portion of the gas. 如請求項17之系統,其中該一或多個光學元件包括:一自適應光學元件,其對該一或多個波前感測器作出回應。 The system of claim 17, wherein the one or more optical components comprise: an adaptive optical component that responds to the one or more wavefront sensors. 如請求項1之系統,其中該一或多個光學元件進一步經組態以收集由該電漿發射之寬頻輻射之至少一部分且將該至少一部分導引回至該電漿。 The system of claim 1, wherein the one or more optical elements are further configured to collect at least a portion of the broadband radiation emitted by the plasma and direct the at least a portion back to the plasma. 如請求項1之系統,其進一步包括:一或多個集光元件,其等經組態以將由該電漿發射之寬頻輻射之至少一部分導引至一或多個下游光學元件。 The system of claim 1, further comprising: one or more light collecting elements configured to direct at least a portion of the broadband radiation emitted by the plasma to the one or more downstream optical elements. 如請求項20之系統,其中該一或多個集光元件經組態以收集由該電漿發射之寬頻輻射之至少一部分且將該至少一部分導引回至該電漿。 The system of claim 20, wherein the one or more light collecting elements are configured to collect at least a portion of the broadband radiation emitted by the plasma and direct the at least a portion back to the plasma. 如請求項1之系統,其中由該電漿發射之該寬頻輻射包含以下之至少一者:極紫外線輻射、真空紫外線輻射、深紫外線輻射、紫外線輻射或可見光輻射。 The system of claim 1, wherein the broadband radiation emitted by the plasma comprises at least one of: extreme ultraviolet radiation, vacuum ultraviolet radiation, deep ultraviolet radiation, ultraviolet radiation, or visible radiation. 如請求項1之系統,其中該氣體容納元件包括:一電漿泡,其用於容納該氣體。 The system of claim 1 wherein the gas containment element comprises: a plasma bubble for containing the gas. 如請求項1之系統,其中該氣體容納元件包括:一電漿胞,其用於容納該氣體。 The system of claim 1 wherein the gas containment element comprises: a plasma cell for containing the gas. 如請求項1之系統,其中該氣體容納元件包括: 一腔室,其用於容納該氣體。 The system of claim 1 wherein the gas containment element comprises: A chamber for containing the gas. 如請求項1之系統,其中該照明源包括:一或多個雷射。 The system of claim 1, wherein the illumination source comprises: one or more lasers. 如請求項26之系統,其中該一或多個雷射包括:一或多個紅外線雷射、一或多個可見光雷射或一或多個紫外線雷射之至少一者。 The system of claim 26, wherein the one or more lasers comprise: at least one of one or more infrared lasers, one or more visible light lasers, or one or more ultraviolet lasers. 如請求項26之系統,其中該一或多個雷射包括:一二極體雷射、一盤形雷射或一光纖雷射之至少一者。 The system of claim 26, wherein the one or more lasers comprise: at least one of a diode laser, a disk laser, or a fiber laser. 如請求項26之系統,其中該一或多個雷射包括:一窄頻雷射或一寬頻雷射之至少一者。 The system of claim 26, wherein the one or more lasers comprise: at least one of a narrowband laser or a broadband laser. 如請求項26之系統,其中該一或多個雷射經組態以在一連續波(CW)模式、一脈衝模式或一調變模式之至少一者中操作。 The system of claim 26, wherein the one or more lasers are configured to operate in at least one of a continuous wave (CW) mode, a pulse mode, or a modulation mode. 如請求項1之系統,其中該氣體包括:一惰性氣體、一非惰性氣體及兩種或兩種以上氣體之一混合物之至少一者。 The system of claim 1, wherein the gas comprises: at least one of an inert gas, a non-inert gas, and a mixture of two or more gases. 一種系統,其包括:泵源,其經組態以產生一泵光束;一氣體容納結構,其用於容納一氣體;及一光學總成,其中該光學子系統包含經組態以執行該泵光束一或多次穿過該氣體之一部分來支持一發射寬頻光之電漿的一或多個光學元件;及一集光總成,其包含一或多個集光器件,其中該一或多個集光器件經組態以將由該電漿發射之寬頻輻射之至少一部分導引至一或多個下游光學元件,其中該一或多個集光元件經組態以收集由該電漿發射之寬頻輻射之至少一部分且將該至少一部分導引回至該電漿。 A system comprising: a pump source configured to generate a pump beam; a gas containment structure for containing a gas; and an optical assembly, wherein the optical subsystem includes a configuration configured to execute the pump One or more light beams pass through one portion of the gas to support one or more optical elements that emit plasma of broadband light; and a light collection assembly that includes one or more light collecting devices, wherein the one or more The light collecting device is configured to direct at least a portion of the broadband radiation emitted by the plasma to the one or more downstream optical elements, wherein the one or more light collecting elements are configured to collect the emitted light from the plasma At least a portion of the broadband radiation and directing at least a portion of the radiation back to the plasma. 如請求項32之系統,其中該集光總成進一步經組態以組合該電漿之兩個或兩個以上影像。 The system of claim 32, wherein the collection assembly is further configured to combine two or more images of the plasma. 如請求項33之系統,其中該集光總成進一步經組態以組合該電漿之兩個或兩個以上影像,使得該寬頻輻射之一輸出部分具有大於該電漿之一單一影像之一亮度的一亮度。 The system of claim 33, wherein the collection assembly is further configured to combine two or more images of the plasma such that one of the broadband radiation output portions has a larger than one of the single images of the plasma A brightness of brightness. 一種系統,其包括:一照明源,其經組態以產生一泵光束;一反射器總成,其經組態以容納一氣體,其中該反射器總成包含用於自該照明源接收該泵光束之一或多個入口孔隙,其中該泵光束支持該氣體之一部分內之一電漿,其中該電漿發射寬頻輻射,其中該反射器總成之一內表面經組態以收集由該電漿發射之該寬頻輻射之至少一部分且將所收集之該寬頻輻射導引回至該電漿。 A system comprising: an illumination source configured to generate a pump beam; a reflector assembly configured to receive a gas, wherein the reflector assembly includes for receiving the light from the illumination source One or more inlet apertures of the pump beam, wherein the pump beam supports a plasma within a portion of the gas, wherein the plasma emits broadband radiation, wherein an inner surface of the reflector assembly is configured to collect The plasma emits at least a portion of the broadband radiation and directs the collected broadband radiation back to the plasma. 如請求項35之系統,其中該反射器總成進一步經組態以組合該電漿之兩個或兩個以上影像。 The system of claim 35, wherein the reflector assembly is further configured to combine two or more images of the plasma. 如請求項36之系統,其中該反射器總成進一步經組態以組合該電漿之兩個或兩個以上影像,使得該寬頻輻射之一輸出部分具有大於該電漿之一單一影像之一亮度的一亮度。 The system of claim 36, wherein the reflector assembly is further configured to combine two or more images of the plasma such that one of the broadband radiation output portions has a larger than one of the single images of the plasma A brightness of brightness. 如請求項35之系統,其中該反射器總成經配置以收集透射穿過該氣體之該部分的該泵光束之一未吸收部分且將所收集之該泵光束之該未吸收部分導引[回]至該氣體之該部分中。 The system of claim 35, wherein the reflector assembly is configured to collect an unabsorbed portion of the pump beam transmitted through the portion of the gas and to direct the unabsorbed portion of the collected pump beam [ Back] to this part of the gas. 如請求項35之系統,其中該反射器總成包括:一橢圓體反射器總成。 The system of claim 35, wherein the reflector assembly comprises: an ellipsoidal reflector assembly. 如請求項39之系統,其中該橢圓體反射器總成之一內表面經組態以將該寬頻輻射之一部分聚焦至該橢圓體反射器之一或多個焦點。 The system of claim 39, wherein an inner surface of the ellipsoidal reflector assembly is configured to focus a portion of the broadband radiation to one or more of the focal points of the ellipsoidal reflector. 如請求項35之系統,其中該電漿形成於該橢圓體反射器之一單一焦點處。 The system of claim 35, wherein the plasma is formed at a single focus of the ellipsoidal reflector. 如請求項35之系統,其中一第一電漿形成於該橢圓體反射器之一第一焦點處且一第二電漿形成於該橢圓體反射器之一第二焦點處。 A system of claim 35, wherein a first plasma is formed at a first focus of the ellipsoidal reflector and a second plasma is formed at a second focus of the ellipsoidal reflector. 如請求項35之系統,其中該橢圓體反射器總成包括:一部分橢圓體反射器總成。 The system of claim 35, wherein the ellipsoidal reflector assembly comprises: a portion of the ellipsoidal reflector assembly. 如請求項35之系統,其中該反射器包括:一多組件反射器總成。 The system of claim 35, wherein the reflector comprises: a multi-component reflector assembly. 如請求項35之系統,其中該反射器總成之該一或多個入口孔隙包含:複數個入口孔隙,其等用於自複數個照明源接收泵光束。 The system of claim 35, wherein the one or more inlet apertures of the reflector assembly comprise: a plurality of inlet apertures for receiving pump beams from a plurality of illumination sources. 如請求項35之系統,其中該反射器總成之該一或多個入口孔隙包括:一或多個窗,其等由藍寶石、熔融矽石、結晶石英、氟化鎂、氟化鈣或氟化鋰之至少一者形成。 The system of claim 35, wherein the one or more inlet apertures of the reflector assembly comprise: one or more windows, such as sapphire, fused vermiculite, crystalline quartz, magnesium fluoride, calcium fluoride or fluorine At least one of lithium is formed. 如請求項35之系統,其中該反射器總成包含用於使該寬頻輻射之至少一部分自該反射器總成之一內部容積傳至一或多個下游光學元件之一或多個出口孔隙。 The system of claim 35, wherein the reflector assembly includes means for transmitting at least a portion of the broadband radiation from an interior volume of the reflector assembly to one or more outlet apertures of one or more downstream optical components. 如請求項47之系統,其中該反射器總成之該一或多個出口孔隙包括:一或多個窗,其等由藍寶石、熔融矽石、結晶石英、氟化鎂、氟化鈣、氟化鋰之至少一者形成。 The system of claim 47, wherein the one or more exit apertures of the reflector assembly comprise: one or more windows, such as sapphire, fused vermiculite, crystalline quartz, magnesium fluoride, calcium fluoride, fluorine At least one of lithium is formed. 如請求項35之系統,其進一步包括:一氣體再循環總成。 The system of claim 35, further comprising: a gas recirculation assembly. 如請求項49之系統,其中該氣體再循環總成包含: 一氣體輸入口;及一氣體輸出口,其用於使該氣體經由該氣體再循環總成來流動通過該反射器總成之一內部容積。 The system of claim 49, wherein the gas recycle assembly comprises: a gas input port; and a gas outlet for flowing the gas through the gas recirculation assembly through an internal volume of the reflector assembly. 如請求項35之系統,其中該反射器總成包含:一或多個電饋通。 The system of claim 35, wherein the reflector assembly comprises: one or more electrical feedthroughs. 如請求項35之系統,其中該照明源包括:一或多個雷射。 The system of claim 35, wherein the illumination source comprises: one or more lasers. 如請求項52之系統,其中該一或多個雷射包括:一或多個紅外線雷射、一或多個可見光雷射或一或多個紫外線雷射之至少一者。 The system of claim 52, wherein the one or more lasers comprise: at least one of one or more infrared lasers, one or more visible light lasers, or one or more ultraviolet lasers. 如請求項52之系統,其中該一或多個雷射包括:一二極體雷射、一盤形雷射或一光纖雷射之至少一者。 The system of claim 52, wherein the one or more lasers comprise: at least one of a diode laser, a disk laser, or a fiber laser. 如請求項52之系統,其中該一或多個雷射包括:一窄頻雷射或一寬頻雷射之至少一者。 The system of claim 52, wherein the one or more lasers comprise: at least one of a narrowband laser or a broadband laser. 如請求項52之系統,其中該一或多個雷射經組態以在一連續波(CW)模式、一脈衝模式或一調變模式之至少一者中操作。 The system of claim 52, wherein the one or more lasers are configured to operate in at least one of a continuous wave (CW) mode, a pulse mode, or a modulation mode. 如請求項35之系統,其中該氣體包括:一惰性氣體、一非惰性氣體及兩種或兩種以上氣體之一混合物之至少一者。 The system of claim 35, wherein the gas comprises: at least one of an inert gas, a non-inert gas, and a mixture of two or more gases.
TW105119595A 2015-06-22 2016-06-22 High efficiency laser-sustained plasma light source TWI700965B (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201562183069P 2015-06-22 2015-06-22
US62/183,069 2015-06-22
US201662290593P 2016-02-03 2016-02-03
US62/290,593 2016-02-03
US15/187,590 US10887974B2 (en) 2015-06-22 2016-06-20 High efficiency laser-sustained plasma light source
US15/187,590 2016-06-20

Publications (2)

Publication Number Publication Date
TW201707519A true TW201707519A (en) 2017-02-16
TWI700965B TWI700965B (en) 2020-08-01

Family

ID=58609055

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105119595A TWI700965B (en) 2015-06-22 2016-06-22 High efficiency laser-sustained plasma light source

Country Status (1)

Country Link
TW (1) TWI700965B (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4925259A (en) * 1988-10-20 1990-05-15 The United States Of America As Represented By The United States Department Of Energy Multilayer optical dielectric coating
US7705331B1 (en) * 2006-06-29 2010-04-27 Kla-Tencor Technologies Corp. Methods and systems for providing illumination of a specimen for a process performed on the specimen
JP5448775B2 (en) * 2008-12-16 2014-03-19 ギガフォトン株式会社 Extreme ultraviolet light source device
JP5312959B2 (en) * 2009-01-09 2013-10-09 ギガフォトン株式会社 Extreme ultraviolet light source device
JP2011023712A (en) * 2009-06-19 2011-02-03 Gigaphoton Inc Euv light source device
DE102009047712A1 (en) * 2009-12-09 2011-06-16 Carl Zeiss Smt Gmbh EUV light source for a lighting device of a microlithographic projection exposure apparatus
US9605376B2 (en) * 2011-06-28 2017-03-28 Mtix Ltd. Treating materials with combined energy sources
US9709811B2 (en) * 2013-08-14 2017-07-18 Kla-Tencor Corporation System and method for separation of pump light and collected light in a laser pumped light source

Also Published As

Publication number Publication date
TWI700965B (en) 2020-08-01

Similar Documents

Publication Publication Date Title
JP7224321B2 (en) High efficiency laser sustained plasma system
US9941655B2 (en) High power broadband light source
JP6707467B2 (en) Laser driven shield beam lamp
US7705331B1 (en) Methods and systems for providing illumination of a specimen for a process performed on the specimen
US10504714B2 (en) Dual parabolic laser driven sealed beam lamp
US9723703B2 (en) System and method for transverse pumping of laser-sustained plasma
US8643840B2 (en) Cell for light source
KR20170045949A (en) Plasma light source apparatus and light source system comprising the same apparatus
TWI700965B (en) High efficiency laser-sustained plasma light source
CN113366610B (en) Systems and methods for maintaining plasma using staggered pulsed illumination sources to pump laser light
TWI781301B (en) System for pumping laser sustained plasma and enhancing selected wavelengths of output illumination, and system and method for generating broadband illumination
JP2019537205A (en) Apparatus and method for operating a variable pressure shielded beam lamp