TW201701578A - 用於提供電力給電子裝置之電路與電力模組,以及組裝降壓設備之方法 - Google Patents

用於提供電力給電子裝置之電路與電力模組,以及組裝降壓設備之方法 Download PDF

Info

Publication number
TW201701578A
TW201701578A TW105128698A TW105128698A TW201701578A TW 201701578 A TW201701578 A TW 201701578A TW 105128698 A TW105128698 A TW 105128698A TW 105128698 A TW105128698 A TW 105128698A TW 201701578 A TW201701578 A TW 201701578A
Authority
TW
Taiwan
Prior art keywords
circuit
power
mode
voltage
power signal
Prior art date
Application number
TW105128698A
Other languages
English (en)
Inventor
麥克E 費里曼
W J 吉姆 威弗二世
麥克C 費里曼
羅柏 戴特
格崙 努伏
藍道L 桑道斯基
吉姆 賽斯特
尼斯E 法路基
吉姆 德佛依
傑 寇米爾
Original Assignee
先進充電技術公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 先進充電技術公司 filed Critical 先進充電技術公司
Publication of TW201701578A publication Critical patent/TW201701578A/zh

Links

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

本文中描述一種用於提供電力以用於給電子裝置供電之電路。該電路包含一初級電力電路及一次級電力電路。該初級電力電路從一電源接收一交流(AC)輸入電力信號且產生一中間直流(DC)電力信號。該中間DC電力信號以小於該AC輸入電力信號的一電壓位準的一第一電壓位準產生。該次級電力電路從該初級電力電路接收該中間DC電力信號且將一輸出DC電力信號傳輸至一電子裝置。該輸出DC電力信號按小於該中間DC電力信號的該第一電壓位準的一輸出電壓位準傳輸。

Description

用於提供電力給電子裝置之電路與電力模組,以及組裝降壓設備之方法
本發明大致係關於電力電路且更特定言之係關於一種用於提供用於給消費者電子裝置充電及/或供電之電力之電力電路。
能源危機需要降低電流負載的需求方回應。能源危機在全球範圍內爆發。例如,美國能源部預測截至2015年,平均而言將無足夠電力供應美國的平均需求。
可控制的禍首之一係「吸血鬼負載(Vampire Load)」。亦被稱作「壁疣(Wall Wart)電力」或「待機電力(Standby Power)」,美國能源部(DOE)估計此電浪費每年超過1000億kW,浪費能源超過一百億美元。吸血鬼負載生產者包含手機充電器、膝上型電腦充電器、平板電腦充電器、計算器充電器、小型設備及其他電池供電的消費者裝置。
美國能源部2008年稱:
「許多設備在其等關閉時繼續汲取少量電力。此等「幽靈(phantom)」負載在使用電的多數設備中發生,諸如VCR、電視、音響、電腦及廚房設備。此可藉由拔掉設備插頭或使用接線板及使用接線板上的開關來切斷至設備的所有電力而避免。」
根據美國能源部,下列類型的裝置消耗待機電力:
1.用於電壓轉換的變壓器。(包含手機、膝上型電腦及平板電腦、計算器及使用壁式充電器的其他電池供電的裝置)。
2.給關閉的裝置供電的壁疣電源。(包含手機、膝上型電腦及平板電腦、計算器、電池供電的電鑽及工具,其等皆具有壁式充電器且已完全充滿電池或實際上從裝置上斷開)。
3.具有「快速啟動」功能的許多裝置,其無預熱延遲地即刻回應使用者動作。
4.可藉由遙控喚醒的待機模式中的電子及電裝置,例如一些空調、視聽設備,諸如電視接收器。
5.即使在關閉時,仍可例如使用供電計時器執行一些功能的電子及電裝置。最現代電腦消耗待機電力,允許其等遠程(藉由LAN上的Wake等)或在指定時間被喚醒。此等功能即使在不需要的情況下仍總是啟用;可藉由從市電斷開(有時藉由背面上的開關)而節省電力,但僅在不需要功能的情況下。
6.不間斷電源(UPS)
所有這些意味著即使當手機、膝上型電腦或類似裝置充滿電時,電流仍在流動,但是不完成任何任務且浪費電。最新製造的裝置及設備全天、每天持續汲取電流且花錢並且增加全球能源危機。
國際標準技術局(NIST)(美國商務部分部)通過其建築技術研發委員會在2010年闡述其降低「插頭負載」的目標,聲稱: 「插頭負載對總消耗的影響極為巨大。對於商務樓,插頭負 載估計為總能源使用的35%,對於住宅而言25%及對於學校而言10%。
降低插頭負載的機會包含:1)更高效的插頭裝置及設備,2)自動化開關裝置,其關閉不使用的設備並且減小來自變壓器及其他小但總是開的設備的「吸血鬼」負載,或3)糾正居住者行為。」
實際上所有現代電子裝置經歷的問題之一係電源(無論是外部或內嵌「電力模組」)並非高能效的。此出於若干理由係真實的,其一追溯至1831年,當Michael Faraday發明變壓器之時。變壓器內在地係低能效的,此係因為,作為類比裝置,其等僅可針對各特定繞組產生一個電力輸出。因此,若需要兩個電力輸出,則兩個次級繞組係必要的。此外,通常存在超過50個部件及工件,其等係與變壓器協作以形成共同的現代外部電源所必需的,該數量在使用內部或內嵌電力模組的情況下僅稍微降低。電源中部件的數目內在地係低能效的,此係因為電流必須在各種部件中行進、圍繞且穿過各種部件行進,各具有不同的電力耗散因子;且甚至電路跡線亦導致電阻式損耗,其造成能源浪費。
此外,變壓器運作的方式係形成磁場且使其崩潰。由於無法藉由磁場形成/崩潰「重新捕獲」所有電子,故逸出的電子通常作為熱逸出,這係手機、膝上型電腦及平板電腦充電器摸起來感覺暖和或熱的原因。此亦係所有消費者電子裝置產生熱的原因,其不但浪費能源/電,而且通過加熱其他相關電子部件導致最終耗損。
當前電子裝置中發現的另一個低能效係需要多個內部電源 來運行不同部件。例如,在當代電力模組中,MOSFET已成為電路中的「現實」介面越來越重要的部分。
金屬氧化物半導體場效電晶體(MOSEFT)致能開關、電機/螺線管驅動、變壓器介接及一系列其他功能。問題的另一方面係微處理器。微處理器的特徵在於穩定降低的操作電壓及電流,其可為5伏、3.3伏、2.7伏或甚至1.5伏。在多數系統中,MOSFET及微處理器一起或組合使用以使電路工作。但是,通常微處理及MOSFET的驅動器以不同電壓操作,導致對電路內多個電源的需要。
標準的高電壓NMOS MOSFET需要驅動器,該驅動器可傳輸5,伏至20伏的閘極電壓以使其成功開啟及關閉。在開啟的情況下,實際上存在閘極驅動電壓超過將生效的導軌式電力的需要。已針對此目的設計使用充電泵技術的專門驅動器。高電壓MOSFET閘極驅動器的另一主要功能係具有降低的輸入驅動要求,使其與現代CMOS處理器之輸出驅動能力相容。
在多數外部電源(如充電器)中常見的此MOSFET/驅動器配置實際上需要三個單獨的電源。所需的第一電源係市電電軌,其通常由供應至MOSFET的範圍在127 VDC至375 VDC中的經整流線路電壓組成。所需的第二電源係MOSFET所需的15伏(或更高)。最後,微處理器需要針對其等許多不同及變化的電壓的另一獨立電源。
當前低能效及能源浪費的好例子見於典型電視,其需要多達四個至六個不同的電源模組來運行螢幕、背光、主電力電路板及聲音及輔助板。此當前系統需要多個電壓器及數十個部件用於所需的每個電源。變 壓器及部件(包含MOSFET)透過其等重複的低能效使熱加倍,其係電視背面摸起來總是熱的一個原因。此外,各種電力輸出所需的電壓器越多,所需的部件越多且形成能源浪費的更多原因。
除熱問題外,基於多個變壓器的電源通常皆需要從四十個至六個部件來操作,需要數十個部件用於典型的基於變壓器的電視電源模組,其增大成本及總組件大小,同時降低可靠性。伴隨眾多部件的係增大的系統電阻,其導致熱形式的能源浪費。
本發明目標在於上述問題之一者或多者以提供更佳能效及形成對來自導軌式電源的電湧流的更大控制。
在本發明之一態樣中,提供用於提供電力以用於給應用充電及/或給電子裝置的恆定供電電路供電的電路。電路包含:初級電力電路,其適配以電耦合至電源;及次級電路,其電耦合至初級電力電路。初級電力電路經組態以從電源接收交流(AC)輸入電力信號且產生中間直流(DC)電力信號電力信號。在AC輸入情況中,中間DC電力信號按小於AC輸入電力信號的電壓位準的第一電壓位準產生。次級電路經組態以從初級電力電路接收中間DC電力信號且將輸出DC電力信號傳輸至電子裝置。輸出DC電力信號按小於中間DC電力信號的電壓位準的輸出電壓位準傳輸。
在本發明之另一態樣中,提供用於提供電力以用於給電子裝置(如監視器、電視、大型家電、資料中心及電信電路板)供電的電力模組。電力模組包含整流器電路、開關電容器電壓崩潰電路及控制器積體電路及順向轉換器電路。整流器電路從電源接收AC電力輸入信號且產生經整流 DC電力信號。開關電容器電壓崩潰電路及控制器積體電路接收經整流DC電力信號且基於積體控制器產生中間DC電力信號,該積體控制器感測AC電力輸入信號之電壓位準且依據所感測電壓位準調整開關電容器電壓崩潰電路之增益。順向轉換器電路包含變壓器,該變壓器接收中間DC電力信號且產生傳輸至電子裝置的輸出DC電力信號。
在本發明之又一態樣中,提供用於AC至DC及DC至DC轉換之高效開關電容器電壓崩潰電路。高效開關電容器電壓崩潰電路包含並聯電耦合之一對返馳式電容器及電耦合至該對返馳式電容器之各者之複數個開關總成。在一實施例中,電容器之間之閘極係共用的。開關總成可經操作以在充電階段期間選擇性地將輸入DC電力信號傳輸至該對返馳式電容器之各者,且在具有低於輸入DC電力信號之電壓位準之放電階段期間將輸出DC電力信號傳輸至電子裝置。至少一開關總成可包含N通道MOSFET開關及用於將控制信號傳輸至N通道MOSFET開關之位準移位器。此外,迪克森充電泵可耦合至位準移位器以接收輸入DC電力信號且產生具有高於輸入DC信號之電壓位準之輸出電力信號。輸出電力信號被傳輸至位準移位器用於操作N通道MOSFET開關(或針對其他類型之MOSFET用於關閉)。此外,開關電容器電壓崩潰電路可包含控制電路,該控制電路包含:電壓感測電路,其用於感測輸入DC電力信號之電壓位準;及增益控制器,其經組態以依據所感測電壓位準選擇開關電容器電壓崩潰電路之增益設定及依據選定的增益設定操作複數個開關總成之各者。
電路亦可包含吸血鬼負載消除系統,該吸血鬼負載消除系統經組態以判定消費者裝置何時已完成充電及/或從電力電路斷開及操作電力 電路以斷開至電力電路及/或電子裝置之電力供應且亦能夠形成弱電供電的「待機」模式。
在本發明之另一態樣中,電力電路形成在半導體晶片上,該半導體晶片包含相同晶片上之類比及數位組件。半導體製程(諸如350V絕緣體上矽(SoI)BCD製程)可用於半導體,其將允許微處理器、計時器/石英計時時脈、PID控制器及PWM控制器、MOSFET及相應驅動器整合在一晶粒上。此外,CMOS技術中之典型特定電容範圍從0.1fF/μm2(polypoly電容器)to 5fF/μm2(MIM電容器)或可考慮陶瓷電容器。此外,可使用如DMOS之製程或可考慮bi/基板,諸如一層碳酸矽結合硝酸鎵或亦可使用二氧化矽bi/基板。或替代地,硝酸鎵或砷化鎵及深渠溝電容器之使用可取代矽用於構造晶片。所有此等選擇因為低Ron MOSFET或電晶體所需之電容而係必要的。
BCDMOS製程可用於製造電力電路。BCDMOS包含用於針對高電壓(UHV)應用將雙極(類比)、CMOS(邏輯)及DMOS(電力)功能整合在單個晶片上之製程。BCDMOS提供寬範圍之UHV應用,諸如LED照明、AC至DC轉換及開關模式電源。在能夠直接從110/220 VAC電源「離線」操作的情況下,結合非Epi製程實施之積體電路(IC)可部署最佳化的450V/700V DR-LDMOS電晶體,其指定低導通電阻及超過750V的崩潰電壓。在用於電力開關應用中時,設計者可期望較低傳導及開關損耗。
10‧‧‧電子充電裝置
12‧‧‧電力模組
14‧‧‧外殼
16‧‧‧電力插腳
18‧‧‧裝置連接總成
20‧‧‧電子裝置
22‧‧‧電力電路
24‧‧‧電源
26‧‧‧初級電力電路
28‧‧‧次級電力電路
30‧‧‧整流器電路
32‧‧‧中間電壓轉換器
34‧‧‧降壓調節器
36‧‧‧保持電容器
40‧‧‧濾波電容器
42‧‧‧調節器開關總成
44‧‧‧降壓電路
46‧‧‧高電壓降壓二極體
48‧‧‧降壓能量儲存電感器
50‧‧‧電容器
52‧‧‧P通道MOSFET
54‧‧‧驅動器
56‧‧‧位準移位器
58‧‧‧PWM控制器
60‧‧‧調節器PWM控制器
62‧‧‧電壓感測電路
66‧‧‧充電階段模式
68‧‧‧放電階段模式
70‧‧‧返馳式電容器
72‧‧‧開關總成
74‧‧‧充電電路
78‧‧‧開關蓋VBC控制器
80‧‧‧電壓感測電路
82‧‧‧CP增益控制器
84‧‧‧電阻器分壓器
86‧‧‧比較器
88‧‧‧邏輯解碼器
90‧‧‧N通道MOSFET開關
92‧‧‧位準移位器
94‧‧‧迪克森充電泵
96‧‧‧順向轉換器
98‧‧‧初級降壓電路
100‧‧‧次級降壓電路
102‧‧‧變壓器
103‧‧‧順向轉換器控制器
104‧‧‧開關總成
105‧‧‧初級側電壓感測電路
106‧‧‧控制器
107‧‧‧初級側電流感測電路
108‧‧‧印刷電路板
109‧‧‧電流感測電阻器
110‧‧‧PID調節器控制塊
111‧‧‧比較器
112‧‧‧開關模式降壓調節器控制器
114‧‧‧降壓驅動器
116‧‧‧電流及溫度感測塊
118‧‧‧類比至數位轉換器
120‧‧‧數位至類比轉換器
122‧‧‧數位控制塊
124‧‧‧電力管理單元
126‧‧‧POR
128‧‧‧LDO降壓調節器
130‧‧‧PID伺服迴路
132‧‧‧數位控制塊
134‧‧‧數位控制塊
136‧‧‧內部積體電路
150‧‧‧RCD電路
152‧‧‧三級繞組
當藉由參考在結合附圖考慮之以下詳細描述時變得更好地理解本發明時,將容易了解本發明之其他優點,其中: 圖1係根據本發明之實施例之用於提供電力至電子裝置之電子充電裝置之示意圖;圖2係根據本發明之實施例之可結合圖1中所示之充電裝置使用用於提供電力至電子裝置之電力電路之方塊圖;圖3係根據本發明之實施例之結合電力電路使用形成如圖2中所示之「混合」電壓崩潰電路之降壓調節器電路之示意圖;圖4至圖7係根據本發明之實施例之可結合圖2中所示之電力電路使用之開關電容器電壓崩潰電路之示意圖,其包含在電容器之間共用閘極以進一步減小RDSON損耗;圖8係根據本發明之實施例之如圖4中所示之開關電容器電壓崩潰電路之一部分之示意圖;圖9係繪示根據本發明之實施例之用於結合圖8中所示之開關電容器電壓崩潰電路使用之增益設定之表格;圖10至圖12係根據本發明之實施例之處於與圖9中所示之增益設定之各者相關之充電階段模式及放電階段模式中之圖8中所示之開關電容器電壓崩潰電路之示意圖;圖13係根據本發明之實施例之可結合圖2中所示之電力電路使用之順向轉換器電路之示意圖;圖14係根據本發明之實施例之可結合圖2中所示之電力電路使用之警報控制電路之示意圖;圖15係根據本發明之實施例之包含電力控制器積體電路之圖2中所示之電力電路之另一示意圖; 圖16、圖17A及圖17B係根據本發明之實施例之圖10中所示之電力控制器積體電路之方塊圖;圖18係根據本發明之實施例之可結合圖16、圖17A及圖17B中所示之電力控制器積體電路使用之電力管理單元之方塊圖;圖19係可結合圖16、圖17A及圖17B中所示之電力控制器積體電路使用之開機重設臨限電壓之圖示;圖20係根據本發明之實施例之可結合圖16、圖17A及圖17B中所示之電力控制器積體電路使用之比例-積分-微分調節器控制電路之示意圖;圖21及圖22係根據本發明之實施例之可結合圖16、圖17A及圖17B中所示之電力控制器積體電路使用之數位控制塊之方塊圖;圖23係繪示根據本發明之實施例之操作用於提供電力至電子裝置之圖2中所示之電力電路之方法之流程圖;圖24係根據本發明之實施例之可結合圖23中所示之方法使用之狀態轉變之圖示;圖25係根據本發明之實施例之可結合圖16、圖17A及圖17B中所示之電力控制器積體電路使用之通信介面之示意圖;圖26係根據本發明之實施例之可結合圖16、圖17A及圖17B中所示之電力控制器積體電路使用之微處理器通信協定之示意圖;圖27係根據本發明之實施例之可結合圖16、圖17A及圖17B中所示之電力控制器積體電路使用之內部積體電路之示意圖;圖28及圖29係根據本發明之實施例之圖2中所示之電力電 路之示意圖;圖30係根據本發明之實施例之可結合圖16、圖17A及圖17B中所示之電力控制器積體電路使用之連接圖;圖31及圖32係根據本發明之實施例之圖16、圖17A及圖17B中所示之電力控制器積體電路之額外示意圖;圖33係根據本發明之實施例之可結合圖16、圖17A及圖17B中所示之電力控制器積體電路使用之低電流偵測及錯誤偵測之演算法之流程圖;圖34及圖35係根據本發明之實施例之圖2中所示之電力電路之示意圖;圖36係根據本發明之實施例之可結合圖2中所示之電力電路使用之位準移位器之示意圖;圖37係根據本發明之實施例之可結合圖13中所示之順向轉換器電路使用之RCD電路之示意圖;圖38及圖39係根據本發明之實施例之圖2中所示之電力電路之額外示意圖;圖40係根據本發明之實施例之圖2中所示之電力電路之一部分之示意圖;及圖41係根據本發明之實施例之圖2中所示之電力電路之另一示意圖。
在圖式中,相應元件符號指示相應部件。
參考圖式及在操作中,本發明藉由提供一種電力模組而克服已知電力傳輸系統之至少一些缺點,該電力模組包含電力電路,該電力電路從AC市電供電(通常120 VAC(US)至240 VAC[EU/亞洲])提供DC電壓輸出電力至消費者電子裝置。電力電路經組態以提供電力來給電子儲存裝置及/或電力消耗者電子產品充電,包含但不限於手機、智慧電話、平板電腦、膝上型電腦及/或任意適當電子裝置,其可歸因於極高效率及極低待機電力需求而受益於本發明。一般而言,電力電路包含初級電力電路及次級電力電路,其用於從電源接收高電壓AC電力且將低壓DC電力信號傳輸至一或多個電子裝置。初級電力電路從AC電源接收AC電力信號且在減小的電壓位準下產生中間直流(DC)電力信號。次級電力電路從初級電力電路接收中間DC電力信號且產生並且傳輸輸出DC電力信號,該輸出DC電力信號具有適於給消費者電子裝置供電及/或充電的電壓位準。
初級電力電路包含:整流電路,其用於接收AC電力信號及產生經整流DC電力信號;及開關電容器電壓崩潰電路,其用於將經整流DC電壓劃分為減小電壓以供次級電力電路使用。開關電容器電壓崩潰電路包含:返馳式電容器,其使電力效率最大化;及保持電容器,其使電壓漣波最小化。在一實施例中,開關電容器電壓崩潰電路經組態以傳輸高達50mA且在輕負載條件下跨從50mA至小於1mA之範圍維持95%效率。初級電力電路亦可包含開關模式降壓調節器,該開關模式降壓調節器與開關電容器電壓崩潰電路並聯連接用於處置例如高達430mA之電流之大電流負載。降壓調節器可包含P通道MOSFET開關、高電壓降壓二極體及降壓能量儲存電感器。此外,降壓調節器亦包含脈寬調變器(PWM)控制器,該脈寬 調變器(PWM)控制器用於產生經脈寬調變之信號以控制降壓調節器PMOSFET之開/關時間,其亦可表達為具有適當閘極驅動器之NMOSFET。
次級電力電路包含順向轉換器電力電路,該順向轉換器電力電路包含變壓器,該變壓器用於從初級電力電路接收中間DC電力信號且產生輸出DC電力信號。順向轉換器亦包含:MOSFET,其連接至變壓器之初級側;及控制電路,其操作MOSFET以在從變壓器之次級側汲取負載電流時調節順向轉換器之輸出上之電壓。例如,順向轉換器控制迴路可經組態以在負載電流之重度波動(4.5nA至4.5A)下調節輸出電壓而不觸發任何不穩定性。
在現代世界中,MOSFET已成為「現實」介面的越來越重要的部件。其致能電機/螺線管驅動、變壓器介接及一系列其他功能。問題的另一方面係微處理器。其特徵在於穩定減小的操作電壓及電流。在許多系統中,此等部件一起使用。標準的高電壓MOSEFT需要可傳輸5v至20v數量級之電壓擺動至FET閘極以成功開啟或關閉FET之驅動器。在NMOSFET開啟之情況中,實際上需要此閘極驅動電壓超過電軌電壓。使用充電泵技術之專用驅動器已被設計來用於此目的,但其等通常係離散部件且增加電路上所需之電軌數目。FET驅動器之其他主要功能係具有減小的輸入電壓需求,使其與現代CMOS微處理器之輸出埠能力相容。此配置在電力方面係昂貴的且通常需要三個電源。首先係市電電軌。其由供應至MOSFET之100至600伏之範圍中之電壓組成。第二供電係驅動器所需之5伏至20伏且最終係微處理器所需之供電。本發明在晶片中組合所有此等軌,使得通常與電路相關之電力及部件被最小化且因此效率增大。
在許多情況中,電源構成小系統中部件數及成本之大比例。聯合部件可大體上變更此平衡。此新部分將由以高功率MOSFET作為基底部分,其中添加具有所包含之充電泵之適當驅動器之一組合構成。此外增加源自市電導軌式供電內部之驅動器之電源。最後添加的係輸出接針,以從此內部供電供應微處理器的電力。在許多普通系統中,完整的部件列表將由此新裝置、微處理器及市電電軌部件組成。此將允許下一代低成本/低組裝數微處理器子系統。
電力模組包含高級晶片上電源系統(Tronium PSSoC),其係本發明之標的,包含控制器專用積體電路(ASIC)以提供低成本、高效手段以將典型家庭或企業電插座上存在的AC線路電壓轉換換為減小的經調節DC電壓用於消費者電子應用。典型應用包含但不限於手機、平板電腦或其他手持裝置之充電系統、USB電力轉換、消費者、醫療及工業裝置之電源及許多其他可能用途。
Tronium PSSoC經組態用於兩個主要電力模組應用中,包含自主電力模組及通用電力模組。自主電力模組在自主操作模式中操作,其基於類比回饋方式以減小成本。通用電力模組在通用操作模式中操作,其利用微處理器(μP)控制器以提供回饋用於調節最後輸出電壓,其可為可被控制/監測或更多操作之一電軌。Tronium PSSoC之一些關鍵特徵包含但不限於90 VAC至264 VAC線路電壓操作(可使用其他AC或DC輸入電壓)、可程式化輸出電壓、用於DC-DC轉換之混合開關電容器電壓崩潰電路及開關模式降壓調節器(其針對效率同步整流)、高準確度PID調節控制迴路、用於電流及溫度監測的數位狀態機、用於閒置(吸血鬼)操作模式的超低電力耗散、用 於組態及控制的光隔離微處理器介面、用於製造測試的I2C從動埠、自動偵測輸入電壓範圍:127 VDC至373 VDC(全球電壓110 VAC至260 VAC)、特色輸出電力:22.5W(任意瓦數可行)、用於高效操作的混合電壓轉換器、堆疊的開關電容器崩潰模組、具有PWM閘極驅動器之PID調節迴路、多負載位準及弱電待機模式下的高效功率比例調整功能、熱感測及關斷、短路及過電流保護、具有重啟及控制邏輯的可調整無負載/輕負載關斷、可選擇類比或數位控制、最小或無外部電路部件數及離散裝置大小及用於雙向通信的最佳數位介面。
此外,開關模式降壓調節器電路可包含通常被稱作降壓/增壓電路之電路;或可用SEPIC、Cúk或推挽或其他拓撲替換。此等將具有針對效率的同步整流且可使用返馳式或順向轉換器拓撲。
Tronium PSSoC係高級電力控制器積體電路,其經組態而高效及高準確度地提供輸出電壓調節。Tronium PSSoC之高級特徵為使用者提供多用途裝置,其可以「充電器」模式或「恆定供電」模式用於多種應用中。使用Tronium PSSoC的情況下,可程式化輸出電壓(1.7V至48V或更高)係可行的,存在跨多種電流負載條件的較小或無效率損失,該特徵被稱作「撥動電壓(Dial-a-Voltage)」特徵。此外,多個輸出電流可由混合電路或開關電容器電路本身之組合形成以形成範圍通常從1.7V至48V的多個電壓/電流組合,其足以給多數電子裝置供電。此「Dial-a-Voltage」特徵係可出廠程式化或可由顧客用適當代碼程式化,使得相同晶片可用於1.7V或48V輸出,僅具有任意外部組件(如變壓器繞組及驅動變壓器的FET)的標稱變化。
Tronium晶片上電源系統(PSSoC)ASIC係高級電力控制裝置,其跨非常寬範圍的輸出電力致能高效率。雖然典型的‘高效’電源控制器具有~50%效率下至全負載的10%,但是Tronium裝置旨在提供>90%效率下至及低於全負載的1%。
Tronium PSSoC藉由實施中間電壓軌而提供高電壓電力轉換的革命性拓撲,允許系統的功率能力隨負載需求而按比例調整。其亦將部件縮小至ASIC,使所需的外部部件最小化;且致能更寬範圍的變壓器選項用於以較低線圈損耗提高功率最佳化。Tronium PSSoC亦提供PID開關控制器(在需要隔離的情況下,使用該PID開關控制器驅動變壓器之初級側),或其他轉換及調節拓撲。其亦具有次級或初級側控制/回饋。
在一實施例中,Tronium PSSoC使用專用高電壓中間電壓電容器電壓崩潰轉換方案,其可單獨使用或結合開關模式降壓調節器使用以在不管負載電壓或電流的情況下維持高效率。當負載未汲取電流時,裝置將進入約½毫瓦的低電流操作模式以最小化及實際上消除保持喚醒所需的傳統‘吸血鬼’電流。
Tronium PSSoC可包含下列主要電路塊:中間電容器電壓崩潰轉換器模組(CVBD模組)(可為用於所要電流輸出的一或多級);高電壓單級或兩級開關電容器電壓崩潰電路;用於順向轉換器的PWM控制的比例-積分-微分(PID)調節器控制塊;開關模式降壓調節器PID控制器(用於電壓輸出的任選混合拓撲);降壓調節器開關驅動器;電流及溫度感測塊;用於電壓及電流監測的12位元ADC;用於回饋控制的10位元DAC;用於電流監測狀態機的數位控制塊;用於光隔離器通信介面的串列輸入;用於測試、 評估、修理及通信的I2C串列介面埠;用於產生內部時脈信號的振盪器;用於晶片上電壓及電流產生的電力管理器;適於結合或不結合可嵌入晶片或在外部的微控制器使用;初級側感測或次級側感測能力;及同步順向轉換器。
電力模組亦可包含Tronium PSSoC,其包含類比及數位控制以最佳化性能及效率。為了不僅致能類比控制,而且致能數位控制,Tronium PSSoC上必須可獲得適當輸入及輸出。給定此等可獲得性且結合來自內部時脈控制的電力迴路控制,時脈控制可用外部信號驅動及控制。新穎方式在於此等信號可從次級側驅動,而Tronium PSSoC座落在變壓器之初級側上。
數位控制通常完成在隔離障壁的相同側上。但是,假設Tronium PSSoC內在係隔離系統且需要端對端效率最佳化,則可利用來自初級側或次級側返回初級側的控制。此在給定Tronium實施方案的情況下可以多種不同方式完成。此可結合光耦合器完成,其從微控制器傳輸數位控制信號以及從電流感測電路傳輸類比信號。此外,此可藉由使用隔離變壓器上之第三繞組而完成。
包含在電力電路中之一些或所有電路及/或電裝置可使用矽製程、氮化鎵(GaN)或砷化鎵(GaA)或藉由使用深渠溝電容器或提供高效部件的其他可用製程(前提是需要高效率)整合至晶片上。因此,此等部件之一或所有(甚至變壓器)可使用已知的矽(或GaN-GaA)變壓器技術嵌入ASIC而非作為外部離散部件。此外,為減小漣波(其接著減小所需電容器之大小)的目的之MIM及MOM電容器連同低RDSON MOSFET、積體解耦電容器及/或飛 馳電容器(CFLY)之使用,可在本文中需要電容器或FET的情況下使用。此外,在晶片上引入積體電感器幫助達成最高效率。替代地,將使用最高效率部件,如GaA、GaN或肖特基二極體部件。
此外,電容器可為奈米電容器且可基於鐵電及核殼材料以及基於奈米線、奈米柱、奈米管及奈米孔材料。
Tronium PSSoC之基板可由當前用於電容器中(如外部)或半導體基板內之傳統膜製成,諸如高或低歐姆矽基板、多晶矽、氮化鎵、砷化鎵、矽鍺或如碳化矽或磷化銦之物質。
在製程允許的情況下其關鍵在於在ASIC板上整合盡可能多的離散部件且若效率係關鍵,則識別低RDSon值、高效部件及足夠的電壓崩潰部件。另一關鍵係以更高頻率運行開關降壓模組,使得部件變得更小且足夠小以變為晶片上裝置。
現將參考圖式解釋所選擇之本發明的實施例。熟習此項技術者將自本揭示內容明白,本發明之實施例之以下描述僅供說明且並非為了如由隨附申請專利範圍及其等效物所界定限制本發明的目的。
圖1係用於提供電力至電子裝置之電子充電裝置10之示意圖。圖2係可結合電子充電裝置10使用之電力模組12之方塊圖。在所繪示之實施例中,電子充電裝置10包含:一外殼14;一對電力插腳16,其等從外殼14向外延伸;及裝置連接總成18,其適配以連接至電子裝置20以從充電裝置10傳輸電力至電子裝置。電子充電裝置10亦包含電力模組12,該電力模組12包含電力電路22,該電力電路22經組態以從電源24接收電力且傳輸電力至電子裝置20,諸如,例如攜帶式消費者電子裝置,包含但 不限於手機、智慧電話、平板電腦、膝上型電腦及/或任意適當電子裝置。此外,電力電路22可傳輸電力用於給電子儲存裝置充電,諸如,例如移動電話/膝上型電腦/平板電腦電力儲存電池。在一實施例中,電力電路22可經組態以從AC市電供電(通常120 VAC(US)至264 VAC[EU/亞洲])提供低壓DC輸出(通常5 VDC)
在所繪示之實施例中,電力電路22包含初級電力電路26及次級電力電路28。初級電力電路26適配以電耦合至電源24且經組態以從電源24接收AC(或DC)輸入電力信號且產生中間直流(DC)電力信號。中間DC電力信號按小於AC輸入電力信號的電壓位準的第一電壓位準產生。次級電力電路28電耦合至初級電力電路26且經組態以從初級電力電路26接收中間DC電力信號且將輸出DC電力信號傳輸至電子裝置20。輸出DC電力信號按小於中間DC電力信號的第一電壓位準的輸出電壓位準傳輸。例如,在一實施例中,初級電力電路26經組態以接收具有介於127伏至375伏AC之範圍之間之電壓位準及在大約110伏DC之電壓位準下傳輸中間DC電力信號。次級電力電路28經組態以接收中間DC電力信號且在大約5伏DC下傳輸輸出DC電力信號。
在所繪示之AC至DC實施例中,初級電力電路包含整流器電路30、中間電壓轉換器32、降壓調節器34及保持電容器36,該保持電容器36電耦合至中間電壓轉換器32及降壓調節器34。中間電壓轉換器32及降壓調節器34並聯耦合在整流器電路30與次級電力電路28之間。整流器電路30經組態以從電源24接收AC電力輸入信號且產生經整流DC電力信號,其被傳輸至中間電壓轉換器32及降壓調節器34。在一實施例中,傳 輸經整流DC電力信號,其具有大約等於AC輸入電力信號之電壓位準之電壓位準。如圖13及圖15中所示,在所繪示之實施例中,整流器電路30包含複數個二極體38,其等配置在全波橋式整流器中,該全波橋式整流器具有第一輸入端子及第二輸入端子,其等耦合至電源24之高電壓側及低壓側用於從AC輸入電力信號產生DC電力信號。在一實施例中,整流器電路30亦可包含濾波電容器40,該濾波電容器40耦合至全波橋式整流器。在又一實施例中,整流器電路30不包含濾波電容器40。在另一實施例中,整流器電路30可包含半橋式整流器(未展示)。
圖3係可結合電力電路22使用之降壓調節器電路34之示意圖。在所繪示之實施例中,降壓調節器電路34包含耦合至降壓電路44之調節器開關總成42。降壓電路44包含高電壓降壓二極體46、降壓能量儲存電感器48及電容器50。調節器開關總成42***作以選擇性地將經整流DC電力信號傳輸至降壓電路44。在所繪示之實施例中,調節器開關總成42包含:P通道MOSFET 52;驅動器電路54,其耦合至P通道MOSFET 52;及位準移位器56,其耦合至驅動器電路54。在一實施例中,調節器開關總成42可包含N通道MOSFET及/或P通道MOSFET。在所繪示之實施例中,降壓調節器34亦包含調節器控制電路58,其包含調節器PWM控制器60(亦展示在圖16、圖17A及圖17B中),該調節器PWM控制器60用於產生經脈寬調變之信號以控制P通道MOSFET 52。在一實施例中,控制電路58亦可包含電壓感測電路62,其連接至順向轉換器變壓器之初級側用於感測被傳輸至次級電力電路28之中間DC電力信號之電壓位準。調節器PWM控制器60可依據所感測第一電壓位準產生經脈寬調變之控制信號以調整被傳輸至 P通道MOSFET 52之PWM控制信號之工作週期以維持中間DC電力信號之電壓位準。降壓調節器伺服迴路58經電壓控制且Vprimary被感測且用於調變驅動器54之工作週期。
在一實施例中,感測電路62包含一或多個霍爾效應感測器,其等耦合至順向轉換器變壓器之初級側用於感測變壓器內產生之磁場。霍爾效應感測器藉由直接感測操作期間由變壓器產生之磁場而促進判定變壓器之零交點。在一實施例中,感測電路62包含耦合至變壓器之初級側之初級側霍爾效應感測器。初級側霍爾效應感測器連接至PWM控制器60用於將信號傳輸至PWM控制器60以用於判定變壓器何時接近「零交點」。在另一實施例中,感測電路62包含次級側霍爾效應感測器,該次級側霍爾效應感測器耦合至變壓器之次級側且連接至順向轉換器控制器(圖13中所示)用於傳輸指示變壓器磁場之信號以用於判定變壓器到達「零交點」之時間。
圖4至圖8係中間電壓轉換器32之示意圖。圖9係繪示可結合中間電壓轉換器32使用之增益設定之表格。圖10至圖12係針對圖9中所示之增益設定之各者處於充電階段模式66及放電階段模式68中之中間電壓轉換器32之示意圖。在所繪示之實施例中,中間電壓轉換器32包含單級開關電容器電壓崩潰電路,該單級開關電容器電壓崩潰電路耦合至保持電容器36及次級電力電路28。開關電容器電壓崩潰電路包含並聯電耦合之一對返馳式電容器70及電耦合至返馳式電容器70之各者之複數個開關總成72。開關總成72選擇性地在充電階段模式66與放電階段模式68之間操作。在充電階段模式66期間,開關總成72***作以形成充電電路74以將返馳 式電容器70連接至整流器電路30以將經整流DC電源信傳輸至返馳式電容器70之各者。在放電階段模式68期間,開關總成72***作以形成放電電路76以將返馳式電容器70連接至次級電力電路28以將中間DC電力信號傳輸至保持電容器36。
在一實施例中,如圖8中所示,單級開關電容器電壓崩潰電路32可包含一第一返馳式電容器Cfb1及一第二返馳式電容器Cfb2及九個開關總成S1、S2、S3、S4、S5、S6、S7、S8及S9。此外,兩個開關總成S3及S9接地。在操作期間,開關電容器電壓崩潰電路之增益設定可藉由根據圖9中所示之增益設定表選擇性地操作開關總成而調整。例如,在充電階段模式66(階段1)期間,開關S1、S4、S7及S8被開啟且移動至閉合位置且開關總成S2、S3、S5、S6及S9被關閉且移動至打開位置以形成充電電路74以將返馳式電容器Cfb1及Cfb2連接至整流器電路30。如圖10至圖12中所示,在充電電路74中,各返馳式電容器Cfb1及Cfb2之頂板連接至整流器電路30線路電壓Vline。對於等於G=1x之增益設定,在放電階段模式68(階段2)期間,開關總成S2、S3及S7被開啟且開關總成S1、S4、S5、S6、S8及S9被關閉以形成圖10中所示之放電電路76,該放電電路76包含連接至保持電容器36之電容器Cfb1之頂板及連接至電容器Cfb1之底板之電容器Cfb2之頂板。參考圖9及圖11,對於等於G=1/2x之增益設定,在放電階段模式68(階段2)期間,開關總成S2、S5及S9被開啟且開關總成S1、S3、S4、S6、S7及S8被關閉以形成放電電路76,該放電電路76包含連接至保持電容器36之電容器Cfb1之頂板、接地之電容器Cfb1之底板及連接至保持電容器36之電容器Cfb2之頂板及接地之電容器Cfb2之底板。參考 圖9及圖12,例如,在增益設定等於G=2/3x的情況下,在放電階段模式68(階段2)期間,開關總成S2、S6及S9被開啟且開關總成S1、S3、S4、S5、S7及S8被關閉以形成放電電路76,該放電電路76包含連接至保持電容器36之電容器Cfb1之頂板、連接至電容器Cfb1之底板之電容器Cfb2之頂板及接地之電容器Cfb2之底板。
在一實施例中,如本文中所述,開關電容器電路之多「級」鏈接在一起,其可用於在需要或不需要增加混合電力轉換/調節電路的情況下使額外電流輸出增益。
參考圖7,在所繪示之實施例中,開關電容器電壓崩潰電路32亦包含控制電路78,該控制電路78耦合至開關總成72之各者以操作開關電容器電壓崩潰電路32。控制電路78包含:電壓感測電路80,該電壓感測電路80用於感測從整流器電路30接收之經整流DC電力信號之電壓位準;及增益控制器82,其經組態以依據所感測電壓位準選擇開關電容器電壓崩潰電路32之增益設定且依據選定增益設定操作複數個開關總成之各者。藉由提供依據所感測輸入電壓位準選擇開關電容器電壓崩潰電路32之增益設定之控制電路78,開關電容器電壓崩潰電32能夠調整開關電容器電壓崩潰電32之操作以考慮不同國家及/或電網中的AC電壓位準之變化且按預定義電壓位準傳輸中間DC輸出信號且維持最佳電力效率。在所繪示之實施例中,控制電路78包含電阻器分壓器84、一對比較器86、邏輯解碼器88及增益控制器82。比較器86之負輸入連接至帶隙產生器且正輸入連接至整流器電路30線路電壓Vline。
參考圖4至圖6,在所繪示之實施例中,一或多個開關總成 包含N通道MOSFET開關90及位準移位器92,該位準移位器92連接至N通道MOSFET開關90用於將控制信號傳輸至N通道MOSFET開關90以促進操作N通道MOSFET 90。此外,一或多個開關總成72包含迪克森充電泵94,該迪克森充電泵94連接至位準移位器92以在操作期間提供閉合N通道閘極所需之高電壓信號。迪克森充電泵94經組態以產生輸出電力信號,該輸出電力信號具有大於開關總成源極電壓之電壓位準以使位準移位器92能操作N通道MOSFET開關90。在一實施例中,開關總成72之各者包含N通道MOSFET 90、耦合至N通道MOSFET 90之位準移位器92及耦合至位準移位器92之迪克森充電泵94。在另一實施例中,兩個或更多個位準移位器92可連接至單個迪克森充電泵94。每當在本說明書中使用術語NMOS時,其可用PMOS替換且反之亦然。
在所繪示之實施例中,至少一開關總成72包含連接至N通道MOSFET開關90之位準移位器92。此外,迪克森充電泵94連接至位準移位器92以提供足以閉合N通道MOSFET開關90之閘極之電力信號。在所繪示之實施例中,迪克森充電泵94連接至N通道MOSFET之源極電壓Vsource且經組態以傳輸輸出信號至位準移位器92,該位準移位器92在使用NMOS之情況中具有大於源極電壓之電壓位準之電壓位準。在一實施例中,迪克森充電泵94經組態以傳輸輸出電力信號VDCP,其具有比源極電壓Vsource大大約15至20伏之電壓位準以確保適當閘極操作。增益控制器82連接至位準移位器92用於提供低壓控制信號至位準移位器92。位準移位器92連接至源極電壓Vsource及迪克森充電泵94且經組態以將控制信號傳輸至N通道MOSFET 90,其具有足以依據所接收之控制信號操作開關總成72 之電壓位準。
圖13係包含順向轉換器電路96之次級電力電路28之示意圖。在所繪示之實施例中,順向轉換器電路96包含初級降壓電路98及次級降壓電路100。初級降壓電路98經組態以從初級電力電路26接收中間DC電力信號且傳輸次級DC電力信號至次級降壓電路100。次級DC電力信號具有小於中間DC電力信號之電壓位準之電壓位準。次級降壓電路100經組態以接收次級DC電力信號且產生被傳輸至電子裝置20之輸出DC電力信號。
在所繪示之實施例中,初級降壓電路98包含變壓器102。變壓器102之初級側連接至初級電力電路26且變壓器102之次級側連接至次級降壓電路100。在一實施例中,初級降壓電路98可包含:開關總成104,該開關總成104包含耦合至變壓器初級側之FET;及控制電路103,其耦合至開關總成104以選擇性地操作開關總成104以調整次級DC電力信號之電壓位準。變壓器控制電路103可包含初級側電壓感測電路105用於感測DC輸出信號之電壓及電流位準且操作變壓器開關總成104以將DC輸出信號之電壓位準維持在預定義輸出電壓位準及所需電流位準。以此方式,將至少五個部件從平衡中移除,其等係使用次級側感測控制器通常所需的,包含光耦合器、運算放大器、感應器、二極體及電容器。次級降壓電路100包含一對二極體、一電感器及一電容器。順向轉換器96亦可包含電阻器、電容器、二極體(RCD)電路150(圖37中所示)。RCD電路150經組態以在初級側開關104關閉時執行變壓器重設以避免使變壓器102飽和。順向轉換器96係基於脈衝之步降轉換器。工作週期經調變之數位脈衝施加至初級側開 關104以將輸入DC電壓轉換為AC電壓。變壓器繞組比提供步降。在此情況中,步降係從11:1始。次級側在其終端上具有ac電壓。此AC電壓經次級降壓電路100二極體整流且經LC濾波器過濾以在輸出上產生經步降DC電壓。工作週期藉由類比或數位伺服迴路調變。此伺服迴路檢查輸出側上之dc電壓,將其與回應比較以產生錯誤信號。此錯誤信號用於驅動比較器,該比較器在脈寬經調變之DC脈衝中轉換此錯誤。此DC脈衝當施加至初級側開關閘極104時校正輸出上之錯誤且針對各種負載位準維持調節。
在一實施例中,變壓器控制電路103可包含初級側電流感測電路107,該初級側電流感測電路107連接至變壓器102之初級側以感測負載電流及負載電壓以促進將DC輸出信號調節至預定義負載電壓之5%內。控制電路103使用電流感測電阻器109且跨初級繞組量測。在所繪示之實施例中,變壓器控制電路103包含驅動FET 104之比較器111。在一實施例中,電阻器109係0.10歐電阻器。控制電路103經組態以逐個脈衝感測負載電流且感測峰值電流。例如,在一實施例中,控制電路103感測跨電阻器109之電壓且在開關104開啟時以電壓格式感測電流。當開關104關閉時,控制電路103感測跨變壓器102之初級側之差分電壓,其可大約等於Vprimary減去關閉電晶體104之汲極。當電晶體104關閉時,存在跨其之汲極電壓,因此亦係鋸齒信號。電壓及電流兩者使用開關電容器取樣及保持電路取樣,該開關電容器取樣及保持電路按比例縮小至低電壓且包含電阻器分壓器以設定初級繞組之差分電壓部分且將電壓帶至取樣及保持電路。差分電壓等於跨繞組之△V,包含Vprimary及Vprimary之底部。取樣及保持電路及電阻器分壓器使初級電壓降低至小於5伏且隨後取得得到△V之差值。 取樣及保持電路驅動比較器111。比較器111之另一輸入係跨0.1歐電阻器109感測到之取樣及保持峰值電流電壓。至比較器111之輸入經按比例調整及增益放大及偏移使得輸入處於穩態下且比較器111驅動設定-重設流時脈。FET 104包含「與(AND)」閘極,其由比較器111驅動。時脈關閉比較器111調整AND閘極之工作週期。AND閘極亦具有由作為鋸齒形信號的高脈寬時脈驅動之高工作週期。AND閘極之另一輸入係比較器111之輸出,使得隨後比較器111將該工作週期調變至小工作週期或大工作週期。在一實施例中,時脈係針對順向轉換器伺服迴路之100KHz時脈。
無需來自變壓器之三級繞組作為感測器之供電。供電可從初級側獲得,此係因為感測電路在初級側上且無需來自次級側之供電。跨初級側感應器之電壓及進入初級側FET 104之電流用於判定系統之輸出電壓。在一實施例中,FET 104包含200伏Philips部件裝置,其具有2伏臨限,其可使用5v信號驅動FET 104以在無位準移位的情況下開啟FET 104。在另一實施例中,10伏LDO或20伏LDO可結合位準移位器使用以從5伏變為10伏或從5伏變為20伏以操作FET 104。
在所繪示之實施例中,控制電路103使用感測電阻器109,該感測電阻器109在MOSFET 104之汲極路徑中以實施閘控方式,其中取樣及保持電路剛好在開關104在PWM循環中之各方波之間開啟時獲得峰值電壓。閘控配置在開關開啟時取樣,因為當開關關閉時,此時無可用資訊。
在所繪示之實施例中,電力電路22經組態以適應具有不同匝數比之不同變壓器以產生具有各種電流及/或電壓需求之DC輸出信號。
在一實施例中,電力電路22可不包含全波電橋38、整流器 電路30及輸入電容器40,使得VLINE係DC且因此電路可在使用情況需要的情況下接收直流(DC),且隨後如本文中進一步所述使用經調節降壓電路34執行電壓崩潰且仍使用開關蓋VB 32。但是,在一些使用情況中,尤其在低DC至DC電壓崩潰的情況下,將無需降壓調節器34且僅可使用開關蓋VB 32,無論是否僅可使用一級(如圖2至圖12中所示)。在此情況中,可消除來自輸出之控制信號105,且僅依賴電流感測電阻器109且仍維持嚴格調節之電壓。
在另一實施例中,針對電路之DC輸入變化,使用情況可能無需變壓器(若無需變壓器用於電壓/電流轉換或若無需隔離),如內部部件之情況中,諸如智慧電話中所見。在此實例中,變壓器係不必要的且可連同驅動變壓器之FET從電路移除。在此情況中,整個順向轉換器控制器電路96、28可被移除且Chold電容器36將用感測電阻器電路段109替換。此外,若AC電路無需被整流或隔離,則此電路可結合AC以及DC工作。
圖15係電力模組12之示意圖,其包含可結合電力電路22使用之電力控制器積體電路(Tronium PSSoC)106使用。圖16、圖17A及圖17B係Tronium PSSoC 106之方塊圖。在所繪示之實施例中,電力模組12包含印刷電路板108及Tronium PSSoC 106,Tronium PSSoC 106形成在封裝晶片內且耦合至印刷電路板108。電路22之至少一部分包含在Tronium PSSoC 106內。此外,數位控制可由晶片外部或內嵌在晶片上之微處理器或狀態機執行。在一實施例中,電路及包含在電路22中之電組件之一些或所有包含在Tronium PSSoC 106內。Tronium PSSoC 106可經組態以用於兩個主要電力模組應用中,包含自主電力模組(圖16及圖28中所示)及通用電力模組(圖 17A、圖17B及圖29中所示)。例如,如圖16中所示,自主電力模組包含Tronium PSSoC 106,Tronium PSSoC 106經組態以在自主操作模式中操作,該自主操作模式為了減小成本而基於類比回饋方式。通用電力模組(圖17A及圖17B中所示)包含Tronium PSSoC 106,Tronium PSSoC 106在通用操作模式中操作且利用微處理器(μP)控制器以提供回饋用於調節最終輸出電壓。
在所繪示之實施例中,Tronium PSSoC 106經組態以滿足可追溯性、標記、可焊性及/或耐溶劑性之預定義要求。Tronium PSSoC 106被標記以指示日期代碼、工廠識別符及可追溯性/鑑別碼。鑑別碼提供針對「盜版」識別及驗證為正品部件之手段。一卷帶上之所有生產封裝之組件包含相同的唯一日期代碼、工廠識別符及可追溯性/鑑別碼。批次隔離可能存在以防止相同批次的組件內日期代碼的混淆。封裝部件應被標記以指示部件號、日期代碼及可追溯性代碼。終端經組態以針對封裝Tronium PSSoC滿足IPC-J-STD-001及IPC-J-STD-002之可焊性要求。封裝Tronium PSSoC及其標記經組態以滿足MIL-STD-202測試法215之要求。
Tronium PSSoC106係高級電力控制器積體電路,其經設計而高效及高準確度地提供輸出電壓調節。Tronium PSSoC 106為使用者提供多用途裝置,該多用途裝置可用於多種應用中且由於「Dial-a-Voltage」特徵,相同晶片可經組態以實際上在任意電子裝置中工作。同樣地,可程式化輸出電壓在使用Tronium PSSoC的情況下係可行的,存在跨多種電流負載條件之較小或無效率損失。
在所繪示之實施例中,Tronium PSSoC 106使用開關電容器電路32及開關模式降壓調節器34以維持高效率而不管負載電壓或電流。例 如,當負載電子裝置20未汲取電流時,Tronium PSSoC 106進入低電流操作模式以最小化保持喚醒所需的傳統‘吸血鬼’電流。在所繪示之實施例中,Tronium PSSoC 106包含單級開關電容器電路32、用於順向轉換器次級變壓器102的PWM控制之PID調節器控制塊110(圖20中所示)、開關模式降壓調節器控制器112、降壓調節器開關驅動器114、電流及溫度感測塊116、用於電壓及電流監測的12位元類比至數位轉換器(ADC)118、用於回饋控制的10位元數位至類比轉換器(DAC)120(圖17A及圖17B中所示)、用於電流監測狀態機的數位控制塊122、用於光隔離器通信介面的串列輸入、I2C串列介面埠及用於晶片上電壓及電流產生之電力管理單元124。亦可取決於使用情況增加其他類型之感測器,諸如聲音、光偵測、輻射及衝擊感測器。
圖18係電力管理單元124之一方塊圖。在所繪示之實施例中,電力管理單元(PMU)電路塊124產生並監督Tronium PSSoC之適當操作所需之偏壓及電流。兩個線性電壓調節器提供用於IC之低壓電路之經調節5.0V供電以及外部支援裝置,諸如光隔離器及任選的外部微處理器。除在連接至線路電壓時提供IC之適當初始化外,PMU 124監測故障條件之電壓供應且提供主開機重設(POR)126。在所繪示之實施例中,PMU 124包含帶隙電壓參考、電流參考產生器、線側低功率線性電壓調節器、變壓器初級側線性電壓調節器及開機重設。為減小電力耗散,線側電路從LINE_0P1接針供電,該接針供應LINE_IN電壓(Vline)的大約十分之一的電壓。此電壓使用連接至IC之LINE_IN及LINE_RDIV接針之外部電阻器分壓器在內部產生。PMU 124之初始化從在LINE_IN接針上施加經整流電壓開始。
PMU 124含有用於Tronium PSSoC 106之低功率帶隙參考電 壓及電流產生器,Tronium PSSoC 106由線路電壓供電。高精度溫度補償輸出電壓連同多個帶隙與絕對溫度成比例(PTAT)電流輸出被提供用作後續電路塊之參考。帶隙輸出電壓可在晶圓探針上微調以用bg_trim[7:0]暫存器位元最佳化溫度係數,且儲存在一次性可程式化(OTP)記憶體中,該記憶體儲存在微處理器中。帶隙單元係自啟動的,僅需預設微調值用於初始化。帶隙單元在睡眠模式期間停用,但總是開啟且設計用於超低功率操作。
PMU 124亦包含低功率線性電壓調節器(LPREG),該低功率線性電壓調節器(LPREG)被提供來將PSSoC之LINE_IN輸入上存在之高電壓轉換為低功率電壓域的經調節電壓。LPREG使用帶隙參考電壓以產生5.0V之經調節輸出以驅動總是開啟的低功率晶片上電路塊,包含用於開關電容器電路32之低頻率振盪器、晶片上邏輯等。外部(晶片外)旁路電容器可用於雜訊過濾,連接至LPREG接針。調節器在睡眠模式期間未停用,而總是開啟。
PMU 124亦可包含初級側低電壓調節器,該初級側低電壓調節器被提供來供應晶片外光隔離器、PWM閘極驅動器及其他支援電路之更高電流要求。需要外部10μF旁路電容器用於雜訊過濾,其連接至VREG5接針。電壓調節器為了測試目的可結合使用en_Vv信號而停用。當至單元之en_Xv輸入係‘低’時,單元中的所有內部類比電流停用且輸出係高阻抗。
POR 126塊監測如由LPREG電路塊產生之Tronium PSSoC之內部供應電壓。例如,圖19繪示可結合POR 126使用之POR臨限電壓。在一實施例中,對於LPREG接針上小於VPOR臨限電壓之電壓,POR輸出將被 確證為‘高’,指示重設條件。此外,對於LPREG接針上大於VPOR臨限電壓之電壓,POR輸出將被解除確證為‘低’用於正常操作。提供遲滯使得一旦超過VPOR臨限,即發生臨限電壓之減小。源自遲滯之臨限隨後等於VPOR-VHYS。POR信號之反相版本亦可提供在POR_B上。
在所繪示之實施例中,包含在Tronium PSSoC 106中的開關電容器電壓崩潰電路(SCVBC)32透過電容電壓崩潰技術(CVBD)組態為分壓器。透過電容器,其將LINE_IN接針上存在之經整流DC電壓劃分為CP2_OUT接針上之減小電壓供外部變壓器102及次級電壓控制迴路使用。外部變壓器102隨後依據初級至次級繞組比將此電壓進一步減小為所要施加電壓。在一實施例中,SCVBC 32經組態為兩個相同級之級聯,如圖17A中所示。在另一實施例中,SCVB 32包含多個開關電容器級,如圖38至圖39中所示。SCVBC 32經組態以傳輸高達每個電容崩潰塊之50mA,該電容崩潰塊由開關電容器塊組成,其等提供一半或其他細分之電壓崩潰。此在變壓器102之初級側上於輕負載條件下跨從50mA至小於1mA之負載電流之範圍提供且維持95%效率。例如,假設針對外部變壓器及整流器之97%效率及92至97%之整體模組效率已被模擬且可達成。在一實施例中,SCVBC 32可包含晶片上返馳式電容器以最大化電力效率,外部2.2μF桶形電容器及兩個外部7.5μF保持電容器以最小化電壓漣波。此等電容器分別連接至CP1_OUT及CP2_OUT接針用於開關電容器電路之第一級及第二級之輸出。兩個階段從兩相非重疊時脈產生器按1KHz之速率計時,該兩相非重疊時脈產生器源自晶片上RC振盪器。
參考圖17A及圖17B,在一實施例中,對於Tronium PSSoC 106,CP2_OUT上之SCVBC 32輸出電壓可結合使用8位元二進制加權數位至類比轉換器以0.117伏之步級在120至90伏之範圍內程式化。SCVBC輸出限於此範圍以確保順向轉換器變壓器102在步降過程中提供最多輸出電流。SCVBC限於50mA之輸出電流。如果應用需要額外電流,則開關模式降壓調節器34可被啟用以提供高至430mA之電流。SCVBC 32之每級可被程式化以產生電壓轉換比。此程式化在過程增益控制中自動完成,其中經整流LINE_IN電壓與8位元DAC設定比較。此DAC之數位控制使多個電壓能被程式化以獲得目標應用所需之所要最終輸出電壓。負載電壓之實例可結合DAC依據變壓器匝數比程式化。
參考圖16,在一實施例中,SCVBC 32可包含具有1、0.66或0.5之相應分壓比之單級開關電容器電路。存在的輸出電壓隨後由外部(晶片外)順向轉換器96減小以獲得5.0V的最終應用輸出電壓。SCVBC(及降壓控制器)之所有類比及數位信號在5V域中產生。SCVBC錯誤電壓使用電阻器分壓器按比例調整以處於XV域內。LINE_IN電壓亦被按比例調整,使得處理可在XV電壓域內完成。
在圖16中所示之一實施例中,SCVBC 32包含增益控制塊,該增益控制塊使用經按比例調整LINE_IN電壓以判定SCVBC 32之適當分壓比。經按比例調整的LINE_IN電壓與帶隙參考電壓比較以依據AC市電電壓選擇三個或更多個可能分壓比之一。輸出電壓之最終調節可在開關電容器調節器中執行,其中時脈被開啟及關閉以控制傳輸至保持電容器之充電量。
參考圖17A及圖17B,在一實施例中,SCVBC增益控制塊 可使用經按比例調整LINE_IN電壓及輸出電壓DAC設定以判定源自CP1及CP2中的組合分壓步驟之適當過程分壓比。以此方式,可達成依據全球AC輸入電壓之120及90伏輸出之設定。CP2輸出電壓之最終調節在開關電容器調節器中執行,其中時脈被開啟及關閉以控制傳輸至CP1及CP2保持電容器之充電量。CP1及CP2所需之最低分壓比可針對CP1級程式化以最小化跨高電壓NMOS開關之電壓降。
CP2輸出饋電給順向調節器之初級繞組。系統之最終輸出電壓由以下方程式設定:(VSET/XFMRRATIO)*dc=VOUT
當dc係順向調節器之工作週期且應維持為0.5或更小以確保系統變壓器不飽和。
SCVBC 32包含迪克森充電泵(DCP)94(圖5及圖6中所示),該迪克森充電泵(DCP)可用於為NMOS高電壓開關之閘極提供增壓電壓。DCP可按1.6MHz之時脈速率計時且產生等於LINE_IN接針上之電壓加上大約18V之電壓之閘極電壓。此外,各NMOS高電壓開關90可包含相應位準移位器以使驅動信號從低壓域平移至由DCP提供之增壓電壓。在一實施例中,此需要雙重位準移位器,其他要求可能僅需一個位準移位器。至位準移位器之輸入係5V且平移至20V域以供SCVBC 32使用。針對輸出電流驅動按比例調整之此相同類型之位準移位器可在Tronium PSSoC 106內使用。
在一實施例中,如圖17A及圖17B中所示,Tronium PSSoC 106可包含數位至類比轉換器(DAC),該數位至類比轉換器(DAC)提供開關電 容器電路之輸出電壓之可程式化性。R2R電流模式DAC拓撲數位地將帶隙參考電壓按比例調整至開關電容器電路所需之控制電壓以維持由使用者程式化之輸出電壓。DAC之輸出電壓範圍係從由CP_DAC[7:0]暫存器位元以118mV之步級程式化之120V至90V。
SCVBC 32亦可包含開關電容器調節器,該開關電容器調節器包含用於控制SCVBC之充電之比較器及AND閘極。在一實施例中,比較器之輸入可包含輸出電壓DAC及經按比例調整版本之CP2輸出電壓。例如,若來自CP2輸出之經按比例調整電壓大於DAC電壓,則比較器輸出低且1KHz CP時脈係閘控關閉。若DAC電壓大於經按比例調整CP2輸出電壓,則比較器輸出被確證為高且AND閘極使時脈能給輸出充電。此外,比較器可設計有遲滯以最小化CP2輸出電壓漣波。此外,調節器可在不連續模式中運行兩個CP級;即,時脈脈衝僅在需要給7.5μF保持電容器充電時存在。
在所繪示之實施例中,若未使用CVBD模組之堆疊,則易於結合混合拓撲之使用處置大電流負載(高至430mA或更大),該混合拓撲包含開關模式降壓調節器(SWR)34及CVBD模組。Tronium PSSoC 106含有SWR 34之控制器,該控制器利用外部(晶片外)PMOS開關(其可在晶片PMOS或NMOS內部[結合用於閘極之額外迪克森充電泵])以供應負載之高電流需求。由於高電流路徑在PSSoC外部,則無需PSSoC來耗散大部分負載電流。此藉由消除PSSoC中歸因於高電壓裝置之導通電阻之額外寄生損耗之源。SWR可按與CVBD模組相同之頻率調節或以更高頻率(500KHz至1MHz)或非常高的頻率運行,而CVBD模組以較低頻率運行以保持更高效。(CVBD 模組可以較高頻率運行,但在使用如今在半導體平台中提供之電流裝置的情況下,此增加閘極打開/閉合,其增大損耗)。
在一實施例中,降壓調節器34可包含下列外部(晶片外)組件:1.串聯高電壓PMOS開關。PMOS可針對低RDSON、低輸入電容及>400V之VDS選擇;2.具有高電壓崩潰、極低洩漏及開關電流之高電壓降壓二極體;及3.降壓能量儲存電感器。感應器必須具有低ESR且能夠處置適當的降級電流。但是,此等部件,通常取決於運行降壓之頻率(頻率越高,所需部件之值越小)可為晶片上之內部裝置/組件,而非外部的。在應用GaN及/或GaA及深渠溝電容器技術,以及將變壓器置於晶片上之技術的情況下,所有部件可存在於一個晶片上。
Tronium PSSoC 106亦可包含高頻振盪器,該高頻振盪器被分壓以產生100KHz(標稱)時脈供降壓調節器PWM控制器使用。100KHz時脈用數位控制塊中之偽隨機演算法抖動以確保EMI頻譜中諧波之抑制。此時脈隨後經脈寬調變以控制外部降壓調節器PMOS/NMOS FET之開/關時間。100kHz時脈被轉換為Tronium PSSoC 106內之鋸齒斜坡,其中其與錯誤放大器輸出比較。來自比較器輸出之經脈寬調變之信號隨後施加至位準移位器輸入以控制外部降壓調節器PMOSFET之開/關時間。降壓調節器34之錯誤放大器藉由在CP2_OUT上使用電阻器分壓器按比例調整電壓而接收來自調節器之回饋。電壓回饋信號隨後使用內部電阻器及電容器調節以在所有條件下控制降壓調節器的回應。調節伺服迴路之所得轉移函數由多極及零組成以確保調節器輸出對於從50mA至430mA之完整範圍之負載條件穩定。降壓調節器之錯誤放大器及PWM控制器皆位於5伏域中,其中最終控 制信號經位準移位以驅動外部高電壓PMOSFET開關。
Tronium PSSoC 106亦可包含LDO降壓調節器128,該LDO降壓調節器128用於形成驅動降壓調節器34之PMOS/NMOS FET之閘極所需之高電壓側電壓。此電壓隨後用於供應驅動外部PMOS/NMOS FET所需之閘極電壓。電容器經連接用於濾波。
在所繪示之實施例中,Tronium PSSoC 106包含Tronium PSSoC之電流感測放大器,該電流感測放大器感測跨接針RCSP及RCSN上之外部電流感測電阻器之電壓。此電壓由開關電容器差分放大器取樣及保持且由晶片上通用ADC數位化。數位字隨後與程式化臨限比較以根據需要啟用或停用降壓調節器34以最佳化效率。亦針對可能的故障或警報條件,諸如過電流監測電流感測放大器之輸出,允許控制電流感測回饋之數位狀態機停用SCVBC 32以防止可能的損壞。
Tronium PSSoC 106亦可含有至少兩個自激RC振盪器,其等共用共同微調控制器,包含16KHz RC振盪器及9.6MHz RC振盪器。振盪器頻率可使用osc_trim暫存器位元微調。
低頻(16KHz)RC振盪器係線側RC振盪器,其在LINE_IN上施加線路電壓之後連續運行。其由LPREG調節器供應。此振盪器輸出頻率被細分為一個數,如1KHz以提供SCVBC 32之時脈。在該情況中,振盪器輸出亦用作睡眠模式關機計時器之參考時脈。高頻(9.6MHz)RC振盪器提供用於單線串列資料輸入之解碼之主時脈。振盪器9.6MHz輸出除以6以提供開關電容器電路中之迪克森充電泵所需之1.6MHz時脈。其被進一步劃分以提供降壓調節器及順向轉換器PWM控制塊之時脈源。此等100KHz時脈 由數位邏輯使用偽隨機演算法抖動以確保EMI頻譜中諧波之抑制。振盪器可用osc_en暫存器位元啟用且由線側上之LPREG調節器供電。
在所繪示之實施例中,Tronium PSSoC 106包含超低功率ADC 118以數位化溫度感測器及電流感測放大器類比電壓。此等數位化電壓隨後可由數位控制塊比較以停用或重啟類比電路。ADC為了低功率及更高INL/DNL性能而使用逐次逼近(SAR)拓撲。至ADC之輸入由多工器提供。多工器可選擇相關通道之各者以由ADC數位化。經轉換樣本值隨後儲存在ADC_SAMP暫存器中供控制狀態機使用。ADC使用低壓供電且將在裝置處於睡眠模式中時停用。
圖20係可結合Tronium PSSoC 106使用之比例-積分-微分(PID)調節器控制電路110之示意圖。在所繪示之實施例中,Tronium PSSoC 106包含PID伺服迴路130以當從外部變壓器之次級側汲取負載電流時調節順向轉換器96之輸出上之電壓。PID塊包含錯誤放大器、鋸齒波形產生器、比較器及PWM時脈控制塊。PID迴路經設計以在負載電流嚴重波動下調節輸出電壓而不觸發任意不穩定性。
PID緩衝放大器接收回饋以經由AUTO_ERR輸入閉合順向調節迴路。此係光隔離器之輸出,其提供電壓至PSSoC,該電壓代表順向轉換器之輸出電壓。此電壓隨後在PSSoC上使用電阻器分壓器按比例調整且為錯誤放大器緩衝。
自主PID迴路之錯誤放大器位於Tronium PSSoC上,具有晶片上補償電阻器及電容器。錯誤放大器使用帶隙電壓作為PID伺服迴路之參考。鋸齒或其他波形產生器針對PID伺服迴路提供脈寬調變(PWM)之基於 時脈之手段。電路從數位邏輯接收100KHz時脈且將其轉換為相同頻率之鋸齒波形以與錯誤放大器之輸出比較。錯誤放大器及鋸齒波形產生器之輸出由PID比較器比較以產生驅動順向轉換器所需之PWM時脈。工作週期限制器被提供以確保由PID比較器提供之PWM輸出不超過65%。此輸出施加在FWDOUT接針上以驅動外部變壓器。正常操作中,PWM工作週期限於10%至65%之範圍以避免變壓器之飽和。
在一實施例中,PID伺服迴路經設計以在低壓下操作且傳輸最大所需DC電流至負載。可藉由使用次級側上之LC濾波器及藉由適當確定三級補償網路之內部R及C之大小而將調節控制至高達高百分比之絕對準確度。LC濾波器雙極點由下列方程式給出:FLC=1/2 π L1C4。
C1電容器具有特定ESR(串聯電阻器),其產生零。此零產生+90度相移:FESR=1/2 π C1RESR。
補償迴路具有特定帶寬(Fc),其係順向轉換器之時脈速率之大約1/10。網路之目標係在Fc下維持至少45度的相位裕度:相位裕度=180度+迴路相位。
PID迴路具有2個零及2個極點。2個零係提供180度相位提升以抵消歸因於輸出LC濾波器之180度之相位損失所必需的。兩個零均被放置在大約~50%之LC濾波器極點頻率下。兩個極點隨後位於轉換器之開關頻率下(100KHz)。此允許計算C1、C2、C3、R2及R3。R1被設定為合理值以起始計算程序。
在另一實施例中,PID伺服迴路經設計以針對多個輸出電壓操作,該多個輸出電壓可由使用者針對所需應用而程式化。迴路可傳輸ny 電流,但在此所繪示情況中,傳輸4.5A DC電流至負載,結合高達絕對精確度之0.1%之調節。通用迴路之回饋由外部微處理器及電壓感測支援電路提供,且以串列資料流形式輸入至Tronium接針。隨後對數位字執行並列至串列轉換,該數位字被轉換為類比電壓用於施加至錯誤放大器,如圖20中所示。至類比之轉換使用晶片上DAC執行,該晶片上DAC以輸入資料速率之頻率更新。PID錯誤放大器之參考電壓由第二DAC產生,該第二DAC由微處理器程式化。
數位至類比轉換器(DAC)基於來自微處理器之數位程式化輸入產生PID控制迴路之類比參考電壓。如所示之數位至類比轉換器(DAC)係10位元方案,但可為任意數目之位元。DAC亦可藉由將接收自接針之數位字轉換為類比電壓用於輸入至迴路而提供PID控制迴路之回饋。DAC電壓輸入至錯誤放大器且與類比參考電壓比較以產生控制迴路之錯誤電壓。DAC按輸入資料之速率提供更新至迴路。
參考圖17A及圖17B,在一實施例中,Tronium PSSoC 106可包含基於晶片上△V的溫度感測器,該溫度感測器使IC能感測晶粒或模組之溫度。在本實例中,通用12位元ADC用於數位化差分電壓。數位化值隨後與可程式化臨限比較以取決於溫度考量關機或重新啟用Tronium PSSoC。
在所繪示之實施例中,Tronium PSSoC 106提供兩個操作模式及在開機時應用的四個喚醒狀態(W0至W3)。
開機模式。在開機模式期間,Tronium PSSoC在電力首次施加或在電話***時(在充電器之情況中)控制模組之開機行為。當電力首次連 接至AC市電時,在IC之LINE_IN接針上存在之經整流及經濾波線路電壓增大直至其達到其最終DC值。Tronium PSSoC之基本支援電路因此開啟以啟動電力管理功能。事件之例示性啟動串列之時序圖展示於圖24中,從在t=0施加LINE_IN電壓開始。
線側具有三個電路塊,其等總是開啟:1.低功率帶隙參考;2.低功率5V調節器(LPREG);及3.低功率RC振盪器。其他電路可通電,但在此實例中,其已在此情況中減少至三個以汲取極低待機電力。此等電路直接從LINE_IN輸入汲取電力,無變壓器行動以增大可用電流。因此,其等針對超低功率消耗而設計。替代地,變壓器可停用,但此將減小效率。
正常模式。在電力施加及喚醒狀態完成之後,Tronium PSSoC 106將進入正常操作模式。維持正常操作模式直至電壓/電流變無或低於低電流臨限,其中電池系統內的微晶片通常開始阻擋電流以抑制過載。在正常操作模式中,Tronium PSSoC因負載電流之偵測而退出睡眠模式。負載之調節在降壓調節器及SCVBC供應必要電流時發生。在此操作模式中,所有Tronium電路開啟且回應於外部刺激。
在一實施例中,組合正常模式、開機模式及睡眠模式之元素,電池可被提供「插拔」充電。在此例示性另一模式(被稱作插拔充電模式)中,將在晶片中之邏輯判定全充電已執行時執行,意味著在給定時間週期內從較高電流至較低電流之汲取。此插拔充電操作模式可在狀態機中存在或經由I2C介面啟用/停用且將指示電路「斷開」數次且以其間之間隔開始再次充電至大約150毫安之最大臨限。以此方式,電池將被促使接收額外消流充電以確保其實際上係充滿的,而非在裝置電池指示器上顯示「充 滿」。此將解決其中手機僅充電至其等電池容量之大約80至90%之問題,因此隨時間過去,在指示器仍記錄100%電池的同時,其實際上係電池容量之80%的100%而非電池容量的100%的100%。在插拔充電模式下,Tronium PSSoC數位提供額外電流臨限,其高於睡眠臨限使得下文說明的睡眠模式功能未受損。
睡眠模式。Tronium PSSoC在連接至AC市電電力時必須使用最小電力且無需充電或電源功能。此需要電路22具有至少兩個不同電力域:1)線側域及2)初級側域。線路輸入側係必須能夠一直被供電之域。亦存在1.6MHz RC振盪器,其用於迪克森充電泵。此振盪器在睡眠模式中保持關。16KHz振盪器用作倒數計時器以在已達到程式化之倒數時間時喚醒Tronium PSSoC。
在所繪示之實施例中,Tronium PSSoC 106包含數位控制塊122,該數位控制塊122為使用者提供在設置、可程式化、正常、測試或評估操作模式中管理Tronium應用之許多方面之能力。微處理或器或狀態機被提供來監測開關電容器電路之輸出電壓及電流且包含可組態暫存器,該可組態暫存器提供針對正常操作模式之特徵選擇及低電流或‘睡眠’操作模式之可程式化。亦根據應用之需要為外部裝置提供通信介面。
圖21係可結合Tronium PSSoC 106使用之Tronium通用數位控制塊132之方塊圖。圖22係可結合Tronium PSSoC 106使用之Tronium自主數位控制塊134之方塊圖。圖23係繪示操作電力電路22之方法之流程圖。圖24係可由Tronium PSSoC 106實施之狀態轉變之圖示。
參考圖21,在一實施例中,Tronium PSSoC 106包含通用數 位控制塊132。Tronium通用數位控制塊132提供下列功能用於控制通用模組:控制狀態機、時脈產生器、ADC控制器、時脈抖動LSFR、I2C介面(單或雙重通信模式)、可程式化通信模式、微處理器介面、測試/評估多工器及/或暫存器檔。
控制狀態機或微處理器/微控制器藉由監測開關電容器電路之輸出電流判定Tronium模組之適當操作模式。提供至少兩個操作模式,包含睡眠模式及正常調節模式。控制狀態機或微處理器亦提供四種狀態以在首次施加電力時或在退出睡眠模式時喚醒PSSoC,加上插拔充電模式。此外,狀態機或微處理器持續監測輸出電壓電流之過電流或欠電流警報條件。
使用電流感測放大器及類比至數位轉換器(ADC)在類比子系統中或在微處理器中達成開關電容器輸出電流之監測。數位控制塊提供ADC之控制且可針對ADC執行週期性增益及偏移校正。ADC樣本隨後與控制狀態機所需之開關電容器電流之程式化數位臨限比較。
時脈產生器提供類比及數位子系統所需之時脈且亦使時脈閘控能使睡眠操作模式中之電力消耗最小化。
數位控制塊提供:單線串列介面,其經由外部微處理器支援PSSoC之可組態性;或多線介面,其將支援Tronium PSSoC與微處理器或狀態機之間的雙向通信。時脈抖動線性回饋位移暫存器(LSFR)被包含以產生偽隨機數用於順向及降壓調節器PWM時脈之抖動。偽隨機數由類比子系統用於抖動高頻振盪器輸出。I2C埠被包含用於製造設定、測試、評估、更新、健康檢查及調試。含有裝置操作之組態暫存器之暫存器檔可使用I2C介面存取。數位多工器被提供來選擇性地將各種內部數位信號多工至DIGTST 輸出接針用於測試目的。
參考圖22,在一實施例中,Tronium PSSoC包含自主數位控制塊134,該自主數位控制塊134提供下列功能用於控制自主模組:控制狀態機或微控制器;時脈產生器;ADC控制器;時脈抖動LSFR;I2C介面;測試多工器;及暫存器檔。控制狀態機藉由監測CP_OUT接針上開關電容器電路之輸出電流而判定Tronium PSSoC 106之適當操作模式。提供兩個操作模式,包含睡眠模式及正常調節模式。控制狀態機或微控制器亦提供四種狀態以在首次施加電力時或在從睡眠模式退出時喚醒IC。此外,狀態機監測輸出電流之過電流-欠電流警報狀態及插拔充電模式。
使用電流感測放大器在類比子系統中達成開關電容器輸出電流之監測且在此實例中使用12位元類比至數位轉換器(ADC)。數位控制塊提供ADC之控制且可針對ADC執行週期性增益及偏移校正。ADC樣本隨後與控制狀態機及/或微控制器所需之開關電容器電流之程式化數位臨限比較。
時脈產生器提供類比及數位子系統所需之時脈且亦使時脈閘控能使睡眠操作模式或插拔充電模式中之電力消耗最小化。
時脈抖動線性回饋位移暫存器(LSFR)被包含以產生偽隨機數用於順向及降壓調節器PWM時脈之抖動。偽隨機數由類比子系統用於抖動高頻振盪器輸出。
I2C埠被包含用於製造設定、評估、更新、重設、晶片健康檢查、測試及調試。含有裝置操作之組態暫存器之暫存器檔可使用I2C介面存取。
數位多工器被提供來選擇性地將各種內部數位信號多工至DIGTST輸出接針用於測試目的。
在所繪示之實施例中,Tronium自主數位控制塊134包含狀態機以基於負載電流判定自主模組之適當操作模式。
如圖23及圖24中所示,控制狀態機提供四個喚醒狀態(W0、W1、W2及W3)及兩個操作模式;正常模式及睡眠模式。
喚醒0(W0)--當電力施加時,線側電路喚醒:帶隙(BG)及低功率調節器(LPREG)開啟。在LPREG穩定後,por_b被釋放且系統轉變為喚醒1(W1)。
喚醒1(W1)--低頻振盪器(LF_OSC)及增益控制(GAIN_CTRL)被啟用。同時,高頻振盪器(HF_OSC)及充電泵(CP)被啟用。CP被設定為不調節。當LF_OSC穩定時,至數位塊之lf_clk在(a)10mS計數器起動及(b)至開關電容器之1kHz時脈變為活動的時點被釋放。當10ms計數器期滿時,系統轉變為喚醒2(W2)。
喚醒2(W2)--開關調節器(SWR)被啟用,CP被設定以調節且1mS計數器起動。當1ms計數器期滿時,系統轉變為喚醒3(W3)。
喚醒3(W3)--順向PID被啟用且兩個計數器起動:20ms計數器及250ms計數器。下列情境提供從此狀態之轉變:a.20mS計數器期滿且順向PID更動選項開:系統轉變至正常模式(NM);b.20ms計數器期滿,順向PID更動選項關且順向PID在250mS計數器期滿之前穩定:系統轉變至正常模式(NM);c.睡眠模式未被停用,順向PID更動選項關且當250mS計數器期滿時,順向PID尚未穩定:系統轉變至睡眠模式。
正常模式(NM)--電流感測塊(CUR_SNS)及ADC被啟用。若自校準未被停用,則ADC使用前兩個樣本用於增益及偏移校準且在第三樣本準備好時示意ADC資料OK。若自校準被停用,則ADC使用在指定暫存器中程式化之值執行增益及偏移校正且在第三樣本準備好時示意ADC資料OK。當ADC資料OK時,系統監測電流負載。下列互斥條件(其等臨限係可程式化的)可發生:1.過電流條件:系統設定過電流狀態位元。若睡眠模式未被停用,則系統轉變至睡眠模式(SM);及2.欠負載條件:若LCSD_EN接針係高的且睡眠模式未被停用,則系統轉變至睡眠模式(SM);及3.低負載條件:系統在其偵測到低負載條件時關閉SWR且在低負載條件減弱時重新開啟SWR。
睡眠模式(SM)--系統停用HF_OSC、CP、SWR、順向PID及CUR_SNS及ADC。其亦起始睡眠計數器,該睡眠計數器之持續時間係可程式化的。預設睡眠時間為大約5秒,其可取決於使用應用調整。若順向PID先前在進入睡眠模式時尚未穩定,則其保留在睡眠模式中。在此情況中,可藉由觸發EXT_RST接針在W1中重啟或藉由移除電力在W0中重啟。若順向PID在進入睡眠模式時OK,則系統在睡眠計數器期滿時轉變為W1狀態。
在所繪示之實施例中,藉由經由電流感測放大器及ADC監測開關電容器電路之輸出電流而達成正常操作模式與睡眠操作模式之間的轉變。此外,控制狀態機可在負載電流減小至程式化數位臨限的情況下停用SWR降壓調節器。電流及相應模式轉變之監測繪示於圖24之圖中。
參考圖21及圖22,數位控制塊122可包含時脈產生器,其 產生數位子系統所需之所有時脈。提供彼此同步之三個時脈域,低頻時脈域、高頻時脈域及I2C時脈域。
類比子系統中之低頻振盪器在所繪示實例中提供時脈,用於數位子系統之16kHz時脈(lf_clk)。除暫存器檔使用之時脈外,時脈產生器從lf_clk得出下列時脈:1.sys_clk--具有50%工作週期之8kHz時脈,其為控制狀態機計時。2.adc_gclk--為ADC控制器計時之閘控版本的sys_clk。此時脈在睡眠模式中閘控關閉。3.lfdiv_clk具有1、2或4kHz之可程式化頻率之經劃分時脈,其具有將用於類比塊中之50%工作週期。此時脈在睡眠模式中閘控關閉。
振盪器可經由TSTMD0輸入在類比子系統中旁通以致能從EXT_CLK接針施加16kHz時脈。
類比子系統中之高頻振盪器提供1.6MHz、50%工作週期時脈,其被時脈產生器進一步劃分以形成hfdiv_clk。hfdiv_clk係可經由暫存器檔程式化的以提供100、200及400kHz之頻率。hfdiv_clk亦以數位形式用於時脈抖動LFSR及以類比形式用於降壓調節器及順向PID迴路。時脈在HF振盪器於類比中停用時在睡眠模式中關閉。
I2C介面使用SCLK接針上之時脈輸入以控制I2C埠之操作。支援高達100Kbps之資料速率。
在所繪示之實施例中,數位控制塊122亦包含ADC控制器,該ADC控制器產生控制信號用於類比子系統中之通用12位元ADC。其亦經由ADC多工器及CONTROL0暫存器中之ADC_MUX_SEL暫存器控制至ADC之輸入之選擇用於轉換。ADC輸出格式係量值。一旦ADC首次停用, 數位控制塊即執行自校準程序。數位控制塊可組態地使用在自校準期間計算之增益及偏移校正值或使用寫入至ADC_GAIN及ADC_OFF暫存器之增益及偏移校正值。
在自校準程序期間,如下文描述判定增益及偏移校正值。
偏移首先判定如下:設定ADC輸入多工器以選擇Reflo參考電壓。進行一次ADC轉換。理想值將為0。將ADC轉換資料載入本端ADC偏移校正暫存器。
接下來,增益判定如下:設定ADC輸入多工器以選擇Refhi參考電壓。進行一次ADC轉換。理想值將為4095。用(ADC轉換資料-偏移校正)/4095之結果載入本端ADC增益校正暫存器。
在自校準階段之後,ADC轉換值校正如下:ADC經校正資料=(ADC轉換資料-偏移校正)/4095。
時脈抖動LFSR提供偽隨機數值以對1.6MHz時脈實施抖動以減輕EMI。LFSR係具有多項式x12+x6+x4+x+1之12位元、最大值序列、Galois型LESR。抖動值如下表中所示產生。時脈抖動LFSR可用控制暫存器中之dith_en暫存器選擇性地啟用或停用。
在一實施例中,Tronium PSSoC數位控制塊122可包含可組態遞減計數器,其具有0.512秒至16.384秒之範圍以實施睡眠計時器功能。步進大小係512mS。計時器從時脈產生器塊接收其時脈,其中其從LF振盪器時脈被劃分縮小。計數器載入在SLEEP_CTRL暫存器中程式化之睡眠時間值。計數器將從此值遞減計數直至其達到零,此時其告知控制狀態機睡眠計時器已期滿。
圖25係可結合Tronium PSSoC 106使用之通信介面之示意圖。圖26係可結合Tronium PSSoC 106使用之微處理器通信協定之示意圖。在所繪示之實施例中,通信可為單向或雙向的。Tronium PSSoC 106含有一或多個通信介面,本文中描述為三個介面:1)微處理器介面,2)單個或雙重通信/更新介面,其用於程式化值或返回資訊至狀態機/微處理器及3)測試/評估介面。微處理器介面將用於與特定產品之外部微處理器通信,通信/更新介面可更新晶片內部之微處理器或任意值。此允許產品可組態性及實現用於Tronium充電器之控制迴路的實施。對於Tronium PSSoC,此可為讀取/寫入或唯寫介面,即微處理器將能夠或將無法取決於所判定之通信類型(單向或多向)而從PSSoC讀取。
測試/評估介面將用於製造測試環境中及用於Tronium PSSoC之工作台評估。其將允許至晶片上暫存器之寫入及讀取存取。更新、評估、健康檢查及重設介面將用於再程式化晶片、改變其電壓/電流輸出或改變控制邏輯之其他可再程式化部分(包含臨限)以及運行掃描以幫助判定晶片是否有問題(健康檢查)。
通常,一次僅可選擇一個介面,但是此可基於狀態機或微處理器設定而改變。IF_SEL輸入接針在‘1’時選擇I2C且在‘0’時選擇微處理器介面。
微處理器通信界介面。Tronium PSSoC亦可提供單線串列介面以支援PSSoC之可組態性。介面由單向或多向資料輸入/輸出組成。協定展示於圖26中。所有封包將在結構及長度上一致,除非另有需要。各封包將係特定數目位元。封包欄在下文描述。藉由添加另一線,可具有雙重通 信介面,使得資訊係多向的。
為了支援可靠的通信,資料可依據IEEE 802.3通信標準經Manchester編碼。接收器隨後將使用超取樣時脈以維持封包內之位元同步。位元速率將係600Kbps。輸入資料將被超取樣達位元速率之16倍。超取樣時脈因此係9.6MHz且源自晶片上RC振盪器。
起始:單個位元,其值係信號線之非閒置狀態。對於此應用,此將為‘1’。R/W:單個位元以指示讀取或寫入請求。在‘0’時,資料寫入至選定Tronium暫存器。注意,Tronium僅支援寫入存取。Addr[4:0]:5位元用於定址Tronium組態暫存器。資料[9:0]:10位元將寫入至選定Tronium暫存器。對於目標暫存器小於10位元之情況,資料將右對齊。例如,當寫入至8位元暫存器時,資料[7:0]將寫入至經定址暫存器位元置。閒置:單個位元,其值係信號線之閒置狀態。對於此應用,此將為‘0’。
以MSB優先來轉移資料。例如,Addr[4]在時間上首先被主機傳輸。Tronium實施方案取決於程式化將支援或將不支援ASIC暫存器之讀取操作。R/W位元被包含用於未來擴展。
圖27係可包含在Tronium PSSoC 106中之內部積體電路136之示意圖。在所繪示之實施例中,Tronium PSSoC 106含有I2C從動埠以支援裝置之測試。I2C位址可使用I2C_ADDR接針組態。I2C_ADDR輸入與I2C從動位址位元比較。Tronium I2C匯流排協定展示在圖27中。I2C介面支援高達100Kbs之位元轉移速率。I2C介面完全在I2C SCLK時脈輸入外運行。
I2C寫入操作:Tronium PSSoC支援經由I2C從動埠寫入至Tronium記憶體映射暫存器。在接收匹配Tronium I2C位址之I2C從動位址 之後,展示為圖27中是位元組1之下一位元組將含有Tronium暫存器檔位址之5位元位址欄。Tronium PSSoC僅支援每個命令一個暫存器之存取。
I2C讀取操作:Tronium PSSoC支援經由I2C從動埠從Tronium記憶體映射暫存器讀取。讀取操作需要兩個I2C操作。首先,至RDREQ暫存器之I2C寫入,其中位元組2中之資料係將讀取之暫存器之Tronium記憶體圖位址。隨後I2C讀取命令將讀取所請求之暫存器。Tronium僅支援每個命令存取一個暫存器。
注意在I2C操作與RDREQ暫存器更新時之間存在延遲。此意味著I2C寫入操作之後,I2C主機在發出I2C讀取操作之前必須等待400μsec。此等待時間僅適用於I2C寫入之後之首次I2C讀取以更新RDREQ暫存器。
在Tronium PSSoC之一實施例中,數位記憶體有智慧,其中若Tronium PSSoC給電視供電,若電視從特定時間段至另一時間段(諸如午夜至早上7點)未被使用達固定天數,則Tronium將在這些時間期間一直將其自身置於睡眠模式中以節省能源且不重新參與喚醒序列之當前感測程序。
在本發明之另一實施例中,Tronium PSSoC透過其I2C介面連接至無線(如BlueTooth®)或電線型通信協定及裝置(外部、晶片上或模組上)以接收至狀態機或微處理器之指令。以此方式,可能存在給出至Tronium之「即時」指令,其等有關何時進入睡眠模式、何時喚醒及重設、更新或改變其他先決條件,如過電壓或PWM調節。以此方式,Tronium PSSoC可具有其控制機構之「即時」感測及開關以達成不同位準之頻率、速度或適 於低功率情況,如在一些國家中,其中電網通常絕大多數時間在欠電壓條件下運行。在此情況中,Tronium PSSoC可取得有關重設、操作或關機/重啟之即時資訊,包含來自其所有者,甚至通過蜂巢式系統從手機或平板電腦至家庭通信技術內之即時命令。在此情況中,人可能想要在不在家時關閉至由Tronium PSSoC供電之特定電子設備或電子裝置之電力,且此可能透過通信介面經由無線或有線通信技術(其等透過Tronium PSSoC中之I2C介面給出特定指令,指示其關閉裝置且甚至預設其應喚醒之時間)完成。
在本發明之另一實施例中,且當用作充電器或恆定供電電力時,Tronium PSSoC足夠小以裝配至附接至軟線之壁式插座,因此免除對充電器「盒」或膝上型電腦「磚」之需要。
在一實施例中,Tronium PSSoC 106具有數個測試結構以支援製造、程式化、評估、更新、健康檢查、通信、測試及工作台評估。Tronium PSSoC針對關鍵內部功能及控制信號之可控性及可觀察性提供兩個測試暫存器。TEST_CTRL0暫存器為使用者提供選擇性啟用、停用或更動Tronium PSSoC中個別類比電路功能之控制以提供替代控制方法的能力,前提係控制狀態機需被旁通。TEST_CTRL1暫存器為測試目的提供多工內部類比及數位信號至ANATST及DIGTST輸出接針之能力。
鑑於上述教示,本發明之許多修改及變動係可能的。本發明可以除隨附申請專利範圍之範疇內具體描述以外之其他方式實踐。
圖30係可結合Tronium PSSoC 106使用之連接圖。圖31及圖32係Tronium PSSoC 106之額外示意圖。圖33係可結合Tronium PSSoC 106使用之低電流偵測及錯誤偵測之演算法之流程圖。圖34及圖35係包含 Tronium PSSoC 106之電力電路22之示意圖。在所繪示之實施例中,Tronium PSSoC 106係高級電力控制器積體電路(IC)。Tronium PSSoC 106及相應的積體模組提供低成本、高效的手段以將存在於典型家庭或企業電插座上的AC線路電壓轉換為減小的經調節DC電壓用於消費者電子應用。典型應用包含但不限於手機、平板電腦或其他手持裝置之充電系統、USB電力轉換、消費者、醫療及工業裝置之電源及許多其他可能用途。
Tronium PSSoC以如上文說明之組態及特徵提供高效、低雜訊及低EMI。此外,AC至DC、DC至DC轉換器具有高功率密度、低成本及電隔離。此等優點自將另外離散的部件整合至晶片上,利用開關電容器電壓崩潰方案及初級側感測/控制而達成。因此,Tronium PSSoC之關鍵特徵如下:支援一系列可用AC輸入電壓及頻率;可程式化輸出電壓及結合自動設定自動偵測輸入電壓以組態至輸入電壓用於適當操作;用於AC至DC、DC至DC轉換之高效開關電容器電路;高準確度PID(或類似)調節控制迴路;用於電流及溫度監測之數位狀態機;用於閒置(吸血鬼)操作模式的超低電力耗散;用於組態及控制的光隔離微處理器介面;及用於製造測試的通信埠。
Tronium PSSoC之類比及數位介面、輸入及輸出能夠承受典型操作範圍外之電壓及電流。單元亦可在寬溫度範圍內操作且提供足夠的ESD免疫性。
Tronium PSSoC提供輸入及輸出至外界及外部電路之介面。 此等包含但不限於:電力輸入、電力輸出、低電流關機啟用輸入、模式選擇輸入、需要外部電路之中間連接、測試連接、通信連接、電力輸出、調 節器輸出、基於PID之PWM之連接、FET驅動輸出及回饋輸入。
Tronium PSSoC係高級電力控制器積體電路,其經設計而高效及高準確度地提供輸出電壓調節。Tronium PSSoC之高級特徵為使用者提供可用於多種應用中之多用途裝置。在使用Tronium PSSoC的情況下,可程式化輸出電壓係可行的,存在跨多種電流負載條件之較小效率損失或無效率損失。
Tronium PSSoC使用專用開關電容器電路系統以維持高效率,而不管負載電壓或電流。當負載未汲取電流時,裝置將進入低電流操作模式以最小化保持喚醒所需之傳統‘吸血鬼’電流以及按比例調整至負載之主動子系統之數目以跨寬負載範圍提供高效率
Tronium PSSoC之頂層方塊圖展示於下文且由下列主要電路塊組成:高電壓多級/多分支開關電容器電壓崩潰電路;PID(或其他開關模式控制方案)、用於次級變壓器之PWM控制之調節器控制塊;電流及溫度感測塊;用於電壓及電流監測之ADC或比較器;用於回饋控制之DAC、PWM或其他信號;用於電壓及電流監測狀態機之數位控制塊;通信介面;及用於晶片上電壓及電流產生及其他電力要求之電力管理。
電力管理。電力管理塊提供必要的電軌及參考至剩餘IC。其由電壓調節器、電流參考及電壓參考組成。其亦包含IC使用所需之所有必要的緩衝及放大。電力管理系統亦含有重設控制器,該重設控制器管理電力循環上系統之關機及開機。
開關電容器電壓崩潰電路。Tronium PSSoC之開關電容器電壓崩潰電路運作為近無損分壓器。其將LINE_IN接針上存在之經整流DC 電壓劃分為CP2_OUT接針上之減小電壓以供外部變壓器及次級電壓控制迴路使用。外部變壓器隨後可依據初級至次級繞組比將此電壓進一步減小至所要施加電壓且在需要的情況下提供隔離。
開關電容器電路組態為多個相同級之級聯,其具有如下文展示的多個平行分支。平行分支基於由電流感測放大器感測到之負載電流切換進出電路。此使開關電容器電路能跨寬範圍之負載電流維持高效率。在下圖中,平行子系統之數目係4,包括兩級。平行系統及轉換級之數目可改變,使得系統針對特定輸入/輸出電壓比或電力需求而最佳化。
開關電容器電路使用晶片上或晶片外返馳式電容器以使電力效率最大化及使用外部保持電容器以使電壓漣波最小化。此等電容器分別連接至CP1_OUT及CP2_OUT接針,用於開關電容器電路之第一級及第二級之輸出。所有級藉由振盪器計時或各階段可具有其自身專用振盪器。開關電容器電路之各分支可具有獨立啟用。
輸出電壓可結合使用數位至類比轉換器(DAC)以高解析度針對給定範圍之應用在電壓範圍內程式化。此DAC之數位控制使多個電壓能在CP2_OUT接針上程式化以獲得目標應用所需之所要最終輸出電壓。
其他開關電容器電路級之開關電容器電路輸出設定可由使用者判定或從所量測之AC線Vin導出,使得Vin與Vout之間之最佳比率可實現。
各開關電容器電路級之調節結合使用操作超導放大器(OTA)而獲得。OTA依據輸出電壓與輸入參考電壓之間之差值調節施加至各級中之返馳式電容器之電流。輸入參考電壓可取決於應用而程式化、導出或固 定。
可進行輸入線之電壓量測以最佳化開關電容器電路設定。此設定計算可透過適當晶片上電路而在晶片上、晶片外或在運作中執行,使得各開關電容器電路級之輸出係最佳比率。
電流感測放大器。Tronium PSSoC中之電流感測放大器允許裝置量測電流作為回饋迴路以及錯誤報告之部分。由ADC或透過具有變化臨限之一系列比較器量測電流。
PID控制迴路。Tronium PSSoC提供比例-積分-微分PID迴路或替代的PWM控制電路以驅動隔離變壓器、降壓、增壓或降壓-增壓電路之初級側。此電路將在需要的情況下提供後期調節及隔離。
至PID迴路之回饋可來自數位源,例如但不限於串列化ADC串流或類比信號,兩者取決於電路之輸出。此回饋可提供有關經調節輸出電流或電壓之資訊。
溫度感測器。可實現機載溫度感測器,使得對超溫情況之足夠保護存在。針對熱損壞之保護採取之措施可包含輸出電力之降額及輸出之完全關閉。
控制電路。Tronium PSSoC透過數位手段或透過類比電路提供控制。透過此控制電路,IC能夠設定及改變現有控制臨限及控制點以及啟用/停用特定功能。此可在數位介面情況中透過暫存器或熔絲或通過至類比接針之施加電壓(前提係需要類比設定)完成。
若特徵被啟用,則Tronium PSSoC允許系統之輸出被停用或降額。此可藉由關閉PWM、開關電容器電路或透過任一或兩個子系統之降 額而發生。輸出可因錯誤偵測或因諸如在包含電池之連接裝置完成給電池充電且Tronium PSSoC僅提供電力至非電池充電功能時出現低輸出電流或輸出電力情況而停用。一旦Tronium PSSoC已進入低電流關機狀態,其將間歇地再施加輸出電力至末端裝置以檢查其現在是否需要高於特定臨限之電力,指示電池現在需要進一步充電。在關閉狀態中花費之時間可針對不同的應用調整。圖33繪示用於低電流偵測及錯誤偵測之演算法之實例。
Tronium PSSoC提供至外部電路之多個介面,使得裝置可控制及組態IC。此等介面可包含但不限於SPI、I2C、UART或其他同步/不同步串流。替代編碼為NRZ格式亦可實現以最佳化外部電路之大小及部件數。同樣地,此等通信介面可連接至隔離裝置以致能來自隔離區域之通信,前提是此係需要的。
時脈產生器。Tronium PSSoC可具有產生其自身內部時脈之能力,其亦可包含頻率控制電路,包含但不限於:內部RC振盪器、PLL、FLL、時脈除法器、VCO及微調電路。此外,計時樹可實施有意時脈抖動或其他手段以改變時脈邊緣佈置以最小化計時對輻射及傳導EMI之影響。
模組描述。Tronium PSSoC旨在用作將併入模組中之電源裝置,該模組接收AC電力輸入、將此電力轉換為DC電壓及供應此電力至外部裝置。模組可採用許多形式,其可包含至ASIC之輸出之類比或數位回饋或ASIC可在開放迴路模式中操作而無回饋。此外,模組電路可經構造,使得個別輸出(前提是存在複數個連接輸出)可被離散地監測及控制。模組內之感測能力意在取決於應用及調節要求而補充或替換ASIC進行之量測。
圖34係包含具有隔離及離散輸出感測之數位回饋模組之電 力電路22之示意圖。圖35係包含具有回饋隔離之線性化之類比回饋模組之電力電路22之示意圖。此等代表類比回饋版本及數位回饋版本。此等圖之兩者亦指示隔離變壓器作為設計之部分。此組件可取決於應用之要求而包含或不包含在模組中。兩個實例描述同步整流方案,但是亦可實現不同步系統。
數位回饋描述。數位回饋模組包含微控制器、獨立ADC或次級ASIC以監測輸出電壓及允許在輸出連接上進行非常精確的量測。此允許模組補償組件損失、溫度及可能導致輸出電壓之變動之其他變數。此資料隨後被格式化且發送回ASIC以提供數位回饋串流。電流感測及輸出啟用電晶體亦展示,使得若多個輸出連接至模組,則在各者上具有個別感測。以此方式,ASIC描述中描述之低功率關閉功能即使在電力被共用的情況下仍可應用於個別負載。
類比回饋描述。若出於成本或其他原因,需使用類比回饋系統,則Tronium PSSoC允許此透過類比回饋輸入實現。在所示實施例中,穿過光隔離LED自電流與輸出電壓成比例。電路經設計使得IC上之類比回饋接針上之電壓在輸出電壓在目標輸出上時處於標稱電壓。電流監測由變壓器之初級側上之IC執行且量測藉由變壓器之匝數比按比例調整。
圖36係可結合電力電路22使用之位準移位器電路之示意圖。在一實施例中,開關電容器電壓崩潰電路32及降壓調節器34依賴位準移位器,該位準移位器可取得靜態CMOS級數位信號且將該信號電壓移位至各種位準。此完成以適當地驅動Tronium PSSoC晶片外及上之高電壓開關之閘極。位準移位器由具有靜態dc電流偏壓電壓之差分電壓對組成。差分 電壓對放大CMOS級信號且隨後移位至更高電壓軌。存在信號路徑中使用之級聯以避免任意電晶體崩潰。位準移位器可經由p通道開關停用以避免任意靜態電流汲極。一旦信號移位至另一軌,其即被進一步放大轉換為單端且隨後轉換回靜態CMOS級以驅動高電壓開關。
圖38及圖39係電力電路22之額外示意圖。在一實施例中,順向轉換器變壓器102可包含三級繞組152(圖39及圖40中所示),該三級繞組152可用作用於電流感測之次級側之複製。例如,一些Tronium PSSoC應用可在低壓下運行且自驅動同步整流器可能並非可靠的解決方案。更大閘極電壓將確保穩健的系統。例如,將存在用於1.8伏DC輸出之應用。假設12:1變壓器及43伏CP_DAC2設定,3.6 VDC係次級繞組上之峰值電壓。12:2輔助繞組可用於產生用於同步整流器FET之7.2伏閘極驅動。變壓器設計可包含次級側上之輔助繞組152以支援此要求。
圖41係包含DC至DC轉換電路之電力電路22之示意圖。在所繪示之實施例中,電力電路22包含開關電容器電壓崩潰電路32,該開關電容器電壓崩潰電路32用於接收DC輸入電力信號且產生具有較低電壓位準之DC輸出電力信號。在一實施例中,電力電路22亦可包含開關模式降壓調節器34,該開關模式降壓調節器34與SCVBC 32並聯耦合。高效開關電容器電壓崩潰電路32包含並聯電耦合之一對返馳式電容器及電耦合至該對返馳式電容器之各者之複數個開關總成。在一實施例中,電容器之間之閘極係共用的。開關總成可經操作以在充電階段期間選擇性地將輸入DC電力信號傳輸至該對返馳式電容器之各者,且在具有低於輸入DC電力信號之電壓位準之放電階段期間選擇性地將輸出DC電力信號傳輸至電子裝 置。至少一開關總成可包含N通道MOSFET開關及用於將控制信號傳輸至N通道MOSFET開關之位準移位器。此外,迪克森充電泵可耦合至位準移位器以接收輸入DC電力信號且產生具有高於輸入DC信號之電壓位準之輸出電力信號。輸出電力信號被傳輸至位準移位器用於操作N通道MOSFET開關(或針對其他類型之MOSFET用於關閉)。此外,開關電容器電壓崩潰電路可包含控制電路,該控制電路包含:電壓感測電路,其用於感測輸入DC電力信號之電壓位準;及增益控制器,其經組態以依據所感測電壓位準選擇開關電容器電壓崩潰電路之增益設定及依據選定的增益設定操作複數個開關總成之各者。
此書面描述使用實例來揭示本發明,包括最佳模式,且亦使任何熟習此項技術者可實踐本發明,包括製作並使用任何裝置或系統及執行任何併入的方法。本發明之可申請專利的範疇係由申請專利範圍界定,且可包含熟習此項技術者想到的其他實例。本發明之其他態樣及特徵可從圖式、揭示內容及隨附申請專利範圍的研究獲得。本發明可以除隨附申請專利範圍之範疇內具體描述以外之其他方式實踐。亦應注意,隨附申請專利範圍內所列之步驟及/或功能即使在本文中列出其步驟及/或功能之順序,仍不限於任意特定操作順序。
雖然本發明之各種實施例之特定特徵可在一些圖式中展示而未在其他圖式中展示,但這僅為方便起見。根據本發明之原理,圖式之任意特徵可結合任意其他圖式之任意特徵參考及/或主張。
10‧‧‧電子充電裝置
12‧‧‧電力模組
20‧‧‧電子裝置
22‧‧‧電力電路
24‧‧‧電源
26‧‧‧初級電力電路
28‧‧‧次級電力電路
30‧‧‧整流器電路
32‧‧‧中間電壓轉換器
34‧‧‧降壓調節器
96‧‧‧順向轉換器
106‧‧‧控制器

Claims (20)

  1. 一種用於提供電力以用於給電子裝置供電之電路,其包括:一開關電容器降壓裝置,經組態以接收一輸入電力信號,其具有來自一電源之一輸入電壓位準,並且產生一中間電力信號,其具有小於該輸入電壓位準之一中間電壓位準,該開關電容器降壓裝置包含複數個開關裝置,經耦合至一對電容器;一順向轉換器,經耦合至該開關電容器降壓裝置,用以接收該中間電力信號並傳輸一輸出電力信號至一電裝置,該輸出輸出電力信號具有小於該中間電壓位準之一輸出電壓位準,該順向轉換器包含一順向調節器電路,經耦合至一變壓器;以及一控制器,經耦合至該開關電容器降壓裝置及該順向轉換器,該控制器經組態以:當接收來自該電源之該輸入電力信號時啟動一開機模式,該開機模式包含通電該開關電容器降壓裝置及該順向轉換器,並且啟動一開機計數器,其包含一預定義時間期間;當該開機計數器期滿時啟動一正常操作模式,該正常操作模式包含操作該開關電容器降壓裝置及該順向轉換器以傳輸該輸出電力信號至該電裝置、感測經傳輸至該電裝置之該輸出電力信號之一電流位準並傳輸控制信號至該開關電容器降壓裝置及該順向轉換器以基於該經感測電流位準測來調節該輸出電力信號;以及假使經傳輸至該電裝置之該輸出電力信號之該電流位準小於一預定義電流位準則啟動一睡眠操作模式,該睡眠操作模式包含斷電該開關電容器 降壓裝置及該順向轉換器。
  2. 如申請專利範圍第1項所述之電路,該控制器進一步經組態以當該輸出電力信號之該電流位準小於該預定義電流值時維持該睡眠操作模式。
  3. 如申請專利範圍第1項所述之電路,進一步包括一控制電路,其包含一帶隙產生器、一高頻振盪器以及一類比至數位轉換器,該控制器經組態以當啟動該睡眠操作模式時停用該控制電路。
  4. 如申請專利範圍第3項所述之電路,該控制器進一步經組態以啟動該開機模式,其包含:啟動一第一喚醒模式,其包含通電該控制電路及該開關電容器降壓裝置,並且啟動一第一喚醒計數器;以及當該第一喚醒計數器期滿時啟動一第二喚醒模式,該第二喚醒模式包含通電該順向轉換器並且傳輸控制信號至該順向調節器電路。
  5. 如申請專利範圍第4項所述之電路,該控制器進一步經組態以:啟動該第二喚醒模式,其包含啟動一第二喚醒計數器;假使該順向轉換器在該第二喚醒計數器期滿前已經穩定時啟動該正常操作模式;並且假使該順向轉換器在該第二喚醒計數器期滿前尚未穩定時啟動該睡眠操作模式。
  6. 如申請專利範圍第4項所述之電路,該控制器進一步經組態以:啟動該睡眠操作模式,其包含啟動一睡眠計數器;並且當該睡眠計數器期滿時啟動該開機模式。
  7. 如申請專利範圍第4項所述之電路,該控制器進一步經組態使得假 使該順向轉換器在該第二喚醒計數器期滿前已經穩定時啟動該開機模式。
  8. 如申請專利範圍第1項所述之電路,進一步包括一降壓調節器裝置,其與該開關電容器降壓裝置並聯電氣耦合,該控制器進一步經組態以:啟動該開機模式,其包含通電該降壓調節器裝置,並且啟動該正常操作模式,其包含操作該開關電容器降壓裝置、該降壓調節器裝置以及該順向轉換器以傳輸該輸出電力信號至該電裝置。
  9. 如申請專利範圍第8項所述之電路,該控制器進一步經組態使得假使該經感測電流位準係在一預定義低電流範圍內時斷電該降壓調節器電路。
  10. 如申請專利範圍第9項所述之電路,該控制器進一步經組態以調節該開關電容器電壓崩潰電路在與該降壓調節器電路的一不同頻率。
  11. 如申請專利範圍第1項所述之電路,該控制器進一步經組態以:偵測該輸出電力信號自一高電流位準至一低電流位準之一電流汲;並且當偵測該電流汲時啟動一插拔充電模式,該插拔充電模式包含重複循序地啟動該睡眠操作模式、該開機模式以及該正常操作模式一預定義時間期間。
  12. 一種操作用於傳輸電力至電子裝置之一電路的方法,該電路包含一開關電容器降壓裝置以及一順向轉換器,該開關電容器降壓裝置包含複數個開關裝置,經耦合至一對電容器,該順向轉換器包含一順向調節器電路,經耦合至一變壓器,該開關電容器降壓裝置經組態以接收一輸入電力信號,其具有來自一電源之一輸入電壓位準,並且產生一中間電力信號,其 具有小於該輸入電壓位準之一中間電壓位準,該順向轉換器經組態以接收該中間電力信號並傳輸一輸出電力信號至一電裝置,該輸出輸出電力信號具有小於該中間電壓位準之一輸出電壓位準;該方法包含下列步驟:當接收來自該電源之該輸入電力信號時啟動一開機模式,該開機模式包含通電該開關電容器降壓裝置及該順向轉換器,並且啟動一開機計數器,其包含一預定義時間期間;當該開機計數器期滿時啟動一正常操作模式,該正常操作模式包含操作該開關電容器降壓裝置及該順向轉換器以傳輸該輸出電力信號至該電裝置、感測經傳輸至該電裝置之該輸出電力信號之一電流位準並傳輸控制信號至該開關電容器降壓裝置及該順向轉換器以基於該經感測電流位準測來調節該輸出電力信號;以及假使經傳輸至該電裝置之該輸出電力信號之該電流位準小於一預定義電流位準則啟動一睡眠操作模式,該睡眠操作模式包含斷電該開關電容器降壓裝置及該順向轉換器。
  13. 如申請專利範圍第12項所述之方法,其包含當該輸出電力信號之該電流位準小於該預定義電流值時維持該睡眠操作模式。
  14. 如申請專利範圍第12項所述之方法,其中該電路包含一控制電路,其包含一帶隙產生器、一高頻振盪器以及一類比至數位轉換器,該方法進一步包含當啟動該睡眠操作模式時停用該控制電路的步驟。
  15. 如申請專利範圍第14項所述之方法,其包含啟動該開機模式的步驟,其包含:啟動一第一喚醒模式,其包含通電該控制電路及該開關電容器降壓裝 置,並且啟動一第一喚醒計數器;以及當該第一喚醒計數器期滿時啟動一第二喚醒模式,該第二喚醒模式包含通電該順向轉換器並且傳輸控制信號至該順向調節器電路。
  16. 如申請專利範圍第15項所述之方法,其包含下列步驟:啟動該第二喚醒模式,其包含啟動一第二喚醒計數器;假使該順向轉換器在該第二喚醒計數器期滿前已經穩定時啟動該正常操作模式;並且假使該順向轉換器在該第二喚醒計數器期滿前尚未穩定時啟動該睡眠操作模式。
  17. 如申請專利範圍第12項所述之方法,其包含下列步驟:啟動該睡眠操作模式,其包含啟動一睡眠計數器;並且當該睡眠計數器期滿時啟動該開機模式。
  18. 如申請專利範圍第12項所述之方法,其中該電路包含一降壓調節器裝置,其與該開關電容器降壓裝置並聯電氣耦合,該方法包含下列步驟:啟動該開機模式,其包含通電該降壓調節器裝置,並且啟動該正常操作模式,其包含操作該開關電容器降壓裝置、該降壓調節器裝置以及該順向轉換器以傳輸該輸出電力信號至該電裝置。
  19. 如申請專利範圍第18項所述之方法,其包含假使該經感測電流位準係在一預定義低電流範圍內時斷電該降壓調節器電路的步驟。
  20. 如申請專利範圍第19項所述之電路,其包含調節該開關電容器電壓崩潰電路在與該降壓調節器電路的一不同頻率的步驟。
TW105128698A 2014-03-06 2015-03-03 用於提供電力給電子裝置之電路與電力模組,以及組裝降壓設備之方法 TW201701578A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201461949171P 2014-03-06 2014-03-06
US201462069672P 2014-10-28 2014-10-28

Publications (1)

Publication Number Publication Date
TW201701578A true TW201701578A (zh) 2017-01-01

Family

ID=55407621

Family Applications (2)

Application Number Title Priority Date Filing Date
TW104106631A TWI563788B (en) 2014-03-06 2015-03-03 An electrical circuit and a power module for providing electrical power to electronic devices, and a method of assembling a voltage reduction apparatus
TW105128698A TW201701578A (zh) 2014-03-06 2015-03-03 用於提供電力給電子裝置之電路與電力模組,以及組裝降壓設備之方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW104106631A TWI563788B (en) 2014-03-06 2015-03-03 An electrical circuit and a power module for providing electrical power to electronic devices, and a method of assembling a voltage reduction apparatus

Country Status (1)

Country Link
TW (2) TWI563788B (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109728729A (zh) * 2017-10-31 2019-05-07 半导体组件工业公司 用于控制开关电源转换器的电路和方法
TWI660564B (zh) * 2018-06-01 2019-05-21 杰力科技股份有限公司 電壓轉換電路及其控制電路
TWI662772B (zh) * 2018-02-13 2019-06-11 台達電子工業股份有限公司 適配連接線、適配模組及其操作方法
TWI663819B (zh) * 2017-04-21 2019-06-21 通嘉科技股份有限公司 應用於電源轉換器的電力傳輸控制器及其操作方法
TWI688197B (zh) * 2019-04-30 2020-03-11 宏碁股份有限公司 電源轉換裝置
TWI693779B (zh) * 2018-12-07 2020-05-11 大陸商昂寶電子(上海)有限公司 使用霍爾效應感測器的開關模式功率轉換器及其方法
TWI697180B (zh) * 2019-12-20 2020-06-21 大陸商明緯(廣州)電子有限公司 電源轉換裝置
TWI711245B (zh) * 2018-03-14 2020-11-21 大陸商萬民半導體(澳門)有限公司 降壓衍生開關模式電源設備及其控制器
TWI769894B (zh) * 2021-02-12 2022-07-01 台灣積體電路製造股份有限公司 非揮發性記憶體電路與執行編程運作的方法
TWI770685B (zh) * 2020-11-24 2022-07-11 敦宏科技股份有限公司 用於具資料傳輸率之系統的低功耗操作法
TWI815746B (zh) * 2022-12-06 2023-09-11 群光電能科技股份有限公司 電源供應系統

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108063555B (zh) 2016-11-07 2020-04-03 台达电子工业股份有限公司 多级电源转换器及其控制方法
TWI678060B (zh) * 2018-06-13 2019-11-21 朋程科技股份有限公司 電壓轉換器及包括該電壓轉換器的交流發電裝置
JP6666985B1 (ja) 2018-11-16 2020-03-18 力晶積成電子製造股▲ふん▼有限公司Powerchip Semiconductor Manufacturing Corporation パワースイッチ制御回路とその制御方法
US10784854B1 (en) 2019-09-12 2020-09-22 Inno-Tech Co., Ltd. Power control device
CN111917409B (zh) * 2020-08-13 2023-12-01 昂宝电子(上海)有限公司 半桥驱动器及其保护电路和保护方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100416997C (zh) * 2005-01-19 2008-09-03 林福泳 一种高功率因数高频直流电源
JP2006311703A (ja) * 2005-04-28 2006-11-09 Seiko Instruments Inc チャージポンプ回路を有する電子機器
US7557641B2 (en) * 2005-11-01 2009-07-07 Catalyst Semiconductor, Inc. Fractional charge pump for step-down DC-DC converter
US7456677B1 (en) * 2006-05-01 2008-11-25 National Semiconductor Corporation Fractional gain circuit with switched capacitors and smoothed gain transitions for buck voltage regulation
US8040174B2 (en) * 2008-06-19 2011-10-18 Sandisk Il Ltd. Charge coupled pump-efficient charge pump regulator with MOS capacitor
US8947157B2 (en) * 2010-04-20 2015-02-03 Rf Micro Devices, Inc. Voltage multiplier charge pump buck
WO2012060032A1 (ja) * 2010-11-04 2012-05-10 パナソニック株式会社 半導体集積回路
CN103650313B (zh) * 2011-05-05 2018-09-21 北极砂技术有限公司 具有模块化的级的dc-dc转换器
US20130229832A1 (en) * 2012-03-02 2013-09-05 Apple Inc. Controlling a flyback converter for use with a computer system

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI663819B (zh) * 2017-04-21 2019-06-21 通嘉科技股份有限公司 應用於電源轉換器的電力傳輸控制器及其操作方法
CN109728729B (zh) * 2017-10-31 2024-04-09 半导体组件工业公司 用于控制开关电源转换器的电路和方法
CN109728729A (zh) * 2017-10-31 2019-05-07 半导体组件工业公司 用于控制开关电源转换器的电路和方法
US10775825B2 (en) 2018-02-13 2020-09-15 Delta Electronics, Inc. Adapter cable, adapter module, and method of operating the same
TWI662772B (zh) * 2018-02-13 2019-06-11 台達電子工業股份有限公司 適配連接線、適配模組及其操作方法
TWI711245B (zh) * 2018-03-14 2020-11-21 大陸商萬民半導體(澳門)有限公司 降壓衍生開關模式電源設備及其控制器
TWI660564B (zh) * 2018-06-01 2019-05-21 杰力科技股份有限公司 電壓轉換電路及其控制電路
US11316442B2 (en) 2018-12-07 2022-04-26 On-Bright Electronics (Shanghai) Co., Ltd. Switch-mode power converters using hall effect sensors and methods thereof
TWI693779B (zh) * 2018-12-07 2020-05-11 大陸商昂寶電子(上海)有限公司 使用霍爾效應感測器的開關模式功率轉換器及其方法
US11581819B2 (en) 2018-12-07 2023-02-14 On-Bright Electronics (Shanghai) Co., Ltd. Switch-mode power converters using hall effect sensors and methods thereof
TWI688197B (zh) * 2019-04-30 2020-03-11 宏碁股份有限公司 電源轉換裝置
TWI697180B (zh) * 2019-12-20 2020-06-21 大陸商明緯(廣州)電子有限公司 電源轉換裝置
TWI770685B (zh) * 2020-11-24 2022-07-11 敦宏科技股份有限公司 用於具資料傳輸率之系統的低功耗操作法
TWI769894B (zh) * 2021-02-12 2022-07-01 台灣積體電路製造股份有限公司 非揮發性記憶體電路與執行編程運作的方法
TWI815746B (zh) * 2022-12-06 2023-09-11 群光電能科技股份有限公司 電源供應系統

Also Published As

Publication number Publication date
TW201547174A (zh) 2015-12-16
TWI563788B (en) 2016-12-21

Similar Documents

Publication Publication Date Title
US9780677B2 (en) Electrical circuit for delivering power to consumer electronic devices
US9762132B2 (en) Electrical circuit for delivering power to consumer electronic devices
TW201701578A (zh) 用於提供電力給電子裝置之電路與電力模組,以及組裝降壓設備之方法
US20170133842A1 (en) Electrical circuit for delivering power to consumer electronic devices
US20170099011A1 (en) Electrical circuit for delivering power to consumer electronic devices
KR101273674B1 (ko) 전압 컨버터를 갖춘 전력 공급 장치
US20160118900A1 (en) Power supply adaptor
US6456049B2 (en) Power supply device and information processing apparatus providing a stable power supply
CN106253653B (zh) 功率控制装置、三电路设备、家电及高电压机动化家电
US20150098254A1 (en) Controller for use with a power converter and method of operating the same
JP2004511868A (ja) 高度にフェーズ化されたパワーレギュレーションのためのシステムおよび方法
TW201828565A (zh) 電子設備、供電電源及供電電源的控制方法
EP2904697A1 (en) Electrical circuit for powering consumer electronic devices
TWI750264B (zh) 過電壓保護環路及用於提供過電壓保護之方法