TW201616807A - Impedance matching circuit - Google Patents

Impedance matching circuit Download PDF

Info

Publication number
TW201616807A
TW201616807A TW103137207A TW103137207A TW201616807A TW 201616807 A TW201616807 A TW 201616807A TW 103137207 A TW103137207 A TW 103137207A TW 103137207 A TW103137207 A TW 103137207A TW 201616807 A TW201616807 A TW 201616807A
Authority
TW
Taiwan
Prior art keywords
coupled
capacitor
antenna
inductor
impedance
Prior art date
Application number
TW103137207A
Other languages
Chinese (zh)
Inventor
葉明豪
Original Assignee
深圳市南方硅谷微電子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市南方硅谷微電子有限公司 filed Critical 深圳市南方硅谷微電子有限公司
Priority to TW103137207A priority Critical patent/TW201616807A/en
Priority to CN201410720169.4A priority patent/CN105655726A/en
Publication of TW201616807A publication Critical patent/TW201616807A/en

Links

Landscapes

  • Details Of Aerials (AREA)
  • Transceivers (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)

Abstract

An impedance matching circuit is provided. The impedance matching circuit is coupled to an antenna. The impedance matching circuit includes a standard impedance adjusting circuit and a passive device. The standard impedance adjusting circuit adjusts an impedance between the antenna and a signal feed port to a standard impedance. The passive device provides a reactance with non-zero value. A cross in a reflective coefficient curve of the antenna and the impedance matching circuit is generated according to the reactance of the passive device.

Description

阻抗匹配電路 Impedance matching circuit

本發明是有關於一種阻抗匹配電路,且特別是有關於一種增加頻寬的天線阻抗匹配電路。 The present invention relates to an impedance matching circuit, and more particularly to an antenna impedance matching circuit that increases bandwidth.

隨著電子科技的演進,具有通信能力的電子產品成為現代人們日常生活必備的工具。為提供便捷且快速的無線通信能力,在電子裝置上設置一個優良的天線裝置成為一個重要的課題。 With the evolution of electronic technology, electronic products with communication capabilities have become a must-have tool for modern people's daily lives. In order to provide convenient and fast wireless communication capabilities, it is an important issue to provide an excellent antenna device on an electronic device.

在關於天線裝置的效能上,天線裝置的效能可以透過天線幅射出的能量與饋入信號的能量的比值來計算。而影響天線裝置的效能的因素,可能包括天線阻抗匹配、配置天線的空間、天線的材質、天線裝置機構的機構設計以及天線周邊環境造成輻射能量損耗等多個因素。 In terms of the performance of the antenna device, the performance of the antenna device can be calculated by the ratio of the energy emitted by the antenna to the energy of the signal being fed. The factors affecting the performance of the antenna device may include antenna impedance matching, space for configuring the antenna, material of the antenna, mechanism design of the antenna device mechanism, and radiation energy loss caused by the surrounding environment of the antenna.

在一般的定義下,天線頻寬是觀察天線反射係數,依據-10dB作為設計的基準。在這樣的條件下,約有90%的能量可以順利傳送到天線的本體來進行輻射。而天線裝置的阻抗,可以50歐姆為標準阻抗來進行設計。在此請參照圖10,由圖10所繪示的習知的天線的頻率響應圖可以得知,利用習知技術常使用的阻抗匹 配電路,並以50歐姆為標準阻抗來配合平面倒F型天線(PIFA)進行設計,其頻寬約為120百萬赫茲(MHz)。 Under the general definition, the antenna bandwidth is the observation antenna reflection coefficient, based on -10dB as the design basis. Under such conditions, about 90% of the energy can be smoothly transmitted to the body of the antenna for radiation. The impedance of the antenna device can be designed with a standard impedance of 50 ohms. Referring to FIG. 10 , it can be seen from the frequency response diagram of the conventional antenna shown in FIG. 10 that the impedance is often used by conventional techniques. The circuit is designed with a 50 ohm standard impedance in conjunction with a planar inverted-F antenna (PIFA) with a bandwidth of approximately 120 megahertz (MHz).

在當天線裝置的阻抗越接近標準阻抗時,表示系統具有更佳的阻抗匹配,進而提升天線的輻射效率。相對的,當天線裝置的阻抗越遠離標準阻抗時,由天線所輻射的無線信號能量降低以及傳導信號的品質可能會產生變異。這個狀況針對在頻寬邊緣的頻帶進行訊號傳收的通道會更為明顯。 When the impedance of the antenna device is closer to the standard impedance, it means that the system has better impedance matching, thereby improving the radiation efficiency of the antenna. In contrast, as the impedance of the antenna device is farther away from the standard impedance, the energy of the wireless signal radiated by the antenna is reduced and the quality of the transmitted signal may be mutated. This situation is more pronounced for the channel for signal transmission at the edge of the bandwidth edge.

由上可以得知,如果可以加大天線裝置的頻寬,天線裝置的效能就可以得到改善。因此,設計一個大頻寬的天線裝置,在無線信號傳輸上,是一個重要的課題。 It can be seen from the above that if the bandwidth of the antenna device can be increased, the performance of the antenna device can be improved. Therefore, designing a large bandwidth antenna device is an important issue in wireless signal transmission.

本發明提供多種應用於天線的阻抗匹配電路,有效增大天線的頻寬。 The invention provides a plurality of impedance matching circuits applied to an antenna, which effectively increases the bandwidth of the antenna.

本發明提供一種阻抗匹配電路,阻抗匹配電路耦接至天線。阻抗匹配電路包括標準阻抗調整電路以及被動元件。標準阻抗調整電路的第一端耦接信號饋入埠,用以調整天線與信號饋入埠間的阻抗等於標準阻抗值。被動元件用以提供非零的電抗,耦接至標準阻抗調整電路的第二端以及天線。其中,被動元件透過所提供的電抗使天線的反射係數曲線產生至少一次的交叉。 The invention provides an impedance matching circuit, and an impedance matching circuit is coupled to the antenna. The impedance matching circuit includes a standard impedance adjustment circuit and a passive component. The first end of the standard impedance adjustment circuit is coupled to the signal feed port to adjust the impedance between the antenna and the signal feed port to be equal to the standard impedance value. The passive component is configured to provide a non-zero reactance coupled to the second end of the standard impedance adjustment circuit and to the antenna. Wherein, the passive component generates at least one intersection of the reflection coefficient curve of the antenna through the provided reactance.

在本發明的一實施例中,上述的被動元件包括至少一第一電感。第一電感的第一端耦接至標準阻抗調整電路的第二端以 及天線,第一電感的第二端耦接至參考接地端。 In an embodiment of the invention, the passive component includes at least one first inductance. The first end of the first inductor is coupled to the second end of the standard impedance adjustment circuit And an antenna, the second end of the first inductor is coupled to the reference ground.

在本發明的一實施例中,上述的天線為雙頻天線。 In an embodiment of the invention, the antenna is a dual frequency antenna.

在本發明的一實施例中,上述的被動元件包括至少一第一電感。第一電感的第一端耦接至標準阻抗調整電路的第二端,第一電感的第二端耦接至天線。 In an embodiment of the invention, the passive component includes at least one first inductance. The first end of the first inductor is coupled to the second end of the standard impedance adjusting circuit, and the second end of the first inductor is coupled to the antenna.

在本發明的一實施例中,上述的被動元件包括至少一第一電容。第一電容的第一端耦接至標準阻抗調整電路的第二端以及天線,第一電容的第二端耦接至參考接地端。 In an embodiment of the invention, the passive component includes at least one first capacitor. The first end of the first capacitor is coupled to the second end of the standard impedance adjusting circuit and the antenna, and the second end of the first capacitor is coupled to the reference ground.

在本發明的一實施例中,上述的被動元件包括至少一第一電容。第一電容的第一端耦接至標準阻抗調整電路的第二端,第一電容的第二端耦接至天線。 In an embodiment of the invention, the passive component includes at least one first capacitor. The first end of the first capacitor is coupled to the second end of the standard impedance adjusting circuit, and the second end of the first capacitor is coupled to the antenna.

本發明另提供一種阻抗匹配電路,阻抗匹配電路耦接至雙頻天線。阻抗匹配電路包括標準阻抗調整電路以及被動元件。標準阻抗調整電路的第一端耦接信號饋入埠,用以調整雙頻天線與信號饋入埠間的阻抗等於標準阻抗值。被動元件用以提供非零的電抗,耦接至標準阻抗調整電路的第二端以及雙頻天線。其中,被動元件透過所提供的電抗使雙頻天線的反射係數曲線產生至少一次的交叉。 The invention further provides an impedance matching circuit, and the impedance matching circuit is coupled to the dual frequency antenna. The impedance matching circuit includes a standard impedance adjustment circuit and a passive component. The first end of the standard impedance adjustment circuit is coupled to the signal feed port to adjust the impedance between the dual-frequency antenna and the signal feed port to be equal to the standard impedance value. The passive component is used to provide a non-zero reactance coupled to the second end of the standard impedance adjustment circuit and the dual frequency antenna. Wherein, the passive component generates at least one intersection of the reflection coefficient curve of the dual-frequency antenna through the provided reactance.

基於上述,本發明透過在阻抗匹配電路中配置可提供非零電抗的被動元件,並透過這個被動元件的配置,來使阻抗匹配電路在史密斯圖(Smith chart)中的反射係數曲線產生至少一次的交叉。透過這樣的設置,可以有效的增大阻抗匹配電路的頻寬。 Based on the above, the present invention generates a passive component that provides a non-zero reactance in the impedance matching circuit, and transmits the reflection coefficient curve of the impedance matching circuit in the Smith chart at least once by configuring the passive component. cross. With such a setting, the bandwidth of the impedance matching circuit can be effectively increased.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the invention will be apparent from the following description.

100、300、400、500、600、800‧‧‧阻抗匹配電路 100, 300, 400, 500, 600, 800‧‧‧ impedance matching circuit

ANT‧‧‧天線 ANT‧‧‧Antenna

ANT2‧‧‧雙頻天線 ANT2‧‧‧Dual Band Antenna

110、310、410、510、610、810‧‧‧標準阻抗調整電路 110, 310, 410, 510, 610, 810‧‧‧ standard impedance adjustment circuit

120、320、420、520、620、910~940‧‧‧被動元件 120, 320, 420, 520, 620, 910~940‧‧‧ Passive components

820‧‧‧被動元件電路 820‧‧‧ Passive component circuit

FP‧‧‧信號饋入埠 FP‧‧‧Signal feed埠

P1~P5‧‧‧參考點 P1~P5‧‧‧ reference point

P7~P8‧‧‧區域低點 P7~P8‧‧‧ regional lows

710‧‧‧頻率響應曲線 710‧‧‧ frequency response curve

RC、RC1‧‧‧反射係數曲線 RC, RC1‧‧‧ reflection coefficient curve

C31、C32、C41、C51、C52、C53、C61、C62、C63、C71、C72‧‧‧電容 C31, C32, C41, C51, C52, C53, C61, C62, C63, C71, C72‧‧‧ capacitors

L31、L32、L41、L42、L43、L51、L61、L71、L72、L73‧‧‧電感 L31, L32, L41, L42, L43, L51, L61, L71, L72, L73‧‧‧ inductance

GND‧‧‧參考接地端 GND‧‧‧reference ground

圖1繪示本發明一實施例的天線裝置的阻抗匹配電路的示意圖。 1 is a schematic diagram of an impedance matching circuit of an antenna device according to an embodiment of the present invention.

圖2A繪示本發明圖1實施例的天線ANT與阻抗匹配電路100對應的史密斯圖。 2A is a Smith chart corresponding to the antenna ANT of the embodiment of FIG. 1 and the impedance matching circuit 100 of the present invention.

圖2B繪示本發明圖1實施例的天線ANT與阻抗匹配電路100對應的頻率響應圖。 2B is a diagram showing the frequency response of the antenna ANT of the embodiment of FIG. 1 corresponding to the impedance matching circuit 100 of the present invention.

圖3繪示本發明另一實施例的阻抗匹配電路的示意圖。 3 is a schematic diagram of an impedance matching circuit according to another embodiment of the present invention.

圖4繪示本發明再一實施例的阻抗匹配電路的示意圖。 4 is a schematic diagram of an impedance matching circuit according to still another embodiment of the present invention.

圖5繪示本發明再一實施例的阻抗匹配電路的示意圖。 FIG. 5 is a schematic diagram of an impedance matching circuit according to still another embodiment of the present invention.

圖6繪示本發明再一實施例的阻抗匹配電路的示意圖。 6 is a schematic diagram of an impedance matching circuit according to still another embodiment of the present invention.

圖7繪示本發明一實施例的頻率響應圖。 FIG. 7 is a diagram showing a frequency response of an embodiment of the present invention.

圖8A繪示本發明再一實施例的阻抗匹配電路的示意圖。 FIG. 8A is a schematic diagram of an impedance matching circuit according to still another embodiment of the present invention.

圖8B以及圖8C分別繪示圖8A的天線裝置的史密斯圖及頻率響應圖。 8B and 8C are respectively a Smith chart and a frequency response diagram of the antenna device of FIG. 8A.

圖9A-圖9D分別繪示的本發明實施例的被動元件的配置方式示意圖。 9A-9D are schematic diagrams showing the arrangement of passive components according to an embodiment of the present invention.

圖10繪示繪示的習知的天線的頻率響應圖。 FIG. 10 is a diagram showing the frequency response of a conventional antenna.

請參照圖1,圖1繪示本發明一實施例的天線裝置的阻抗匹配電路的示意圖。阻抗匹配電路100耦接至天線ANT,包括標準阻抗調整電路110以及被動元件120。標準阻抗調整電路110的第一端耦接信號饋入埠FP,標準阻抗調整電路110的第二端耦接至被動元件120。標準阻抗調整電路110可用來調整天線ANT與信號饋入埠FP間的阻抗為標準阻抗值。在本實施例中,標準阻抗值可以為50歐姆。標準阻抗調整電路110透過調整天線ANT與信號饋入埠FP間的阻抗為50歐姆來提高天線ANT的傳輸效率。 Please refer to FIG. 1. FIG. 1 is a schematic diagram of an impedance matching circuit of an antenna device according to an embodiment of the present invention. The impedance matching circuit 100 is coupled to the antenna ANT, including the standard impedance adjustment circuit 110 and the passive component 120. The first end of the standard impedance adjustment circuit 110 is coupled to the signal feed 埠 FP , and the second end of the standard impedance adjustment circuit 110 is coupled to the passive component 120 . The standard impedance adjustment circuit 110 can be used to adjust the impedance between the antenna ANT and the signal feed 埠FP to a standard impedance value. In this embodiment, the standard impedance value can be 50 ohms. The standard impedance adjustment circuit 110 increases the transmission efficiency of the antenna ANT by adjusting the impedance between the antenna ANT and the signal feed 埠FP to 50 ohms.

被動元件120另耦接至天線ANT。被動元件120可提供非零的電抗,並透過所提供的電抗,來使天線ANT與阻抗匹配電路100,在史密斯圖中對應的反射係數曲線會產生至少一次的交叉的情況。以下請同步參照圖1、圖2A以及圖2B,其中,圖2A繪示本發明圖1實施例的天線ANT與阻抗匹配電路100對應的史密斯圖,圖2B繪示本發明圖1實施例的天線ANT與阻抗匹配電路100對應的頻率響應圖。 The passive component 120 is further coupled to the antenna ANT. The passive component 120 can provide a non-zero reactance and pass the provided reactance to cause the antenna ANT and the impedance matching circuit 100 to produce at least one intersection in the corresponding reflection coefficient curve in the Smith chart. Referring to FIG. 1 , FIG. 2A and FIG. 2B , FIG. 2A illustrates a Smith chart corresponding to the antenna ANT and the impedance matching circuit 100 of the embodiment of the present invention, and FIG. 2B illustrates the antenna of the embodiment of FIG. 1 of the present invention. A frequency response diagram of ANT corresponding to impedance matching circuit 100.

在圖2A中,透過被動元件120所提供的電抗,反射係數曲線RC1的參考點P1上可產生交叉的現象。另外,標準阻抗調整電路110則將參考點P1調整至標準阻抗(例如50歐姆)對應的位置。由上述說明可以知道,參考點P1在反射係數曲線RC1上實際是由兩個點交叉疊合而成的。而在將參考點P1調整至標準阻抗的方式下,可以見得反射係數曲線RC1實際上是有兩個點被匹配 至接近標準阻抗的位置。 In FIG. 2A, the crossover phenomenon can be generated at the reference point P1 of the reflection coefficient curve RC1 through the reactance provided by the passive element 120. In addition, the standard impedance adjustment circuit 110 adjusts the reference point P1 to a position corresponding to a standard impedance (for example, 50 ohms). As can be understood from the above description, the reference point P1 is actually formed by superimposing two points on the reflection coefficient curve RC1. In the mode of adjusting the reference point P1 to the standard impedance, it can be seen that the reflection coefficient curve RC1 actually has two points matched. To a position close to the standard impedance.

對應到圖2B,參考點P4及P5對應到-10dB的位置,而在圖2A中,參考點P4及P5的位置將遠離圓心,也就表示阻抗匹配電路100及天線ANT所形成的天線裝置的頻寬可以有效的被增大。另外,在圖2B中,參考點P4與P1間會形成一個區域低點(local minimum),在參考點P2及P3間且接近參考點P3的位置則會形成另一個區域低點。 Corresponding to FIG. 2B, the reference points P4 and P5 correspond to a position of -10 dB, and in FIG. 2A, the positions of the reference points P4 and P5 will be far from the center of the circle, that is, the antenna device formed by the impedance matching circuit 100 and the antenna ANT The bandwidth can be effectively increased. In addition, in FIG. 2B, a local minimum is formed between the reference points P4 and P1, and another position low is formed between the reference points P2 and P3 and close to the reference point P3.

本發明實施例的天線ANT的頻寬可以有效的被擴充至約220MHz,相較於圖10繪示的習知技術的作法,本發明實施例的天線ANT的頻寬的確有效的被提升。 The bandwidth of the antenna ANT of the embodiment of the present invention can be effectively expanded to about 220 MHz. Compared with the conventional technique shown in FIG. 10, the bandwidth of the antenna ANT of the embodiment of the present invention is effectively improved.

值得一提的,本案實施例中的被動元件120是一個可以提供非零電抗的電路元件。舉例來說,被動元件120可以是電容或是電感。而被動元件120與天線ANT以及標準阻抗調整電路110的連接方式沒有一定的限制,重點在於,在任何的連接形式下,透過被動元件120可使天線ANT與阻抗匹配電路100對應的反射係數曲線RC可以產生至少一次的交叉者,都可以應用於本發明。 It is worth mentioning that the passive component 120 in the embodiment of the present invention is a circuit component that can provide a non-zero reactance. For example, passive component 120 can be a capacitor or an inductor. The manner in which the passive component 120 is connected to the antenna ANT and the standard impedance adjustment circuit 110 is not limited. The focus is on the reflection coefficient curve RC of the antenna ANT corresponding to the impedance matching circuit 100 through the passive component 120 in any connection form. Any one of which can be generated at least once can be applied to the present invention.

以下請參照圖3,圖3繪示本發明另一實施例的阻抗匹配電路的示意圖。阻抗匹配電路300耦接至天線ANT,並包括標準阻抗調整電路310以及被動元件320。在本實施例中,被動元件320為電感L31。電感L31的一端耦接至天線ANT,其另一端則耦接至標準阻抗調整電路310。標準阻抗調整電路310除耦接至電感L31外,並耦接至信號饋入埠FP。標準阻抗調整電路310包括 電感L32以及電容C31及C32。其中,電容C31的第一端耦接至信號饋入埠FP,而電容C31的第二端耦接至參考接地端GND。電感L31的第一端耦接至電容C31的第一端及信號饋入埠FP。另外,電感L31的第二端耦接至電容C32的第一端。電容C32的第二端則耦接至參考接地端GND。 Please refer to FIG. 3, which is a schematic diagram of an impedance matching circuit according to another embodiment of the present invention. The impedance matching circuit 300 is coupled to the antenna ANT and includes a standard impedance adjustment circuit 310 and a passive component 320. In the present embodiment, the passive component 320 is an inductor L31. One end of the inductor L31 is coupled to the antenna ANT, and the other end is coupled to the standard impedance adjusting circuit 310. The standard impedance adjustment circuit 310 is coupled to the inductor L31 and coupled to the signal feed port FP. Standard impedance adjustment circuit 310 includes Inductor L32 and capacitors C31 and C32. The first end of the capacitor C31 is coupled to the signal feed 埠FP, and the second end of the capacitor C31 is coupled to the reference ground GND. The first end of the inductor L31 is coupled to the first end of the capacitor C31 and the signal is fed to the 埠FP. In addition, the second end of the inductor L31 is coupled to the first end of the capacitor C32. The second end of the capacitor C32 is coupled to the reference ground GND.

在本實施例中,透過與天線ANT及標準阻抗調整電路310串接的電感L31以作為被動元件320,並藉以使反射特性曲線產生至少一次的交叉,再透過標準阻抗調整電路310使交叉點匹配至標準阻抗值。如此一來,天線裝置的頻寬有效的被增大,並提升天線ANT的信號傳輸效率。 In the present embodiment, the inductor L31 connected in series with the antenna ANT and the standard impedance adjusting circuit 310 is used as the passive component 320, and the reflection characteristic curve is generated at least once, and then the intersection is matched by the standard impedance adjusting circuit 310. To standard impedance value. As a result, the bandwidth of the antenna device is effectively increased, and the signal transmission efficiency of the antenna ANT is improved.

以下請參照圖4,圖4繪示本發明再一實施例的阻抗匹配電路的示意圖。阻抗匹配電路400耦接至天線ANT,並包括標準阻抗調整電路410以及被動元件420。在本實施例中,被動元件420為電感L41。電感L41的一端耦接至天線ANT,其另一端則耦接至參考接地端GND。標準阻抗調整電路410則耦接在電感L41及信號饋入埠FP間。標準阻抗調整電路410包括電感L42以及L43以及電容C41。其中,電感L42的第一端耦接至信號饋入埠FP,而電感L42的第二端耦接至電感L43的第一端。電感L43的第二端耦接至參考接地端GND。電容C41的第一端耦接至電感L43的第二端,另外,電容C41的第二端則天線ANT以及電感L41的第一端。 Referring to FIG. 4, FIG. 4 is a schematic diagram of an impedance matching circuit according to still another embodiment of the present invention. The impedance matching circuit 400 is coupled to the antenna ANT and includes a standard impedance adjustment circuit 410 and a passive component 420. In the present embodiment, the passive component 420 is an inductor L41. One end of the inductor L41 is coupled to the antenna ANT, and the other end is coupled to the reference ground GND. The standard impedance adjustment circuit 410 is coupled between the inductor L41 and the signal feed 埠FP. The standard impedance adjustment circuit 410 includes inductors L42 and L43 and a capacitor C41. The first end of the inductor L42 is coupled to the signal feed 埠FP, and the second end of the inductor L42 is coupled to the first end of the inductor L43. The second end of the inductor L43 is coupled to the reference ground GND. The first end of the capacitor C41 is coupled to the second end of the inductor L43. In addition, the second end of the capacitor C41 is the antenna ANT and the first end of the inductor L41.

在本實施例中,透過連接在天線ANT與參考接地端GND 的電感L41以作為被動元件420,並藉以使反射特性曲線產生至少一次的交叉,再透過標準阻抗調整電路410使交叉點匹配至標準阻抗值,以提升天線裝置的頻寬及其信號傳輸效率。 In this embodiment, the antenna is connected to the reference ground GND through the antenna ANT. The inductor L41 acts as the passive component 420, and thereby causes the reflection characteristic curve to intersect at least once, and then the standard impedance adjustment circuit 410 matches the intersection point to the standard impedance value to improve the bandwidth of the antenna device and its signal transmission efficiency.

以下請參照圖5,圖5繪示本發明再一實施例的阻抗匹配電路的示意圖。阻抗匹配電路500耦接至天線ANT,並包括標準阻抗調整電路510以及被動元件520。在本實施例中,被動元件520為電容C51。電容C51的第一端耦接至天線ANT,其第二端則耦接至參考接地端GND。標準阻抗調整電路510則耦接在電容C51及信號饋入埠FP間。標準阻抗調整電路510包括電感L51以及電容C52及C53。其中,電容C52的第一端耦接至信號饋入埠FP,而電容C52的第二端耦接至電容C53的第一端。電容C53的第二端耦接至參考接地端GND。電感L51的第一端耦接至電容C53的第一端,另外,電感L51的第二端耦接至天線ANT以及電容C51的第一端。 Referring to FIG. 5, FIG. 5 is a schematic diagram of an impedance matching circuit according to still another embodiment of the present invention. The impedance matching circuit 500 is coupled to the antenna ANT and includes a standard impedance adjustment circuit 510 and a passive component 520. In the present embodiment, the passive component 520 is a capacitor C51. The first end of the capacitor C51 is coupled to the antenna ANT, and the second end is coupled to the reference ground GND. The standard impedance adjustment circuit 510 is coupled between the capacitor C51 and the signal feed 埠FP. The standard impedance adjustment circuit 510 includes an inductor L51 and capacitors C52 and C53. The first end of the capacitor C52 is coupled to the signal feed 埠FP, and the second end of the capacitor C52 is coupled to the first end of the capacitor C53. The second end of the capacitor C53 is coupled to the reference ground GND. The first end of the inductor L51 is coupled to the first end of the capacitor C53, and the second end of the inductor L51 is coupled to the antenna ANT and the first end of the capacitor C51.

在本實施例中,透過連接在天線ANT與參考接地端GND間的電容C51以作為被動元件520,並藉以使反射特性曲線產生至少一次的交叉,再透過標準阻抗調整電路510使交叉點匹配至標準阻抗值,以提升天線裝置的頻寬及其信號傳輸效率。 In the present embodiment, the capacitor C51 connected between the antenna ANT and the reference ground GND is used as the passive component 520, and the reflection characteristic curve is generated at least once, and then the intersection is matched to the intersection by the standard impedance adjustment circuit 510. Standard impedance value to increase the bandwidth of the antenna device and its signal transmission efficiency.

以下請參照圖6,圖6繪示本發明再一實施例的阻抗匹配電路的示意圖。阻抗匹配電路600耦接至天線ANT,並包括標準阻抗調整電路610以及被動元件620。在本實施例中,被動元件620為電容C61。電容C61的第一端耦接至天線ANT,其第二端 則耦接至標準阻抗調整電路610。標準阻抗調整電路610則耦接在電容C61及信號饋入埠FP間。標準阻抗調整電路610包括電感L61以及電容C62及C63。其中,電容C62的第一端耦接至信號饋入埠FP,而電容C62的第二端耦接至參考接地端GND。電容C63的第一端耦接至信號饋入埠FP,電容C63的第二端耦接至電感L61的第一端。電感L61的第二端則耦接至參考接地端GND。 Please refer to FIG. 6. FIG. 6 is a schematic diagram of an impedance matching circuit according to still another embodiment of the present invention. The impedance matching circuit 600 is coupled to the antenna ANT and includes a standard impedance adjustment circuit 610 and a passive component 620. In the present embodiment, the passive component 620 is a capacitor C61. The first end of the capacitor C61 is coupled to the antenna ANT, and the second end thereof Then coupled to the standard impedance adjustment circuit 610. The standard impedance adjustment circuit 610 is coupled between the capacitor C61 and the signal feed 埠FP. The standard impedance adjustment circuit 610 includes an inductor L61 and capacitors C62 and C63. The first end of the capacitor C62 is coupled to the signal feed 埠FP, and the second end of the capacitor C62 is coupled to the reference ground GND. The first end of the capacitor C63 is coupled to the signal feed 埠FP, and the second end of the capacitor C63 is coupled to the first end of the inductor L61. The second end of the inductor L61 is coupled to the reference ground GND.

本實施例則是透過連接在天線ANT與標準阻抗調整電路610間的電容C61以作為被動元件620,並藉以使反射特性曲線產生至少一次的交叉,再透過標準阻抗調整電路610使交叉點匹配至標準阻抗值,以提升天線裝置的頻寬及其信號傳輸效率。 In this embodiment, the capacitor C61 connected between the antenna ANT and the standard impedance adjusting circuit 610 is used as the passive component 620, and the reflection characteristic curve is generated at least once, and then the intersection is matched to the standard impedance adjusting circuit 610. Standard impedance value to increase the bandwidth of the antenna device and its signal transmission efficiency.

值得注意的是,上述圖3-圖6實施例中的天線ANT可以是任意的單頻的天線,例如為平面倒F型天線(Planar Inverted F Antenna,PIFA)、倒F形天線(IFA型式天線)、單極天線(monopole antenna)、槽孔型式天線(Open slot antenna)、晶片式天線(chip antenna)等,沒有固定的限制。 It should be noted that the antenna ANT in the foregoing embodiments of FIG. 3 to FIG. 6 may be any single-frequency antenna, such as a Planar Inverted F Antenna (PIFA) or an inverted F antenna (IFA type antenna). ), a monopole antenna, an open slot antenna, a chip antenna, etc., without a fixed limit.

特別值得注意的是,透過上述的多個實施例中作法,利用調整其中的電容的容值以及電感的感值,可以使單頻的天線ANT產生具有雙頻的信號傳輸效應。如圖7所繪示的頻率響應圖。在圖7中,透過被動元件以及阻抗匹配電路,天線ANT的頻率響應曲線710中的兩個區域低點P7以及P8對應的頻率可有效的被拉開,如此一來,天線ANT將可具有雙頻的信號傳輸的效果。 It is particularly noteworthy that, by the above-described embodiments, by adjusting the capacitance of the capacitor and the inductance of the inductor, the single-frequency antenna ANT can generate a signal transmission effect with dual frequency. The frequency response diagram is as shown in FIG. In FIG. 7, through the passive component and the impedance matching circuit, the frequencies corresponding to the low points P7 and P8 of the two regions in the frequency response curve 710 of the antenna ANT can be effectively pulled apart, so that the antenna ANT can have double The effect of frequency signal transmission.

利用上述的實施方式,本發明實施例的天線ANT可以匹 配至4G的分時長期演進(Time Division Long Term Evolution,TD-LTE)格式的頻段38及頻段40。其中,頻段38的頻帶介於2570MHz~2620MHz間,頻段38的頻帶介於2300MHz~2400MHz間。 With the above embodiments, the antenna ANT of the embodiment of the present invention can be It is allocated to the frequency band 38 and the frequency band 40 of the 4G Time Division Long Term Evolution (TD-LTE) format. Among them, the frequency band of the frequency band 38 is between 2570MHz and 2620MHz, and the frequency band of the frequency band 38 is between 2300MHz and 2400MHz.

另外,本發明實施例亦可應用於多頻的天線,請參照圖8A,圖8A繪示本發明再一實施例的阻抗匹配電路的示意圖。阻抗匹配電路800耦接至雙頻天線ANT2,並包括標準阻抗調整電路810以及被動元件電路820。其中,雙頻天線AN2可以是雙頻的天線,舉例來說,雙頻天線ANT2可以是應用於全球行動通訊系統(GlobalSystem for Mobile Communications,GSM)900以及數位蜂巢服務(Digital Cellular System,DCS)1800格式的信號傳收動作。 In addition, the embodiment of the present invention can also be applied to a multi-frequency antenna. Referring to FIG. 8A, FIG. 8A is a schematic diagram of an impedance matching circuit according to still another embodiment of the present invention. The impedance matching circuit 800 is coupled to the dual frequency antenna ANT2 and includes a standard impedance adjustment circuit 810 and a passive component circuit 820. The dual-frequency antenna AN2 can be a dual-frequency antenna. For example, the dual-band antenna ANT2 can be applied to the Global System for Mobile Communications (GSM) 900 and the Digital Cellular System (DCS) 1800. The format of the signal transmission action.

被動元件電路820包括電感L71以及電容C71,電感L71以及電容C71相互並連,並皆耦接在雙頻天線ANT2以及參考接地端GND間。 The passive component circuit 820 includes an inductor L71 and a capacitor C71. The inductor L71 and the capacitor C71 are connected to each other and are coupled between the dual-band antenna ANT2 and the reference ground GND.

標準阻抗調整電路810包括電容C72、C73以及電感L72及L73。電容C72的第一端耦接至信號饋入埠FP,電容C72的第二端耦接至參考接地端GND。電感L72與電容C72並接,其中電感L72耦接在信號饋入埠FP與參考接地端GND間。電感L73的第一端耦接至信號饋入埠FP,電感L73的第二端耦接至電容C73的第一端。另外,電容C73的第二端耦接至電感L71的第一端及天線ANT2。 The standard impedance adjustment circuit 810 includes capacitors C72, C73 and inductors L72 and L73. The first end of the capacitor C72 is coupled to the signal feed 埠FP, and the second end of the capacitor C72 is coupled to the reference ground GND. The inductor L72 is connected in parallel with the capacitor C72, wherein the inductor L72 is coupled between the signal feed 埠FP and the reference ground GND. The first end of the inductor L73 is coupled to the signal feed 埠FP, and the second end of the inductor L73 is coupled to the first end of the capacitor C73. In addition, the second end of the capacitor C73 is coupled to the first end of the inductor L71 and the antenna ANT2.

關於圖8A的天線裝置的史密斯圖及頻率響應圖則請分別參照圖8B以及圖8C。其中,在圖8B中,史密斯圖上的反射係數曲線RC產生兩次的交叉,並且,其中之一的交叉點被匹配至標準阻抗的位置。並且,在圖8C中,其中之一頻帶的頻寬有效的被提升。 Regarding the Smith chart and the frequency response map of the antenna device of FIG. 8A, please refer to FIG. 8B and FIG. 8C, respectively. Here, in FIG. 8B, the reflection coefficient curve RC on the Smith chart produces two intersections, and one of the intersections is matched to the position of the standard impedance. Also, in Fig. 8C, the bandwidth of one of the frequency bands is effectively boosted.

以下請參照圖9A-圖9D分別繪示的本發明實施例的被動元件的配置方式示意圖。其中,圖9A中,被動元件910為以導線形式所所形成的單一電感,且此電感的一端連接至天線ANT,另一端則直接連接至接地端。另外,在圖9B中,被動元件920則是利用兩個以導線方式形成的電感並連而成。在另一方面,在圖9C中,被動元件930則為利用短導線段來形成等效電感,而在圖9D中,被動元件940則利用如圖9C中的短導線段外,加上並連的集總式(lump)的電感來建構。 Please refer to FIG. 9A to FIG. 9D for a schematic diagram of a configuration of a passive component according to an embodiment of the present invention. In FIG. 9A, the passive component 910 is a single inductor formed in the form of a wire, and one end of the inductor is connected to the antenna ANT, and the other end is directly connected to the ground. In addition, in FIG. 9B, the passive component 920 is formed by connecting two inductors formed by wires. In another aspect, in Figure 9C, the passive component 930 utilizes a short wire segment to form an equivalent inductance, while in Figure 9D, the passive component 940 utilizes a short wire segment as in Figure 9C, plus a parallel connection. The inductance of the lumped (lump) is constructed.

綜上所述,本發明提供非零電抗的被動元件,並透過調整反射係數曲線產生至少一次的交叉的方式來有效提升天線裝置的頻寬。如此一來,天線的阻抗匹配效果可以提高,並降低因天線阻抗不匹配所造成的射頻主動元件的影響,並提升天線的信號傳輸效率。此外,本發明的作法只著重於反射係數曲線的調整,無關於天線的種類,在應用層面上並沒有限制。 In summary, the present invention provides a non-zero reactance passive component and effectively increases the bandwidth of the antenna device by adjusting the reflection coefficient curve to generate at least one crossing. In this way, the impedance matching effect of the antenna can be improved, and the influence of the RF active component caused by the antenna impedance mismatch is reduced, and the signal transmission efficiency of the antenna is improved. In addition, the practice of the present invention focuses only on the adjustment of the reflection coefficient curve, and there is no limitation on the application level regardless of the type of the antenna.

100‧‧‧阻抗匹配電路 100‧‧‧ impedance matching circuit

ANT‧‧‧天線 ANT‧‧‧Antenna

110‧‧‧標準阻抗調整電路 110‧‧‧Standard impedance adjustment circuit

120‧‧‧被動元件 120‧‧‧ Passive components

FP‧‧‧信號饋入埠 FP‧‧‧Signal feed埠

Claims (10)

一種阻抗匹配電路,耦接至一天線,包括:一標準阻抗調整電路,其第一端耦接一信號饋入埠,用以調整該天線與該信號饋入埠間的阻抗為一標準阻抗值;以及一被動元件,用以提供非零的一電抗,耦接至該標準阻抗調整電路的第二端以及該天線,其中,該被動元件透過所提供的該電抗使該天線的反射係數曲線產生至少一次的交叉。 An impedance matching circuit is coupled to an antenna, comprising: a standard impedance adjusting circuit, the first end of which is coupled to a signal feeding port for adjusting the impedance between the antenna and the signal feeding port to a standard impedance value And a passive component for providing a non-zero reactance coupled to the second end of the standard impedance adjustment circuit and the antenna, wherein the passive component generates a reflection coefficient curve of the antenna through the provided reactance Cross at least once. 如申請專利範圍第1項所述的阻抗匹配電路,其中該被動元件包括:至少一第一電感,耦接在該標準阻抗調整電路以及該天線間。 The impedance matching circuit of claim 1, wherein the passive component comprises: at least one first inductor coupled between the standard impedance adjusting circuit and the antenna. 如申請專利範圍第2項所述的阻抗匹配電路,其中該第一電感的第一端耦接至該標準阻抗調整電路,該第一電感的第二端耦接至一參考接地端,該標準阻抗調整電路包括:一第二電感,其第一端耦接該信號饋入埠;一第三電感,其第一端耦接至該第二電感的第二端,該第三電感的第二端耦接至該參考接地端;以及一電容,其第一端耦接至該第三電感的第一端,該電容的第二端耦接至該第一電感的第一端。 The impedance matching circuit of claim 2, wherein the first end of the first inductor is coupled to the standard impedance adjusting circuit, and the second end of the first inductor is coupled to a reference ground, the standard The impedance adjustment circuit includes: a second inductor having a first end coupled to the signal feed 埠; a third inductor having a first end coupled to the second end of the second inductor, the second inductor being second The first end of the capacitor is coupled to the first end of the third inductor, and the second end of the capacitor is coupled to the first end of the first inductor. 如申請專利範圍第2項所述的阻抗匹配電路,其中該第一電感的第一端耦接至該標準阻抗調整電路的第二端,該第一電感的第二端耦接至該天線,該標準阻抗調整電路包括: 一第一電容,其第一端耦接該信號饋入埠,該第一電容的第二端耦接至一參考接地端;一第二電感,其第一端耦接該第一電容的第一端,該第二電感的第二端耦接至該第一電感的第一端;以及一第二電容,其第一端耦接該第二電感的第二端,該第二電容耦接至該參考接地端。 The impedance matching circuit of claim 2, wherein the first end of the first inductor is coupled to the second end of the standard impedance adjusting circuit, and the second end of the first inductor is coupled to the antenna, The standard impedance adjustment circuit includes: a first capacitor having a first end coupled to the signal feed 埠, a second end of the first capacitor coupled to a reference ground; a second inductor coupled to the first end of the first capacitor The first end of the second inductor is coupled to the first end of the first inductor, and the second end is coupled to the second end of the second inductor, the second capacitor is coupled To the reference ground. 如申請專利範圍第1項所述的阻抗匹配電路,其中該被動元件包括:至少一第一電容,耦接在該標準阻抗調整電路與該天線間。 The impedance matching circuit of claim 1, wherein the passive component comprises: at least one first capacitor coupled between the standard impedance adjusting circuit and the antenna. 如申請專利範圍第5項所述的阻抗匹配電路,其中該第一電容的第一端耦接至該標準阻抗調整電路的第二端以及該天線,該第一電容的第二端耦接至一參考接地端,該標準阻抗調整電路包括:一第二電容,其第一端耦接至該信號饋入埠;一第三電容,其第一端耦接至該第二電容的第一端,該第三電容的第二端耦接至該參考接地端;以及一第一電感,其第一端耦接至該第三電容的第一端,該第一電感的第二端耦接至該第一電容的第一端。 The impedance matching circuit of claim 5, wherein the first end of the first capacitor is coupled to the second end of the standard impedance adjusting circuit and the antenna, and the second end of the first capacitor is coupled to a reference grounding terminal, the standard impedance adjusting circuit includes: a second capacitor having a first end coupled to the signal feed port; a third capacitor having a first end coupled to the first end of the second capacitor a second end of the third capacitor is coupled to the reference ground; and a first end is coupled to the first end of the third capacitor, the second end of the first inductor is coupled to The first end of the first capacitor. 如申請專利範圍第5項所述的阻抗匹配電路,其中該第一電容的第一端耦接至該標準阻抗調整電路的第二端,該第一電容的第二端耦接至該天線,該標準阻抗調整電路包括:一第二電容,其第一端耦接至該信號饋入埠,該第二電容的 第二端耦接至一參考接地端;一第三電容,其第一端耦接至該第二電容的第一端;以及一第一電感,其第一端耦接至該第三電容的第二端,該第一電感的第二端耦接至該第一電容的第一端。 The impedance matching circuit of claim 5, wherein the first end of the first capacitor is coupled to the second end of the standard impedance adjusting circuit, and the second end of the first capacitor is coupled to the antenna, The standard impedance adjustment circuit includes: a second capacitor, the first end of which is coupled to the signal feed port, and the second capacitor The second end is coupled to the first ground end; the first end is coupled to the first end of the second capacitor; and the first end is coupled to the third capacitor The second end of the first inductor is coupled to the first end of the first capacitor. 一種阻抗匹配電路,耦接至一雙頻天線,包括:一標準阻抗調整電路,其第一端耦接一信號饋入埠,用以調整該雙頻天線與該信號饋入埠間的阻抗為一標準阻抗值;以及一被動元件電路,用以提供非零的一電抗,耦接至該標準阻抗調整電路的第二端以及該雙頻天線,其中,該被動元件透過所提供的該電抗使該天線的反射係數曲線產生至少一次的交叉。 An impedance matching circuit coupled to a dual-frequency antenna includes: a standard impedance adjustment circuit, the first end of which is coupled to a signal feed port for adjusting an impedance between the dual-frequency antenna and the signal feed-in a standard impedance value; and a passive component circuit for providing a non-zero reactance coupled to the second end of the standard impedance adjustment circuit and the dual frequency antenna, wherein the passive component transmits the reactance provided The reflection coefficient curve of the antenna produces at least one intersection. 如申請專利範圍第8項所述的阻抗匹配電路,其中該被動元件電路包括:一第一電容,串接在該雙頻天線與一參考接地端間;以及一第一電感,串接在該雙頻天線與該參考接地端間。 The impedance matching circuit of claim 8, wherein the passive component circuit comprises: a first capacitor connected in series between the dual frequency antenna and a reference ground; and a first inductor connected in series Between the dual frequency antenna and the reference ground. 如申請專利範圍第9項所述的阻抗匹配電路,其中該標準阻抗調整電路包括:一第二電感,其第一端耦接至該信號饋入埠,該第二電感的第二端耦接至該參考接地端;一第三電感,其第一端耦接至該信號饋入埠;一第二電容,串接在該信號饋入埠以及該參考接地端間;以及 一第三電容,其第一端耦接至該第三電感的第二端,該第三電容的第二端耦接至該雙頻天線。 The impedance matching circuit of claim 9, wherein the standard impedance adjusting circuit comprises: a second inductor, the first end of which is coupled to the signal feeding port, and the second end of the second inductor is coupled To the reference ground; a third inductor having a first end coupled to the signal feed port; a second capacitor coupled in series between the signal feed port and the reference ground; A third capacitor is coupled to the second end of the third inductor, and the second end of the third capacitor is coupled to the dual-band antenna.
TW103137207A 2014-10-28 2014-10-28 Impedance matching circuit TW201616807A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW103137207A TW201616807A (en) 2014-10-28 2014-10-28 Impedance matching circuit
CN201410720169.4A CN105655726A (en) 2014-10-28 2014-12-02 Impedance matching circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103137207A TW201616807A (en) 2014-10-28 2014-10-28 Impedance matching circuit

Publications (1)

Publication Number Publication Date
TW201616807A true TW201616807A (en) 2016-05-01

Family

ID=56481135

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103137207A TW201616807A (en) 2014-10-28 2014-10-28 Impedance matching circuit

Country Status (2)

Country Link
CN (1) CN105655726A (en)
TW (1) TW201616807A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI662799B (en) * 2018-03-07 2019-06-11 英業達股份有限公司 Antenna and signal input circuit thereof
TWI760064B (en) * 2021-01-15 2022-04-01 啓碁科技股份有限公司 Antenna system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108199132A (en) * 2017-12-29 2018-06-22 瑞声精密制造科技(常州)有限公司 A kind of antenna system and terminal
CN108923788A (en) * 2018-06-06 2018-11-30 武汉博畅通信设备有限责任公司 A kind of 30 ~ 88MHZ four-in-one combiner based on impedance matching network

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2826433B2 (en) * 1993-02-26 1998-11-18 日本電気株式会社 Dual frequency matching circuit for antenna
US9270249B2 (en) * 2012-08-20 2016-02-23 Htc Corporation Tunable impedance matching circuit
US10027025B2 (en) * 2012-08-29 2018-07-17 Htc Corporation Mobile device and antenna structure therein

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI662799B (en) * 2018-03-07 2019-06-11 英業達股份有限公司 Antenna and signal input circuit thereof
TWI760064B (en) * 2021-01-15 2022-04-01 啓碁科技股份有限公司 Antenna system
US11616298B2 (en) 2021-01-15 2023-03-28 Wistron Neweb Corp. Antenna system

Also Published As

Publication number Publication date
CN105655726A (en) 2016-06-08

Similar Documents

Publication Publication Date Title
US10601117B2 (en) Antenna and mobile terminal
TWI628867B (en) Antenna assembly and wireless communication device having the same
US11967780B2 (en) Antenna structure and communications terminal
US9680222B2 (en) Antenna structure and wireless communication device using the same
US9401543B2 (en) Broadband antenna
WO2015139558A1 (en) Electronic device
TW201622248A (en) Antenna structure and wireless communication device having the same
WO2016154851A1 (en) Terminal
US20140253398A1 (en) Tunable antenna
US11688930B2 (en) Antenna apparatus and mobile terminal
CN106953176B (en) Antenna and mobile terminal
CN105591198B (en) Antenna structure and electronic device with same
JP2010062976A (en) Notch antenna and wireless device
EP3057177A1 (en) Adjustable antenna and terminal
TW201409829A (en) Mobile device
US9980018B2 (en) Communication device with narrow-ground-clearance antenna element
KR101648670B1 (en) Dual-band Ground Radiation Antenna using Loop Structure
EP2866300A1 (en) Antenna apparatus
TWI538308B (en) Tunable antenna
US9300045B2 (en) Communication device with antenna element
TW201616807A (en) Impedance matching circuit
CN105742818A (en) Antenna and control method
TWI594589B (en) Rf matching circuit and wireless communication device using same
US10305169B2 (en) Antenna apparatus and terminal
US10320057B2 (en) Antenna device, wireless communication device, and band adjustment method