TW201611340A - Light-emitting diode having mirror protection layer - Google Patents

Light-emitting diode having mirror protection layer Download PDF

Info

Publication number
TW201611340A
TW201611340A TW103130956A TW103130956A TW201611340A TW 201611340 A TW201611340 A TW 201611340A TW 103130956 A TW103130956 A TW 103130956A TW 103130956 A TW103130956 A TW 103130956A TW 201611340 A TW201611340 A TW 201611340A
Authority
TW
Taiwan
Prior art keywords
layer
protective
type semiconductor
adhesion
light
Prior art date
Application number
TW103130956A
Other languages
Chinese (zh)
Inventor
Wei-Yu Yan
li-ping Zhou
Fu-Bang Chen
zhi-song Zhang
Original Assignee
High Power Optoelectronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by High Power Optoelectronics Inc filed Critical High Power Optoelectronics Inc
Priority to TW103130956A priority Critical patent/TW201611340A/en
Publication of TW201611340A publication Critical patent/TW201611340A/en

Links

Landscapes

  • Led Devices (AREA)

Abstract

A light-emitting diode having a mirror protection layer of the present invention comprises sequentially stacked a P-type semiconductor layer, a metal reflection layer, a buffer layer, and a protection adhesion layer. The protection adhesion layer shields an edge of the metal reflection layer and includes an adhesive layer and a protection layer. The adhesive layer is formed by using plasma-enhanced chemical vapor deposition (PECVD) to introduce nitrogen, argon, and ammonia to form an adhesive bonding on the metal reflection layer, and then introduce silane SixHy and deposit silicon nitride SixNy or silicon oxide SiO2 thereon. The protection layer is formed by using PECVD to continuously deposit on the adhesive layer. Accordingly, the adhesive layer has good adhesiveness, thereby preventing the protection adhesion layer from being stripped off. In addition, the adhesive layer has good hydrophobicity and thermal stability and is capable of enabling the protection layer to be steadily coated on the edge of the metal reflection layer in an environment with high humidity and drastic temperature change, such that the protection layer can reliably protect the metal reflection layer for preventing the metal reflection layer from being oxidized and affecting luminous efficiency.

Description

具反射鏡保護層的發光二極體結構Light-emitting diode structure with mirror protective layer

本發明係有關發光二極體,特別有關於增加發光二極體出光效率的結構。The present invention relates to a light-emitting diode, and more particularly to a structure for increasing the light-emitting efficiency of a light-emitting diode.

發光二極體(Light Emitting Diode;LED)主要由半導體材料多重磊晶堆疊而成,以藍光發光二極體為例,其主要是氮化鎵基(GaN-based)磊晶薄膜組成。Light Emitting Diode (LED) is mainly composed of multiple epitaxial stacking of semiconductor materials. Taking a blue light emitting diode as an example, it is mainly composed of a GaN-based epitaxial film.

請參閱「圖1」所示,為一種習知垂直式發光二極體,其包含組成三明治結構的一N型半導體層1、一發光層2與一P型半導體層3,該P型半導體層3之下依序設置一反射層4(Mirror layer)、一緩衝層5(Buffer layer)、一結合層6、一矽基板7與一P型電極8,而該N型半導體層1的表面可以粗化處理以增加光出射率,並供設置一N型電極9,據此於該N型電極9與該P型電極8施予電壓後,該N型半導體層1提供電子,而該P型半導體層3提供電洞,該電子與該電洞於該發光層2結合後即可產生光。Please refer to FIG. 1 , which is a conventional vertical light-emitting diode comprising an N-type semiconductor layer 1 , a light-emitting layer 2 and a P-type semiconductor layer 3 constituting a sandwich structure, and the P-type semiconductor layer. A Mirror layer, a buffer layer 5, a bonding layer 6, a germanium substrate 7 and a P-type electrode 8 are disposed in sequence, and the surface of the N-type semiconductor layer 1 may be a roughening process to increase the light emission rate, and an N-type electrode 9 is provided. Accordingly, after the N-type electrode 9 and the P-type electrode 8 are applied with a voltage, the N-type semiconductor layer 1 supplies electrons, and the P-type The semiconductor layer 3 provides a hole, and the electrons are combined with the hole in the light-emitting layer 2 to generate light.

習知為了增加發光二極體的出光效率,一般為藉由該反射層4來反射該發光層2所發出的光,因此該反射層4為選用具有高反射效率的銀/鈦鎢/鉑合金鍍膜,銀/鈦/鉑合金鍍膜,銀/鈦鎢/鎳合金鍍膜或是銀/鎳合金鍍膜等等,以藉由其具有高反射效率及高熱穩定性的特質,最大幅度的反射光以增加出光效率並具穩定的電性。Conventionally, in order to increase the light-emitting efficiency of the light-emitting diode, the light emitted by the light-emitting layer 2 is generally reflected by the reflective layer 4, so the reflective layer 4 is selected from a silver/titanium tungsten/platinum alloy having high reflection efficiency. Coating, silver/titanium/platinum alloy coating, silver/titanium tungsten/nickel alloy coating or silver/nickel alloy coating, etc., with its high reflection efficiency and high thermal stability, the maximum amplitude of reflected light is increased Light extraction efficiency and stable electrical properties.

然而,發光二極體在該P型半導體層3之下形成該反射層4之後,還必須繼續於該反射層4上形成該緩衝層5與該結合層6等等,且需要再經過多道半導體製程才能完成,因而該反射層4中的銀容易因為後續製程而氧化,其會導致該反射層4的反射效率降低,而降低該發光二極體的出光效率。However, after the light-emitting diode forms the reflective layer 4 under the P-type semiconductor layer 3, the buffer layer 5 and the bonding layer 6 and the like must be further formed on the reflective layer 4, and further passes through multiple channels. The semiconductor process can be completed, so that the silver in the reflective layer 4 is easily oxidized by the subsequent process, which causes the reflection efficiency of the reflective layer 4 to decrease, and reduces the light-emitting efficiency of the light-emitting diode.

為了解決此一問題,請參閱「圖2」與「圖3」,如美國公告US8766303專利說明書,其結構包含一N型電極10、一N型半導體層11、一發光層12、一P型半導體層13、一金屬反射層14、一保護層15B、一保護層黏著層15A、一緩衝層16、一結合層17、一永久基板18與一P型電極19,其中為讓該保護層黏著層15A與該保護層15B形成於該金屬反射層14遠離該P型半導體層13的一側(如圖2所示),且遮蔽該金屬反射層14的側邊邊緣。In order to solve this problem, please refer to "FIG. 2" and "FIG. 3", as disclosed in US Pat. No. 7,876,303, the structure of which comprises an N-type electrode 10, an N-type semiconductor layer 11, a light-emitting layer 12, and a P-type semiconductor. a layer 13, a metal reflective layer 14, a protective layer 15B, a protective layer of adhesive layer 15A, a buffer layer 16, a bonding layer 17, a permanent substrate 18 and a P-type electrode 19, wherein the protective layer is adhered 15A and the protective layer 15B are formed on a side of the metal reflective layer 14 away from the P-type semiconductor layer 13 (as shown in FIG. 2), and shield the side edges of the metal reflective layer 14.

或者讓該保護層黏著層15A與該保護層15B形成於該P型半導體層13與該緩衝層16之間(如圖3所示),且讓該保護層黏著層15A與該保護層15B遮蔽該金屬反射層14的側邊邊緣,該P型半導體層13、該保護層黏著層15A、該保護層15B與該緩衝層16即可完整遮蔽該金屬反射層14,避免該金屬反射層14於後續製程中氧化。Or the protective layer adhesive layer 15A and the protective layer 15B are formed between the P-type semiconductor layer 13 and the buffer layer 16 (as shown in FIG. 3), and the protective layer adhesive layer 15A and the protective layer 15B are shielded. The side edge of the metal reflective layer 14 , the P-type semiconductor layer 13 , the protective layer adhesive layer 15A , the protective layer 15B and the buffer layer 16 can completely shield the metal reflective layer 14 , and the metal reflective layer 14 is prevented from being Oxidation in subsequent processes.

此習知技術,該保護層15B為選用二氧化鈦、二氧化矽、三氧化二鋁與氧化銦錫所組成的群組製成,其具有穩定、不易改變物性等特性,然而該保護層黏著層15A使用,鈦、鎢、鉻,以及以上原素所結合之金屬合金所構成,一般來說在普通環境(溫度20℃~27℃,濕度50%~60%)使用金屬黏著層,可克服氧化物的附著性不佳之問題,但是在極端環境,以及高電流密度的操作下該保護層黏著層15A仍然會因熱膨脹以及水氧化的因素使該保護層黏著層15A無法穩固的將保護層15B披覆在金屬反射層14邊緣,該金屬反射層14難免會於後續製程中氧化,而無法滿足使用上的需求。且製作該保護層黏著層15A使用,鈦、鎢、鉻,以及以上原素所結合之金屬合金與製作該保護層15B為選用二氧化鈦、二氧化矽、三氧化二鋁與氧化銦錫所組成的群組,由此知保護層黏著層15A以及保護層15B為金屬以及氧化物,而金屬以及氧化物特性並不匹配,且無法以連續製程製作,因而增加保護層黏著層與保護層在極端環境下以及高電流密度的操作下失效的風險。In the prior art, the protective layer 15B is made of a group consisting of titanium dioxide, cerium oxide, aluminum oxide and indium tin oxide, which has stable and difficult to change physical properties, etc., however, the protective layer adhesive layer 15A It is made of titanium alloy, tungsten, chromium, and a metal alloy combined with the above elements. Generally, it is used in a common environment (temperature 20 ° C ~ 27 ° C, humidity 50% ~ 60%) using a metal adhesion layer to overcome oxides. The problem of poor adhesion, but in the extreme environment, and high current density operation, the protective layer adhesive layer 15A still causes the protective layer adhesive layer 15A to be unable to firmly cover the protective layer 15B due to thermal expansion and water oxidation. At the edge of the metal reflective layer 14, the metal reflective layer 14 is inevitably oxidized in subsequent processes, and cannot meet the requirements of use. And the protective layer adhesive layer 15A is used, titanium, tungsten, chromium, and the metal alloy combined with the above elements and the protective layer 15B are made of titanium dioxide, cerium oxide, aluminum oxide and indium tin oxide. In the group, it is known that the protective layer adhesive layer 15A and the protective layer 15B are metals and oxides, and the metal and oxide characteristics are not matched, and cannot be fabricated in a continuous process, thereby increasing the protective layer adhesive layer and the protective layer in an extreme environment. The risk of failure under operation as well as high current density.

本發明之主要目的在於揭露一種具反射鏡保護層的發光二極體結構,在極端環境,以及高電流密度的操作下可增加反射鏡保護層的附著性,而避免剝離脫落,以確實保護金屬反射層。The main object of the present invention is to disclose a light-emitting diode structure with a mirror protective layer, which can increase the adhesion of the protective layer of the mirror under extreme environments and high current density operation, and avoid peeling off to ensure metal protection. Reflective layer.

本發明為一種具反射鏡保護層的發光二極體結構,其包含一N型電極、一N型半導體層、一發光層、一P型半導體層、一金屬反射層、一保護附著層、一緩衝層、一結合層、一永久基板與一P型電極,其中該N型電極形成於該N型半導體層的一側,該發光層形成於該N型半導體層遠離該N型電極的一側,該P型半導體層形成於該發光層遠離該N型半導體層的一側,該金屬反射層形成於該P型半導體層遠離該發光層的一側。The invention is a light-emitting diode structure with a mirror protective layer, comprising an N-type electrode, an N-type semiconductor layer, a light-emitting layer, a P-type semiconductor layer, a metal reflective layer, a protective adhesion layer, and a protective diode layer. a buffer layer, a bonding layer, a permanent substrate and a P-type electrode, wherein the N-type electrode is formed on one side of the N-type semiconductor layer, and the light-emitting layer is formed on a side of the N-type semiconductor layer away from the N-type electrode The P-type semiconductor layer is formed on a side of the light-emitting layer away from the N-type semiconductor layer, and the metal reflective layer is formed on a side of the P-type semiconductor layer away from the light-emitting layer.

而該保護附著層形成於該金屬反射層遠離該P型半導體層的一側,且遮蔽該金屬反射層的邊緣,該P型半導體層、該保護附著層與該緩衝層即可完整遮蔽該金屬反射層。The protective adhesion layer is formed on a side of the metal reflective layer away from the P-type semiconductor layer, and shields an edge of the metal reflective layer, and the P-type semiconductor layer, the protective adhesion layer and the buffer layer can completely shield the metal. Reflective layer.

該結合層形成於該緩衝層遠離該保護附著層的一側,該永久基板形成於該結合層遠離該保護附著層的一側,該P型電極形成於該永久基板遠離該結合層的一側。The bonding layer is formed on a side of the buffer layer away from the protective adhesion layer, the permanent substrate is formed on a side of the bonding layer away from the protective adhesion layer, and the P-type electrode is formed on a side of the permanent substrate away from the bonding layer .

或者,該保護附著層可以形成於該P型半導體層與該緩衝層之間,且讓該保護附著層遮蔽該金屬反射層的側邊邊緣,該P型半導體層、該保護附著層與該緩衝層即可完整遮蔽該金屬反射層。Alternatively, the protective adhesion layer may be formed between the P-type semiconductor layer and the buffer layer, and the protective adhesion layer shields a side edge of the metal reflective layer, the P-type semiconductor layer, the protective adhesion layer and the buffer The layer can completely shield the metal reflective layer.

又該保護附著層的結構分為一附著層與一保護層,該附著層為藉由電漿輔助化學氣相沈積(PVCVD)先行導入氮氣、氬氣與氨於該金屬反射層上形成附著鍵結,再導入矽烷(SixHy)以沉積氮化矽(SixNy)或氧化矽(SiO2)而形成,由此配方形成之氮化矽(SixNy) 或氧化矽(SiO2)薄膜具有疏水性以及高耐熱性。而該保護層為使用PVCVD於該附著層上繼續沉積而形成。The structure of the protective adhesion layer is divided into an adhesion layer and a protective layer. The adhesion layer is formed by plasma-assisted chemical vapor deposition (PVCVD) to introduce nitrogen, argon and ammonia on the metal reflective layer to form an adhesion bond. The junction is further introduced with decane (SixHy) to deposit tantalum nitride (SixNy) or yttrium oxide (SiO2), and the nitrided (SixNy) or yttria (SiO2) film formed by the formulation has hydrophobicity and high heat resistance. . The protective layer is formed by continuing deposition on the adhesion layer using PVCVD.

據此,本發明藉由該附著層具有良好的附著性,可避免該保護附著層剝離脫落,亦即該保護層可以確實保護該金屬反射層,亦即可避免該金屬反射層於後續製程中氧化及於高電流操作時反射層金屬析出,因而可以維持該金屬反射層的反射率,亦即該發光層所產生的光可以被充分反射,而增加發光二極體的出光效率及電性穩定。Accordingly, according to the present invention, the adhesion layer has good adhesion, and the protective adhesion layer can be prevented from peeling off, that is, the protective layer can surely protect the metal reflective layer, and the metal reflective layer can be prevented from being in the subsequent process. Oxidation and precipitation of the metal in the reflective layer during high current operation, thereby maintaining the reflectivity of the metal reflective layer, that is, the light generated by the light emitting layer can be sufficiently reflected, thereby increasing the light extraction efficiency and electrical stability of the light emitting diode. .

習知Conventional knowledge

1‧‧‧N型半導體層1‧‧‧N-type semiconductor layer

2‧‧‧發光層2‧‧‧Lighting layer

3‧‧‧P型半導體層3‧‧‧P type semiconductor layer

4‧‧‧金屬反射層4‧‧‧Metal reflector

5‧‧‧緩衝層5‧‧‧buffer layer

6‧‧‧結合層6‧‧‧Combination layer

7‧‧‧矽基板7‧‧‧矽 substrate

8‧‧‧P型電極8‧‧‧P type electrode

9‧‧‧N型電極9‧‧‧N type electrode

10‧‧‧N型電極10‧‧‧N type electrode

11‧‧‧N型半導體層11‧‧‧N type semiconductor layer

12‧‧‧發光層12‧‧‧Lighting layer

13‧‧‧P型半導體層13‧‧‧P type semiconductor layer

14‧‧‧金屬反射層14‧‧‧Metal reflector

15A‧‧‧保護層黏著層15A‧‧‧Protective layer adhesive layer

15B‧‧‧保護層15B‧‧‧Protective layer

16‧‧‧緩衝層16‧‧‧buffer layer

17‧‧‧結合層17‧‧‧Combination layer

18‧‧‧永久基板18‧‧‧Permanent substrate

19‧‧‧P型電極19‧‧‧P type electrode

本發明this invention

20‧‧‧N型電極20‧‧‧N type electrode

21‧‧‧N型半導體層21‧‧‧N type semiconductor layer

22‧‧‧發光層22‧‧‧Lighting layer

23‧‧‧P型半導體層23‧‧‧P type semiconductor layer

24‧‧‧金屬反射層24‧‧‧Metal reflector

25‧‧‧保護附著層25‧‧‧Protective adhesion layer

251A、251B‧‧‧附著層251A, 251B‧‧‧Adhesive layer

252A、252B‧‧‧保護層252A, 252B‧‧ ‧ protective layer

26‧‧‧緩衝層26‧‧‧ Buffer layer

27‧‧‧結合層27‧‧‧Combination layer

28‧‧‧永久基板28‧‧‧Permanent substrate

29‧‧‧P型電極29‧‧‧P type electrode

圖1,為習知發光二極體結構圖。FIG. 1 is a structural diagram of a conventional light emitting diode.

圖2,為習知美國公告US8766303之發光二極體結構圖一。Figure 2 is a schematic diagram of a light-emitting diode structure of the prior art US8766303.

圖3,為習知美國公告US8766303之發光二極體結構圖二。FIG. 3 is a second structural diagram of a light-emitting diode of the US-A U.S. Patent No. 7,876,303.

圖4,為本發明發光二極體結構圖。4 is a structural view of a light-emitting diode of the present invention.

圖5,為本發明另一實施發光二極體結構圖。FIG. 5 is a structural diagram of a light emitting diode according to another embodiment of the present invention.

茲有關本發明的詳細內容及技術說明,現以實施例來作進一步說明,但應瞭解的是,該等實施例僅為例示說明之用,而不應被解釋為本發明實施之限制。The detailed description of the present invention and the technical description of the present invention are further illustrated by the accompanying drawings, but it should be understood that these embodiments are merely illustrative and not to be construed as limiting.

請再參閱「圖4」所示,本發明為一種具反射鏡保護層的發光二極體結構,其包含一N型電極20、一N型半導體層21、一發光層22、一P型半導體層23、一金屬反射層24、一保護附著層25、一緩衝層26、一結合層27、一永久基板28與一P型電極29。Referring to FIG. 4 again, the present invention is a light-emitting diode structure having a mirror protective layer, comprising an N-type electrode 20, an N-type semiconductor layer 21, a light-emitting layer 22, and a P-type semiconductor. The layer 23, a metal reflective layer 24, a protective adhesion layer 25, a buffer layer 26, a bonding layer 27, a permanent substrate 28 and a P-type electrode 29.

其中該N型電極20形成於該N型半導體層21的一側,該發光層22形成於該N型半導體層21遠離該N型電極20的一側,該P型半導體層23形成於該發光層22遠離該N型半導體層21的一側,該N型半導體層21、該發光層22與該P型半導體層23所形成的三明治結構,即為發光二極體的主體結構。The N-type electrode 20 is formed on one side of the N-type semiconductor layer 21, and the light-emitting layer 22 is formed on a side of the N-type semiconductor layer 21 away from the N-type electrode 20. The P-type semiconductor layer 23 is formed on the light-emitting layer. The layer 22 is away from the side of the N-type semiconductor layer 21. The sandwich structure formed by the N-type semiconductor layer 21, the light-emitting layer 22 and the P-type semiconductor layer 23 is the main structure of the light-emitting diode.

而該金屬反射層24形成於該P型半導體層23遠離該發光層22的一側,該金屬反射層24可以為銀/鈦鎢/鉑合金鍍膜,且其較佳實施值,銀的厚度為100~300奈米、鈦鎢的厚度為20~300奈米、鉑的厚度為小於500奈米。或者該金屬反射層24亦可為銀/鈦/鉑合金鍍膜,同樣的其較佳實施值,銀的厚度為200~300奈米、鈦的厚度為20~300奈米、鉑的厚度為小於500奈米。或者該金屬反射層24亦可為銀/鈦/鎳合金鍍膜,同樣的其較佳實施值,銀的厚度為200~300奈米、鈦的厚度為20~300奈米、鎳的厚度為小於500奈米。又或者該金屬反射層24亦可為銀/鎳合金鍍膜,同樣的其較佳實施值,銀的厚度為200~300奈米、鎳的厚度為小於500奈米。The metal reflective layer 24 is formed on a side of the P-type semiconductor layer 23 away from the light-emitting layer 22, and the metal reflective layer 24 may be a silver/titanium-tungsten/platinum alloy plating film, and a preferred implementation value thereof, the thickness of the silver is The thickness of 100~300 nm, titanium tungsten is 20~300 nm, and the thickness of platinum is less than 500 nm. Alternatively, the metal reflective layer 24 may also be a silver/titanium/platinum alloy plating film. The same preferred implementation value is that the thickness of the silver is 200-300 nm, the thickness of the titanium is 20-300 nm, and the thickness of the platinum is less than 500 nm. Alternatively, the metal reflective layer 24 may be a silver/titanium/nickel alloy coating film. The preferred embodiment has the same thickness. The thickness of the silver is 200-300 nm, the thickness of the titanium is 20-300 nm, and the thickness of the nickel is less than 500 nm. Alternatively, the metal reflective layer 24 may be a silver/nickel alloy coating. The preferred embodiment has the same thickness. The thickness of the silver is 200 to 300 nm, and the thickness of the nickel is less than 500 nm.

而該保護附著層25形成於該金屬反射層24遠離該P型半導體層23的一側(如圖4所示)且遮蔽該金屬反射層24的邊緣,該P型半導體層23、該保護附著層25與該緩衝層26即可完整遮蔽該金屬反射層24。The protective adhesion layer 25 is formed on a side of the metal reflective layer 24 away from the P-type semiconductor layer 23 (as shown in FIG. 4) and shields the edge of the metal reflective layer 24, the P-type semiconductor layer 23, the protective adhesion The layer 25 and the buffer layer 26 can completely shield the metal reflective layer 24.

又該保護附著層25的結構分為一附著層251A與一保護層252A,該附著層251A為藉由電漿輔助化學氣相沈積(PVCVD)先行導入氮氣、氬氣與氨於該金屬反射層24上形成附著鍵結,再導入矽烷(SixHy)以沉積氮化矽(SixNy) 或氧化矽(SiO2)而形成,其厚度較佳值小於10奈米,且該保護層的厚度為介於30奈米與150奈米之間。The structure of the protective adhesion layer 25 is further divided into an adhesion layer 251A and a protective layer 252A for introducing nitrogen, argon and ammonia into the metal reflection layer by plasma assisted chemical vapor deposition (PVCVD). An adhesion bond is formed on the second layer, and then arkane (SixHy) is introduced to deposit tantalum nitride (SixNy) or yttrium oxide (SiO2), the thickness of which is preferably less than 10 nm, and the thickness of the protective layer is between 30. Nano and 150 nm.

而該保護層252A的材質為選自氮化矽(SixNy)、二氧化矽(SiO2)與二氧化鈦(TiO2)所組成的群組,且為使用PVCVD於該附著層251A上繼續沉積而形成。The material of the protective layer 252A is selected from the group consisting of bismuth nitride (SixNy), cerium oxide (SiO2), and titanium dioxide (TiO2), and is formed by continuing deposition on the adhesion layer 251A using PVCVD.

該緩衝層26形成於該保護附著層25遠離該金屬反射層24的一側,該緩衝層26為選自具導電性及且穩定性良好的金屬材,且熱膨脹係數介於氮化鎵及矽之間做為矽基板與氮化鎵磊晶層間的緩衝層,如鈦、鉑、鈦鎢、鎳等等。The buffer layer 26 is formed on a side of the protective adhesion layer 25 away from the metal reflective layer 24. The buffer layer 26 is selected from a metal material having good conductivity and stability, and has a thermal expansion coefficient of gallium nitride and germanium. Between the buffer layer between the germanium substrate and the gallium nitride epitaxial layer, such as titanium, platinum, titanium tungsten, nickel, and the like.

該結合層27為形成於該緩衝層26遠離該保護附著層25的一側,該永久基板28形成於該結合層27遠離該保護附著層25的一側,該P型電極29形成於該永久基板28遠離該結合層27的一側,其中該結合層27為黏結該永久基板28與該緩衝層26,而該永久基板28一般為採用具導電性的矽基板。The bonding layer 27 is formed on a side of the buffer layer 26 away from the protective adhesion layer 25. The permanent substrate 28 is formed on a side of the bonding layer 27 away from the protective adhesion layer 25. The P-type electrode 29 is formed on the permanent The substrate 28 is away from the side of the bonding layer 27, wherein the bonding layer 27 is used to bond the permanent substrate 28 and the buffer layer 26. The permanent substrate 28 is generally a conductive germanium substrate.

請參閱「圖5」所示,為另一實施結構,其中該保護附著層25可以形成於該P型半導體層23與該緩衝層26之間,且讓該保護附著層25遮蔽該金屬反射層24的側邊邊緣,該P型半導體層23、該保護附著層25與該緩衝層26即可完整遮蔽該金屬反射層24。Please refer to FIG. 5 , which is another implementation structure, wherein the protective adhesion layer 25 can be formed between the P-type semiconductor layer 23 and the buffer layer 26, and the protective adhesion layer 25 is shielded from the metal reflective layer. The P-type semiconductor layer 23, the protective adhesion layer 25 and the buffer layer 26 can completely shield the metal reflective layer 24.

且於此實施結構,該保護附著層25同樣具有附著層251B與保護層252B,該附著層251B同樣藉由電漿輔助化學氣相沈積(PVCVD)先行導入氮氣、氬氣與氨於該金屬反射層24上形成附著鍵結,再導入矽烷(SixHy)以沉積氮化矽(SixNy) 或氧化矽(SiO2)而形成。而該保護層252B的材質同樣為選自氮化矽(SixNy)、二氧化矽(SiO2)與二氧化鈦(TiO2)所組成的群組,且為使用PVCVD於該附著層251B上繼續沉積而形成。In this embodiment, the protective adhesion layer 25 also has an adhesion layer 251B and a protective layer 252B. The adhesion layer 251B also first introduces nitrogen, argon and ammonia into the metal by plasma assisted chemical vapor deposition (PVCVD). An adhesion bond is formed on the layer 24, and then decane (SixHy) is introduced to deposit tantalum nitride (SixNy) or yttrium oxide (SiO2). The material of the protective layer 252B is also a group selected from the group consisting of strontium nitride (SixNy), cerium oxide (SiO2), and titanium oxide (TiO2), and is formed by continuing deposition on the adhesion layer 251B using PVCVD.

如上所述,本發明透過該附著層的設置,增加附著性,讓該保護附著層沒有剝離脫落的問題,亦即該保護層可以確實保護該金屬反射層,以避免該金屬反射層於後續製程中氧化及於高電流操作時反射層金屬析出,因而可以維持該金屬反射層的反射率,亦即該發光層所產生的光可以被充分反射,而增加發光二極體的出光效率及電性穩定,滿足使用上的需求。As described above, the present invention increases the adhesion by the arrangement of the adhesion layer, so that the protective adhesion layer has no problem of peeling off, that is, the protective layer can surely protect the metal reflective layer to prevent the metal reflective layer from being processed in subsequent processes. In the middle oxidation and the high-current operation, the reflective layer metal is precipitated, so that the reflectance of the metal reflective layer can be maintained, that is, the light generated by the light-emitting layer can be sufficiently reflected, thereby increasing the light-emitting efficiency and electrical properties of the light-emitting diode. Stable and meet the needs of use.

惟上述僅為本發明之較佳實施例而已,並非用來限定本發明實施之範圍。即凡依本發明申請專利範圍所做的均等變化與修飾,皆為本發明專利範圍所涵蓋。The above are only the preferred embodiments of the present invention and are not intended to limit the scope of the embodiments of the present invention. That is, the equivalent changes and modifications made by the scope of the patent application of the present invention are covered by the scope of the invention.

 

20‧‧‧N型電極 20‧‧‧N type electrode

21‧‧‧N型半導體層 21‧‧‧N type semiconductor layer

22‧‧‧發光層 22‧‧‧Lighting layer

23‧‧‧P型半導體層 23‧‧‧P type semiconductor layer

24‧‧‧金屬反射層 24‧‧‧Metal reflector

25‧‧‧保護附著層 25‧‧‧Protective adhesion layer

251A‧‧‧附著層 251A‧‧‧Adhesive layer

252A‧‧‧保護層 252A‧‧‧Protective layer

26‧‧‧緩衝層 26‧‧‧ Buffer layer

27‧‧‧結合層 27‧‧‧Combination layer

28‧‧‧永久基板 28‧‧‧Permanent substrate

29‧‧‧P型電極 29‧‧‧P type electrode

Claims (8)

【第1項】[Item 1]
一種具反射鏡保護層的發光二極體結構,其包含:
一N型電極;
一N型半導體層,該N型電極形成於該N型半導體層的一側;
一發光層,該發光層形成於該N型半導體層遠離該N型電極的一側;
一P型半導體層,該P型半導體層形成於該發光層遠離該N型半導體層的一側;
一金屬反射層,該金屬反射層形成於該P型半導體層遠離該發光層的一側;
一保護附著層,該保護附著層形成於該金屬反射層遠離該P型半導體層的一側,且遮蔽該金屬反射層的邊緣,該保護附著層分為一附著層與一保護層,該附著層為藉由電漿輔助化學氣相沈積先行導入氮氣、氬氣與氨於該金屬反射層上形成附著鍵結,再導入矽烷以沉積氮化矽與氧化矽的任一而形成,而該保護層使用電漿輔助化學氣相沈積於該附著層上繼續沉積而形成;
一緩衝層,該緩衝層形成於該保護附著層遠離該金屬反射層的一側,且該P型半導體層、該保護附著層與該緩衝層完整遮蔽該金屬反射層;
一結合層,該結合層形成於該緩衝層遠離該保護附著層的一側;
一永久基板,該永久基板形成於該結合層遠離該保護附著層的一側;以及
一P型電極,該P型電極形成於該永久基板遠離該結合層的一側。

A light emitting diode structure having a mirror protective layer, comprising:
An N-type electrode;
An N-type semiconductor layer, the N-type electrode being formed on one side of the N-type semiconductor layer;
a light emitting layer formed on a side of the N-type semiconductor layer away from the N-type electrode;
a P-type semiconductor layer formed on a side of the light-emitting layer away from the N-type semiconductor layer;
a metal reflective layer formed on a side of the P-type semiconductor layer away from the light-emitting layer;
a protective adhesion layer formed on a side of the metal reflective layer away from the P-type semiconductor layer and shielding an edge of the metal reflective layer, the protective adhesion layer being divided into an adhesion layer and a protective layer, the adhesion layer The layer is formed by plasma-assisted chemical vapor deposition first introducing nitrogen gas, argon gas and ammonia to form an adhesion bond on the metal reflective layer, and then introducing decane to deposit any one of tantalum nitride and yttrium oxide, and the protection is formed. The layer is formed by plasma-assisted chemical vapor deposition on the adhesion layer to continue deposition;
a buffer layer formed on a side of the protective adhesion layer away from the metal reflective layer, and the P-type semiconductor layer, the protective adhesion layer and the buffer layer completely shield the metal reflective layer;
a bonding layer formed on a side of the buffer layer away from the protective adhesion layer;
a permanent substrate formed on a side of the bonding layer away from the protective adhesion layer; and a P-type electrode formed on a side of the permanent substrate away from the bonding layer.
【第2項】[Item 2]
如申請專利範圍第1項之具反射鏡保護層的發光二極體結構,其中該附著層的厚度小於10奈米。

A light-emitting diode structure having a mirror protective layer as claimed in claim 1, wherein the thickness of the adhesion layer is less than 10 nm.
【第3項】[Item 3]
如申請專利範圍第1項之具反射鏡保護層的發光二極體結構,其中該保護層的材質為選自氮化矽、二氧化矽與二氧化鈦所組成的群組。

The light-emitting diode structure having a mirror protective layer according to claim 1, wherein the protective layer is made of a group selected from the group consisting of tantalum nitride, cerium oxide and titanium dioxide.
【第4項】[Item 4]
如申請專利範圍第2項之具反射鏡保護層的發光二極體結構,其中該保護層的厚度為介於30奈米與150奈米之間。

A light-emitting diode structure having a mirror protective layer as claimed in claim 2, wherein the protective layer has a thickness of between 30 nm and 150 nm.
【第5項】[Item 5]
一種具反射鏡保護層的發光二極體結構,其包含:
一N型電極;
一N型半導體層,該N型電極形成於該N型半導體層的一側;
一發光層,該發光層形成於該N型半導體層遠離該N型電極的一側;
一P型半導體層,該P型半導體層形成於該發光層遠離該N型半導體層的一側;
一金屬反射層,該金屬反射層形成於該P型半導體層遠離該發光層的一側;
一保護附著層,該保護附著層形成於該P型半導體層與該緩衝層之間,且讓該保護附著層遮蔽該金屬反射層的側邊邊緣,該保護附著層分為一附著層與一保護層,該附著層為藉由電漿輔助化學氣相沈積先行導入氮氣、氬氣與氨於該金屬反射層上形成附著鍵結,再導入矽烷以沉積氮化矽或氧化矽而形成,而該保護層使用電漿輔助化學氣相沈積於該附著層上繼續沉積而形成;
一緩衝層,該緩衝層形成於該金屬反射層遠離該保護附著層的一側,且該P型半導體層、該保護附著層與該緩衝層完整遮蔽該金屬反射層;
一結合層,該結合層形成於該緩衝層遠離該保護附著層的一側;
一永久基板,該永久基板形成於該結合層遠離該保護附著層的一側;以及
一P型電極,該P型電極形成於該永久基板遠離該結合層的一側。


A light emitting diode structure having a mirror protective layer, comprising:
An N-type electrode;
An N-type semiconductor layer, the N-type electrode being formed on one side of the N-type semiconductor layer;
a light emitting layer formed on a side of the N-type semiconductor layer away from the N-type electrode;
a P-type semiconductor layer formed on a side of the light-emitting layer away from the N-type semiconductor layer;
a metal reflective layer formed on a side of the P-type semiconductor layer away from the light-emitting layer;
a protective adhesion layer formed between the P-type semiconductor layer and the buffer layer, and the protective adhesion layer shielding a side edge of the metal reflective layer, the protective adhesion layer being divided into an adhesion layer and a a protective layer formed by plasma-assisted chemical vapor deposition first introducing nitrogen gas, argon gas and ammonia to form an adhesion bond on the metal reflective layer, and then introducing decane to deposit tantalum nitride or yttrium oxide. The protective layer is formed by plasma-assisted chemical vapor deposition on the adhesion layer to continue deposition;
a buffer layer formed on a side of the metal reflective layer away from the protective adhesion layer, and the P-type semiconductor layer, the protective adhesion layer and the buffer layer completely shield the metal reflective layer;
a bonding layer formed on a side of the buffer layer away from the protective adhesion layer;
a permanent substrate formed on a side of the bonding layer away from the protective adhesion layer; and a P-type electrode formed on a side of the permanent substrate away from the bonding layer.

【第6項】[Item 6]
如申請專利範圍第5項之具反射鏡保護層的發光二極體結構,其中該附著層的厚度為小於10奈米。

A light-emitting diode structure having a mirror protective layer as claimed in claim 5, wherein the thickness of the adhesion layer is less than 10 nm.
【第7項】[Item 7]
如申請專利範圍第5項之具反射鏡保護層的發光二極體結構,其中該保護層的材質為選自氮化矽、二氧化矽與二氧化鈦所組成的群組。

The light-emitting diode structure having a mirror protective layer according to claim 5, wherein the protective layer is made of a group selected from the group consisting of tantalum nitride, cerium oxide and titanium dioxide.
【第8項】[Item 8]
如申請專利範圍第6項之具反射鏡保護層的發光二極體結構,其中該保護層的厚度為介於30奈米與150奈米之間。




A light-emitting diode structure having a mirror protective layer as claimed in claim 6 wherein the protective layer has a thickness of between 30 nm and 150 nm.



TW103130956A 2014-09-09 2014-09-09 Light-emitting diode having mirror protection layer TW201611340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103130956A TW201611340A (en) 2014-09-09 2014-09-09 Light-emitting diode having mirror protection layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103130956A TW201611340A (en) 2014-09-09 2014-09-09 Light-emitting diode having mirror protection layer

Publications (1)

Publication Number Publication Date
TW201611340A true TW201611340A (en) 2016-03-16

Family

ID=56085272

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103130956A TW201611340A (en) 2014-09-09 2014-09-09 Light-emitting diode having mirror protection layer

Country Status (1)

Country Link
TW (1) TW201611340A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112760614A (en) * 2020-12-09 2021-05-07 晋能清洁能源科技股份公司 Method for optimizing uniformity of polycrystalline PECVD (plasma enhanced chemical vapor deposition) coating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112760614A (en) * 2020-12-09 2021-05-07 晋能清洁能源科技股份公司 Method for optimizing uniformity of polycrystalline PECVD (plasma enhanced chemical vapor deposition) coating

Similar Documents

Publication Publication Date Title
US9190572B2 (en) Light emitting diode and fabrication method thereof
US9099627B2 (en) Method for producing group III nitride semiconductor light-emitting device
TW201703293A (en) Light emitting component
CN104393139B (en) Reflection electrode structure, LED device and preparation method
TWI601312B (en) Optoelectronic semiconductor chip
CN108400227A (en) A kind of flip LED chips and preparation method thereof
CN104037294B (en) GaN-based light-emitting diode and manufacturing method thereof
WO2015003564A1 (en) Gallium nitride based light emitting diode and manufacturing method thereof
CN104900772B (en) The preparation method of light emitting diode
TWI499077B (en) Semiconductor light-emitting device
US10840413B2 (en) Optoelectronic device and method of producing an optoelectronic device
CN103474542A (en) Light emitting diode and method for manufacturing the same
TW201705535A (en) Semiconductor light-emitting element
US8766303B2 (en) Light-emitting diode with a mirror protection layer
JP2012248807A (en) Light-emitting element and manufacturing method thereof
US9401465B2 (en) Light emitting diode having mirror protection layer and method for manufacturing mirror protection layer
TW201611340A (en) Light-emitting diode having mirror protection layer
CN106848027B (en) The preparation method of the vertical flip LED chips of high reliability
TW201349576A (en) LED with reflector protection layer
US9130108B2 (en) Light-emitting diode and method for manufacturing thereof
US9070830B2 (en) Electrode contact structure of light-emitting diode with improved roughness
CN111162192A (en) Perovskite light emitting diode
US11342485B2 (en) Optoelectronic semiconductor component, and method for producing an optoelectronic semiconductor component
CN108428774B (en) A kind of LED chip
US9640736B2 (en) Silicon nanocrystal light emitting diode and fabricating method thereof