TW201607071A - 鈣鈦礦太陽能電池的製造方法 - Google Patents

鈣鈦礦太陽能電池的製造方法 Download PDF

Info

Publication number
TW201607071A
TW201607071A TW103127779A TW103127779A TW201607071A TW 201607071 A TW201607071 A TW 201607071A TW 103127779 A TW103127779 A TW 103127779A TW 103127779 A TW103127779 A TW 103127779A TW 201607071 A TW201607071 A TW 201607071A
Authority
TW
Taiwan
Prior art keywords
perovskite
solar cell
layer
perovskite solar
transport layer
Prior art date
Application number
TW103127779A
Other languages
English (en)
Other versions
TWI527259B (zh
Inventor
林皓武
陳昶文
康皓維
蕭聖議
Original Assignee
國立清華大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立清華大學 filed Critical 國立清華大學
Priority to TW103127779A priority Critical patent/TWI527259B/zh
Priority to US14/601,239 priority patent/US9431613B2/en
Publication of TW201607071A publication Critical patent/TW201607071A/zh
Application granted granted Critical
Publication of TWI527259B publication Critical patent/TWI527259B/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • H10K30/211Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions comprising multiple junctions, e.g. double heterojunctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • H10K30/353Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising blocking layers, e.g. exciton blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一種鈣鈦礦太陽能電池的製造方法,包括在一透明導電基板上形成電洞傳輸層,之後利用兩階段真空蒸鍍製程,在電洞傳輸層上形成鈣鈦礦層。隨後,依序形成電子傳輸層與電極層。上述兩階段真空蒸鍍製程,包括先在電洞傳輸層上真空蒸鍍一第一材料,再於第一材料上真空蒸鍍一第二材料,以使第一材料與第二材料臨場反應成為所述鈣鈦礦層。

Description

鈣鈦礦太陽能電池的製造方法
本發明是有關於一種太陽能電池技術,且特別是有關於一種鈣鈦礦太陽能電池的製造方法。
鈣鈦礦薄膜太陽能電池的發展起源於染料敏化太陽能電池(DSSC),在高效鈣鈦礦型太陽能電池中最常見的鈣鈦礦材料是碘化鉛甲胺(CH3NH3PbI3),它的帶隙約為1.5eV,消光係數高,幾百奈米厚薄膜就可以充分吸收800nm以下的太陽光。
因此,目前廠商已經投入很多資源來研發鈣鈦鑛太陽能電池,且這些廠商已公開的資料中大多是使用濕式製程,但濕式製程往往受限於材料(如PbI2、PbCl2)溶解度低、溶劑選擇少等問題。另外,還有研究室採用共蒸鍍的方式製作碘化鉛甲胺層,但發現所製得的太陽能電池在轉換效率方面極不穩定。
本發明提供一種鈣鈦礦太陽能電池的製造方法,能穩定 製作出高轉換效率的太陽能電池。
本發明的鈣鈦礦太陽能電池的製造方法,包括在一透明 導電基板上形成電洞傳輸層,之後利用兩階段真空蒸鍍製程,在電洞傳輸層上形成鈣鈦礦層。隨後,在鈣鈦礦層形成電子傳輸層,並在電子傳輸層上形成電極層。上述兩階段真空蒸鍍製程包括:先在電洞傳輸層上真空蒸鍍一第一材料,再於第一材料上真空蒸鍍一第二材料,以使第一材料與第二材料臨場反應成為所述鈣鈦礦層。
在本發明的一實施例中,上述鈣鈦礦層包括如下式的結構:ABX3其中,B包括Cu2+、Ni2+、Co2+、Fe2+、Mn2+、Cr2+、Pd2+、Cd2+、Ge2+、Sn2+、Pb2+、Eu2+或Yb2+;X各自獨立地選自Cl-、Br-、I-、NCS-、CN-或NCO-;A包括Li+、Na+、Cs+、Rb+或K+、或為具有1個至15個的碳以及1個至20個的雜原子,該雜原子是選自N、O與S中至少一種。
在本發明的一實施例中,上述鈣鈦礦層可為CH3NH3PbX3,其中X各自獨立地選自Cl-、Br-或I-
在本發明的一實施例中,上述第一材料包括無機材料,如PbI2、PbCl2、PbBr2、SnI2、SnCl2、SnBr2、GeI2、GeCl2或GeBr2
在本發明的一實施例中,上述第二材料包括有機或無機材料,如CH3NH3I、CH3NH3Br、NH4I、NH4Br、HC(NH2)2I、CsI、 CsBr、RbI、RbBr、KI、KBr、NaI、NaBr、LiI或LiBr。
在本發明的一實施例中,在上述第一材料上真空蒸鍍第二材料之方式包括直向蒸鍍或橫向蒸鍍。當藉由直向蒸鍍的方式真空蒸鍍第二材料時,上述透明導電基板的溫度約在室溫以上,如40℃~200℃。
在本發明的一實施例中,在上述電洞傳輸層上真空蒸鍍第一材料期間,還可選擇同時蒸鍍受子材料。
在本發明的一實施例中,在形成上述鈣鈦礦層之後還可進行後回火製程(post-annealing process)。
基於上述,本發明在製作鈣鈦礦層的方法上是選用兩階段真空蒸鍍製程,所以可分別精確控制第一材料與第二材料的蒸鍍參數,如蒸鍍溫度、蒸鍍速率等,所以不但能避免所有濕式製程會帶來的缺點,還能得到穩定且具高轉換效率的鈣鈦礦太陽能電池。
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
100‧‧‧塗有電洞傳輸層之透明導電基板
102、106、200、300‧‧‧蒸鍍源
104‧‧‧第一材料
108、504‧‧‧鈣鈦礦層
110、112a、112b‧‧‧加熱器
302‧‧‧膜層
400‧‧‧電子傳輸層
402‧‧‧電極層
500‧‧‧玻璃
502‧‧‧鍍有PEDOT:PSS的ITO層
圖1至圖2B是依照本發明的一實施例的一種鈣鈦礦太陽能電池的製造流程剖面示意圖。
圖3是依照本發明的另一實施例的一種鈣鈦礦太陽能電池的 製造流程剖面示意圖。
圖4是依照本發明的實施例製作得到的一種鈣鈦礦太陽能電池的示意圖。
圖5A是實驗例中的鈣鈦礦層之SEM側視圖。
圖5B是實驗例中的鈣鈦礦層之SEM上視圖。
圖6是實驗例之鈣鈦礦太陽能電池的電壓-電流特性曲線圖。
圖7是實驗例之鈣鈦礦太陽能電池的外部量子效率量測曲線圖。
圖1至圖2B是依照本發明的一實施例的一種鈣鈦礦太陽能電池的製造流程剖面示意圖,其中顯示製作鈣鈦礦層的步驟。
請參照圖1,在一透明導電基板上先形成電洞傳輸層(HTL),得到如圖1中的塗有電洞傳輸層之透明導電基板100。在本實施例中,所謂的「透明」是指至少部分是可穿透的,如可穿透可見光或者非可見光(如紫外光或紅外光)等。上述透明導電基板100例如是在玻璃或塑膠上鍍有銦錫氧化物(ITO)、摻氟氧化錫(FTO)、ZnO-Ga2O3、ZnO-Al2O3、Sn-O、摻銻氧化錫(ATO)、SrGeO3、氧化鋅等可導電的材料層。至於在透明導電基板上的電洞傳輸層可包括無機或有機的電洞傳輸層。在一實施例中,電洞傳輸層例如非鈣鈦礦結構的電洞傳輸層。如為有機電洞傳輸層,則其中所謂的「有機」並不排除還包括其他成分存在;舉例來說,其他成 分例如可選自(i)一或多種摻質、(ii)一或多種溶劑、(iii)一或多種添加劑如離子化合物及前述組合。譬如在有機電洞傳輸層中可分別含0-30wt%、0-20wt%、0-10wt%的上述其他成分(i)、(ii)與(iii),較佳是都在0-5wt%之間。
接著,為了形成鈣鈦礦層,本發明採用了兩階段真空蒸鍍製程,首先如圖1所示,利用真空蒸鍍將置於蒸鍍源102的第一材料鍍在透明導電基板100有電洞傳輸層的那一面上,以形成第一材料104的膜層。上述第一材料104為無機材料,例如PbI2、PbCl2、PbBr2、SnI2、SnCl2、SnBr2、GeI2、GeCl2或GeBr2
然後,請參照圖2A以及圖2B,利用真空蒸鍍將置於蒸鍍源106或200的第二材料鍍在第一材料(圖1的104)上,以使第一材料與第二材料反應,成為鈣鈦礦層108。上述第二材料包括有機材料或無機材料,如CH3NH3I、CH3NH3Br、NH4I、NH4Br、HC(NH2)2I、CsI、CsBr、RbI、RbBr、KI、KBr、NaI、NaBr、LiI或LiBr。而且,圖2A的是直向蒸鍍的示意圖、圖2B的是橫向蒸鍍的示意圖。無論是直向或者橫向蒸鍍,均可藉由加熱器110、112a、112b等設備,使透明導電基板100的溫度在室溫以上,例如40℃~200℃。
至於上述兩階段真空蒸鍍製程所採用的第一材料與第二材料可自鈣鈦礦層108的分子結構得到,詳見以下說明。
本發明中的「鈣鈦礦」是指具有「鈣鈦礦結構」而非特指鈣鈦礦材料(CaTiO3)。也就是說,「鈣鈦礦」包含具有與鈣鈦氧 化物相同類型的晶體結構之任何材料,且材料中的二價陽離子被兩個分開的一價陽離子取代。上述鈣鈦礦的結構一般為ABX3,其中A與B是陽離子、X是陰離子。所述A陽離子為二價,而M陽離子為四價。在本發明中,鈣鈦礦的式子中的結構包括3個或4個相同或不同之陰離子、1個或2個有機陽離子以及/或1個或2個帶有一個正電荷的金屬原子、和1個或2個帶有兩個或三個正電荷的金屬原子。
舉例來說,在本實施例中的結構式ABX3中,B可包括 Cu2+、Ni2+、Co2+、Fe2+、Mn2+、Cr2+、Pd2+、Cd2+、Ge2+、Sn2+、Pb2+、Eu2+或Yb2+;X各自獨立地選自Cl-、Br-、I-、NCS-、CN-或NCO-;A可為具有1個至15個的碳以及1個至20個的雜原子,其是選自N、O與S中至少一種;A也可包括Li+、Na+、Cs+、Rb+或K+
換言之,製作鈣鈦礦的第一與第二材料可以都是無機材 料;或者選擇一種無機材料搭配一種有機材料所構成的有機無機混成鈣鈦礦。
所述有機無機混成鈣鈦礦因為是混合而成的材料,所以 同時具備有機化合物與無機晶體的特性。無機成分形成由共價與離子交互作用鍵結的骨架(framework),可提供高的載子遷移率(carrier mobility)。有機成分則有助於材料的自組裝機制。而且,能藉由降低有機成分維度(dimensionality)與無機片材之間的電性耦合(electronic coupling),來調整有機無機材料的電性。
這種有機無機混成鈣鈦礦的結構類似於多層量子井結構,具有交替的半導體無機片材和大能階有機層。
有機無機混成鈣鈦礦材料譬如是具有下式(I)、(II)、(III)與(IV)中一種或一種以上的分子結構。
A2BX4 (I)
ABX3 (II)
ACX4 (III)
DBX4 (IV)
在上式(I)~(IV)中,A代表一價有機陽離子、D代表二價有機陽離子。A是選自由一個、兩個、三個或四個有機氨組成的化合物,所述化合物包括含氮的雜環(heterorings)或環系統(ring systems),A具有1個至15個的碳以及1個至20個的雜原子,如一個或兩個正電荷氮原子。D是選自包括具有15個以下的碳的烴類或2至20個雜原子,如一個或兩個正電荷氮原子。此外,雜原子還可進一步從N、O與S中選擇。再者,A和D各自的所述1至20個雜原子還可部分或全部被鹵化。
在上式(I)、(II)與(IV)中,B是二價金屬陽離子,其可選自由Cu2+、Ni2+、Co2+、Fe2+、Mn2+、Cr2+、Pd2+、Cd2+、Ge2+、Sn2+、Pb2+、Eu2+以及Yb2+所組成的群組。B較佳是Sn2+或Pb2+。在上式(III)中,C是三價金屬,如選自由Bi3+與Sb3+所組成的群組。
在上式(I)~(IV)中,X是陰離子化合物,且較佳是三個X或四個X各自獨立地選自Cl-、Br-、I-、NCS-、CN-、NCO-或其組 合。當式(II)中有三個X時,所述鈣鈦礦材料可包括不同鹵素的結合。舉例來說,「X3」可選自I2Cl-3、IBr2 -3、ClxI(3-x) 3、Br(3-x)Ix -3等(其中0<x<3)。「X4」中的四個陰離子也可以是不同鹵素的結合。X較佳是Cl-、Br-或I-
B和C較佳是能通過八面體陰離子配位(octahedral anion coordination)的金屬離子。
在上述有機無機混成鈣鈦礦材料中,較佳是式(II)的結構。
在一較佳實施例中,所述有機無機混成鈣鈦礦層包括下式(V)、(VI)、(VII)、(VIII)、(IX)、(X)中的任一種鈣鈦礦結構。
APbX3 (V)
ASnX3 (VI)
A2PbX4 (VII)
A2SnX4 (VIII)
DPbX4 (IX)
DSnX4 (X)
其中,A、D、X如上述定義。X較佳是選自Cl-、Br-與I-;X更佳是I-
在本發明中,上述有機無機混成鈣鈦礦層例如是式(V)至(VIII)中的任一種鈣鈦礦結構,較佳是上式(V)與/或上式(VI)。
至於,在式(I)至(III)以及式(V)至(VIII)其中任一個中的A,例如是選自下式(1)至(8)的任何一種化合物的一價陽離子。
其中,R1、R2、R3與R4分別獨立表示選自C1至C15的脂肪族以及C4至C15的芳香族取代基,且所述取代基中的任一個、數個或所有的氫可被鹵素取代。另外,如果有兩個或多個碳,則所述取代基中的一半以下的碳可被N、S或O雜原子取代。在式(2)~式(8)的任一個中,取代基(R1、R2、R3與R4)中的兩個或以上可共價地彼此連接而形成一個取代或未取代環或環系統。
在上式(IV)、(IX)和(X)中,D例如是選自下式(9)和(10)的任何一種化合物的二價陽離子。
R1-L-R2 (9)
在式(9)中,L是單鍵或者一種具有1~10個碳的脂肪族或芳香族連結結構,其中L中的任一個、數個或所有的氫可被鹵素取代,且L中的一半以下的碳可獨立地被N、S或O雜原子取代。至於R1和R2分別獨立表示選自以下的取代基(11)至(16)中任一個。
取代基(11)至(16)中的虛線表示連接至連結結構L的鍵。至於R1、R2和R3的定義參見上式(1)至(8)的內容。
R1和R2如果都與取代基(11)不一樣,則可經由其取代基R1、R2和R3共價地彼此連接。而且無論取代基為R1或R2,R1、R2和R3其中任一都可共價連接到L或化合物(10)的環結構。
在化合物(10)中,包含兩個正電荷氮原子的圈代表芳香族環或包括4~15個碳與2~7個雜原子的環系統,其中氮原子是環或環系統的環雜原子,而剩餘的雜原子可分別選自N、O與S。
R5與R6分別獨立表示選自氫以及選自如R1至R4的取代基(substituents),且除了所述2~7個雜原子以外,氫也可被鹵素部分或全部取代。
如果L是單鍵(即無L存在),取代基R1和R2就直接連接而形成N-N鍵,如下式(21)所示。
如果L中的碳數不是雙數,則雜原子的數目較佳是小於碳數。在式(10)的環結構中,環雜原子的數目較佳是小於碳原子的數目。
在式(9)所示的化合物中,L例如是具有1~8個碳的脂肪族或芳香族連結(linker)結構,所述L中的任一個、數個或所有的氫可被鹵素取代,且L中的0~4個碳可獨立地被N、S或O雜原子取代。優選地,L是具有1~6個碳的脂肪族或芳香族連結(linker)結構,其中任一個、數個或所有的氫可被鹵素取代,且L中的0~3個碳可獨立地被N、S或O雜原子取代。此外,在式(9)所示的化合物中,連結結構L例如無N、O與/或S雜原子。
在一實施例中,在式(10)所示的化合物中,包含兩個正電荷氮原子的圈代表芳香族環或包括4~10個碳與2~5個雜原子(含兩個環氮原子)的環系統。
在另一實施例中,式(10)所示的化合物中的環或環系統可以沒有任何O或S雜原子。在再一實施例中,除了所述兩個雜原子以外,式(10)所示的化合物中的環或環系統無任何N、O與/或S雜原子。這並不排除氫被鹵素取代的可能性。
對於本發明所屬技術領域中具有通常知識者而言,如果一種芳香族連結結構、化合物、取代基或環包括4個碳,其包括至少一個環雜原子,以提供所述芳香族化合物。
在一實施例中,R1、R2、R3與R4分別獨立表示選自C1至C8的脂肪族以及C4至C8的芳香族取代基,且所述取代基中的任一個、數個或所有的氫可被鹵素取代。另外,如果有兩個或多個碳,則所述取代基中的一半以下的碳可被N、S或O雜原子取代。在相同陽離子上的兩個或兩個以上之取代基可共價地彼此 連接而形成一個取代或未取代環或環系統。
在又一實施例中,R1、R2、R3與R4分別獨立表示選自C1至C6的脂肪族以及C4至C6的芳香族取代基,且所述取代基中的任一個、數個或所有的氫可被鹵素取代。另外,如果有兩個或多個碳,則所述取代基中的一半以下的碳可被N、S或O雜原子取代。在相同陽離子上的兩個或兩個以上之取代基可共價地彼此連接而形成一個取代或未取代環或環系統。
在另一實施例中,R1、R2、R3與R4分別獨立表示選自C1至C4的脂肪族(較佳是C1至C3;更佳是C1至C2),且所述取代基中的任一個、數個或所有的氫可被鹵素取代。在相同陽離子上的兩個或兩個以上之取代基可共價地彼此連接而形成一個取代或未取代環或環系統。
在再一實施例中,R1、R2、R3與R4分別獨立表示選自C1至C10的烷基、C2至C10的烯基以及C2至C10的炔基,且如果烷基、烯基以及炔基中包括3個以上的碳,可為直鏈、分支或環狀的。取代基中的數個或所有的氫可被鹵素取代。
在又一實施例中,R1、R2、R3與R4分別獨立表示選自C1至C8的烷基、C2至C8的烯基以及C2至C8的炔基,且如果烷基、烯基以及炔基中包括3個以上的碳,可為直鏈、分支或環狀的。取代基中的數個或所有的氫可被鹵素取代。
在另一實施例中,R1、R2、R3與R4分別獨立表示選自C1至C6的烷基、C2至C6的烯基以及C2至C6的炔基,且如果 烷基、烯基以及炔基中包括3個以上的碳,可為直鏈、分支或環狀的。取代基中的數個或所有的氫可被鹵素取代。
在又一實施例中,R1、R2、R3與R4分別獨立表示選自C1至C4的烷基、C2至C4的烯基以及C2至C4的炔基,且如果烷基、烯基以及炔基中包括3個以上的碳,可為直鏈、分支或環狀的。取代基中的數個或所有的氫可被鹵素取代。
在再一實施例中,R1、R2、R3與R4分別獨立表示選自C1至C3的烷基、C2至C3的烯基以及C2至C3的炔基,且如果烷基、烯基以及炔基中包括3個碳,可為直鏈、分支或環狀的。取代基中的數個或所有的氫可被鹵素取代。
在另一實施例中,R1、R2、R3與R4分別獨立表示選自C1至C4的烷基(較佳是C1至C3;更佳是C1至C2)。例如R1、R2、R3與R4中任一為甲基。所述甲基當然也可以部分或完全被鹵化。
根據本發明的一實施例,A和D分別是一價或二價陽離子,可選自經取代或未經取代的含一個、兩個或以上的氮雜原子的C5至C6的環,其中前述氮原子中的一個(就A而言)或兩個(就D而言)是帶正電荷。這種環的取代基可選自鹵素以及如上述定義的C1至C4的烷基、C2至C4的烯基以及C2至C4的炔基,較佳是選自如上述定義的C1至C3的烷基、C3的烯基以及C3的炔基。所述還可包括取代其中的一個或多個碳的雜原子,雜原子例如從N、O與S中選擇。
二價有機陽離子D是以具有兩個帶正電荷的環氮原子為例,如上式(10)所示。這種環可以是芳香族或脂肪族的。
A和D也可以是包括兩個或以上的環的環系統,其中至少有一個是如上述定義的經取代或未經取代的C5至C6的環。式(10)的化合物中呈橢圓的圓也可代表一種包括兩個或以上的環的環系統,但較佳是有兩個環。同樣地,A如果包括兩個環,則進一步會有環雜原子存在,其較佳是未帶電荷。
在一實施例中,有機陽離子A和D可包括一個(就A而言)、兩個(就D而言)或更多氮原子,但不具有O或S或其他雜原子,除了會取代陽離子A和D中的一或多個氫原子的鹵素。
A較佳是具有一個帶正電的氮原子。D較佳是具有兩個帶正電的氮原子。
A例如可選自下式(17)和(18)的環或環系統;而D例如可選自下式(19)至(21)的環或環系統。
其中,R1與R2如上述定義。R3、R4、R5、R6、R7、R8、R9與R10分別獨立選自氫、鹵素與由上述R1至R4定義的取代基。優選地,R3~R10是選自氫與鹵素,較佳是氫。
在上述有機陽離子A和D中,氫可被鹵素取代,例如F、Cl、I和Br;較佳是F或Cl。這種取代可預期到能降低鈣鈦礦層的吸濕特性(hydroscopic property)。
此外,依照本發明的另一實施例的鈣鈦礦太陽能電池的製造流程,還可在真空蒸鍍上述第一材料期間,同時蒸鍍受子材料,如圖3所示。
在圖3中,除了有置於蒸鍍源102的第一材料,還有置 於蒸鍍源300的受子材料,譬如C60、C70、C84、PCBM等,並且在進行共同蒸鍍時能精確控制兩種材料的蒸鍍速率,使所形成的膜層302具有受控制的成分比例。
另外,在形成鈣鈦礦層108之後,如有需要還可進行後回火製程,使鈣鈦礦層完全結晶並將剩餘的第二材料移除。
在完成鈣鈦礦層108的製作後,可在鈣鈦礦層108上形成電子傳輸層(ETL)400,並在電子傳輸層400上形成電極層402,而得到圖4的結構。
上述電子傳輸層400例如是Bphen、BCP、NTCDA、TPBi、TmPyPB、Alq3、PBD、B3PYPB、DPPS等。
上述電極層402的形成可同樣採用真空蒸鍍的技術,且上述電極層402通常包括一種或多種選自包括由Ag、Al、Ca、Pt、Au、Ni、Cu、In、Ru、Rd、Rh、Ir、Os、C、導電高分子及其組合所組成的群組。所述導電高分子例如是選自包括聚苯胺(polyaniline)、聚吡咯(polypyrrole)、聚噻吩(polythiophene)、聚苯(polybenzene)、聚乙炔(polyacetylene)、聚乙烯二氧噻吩(polyethylenedioxythiophene)、聚丙烯二氧噻吩(polypropylene-dioxythiophene)及其組合中的兩種或多種高分子材料。
此外,在本發明的一實施例中,有機無機混成鈣鈦礦層108可為單層或多層,且如果多層,可為相同或不同的材料;較佳則為單層。當太陽能電池具有連續的兩層有機無機混成鈣鈦礦層,且這兩層有機無機混成鈣鈦礦層可以是由相同的分子結構組 成或者由不同的分子結構組成。如果有兩層有機無機混成鈣鈦礦層,則其可吸收不同頻段的光。
如果有數層不同的有機無機混成鈣鈦礦層,則其鈣鈦礦結構可以是不同的成分。在上式(I)至(IX)的結構中之A、B、C、D或X均可變化而得到具有不同特性的鈣鈦礦層。尤其是可改變後續形成的膜層中的A、B、C、D或X,以調整材料的能帶隙(bandgap)。
由於本發明的鈣鈦礦太陽能電池是一種固態太陽能電池,所以不需使用電解質。
在一實施例中,上述鈣鈦礦太陽能電池還可連到集電器(current collector),以收集太陽能電池所發的電力。所述集電器例如導電金屬箔,如鈦箔或鋅箔。至於非透明導電材料如當作集電器,可設在裝置側面而不會擋住入射太陽能電池的光。
以下列舉一實驗例來驗證本發明的太陽能電池之功效,但並不侷限於此。
實驗例
首先,在ITO玻璃上旋塗一層PEDOT:PSS((poly(3,4-ethylendioxythiophene):poly(styrenesulfonate))薄膜作為電洞傳輸層(HTL),然後在形成有PEDOT:PSS的ITO玻璃上利用真空蒸鍍一層約150nm厚的PbCl2膜,其結晶結構具有約100至200奈米的晶疇大小(domain size)。然後在ITO玻璃的溫度高於室溫的條件(65℃~85℃)下,在PbCl2膜上利用真空蒸鍍CH3NH3I,且於 此製程期間PbCl2會與CH3NH3I臨場反應而形成鈣鈦礦層(CH3NH3PbI3-xClx)。然後,在真空中進行一道溫度約100℃的後回火製程(post-annealing process),以使鈣鈦礦層完全結晶並將剩餘的CH3NH3I移除。之後經SEM得到側視圖5A與上視圖5B,可從圖5A可看出500是玻璃、502是鍍有PEDOT:PSS的ITO層、504則是鈣鈦礦層。
然後,在鈣鈦礦層上利用真空蒸鍍依序形成C60/Bphen作為電子傳輸層(ETL)與Ca/Ag作為電極層(陰極),以便完成實驗例之鈣鈦礦太陽能電池的製作。上述的Bphen是4,7-二苯基-1,10-鄰二氮雜菲,作為緩衝層(buffer layer)之用。
完成鈣鈦礦太陽能電池的製作後,使用太陽光模擬器作為光源照射上述太陽能電池,並使用電壓/電流產生器量測不同電壓下所產生的光電流,作成電壓-電流特性曲線圖,如圖6所示。同時,根據圖6結果計算電池之光電轉換效率,光電特性量測結果如下表一所示,具有很高的光電轉換效率。
另外,由外部量子效率(External Quantum Efficiency,EQE)結果顯示,實驗例的太陽能電池於全光波長照射下的光電轉換表現是極為優越的,如圖7所示。
綜上所述,本發明使用兩階段製程真空蒸鍍形成鈣鈦礦 層,所以不但可避免濕式製程所有缺點,還可穩定地製作出高效率的太陽能電池,且具有製程容易、低製作成本、低耗能、材料質輕、可大面積製作、可撓曲等特點。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。
100‧‧‧塗有電洞傳輸層之透明導電基板
108‧‧‧鈣鈦礦層
400‧‧‧電子傳輸層
402‧‧‧電極層

Claims (10)

  1. 一種鈣鈦礦太陽能電池的製造方法,包括:在一透明導電基板上形成電洞傳輸層;利用兩階段真空蒸鍍製程,在該電洞傳輸層上形成鈣鈦礦層;在該鈣鈦礦層上形成電子傳輸層;以及在該電子傳輸層上形成電極層,其中該兩階段真空蒸鍍製程,包括:在該電洞傳輸層上真空蒸鍍一第一材料;以及在該第一材料上真空蒸鍍一第二材料,以使該第一材料與該第二材料反應成為該鈣鈦礦層。
  2. 如申請專利範圍第1項所述的鈣鈦礦太陽能電池的製造方法,其中該鈣鈦礦層包括如下式(II)的結構:ABX3 (II)其中,A包括Li+、Na+、Cs+、Rb+或K+、或是具有1個至15個的碳以及1個至20個的雜原子,該雜原子是選自N、O與S中至少一種;B包括Cu2+、Ni2+、Co2+、Fe2+、Mn2+、Cr2+、Pd2+、Cd2+、Ge2+、Sn2+、Pb2+、Eu2+或Yb2+;X各自獨立地選自Cl-、Br-、I-、NCS-、CN-或NCO-
  3. 如申請專利範圍第2項所述的鈣鈦礦太陽能電池的製造方法,其中該鈣鈦礦層為CH3NH3PbX3,其中X各自獨立地選自Cl-、Br-或I-
  4. 如申請專利範圍第1項所述的鈣鈦礦太陽能電池的製造方 法,其中該第一材料包括PbI2、PbCl2、PbBr2、SnI2、SnCl2、SnBr2、GeI2、GeCl2或GeBr2
  5. 如申請專利範圍第1項所述的鈣鈦礦太陽能電池的製造方法,其中該第二材料包括CH3NH3I、CH3NH3Br、NH4I、NH4IBr、HC(NH2)2I、CsI、CsBr、RbI、RbBr、KI、KBr、NaI、NaBr、LiI或LiBr。
  6. 如申請專利範圍第1項所述的鈣鈦礦太陽能電池的製造方法,其中在該第一材料上真空蒸鍍該第二材料之方式包括直向蒸鍍或橫向蒸鍍。
  7. 如申請專利範圍第1項所述的鈣鈦礦太陽能電池的製造方法,其中真空蒸鍍該第二材料時,該透明導電基板的溫度在室溫以上。
  8. 如申請專利範圍第1項所述的鈣鈦礦太陽能電池的製造方法,其中真空蒸鍍該第二材料時,該透明導電基板的溫度為40℃~200℃之間。
  9. 如申請專利範圍第1項所述的鈣鈦礦太陽能電池的製造方法,其中在該電洞傳輸層上真空蒸鍍該第一材料期間,更包括同時蒸鍍受子材料。
  10. 如申請專利範圍第1項所述的鈣鈦礦太陽能電池的製造方法,其中在形成該鈣鈦礦層之後更包括進行後回火製程。
TW103127779A 2014-08-13 2014-08-13 鈣鈦礦太陽能電池的製造方法 TWI527259B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW103127779A TWI527259B (zh) 2014-08-13 2014-08-13 鈣鈦礦太陽能電池的製造方法
US14/601,239 US9431613B2 (en) 2014-08-13 2015-01-21 Method of fabricating perovskite solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103127779A TWI527259B (zh) 2014-08-13 2014-08-13 鈣鈦礦太陽能電池的製造方法

Publications (2)

Publication Number Publication Date
TW201607071A true TW201607071A (zh) 2016-02-16
TWI527259B TWI527259B (zh) 2016-03-21

Family

ID=55302793

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103127779A TWI527259B (zh) 2014-08-13 2014-08-13 鈣鈦礦太陽能電池的製造方法

Country Status (2)

Country Link
US (1) US9431613B2 (zh)
TW (1) TWI527259B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109935695A (zh) * 2019-03-22 2019-06-25 苏州大学 一种SrGeO3作为电子传输层制备钙钛矿太阳能电池的方法
CN110268537A (zh) * 2017-03-02 2019-09-20 积水化学工业株式会社 太阳能电池和太阳能电池的制造方法
TWI680395B (zh) * 2018-10-10 2019-12-21 大陸商業成科技(成都)有限公司 感測膜及其製備方法、電子裝置
TWI803049B (zh) * 2021-11-11 2023-05-21 國立雲林科技大學 奈米結構修飾之有機元件製造方法及其結構

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107835867A (zh) * 2015-09-11 2018-03-23 学校法人冲绳科学技术大学院大学学园 无铅钙钛矿膜的形成
CN109155366B (zh) 2016-03-18 2023-04-11 洛桑联邦理工学院 高效率大面积钙钛矿太阳能电池及其生产工艺
CN105870360B (zh) * 2016-04-28 2018-11-02 宁波大学 一种钙钛矿太阳能电池及其制备方法
CN107452897B (zh) * 2016-05-31 2020-03-17 清华大学 有机薄膜太阳能电池制备方法和制备装置
WO2018005749A1 (en) * 2016-06-29 2018-01-04 Alliance For Sustainable Energy, Llc Methods for making perovskite solar cells having improved hole-transport layers
KR102068871B1 (ko) * 2016-07-14 2020-01-21 주식회사 엘지화학 유무기 복합 태양전지
CN106033795B (zh) * 2016-07-18 2018-05-08 河南师范大学 一种V2O5和Bphen修饰的钙钛矿太阳能电池的制备方法
US9570240B1 (en) * 2016-08-04 2017-02-14 The United States of America represented by the Secretary of the Air Force Controlled crystallization to grow large grain organometal halide perovskite thin film
CN107275492B (zh) * 2017-05-19 2020-07-03 北京科技大学 引入非溶质基溴化物添加剂制备混合卤素钙钛矿的方法
CN110387227B (zh) * 2018-04-20 2021-03-05 京东方科技集团股份有限公司 钙钛矿薄膜、钙钛矿电致发光器件及制备方法、显示装置
GB2577492B (en) 2018-09-24 2021-02-10 Oxford Photovoltaics Ltd Method of forming a crystalline or polycrystalline layer of an organic-inorganic metal halide perovskite
KR102227526B1 (ko) * 2019-09-19 2021-03-12 한국과학기술연구원 복층 구조의 페로브스카이트 및 그 제조방법
WO2021252601A1 (en) * 2020-06-09 2021-12-16 Ohio State Innovation Foundation Charge or electricity generating devices and methods of making and use thereof
CN111893437A (zh) * 2020-07-16 2020-11-06 中国电子科技集团公司第十八研究所 一种后处理制备梯度带隙钙钛矿薄膜的装置及方法
CN113871539B (zh) * 2021-12-02 2022-03-01 中国华能集团清洁能源技术研究院有限公司 一种钙钛矿太阳能电池的制备方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201213378A (en) 2010-05-17 2012-04-01 Nippon Kayaku Kk Photoelectric conversion element using thermoset sealing agent for photoelectric conversion element
WO2014003294A1 (ko) 2012-06-29 2014-01-03 성균관대학교산학협력단 페로브스카이트 기반 메조다공 박막 태양전지 제조 기술
EP2693503A1 (en) 2012-08-03 2014-02-05 Ecole Polytechnique Fédérale de Lausanne (EPFL) Organo metal halide perovskite heterojunction solar cell and fabrication thereof
CN106206952B (zh) * 2012-09-18 2019-09-06 牛津大学科技创新有限公司 光电器件
CN103346018B (zh) 2013-06-26 2016-08-17 中国科学院青岛生物能源与过程研究所 通过固液反应制备具有钙钛矿结构的碘化物太阳能电池
CN103441217B (zh) 2013-07-16 2015-11-04 华中科技大学 基于钙钛矿类吸光材料的介观太阳能电池及其制备方法
CN103474575B (zh) 2013-09-26 2016-01-27 天津理工大学 一种以硫氧化锌为电子传输层的杂化太阳能电池及其制备
CN103474574A (zh) 2013-09-26 2013-12-25 天津理工大学 一种铝掺杂氧化锌纳米棒为电子传输层的杂化太阳能电池
CN103490011B (zh) 2013-09-30 2016-08-17 中国科学院物理研究所 钙钛矿基薄膜太阳电池及其制备方法
CN103682153B (zh) 2013-11-28 2017-02-08 中国科学院物理研究所 用于钙钛矿型有机卤化铅薄膜太阳能电池的金属‑绝缘层‑半导体背接触界面结构及其制备方法
CN103681886B (zh) 2013-12-26 2017-09-22 中国科学院物理研究所 用于钙钛矿基薄膜太阳电池的支架层及其制备方法
CN103746078B (zh) 2014-01-27 2017-02-15 北京大学 一种钙钛矿太阳能电池及其制备方法
CN103956392A (zh) 2014-02-13 2014-07-30 大连七色光太阳能科技开发有限公司 基于碳对电极的钙钛矿型电池及其制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110268537A (zh) * 2017-03-02 2019-09-20 积水化学工业株式会社 太阳能电池和太阳能电池的制造方法
TWI680395B (zh) * 2018-10-10 2019-12-21 大陸商業成科技(成都)有限公司 感測膜及其製備方法、電子裝置
CN109935695A (zh) * 2019-03-22 2019-06-25 苏州大学 一种SrGeO3作为电子传输层制备钙钛矿太阳能电池的方法
CN109935695B (zh) * 2019-03-22 2022-06-14 苏州大学 一种SrGeO3作为电子传输层制备钙钛矿太阳能电池的方法
TWI803049B (zh) * 2021-11-11 2023-05-21 國立雲林科技大學 奈米結構修飾之有機元件製造方法及其結構

Also Published As

Publication number Publication date
US9431613B2 (en) 2016-08-30
TWI527259B (zh) 2016-03-21
US20160049585A1 (en) 2016-02-18

Similar Documents

Publication Publication Date Title
TWI527259B (zh) 鈣鈦礦太陽能電池的製造方法
Jena et al. Halide perovskite photovoltaics: background, status, and future prospects
Ye et al. Ambient-air-stable lead-free CsSnI3 solar cells with greater than 7.5% efficiency
Zhang et al. Additive engineering for efficient and stable perovskite solar cells
Huang et al. Toward phase stability: Dion–Jacobson layered perovskite for solar cells
Chen et al. Interfacial dipole in organic and perovskite solar cells
Gao et al. Organohalide lead perovskites for photovoltaic applications
Kazim et al. Perovskite as light harvester: a game changer in photovoltaics
Singh et al. Organometal halide perovskites as useful materials in sensitized solar cells
EP3044817B1 (en) Inverted solar cell and process for producing the same
TWI485154B (zh) 具鈣鈦礦結構吸光材料之有機混成太陽能電池及其製造方法
JP6386458B2 (ja) 有機金属ハロゲン化物ペロブスカイトヘテロ接合太陽電池およびその製造方法
Zou et al. Pyridine derivatives’ surface passivation enables efficient and stable carbon-based perovskite solar cells
Chen et al. Zinc ion as effective film morphology controller in perovskite solar cells
JP6304980B2 (ja) ペロブスカイト系材料を用いた光電変換装置
Zhou et al. Toward efficient and stable perovskite solar cells: choosing appropriate passivator to specific defects
KR20190141742A (ko) 장기 고 가동 안정성을 갖는 무기 홀 도체 기초 퍼로브스카이트 광전 전환 장치
Radhakrishna et al. Review on carbazole-based hole transporting materials for perovskite solar cell
WO2017009688A1 (en) Perovskite thin film production method and optoelectronic device
Yang et al. Dual functional doping of KmnO4 in Spiro-OMeTAD for highly effective planar perovskite solar cells
Shen et al. Spiro‐OMeTAD‐Based Hole Transport Layer Engineering toward Stable Perovskite Solar Cells
CN108630825A (zh) 一种高稳定性钙钛矿材料以及方法和器件
Chen et al. Nonhalide materials for efficient and stable perovskite solar cells
Zhu et al. Review of defect passivation for NiO x-based inverted perovskite solar cells
Ng et al. Ionic Charge Transfer complex induced visible light harvesting and photocharge generation in perovskite