TW201601036A - Floating touch input device - Google Patents

Floating touch input device Download PDF

Info

Publication number
TW201601036A
TW201601036A TW103121512A TW103121512A TW201601036A TW 201601036 A TW201601036 A TW 201601036A TW 103121512 A TW103121512 A TW 103121512A TW 103121512 A TW103121512 A TW 103121512A TW 201601036 A TW201601036 A TW 201601036A
Authority
TW
Taiwan
Prior art keywords
position sensor
signal
infrared
pulse
infrared light
Prior art date
Application number
TW103121512A
Other languages
Chinese (zh)
Inventor
李文岑
黃進文
侯博聞
來新泉
何惠森
關會麗
Original Assignee
統晶光電科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 統晶光電科技股份有限公司 filed Critical 統晶光電科技股份有限公司
Priority to TW103121512A priority Critical patent/TW201601036A/en
Publication of TW201601036A publication Critical patent/TW201601036A/en

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

An floating touch input apparatus with floating touch includes an infrared light emitting diode (LED), a position sensing device, and a signal controlling and processing circuit electrically connected to the infrared LED and the position sensing device. The infrared LED projecting an infrared pulse to an object is driven by the signal controlling and processing circuit, and the signal controlling and processing circuit also controls pulse clock of the infrared pulse. An infrared reflecting light had emitted from the infrared LED and reflected by the object is projected to the position sensing device. The position sensing device receives the infrared reflecting light and converts the light into corresponding electrical signal. The signal controlling and processing circuit receives the electrical signal according to the pulse clock and converts an infrared reflecting pulse signal into a digital signal. After that, the digital signal is transmitted to an external microprocessor for calculating distance, position, direction and velocity of the object. The apparatus is applied to a portable electronic equipment.

Description

懸浮控制輸入裝置Suspension control input device

本發明關於輸入裝置,特別是關於一種可應用於可攜式電子產品懸浮控制的輸入裝置。The present invention relates to an input device, and more particularly to an input device that can be applied to suspension control of a portable electronic product.

懸浮控制輸入裝置為一種人機互動裝置,能夠在手勢動作不接觸裝置表面的情況下,檢測控制手勢的相對位置、移動速度與移動方向等信號。這些檢測到的控制手勢可做為控制指令輸入給安裝有此裝置的電子產品,前述控制指令例如向左翻頁、向右翻頁、向下翻頁、向上翻頁、點選等。懸浮控制輸入裝置在可攜式電子產品中,例如智慧型手機、平板電腦等,具有越來越廣泛的應用。The suspension control input device is a human-machine interaction device capable of detecting signals such as relative position, moving speed and moving direction of the control gesture without the gesture action contacting the surface of the device. These detected control gestures can be input as control commands to an electronic product on which the device is mounted, such as page turning to the left, page turning to the right, page turning down, page turning up, clicking, and the like. Suspension control input devices are more and more widely used in portable electronic products, such as smart phones, tablets, and the like.

傳統的懸浮控制輸入裝置通常利用攝影機截取影像,並將攝影機得到的影像做軟體處理和分析,以辨識手勢的各個控制動作;然而,這種方法的耗電流很大,不適用使用電池的可攜式電子產品使用。Conventional levitation control input devices usually use a camera to capture images and perform software processing and analysis on the images obtained by the camera to recognize various control actions of the gestures; however, this method consumes a large amount of current and is not suitable for battery-operated portability. Use of electronic products.

另一種傳統的懸浮控制輸入裝置還採用多光源架構,其由三個或超過三個的光源、一個光電感測器及一個處理單元組成。配合參閱第一圖,為習知多光源架構之懸浮控制輸入裝置的架構圖。懸浮控制輸入裝置1包含一第一發光二極體(light emitting diode,LED)10、一第二發光二極體12、一第三發光二極體14、一光電感測器16及一處理單元18。第一發光二極體10及第二發光二極體12設置在光電感測器16的相對兩側,第三發光二極體14位於第一發光二極體10或第二發光二極體12的下方,並與第一發光二極體10或第二發光二極體12連線垂直的地方;在這裡,第三發光二極體14是位在第二發光二極體12 的下方,並與第二發光二極體10連線垂直的地方。Another conventional suspension control input device also employs a multi-source architecture consisting of three or more than three light sources, a photo-electrical sensor, and a processing unit. Referring to the first figure, it is an architectural diagram of a floating control input device of a conventional multi-source architecture. The suspension control input device 1 includes a first light emitting diode (LED) 10, a second light emitting diode 12, a third light emitting diode 14, an optical sensor 16 and a processing unit. 18. The first light emitting diode 10 and the second light emitting diode 12 are disposed on opposite sides of the photodetector 16 , and the third light emitting diode 14 is located on the first light emitting diode 10 or the second light emitting diode 12 . Below the line, and perpendicular to the first light-emitting diode 10 or the second light-emitting diode 12; here, the third light-emitting diode 14 is located below the second light-emitting diode 12, and A place perpendicular to the line connecting the second light emitting diode 10.

處理單元18產生控制信號,使第一發光二極體10、第二發光二極體12,以及第三發光二極體14輪流發光。第一發光二極體10、第二發光二極體12以及第三發光二極體14發出的光線係用以照射一物體(未圖示)。The processing unit 18 generates a control signal to cause the first light emitting diode 10, the second light emitting diode 12, and the third light emitting diode 14 to alternately emit light. The light emitted from the first light-emitting diode 10, the second light-emitting diode 12, and the third light-emitting diode 14 is used to illuminate an object (not shown).

光電感測器16接收物體反射第一發光二極體10、第二發光二極體12或第三發光二極體14發出的光線,申言之,光電感測器16係用以接收經物體反射後的反射光線。光電感測器16同步感應反射光線並產生對應反射光線的電信號。處理單元18接收上述電信號,並藉由上述電信號以判斷物體的相對位置、移動速度與移動方向。The photo-sensing device 16 receives the light emitted by the first light-emitting diode 10, the second light-emitting diode 12 or the third light-emitting diode 14, and the photo-inductor 16 is used to receive the object. Reflected light after reflection. The photoinductor 16 synchronously senses the reflected light and produces an electrical signal corresponding to the reflected light. The processing unit 18 receives the electrical signal and determines the relative position, moving speed and moving direction of the object by the electrical signal.

懸浮控制輸入裝置1的多光源架構會造成體積大且耗能高的問題,不便於懸浮控制輸入裝置1的往小型化和集成化的方向發展。The multi-light source architecture of the suspension control input device 1 causes a problem of large volume and high energy consumption, which is inconvenient for the miniaturization and integration of the suspension control input device 1.

配合參閱第二圖,為習知具有多分區光電感測器之懸浮控制輸入裝置之架構圖。第二圖所示的懸浮控制輸入裝置2包含一個發光元件20、多個光電感測器或一個分區光電感測器22以及一個處理單元24。在這裡,多區光電感測器22以具有四個區塊的多區光電感測器作為說明範例,且在第二圖中,四個區塊分別標示以a、b、c、d。處理單元24控制發光元件20發光,物體反射發光元件20發出的光線到分區光電感測器22的不同區塊,分區光電感測器22的不同區塊同時感測反射光線,並產生對應的感應電信號,區塊間感應電信號的相對幅度指示出物體的相對位置,處理單元24接收並處理來自分區光電感測器22的感測數據,判斷對應於分區光電感測器22的移動速度與移動方向。Referring to the second figure, it is an architectural diagram of a floating control input device having a multi-partition photodetector. The levitation control input device 2 shown in the second figure comprises a illuminating element 20, a plurality of photoinductors or a zoned photoinductor 22 and a processing unit 24. Here, the multi-zone photo-sensing device 22 is exemplified by a multi-region photodetector having four blocks, and in the second figure, four blocks are denoted by a, b, c, and d, respectively. The processing unit 24 controls the light-emitting element 20 to emit light, and the object reflects the light emitted by the light-emitting element 20 to different blocks of the partitioned photo-electrical sensor 22, and different blocks of the partitioned photo-electrical sensor 22 simultaneously sense the reflected light and generate corresponding sensing. The electrical signal, the relative amplitude of the inter-block induced electrical signal indicates the relative position of the object, and the processing unit 24 receives and processes the sensed data from the partitioned photo-inductor 22 to determine the speed of movement corresponding to the partitioned photo-inductor 22 Move direction.

與多光源架構相比,此單光源架構更精簡、成本更為低廉,但其解析度低。雖然增加分區光電感測器22的區塊數量可以增強解析度,但這樣會增加懸浮控制輸入裝置2的整體面積,也對技術水準提出了較高要求。Compared to multi-source architectures, this single-source architecture is more streamlined and less expensive, but has a lower resolution. Although increasing the number of blocks of the partitioned photo-inductor 22 can enhance the resolution, this increases the overall area of the levitation control input device 2, and also imposes high demands on the technical level.

本發明的目的在於針對現有技術的不足,提出一種懸浮控制輸入裝置,主要解決現有懸浮控制輸入裝置存在體積大以及檢測信號不連續的現象。本發明提出的懸浮控制輸入裝置採用單個發光二極體及單個位置感測器,以減小懸浮控制輸入裝置的尺寸以及耗電流,並可檢測物體的連續變化。The object of the present invention is to provide a suspension control input device for the deficiencies of the prior art, which mainly solves the problem that the existing suspension control input device has a large volume and the detection signal is discontinuous. The suspension control input device proposed by the present invention employs a single light emitting diode and a single position sensor to reduce the size and current consumption of the floating control input device and to detect continuous changes of the object.

為實現上述目的,本發明包含至少一個紅外光發光二極體、至少一個可判別方位的位置感測器、至少一個位於位置感測器上方的成像模組,以及一個信號控制與處理電路。To achieve the above object, the present invention comprises at least one infrared light emitting diode, at least one positionally identifiable position sensor, at least one imaging module positioned above the position sensor, and a signal control and processing circuit.

所述發光二極體選用紅外發光二極體,係因1. 紅外發光二極體發出的紅外光可以避免人眼的不適感;2. 採用紅外光使懸浮控制輸入裝置具有快速響應能力,有效地突顯了信號的同步特點;3. 在位置感應器的上方鍍上供紅外反射脈衝通過之光學鍍膜,阻隔或降低環境背景光的影響,並且大幅提高訊雜比(signal-to-noise ratio)。The light-emitting diode adopts an infrared light-emitting diode, which is because the infrared light emitted by the infrared light-emitting diode can avoid the discomfort of the human eye; 2. the infrared light is used to make the suspension control input device have a fast response capability, and is effective The ground accentuates the synchronization characteristics of the signal; 3. The optical coating for the infrared reflection pulse is plated on top of the position sensor to block or reduce the influence of the ambient background light, and greatly improve the signal-to-noise ratio. .

所述位置感測器包含至少一個P層結構和一個N層結構、至少一對光電流輸出電極和一個公共電極,P層結構和N層結構之間形成PN接面,P層結構和N層結構中摻雜濃度高的一層作為公共電極的引出端,摻雜濃度低的一層結構呈現高阻抗特性,其邊緣作為光電流輸出電極的引出端,位置感測器接收頻譜範圍內光的強度,根據光強及光強的重心位置即時輸出電信號給信號控制與處理電路。The position sensor comprises at least one P layer structure and one N layer structure, at least one pair of photocurrent output electrodes and one common electrode, and a PN junction, a P layer structure and an N layer are formed between the P layer structure and the N layer structure. A layer with a high doping concentration in the structure serves as a terminal for the common electrode, and a layer having a low doping concentration exhibits a high-impedance characteristic, the edge of which is the terminal of the photocurrent output electrode, and the position sensor receives the intensity of light in the spectral range. The electric signal is immediately output to the signal control and processing circuit according to the position of the center of gravity of the light intensity and the light intensity.

所述信號控制與處理電路與位置感測器、紅外光二極體以及外部之微處理器電性相連,藉以1. 控制紅外發光二極體的發出之紅外光脈衝的脈衝時序與脈衝強度;2. 接收並處理紅外發光二極體發出之紅外光脈衝的脈衝時序同步之位置感測器產生之電信號;3. 將位置感測器產生之電信號中對應於紅外反射光脈衝的紅外反射光脈衝信號及對應於環境背景光的環境背景光信號分離,並將紅外反射光脈衝信號轉換成數位信號,並傳給外部之微處理器。The signal control and processing circuit is electrically connected to the position sensor, the infrared light diode and the external microprocessor, thereby controlling the pulse timing and pulse intensity of the infrared light pulse emitted by the infrared light emitting diode; Receiving and processing an electrical signal generated by a position sensor synchronized by a pulse timing of an infrared light pulse emitted by the infrared light emitting diode; 3. an infrared reflected light corresponding to the infrared reflected light pulse in the electrical signal generated by the position sensor The pulse signal and the ambient background light signal corresponding to the ambient background light are separated, and the infrared reflected light pulse signal is converted into a digital signal and transmitted to an external microprocessor.

上述位置感測器可以傳統互補式金屬氧化物半導體(Complementary Metal-Oxide-Semiconductor,簡稱CMOS)技術兼容。The above position sensor can be compatible with a conventional complementary metal-oxide-semiconductor (CMOS) technology.

上述位置感測器和信號控制與處理電路可整合在單一集成電路上。The position sensor and signal control and processing circuitry described above can be integrated on a single integrated circuit.

上述位置感測器可以感測其接收頻率範圍內的所有光,包括環境背景光,也包括由紅外發光二極體發出之紅外光脈衝遇到物體反射後,經過成像模組後成像在位置感測器上的紅外反射光脈衝。The position sensor can sense all the light in the receiving frequency range, including the ambient background light, and the infrared light pulse emitted by the infrared light emitting diode is reflected by the object, and is imaged in the position sense after passing through the imaging module. Infrared reflected light pulse on the detector.

上述位置感測器可採用至少一個一維位置感測器,也可採用一個二維位置感測器。The position sensor can employ at least one one-dimensional position sensor or a two-dimensional position sensor.

上述信號與處理電路包含位置感測器光電流運算單元、至少一類比數位轉換器(Analog-to-digital converter,簡稱ADC)、一暫存器、一時序控制電路、一紅外發光二極體電流驅動電路,以及一通訊介面。The signal and processing circuit includes a position sensor photocurrent operation unit, at least one analog-to-digital converter (ADC), a temporary register, a timing control circuit, and an infrared light emitting diode current. Drive circuit, and a communication interface.

所述位置感測器光電流運算單元用以1. 接收輸入到信號控制與處理電路的電信號;2. 受時序控制電路控制,對電信號進行運算;3. 輸出運算後的電信號給類比數位轉換器。The position sensor photocurrent operation unit is configured to: 1. receive an electrical signal input to the signal control and processing circuit; 2. control the electrical signal by the timing control circuit; 3. output the calculated electrical signal to the analogy Digital converter.

所述類比數位轉換器受時序控制電路的控制,在每個類比數位轉換器轉換週期將位置感測器光電流運算單元輸入的電信號同步轉換為二進制數位量,並輸出給暫存器。The analog digital converter is controlled by the timing control circuit, and the electrical signal input by the position sensor photocurrent operation unit is synchronously converted into a binary digit amount in each analog-to-digital converter conversion period, and output to the temporary register.

所述通訊介面1. 受時序控制電路的控制,將暫存器中的二進制值作為信號控制與處理電路的輸出送給外部之微處理器;2. 接收外部之微處理器的資料,並輸出給時序控制電路。The communication interface is controlled by the timing control circuit, and sends the binary value in the register as an output of the signal control and processing circuit to the external microprocessor; 2. receives the data of the external microprocessor, and outputs Give the timing control circuit.

所述紅外發光二極體電流驅動電路在時序控制電路的控制下,產生驅動信號,作為信號控制與處理電路的輸出控制紅外發光二極體發出紅外光脈衝。The infrared light emitting diode current driving circuit generates a driving signal under the control of the timing control circuit, and controls the infrared light emitting diode to emit an infrared light pulse as an output of the signal control and processing circuit.

所述時序控制電路,1. 控制紅外發光二極體電流驅動電路,使其輸出控制紅外發光二極體的發出之紅外光脈衝的脈衝時序與脈衝強度的驅動信號;2. 控制位置感測器光電流運算單元的運算法則;3. 控制類比數位轉換器的轉換時序;4. 控制通訊介面與外部之微處理器的通訊。The timing control circuit, 1. controlling the infrared light emitting diode current driving circuit to output a driving signal for controlling the pulse timing and pulse intensity of the infrared light pulse emitted by the infrared light emitting diode; 2. controlling the position sensor The algorithm of the photocurrent operation unit; 3. Controls the conversion timing of the analog digital converter; 4. Controls the communication between the communication interface and an external microprocessor.

上述信號控制與處理電路,其信號處理的具體方法,包含如下步驟:The above signal control and processing circuit, the specific method of signal processing, comprises the following steps:

1. 時序控制電路通過紅外發光二極體電流驅動電路控制紅外發光二極體發出紅外光脈衝;1. The timing control circuit controls the infrared light emitting diode to emit an infrared light pulse through an infrared light emitting diode current driving circuit;

2. 在紅外發光二極體發出紅外光脈衝時,位置感測器光電流運算單元對輸入的各路電信號進行加減運算,得到代表某一感測維度位置和環境背景光的電信號;2. When the infrared light emitting diode emits an infrared light pulse, the position sensor photocurrent computing unit adds and subtracts the input electrical signals to obtain an electrical signal representing a sensing dimension position and an ambient background light;

3. 類比數位轉換器同步將步驟2所產生的電信號轉換為二進制值,所述二進制值代表了沿所述維度方向的位置和環境背景光;3. The analog-to-digital converter synchronizes the electrical signal generated in step 2 into a binary value that represents the position along the dimension and ambient ambient light;

4. 在紅外發光二極體不發出紅外光脈衝時,位置感測器光電流運算單元對輸入的各個支路的電信號進行與步驟2相同的運算,得到代表所述維度環境背景光的電信號;4. When the infrared light emitting diode does not emit an infrared light pulse, the position sensor photocurrent operation unit performs the same operation as the step 2 on the electrical signals of the input branches to obtain the electric light representing the ambient background light of the dimension. signal;

5. 類比數位轉換器同步將步驟4所產生的電信號轉換為二進制值,所述二進制值代表了沿所述維度方向的環境背景光;5. The analog-to-digital converter synchronizes the electrical signal generated in step 4 into a binary value that represents the ambient background light in the direction of the dimension;

6. 步驟3所產生的二進制值扣除步驟5所產生的二進制值即可代表所述維度的位置;6. The binary value generated in step 3 is deducted from the binary value generated in step 5 to represent the position of the dimension;

7. 重複步驟2到步驟6,暫存器可得到代表N(N≧1)維度的位置,可通過通訊介面將暫存器的資料傳送到外部之微處理器,外部之微處理器通過計算分析,判斷物體的相對遠近、位置、移動速度、移動方向以移動速度。7. Repeat step 2 to step 6. The scratchpad can get the position representing the N(N≧1) dimension. The data of the scratchpad can be transferred to the external microprocessor through the communication interface, and the external microprocessor passes the calculation. Analysis, to determine the relative distance, position, moving speed, moving direction of the object to move speed.

上述步驟2和步驟4中所述的對輸入的各路電信號進行加減運算,也可以省去不做,只是選擇某一路電信號。The addition and subtraction of the input electrical signals described in the above steps 2 and 4 may also be omitted, and only a certain electrical signal is selected.

上述步驟4到步驟6可省略,由步驟3得到的二進制值即代表所述維度的位置。Steps 4 through 6 above may be omitted, and the binary value obtained in step 3 represents the position of the dimension.

上述信號控制與處理電路可在暫存器和位置感測器光電流運算單元之間增加一個反饋模組,所述反饋模組可在時序控制電路的控制下,將暫存器中的某一資料值經過數為類比轉換器(Digital to analog converter,簡稱DAC)的轉換後(轉換後還可以乘以一個係數,或者減去一個常數)反饋給位置感測器光電流運算單元以作運算。The signal control and processing circuit can add a feedback module between the register and the position sensor photocurrent operation unit, and the feedback module can control one of the registers under the control of the timing control circuit. After the data value is converted into a digital to analog converter (DAC) (after conversion, it can be multiplied by a coefficient, or subtracted by a constant), it is fed back to the position sensor photocurrent operation unit for calculation.

本發明與習知技術相比具有以下優點:The present invention has the following advantages over the prior art:

1. 本發明相比於多光源架構的懸浮控制輸入裝置,減少了光源數量,減小了懸浮控制輸入裝置的體積,節省了成本與功耗。1. Compared with the suspension control input device of the multi-light source architecture, the invention reduces the number of light sources, reduces the volume of the suspension control input device, and saves cost and power consumption.

2. 本發明相比於多個光電感測器架構的懸浮控制輸入裝置,或者分區光電感測器架構的懸浮控制輸入裝置,可檢測物體動作的連續變化信息。2. The present invention can detect continuous change information of an object's motion compared to a suspension control input device of a plurality of photo-inductor architectures or a suspension control input device of a partitioned photo-inductor architecture.

3. 本發明相比於採用攝影機的懸浮控制輸入裝置,耗電流很小,適合採用電池的可攜式電子產品使用。3. Compared with the suspension control input device using the camera, the invention consumes a small current and is suitable for portable electronic products using batteries.

4. 本發明中的位置感測器可與互補式金屬氧化物半導體技術兼容,位置感測器與信號控制與處理電路可集成在一集成電路上。4. The position sensor of the present invention is compatible with complementary metal oxide semiconductor technology, and the position sensor and signal control and processing circuitry can be integrated on an integrated circuit.

5. 本發明選用紅外發光二極體,其發出的紅外光可避免人眼的不適感;採用紅外光使輸入裝置具有快速響應能力,有效地突顯了信號的同步特點;在位置感測器的上方形成供只讓紅外反射光脈衝穿通過之光學鍍膜,可阻隔或降低環境背景光的影響,並且大幅提高訊雜比。5. The invention selects the infrared light emitting diode, and the infrared light emitted by the invention can avoid the discomfort of the human eye; the infrared light is used to make the input device have a fast response capability, effectively highlighting the synchronization characteristics of the signal; in the position sensor An optical coating is formed on the upper side for allowing only the infrared reflected light to pass through, which can block or reduce the influence of the ambient backlight and greatly improve the signal-to-noise ratio.

請參考隨附圖示,本發明揭示內容之以上及額外目的、特徵及優點將透過本揭示內容之較佳實施方式之以下闡釋性及非限制性詳細描敘予以更好地理解。The above and other objects, features and advantages of the present invention will become more apparent from

本發明的懸浮控制裝置可應用於可攜式電子產品之懸浮控制。本發明的懸浮控制裝置包含至少一個紅外發光二極體、至少一個可判別方位的位置感測器、至少一個位於位置感測器上方的成像模組,以及一個信號控制與處理電路。信號控制與處理電路電性連接於紅外發光二極體及位置感測器,信號控制與處理電路直接驅動紅外發光二極體發出紅外光脈衝,並控制紅外光發光二極體發出之紅外光脈衝的脈衝時序。紅外光脈衝用於照射前方物體,所述之物體可例如為手。The suspension control device of the present invention can be applied to suspension control of portable electronic products. The levitation control device of the present invention comprises at least one infrared illuminating diode, at least one identifiable position sensor, at least one imaging module located above the position sensor, and a signal control and processing circuit. The signal control and processing circuit is electrically connected to the infrared light emitting diode and the position sensor, and the signal control and processing circuit directly drives the infrared light emitting diode to emit an infrared light pulse, and controls the infrared light pulse emitted by the infrared light emitting diode. Pulse timing. Infrared light pulses are used to illuminate the object in front, which may for example be a hand.

所述物體會反射前述紅外光脈衝並形成紅外反射光脈衝,紅外反射光脈衝透過成像模組投射於位置感測器。位置感測器將所接收之紅外反射光脈衝及環境背景光轉換成相對於各方向坐標軸之電信號,所述成像模組可採用一個光學透鏡或者一個機械結構,將紅外反射光投射於位置感測器。The object reflects the infrared light pulse and forms an infrared reflected light pulse, and the infrared reflected light pulse is projected through the imaging module to the position sensor. The position sensor converts the received infrared reflected light pulse and the ambient background light into electrical signals with respect to the coordinate axes of the respective directions, and the imaging module can adopt an optical lens or a mechanical structure to project the infrared reflected light to the position. Sensor.

信號控制與處理電路依紅外光脈衝的脈衝時序,同步接收與處理位置感測器產生之電信號。信號控制與處理電路將電信號中對應於紅外反射光脈衝的紅外反射光脈衝信號及對應於環境背景光的環境背景光信號分離,並將紅外反射光脈衝信號轉換成數位信號傳給外部之微處理器進行物體之遠近、移動方向與移動速度之計算。The signal control and processing circuit synchronously receives and processes the electrical signals generated by the position sensors according to the pulse timing of the infrared light pulses. The signal control and processing circuit separates the infrared reflected light pulse signal corresponding to the infrared reflected light pulse and the ambient background light signal corresponding to the ambient background light, and converts the infrared reflected light pulse signal into a digital signal and transmits the signal to the external micro The processor calculates the distance, direction of movement and speed of the object.

所述位置感測器可採用兩個一維的位置感測器或者一個兩維的位置感測器,位置感測器包含至少一個P層結構和一個N層結構、至少一對位置信號電極和一個公共電極,P層結構(N層結構)作為公共電極的引出端,N層結構(P層結構)呈現高阻特性,其邊緣作為輸出電極的引出端,輸出電極可從N層結構(P層結構)的邊緣引出,也可從其四個角引出。位置感測器接收頻譜範圍內光(包含紅外反射光脈衝及環境背景光)的強度以及重心位置,將光強及位置即時轉換成相對於各方向坐標軸的電信號。The position sensor can employ two one-dimensional position sensors or a two-dimensional position sensor, the position sensor comprising at least one P-layer structure and one N-layer structure, at least one pair of position signal electrodes and A common electrode, P-layer structure (N-layer structure) as the terminal of the common electrode, N-layer structure (P-layer structure) exhibits high-resistance characteristics, the edge serves as the output end of the output electrode, and the output electrode can be from the N-layer structure (P The edge of the layer structure is taken out and can also be drawn from its four corners. The position sensor receives the intensity of the light in the spectrum range (including the infrared reflected light pulse and the ambient background light) and the position of the center of gravity, and instantly converts the light intensity and position into electrical signals with respect to the coordinate axes of the respective directions.

所述信號控制與處理電路與位置感測器以及紅外發光二極體電性相連,藉以1. 直接驅動紅外發光二極體發出之紅外光脈衝,並控制紅外光脈衝的脈衝時序及強度,2. 接收並處理與紅外發光二極體發出之紅外光脈衝的脈衝時序同步之位置感測器產生之電信號,3. 將位置感測器產生之電信號中對應於紅外反射光脈衝的紅外反射光脈衝信號及對應於環境背景光的環境背景光信號分離,並將紅外反射光脈衝信號轉換成數位信號,並傳給外部之微處理器。The signal control and processing circuit is electrically connected to the position sensor and the infrared light emitting diode, thereby directly driving the infrared light pulse emitted by the infrared light emitting diode and controlling the pulse timing and intensity of the infrared light pulse, 2 Receiving and processing an electrical signal generated by a position sensor synchronized with a pulse timing of an infrared light pulse emitted by the infrared light emitting diode, 3. an infrared reflection corresponding to the infrared reflected light pulse in the electrical signal generated by the position sensor The optical pulse signal and the ambient background optical signal corresponding to the ambient background light are separated, and the infrared reflected optical pulse signal is converted into a digital signal and transmitted to an external microprocessor.

外部之微處理器可通過接收到的數位信號進行物體之遠近、位置、移動方向和移動速度之計算。The external microprocessor can calculate the distance, position, moving direction and moving speed of the object through the received digital signal.

與具有攝影機的懸浮控制輸入裝置架構相比,本發明的懸浮控制輸入裝置的耗電流和成本更低;與具有多光源的懸浮控制輸入裝置架構相比,單光源架構更精簡,體積更小,性價比更高;與具有多光電感測器或者多分區的一個光電感測器的懸浮控制輸入裝置的架構相比,本發明的單位置感測器架構可檢測物體動作的連續變化信息。本發明的懸浮控制輸入裝置的另一個優點是,使用者不需要啟動觸控螢幕控制器或使用機械按鈕,即可通過物體動作來發出設備指令。這顯著節省了能耗。Compared with the suspension control input device architecture with camera, the suspension control input device of the present invention has lower current consumption and cost; compared with the suspension control input device architecture with multiple light sources, the single light source architecture is more compact and smaller. The cost performance is higher; the single position sensor architecture of the present invention can detect continuous change information of object motion as compared to the architecture of a floating control input device having a multi-optical detector or a multi-zone optical sensor. Another advantage of the levitation control input device of the present invention is that the user can issue device commands through object motion without having to activate the touch screen controller or use mechanical buttons. This significantly saves energy.

針對所述位置感測器之輸出電極引出位置的不同,本發明給出了如下兩個實施方式:For the difference in the output electrode extraction position of the position sensor, the present invention provides the following two embodiments:

實施方式1Embodiment 1

配合參閱第三圖,為本發明第一實施方式之懸浮控制輸入裝置之架構圖。第三圖所示之懸浮控制輸入裝置3包含一個紅外發光二極體30、一個兩維的可判別方位的位置感測器(Position Sensitive Device,簡稱PSD)32、一個位於位置感測器32上方的成像模組34,以及一個信號控制與處理電路36。位置感測器32的輸出電極X1、X2、Y1以及Y2從位置感測器32的四個邊引出。成像模組34可以包含一個光學透鏡或一個機械結構。Referring to the third figure, it is an architectural diagram of a suspension control input device according to a first embodiment of the present invention. The levitation control input device 3 shown in the third figure comprises an infrared illuminating diode 30, a two-dimensional position-sensing position sensor (PSD) 32, and a position sensor 32. The imaging module 34, and a signal control and processing circuit 36. The output electrodes X1, X2, Y1, and Y2 of the position sensor 32 are taken from the four sides of the position sensor 32. Imaging module 34 can include an optical lens or a mechanical structure.

在懸浮控制輸入裝置3中,信號控制與處理電路36控制紅外發光二極體30發出之紅外光脈衝的脈衝時序與強度。位置感測器32將環境背景光,以及物體反射紅外光脈衝形成之紅外反射光脈衝通過成像模組34所成像之紅外影像轉換為電信號IX1 、IX2 、IY1 、IY2 。信號控制與處理電路36依紅外光脈衝的脈衝時序接收電信號IX1 、IX2 、IY1 、IY2 。之後,信號控制與處理電路36將電信號IX1 、IX2 、IY1 、IY2 中對應於紅外反射光脈衝的紅外反射光脈衝信號,以及對應於環境背景光的環境背景光信號分離,再將紅外反射光脈衝信號轉換成數位信號以傳給外部之微處理器MCU。外部之微處理器MCU通過這些數位信號進行物體之遠近、位置、移動速度、移動方向與移動速度之計算。In the levitation control input device 3, the signal control and processing circuit 36 controls the pulse timing and intensity of the infrared light pulse emitted from the infrared illuminating diode 30. The position sensor 32 converts the ambient background light and the infrared reflected light pulse formed by the object reflected infrared light pulse into the infrared image imaged by the imaging module 34 into electrical signals I X1 , I X2 , I Y1 , I Y2 . The signal control and processing circuit 36 receives the electrical signals I X1 , I X2 , I Y1 , I Y2 in accordance with the pulse timing of the infrared light pulses. Thereafter, the signal control and processing circuit 36 separates the infrared reflected light pulse signals corresponding to the infrared reflected light pulses of the electrical signals I X1 , I X2 , I Y1 , I Y2 , and the ambient background light signals corresponding to the ambient background light, and then The infrared reflected light pulse signal is converted into a digital signal for transmission to an external microprocessor MCU. The external microprocessor MCU uses these digital signals to calculate the distance, position, moving speed, moving direction and moving speed of the object.

紅外發光二極體30發出的紅外光脈衝為不可見光,可避免人眼的不適感;其次,採用紅外光使懸浮控制輸入裝置3具有快速響應能力,有效地突顯了信號的同步特點;在位置感測器32的上方鍍上只讓紅外光通過之光學鍍膜,可阻隔或降低環境背景光的影響,並且大幅提高訊雜比。The infrared light pulse emitted by the infrared light emitting diode 30 is invisible light, which can avoid the discomfort of the human eye. Secondly, the infrared light is used to make the floating control input device 3 have a fast response capability, effectively highlighting the synchronization characteristics of the signal; The upper surface of the sensor 32 is plated with an optical coating that allows only infrared light to pass through, which can block or reduce the influence of the ambient backlight and greatly improve the signal-to-noise ratio.

位置感測器32可與互補式金屬氧化物半導體(Complementary Metal-Oxide-Semiconductor,簡稱CMOS)技術兼容,通常與信號控制與處理電路36集成在同一晶片上。位置感測器32典型架構的立體圖、剖視圖、等效電路圖以及有效感測區(active area)示意圖分別如第四A圖、第四B圖、第四C圖和第四D圖所示。從第四B圖可知,位置感測器32由P+層結構、N層結構、公共電極C以及至少一對的輸出電極X1及X2組成,P+層結構和N層結構之間形成PN接面,N層結構相對於P+層結構來說,具有高阻抗特性,輸出電極X1及X2位於N層結構的邊緣。當有光線照射到位置感測器32的表面,在照射位置處的PN接面處會產生與照射光強成正比的電子,這些電子會被輸出電極X1及X2所吸收,輸出電極X1及X2吸收電子的能力與光照射位置與輸出電極X1及X2之間的等效阻抗成反比。The position sensor 32 is compatible with Complementary Metal-Oxide-Semiconductor (CMOS) technology and is typically integrated on the same wafer as the signal control and processing circuit 36. A perspective view, a cross-sectional view, an equivalent circuit diagram, and an effective active area diagram of a typical architecture of the position sensor 32 are shown in the fourth A diagram, the fourth B diagram, the fourth C diagram, and the fourth D diagram, respectively. As can be seen from the fourth B-picture, the position sensor 32 is composed of a P+ layer structure, an N-layer structure, a common electrode C, and at least one pair of output electrodes X1 and X2, and a PN junction is formed between the P+ layer structure and the N-layer structure. The N-layer structure has high impedance characteristics with respect to the P+ layer structure, and the output electrodes X1 and X2 are located at the edge of the N-layer structure. When light is incident on the surface of the position sensor 32, electrons proportional to the intensity of the illumination light are generated at the PN junction at the illumination position, and these electrons are absorbed by the output electrodes X1 and X2, and the output electrodes X1 and X2 are output. The ability to absorb electrons is inversely proportional to the equivalent illumination impedance between the output electrodes X1 and X2.

第四A圖所示為典型的二維、且從四邊引出電極的位置感測器32的立體圖,其等效電路圖如第四C圖所示。在第4C圖中,P為暗電流源,D為理想二極體,Cj為接面電容,Rsh為分流電阻,Rp為定位電阻。四個輸出電極X1、X2、Y1、Y2分別位於N層結構的四個邊緣,公共電極C需要設置電壓使位置感測器32處於零偏或者反偏狀態。由第四D圖所示,有效感測區A的表面阻抗在有效感測區A內均勻分布,因此,光照射位置與輸出電極之間的等效阻抗與其之間的距離成正比。假設有效感測區A沿x軸的長度為Lx ,沿y軸的長度為Ly ,有一束光照射到位置感測器32的(x,y)位置,位置感測器32的四個輸出電極X1、X2、Y1、Y2分別輸出電信號IX1 、IX2 、IY1 、IY2 ,則電信號IX1 、IX2 、IY1 、IY2 與x以及 y之間的關係為:Figure 4A shows a perspective view of a typical two-dimensional position sensor 32 that draws electrodes from four sides, the equivalent circuit diagram of which is shown in Figure 4C. In Figure 4C, P is the dark current source, D is the ideal diode, Cj is the junction capacitance, Rsh is the shunt resistor, and Rp is the locating resistor. The four output electrodes X1, X2, Y1, and Y2 are respectively located at the four edges of the N-layer structure, and the common electrode C needs to be set to have the position sensor 32 in a zero-biased or reverse-biased state. As shown in the fourth D diagram, the surface impedance of the effective sensing region A is uniformly distributed in the effective sensing region A, and therefore, the equivalent impedance between the light irradiation position and the output electrode is proportional to the distance therebetween. Assuming that the length of the effective sensing region A along the x-axis is L x and the length along the y-axis is L y , one beam of light is irradiated to the (x, y) position of the position sensor 32, and four of the position sensors 32 are The output electrodes X1, X2, Y1, and Y2 output electrical signals I X1 , I X2 , I Y1 , and I Y2 , respectively, and the relationship between the electrical signals I X1 , I X2 , I Y1 , I Y2 and x and y is:

(式1) (Formula 1)

(式2) (Formula 2)

因此通過檢測位置感測器32的四個輸出電極X1、X2、Y1、Y2分別輸出的電信號IX1 、IX2 、IY1 、IY2 ,即可計算出光線照射的位置。若位置感測器32的上方鍍上只讓紅外光線通過之光學鍍膜,則可計算出紅外光線照射的位置。假設以相同的光強在位置感測器32上方照射,則IX1 +IX2 +IY1 +IY2 代表了照射點距離位置感測器32表面的遠近。如果照射到位置感測器32上方的不止是光線,而是一個影像,則(x,y)代表的是影像之重心位置。Therefore, by detecting the electrical signals I X1 , I X2 , I Y1 , and I Y2 outputted from the four output electrodes X1, X2, Y1, and Y2 of the position sensor 32, the position of the light irradiation can be calculated. If the position of the position sensor 32 is plated with an optical coating that allows only infrared light to pass through, the position at which the infrared light is irradiated can be calculated. Assuming that the same intensity is illuminated above position sensor 32, then I X1 + I X2 + I Y1 + I Y2 represents the distance of the illumination point from the surface of position sensor 32. If more than light is incident on the position sensor 32, but an image, (x, y) represents the position of the center of gravity of the image.

配合參閱第五圖,為本發明第一實施方式之信號控制與處理電路的電路方塊圖。信號控制與處理電路36包含位置感測器光電流運算單元360、至少一個類比數位轉換器362、一暫存器364、一時序控制電路366、一紅外發光二極體電流驅動電路368,以及一通訊界面370。Referring to FIG. 5, it is a circuit block diagram of a signal control and processing circuit according to a first embodiment of the present invention. The signal control and processing circuit 36 includes a position sensor photocurrent operation unit 360, at least one analog digital converter 362, a temporary register 364, a timing control circuit 366, an infrared light emitting diode current driving circuit 368, and a Communication interface 370.

位置感測器光電流運算單元360受時序控制電路366的控制,對由位置感測器32所輸入的電信號IX1 、IX2 、IY1 、IY2 做加減運算,例如計算IX2 -IX1 、IX2 +IX1 、IY2 -IY1 、IY2 +IY1 、IX1 +IX2 +IY1 +IY2 ,或者時序控制電路366控制位置感測器光電流運算單元360不做運算,只是選擇其一路電信號,例如:IX1 、IX2 、IY1 或IY2The position sensor photocurrent operation unit 360 is subjected to addition and subtraction of the electric signals I X1 , I X2 , I Y1 , I Y2 input by the position sensor 32 under the control of the timing control circuit 366 , for example, calculating I X2 -I X1 , I X2 +I X1 , I Y2 -I Y1 , I Y2 +I Y1 , I X1 +I X2 +I Y1 +I Y2 , or the timing control circuit 366 controls the position sensor photocurrent operation unit 360 to perform no operation, but selects all the way Electrical signal, for example: I X1 , I X2 , I Y1 or I Y2 .

類比數位轉換器362在時序控制電路366的控制下,同步將位置感測器光電流運算單元360經過運算後所輸出的電信號IADC 轉換為數位信號,並存入暫存器364中。The analog digital converter 362 synchronously converts the electrical signal I ADC outputted by the position sensor photocurrent operation unit 360 into a digital signal under the control of the timing control circuit 366, and stores it in the register 364.

通訊界面370在時序控制電路366的控制下,可將暫存器364中的數位信號傳送給外部之微處理器MCU,也可以將外部之微處理器MCU的指令信息寫入時序控制電路366中。The communication interface 370 can transmit the digital signal in the register 364 to the external microprocessor MCU under the control of the timing control circuit 366, or can write the instruction information of the external microprocessor MCU into the timing control circuit 366. .

懸浮控制輸入裝置3為了檢測出其上方物體的位置,且需濾除背景環境光雜訊,可進行如下步驟:In order to detect the position of the object above it and to filter out the background ambient light noise, the levitation control input device 3 can perform the following steps:

1. 信號控制與處理電路36之時序控制電路366控制紅外發光二極體30發出之紅外光脈衝的脈衝時序,使紅外發光二極體30發出之紅外光脈衝的脈衝時序如第六圖所示。1. The timing control circuit 366 of the signal control and processing circuit 36 controls the pulse timing of the infrared light pulse emitted by the infrared light emitting diode 30, so that the pulse timing of the infrared light pulse emitted by the infrared light emitting diode 30 is as shown in the sixth figure. .

2. 在A1階段,紅外發光二極體30發出紅外光脈衝,信號控制與處理電路36之時序控制電路366產生控制信號,使位置感測器光電流運算單元360輸出電信號IX1 ,並通過類比數位轉換器362將電信號IX1 轉換為數位信號DATAA1 。在A2階段,紅外發光二極體30不發出紅外光脈衝,信號控制與處理電路36之時序控制電路366產生控制信號,使位置感測器光電流運算單元360輸出電信號IX1 ,並通過類比數位轉換器362將電信號IX1 同步轉換為數位信號DATA2 。用數位信號DATAA1 扣除數位信號DATAA2 得到DATAX1 ,DATAX1 代表輸出電極X1輸出之濾除環境背景光雜訊的位置信息。2. In the A1 phase, the infrared light emitting diode 30 emits an infrared light pulse, and the timing control circuit 366 of the signal control and processing circuit 36 generates a control signal, so that the position sensor photocurrent operation unit 360 outputs the electrical signal I X1 and passes The analog to digital converter 362 converts the electrical signal I X1 into a digital signal DATA A1 . In the A2 phase, the infrared light emitting diode 30 does not emit an infrared light pulse, and the timing control circuit 366 of the signal control and processing circuit 36 generates a control signal, so that the position sensor photocurrent operation unit 360 outputs the electrical signal I X1 and passes the analogy. The digital converter 362 synchronously converts the electrical signal I X1 into a digital signal DAT A2 . The digital signal DATA A1 is deducted from the digital signal DATA A2 to obtain DATA X1 , and the DATA X1 represents the position information of the output background X1 output filtering ambient environmental noise.

3. 在B1階段,紅外發光二極體30發出紅外光脈衝,信號控制與處理電路36之時序控制電路366產生控制信號,使位置感測器光電流運算單元360輸出電信號IX2 ,並通過類比數位轉換器362將電信號IX2 同步轉換為數位信號DATAB1 。在B2階段,紅外發光二極體30不發出紅外光脈衝,信號控制與處理單元36之時序控制電路366產生控制信號,使位置感測器光電流運算單元360輸出電信號IX2 ,並通過類比數位轉換器362將電信號IX2 同步轉換為數位信號DATAB2 。用數位信號DATAB1 扣除數位信號DATAB2 得到DATAX2 ,DATAX2 代表輸出輸出電極X2輸出的濾除環境背景光雜訊的位置信息。3. In the B1 phase, the infrared light emitting diode 30 emits an infrared light pulse, and the timing control circuit 366 of the signal control and processing circuit 36 generates a control signal, so that the position sensor photocurrent operation unit 360 outputs the electrical signal I X2 and passes The analog digital converter 362 synchronously converts the electrical signal I X2 into a digital signal DATA B1 . In the B2 phase, the infrared light emitting diode 30 does not emit an infrared light pulse, and the timing control circuit 366 of the signal control and processing unit 36 generates a control signal to cause the position sensor photocurrent operation unit 360 to output the electrical signal I X2 and pass the analogy. The digital converter 362 synchronously converts the electrical signal I X2 into a digital signal DATA B2 . The digital signal DATA B1 is subtracted from the digital signal DATA B2 to obtain DATA X2 , and the DATA X2 represents the position information of the ambient light noise filtered by the output output electrode X2.

在C1階段,紅外發光二極體30發出紅外光脈衝,信號控制與處理電路36之時序控制電路366產生控制信號,使位置感測器光電流運算單元360輸出電信號IY1 ,並通過類比數位轉換器362將電信號IY1 同步轉換為數位信號DATAC1 。在C2階段,紅外發光二極體30不發出紅外光脈衝,信號控制與處理電路36之時序控制電路366產生控制信號,使位置感測器光電流運算單元360輸出電信號IY1 ,並通過數位類比轉換器362將電信號IY1 同步轉換為數位信號DATAC2 ;用數位信號DATAC1 扣除數位信號DATAC2 得到DATAY1 ,DATAY1 代表輸出電極Y1輸出的濾除環境背景光雜訊的位置信息。In the C1 phase, the infrared light emitting diode 30 emits an infrared light pulse, and the timing control circuit 366 of the signal control and processing circuit 36 generates a control signal to cause the position sensor photocurrent operation unit 360 to output the electrical signal I Y1 and pass the analog digital position. The converter 362 synchronously converts the electrical signal I Y1 into a digital signal DATA C1 . In the C2 stage, the infrared light emitting diode 30 does not emit an infrared light pulse, and the timing control circuit 366 of the signal control and processing circuit 36 generates a control signal to cause the position sensor photocurrent operation unit 360 to output the electrical signal I Y1 and pass the digital position. The analog converter 362 synchronously converts the electrical signal I Y1 into the digital signal DATA C2 ; the digital signal DATA C1 subtracts the digital signal DATA C2 to obtain DATA Y1 , and the DATA Y1 represents the position information of the ambient light noise filtered by the output electrode Y1.

5. 在D1階段,紅外發光二極體30發出紅外光脈衝,信號控制與處理電路36之時序控制電路366產生控制信號,使位置感測器光電流運算單元360輸出電信號IY2 ,並通過類比數位轉換器362將電信號IY2 同步轉換為數位信號DATAD1 。在D2階段,紅外發光二極體30不發出紅外光脈衝,信號控制與處理電路36之時序控制電路366產生控制信號,使位置感測器光電流運算單元360輸出電信號IY2 ,並通過類比數位轉換器362將電信號IY2 同步轉換為數位信號DATAD2 。用數位信號DATAD1 扣除數位信號DATAD2 得到DATAY2 ,DATAY2 代表輸出電極Y2輸出的濾除環境背景光雜訊的位置信息。5. In the D1 phase, the infrared light emitting diode 30 emits an infrared light pulse, and the timing control circuit 366 of the signal control and processing circuit 36 generates a control signal, so that the position sensor photocurrent operation unit 360 outputs the electrical signal I Y2 and passes The analog digital converter 362 synchronously converts the electrical signal I Y2 into a digital signal DATA D1 . In the D2 phase, the infrared light emitting diode 30 does not emit an infrared light pulse, and the timing control circuit 366 of the signal control and processing circuit 36 generates a control signal, so that the position sensor photocurrent operation unit 360 outputs the electrical signal I Y2 and passes the analogy. The digital converter 362 synchronously converts the electrical signal I Y2 into a digital signal DATA D2 . The digital signal DATA D1 is deducted from the digital signal DATA D2 to obtain DATA Y2 , and the DATA Y2 represents the position information of the ambient light noise filtered by the output electrode Y2.

6. 信號控制與處理電路36將步驟2至步驟5所產生的DATAX1 、DATAX2 、DATAY1 以及DATAY2 傳送給外部之微處理器MCU。6. The signal control and processing circuit 36 transmits the DATA X1 , DATA X2 , DATA Y1, and DATA Y2 generated in steps 2 through 5 to the external microprocessor MCU.

DATAX1 、DATAX2 、DATAY1 以及DATAY2 與物體(x, y, z)的關係為:The relationship between DATA X1 , DATA X2 , DATA Y1, and DATA Y2 and the object (x, y, z) is:

(式3) (Formula 3)

(式4) (Formula 4)

(式5) (Formula 5)

其中k為常數。Where k is a constant.

因此,外部之微處理器MCU可通過計算,得出物體位置,其中,-Lx /2≤x≤Lx /2; Ly /2≤y≤Ly /2;0≤z≤Lz ,Lz 與信號控制與處理電路36可處理的最小光強有關,x, y, z的範圍構成了物體檢測區域。Thus, the external microprocessor MCU through calculation, the position of the object, wherein, -L x / 2≤x≤L x / 2 ; L y / 2≤y≤L y / 2; 0≤z≤L z Lz is related to the minimum light intensity that the signal control and processing circuit 36 can handle, and the range of x, y, z constitutes the object detection area.

外部之微處理器MCU為了檢測出位置感測器32上方物體的移動方向和移動速度,且需濾除環境背景光雜訊,可每隔1~3微秒(ms)檢測一次物體的位置,通過物體位置的變化,判斷物體的移動方向和速度。The external microprocessor MCU can detect the position of the object every 1~3 microseconds (ms) in order to detect the moving direction and moving speed of the object above the position sensor 32, and to filter out the ambient background light noise. The direction and speed of movement of the object are judged by the change in the position of the object.

假設物體沿x軸從右向左變化,則物體的影像從左向右變化,紅外發光二極體30的驅動信號如第七A圖所示,每隔2ms發出一組紅外光脈衝,用以定位物體位置;物體從右向左變化的過程中,位置感測器32的輸出電極X1、X2、Y1、Y2所輸出的電信號IX1 、IX2 、IX3 、IX4 的變化趨勢如第七B圖所示(在不考慮環境背景光的變化的情況下)。外部之微處理器MCU得到的濾除環境背景光雜訊後的位置信息DATAX1 、DATAX2 、DATAY1 以及DATAY2 變化趨勢如第七C圖所示。Assuming that the object changes from right to left along the x-axis, the image of the object changes from left to right. The driving signal of the infrared light-emitting diode 30, as shown in FIG. 7A, emits a set of infrared light pulses every 2 ms for Positioning the object; during the change of the object from right to left, the electric signals I X1 , I X2 , I X3 , I X4 output by the output electrodes X1 , X2 , Y1 , Y2 of the position sensor 32 are as follows Figure 7B shows (without considering changes in ambient light). The change trend of the position information DATA X1 , DATA X2 , DATA Y1 and DATA Y2 obtained by the external microprocessor MCU after filtering the ambient background optical noise is as shown in the seventh C diagram.

由第七B圖可知,物體從進入檢測區域到出檢測區域這段時間,IX1 從大逐漸變小,IX2 從小逐漸變大,IX1 與IX2 之和基本保持不變,IX2 -IX1 逐漸增大,(IX2 -IX1 )/(IX2 +IX1 )逐漸增大。因此,由式1計算出得到的x坐標也逐漸增大,與物體影像從左向右變化相吻合。It can be seen from the seventh graph that the time from the entry of the detection region to the detection of the detection region, the I X1 gradually decreases from large to large, and the I X2 gradually increases from small to small, and the sum of I X1 and I X2 remains substantially unchanged, I X2 - I X1 gradually increases, and (I X2 -I X1 )/(I X2 +I X1 ) gradually increases. Therefore, the x coordinate calculated by Equation 1 also gradually increases, which coincides with the change of the object image from left to right.

由第七C圖可知,物體從進入檢測區域到出檢測區域這段時間,DATAX1 從大逐漸變小,DATAX2 從小逐漸變大,DATAX1 與DATAX2 之和基本保持不變,DATAX2 -DATAX1 逐漸增大,(DATAX2 -DATAX1 )/(DATAX2 +DATAX1 )逐漸增大。因此,外部之微處理器MCU通過式3計算得出的x坐標也逐漸增大,與物體影像從左向右變化或者物體從右往左變化相吻合。因此,外部之微處理器MCU可通過坐標軸的變化檢測出位置感測器32上方物體的移動方向。位置感測器32上方物體沿x軸方向的移動速度與(DATAX2 -DATAX1 )/(DATAX2 +DATAX1 )的變化斜率成正比。It can be seen from the seventh C map that the DATA X1 gradually decreases from large to small as the object enters the detection area to the detection area. The DATA X2 gradually increases from small to small, and the sum of DATA X1 and DATA X2 remains substantially unchanged, DATA X2 - DATA X1 gradually increases, and (DATA X2 - DATA X1 ) / (DATA X2 + DATA X1 ) gradually increases. Therefore, the x coordinate calculated by the external microprocessor MCU through Equation 3 also gradually increases, which coincides with the change of the object image from left to right or the object from right to left. Therefore, the external microprocessor MCU can detect the moving direction of the object above the position sensor 32 by the change of the coordinate axis. Proportional to the object position sensor 32 above the x-axis direction and the moving speed (DATA X2 -DATA X1) / ( DATA X2 + DATA X1) change in slope.

物體從前往後變化、從後往前變化或從左往右變化的檢測原理與物體從右往左變化的原理相似。外部之微處理器MCU判斷DATAX2 +DATAX1 +DATAY1 +DAYAY2 的大小可判斷物體的遠近變化,若該值增大,則靠近;若該值減小,則遠離。The principle of detection of an object changing from the back to the front, from the back to the front, or from left to right is similar to the principle of changing the object from right to left. The external microprocessor MCU determines the size of DATA X2 + DATA X1 + DATA Y1 + DAYA Y2 to determine the near-far change of the object. If the value increases, it is close; if the value decreases, it is far away.

外部之微處理器MCU可通過計算物體的位置,並檢測位置的變化,可判斷物體在檢測區域的任意移動方向和移動速度。The external microprocessor MCU can determine the arbitrary moving direction and moving speed of the object in the detection area by calculating the position of the object and detecting the change of the position.

實施方式2Embodiment 2

配合參閱第八圖,為本發明第二實施方式之懸浮控制輸入裝置之架構圖。本實施方式的懸浮控制輸入裝置4包含一個紅外發光二極體40、一個二維的可判別方位的位置感測器42、一個位於位置感測器42上方的成像模組44,以及一個信號控制與處理電路46。位置感測器42的輸出電極X1、X2、Y1以及Y2從位置感測器42的四個角引出。Referring to FIG. 8 , it is an architectural diagram of a suspension control input device according to a second embodiment of the present invention. The suspension control input device 4 of the present embodiment includes an infrared light emitting diode 40, a two-dimensional position-determining position sensor 42, an imaging module 44 located above the position sensor 42, and a signal control. And processing circuit 46. The output electrodes X1, X2, Y1, and Y2 of the position sensor 42 are taken from the four corners of the position sensor 42.

在懸浮控制輸入裝置4中,信號控制與處理電路46控制紅外發光二極體40發出紅外光脈衝的脈衝時序與強度;位置感測器42將環境背景光以及通過成像模組44之紅外反射光脈衝轉換為電信號IX1 、IX2 、IY1 、IY2 。信號控制與處理電路46依紅外光脈衝的脈衝時序接收電信號IX1 、IX2 、IY1 、IY2 。之後,信號控制與處理電路46將電信號IX1 、IX2 、IY1 、IY2 中對應於紅外反射光脈衝的紅外反射光脈衝信號,以及對應於環境背景光的環境背景光信號分離,再將紅外反射光脈衝信號轉換成數位信號傳給外部之微處理器MCU。外部之微處理器MCU通過這些數位信號進行物體之遠近、位置、移動速度與移動方向之計算。In the suspension control input device 4, the signal control and processing circuit 46 controls the pulse timing and intensity of the infrared light pulse emitted by the infrared light emitting diode 40; the position sensor 42 transmits the ambient backlight and the infrared reflected light through the imaging module 44. The pulses are converted into electrical signals I X1 , I X2 , I Y1 , I Y2 . The signal control and processing circuit 46 receives the electrical signals I X1 , I X2 , I Y1 , I Y2 in accordance with the pulse timing of the infrared light pulses. Thereafter, the signal control and processing circuit 46 separates the infrared reflected light pulse signals corresponding to the infrared reflected light pulses of the electrical signals I X1 , I X2 , I Y1 , I Y2 , and the ambient background light signals corresponding to the ambient background light, and then The infrared reflected light pulse signal is converted into a digital signal and transmitted to an external microprocessor MCU. The external microprocessor MCU uses these digital signals to calculate the distance, position, moving speed and moving direction of the object.

紅外發光二極體40發出的紅外光脈衝為不可見光,可避免人眼的不適感;採用紅外光使懸浮控制輸入裝置4具有快速的響應能力,有效地突顯了信號的同步特點;在位置感應器42的上方鍍上只讓紅外反射光脈衝通過之光學鍍膜,可隔絕或降低環境背景光的影響,並且大幅提高訊雜比。The infrared light pulse emitted by the infrared light-emitting diode 40 is invisible light, which can avoid the discomfort of the human eye; the infrared light is used to make the suspension control input device 4 have a fast response capability, effectively highlighting the synchronization characteristics of the signal; The upper portion of the device 42 is plated with an optical coating that allows only the infrared reflected light to pass through, which can isolate or reduce the influence of the ambient backlight and greatly improve the signal-to-noise ratio.

位置感測器42可與互補式金屬氧化物半導體技術兼容,通常與信號控制與處理電路46集成在同一晶片上,當然,位置感測器42及信號控制與處理電路46也可以成分離設置。位置感測器42典型架構的立體圖、剖視圖、等效電路圖以及有效感測區示意圖分別如第九圖A、第九B圖、第九C圖和第九D圖所示。從第九圖B所示的剖視圖可知,位置感測器42由P+層結構、N層結構、公共電極C以及至少一對的輸出電極X1及X2組成,P+層結構和N層結構之間形成PN接面,N層結構相對於P+層結構來說,具有高阻抗特性,輸出電極X1及X2位於N層結構的邊緣。當有光線照射到位置感測器42的表面,在照射位置處的PN接面處會產生與照射光強度成正比的電子,這些電子會被輸出電極X1及X2所吸收,輸出電極X1及X2吸收電子的能力與光照射位置與輸出電極X1及X2之間的等效阻抗成反比。The position sensor 42 is compatible with complementary metal oxide semiconductor technology, and is typically integrated on the same wafer as the signal control and processing circuit 46. Of course, the position sensor 42 and the signal control and processing circuit 46 can also be provided separately. A perspective view, a cross-sectional view, an equivalent circuit diagram, and an effective sensing area diagram of a typical architecture of the position sensor 42 are shown in FIG. 9A, IXB, IXC, and IXD, respectively. As can be seen from the cross-sectional view shown in FIG. IB, the position sensor 42 is composed of a P+ layer structure, an N-layer structure, a common electrode C, and at least one pair of output electrodes X1 and X2, and a P+ layer structure and an N-layer structure are formed. The PN junction, the N-layer structure has high impedance characteristics with respect to the P+ layer structure, and the output electrodes X1 and X2 are located at the edge of the N-layer structure. When light is incident on the surface of the position sensor 42, electrons proportional to the intensity of the illumination light are generated at the PN junction at the illumination position, and these electrons are absorbed by the output electrodes X1 and X2, and the output electrodes X1 and X2 are output. The ability to absorb electrons is inversely proportional to the equivalent illumination impedance between the output electrodes X1 and X2.

第九A圖所示的典型的二維、且從四角引出輸出電極的位置感應器的立體圖。另配合參閱第九C圖,其中P為暗電流源,D為理想二極體,Cj為接面電容,Rsh為分流電阻,Rp為定位電阻。四個輸出電極X1、X2、Y1及Y2分別位於N層結構的四個邊緣,公共電極C需要設置電壓使位置感測器42處於零偏或反偏狀態。如第九D圖所示,有效感測區A的表面阻抗在有效感測區域內均勻分布,因此,光照射位置與輸出電極X1、X2、Y1及Y2之間的等效阻抗與其之間的距離成正比。假設有效感測區A沿x軸的長度為Lx ,沿y軸的長度為Ly ,有一束光照射到位置感測器42的(x, y)位置,位置感測器42的四個輸出電極X1、X2、Y1及Y2分別輸出電信號IX1 、IX2 、IY1 、IY2 ,則電信號IX1 、IX2 、IY1 、IY2 與x, y之間的關係為:A perspective view of a typical two-dimensional position sensor with output electrodes drawn from four corners as shown in FIG. See also Figure IX, where P is the dark current source, D is the ideal diode, Cj is the junction capacitance, Rsh is the shunt resistor, and Rp is the positioning resistor. The four output electrodes X1, X2, Y1 and Y2 are respectively located at the four edges of the N-layer structure, and the common electrode C needs to be set with a voltage so that the position sensor 42 is in a zero-biased or reverse-biased state. As shown in the ninth D diagram, the surface impedance of the effective sensing area A is uniformly distributed in the effective sensing area, and therefore, the equivalent impedance between the light irradiation position and the output electrodes X1, X2, Y1, and Y2 is between The distance is directly proportional. Assuming that the length of the effective sensing region A along the x-axis is L x and the length along the y-axis is L y , one beam of light is irradiated to the (x, y) position of the position sensor 42, and four of the position sensors 42 The output electrodes X1, X2, Y1, and Y2 output electrical signals I X1 , I X2 , I Y1 , and I Y2 , respectively, and the relationship between the electrical signals I X1 , I X2 , I Y1 , I Y2 and x, y is:

(式6) (Formula 6)

(式7) (Formula 7)

因此通過檢測位置感測器42四個輸出電極X1、X2、Y1、Y2分別輸出的電信號IX1 、IX2 、IY1 、IY2 ,即可計算出光線照射的位置。若位置感測器42的上方鍍上只讓紅外反射光脈衝通過之光學鍍膜,即可計算出紅外光反射光脈衝照射的位置。假設以相同的光強在位置感測器42上方照射,則IX1 +IX2 +IY1 +IY2 代表了照射點距離位置感測器42表面的遠近。如果照射到位置感測器42上方的不止是光線,而是一個影像,則(x,y)代表的是影像之重心位置。Therefore, by detecting the electrical signals I X1 , I X2 , I Y1 , and I Y2 outputted by the four output electrodes X1, X2, Y1, and Y2 of the position sensor 42, the position of the light irradiation can be calculated. If the position of the position sensor 42 is plated with an optical coating that only passes the infrared reflected light pulse, the position of the infrared light reflected light pulse can be calculated. Assuming that the same intensity is illuminated above position sensor 42, I X1 + I X2 + I Y1 + I Y2 represents the distance of the illumination point from the surface of position sensor 42. If more than the light above the position sensor 42 is illuminated, but an image, then (x, y) represents the center of gravity of the image.

配合參閱第十圖,為本發明第二實施方式之信號控制與處理電路的電路方塊圖。信號控制與處理電路46包含位置感測器光電流運算單元460、至少一個類比數位轉換器462、暫存器464、時序控制電路466、紅外發光二極體電流驅動電路468以及通訊界面470。Referring to FIG. 10, it is a circuit block diagram of a signal control and processing circuit according to a second embodiment of the present invention. The signal control and processing circuit 46 includes a position sensor photocurrent operation unit 460, at least one analog-to-digital converter 462, a register 464, a timing control circuit 466, an infrared light-emitting diode current drive circuit 468, and a communication interface 470.

位置感測器光電流運算單元460受時序控制電路466的控制,對由位置感測器42所輸入的電信號IX1 、IX2 、IY1 、IY2 做加減運算,例如計算IX2 +IY1 -IX1 -IY2 、IX2 +IY2 -IX1 -IY1 、IX1 +IX2 +IY1 +IY2 ,或者時序控制電路466控制位置感測器光電流運算單元460不做運算,只是選擇其一路電信號,例如:IX1 、IX2 、IY1 或IY2The position sensor photocurrent operation unit 460 is subjected to addition and subtraction of the electric signals I X1 , I X2 , I Y1 , and I Y2 input by the position sensor 42 under the control of the timing control circuit 466 , for example, calculating I X2 +I Y1 . -I X1 -I Y2 , I X2 +I Y2 -I X1 -I Y1 , I X1 +I X2 +I Y1 +I Y2 , or the timing control circuit 466 controls the position sensor photocurrent operation unit 460 to perform no operation, but selects it One electrical signal, for example: I X1 , I X2 , I Y1 or I Y2 .

類比數位轉換器462在時序控制電路466的控制下,同步將位置感測器光電流運算單元460經過運算後所輸出的電信號IADC 轉換為數位信號,並存入暫存器464中。The analog digital converter 462 synchronously converts the electrical signal I ADC outputted by the position sensor photocurrent operation unit 460 into a digital signal under the control of the timing control circuit 466, and stores it in the register 464.

通訊界面470在時序控制電路466的控制下,可將暫存器464中的數字信號傳送給外部之微處理器MCU,也可將外部之微處理器MCU的指令信息寫入時序控制電路466中。The communication interface 470 can transfer the digital signal in the register 464 to the external microprocessor MCU under the control of the timing control circuit 466, and can also write the instruction information of the external microprocessor MCU into the timing control circuit 466. .

懸浮控制輸入裝置4為了檢測出其上方物體的位置,並需濾除環境背景光,一種可行的方法其步驟為:In order to detect the position of the object above it and to filter out the ambient background light, the suspension control input device 4 has a feasible method:

1. 信號控制與處理電路46之時序控制電路466控制紅外發光二極體40,其發光時序如第11圖所示。1. The timing control circuit 466 of the signal control and processing circuit 46 controls the infrared light-emitting diode 40, and its light-emitting timing is as shown in FIG.

在A1階段,紅外發光二極體40發出紅外光脈衝,信號控制與處理電路46之時序控制電路466產生控制信號,使位置感測器光電流運算單元460輸出信號IX2 +IY1 -IX1 -IY2 ,並通過類比數位轉換器462將IX2 +IY1 -IX1 -IY2 同步轉換為數位信號DATAX1 。在A2階段,紅外發光二極體40不發出紅外光脈衝,信號控制與處理電路46之時序控制電路466產生控制信號,使位置感測器光電流運算單元460輸出電信號IX1 ,並通過類比數位轉換器462將IX1 同步轉換為數位信號DATAX2 。用數位信號DATAX1 扣除數字信號DATAX2 得到DATAX ,DATAX 代表沿x軸濾除環境背景光雜訊的位置信息。In the A1 phase, the infrared light emitting diode 40 emits an infrared light pulse, and the timing control circuit 466 of the signal control and processing circuit 46 generates a control signal to cause the position sensor photocurrent operation unit 460 to output a signal I X2 +I Y1 -I X1 -I Y2 , and I X2 +I Y1 -I X1 -I Y2 are synchronously converted into a digital signal DATA X1 by an analog-to-digital converter 462. In the A2 phase, the infrared light emitting diode 40 does not emit an infrared light pulse, and the timing control circuit 466 of the signal control and processing circuit 46 generates a control signal, so that the position sensor photocurrent operation unit 460 outputs the electrical signal I X1 and passes the analogy. The digital converter 462 synchronously converts I X1 into a digital signal DATA X2 . The digital signal DATA X1 is subtracted from the digital signal DATA X1 to obtain DATA X , and DATA X represents the position information of the ambient background optical noise filtered along the x-axis.

3. 在B1階段,紅外發光二極體40發出紅外光脈衝,信號控制與處理電路46之時序控制電路466產生控制信號,使位置感測器光電流運算單元460輸出信號IX2 +IY2 -IX1 -IY1 ,並通過類比數位轉換器462將IX2 +IY2 -IX1 -IY1 同步轉換為數位信號DATAY1 。在B2階段,紅外光發光二極體40不發出紅外光脈衝,信號控制與處理電路46之時序控制電路466產生控制信號,使位置感測器光電流運算單元輸出信號IX2 +IY2 -IX1 -IY1 ,並通過類比數位轉換器462將IX2 +IY2 -IX1 -IY1 同步轉換為數位信號DATAY2 。用數位信號DATAY1 扣除數位信號DATAY2 得到DATAY ,DATAY 代表沿y軸濾除環境背景光雜訊的位置信息。3. In the B1 phase, the infrared light emitting diode 40 emits an infrared light pulse, and the timing control circuit 466 of the signal control and processing circuit 46 generates a control signal to cause the position sensor photocurrent operation unit 460 to output the signal I X2 + I Y2 - I X1 - I Y1 , and I X2 + I Y2 - I X1 - I Y1 are synchronously converted into a digital signal DATA Y1 by an analog-to-digital converter 462. In the B2 stage, the infrared light emitting diode 40 does not emit an infrared light pulse, and the timing control circuit 466 of the signal control and processing circuit 46 generates a control signal to cause the position sensor photocurrent operation unit to output the signal I X2 +I Y2 -I X1 - I Y1 , and I X2 + I Y2 - I X1 - I Y1 are synchronously converted into a digital signal DATA Y2 by an analog-to-digital converter 462. The digital signal DATA Y1 is subtracted from the digital signal DATA Y2 to obtain DATA Y , and DATA Y represents the position information of the ambient background optical noise filtered along the y axis.

4. 在C1階段,紅外發光二極體40發出紅外光脈衝,信號控制與處理電路46之時序控制電路466產生控制信號,使位置感測器光電流運算單元460輸出信號IX2 +IY2 +IX1 +IY1 ,並通過類比數位轉換器462將IX2 +IY2 +IX1 +IY1 同步轉換為數位信號DATAZ1 。在C2 階段,紅外發光二極體40不發出紅外光脈衝,信號控制與處理電路46之時序控制電路466產生控制信號,使位置感測器光電流運算單元460輸出信號IX2 +IY2 +IX1 +IY1 ,並通過類比數位轉換器462將IX2 +IY2 +IX1 +IY1 同步轉換為數位信號DATAZ2 。用數位信號DATAZ1 扣除數位信號DATAZ2 得到DATAZ ,DATAZ 代表沿z軸濾除環境背景光雜訊的位置信息。4. In the C1 phase, the infrared light emitting diode 40 emits an infrared light pulse, and the timing control circuit 466 of the signal control and processing circuit 46 generates a control signal to cause the position sensor photocurrent operation unit 460 to output the signal I X2 +I Y2 +I X1 + I Y1 , and I X2 + I Y2 + I X1 + I Y1 are synchronously converted into a digital signal DATA Z1 by an analog-to-digital converter 462. In the C2 stage, the infrared light emitting diode 40 does not emit an infrared light pulse, and the timing control circuit 466 of the signal control and processing circuit 46 generates a control signal to cause the position sensor photocurrent operation unit 460 to output the signal I X2 +I Y2 +I X1 +I Y1 , and I X2 +I Y2 +I X1 +I Y1 is synchronously converted into a digital signal DATA Z2 by an analog-to-digital converter 462. The digital signal DATA Z1 is used to subtract the digital signal DATA Z2 to obtain DATA Z , and the DATA Z represents the position information of the ambient background optical noise along the z-axis.

5. 信號控制與處理電路46將步驟2至步驟4 所產生的DATAX 、DATAY 以及DATAZ 傳送給外部之微處理器MCU。5. The signal control and processing circuit 46 transmits the DATA X , DATA Y , and DATA Z generated in steps 2 through 4 to the external microprocessor MCU.

DATAX 、DATAY 以及DATAZ 與物體位置(x, y, z)的關係為:The relationship between DATA X , DATA Y, and DATA Z and the object position (x, y, z) is:

(式8) (Equation 8)

(式9) (Equation 9)

(式10) (Formula 10)

其中k為常數。Where k is a constant.

因此,外部之微處理器MCU可通過計算x, y, z得出物體位置,其中,-Lx /2≤x≤Lx /2; Ly /2≤y≤Ly /2;0≤z≤Lz ,Lz與控制與信號處理電路46可處理的最小光強有關,x, y, z的範圍構成了物體檢測區域。Thus, the external microprocessor MCU can be calculated x, y, z position of an object obtained, wherein, -L x / 2≤x≤L x / 2 ; L y / 2≤y≤L y / 2; 0≤ z ≤ L z , Lz is related to the minimum light intensity that the control and signal processing circuit 46 can handle, and the range of x, y, z constitutes the object detection area.

上述步驟2和步驟3可在環境背景光均勻的情況下進行簡單操作,即只需完成A1和B1階段,即可分別得到DATAX 以及DATAYSteps 2 and 3 above can be performed simply under the condition that the ambient background light is uniform, that is, only the A1 and B1 phases are completed, and DATA X and DATA Y can be obtained respectively.

外部之微處理器MCU為了檢測位置感測器42上方物體的移動方向和移動速度,且需濾除環境背景光雜訊,可每隔1~3ms檢測一次物體的位置,通過物體位置的變化,判斷物體的移動方向和速度。The external microprocessor MCU detects the moving direction and moving speed of the object above the position sensor 42 and needs to filter out the ambient background light noise, and can detect the position of the object every 1~3 ms, and the position of the object changes. Determine the direction and speed of movement of the object.

假設物體沿x軸從右向左變化,其影像則從左向右變化,紅外發光二極體40發出的紅外光脈衝的驅動信號如第十二A圖所示,每隔2ms發出一組脈衝,用以定位物體位置。物體從右向左變化的過程中,位置感測器42的輸出電極X1、X2、Y1、Y2所輸出的電信號IX1 、IX2 、IY1 、IY2 、IX2 +IY1 -IX1 -IY2 、IX2 +IY2 -IX1 -IY1 以及IX2 +IY1 +IX1 +IY2 的變化趨勢如第十二B圖所示(不考慮環境背景光的變化)。外部之微處理器MCU得到的濾除環境背景光雜訊後的位置信息DATAX 、DATAY 以及DATAZ 變化趨勢如第十二C圖所示。Assuming that the object changes from right to left along the x-axis, the image changes from left to right, and the driving signal of the infrared light pulse emitted by the infrared light-emitting diode 40 is as shown in FIG. 12A, and a group of pulses is emitted every 2 ms. Used to position the object. During the change of the object from right to left, the electrical signals I X1 , I X2 , I Y1 , I Y2 , I X2 +I Y1 -I X1 output by the output electrodes X1, X2, Y1, Y2 of the position sensor 42 The change trend of -I Y2 , I X2 +I Y2 -I X1 -I Y1 and I X2 +I Y1 +I X1 +I Y2 is as shown in Fig. 12B (regardless of changes in ambient background light). The change trend of the position information DATA X , DATA Y and DATA Z obtained by the external microprocessor MCU after filtering the ambient background optical noise is as shown in the twelfth C.

由第十二B圖可知,物體從進入檢測區域到出檢測區域這段時間,IX1 和IY2 逐漸變小,IX2 和IY1 逐漸變大,IX2 +IY1 +IX1 +IY2 基本保持不變,IX2 +IY1 -IX1 -IY2 逐漸增大,(IX2 +IY1 -IX1 -IY2 )/( IX2 +IY1 +IX1 +IY2 )逐漸增大。因此,由式6計算得到的x坐標也逐漸增大,與影像從左向右變化相吻合。It can be seen from the twelfth B-picture that I X1 and I Y2 gradually become smaller as the object enters the detection area to the detection area, and I X2 and I Y1 gradually become larger, I X2 +I Y1 +I X1 +I Y2 Basically unchanged, I X2 +I Y1 -I X1 -I Y2 gradually increases, (I X2 +I Y1 -I X1 -I Y2 )/( I X2 +I Y1 +I X1 +I Y2 ) gradually increases . Therefore, the x coordinate calculated by Equation 6 also gradually increases, which coincides with the change of the image from left to right.

由第十二C圖可知,物體從進入檢測區域到出檢測區域這段時間,DATAX 逐漸變大,DATAY 和DATAZ 基本保持不變,(DATAX )/(DATAZ )逐漸增大。因此,外部之微處理器MCU通過式8計算得到的x坐標也逐漸增大,與影像從左向右變化或者物體從右向左變化相吻合。因此,外部之微處理器MCU可通過坐標軸的變化檢測出位置感測器42上方物體的移動方向。位置感測器42上方物體沿x軸方向的移動速度與(DATAX )/(DATAZ )的變化斜率成正比。It can be seen from the twelfth C chart that the DATA X gradually becomes larger as the object enters the detection area to the detection area, and DATA Y and DATA Z remain substantially unchanged, and (DATA X )/(DATA Z ) gradually increases. Therefore, the x coordinate calculated by the external microprocessor MCU through Equation 8 also gradually increases, which coincides with the change of the image from left to right or the change of the object from right to left. Therefore, the external microprocessor MCU can detect the moving direction of the object above the position sensor 42 by the change of the coordinate axis. The moving speed of the object in the x-axis direction above the position sensor 42 is proportional to the change slope of (DATA X )/(DATA Z ).

物體從前往後變化、從後往前變化或者從左向右變化的檢測原理與物體從又往左變化的原理相似。外部之微處理器MCU判斷DATAX2 +DATAX1+DATAY1+DATAY2 的大小可判斷物體的遠近變化,若該值增大,則靠近;若該值減小,則遠離。The principle of detection of an object changing from the back to the front, from the back to the front, or from left to right is similar to the principle that the object changes from left to right. The external microprocessor MCU determines the size of DATA X2 + DATA X1 + DATAY1 + DATAY2 to determine the near-far change of the object. If the value is increased, it is close; if the value is decreased, it is far away.

外部之微處理器MCU可通過計算物體的位置,並檢測位置的變化,可判斷物體在檢測區域的任意移動方向和移動速度。The external microprocessor MCU can determine the arbitrary moving direction and moving speed of the object in the detection area by calculating the position of the object and detecting the change of the position.

然以上所述者,僅為本發明之較佳實施方式,當不能限定本發明實施之範圍,即凡依本發明申請專利範圍所作之均等變化與修飾等,皆應仍屬本發明之專利涵蓋範圍意圖保護之範疇。However, the above description is only a preferred embodiment of the present invention, and the scope of the present invention is not limited thereto, that is, the equivalent changes and modifications made by the scope of the present invention should still be covered by the patent of the present invention. The scope of the scope is intended to protect.

1、2、3、4‧‧‧懸浮控制輸入裝置1, 2, 3, 4‧‧‧ suspension control input device

10‧‧‧第一發光元件10‧‧‧First light-emitting element

12‧‧‧第二發光元件12‧‧‧Second light-emitting element

14‧‧‧第三發光元件14‧‧‧ Third light-emitting element

16‧‧‧光電感測器16‧‧‧Light Inductance Detector

18、24‧‧‧處理單元18, 24‧ ‧ processing unit

20‧‧‧發光元件20‧‧‧Lighting elements

22‧‧‧分區光電感測器22‧‧‧Partition Optical Inductance Detector

30、40‧‧‧紅外發光二極體30, 40‧‧‧ Infrared light-emitting diode

32、42‧‧‧位置感測器32, 42‧‧‧ position sensor

34、44‧‧‧成像模組34, 44‧‧‧ imaging module

36、46‧‧‧信號控制與處理電路36, 46‧‧‧Signal control and processing circuits

360、460‧‧‧位置感測器光電流運算單元360, 460‧‧‧ position sensor photocurrent operation unit

362、462‧‧‧類比數位轉換器362, 462‧‧‧ analog digital converter

364、464‧‧‧暫存器364, 464‧‧‧ register

366、466‧‧‧時序控制電路366, 466‧‧‧ timing control circuit

368、468‧‧‧紅外發光二極體電流驅動電路368, 468‧‧‧Infrared LED current drive circuit

370、470‧‧‧通訊界面370, 470‧‧‧ communication interface

A‧‧‧有效感測區A‧‧‧effective sensing area

C‧‧‧公共電極C‧‧‧Common electrode

C‧‧‧j接面電容C‧‧‧j junction capacitor

D‧‧‧理想二極體D‧‧‧Ideal diode

DATAA1、DATAA2、DATAB1、DATAB2、DATAC1、DATAC2、DATAD1、DATAD2‧‧‧數位信號DATA A1 , DATA A2 , DATA B1 , DATA B2 , DATA C1 , DATA C2 , DATA D1 , DATA D2 ‧‧‧ digital signals

DATAX1、DATAX2、DATAY1、DATAY2‧‧‧位置信息DATA X1 , DATA X2 , DATA Y1 , DATA Y2 ‧‧‧Location Information

IX1、IX2、IY1、IY2、IADC‧‧‧電信號I X1 , I X2 , I Y1 , I Y2 , I ADC ‧‧‧ electrical signals

k‧‧‧常數K‧‧‧ constant

Lx‧‧‧有效感測區沿x軸的長度L x ‧‧‧ Effective sensing area along the length of the x-axis

Ly‧‧‧有效感測區沿y軸的長度L y ‧‧‧ Effective sensing area along the length of the y-axis

MCU‧‧‧微處理器MCU‧‧‧Microprocessor

P‧‧‧暗電流P‧‧‧Dark current

Rp‧‧‧定位電阻Rp‧‧‧ Positioning resistor

Rsh‧‧‧分流電阻Rsh‧‧ ‧ shunt resistor

X1、X2、X3、X4‧‧‧輸出電極X1, X2, X3, X4‧‧‧ output electrodes

第一圖為習知多光源架構之懸浮控制輸入裝置的架構圖。The first figure is an architectural diagram of a floating control input device of a conventional multi-source architecture.

第二圖為習知具有多分區光電感測器之懸浮控制輸入裝置之架構圖。The second figure is an architectural diagram of a floating control input device with a multi-partition photo-electrical sensor.

第三圖為本揭示內容第一實施方式之懸浮控制裝置之架構圖。The third figure is an architectural diagram of a suspension control device according to a first embodiment of the disclosure.

第四A圖為本揭示內容第一實施方式中位置感測器的立體圖。The fourth A is a perspective view of the position sensor in the first embodiment of the disclosure.

第四B圖為本揭示內容第一實施方式中位置感測器的剖視圖。Figure 4B is a cross-sectional view of the position sensor of the first embodiment of the present disclosure.

第四C圖為本揭示內容第一實施方式中位置感測器的等效電路圖。The fourth C diagram is an equivalent circuit diagram of the position sensor in the first embodiment of the disclosure.

第四D圖為本揭示內容第一實施方式中位置感測器的有效感測區示意圖。The fourth D diagram is a schematic diagram of an effective sensing area of the position sensor in the first embodiment of the disclosure.

第五圖為本發明第一實施方式中信號控制與處理電路的電路方塊圖。Figure 5 is a circuit block diagram of a signal control and processing circuit in the first embodiment of the present invention.

第六圖為本發明第一實施方式中檢測物體位置時,紅外發光二極體的發光時序示意圖。Fig. 6 is a schematic view showing the timing of light emission of the infrared light emitting diode when the position of the object is detected in the first embodiment of the present invention.

第七A圖為本發明第一實施方式中,物體由右向左變化時,紅外發光二極體的發光時序。FIG. 7A is a timing chart of the light emission of the infrared light emitting diode when the object changes from right to left in the first embodiment of the present invention.

第七B圖為本發明第一實施方式中,物體由右向左變化時,部分光電流的變化趨勢。FIG. 7B is a view showing a change trend of a part of the photocurrent when the object changes from right to left in the first embodiment of the present invention.

第七C圖為本發明第一實施方式中,物體由右向左變化時,輸出給微處理器之數位信號的變化趨勢的示意圖。The seventh C is a schematic diagram showing a change trend of a digital signal output to the microprocessor when the object changes from right to left in the first embodiment of the present invention.

第八圖為本發明第二實施方式之懸浮控制輸入裝置之架構圖。Figure 8 is a block diagram of a suspension control input device according to a second embodiment of the present invention.

第九A圖為本揭示內容第一實施方式中位置感測器的立體圖。9A is a perspective view of a position sensor in the first embodiment of the present disclosure.

第九B圖為本揭示內容第一實施方式中位置感測器的剖視圖。Figure IX is a cross-sectional view of the position sensor of the first embodiment of the present disclosure.

第九C圖為本揭示內容第一實施方式中位置感測器的等效電路圖。The ninth C is an equivalent circuit diagram of the position sensor in the first embodiment of the disclosure.

第九D圖為本揭示內容第一實施方式中位置感測器的有效感測區示意圖。The ninth D diagram is a schematic diagram of an effective sensing area of the position sensor in the first embodiment of the disclosure.

第十圖為本發明第二實施方式中信號控制與處理電路的功能方塊圖。Figure 11 is a functional block diagram of a signal control and processing circuit in a second embodiment of the present invention.

第十一圖為本發明第二實施方式中檢測物體位置時,紅外發光二極體的發光時序示意圖。The eleventh figure is a schematic diagram of the illumination timing of the infrared light emitting diode when the position of the object is detected in the second embodiment of the present invention.

第十二A圖為本發明第二實施方式中,物體由右向左變化時,紅外發光二極體的發光時序。Twelfth A is a timing of light emission of the infrared light emitting diode when the object changes from right to left in the second embodiment of the present invention.

第十二B圖為本發明第二實施方式中,物體由右向左變化時,部分光電流的變化趨勢。Twelfth B is a variation trend of a part of the photocurrent when the object changes from right to left in the second embodiment of the present invention.

第十二C圖為本發明第二實施方式中,物體由右向左變化時,輸出給微處理器之數位信號的變化趨勢的示意圖。Twelfth C is a schematic diagram showing a change trend of a digital signal output to a microprocessor when an object changes from right to left in the second embodiment of the present invention.

3‧‧‧懸浮控制輸入裝置 3‧‧‧suspension control input device

30‧‧‧紅外發光二極體 30‧‧‧Infrared light-emitting diode

32‧‧‧位置感測器 32‧‧‧ position sensor

34‧‧‧成像模組 34‧‧‧ imaging module

36‧‧‧信號控制與處理電路 36‧‧‧Signal control and processing circuit

C‧‧‧公共電極 C‧‧‧Common electrode

MCU‧‧‧微處理器 MCU‧‧‧Microprocessor

1X1、1X2、IY1、IY2‧‧‧電信號 1 X1 , 1 X2 , I Y1 , I Y2 ‧‧‧ electrical signals

X1、X2、Y1、Y2‧‧‧輸出電極 X1, X2, Y1, Y2‧‧‧ output electrodes

Claims (12)

一種懸浮控制輸入裝置,包含:一個紅外發光二極體、一個位置感測器、一個位於位置感測器上方的成像模組,以及一個信號控制與處理電路,該信號控制與處理電路電性相連於該紅外發光二極體及該位置感測器,該信號控制與處理電路直接驅動該紅外發光二極體發出紅外光脈衝並控制該紅外發光二極體發出之紅外光脈衝的脈衝時序,該紅外光脈衝用以照射前方之一物體,該物體反射該紅外光脈衝並形成紅外反射光脈衝,該紅外反射光脈衝透過該成像模組投射於該位置感測器,該位置感測器將所接收之該紅外反射光脈衝及一環境背景光轉換成對應於該位置感測器各方向坐標軸之電信號ㄑ﷽﷽﷽﷽﷽﷽﷽﷽﷽﷽﷽﷽﷽﷽﷽時序,同步個紅外發光二極體、至,該信號控制與處理電路依該紅外光脈衝之脈衝時序,同步接收與處理該位置感測器所產生之電信號。A suspension control input device includes: an infrared light emitting diode, a position sensor, an imaging module located above the position sensor, and a signal control and processing circuit, the signal control and the processing circuit are electrically connected In the infrared light emitting diode and the position sensor, the signal control and processing circuit directly drives the infrared light emitting diode to emit an infrared light pulse and control a pulse timing of the infrared light pulse emitted by the infrared light emitting diode. The infrared light pulse is used to illuminate an object in front of the object, and the object reflects the infrared light pulse and forms an infrared reflected light pulse, and the infrared reflected light pulse is projected through the imaging module to the position sensor, and the position sensor is Receiving the infrared reflected light pulse and an ambient background light into an electrical signal ㄑ﷽﷽﷽﷽﷽﷽﷽﷽﷽﷽﷽﷽﷽﷽﷽ timing corresponding to a coordinate axis of each position sensor, synchronizing an infrared illuminating The diode control unit and the signal control and processing circuit synchronously receive and process the electricity generated by the position sensor according to the pulse timing of the infrared light pulse number. 如請求項1所述之懸浮控制輸入裝置,其中該信號控制與處理電路控制該紅外發光二極體發射之紅外光脈衝的脈衝強度、脈衝時間寬度、脈衝發生週期及脈衝發生個數。The suspension control input device of claim 1, wherein the signal control and processing circuit controls a pulse intensity, a pulse time width, a pulse generation period, and a pulse generation number of the infrared light pulse emitted by the infrared light emitting diode. 如請求項1所述之懸浮控制輸入裝置,其中該位置感測器上形成有一光學鍍膜,該光學鍍膜用以供紅外反射光脈衝通過。The suspension control input device of claim 1, wherein the position sensor is formed with an optical coating for transmitting infrared reflected light pulses. 如請求項1所述之懸浮控制輸入裝置,其中該位置感測器為一維位置感測器或二維位置感測器。The levitation control input device of claim 1, wherein the position sensor is a one-dimensional position sensor or a two-dimensional position sensor. 如請求項4所述之懸浮控制輸入裝置,其中該一維位置感測器在其感測維度兩側各別有一個位置信號輸出端點,該二維位置感測器在其感測維度兩側有對應之位置信號輸出接點。The suspension control input device of claim 4, wherein the one-dimensional position sensor has a position signal output end point on each side of the sensing dimension, the two-dimensional position sensor in its sensing dimension two There is a corresponding position signal output contact on the side. 如請求項1所述之懸浮控制輸入裝置,其中該信號控制與處理電路將該電信號中對應於該紅外反射光脈衝的紅外反射光脈衝信號及對應於該環境背景光的環境背景光信號分離,並將該紅外反射光脈衝信號轉換成一數位信號傳給一外部之微處理器進行該物體之遠近、移動方向與移動速度之計算。The suspension control input device of claim 1, wherein the signal control and processing circuit separates the infrared reflected light pulse signal corresponding to the infrared reflected light pulse and the ambient background light signal corresponding to the ambient background light in the electrical signal. And converting the infrared reflected light pulse signal into a digital signal and transmitting it to an external microprocessor for calculating the distance, moving direction and moving speed of the object. 一種懸浮控制輸入裝置,包含:一紅外發光二極體; 一集成電路,電連接於紅外發光二極體,該集成電路包含一位置感測器及一信號控制與處理電路,該信號控制與處理電路直接驅動該紅外發光二極體發出紅外光脈衝,並控制該紅外光脈衝的脈衝時序;以及 一成像模組,位於該位置感測器上方, 其中,該紅外發光二極體發出之該紅外光脈衝用以照射一物體,該物體反射該紅外光脈衝並形成一紅外反射光脈衝,該紅外反射光脈衝及一環境背景光透過該成像模組投射至該集成電路內部之該位置感測器,該位置感測器接收該紅外反射光脈衝及該環境背景光,並將紅外反射光脈衝及環境背景光轉換成相對於該位置感測器各方位坐標軸之電信號,該集成電路之該信號控制與處理電路依該紅外光脈衝之脈衝時序,同步接收與處理該位置感測器產生之電信號。A suspension control input device comprises: an infrared light emitting diode; an integrated circuit electrically connected to the infrared light emitting diode, the integrated circuit comprising a position sensor and a signal control and processing circuit, the signal control and processing The circuit directly drives the infrared light emitting diode to emit an infrared light pulse and controls the pulse timing of the infrared light pulse; and an imaging module is located above the position sensor, wherein the infrared light emitting diode emits the infrared light The light pulse is used to illuminate an object, the object reflects the infrared light pulse and forms an infrared reflected light pulse, and the infrared reflected light pulse and an ambient background light are projected through the imaging module to the position sensor inside the integrated circuit. The position sensor receives the infrared reflected light pulse and the ambient background light, and converts the infrared reflected light pulse and the ambient background light into an electrical signal relative to a coordinate axis of the position sensor, the integrated circuit The signal control and processing circuit synchronously receives and processes the electrical signal generated by the position sensor according to the pulse timing of the infrared light pulse. 如請求項7所述之懸浮控制輸入裝置,其中該集成電路內部之該信號控制與處理電路係控制該紅外光發光二極體發射之紅外光脈衝的脈衝強度、脈衝時間寬度、脈衝發生週期,以及脈衝發生個數。The suspension control input device of claim 7, wherein the signal control and processing circuit inside the integrated circuit controls a pulse intensity, a pulse time width, and a pulse generation period of the infrared light pulse emitted by the infrared light emitting diode. And the number of pulses. 如請求項7所述之懸浮控制輸入裝置,其中該集成電路內部之該位置感測器上形成有一光學鍍膜,該光學鍍膜用以供紅外反射光脈衝通過。The suspension control input device of claim 7, wherein the position sensor inside the integrated circuit is formed with an optical coating for transmitting infrared reflected light pulses. 如請求項7所述之懸浮控制輸入裝置,其中該集成電路內部之該位置感測器為一維位置感測器或二維位置感測器。The levitation control input device of claim 7, wherein the position sensor inside the integrated circuit is a one-dimensional position sensor or a two-dimensional position sensor. 如請求項10所述之懸浮控制輸入裝置,其中該一維位置感測器在其感測維度兩側各別有一個位置信號輸出點,該等位置信號輸出點電性連接於該集成電路內部之該信號控制與處理電路,該二維位置感測器在其各自感測維度兩側有對應之位置信號輸出點,該等位置信號輸出點電連接於該集成電路內部之該信號與處理電路。The levitation control input device of claim 10, wherein the one-dimensional position sensor has a position signal output point on each side of the sensing dimension, and the position signal output points are electrically connected to the inside of the integrated circuit. The signal control and processing circuit, the two-dimensional position sensor has corresponding position signal output points on both sides of its respective sensing dimension, and the position signal output points are electrically connected to the signal and the processing circuit inside the integrated circuit. . 如請求項7所述之懸浮控制輸入裝置,其中該集成電路之該信號控制與處理電路將該電信號中對應於該紅外反射光脈衝的紅外反射光脈衝信號及對應於該環境背景光的環境背景光信號分離,並將該紅外反射光脈衝信號轉換成一數位信號傳給一外部之微處理器進行該物體之遠近、移動方向與移動速度之計算。The levitation control input device of claim 7, wherein the signal control and processing circuit of the integrated circuit corresponds to an infrared reflected light pulse signal of the infrared reflected light pulse and an environment corresponding to the ambient backlight. The background optical signal is separated, and the infrared reflected optical pulse signal is converted into a digital signal and transmitted to an external microprocessor for calculating the distance, the moving direction and the moving speed of the object.
TW103121512A 2014-06-23 2014-06-23 Floating touch input device TW201601036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103121512A TW201601036A (en) 2014-06-23 2014-06-23 Floating touch input device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103121512A TW201601036A (en) 2014-06-23 2014-06-23 Floating touch input device

Publications (1)

Publication Number Publication Date
TW201601036A true TW201601036A (en) 2016-01-01

Family

ID=55641265

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103121512A TW201601036A (en) 2014-06-23 2014-06-23 Floating touch input device

Country Status (1)

Country Link
TW (1) TW201601036A (en)

Similar Documents

Publication Publication Date Title
US9103658B2 (en) Optical navigation module with capacitive sensor
JP6299983B2 (en) Motion sensor device having a plurality of light sources
US9058081B2 (en) Application using a single photon avalanche diode (SPAD)
WO2014208087A1 (en) Motion sensor device having plurality of light sources
JP5837220B2 (en) Optical sensor and electronic equipment
WO2015193804A2 (en) Detector for determining a position of at least one object
JP6072928B2 (en) Optical sensor and electronic equipment
TW200417928A (en) Apparatus equipped with an optical keyboard and optical input device
TW200925706A (en) Display-and-image-pickup apparatus, object detection program and method of detecting an object
TWI533010B (en) Optical sensing apparatus and method for detecting object near optical sensing apparatus
JP2012233783A (en) Optical detecting device and electronic equipment
JP5947526B2 (en) Photodetector
JP2011138503A (en) Object detection device
TWI764161B (en) light detection device
TW201535165A (en) Pen-type optical indexing apparatus and method for controlling the same
TW201601036A (en) Floating touch input device
KR102251374B1 (en) Image sensing apparatus and operating method thereof
US20150293612A1 (en) Pen-type optical indexing apparatus and method for controlling the same
WO2014205705A1 (en) Light sensor array device
US11928892B2 (en) Motion recognition apparatus using ToF sensor and method for operating the same
US9804695B2 (en) Cursor control apparatus and method for the same
CN105335016A (en) Suspension control input apparatus
CN114035717B (en) Motion recognition apparatus using TOF sensor and method of operating the same
TWI476646B (en) Cursor control apparatus and method for the same
US8896553B1 (en) Hybrid sensor module