TW201540109A - Method of transmitting uplink control information in wireless communication system supporting change of usage of radio resource and apparatus therefor - Google Patents

Method of transmitting uplink control information in wireless communication system supporting change of usage of radio resource and apparatus therefor Download PDF

Info

Publication number
TW201540109A
TW201540109A TW104111294A TW104111294A TW201540109A TW 201540109 A TW201540109 A TW 201540109A TW 104111294 A TW104111294 A TW 104111294A TW 104111294 A TW104111294 A TW 104111294A TW 201540109 A TW201540109 A TW 201540109A
Authority
TW
Taiwan
Prior art keywords
uplink
power control
information
subframe
control information
Prior art date
Application number
TW104111294A
Other languages
Chinese (zh)
Other versions
TWI575986B (en
Inventor
Seung-Min Lee
Han-Byul Seo
Suck-Chel Yang
In-Kwon Seo
Hyuk-Jin Chae
Original Assignee
Lg Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lg Electronics Inc filed Critical Lg Electronics Inc
Publication of TW201540109A publication Critical patent/TW201540109A/en
Application granted granted Critical
Publication of TWI575986B publication Critical patent/TWI575986B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/24Connectivity information management, e.g. connectivity discovery or connectivity update
    • H04W40/246Connectivity information discovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/14Access restriction or access information delivery, e.g. discovery data delivery using user query or user detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/16Deriving transmission power values from another channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present invention relates to a method of transmitting uplink control information (UCI), which is transmitted by a user equipment in a wireless communication system. In particular, the method includes the steps of receiving first offset information associated with uplink control information (UCI) transmission in uplink subframes according to uplink-downlink configuration of a serving cell and receiving a power control parameter configuring a first uplink power control subframe set and a second uplink power control subframe set for the uplink subframes. In this case, the first uplink power control subframe set and the second uplink power control subframe set are configured to be independently applied by an offset for transmitting the uplink control information.

Description

在支援改變無線電資源之用途的無線通訊系統中發射上行鏈路控制資訊的方法及其設備 Method and device for transmitting uplink control information in a wireless communication system supporting the use of changing radio resources

本申請案主張申請於2014年4月8日之美國臨時專利申請案第61/976,514號之權益,及申請於2014年4月8日之美國臨時專利申請案第61/977,072號之權益,及申請於2014年4月14日之美國臨時專利申請案第61/979,007號之權益,上述申請案如在本文中充分闡述一般以引用之方式併入本文。 The present application claims the benefit of U.S. Provisional Patent Application No. 61/976,514, filed on Apr. 8, 2014, and the benefit of U.S. Provisional Patent Application No. 61/977,072, filed on Apr. 8, 2014, and </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> </ RTI> <RTIgt;

本發明係關於無線通訊系統,且更特定言之,本發明係關於在支援改變無線電資源之用途的無線通訊系統中發射上行鏈路控制資訊之方法及其設備。 The present invention relates to wireless communication systems and, more particularly, to a method and apparatus for transmitting uplink control information in a wireless communication system that supports the use of changing radio resources.

將簡要描述本發明可應用於之無線通訊系統之一實例,該實例為第三代合作夥伴計劃長期進化(3rd generation partnership project long term evolution;3GPP LTE)(在下文中稱為「LTE」)通訊系統。 An example of a wireless communication system to which the present invention is applicable will be briefly described. This example is a 3rd generation partnership project long term evolution (3GPP LTE) (hereinafter referred to as "LTE") communication system. .

第1圖是圖示進化通用行動電訊系統(Evolved Universal Mobile Telecommunications System;E-UMTS)之網路結構之圖表, 該系統為無線通訊系統之一實例。E-UMTS是習用UMTS之進化版本,且其基本標準化正在第三代合作夥伴計劃(3rd Generation Partnership Project;3GPP)下進行。E-UMTS可被稱作長期進化(Long Term Evolution;LTE)系統。UMTS與E-UMTS之技術規範細節可藉由參考「第三代合作夥伴計劃;技術規範群組無線電存取網路(3rd Generation Partnership Project;Technical Specification Group Radio Access Network)」之第7版及第8版來理解。 Figure 1 is a diagram showing the network structure of the Evolved Universal Mobile Telecommunications System (E-UMTS). The system is an example of a wireless communication system. E-UMTS is an evolutionary version of the conventional UMTS, and its basic standardization is under the 3rd Generation Partnership Project (3GPP). E-UMTS can be referred to as a Long Term Evolution (LTE) system. The technical specifications of UMTS and E-UMTS can be referred to the 7th edition and the third edition of the 3rd Generation Partnership Project (Technical Specification Group Radio Access Network). 8 edition to understand.

參看第1圖,E-UMTS包括使用者裝備(user equipment; UE)、基地台(eNode B;eNB),及位於網路末端(E-UTRAN)並連接至外部網路之存取閘道(Access Gateway;AG)。基地台可同時發射多個資料串流以用於廣播服務、多播服務及/或單播服務。 Referring to Figure 1, the E-UMTS includes user equipment; UE), base station (eNode B; eNB), and access gateway (AG) at the end of the network (E-UTRAN) and connected to the external network. The base station can simultaneously transmit multiple data streams for broadcast services, multicast services, and/or unicast services.

一個基地台存在一或更多個單元。一個單元經設定為具有 1.44MHz、3MHz、5MHz、10MHz、15MHz及20MHz的頻寬之單元,以向數個使用者裝備提供下行鏈路或上行鏈路傳輸服務。不同單元可經設定以提供不同頻寬。此外,一個基地台控制複數個使用者裝備之資料發射及接收。基地台向對應之使用者裝備發射下行鏈路資料之下行鏈路(downlink;DL)排程資訊,以將資料待發射至的時域及頻域,以及與編碼、資料大小及混合自動重傳及請求(hybrid automatic repeat and request;HARQ)相關之資訊告知該對應之使用者裝備。此外,基地台向對應之使用者裝備發射上行鏈路資料之上行鏈路(uplink;UL)排程資訊,以將對應之使用者裝備可使用的時域及頻域,以及與編碼、資料大小及HARQ相關之資訊告知該對應之使用者裝備。用於發射使用者訊務或控制訊務之介面可在基地台之間使用。核心網路(Core Network;CN)可包括AG及網路節點或類似物以用於使用者裝備之使用者登錄。 AG基於追蹤區域(Tracking Area;TA)管理使用者裝備之行動性,其中一個TA包括複數個單元。 One base station has one or more units. One unit is set to have A unit of 1.44 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz bandwidth to provide downlink or uplink transmission services to a number of user equipment. Different units can be set to provide different bandwidths. In addition, a base station controls the transmission and reception of data from a plurality of user equipment. The base station transmits downlink information (downlink; DL) schedule information to the corresponding user equipment to transmit the time domain and frequency domain to which the data is to be transmitted, and the code, data size, and hybrid automatic retransmission. And the information related to the request (hybrid automatic repeat and request; HARQ) informs the corresponding user equipment. In addition, the base station provides uplink (UL) scheduling information for transmitting uplink data to the corresponding user equipment, so as to use the time domain and frequency domain of the corresponding user equipment, and the coding and data size. And HARQ related information informs the corresponding user equipment. Interfaces for transmitting user traffic or controlling traffic can be used between base stations. The Core Network (CN) may include an AG and a network node or the like for user login of the user equipment. The AG manages the mobility of user equipment based on a Tracking Area (TA), where one TA includes a plurality of units.

儘管基於WCDMA開發之無線通訊技術已進化至LTE,但使 用者及提供商之請求及期望一直在持續增長。而且,由於另一無線存取技術正在持續開發,因此為了未來的競爭力,無線通訊技術將需要新的進化。針對此情況,需要降低每位元之成本,增強可用服務、使用可適應性頻帶、結構簡單及開放型介面、使用者裝備之適當功率消耗,等等。 Although wireless communication technology based on WCDMA has evolved to LTE, The requests and expectations of users and providers have continued to grow. Moreover, as another wireless access technology is being continuously developed, wireless communication technologies will require new evolution for future competitiveness. In this case, it is necessary to reduce the cost per bit, enhance the available services, use adaptive frequency bands, simple structure and open interface, appropriate power consumption of user equipment, and the like.

使用者裝備週期性地及/或非週期性地向基地台報告當前通 道之狀態資訊,以協助基地台有效地管理無線通訊系統。由於所報告之狀態資訊可包括慮及多種狀態之計算結果,因此將需要更高效的報告方法。 The user equipment periodically and/or aperiodically reports the current pass to the base station Status information of the road to assist the base station to effectively manage the wireless communication system. Since the reported status information can include calculations that take into account multiple states, a more efficient reporting method will be required.

因此,本發明係針對大體上消除歸因於相關技術之限制及缺點的一或更多個問題之設備及其方法。 Accordingly, the present invention is directed to an apparatus and method thereof that substantially obviate one or more problems due to the limitations and disadvantages of the related art.

本發明之一目的係基於前述描述中提及之論述提供在支援改變無線電資源之用途的無線通訊中發射上行鏈路控制資訊之方法及其設備。 One object of the present invention is to provide a method and apparatus for transmitting uplink control information in wireless communications that support the use of changing radio resources based on the discussion mentioned in the foregoing description.

可自本發明獲得的技術任務並非限制於上文提及之技術任務。此外,本發明所屬技術領域之一般技術者可根據下文之描述明確理解其他未提及之技術任務。 The technical tasks that can be obtained from the present invention are not limited to the technical tasks mentioned above. In addition, other technical tasks not mentioned may be clearly understood by those of ordinary skill in the art to which the present invention pertains.

下文之描述中將部分地闡明本發明之額外優勢、目標及特徵,及該等額外優勢、目標及特徵將部分地在該項技術之一般技術者於研究下文內容之後變得顯而易見,或可根據本發明之實踐來瞭解。本發明之目標及其他優勢可藉由本發明之書面描述及申請專利範圍以及藉 由附圖中特定指出之結構而實現及獲得。 The additional advantages, objects, and features of the present invention will be set forth in part in the description which follows. The practice of the invention is to be understood. The objectives and other advantages of the present invention can be derived from the written description of the present invention and the scope of the patent application and It is realized and attained by the structure particularly pointed out in the drawings.

為實現該等目標及其他優勢並依據本發明之目的(如本文中所包含及概括地描述),根據一個實施例,由使用者裝備在無線通訊系統中進行發射的發射上行鏈路控制資訊(uplink control information;UCI)之方法包括以下步驟:根據服務單元之上行鏈路-下行鏈路配置,在上行鏈路子訊框中接收與上行鏈路控制資訊(uplink control information;UCI)發射相關聯之第一偏移資訊;及接收功率控制參數,該功率控制參數為上行鏈路子訊框配置第一上行鏈路功率控制子訊框組及第二上行鏈路功率控制子訊框組。在此情況下,第一上行鏈路功率控制子訊框組及第二上行鏈路功率控制子訊框組經配置以按照一偏移獨立應用,以用於發射上行鏈路控制資訊。 To achieve these and other advantages and in accordance with the purpose of the present invention (as embodied and generally described herein), according to one embodiment, transmitting uplink control information (e.g., transmitted by a user in a wireless communication system) The method of uplink control information (UCI) includes the steps of: receiving an uplink control information (UCI) transmission in an uplink subframe according to an uplink-downlink configuration of the serving unit a first offset information; and a received power control parameter, wherein the power control parameter configures a first uplink power control subframe group and a second uplink power control subframe group for the uplink subframe. In this case, the first uplink power control subframe group and the second uplink power control subframe group are configured to be independently applied according to an offset for transmitting uplink control information.

在較佳情況下,經配置用於上行鏈路子訊框之第一偏移資訊可應用於第一上行鏈路功率控制子訊框組以發射上行鏈路控制資訊。 Preferably, the first offset information configured for the uplink subframe is applicable to the first uplink power control subframe group to transmit uplink control information.

在較佳情況下,藉由上層傳訊所指示之第二偏移資訊可應用於第二上行鏈路功率控制子訊框組以發射上行鏈路控制資訊。 Preferably, the second offset information indicated by the upper layer communication is applicable to the second uplink power control subframe group to transmit uplink control information.

在較佳情況下,功率控制參數可經由上層傳訊而接收。 In the preferred case, the power control parameters can be received via upper layer communication.

在較佳情況下,該方法可進一步包括以下步驟:接收功率控制參數,該功率控制參數釋放第一上行鏈路功率控制子訊框組及第二上行鏈路功率控制子訊框組。在更佳情況下,如若釋放第一上行鏈路功率控制子訊框組及第二上行鏈路功率控制子訊框組,則上行鏈路子訊框可經配置以由第一偏移資訊應用。 Preferably, the method may further comprise the steps of: receiving a power control parameter, the power control parameter releasing the first uplink power control subframe group and the second uplink power control subframe group. In a better case, if the first uplink power control subframe group and the second uplink power control subframe group are released, the uplink subframe can be configured to be applied by the first offset information.

在較佳情況下,偏移資訊可用以在實體上行鏈路共享通道(physical uplink shared channel;PUSCH)上發射上行鏈路控制資訊。在更佳情況下,偏移資訊可經配置以用於選自由以下各者組成之群組中 之至少一者:HARQ-ACK、秩指示符(rank indicator;RI)及通道品質指示符(channel quality indicator;CQI)。 In the preferred case, the offset information can be used to transmit uplink control information on a physical uplink shared channel (PUSCH). In a better case, the offset information can be configured for use in a group selected from the group consisting of: At least one of: HARQ-ACK, rank indicator (RI), and channel quality indicator (CQI).

為進一步實現該等目標及其他優勢及依據本發明之目的(如本文中所包含及概括地描述),根據一不同實施例,由使用者裝備在支援載波聚合(carrier aggregation;CA)之無線通訊系統中進行發射的發射上行鏈路控制資訊(uplink control information;UCI)之方法包括以下步驟:根據服務單元之上行鏈路-下行鏈路配置,在上行鏈路子訊框中接收與上行鏈路控制資訊(uplink control information;UCI)發射相關聯之第一偏移資訊;及接收功率控制參數,該功率控制參數為服務單元中至少一或更多個服務單元配置第一上行鏈路功率控制子訊框組及第二上行鏈路功率控制子訊框組。在此情況下,第一上行鏈路功率控制子訊框組及第二上行鏈路功率控制子訊框組可經配置以按照一偏移獨立應用,以用於發射上行鏈路控制資訊。 To further achieve these and other advantages and in accordance with the purpose of the present invention (as embodied and generally described herein), in accordance with a different embodiment, the user is equipped with wireless communication that supports carrier aggregation (CA). The method for transmitting uplink control information (UCI) transmitted in the system includes the following steps: receiving and uplink control in an uplink subframe according to an uplink-downlink configuration of the service unit Uplink control information (UCI) transmitting associated first offset information; and receiving power control parameters configured to configure a first uplink power control subframe for at least one or more service units in the service unit The frame group and the second uplink power control subframe group. In this case, the first uplink power control subframe group and the second uplink power control subframe group can be configured to be independently applied according to an offset for transmitting uplink control information.

在較佳情況下,經配置以用於上行鏈路子訊框之第一偏移資訊可應用於服務單元中之第一服務單元以發射上行鏈路控制資訊,該第一上行鏈路功率控制子訊框組係配置至該第一服務單元。 Preferably, the first offset information configured for the uplink subframe is applicable to the first serving unit in the service unit to transmit uplink control information, the first uplink power control The frame group is configured to the first service unit.

在較佳情況下,經由上層傳訊而指示之第二偏移資訊可應用於服務單元中之第二服務單元以發射上行鏈路控制資訊,第二上行鏈路功率控制子訊框組係配置至該第二服務單元。 Preferably, the second offset information indicated by the upper layer communication is applicable to the second service unit in the service unit to transmit uplink control information, and the second uplink power control subframe group is configured to The second service unit.

為進一步實現該等目標及其他優勢及依據本發明之目的(如本文中所包含及概括地描述),根據一不同實施例,在無線通訊系統中發射上行鏈路控制資訊之使用者裝備包括射頻單元及處理器,該處理器經配置以根據服務單元之上行鏈路-下行鏈路配置而在上行鏈路子訊框中接收與上行鏈路控制資訊(uplink control information;UCI)發射相 關聯之第一偏移資訊,且該處理器經配置以接收功率控制參數,該功率控制參數為上行鏈路子訊框配置第一上行鏈路功率控制子訊框組及第二上行鏈路功率控制子訊框組。在此情況下,第一上行鏈路功率控制子訊框組及第二上行鏈路功率控制子訊框組可經配置以按照一偏移獨立應用,以用於發射上行鏈路控制資訊。 To further achieve these and other advantages and in accordance with the purpose of the present invention (as embodied and generally described herein), in accordance with a different embodiment, user equipment for transmitting uplink control information in a wireless communication system includes a radio frequency a unit and a processor configured to receive an uplink control information (UCI) transmission phase in an uplink subframe according to an uplink-downlink configuration of the serving unit Correlating the first offset information, and the processor is configured to receive a power control parameter, the power control parameter configuring the first uplink power control subframe group and the second uplink power control for the uplink subframe Sub-frame group. In this case, the first uplink power control subframe group and the second uplink power control subframe group can be configured to be independently applied according to an offset for transmitting uplink control information.

根據本發明之實施例,能夠在支援改變無線電資源之用途的無線通訊系統中有效地發射上行鏈路控制資訊。 According to an embodiment of the present invention, uplink control information can be efficiently transmitted in a wireless communication system that supports the use of changing radio resources.

可自本發明獲得的效應可並非限定於上文提及之效應。此外,本發明所屬技術領域之一般技藝人士可根據下文之描述明確理解其他未提及之效應。 The effects obtainable from the present invention may not be limited to the effects mentioned above. In addition, other unmentioned effects may be clearly understood by those of ordinary skill in the art in view of the following description.

將理解,前文中對本發明之一般描述及下文對本發明之詳細描述皆為示例性及說明性的,且意欲提供對如本文所主張之本發明之進一步說明。 The foregoing description of the preferred embodiments of the invention,

110‧‧‧基地台 110‧‧‧Base station

112‧‧‧處理器 112‧‧‧ processor

114‧‧‧記憶體 114‧‧‧ memory

116‧‧‧射頻單元 116‧‧‧RF unit

120‧‧‧使用者裝備 120‧‧‧User equipment

122‧‧‧處理器 122‧‧‧Processor

124‧‧‧記憶體 124‧‧‧ memory

126‧‧‧射頻單元 126‧‧‧RF unit

S301‧‧‧步驟 S301‧‧‧Steps

S302‧‧‧步驟 S302‧‧‧Steps

S303‧‧‧步驟 S303‧‧‧Steps

S304‧‧‧步驟 S304‧‧‧Steps

S305‧‧‧步驟 S305‧‧‧Steps

S306‧‧‧步驟 S306‧‧‧Steps

S307‧‧‧步驟 S307‧‧‧Steps

S900‧‧‧步驟 S900‧‧‧Steps

S910‧‧‧步驟 S910‧‧‧Steps

S920‧‧‧步驟 S920‧‧‧Steps

S930‧‧‧步驟 S930‧‧ steps

S940‧‧‧步驟 S940‧‧‧Steps

S950‧‧‧步驟 S950‧‧ steps

S960‧‧‧步驟 S960‧‧‧Steps

S970‧‧‧步驟 S970‧‧‧Steps

S980‧‧‧步驟 S980‧‧‧Steps

S990‧‧‧步驟 S990‧‧‧Steps

附圖圖示本發明之實施例及結合描述一起以用於說明本發明之原理,包括該等附圖在本文中以提供對本發明之進一步理解,且該等附圖併入本申請案並構成本申請案之一部分。 The accompanying drawings illustrate the embodiments of the invention, and the Part of this application.

第1圖是作為無線通訊系統之一個實例的E-UMTS網路結構之示意圖;第2圖是基於3GPP無線電存取網路標準之使用者裝備與E-UTRAN之間的無線電介面協定的控制平面及使用者平面的結構圖;第3圖是用於說明用於3GPP系統之實體通道及使用該等實體通道之一般信號發射方法的圖表;第4圖是LTE系統中之無線電訊框結構之圖表; 第5圖是下行鏈路時槽之資源柵格的一個實例之圖表;第6圖是下行鏈路子訊框結構之一實例之圖表;第7圖是上行鏈路子訊框結構之一實例之圖表;第8圖是用於說明PUCCH揹負(piggyback)之圖表;第9圖是處理UL-SCH資料及控制資訊之一實例之圖表;第10圖是在PUSCH上對上行鏈路控制資訊及UL-SCH資料進行多工的方法之實例之圖表;第11圖是載波聚合(carrier aggregation;CA)通訊系統之一實例之圖表;第12圖是在複數個載波彼此聚合之情況下排程之一實例之圖表;第13圖是由EPDCCH排程之PDSCH及EPDCCH的實例之圖表;第14圖是在TDD系統環境中將舊有子訊框劃分為一組靜態子訊框及一組撓性子訊框的實例之圖表;第15圖是適用於本發明之一個實施例的基地台(base station BS)及使用者裝備(user equipment;UE)之圖表。 1 is a schematic diagram of an E-UMTS network structure as an example of a wireless communication system; FIG. 2 is a control plane of a radio interface agreement between a user equipment and an E-UTRAN based on a 3GPP radio access network standard; And a structure diagram of the user plane; FIG. 3 is a diagram for explaining a physical channel for a 3GPP system and a general signal transmission method using the same; FIG. 4 is a diagram of a radio frame structure in the LTE system ; Figure 5 is a diagram of an example of a resource grid for a downlink time slot; Figure 6 is a diagram of an example of a downlink subframe structure; and Figure 7 is a diagram of an example of an uplink subframe structure. Figure 8 is a diagram for explaining PUCCH piggyback; Figure 9 is a diagram for processing an example of UL-SCH data and control information; Figure 10 is for uplink control information and UL- on PUSCH. A diagram of an example of a method of multiplexing data by a SCH data; a graph of an example of a carrier aggregation (CA) communication system; and a diagram of an example of scheduling with a plurality of carriers aggregated with each other; Figure 13 is a diagram of an example of PDSCH and EPDCCH scheduled by EPDCCH; Figure 14 is a diagram of dividing a legacy subframe into a set of static subframes and a set of flexible subframes in a TDD system environment A diagram of an example; Figure 15 is a diagram of a base station BS and user equipment (UE) suitable for use in one embodiment of the present invention.

現將對本發明之較佳實施例進行詳細參考,本發明之實例在在附圖中圖示。在可能之情況下,所有圖式中將使用相同元件符號以指示相同或相似的部分。 The preferred embodiments of the invention will now be described in detail, and examples of the invention are illustrated in the drawings. Wherever possible, the same reference numerals will be used in the drawings

以下技術可用於多種無線存取技術,如分碼多工存取(code division multiple access;CDMA)、分頻多工存取(frequency division multiple access;FDMA)、分時多工存取(time division multiple access; TDMA)、正交分頻多工存取(orthogonal frequency division multiple access;OFDMA)及單載波分頻多工存取(single carrier frequency division multiple access;SC-FDMA)。CDMA可藉由諸如通用地面無線電存取(universal terrestrial radio access;UTRA)或CDMA2000之無線電技術來實施。TDMA可藉由諸如行動通訊全球系統(global system for mobile communications;GSM)/通用封包無線電服務(general packet radio service;GPRS)/GSM進化增強資料率(enhanced data rates for GSM evolution;EDGE)之無線電技術來實施。OFDMA可藉由諸如IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20,及進化UTRA(evolved UTRA;E-UTRA)之無線電技術而實施。UTRA是通用行動電訊系統(universal mobile telecommunications system;UMTS)之一部分。第三代合作夥伴計劃長期進化(3rd generation partnership project long term evolution;3GPP LTE)是進化UMTS(evolved UMTS;E-UMTS)之一部分,該進化UMTS使用E-UTRA且在下行鏈路中採用OFDMA及在上行鏈路中採用SC-FDMA。LTE進階版(LTE-advanced;LTE-A)是3GPP LTE之進化版本。 The following techniques can be used in a variety of wireless access technologies, such as code division multiple access (CDMA), frequency division multiple access (FDMA), time division multiplex access (time division) Multiple access; TDMA), orthogonal frequency division multiple access (OFDMA), and single carrier frequency division multiple access (SC-FDMA). CDMA can be implemented by a radio technology such as universal terrestrial radio access (UTRA) or CDMA2000. TDMA can be implemented by radio technologies such as global system for mobile communications (GSM)/general packet radio service (GPRS)/enhanced data rates for GSM evolution (EDGE) To implement. OFDMA can be implemented by radio technologies such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, and evolved UTRA (evolved UTRA; E-UTRA). UTRA is part of the universal mobile telecommunications system (UMTS). The 3rd generation partnership project long term evolution (3GPP LTE) is part of the evolutionary UMTS (Evolved UMTS; E-UMTS), which uses E-UTRA and employs OFDMA in the downlink. SC-FDMA is employed in the uplink. The LTE Advanced Edition (LTE-Avanced; LTE-A) is an evolutionary version of 3GPP LTE.

為闡明描述,儘管以下實施例將基於3GPP LTE/LTE-A來進行描述,但應將理解,本發明之技術精神並非限定於3GPP LTE/LTE-A。此外,在下文中用於本發明之實施例之特定術語係提供以協助理解本發明,且在符合不背離本發明之技術精神的範圍的情況下可在該等特定術語中進行多種修改。 To clarify the description, although the following embodiments will be described based on 3GPP LTE/LTE-A, it should be understood that the technical spirit of the present invention is not limited to 3GPP LTE/LTE-A. In addition, the specific terms used in the following examples of the present invention are provided to assist the understanding of the present invention, and various modifications may be made in the specific terms without departing from the scope of the technical spirit of the present invention.

第2圖是使用者裝備與基於3GPP無線電存取網路標準之E-UTRAN之間的無線電介面協定的控制平面及使用者平面的結構圖。 控制平面意謂著控制訊息發射時所在的過道,其中該等控制訊息由使用者裝備及網路使用以管理撥叫。使用者平面意謂著發射應用層中產生之資料(例如語音資料或網際網路封包資料)所在的過道。 Figure 2 is a block diagram of the control plane and user plane of the radio interface protocol between the user equipment and the E-UTRAN based on the 3GPP radio access network standard. The control plane means the aisle in which the control message is transmitted, wherein the control messages are used by the user equipment and the network to manage the dialing. The user plane means the aisle where the data generated in the application layer (such as voice data or internet packet data) is transmitted.

作為第一層之實體層藉由使用實體通道而向上層提供資訊傳送服務。實體層經由傳輸通道連接至媒體存取控制(medium access control;MAC)層,其中該媒體存取控制層位於實體層上方。資料係經由傳輸通道在媒體存取控制層與實體層之間進行傳送。資料係經由實體通道在發射側之一個實體層與接收側之另一實體層之間進行傳送。實體通道使用時間及頻率作為無線電資源。更詳細而言,實體通道在下行鏈路中依據正交分頻多工存取(orthogonal frequency division multiple access;OFDMA)方案而調變,且在上行鏈路中依據單載波分頻多工存取(single carrier frequency division multiple access;SC-FDMA)方案而調變。 The physical layer as the first layer provides an information transfer service to the upper layer by using a physical channel. The physical layer is connected to a medium access control (MAC) layer via a transmission channel, wherein the medium access control layer is located above the physical layer. The data is transferred between the medium access control layer and the physical layer via a transmission channel. The data is transmitted between the physical layer on the transmitting side and the other physical layer on the receiving side via the physical channel. The physical channel uses time and frequency as radio resources. In more detail, the physical channel is modulated in the downlink according to an orthogonal frequency division multiple access (OFDMA) scheme, and in the uplink according to single carrier frequency division multiplexing access (single carrier frequency division multiple access; SC-FDMA) scheme is modulated.

第二層之媒體存取控制(medium access control;MAC)層經由邏輯通道向MAC層上方之無線電鏈路控制(radio link control;RLC)層提供服務。第二層之RLC層支援可靠的資料發射。RLC層可作為MAC層內部的功能區塊而得以實施。為了在具有窄頻寬之無線電介面內有效地使用諸如IPv4或IPv6之IP封包發射資料,第二層之封包資料聚合協定(packet data convergence protocol;PDCP)層執行標頭壓縮以減小不必要控制資訊的大小。 The second layer of the medium access control (MAC) layer provides services to the radio link control (RLC) layer above the MAC layer via logical channels. The second layer of the RLC layer supports reliable data transmission. The RLC layer can be implemented as a functional block inside the MAC layer. In order to efficiently use IP packets such as IPv4 or IPv6 to transmit data in a radio interface with narrow bandwidth, the second layer of packet data convergence protocol (PDCP) layer performs header compression to reduce unnecessary control. The size of the information.

位於第三層之最低部分上之無線電資源控制(radio resource control;RRC)層僅定義在控制平面中。RRC層與負責控制邏輯、傳輸及實體通道之無線電載送(radio bearers;RBs)的配置、重新配置及釋放相關聯。在此情況下,RB意謂著由第二層提供之用於在使用者裝備與 網路之間進行資料傳送之服務。為此目的,使用者裝備之RRC層與網路互相交換RRC訊息。如若使用者裝備之RRC層是與網路RRC層連接之RRC,則使用者裝備處於RRC連接模式。如若並非如此,則使用者裝備處於RRC閒置模式。位於RRC層上方之非存取階層(non-access stratum;NAS)層執行諸如通信期管理及行動性管理之功能。 The radio resource control (RRC) layer located on the lowest part of the third layer is defined only in the control plane. The RRC layer is associated with the configuration, reconfiguration, and release of radio bearers (RBs) responsible for controlling logic, transport, and physical channels. In this case, RB means that the second layer is provided for use in the user's equipment. A service for data transfer between networks. For this purpose, the RRC layer of the user equipment exchanges RRC messages with the network. If the RRC layer of the user equipment is the RRC connected to the network RRC layer, the user equipment is in the RRC connected mode. If this is not the case, the user equipment is in RRC idle mode. A non-access stratum (NAS) layer located above the RRC layer performs functions such as communication period management and mobility management.

構成基地台eNB之一個單元經設定為具有1.4MHz、3.5MHz、5MHz、10MHz、15MHz及20MHz的頻寬之一者,且向數個使用者裝備提供下行鏈路或上行線路發射服務。此時,不同單元可經設定以提供不同的頻寬。 One of the units constituting the base station eNB is set to have one of bandwidths of 1.4 MHz, 3.5 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz, and provides downlink or uplink transmission services to a plurality of user equipments. At this point, different units can be set to provide different bandwidths.

作為從網路將資料承載至使用者裝備之下行鏈路傳輸通道,提供有承載系統資訊之廣播通道(broadcast channel;BCH)、承載傳呼訊息之傳呼通道(paging channel;PCH),及承載使用者訊務或控制訊息之下行鏈路共享通道(shared channel;SCH)。下行鏈路多播或廣播服務之訊務或控制訊息可經由下行鏈路SCH或額外的下行鏈路多播通道(multicast channel;MCH)發射。同時,作為從使用者裝備將資料載至網路之上行鏈路傳輸通道,提供有承載初始控制訊息之隨機存取通道(random access channel;RACH)及承載使用者訊務或控制訊息之上行鏈路共享通道(uplink shared channel;UL-SCH)。作為位於傳輸通道上方並利用傳輸通道映射之邏輯通道,提供有廣播控制通道(broadcast control channel;BCCH)、傳呼控制通道(paging control channel;PCCH)、共用控制通道(common control channel;CCCH)、多播控制通道(multicast control channel;MCCH)及多播訊務通道(multicast traffic channel;MTCH)。 As a data transmission path from the network to the downlink transmission channel of the user equipment, a broadcast channel (BCH) carrying the system information, a paging channel (PCH) carrying the paging message, and a bearer user are provided. The shared channel (SCH) under the traffic or control message. The traffic or control messages for the downlink multicast or broadcast service may be transmitted via the downlink SCH or an additional downlink multicast channel (MCH). At the same time, as an uplink transmission channel carrying data from the user equipment to the network, a random access channel (RACH) carrying the initial control message and an uplink carrying the user information or control message are provided. Uplink shared channel (UL-SCH). As a logical channel located above the transmission channel and mapped by the transmission channel, a broadcast control channel (BCCH), a paging control channel (PCCH), a common control channel (CCCH), and a plurality of Multicast control channel (MCCH) and multicast traffic channel (MTCH).

第3圖是圖示用於3GPP LTE系統之實體通道及使用該等實 體通道發射信號之一般方法的圖表。 Figure 3 is a diagram showing the physical channels used in the 3GPP LTE system and the use of such real A diagram of the general method of transmitting signals from a body channel.

在步驟S301中,使用者裝備在剛進入一單元或電源開啟時,使用者裝備執行初始單元搜尋,如與基地台同步。為此,使用者裝備藉由從基地台接收主要同步通道(primary synchronization channel;P-SCH)及次要同步通道(secondary synchronization channel;S-SCH)而與基地台同步,且獲取諸如單元標識符(ID)等等之資訊。之後,使用者裝備可藉由接收來自基地台之實體廣播通道(physical broadcast channel;PBCH)而在單元內獲取廣播資訊。同時,使用者裝備可藉由在初始單元搜尋步驟中接收下行鏈路參考信號(downlink reference signal;DL RS)而識別下行鏈路通道狀態。 In step S301, when the user equipment is just entering a unit or the power is turned on, the user equipment performs an initial unit search, such as synchronization with the base station. To this end, the user equipment synchronizes with the base station by receiving a primary synchronization channel (P-SCH) and a secondary synchronization channel (S-SCH) from the base station, and acquires, for example, a unit identifier. (ID) and other information. Thereafter, the user equipment can acquire broadcast information in the unit by receiving a physical broadcast channel (PBCH) from the base station. At the same time, the user equipment can identify the downlink channel status by receiving a downlink reference signal (DL RS) in the initial unit search step.

在步驟S302中,已完成初始單元搜尋之使用者裝備可依據實體下行鏈路控制通道(physical downlink control channel;PDCCH)及PDCCH中承載之資訊,藉由接收實體下行鏈路共享通道(physical downlink shared channel;PDSCH)而獲取更詳細之系統資訊。 In step S302, the user equipment that has completed the initial unit search may receive the physical downlink shared channel (physical downlink shared channel) according to the physical downlink control channel (PDCCH) and the information carried in the PDCCH. Channel; PDSCH) for more detailed system information.

之後,使用者裝備可執行諸如步驟S303至S306之隨機存取程序(random access procedure;RACH)以完成對基地台之存取。為此,使用者裝備可經由實體隨機存取通道(physical random access channel;PRACH)發射前文(步驟S303),且可經由PDCCH及對應於PDCCH之PDSCH接收該前文之回應訊息(步驟S304)。在基於競爭之RACH的情況下,使用者裝備可執行競爭解決程序,如發射(步驟S305)額外的實體隨機存取通道(physical random access channel;PRACH)及接收(步驟S306)實體下行鏈路控制通道及對應於該實體下行鏈路控制通道之實體下行鏈路共享通道。 Thereafter, the user equipment can perform a random access procedure (RACH) such as steps S303 to S306 to complete access to the base station. To this end, the user equipment may transmit the preamble via a physical random access channel (PRACH) (step S303), and may receive the foregoing response message via the PDCCH and the PDSCH corresponding to the PDCCH (step S304). In the case of contention based RACH, the user equipment may perform a contention resolution procedure, such as transmitting (step S305) additional physical random access channel (PRACH) and receiving (step S306) physical downlink control. A channel and a physical downlink shared channel corresponding to the physical downlink control channel.

已執行前述步驟的使用者裝備可接收實體下行鏈路控制通道 (physical downlink control channel;PDCCH)/實體下行鏈路共享通道(physical downlink shared channel;PDSCH)(步驟S307)且發射實體上行鏈路共享通道(physical uplink shared channel;PUSCH)及實體上行鏈路控制通道(physical uplink control channel;PUCCH)(步驟S308),以作為發射上行鏈路/下行鏈路信號之一般程序。自使用者裝備發射至基地台的控制資訊將被稱作上行鏈路控制資訊(uplink control information;UCI)。UCI包括混合自動重傳及請求認可/否定認可(Hybrid Automatic Repeat and reQuest Acknowledgement/Negative Acknowledgement;HARQ ACK/NACK)、排程請求(Scheduling Request;SR)、通道狀態資訊(Channel State Information;CSI)等等。 在本說明書中,HARQ ACK/NACK將被稱作HARQ-ACK或ACK/NACK(A/N)。HARQ-ACK包括肯定ACK(簡言之,被稱作ACK)、否定ACK(negative ACK;NACK)、DTX及NACK/DTX中之至少一者。CSI包括通道品質指示符(channel quality indicator;CQI)、預編碼矩陣指示符(Precoding Matrix Indicator;PMI)、秩指示符(rank indicator;RI)等等。儘管UCI一般經由PUCCH而發射,但在控制資訊及訊務資料將同時發射之情況下,UCI可能經由PUSCH發射。此外,使用者裝備可依據網路請求/命令而非週期性地經由PUSCH發射UCI。 The user equipment that has performed the foregoing steps can receive the physical downlink control channel (physical downlink shared channel; PDCCH)/physical downlink shared channel (PDSCH) (step S307) and transmitting physical uplink shared channel (PUSCH) and physical uplink control channel (physical uplink control channel; PUCCH) (step S308) as a general procedure for transmitting an uplink/downlink signal. The control information transmitted from the user equipment to the base station will be referred to as uplink control information (UCI). UCI includes Hybrid Automatic Repeat and reQuest Acknowledgement/Negative Acknowledgement (HARQ ACK/NACK), Scheduling Request (SR), Channel State Information (CSI), etc. Wait. In this specification, HARQ ACK/NACK will be referred to as HARQ-ACK or ACK/NACK (A/N). The HARQ-ACK includes at least one of a positive ACK (in short, referred to as ACK), a negative ACK (Negative ACK; NACK), DTX, and NACK/DTX. The CSI includes a channel quality indicator (CQI), a Precoding Matrix Indicator (PMI), a rank indicator (RI), and the like. Although UCI is typically transmitted via PUCCH, UCI may be transmitted via PUSCH in the event that control information and traffic data are simultaneously transmitted. In addition, the user equipment can transmit the UCI via the PUSCH in accordance with the network request/command rather than periodically.

第4圖是圖示用於LTE系統中之無線電訊框之結構的圖表。 Figure 4 is a diagram illustrating the structure of a radio frame for use in an LTE system.

參看第4圖,在蜂巢式OFDM無線電封包通訊系統中,上行鏈路/下行鏈路資料封包發射是在子訊框單元中執行的,其中一個子訊框由包括複數個OFDM符號之給定時間間隔而定義。3GPP LTE標準支援適用於分頻雙工(frequency division duplex;FDD)之1類無線電訊 框結構及適用於分時雙工(time division duplex;TDD)之2類無線電訊框結構。 Referring to FIG. 4, in a cellular OFDM radio packet communication system, uplink/downlink data packet transmission is performed in a subframe unit, wherein a subframe is given a given time by a plurality of OFDM symbols. Defined by interval. 3GPP LTE standard supports Class 1 radio for frequency division duplex (FDD) The frame structure and the two types of radio frame structures suitable for time division duplex (TDD).

第4(a)圖是圖示1類無線電訊框結構之圖表。下行鏈路無線電訊框包括10個子訊框,每一子訊框在一時域中包括兩個時槽。發射一個子訊框所需之時間將被稱作發射時間間隔(transmission time interval;TTI)。例如,一個子訊框可具有1ms之長度,而一個時槽可具有0.5ms之長度。一個時槽在時域中包括複數個OFDM符號且在一頻域中包括複數個資源區塊(resource block;RB)。由於3GPP LTE系統在下行鏈路中使用OFDM,因此OFDM符號表示一個符號間隔。 OFDM符號可被稱作SC-FDMA符號或符號間隔。作為資源分配單元之資源區塊(resource block RB)可在一個時槽中包括複數個連續次載波。 Figure 4(a) is a diagram illustrating the structure of a Class 1 radio frame. The downlink radio frame includes 10 subframes, and each subframe includes two slots in a time domain. The time required to transmit a subframe will be referred to as the transmission time interval (TTI). For example, a sub-frame can have a length of 1 ms, and a time slot can have a length of 0.5 ms. A time slot includes a plurality of OFDM symbols in the time domain and includes a plurality of resource blocks (RBs) in a frequency domain. Since the 3GPP LTE system uses OFDM in the downlink, the OFDM symbol represents one symbol interval. An OFDM symbol may be referred to as an SC-FDMA symbol or symbol interval. A resource block RB as a resource allocation unit may include a plurality of consecutive subcarriers in one time slot.

一個時槽中包括之OFDM符號數目可依據循環字首(cyclic prefix;CP)之配置而改變。CP之實例包括延伸CP及正規CP。例如,如若OFDM符號係由正規CP配置,則包括在一個時槽中之OFDM符號之數目可為7。如若OFDM符號係由延伸CP配置,則由於一個OFDM符號之長度增長,因此一個時槽中包括之OFDM符號之數目小於在正規CP情況下之OFDM符號數目。例如,在延伸CP之情況下,一個時槽中包括之OFDM符號之數目可為6。如若通道狀況不穩定,如使用者裝備以高速移動之情況,則延伸CP可用以降低符號間干擾。 The number of OFDM symbols included in a time slot may vary depending on the configuration of the cyclic prefix (CP). Examples of CPs include extended CPs and regular CPs. For example, if the OFDM symbol is configured by a regular CP, the number of OFDM symbols included in one time slot may be seven. If the OFDM symbol is configured by the extended CP, since the length of one OFDM symbol increases, the number of OFDM symbols included in one time slot is smaller than the number of OFDM symbols in the case of a normal CP. For example, in the case of extending the CP, the number of OFDM symbols included in one time slot may be six. If the channel condition is unstable, such as when the user equipment is moving at high speed, the extended CP can be used to reduce intersymbol interference.

如若使用正規CP,則由於一個時槽包括7個OFDM符號,因此一個子訊框包括14個OFDM符號。此時,每一子訊框之前三個最大OFDM符號可分配至實體下行鏈路控制通道(physical downlink control channel;PDCCH),且其他OFDM符號可分配至實體下行鏈路共享通道(physical downlink shared channel;PDSCH)。 If a normal CP is used, since one time slot includes 7 OFDM symbols, one subframe includes 14 OFDM symbols. At this time, the three largest OFDM symbols in each subframe can be allocated to a physical downlink control channel (PDCCH), and other OFDM symbols can be allocated to a physical downlink shared channel (physical downlink shared channel). ;PDSCH).

第4(b)圖是圖示2類無線電訊框結構之圖表。2類無線電訊框包括兩個半訊框,每半個訊框包括四個通用子訊框及一專用子訊框,該等通用子訊框包括兩個時槽,且該專用子訊框包括下行鏈路引導頻時槽(downlink pilot time slot;DWPTS)、保護時段(guard period;GP)及上行鏈路引導頻時槽(uplink pilot time slot;UpPTS)。 Figure 4(b) is a diagram illustrating the structure of a Class 2 radio frame. The type 2 radio frame includes two half frames, each half frame includes four universal subframes and a dedicated subframe, the universal subframe includes two time slots, and the dedicated subframe includes Downlink pilot time slot (DWPTS), guard period (GP), and uplink pilot time slot (UpPTS).

在專用子訊框中,DwPTS用於在使用者裝備處進行初始單元搜尋、同步或通道估計。UpPTS用於在基地台進行之通道估計及使用者裝備之上行鏈路發射同步。換言之,DwPTS用於下行鏈路發射,而UpPTS用於上行鏈路發射。特定而言,UpPTS用於PRACH前文或SRS發射。此外,保護時段將移除在上行鏈路中由於下行鏈路信號在上行鏈路與下行鏈路之間的多路徑延遲而出現之干擾。 In the dedicated subframe, DwPTS is used for initial unit search, synchronization or channel estimation at the user equipment. The UpPTS is used for channel estimation at the base station and for uplink transmission synchronization of the user equipment. In other words, DwPTS is used for downlink transmission and UpPTS is used for uplink transmission. In particular, UpPTS is used for PRACH preamble or SRS transmission. In addition, the guard period will remove interference that occurs in the uplink due to the multipath delay between the uplink and downlink of the downlink signal.

專用子訊框之配置在當前的3GPP標準文獻中定義,如下方之表1中所圖示。表1圖示在以下各個情況中的DwPTS及UpPTS,且其他區域經配置用於保護時段。 The configuration of the dedicated subframes is defined in the current 3GPP standard documents, as illustrated in Table 1 below. Table 1 illustrates DwPTS and UpPTS in each of the following cases, and other areas are configured for the guard period.

同時,2類無線電訊框之結構如下方表2中所圖示,該訊框結構亦即TDD系統中之上行鏈路/下行鏈路配置(uplink/downlink configuration;UL/DL configuration)。 At the same time, the structure of the type 2 radio frame is as shown in Table 2 below, which is the uplink/downlink configuration (UL/DL configuration) in the TDD system.

在上述表2中,D意謂著下行鏈路子訊框,U意謂著上行鏈路子訊框,且S意謂著專用子訊框。此外,表2亦圖示每一系統之上行鏈路/下行鏈路子訊框配置中之下行鏈路至上行鏈路的交換時段。 In Table 2 above, D means a downlink subframe, U means an uplink subframe, and S means a dedicated subframe. In addition, Table 2 also illustrates the downlink to uplink switching period in the uplink/downlink subframe configuration for each system.

前述無線電訊框之結構僅以示例為目的,且可對無線電訊框中包括之子訊框數目、子訊框中包括之時槽數目,或時槽中包括之符號數目進行多種修改。 The structure of the aforementioned radio frame is for example only, and various modifications may be made to the number of sub-frames included in the radio frame, the number of slots included in the subframe, or the number of symbols included in the slot.

第5圖是圖示下行鏈路時槽之資源柵格的圖表。 Figure 5 is a diagram illustrating a resource grid for a downlink time slot.

參看第5圖,下行鏈路時槽在一時域中包括複數個OFDM符號,且在一頻域中包括複數個資源區塊。由於每一資源區塊包括次載 波,因此下行鏈路時槽在頻域內包括x個次載波。儘管第5圖圖示下行鏈路時槽包括7個OFDM符號且資源區塊包括12個次載波,但將理解,下行鏈路時槽及資源區塊並非限定於第5圖之實例。例如,下行鏈路時槽中包括之OFDM符號之數目可依據CP長度而改變。 Referring to FIG. 5, the downlink time slot includes a plurality of OFDM symbols in a time domain and includes a plurality of resource blocks in a frequency domain. Since each resource block includes the second load Wave, so the downlink time slot includes x secondary carriers in the frequency domain. Although FIG. 5 illustrates that the downlink slot includes 7 OFDM symbols and the resource block includes 12 subcarriers, it will be understood that the downlink slot and resource block are not limited to the example of FIG. For example, the number of OFDM symbols included in the downlink time slot may vary depending on the length of the CP.

資源柵格上之每一元件將被稱作資源元件(resource element;RE)。一個資源元件由一個OFDM符號指標及一個次載波指標指示。一個RB包括x數目個資源元件。下行鏈路時槽中包括之資源區塊數目依據單元中配置之下行鏈路發射頻寬而定。 Each element on the resource grid will be referred to as a resource element (RE). A resource element is indicated by an OFDM symbol indicator and a secondary carrier indicator. One RB includes x number of resource elements. The number of resource blocks included in the downlink time slot depends on the downlink transmission bandwidth configured in the cell.

第6圖是圖示下行鏈路子訊框之結構的圖表。 Figure 6 is a diagram illustrating the structure of a downlink subframe.

參看第6圖,位於子訊框之第一時槽的前部之最大三個(四個)OFDM符號對應於控制通道所分配至的控制區域。其他OFDM符號對應於實體下行鏈路共享通道(physical downlink shared channel;PDSCH)所分配至的資料區域。用於LTE系統中之下行鏈路控制通道之實例包括實體控制格式指示符通道(Physical Control Format Indicator Channel;PCFICH)、實體下行鏈路控制通道(physical downlink control channel;PDCCH),及實體混合式ARQ指示符通道(Physical Hybrid ARQ Indicator Channel;PHICH)。PCFICH自子訊框之第一OFDM符號發射,且承載關於在子訊框內用於發射控制通道之OFDM符號的數目之資訊。PHICH承載回應於上行鏈路發射之混合自動重傳及請求認可/否定認可(Hybrid Automatic Repeat reQuest acknowledgement/negative-acknowledgement;HARQ ACK/NACK)信號。 Referring to Figure 6, the maximum three (four) OFDM symbols located at the front of the first time slot of the subframe correspond to the control region to which the control channel is assigned. The other OFDM symbols correspond to a data area to which a physical downlink shared channel (PDSCH) is allocated. Examples of the downlink control channel used in the LTE system include a Physical Control Format Indicator Channel (PCFICH), a physical downlink control channel (PDCCH), and an entity hybrid ARQ. Indicator Hybrid ARQ Indicator Channel (PHICH). The PCFICH transmits from the first OFDM symbol of the subframe and carries information about the number of OFDM symbols used to transmit the control channel within the subframe. The PHICH bearers a Hybrid Automatic Repeat reQuest acknowledgement/negative-acknowledgement (HARQ ACK/NACK) signal in response to an uplink transmission.

經由PDCCH發射之控制資訊將被稱作下行鏈路控制資訊(downlink control information;DCI)。DCI包括使用者裝備或使用者 裝備群組之資源分配資訊。例如,DCI包括上行鏈路/下行鏈路排程資訊、上行鏈路發射(Tx)功率控制命令,等等。 The control information transmitted via the PDCCH will be referred to as downlink control information (DCI). DCI includes user equipment or users Resource allocation information for the equipment group. For example, DCI includes uplink/downlink scheduling information, uplink transmission (Tx) power control commands, and the like.

PDCCH可包括下行鏈路共享通道(downlink shared channel;DL-SCH)之傳輸格式及資源分配資訊、上行鏈路共享通道(uplink shared channel; UL-SCH)之傳輸格式及資源分配資訊、傳呼通道(paging channel;PCH)上之傳呼資訊、DL-SCH上之系統資訊、上層控制訊息之資源分配資訊(如在PDSCH上發射之隨機存取回應)、隨機使用者裝備群組內的單個使用者裝備(user equipment;UE)之發射(Tx)功率控制命令組、發射(Tx)功率控制命令,及網際網路協定上的語音(voice over Internet protocol;VoIP)之活動指示資訊。複數個PDCCH可在控制區域之內發射。使用者裝備可監測複數個PDCCH。 PDCCH在一個或複數個連續控制通道元件(control channel element;CCE)聚合時發射。CCE是用以基於無線電通道狀態而向PDCCH提供編碼速率的邏輯分配單元。CCE對應於複數個資源元件群組(resource element group;REG)。PDCCH之格式及PDCCH之可用位元的數目依據CCE之數目而決定。基地台依據將被發射至使用者裝備之DCI而決定PDCCH格式,且基地台將循環冗餘檢查(cyclic redundancy check;CRC)附著於控制資訊。依據PDCCH用途或PDCCH之所有者而定,CRC利用識別符(例如無線電網路暫時識別符(radio network temporary identifier;RNTI))遮蔽。例如,如若PDCCH用於特定使用者裝備,則CRC可利用對應之使用者裝備的單元RNTI(cell-RNTI;C-RNTI)遮蔽。如若PDCCH用於傳呼訊息,則CRC可利用傳呼識別符(例如傳呼RNTI(paging-RNTI;P-RNTI))遮蔽。如若PDCCH用於系統資訊(更詳細而言,系統資訊塊(system information block; SIB)),則CRC可利用系統資訊RNTI(system information RNTI;SI-RNTI)遮蔽。如若PDCCH用於隨機存取回應,則CRC可利用隨機存取RNTI(random access RNTI;RA-RNTI)遮蔽。 The PDCCH may include a downlink shared channel (DL-SCH) transmission format and resource allocation information, an uplink shared channel (UL-SCH) transmission format, resource allocation information, and a paging channel ( Paging information on paging channel; PCH), system information on DL-SCH, resource allocation information of upper layer control messages (such as random access response transmitted on PDSCH), single user equipment in random user equipment group (user equipment; UE) transmission (Tx) power control command group, transmission (Tx) power control command, and voice over Internet protocol (VoIP) activity indication information. A plurality of PDCCHs may be transmitted within the control region. The user equipment can monitor a plurality of PDCCHs. The PDCCH is transmitted when one or more consecutive control channel elements (CCEs) are aggregated. The CCE is a logical allocation unit to provide a coding rate to the PDCCH based on the radio channel status. The CCE corresponds to a plurality of resource element groups (REGs). The format of the PDCCH and the number of available bits of the PDCCH are determined according to the number of CCEs. The base station determines the PDCCH format according to the DCI to be transmitted to the user equipment, and the base station attaches a cyclic redundancy check (CRC) to the control information. Depending on the PDCCH usage or the owner of the PDCCH, the CRC is masked with an identifier such as a radio network temporary identifier (RNTI). For example, if the PDCCH is used for a specific user equipment, the CRC may be masked by the unit RNTI (cell-RNTI; C-RNTI) of the corresponding user equipment. If the PDCCH is used for paging messages, the CRC may be masked by a paging identifier (eg, paging RNTI (Paging-RNTI)). If the PDCCH is used for system information (in more detail, the system information block; SIB)), the CRC can be masked using system information RNTI (SI-RNTI). If the PDCCH is used for a random access response, the CRC may be masked using a random access RNTI (RA-RNTI).

第7圖是圖示用於LTE系統中之上行鏈路子訊框結構之圖表。 Figure 7 is a diagram illustrating the structure of an uplink subframe for use in an LTE system.

參看第7圖,上行鏈路子訊框包括複數個時槽(例如兩個)。 每一時槽可包括複數個SC-FDMA符號,其中每一時槽中包括之SC-FDMA符號之數目依據循環字首(cyclic prefix;CP)長度而改變。 上行鏈路子訊框在頻域中被分為資料區域及控制區域。資料區域包括PUSCH,且用以發射諸如語音之資料信號。控制區域包括PUCCH,且用以發射上行鏈路控制資訊(uplink control information;UCI)。 PUCCH包括在頻軸上位於資料區域兩個末端之RB對,且在時槽邊界上執行跳躍。 Referring to Figure 7, the uplink subframe includes a plurality of time slots (e.g., two). Each time slot may include a plurality of SC-FDMA symbols, wherein the number of SC-FDMA symbols included in each time slot varies depending on the length of the cyclic prefix (CP). The uplink subframe is divided into a data area and a control area in the frequency domain. The data area includes a PUSCH and is used to transmit a data signal such as voice. The control region includes a PUCCH and is used to transmit uplink control information (UCI). The PUCCH includes RB pairs located at both ends of the data area on the frequency axis, and performs a jump on the time slot boundary.

PUCCH可用以發射以下控制資訊。 The PUCCH can be used to transmit the following control information.

-排程請求(Scheduling Request;SR):是用以請求上行鏈路UL-SCH資源之資訊。SR藉由使用開關鍵控(on-off keying;OOK)系統而發射。 - Scheduling Request (SR): Information used to request uplink UL-SCH resources. The SR is transmitted by using an on-off keying (OOK) system.

- HARQ ACK/NACK:是對PDSCH上之下行鏈路資料封包的回應信號。該信號表示是否已成功接收下行鏈路資料封包。發射ACK/NACK 1位元以回應於單個下行鏈路代碼字(codeword;CW),且發射ACK/NACK 2位元以回應於兩個下行鏈路代碼字。 - HARQ ACK/NACK: is a response signal to the downlink data packet on the PDSCH. This signal indicates whether the downlink data packet has been successfully received. An ACK/NACK 1 bit is transmitted in response to a single downlink codeword (CW), and an ACK/NACK 2 bit is transmitted in response to two downlink codewords.

- 通道狀態資訊(Channel State Information;CSI):是下行鏈路通道上之反饋資訊。CSI包括通道品質指示符(channel quality indicator;CQI),及多輸入多輸出(Multiple Input Multiple Output; MIMO)相關反饋資訊包括秩指示符(rank indicator;RI)、預編碼矩陣指示符(precoding matrix indicator;PMI)、預編碼類型指示符(precoding type indicator;PTI)等等。每一子訊框使用20個位元。 - Channel State Information (CSI): is the feedback information on the downlink channel. CSI includes channel quality indicator (CQI) and multiple input multiple output (Multiple Input Multiple Output; The MIMO) related feedback information includes a rank indicator (RI), a precoding matrix indicator (PMI), a precoding type indicator (PTI), and the like. Each subframe uses 20 bits.

可從使用者裝備發射以用於子訊框之上行鏈路控制資訊(uplink control information;UCI)之品質依據可用於控制資訊發射的SC-FDMA符號之數目而定。可用於控制資訊發射之SC-FDMA符號意謂著除用於子訊框之參考信號發射之SC-FDMA符號之外的剩餘SC-FDMA符號,且在子訊框設定有探測參考信號(sounding reference signal SRS)之情況下,該子訊框之最末SC-FDMA符號不包括在內。參考信號用於PUCCH之相干性偵測。 The quality of the uplink control information (UCI) that can be transmitted from the user equipment for the subframe is determined by the number of SC-FDMA symbols that can be used to control the information transmission. The SC-FDMA symbol that can be used to control information transmission means the remaining SC-FDMA symbols except for the SC-FDMA symbol used for the reference signal transmission of the subframe, and the sounding reference is set in the subframe. In the case of signal SRS), the last SC-FDMA symbol of the subframe is not included. The reference signal is used for coherence detection of PUCCH.

下文中對PUCCH揹負進行說明。 The PUCCH piggyback is explained below.

在舊有3GPP LTE系統(例如版本8)之上行鏈路發射情況下,維持具有影響功率放大器效能之優良的峰值平均功率比(peak-to-average power ratio;PAPR)或優良的立方度量(cubic metric;CM)之單載波發射,以有效地利用UE之功率放大器。特定而言,在舊有LTE系統之PUSCH發射情況下,意欲發射之資料的單載波特性藉由DFT預編碼而得以維持。在PUCCH發射之情況下,單載波特性可藉由以在一序列上載入資訊之方式發射該序列而得以維持,該序列具有該單載波特性。然而,在未連續地將DFT預編碼資料指定至頻軸的情況下,或在同時發射PUSCH及PUCCH的情況下,不維持單載波特性。 In the case of uplink transmissions of legacy 3GPP LTE systems (eg, Release 8), maintain excellent peak-to-average power ratio (PAPR) or excellent cubic metrics (cubic) that affect power amplifier performance (cubic) Single carrier transmission of metric; CM) to effectively utilize the power amplifier of the UE. In particular, in the case of PUSCH transmissions of legacy LTE systems, the single carrier characteristics of the data intended to be transmitted are maintained by DFT precoding. In the case of PUCCH transmission, the single carrier characteristic can be maintained by transmitting the sequence in such a manner that information is loaded in a sequence having the single carrier characteristic. However, in the case where DFT precoding data is not continuously assigned to the frequency axis, or in the case where PUSCH and PUCCH are simultaneously transmitted, the single carrier characteristic is not maintained.

由此,如第8圖中所繪示,在子訊框中存在與PUCCH發射相同之PUSCH發射的情況下,本應在PUCCH上發射之上行鏈路控制資訊(uplink control information;UCI)在PUSCH上與資料一起被發射(揹負)以維持單載波特性。 Thus, as shown in FIG. 8, in the case where there is the same PUSCH transmission as the PUCCH transmission in the subframe, the uplink control information (UCI) that should be transmitted on the PUCCH is on the PUSCH. The above is transmitted (backed up) along with the data to maintain single carrier characteristics.

如前述描述中所提及,由於PUCCH及PUSCH無法在舊有LTE UE中同時發射,因此在PUSCH所發射至之子訊框中,使用在PUSCH區域中對UCI(CQI/PMI、HARQ-ACK、RI,等等)進行多工之方法。例如,在經指定以發射PUSCH之子訊框中發射CQI及/或PMI的情況下,可藉由在DFT擴展之前對UL-SCH資料及CQI/PMI進行多工而將控制資訊及資料一起發射。在此情況下,UL-SCH資料在慮及CQI/PMI資源之情況下執行速率匹配。此外,可在PUSCH區域中以對UL-SCH資料進行刪餘之方式對諸如HARQ ACK、RI等等之控制資訊進行多工。 As mentioned in the foregoing description, since the PUCCH and the PUSCH cannot be simultaneously transmitted in the legacy LTE UE, UCI (CQI/PMI, HARQ-ACK, RI) is used in the PUSCH region in the subframe to which the PUSCH is transmitted. , etc.) The method of doing multiplex. For example, in the case of transmitting a CQI and/or PMI in a subframe designated to transmit a PUSCH, the control information and the data may be transmitted together by multiplexing the UL-SCH data and the CQI/PMI before the DFT extension. In this case, the UL-SCH data performs rate matching taking into account the CQI/PMI resources. In addition, control information such as HARQ ACK, RI, etc., may be multiplexed in the PUSCH region by puncturing the UL-SCH data.

第9圖是處理UL-SCH資料及控制資訊之實例圖表。 Figure 9 is an example diagram of processing UL-SCH data and control information.

參看第9圖,在UL-SCH上發射之資料在每一發射時間間隔(transmission time interval;TTI)中以傳輸區塊(transport block;TB)形式經傳遞至編碼單元。 Referring to Figure 9, the data transmitted on the UL-SCH is transmitted to the coding unit in the form of a transport block (TB) in each transmission time interval (TTI).

同位位元p 0p 1p 2p 3、…、p L-1附著於自上層傳送之傳輸區塊之位元a 0a 1a 2a 3、…、a A-1。在此情況下,傳輸區塊之大小對應於A及同位位元之數目對應於L=24。作為錯誤偵測碼,循環冗餘檢查(cyclic redundancy check;CRC)位元所附著於之輸入位元可表示為b 0b 1b 2b 3、…、b B-1。在此情況下,B指示包括CRC之傳輸區塊之位元數目[步驟S900]]]]。 The parity bits p 0 , p 1 , p 2 , p 3 , ..., p L -1 are attached to the bits a 0 , a 1 , a 2 , a 3 , ..., a A - of the transport block transmitted from the upper layer . 1 . In this case, the size of the transport block corresponds to the number of A and parity bits corresponding to L=24. As the error detection code, the input bit to which the cyclic redundancy check (CRC) bit is attached may be represented as b 0 , b 1 , b 2 , b 3 , ..., b B -1 . In this case, B indicates the number of bits including the transport block of the CRC [step S900]]].

b 0b 1b 2b 3……b B-1根據TB大小而分段至複數個代碼區塊(code block;CB),且CRC附著於複數個分段CB。代碼區塊經分段及附著有CRC之位元對應於c r0c r1c r2c r3……c r(Kr-1)。在此情況下,r對應於代碼區塊(r=0……C-1)之數目,且Kr對應於根據代碼區塊r之位元之數目。此外,c指示代碼區塊之總數目[步驟S910]。 b 0 , b 1 , b 2 , b 3 ... b B -1 is segmented into a plurality of code blocks (CBs) according to the TB size, and the CRC is attached to the plurality of segments CB. The code block is segmented and the bit to which the CRC is attached corresponds to c r 0 , c r 1 , c r 2 , c r 3 ... c r ( Kr -1) . In this case, r corresponds to the number of code blocks (r = 0 ... C-1), and Kr corresponds to the number of bits according to the code block r. Further, c indicates the total number of code blocks [step S910].

隨後,對輸入通道編碼單元之c r0c r1c r2c r3、…、c r(Kr-1)執行通道編碼步驟。在通道編碼之後,位元變為、…、。在此情況下,i對應於編碼資料串流之指標(i=0、1,及2),且Dr指示代碼區塊r中第i個編碼資料串流之位元數目(亦即Dr=Kr+4)。r指示代碼區塊數目(r=0、1、…、C-1),且Kr指示代碼區塊r之位元之數目。此外,C指示代碼區塊之總數目。在本發明之實施例中,可藉由使用turbo編碼方案對每一代碼區塊執行通道編碼[步驟S920]。 Subsequently, a channel encoding step is performed on c r 0 , c r 1 , c r 2 , c r 3 , ..., c r ( Kr -1) of the input channel coding unit. After the channel is encoded, the bit becomes , , , ,..., . In this case, i corresponds to the index of the encoded data stream (i=0, 1, and 2), and Dr indicates the number of bits of the i-th encoded data stream in the code block r (ie, D r = K r+ 4). r indicates the number of code blocks (r = 0, 1, ..., C-1), and K r indicates the number of bits of the code block r. In addition, C indicates the total number of code blocks. In an embodiment of the present invention, channel coding may be performed on each code block by using a turbo coding scheme [step S920].

在執行通道編碼之後,執行速率匹配步驟。在速率匹配之後,位元對應於e r0e r1e r2e r3、…、e r(Er-1)。在此情況下,Er指示第r個代碼區塊(其中r=0、1、…、C-1)中速率匹配位元之數目,且C指示代碼區塊之總數目[步驟S930]。 After performing channel coding, a rate matching step is performed. After rate matching, the bits correspond to e r 0 , e r 1 , e r 2 , e r 3 , ..., e r ( Er -1) . In this case, E r indicates the number of rate matching bits in the rth code block (where r = 0, 1, ..., C-1), and C indicates the total number of code blocks [step S930].

在速率匹配步驟之後執行代碼區塊串聯過程。在代碼區塊串聯之後,位元變為f 0f 1f 2f 3、…、f G-1。在此情況下,G指示編碼位元之總數目。然而,當以利用UL-SCH資料進行多工之方式發射控制資訊時,用於發射控制資訊之位元不包括在G中。f 0f 1f 2f 3、…、f G-1對應於UL-SCH代碼字[步驟S940]。 The code block concatenation process is performed after the rate matching step. After the code blocks are concatenated, the bits become f 0 , f 1 , f 2 , f 3 , ..., f G -1 . In this case, G indicates the total number of coded bits. However, when the control information is transmitted in a manner of multiplexing using the UL-SCH data, the bit used to transmit the control information is not included in the G. f 0 , f 1 , f 2 , f 3 , ..., f G -1 correspond to the UL-SCH code word [step S940].

在通道品質資訊(CQI及/或PQI)、RI及HARQ-ACK之情況下,通道編碼是獨立執行的[步驟S950、S960及S970]。基於每一控制資訊之編碼符號之數目而執行每一UCI之通道編碼。例如,編碼符號之數目可用以為編碼控制資訊執行速率匹配。編碼符號之數目對應於以下過程中之調變符號數目、RE數目,等等。 In the case of channel quality information (CQI and/or PQI), RI, and HARQ-ACK, channel coding is performed independently [steps S950, S960, and S970]. The channel coding of each UCI is performed based on the number of coded symbols for each control information. For example, the number of encoded symbols can be used to perform rate matching for encoding control information. The number of coded symbols corresponds to the number of modulation symbols, the number of REs, and the like in the following process.

藉由使用輸入位元序列o 0o 1o 2、…、o O-1而執行通道品質資訊(channel quality information;CQI)之通道編碼[步驟S950]。用 於通道品質資訊之通道編碼的輸出位元序列變為q 0q 1q 2q 3、…、q QCQI-1。待應用之通道編碼方案根據通道品質資訊之位元數目而有所不同。如若通道品質資訊之位元數目等於或大於11個位元,則附著CRC8位元。QCQI指示用於CQI之編碼位元之總數目。為了使位元序列長度匹配QCQI,可對編碼通道品質資訊執行速率匹配。此舉可表示為QCQI=Q’CQI*Qm。在此情況下,Q’CQI對應於CQI之編碼符號數目,且Qm對應於調變次序。Qm及UL-SCH資料經相同配置。 Channel coding of channel quality information (CQI) is performed by using the input bit sequence o 0 , o 1 , o 2 , ..., o O -1 [step S950]. The output bit sequence for channel coding for channel quality information becomes q 0 , q 1 , q 2 , q 3 , ..., q QCQI -1 . The channel coding scheme to be applied varies depending on the number of bits of the channel quality information. If the number of bits of the channel quality information is equal to or greater than 11 bits, the CRC8 bit is attached. The Q CQI indicates the total number of coded bits used for the CQI. In order to match the bit sequence length to Q CQI , rate matching can be performed on the encoded channel quality information. This can be expressed as Q CQI = Q' CQI * Q m . In this case, Q 'CQI corresponding to the number of CQI coded symbols, and Q m corresponding to the modulation order. The Q m and UL-SCH data are configured identically.

藉由使用輸入位元序列而執行RI之通道編碼。分別指示1位元RI及2位元RI。 By using an input bit sequence or The channel code of the RI is executed. and One bit RI and two bit RI are indicated respectively.

在1位元RI之情況下,使用重複編碼。在2位元RI之情況下,使用(3,2)單工碼以用於編碼,且可循環及重複編碼資料。在RI等於或大於3個位元或RI等於或小於11個位元之情況下,藉由使用上行鏈路共享通道所使用之(32,0)RM碼對RI進行編碼。在RI等於或大於12個位元之情況下,藉由使用雙工RM結構將RI資訊分成兩個群組,且藉由使用(32,0)RM碼對每一群組進行編碼。藉由編碼RI區塊之組合而獲得輸出位元序列、…、。在此情況下,QRI指示用於RI之編碼位元之總數目。為了使編碼RI之長度匹配QRI,最終合併之編碼RI區塊可對應於部分區塊(亦即速率匹配)。此舉可表示為QRI=Q’RI*Qm。在此情況下,Q’RI對應於RI之編碼符號數目,且Qm對應於調變次序。Qm及UL-SCH資料經相同配置。 In the case of a 1-bit RI, repeated coding is used. In the case of a 2-bit RI, a (3, 2) simplex code is used for encoding, and the encoded data can be cycled and repeated. In the case where RI is equal to or greater than 3 bits or RI is equal to or less than 11 bits, the RI is encoded by using the (32, 0) RM code used by the uplink shared channel. In the case where the RI is equal to or greater than 12 bits, the RI information is divided into two groups by using the duplex RM structure, and each group is encoded by using the (32, 0) RM code. Obtaining an output bit sequence by encoding a combination of RI blocks , , ,..., . In this case, Q RI indicates the total number of coded bits for the RI. In order to match the length of the coded RI to Q RI , the finally combined coded RI block may correspond to a partial block (ie, rate matching). This can be expressed as Q RI =Q' RI *Q m . In this case, Q 'RI RI corresponding to the number of coded symbols, and Q m corresponding to the modulation order. The Q m and UL-SCH data are configured identically.

藉由使用步驟S970之輸入位元序列而執行HARQ-ACK之通道編碼。分別指示1位元HARQ-ACK及2位元HARQ-ACK。此外,指示由具有兩個或兩個以上位元(亦即O ACK >2) 的資訊組成之HARQ-ACK。 By using the input bit sequence of step S970 , or The channel coding of HARQ-ACK is performed. and One bit HARQ-ACK and two bit HARQ-ACK are indicated, respectively. In addition, Indicates a HARQ-ACK consisting of information having two or more bits (ie, O ACK >2).

在此情況下,ACK藉由1編碼,且NACK藉由0編碼。在1位元HARQ-ACK之情況下,使用重複編碼。在2位元HARQ-ACK之情況下,(3,2)單工碼用於編碼,且可循環及重複編碼資料。在HARQ-ACK等於或大於3個位元或HARQ-ACK等於或小於11個位元之情況下,藉由使用上行鏈路共享通道所使用之(32,0)RM碼對HARQ-ACK進行編碼。在HARQ-ACK等於或大於12個位元之情況下,藉由使用雙工RM結構將HARQ-ACK資訊分成兩個群組,且藉由使用(32,0)RM碼對每一群組進行編碼。藉由編碼HARQ-ACK區塊之組合而獲得位元序列、…、。為了使位元序列之長度匹配QACK,最終合併之編碼HARQ-ACK區塊可對應於部分區塊(亦即速率匹配)。此舉可表示為QACK=Q’ACK*Qm。在此情況下,Q’ACK對應於HARQ-ACK之編碼符號數目,且Qm對應於調變次序。 Qm及UL-SCH資料經相同配置。 In this case, the ACK is encoded by 1 and the NACK is encoded by 0. In the case of a 1-bit HARQ-ACK, repeated coding is used. In the case of a 2-bit HARQ-ACK, a (3, 2) simplex code is used for encoding, and the encoded data can be cycled and repeated. In the case where the HARQ-ACK is equal to or greater than 3 bits or the HARQ-ACK is equal to or less than 11 bits, the HARQ-ACK is encoded by using the (32, 0) RM code used by the uplink shared channel. . In the case where the HARQ-ACK is equal to or greater than 12 bits, the HARQ-ACK information is divided into two groups by using the duplex RM structure, and each group is performed by using the (32, 0) RM code. coding. Obtaining a bit sequence by encoding a combination of HARQ-ACK blocks , , ,..., . In order for the length of the bit sequence to match Q ACK , the finally combined coded HARQ-ACK block may correspond to a partial block (ie, rate matching). This can be expressed as Q ACK =Q' ACK *Q m . In this case, Q 'ACK corresponding to the number of HARQ-ACK coded symbols, and Q m corresponding to the modulation order. The Q m and UL-SCH data are configured identically.

資料/控制多工區塊之輸入對應於指示編碼US-SCH位元之f 0f 1f 2f 3、…、f G-1及指示編碼CQI/PMI位元之q 0q 1q 2q 3、…、q QCQI-1[步驟S980]。資料/控制多工區塊之輸出對應於g 0g 1g 2g 3、…、g H'-1。在此情況下,g i對應於長度Qm(i=0、…、H'-1)之列向量。在此情況下,g i (i=0、…、H’-1)指示長度(Q m ˙N L )之列向量。 此舉可表示為H=(G+N L ˙Q CQI )及H'=H/(N L ˙Q m )。在此情況下,NL指示UL-SCH傳輸區塊所映射至之層的數目,且H指示分配至NL數目個層之編碼位元之總數目,傳輸區塊針對UL-SCH資料及CQI/PMI資訊而經映射至該NL數目個層。在此情況下,H對應於為UL-SCH資料及CQI/PMI分配之編碼位元之總數目。 The input of the data/control multiplex block corresponds to f 0 , f 1 , f 2 , f 3 , ..., f G -1 indicating the encoded US-SCH bit and q 0 , q indicating the encoded CQI/PMI bit. 1 , q 2 , q 3 , ..., q QCQI -1 [Step S980]. The output of the data/control multiplex block corresponds to g 0 , g 1 , g 2 , g 3 , ..., g H '-1 . In this case, g i corresponds to a column vector of length Qm (i = 0, ..., H'-1). In this case, g i ( i =0, ..., H' -1) indicates a column vector of length ( Q m ̇ N L ). This can be expressed as H = ( G + N L ̇ Q CQI ) and H' = H / ( N L ̇ Q m ). In this case, N L indicates the number of layers to which the UL-SCH transport block is mapped, and H indicates the total number of coded bits allocated to the number of N L layers, which are for UL-SCH data and CQI /PMI information is mapped to the number of layers of the N L . In this case, H corresponds to the total number of coded bits allocated for UL-SCH data and CQI/PMI.

在通道交錯器中針對輸入通道交錯器中之編碼位元執行通道交錯步驟。在此情況下,通道交錯器之輸入對應於資料/控制多工區塊之輸出g 0g 1g 2g 3、…、g H'-1、編碼秩指示符、…、,及編碼HARQ-ACK 、…、[步驟S990]。 A channel interleaving step is performed in the channel interleaver for the coding bits in the input channel interleaver. In this case, the input of the channel interleaver corresponds to the output of the data/control multiplex block g 0 , g 1 , g 2 , g 3 , ..., g H ' - 1 , the coding rank indicator , , ,..., And encoding HARQ-ACK , , ,..., [Step S990].

在步驟S990中,g i 對應於CQI/PMI之Qm長度之列向量(其中i=0、…、H’-1,H’=H/Qm)。對應於ACK/NACK之Qm長度之列向量(其中i=0、…、Q'ACK-1,Q’ACK=QACK/Qm)。對應於RI之Qm長度之列向量(其中i=0、…、Q'RI-1,Q’RI=QRI/Qm)。 In step S990, g i corresponds to a column vector of Q m lengths of CQI/PMI (where i=0, . . . , H′-1, H′=H/Q m ). A column vector corresponding to the Q m length of ACK/NACK (where i=0, . . . , Q′ ACK− 1, Q′ ACK =Q ACK /Q m ). A column vector corresponding to the Q m length of RI (where i = 0, ..., Q' RI - 1, Q' RI = Q RI / Q m ).

通道交錯器對用以發射PUSCH之控制資訊及/或UL-SCH資料進行多工。具體而言,通道交錯器包括將控制資訊及UL-SCH資料映射至對應於PUSCH資源之通道交錯器矩陣之過程。 The channel interleaver performs multiplexing on control information and/or UL-SCH data used to transmit the PUSCH. In particular, the channel interleaver includes a process of mapping control information and UL-SCH data to a channel interleaver matrix corresponding to PUSCH resources.

在執行通道交錯之後,自通道交錯器矩陣逐列輸出位元序列h 0h 1h 2、…、h H+QRI-1。輸出之位元序列映射至資源柵格。 After performing channel interleaving, the bit sequence h 0 , h 1 , h 2 , ..., h H + QRI -1 is output column by column from the channel interleaver matrix. The output bit sequence is mapped to the resource grid.

第10圖是在PUSCH上對上行鏈路控制資訊及UL-SCH資料進行多工之方法的實例之圖表。 Figure 10 is a diagram showing an example of a method of multiplexing uplink control information and UL-SCH data on a PUSCH.

當使用者裝備(user equipment;UE)意欲在分配有PUSCH發射之子訊框中發射控制資訊時,UE對上行鏈路控制資訊(uplink control information;UCI)及UL-SCH資料同時進行多工,然後再執行DFT擴展。上行鏈路控制資訊(uplink control information;UCI)包括選自由以下各者組成之群組中之至少一者:CQI/PMI、HARQ-ACK/NACK及RI。 When the user equipment (UE) intends to transmit control information in the subframe in which the PUSCH transmission is allocated, the UE simultaneously performs multiplex processing on the uplink control information (UCI) and the UL-SCH data, and then Then perform DFT extension. The uplink control information (UCI) includes at least one selected from the group consisting of CQI/PMI, HARQ-ACK/NACK, and RI.

用於發射CQI/PMI、ACK/NACK及RI之RE之每一數目是基於調變及編碼方案(modulation and coding scheme;MCS)及分配用以發射PUSCH之偏移值()而決定的。偏移值 允許編碼速率根據控制資訊而彼此不同,且由上層(例如RRC層)信號半靜態配置偏移值。UL-SCH資料及控制資訊並非映射至相同RE。 控制資訊以同時存在於子訊框之兩個時槽中之方式經映射。由於基地台能夠提前知曉控制資訊將在PUSCH上發射,因此基地台可易於對控制資訊及資料封包解多工。 Each number of REs used to transmit CQI/PMI, ACK/NACK, and RI is based on a modulation and coding scheme (MCS) and an offset value assigned to transmit PUSCH ( , , ) decided. The offset values allow the encoding rates to differ from each other according to the control information, and the offset values are semi-statically configured by the upper layer (eg, RRC layer) signal. UL-SCH data and control information are not mapped to the same RE. The control information is mapped in such a way that it exists in both time slots of the subframe. Since the base station can know in advance that the control information will be transmitted on the PUSCH, the base station can easily demultiplex the control information and data packets.

參看第10圖,CQI及/或PMI(CQI/PMI)資源位於UL-SCH資料來源之起始點,且順序地映射至單個次載波上之全部SC-FDMA符號,且映射是在下一次載波上執行的。CQI/PMI在次載波中自左側映射至右側,亦即在SC-FDMA符號指標增大之方向上映射。速率匹配是在慮及CQI/PMI資源之量(亦即編碼符號數目)的情況下,針對PUSCH資料(UL-SCH資料)執行的。CQI/PMI使用與UL-SCH資料相同之調變次序。 Referring to Figure 10, the CQI and/or PMI (CQI/PMI) resources are located at the starting point of the UL-SCH data source and are sequentially mapped to all SC-FDMA symbols on a single secondary carrier, and the mapping is on the next carrier. implemented. The CQI/PMI is mapped from the left side to the right side in the secondary carrier, that is, in the direction in which the SC-FDMA symbol index is increased. Rate matching is performed for PUSCH data (UL-SCH data) taking into account the amount of CQI/PMI resources (i.e., the number of coded symbols). The CQI/PMI uses the same modulation order as the UL-SCH data.

例如,如若CQI/PMI資訊大小(有效負荷大小)較小(例如等於或小於11個位元),則與PUCCH資料發射類似,CQI/PMI資訊使用(32,k)區塊碼,且可重複編碼資料。如若CQI/PMI資訊大小較小,則不使用CRC。 For example, if the CQI/PMI information size (payload size) is small (for example, equal to or less than 11 bits), similar to PUCCH data transmission, CQI/PMI information uses (32, k) block code and can be repeated. Coding data. If the CQI/PMI information size is small, the CRC is not used.

如若CQI/PMI資訊大小較大(例如大於11個位元),則附有8位元CRC,且使用咬尾卷積碼執行通道編碼及速率匹配。將ACK/NACK***SC-FDMA資源之一部分中,UL-SCH資料藉由刪餘而映射至該部分中。ACK/NACK定位在RS側處及自底部至頂部***對應之SC-FDMA符號中,亦即以次載波指標增大之方向***。 If the CQI/PMI information size is large (for example, greater than 11 bits), an 8-bit CRC is attached, and channel coding and rate matching are performed using the tail biting convolutional code. The ACK/NACK is inserted into one of the SC-FDMA resources, and the UL-SCH data is mapped into the portion by puncturing. The ACK/NACK is located at the RS side and inserted into the corresponding SC-FDMA symbol from the bottom to the top, that is, inserted in the direction in which the subcarrier index is increased.

在正規CP之情況下,如第10圖所示,用於ACK/NACK之SC-FDMA符號定位在每一時槽中之SC-FDMA符號#2及#4處。編碼RI定位在符號ACK/NACK側(亦即符號#1及#5),無論是否在子訊 框中實際發射ACK/NACK。在此情況下,ACK/NACK、RI及CQI/PMI經獨立編碼。 In the case of a normal CP, as shown in Fig. 10, SC-FDMA symbols for ACK/NACK are located at SC-FDMA symbols #2 and #4 in each time slot. The coded RI is located on the symbol ACK/NACK side (ie, symbols #1 and #5), whether or not it is in the sub-information. The frame actually transmits ACK/NACK. In this case, ACK/NACK, RI, and CQI/PMI are independently encoded.

第11圖是載波聚合(carrier aggregation;CA)通訊系統之一實例之圖表。 Figure 11 is a diagram of an example of a carrier aggregation (CA) communication system.

參看第11圖,可以聚合複數個UL/DL分量載波(component carrier;CC)之方式支援更寬之UL/DL頻寬。術語「分量載波」可由如載波、單元等等之同等術語替代。每一分量載波可在頻域中鄰近於彼此或不鄰近於彼此。可單獨決定每一分量載波之頻寬。不對稱之載波聚合亦有可能,該載波聚合意謂著下行鏈路分量載波(downlink component carrier;DL CC)之數目與上行鏈路分量載波(uplink component carrier;UL CC)之數目互不相同。同時,控制資訊可經設定以僅在特定CC上收發。特定CC被稱作主要CC,而其餘CC可被稱作次級CC。 Referring to Fig. 11, a wider UL/DL bandwidth can be supported by aggregating a plurality of UL/DL component carriers (CCs). The term "component carrier" can be replaced by equivalent terms such as carrier, unit, and the like. Each component carrier may be adjacent to each other or not adjacent to each other in the frequency domain. The bandwidth of each component carrier can be determined individually. Asymmetric carrier aggregation is also possible. The carrier aggregation means that the number of downlink component carriers (DL CCs) and the number of uplink component carriers (UL CCs) are different from each other. At the same time, the control information can be set to be sent and received only on a specific CC. A specific CC is referred to as a primary CC, and the remaining CCs may be referred to as secondary CCs.

如一個實例所示,在應用交叉載波排程(或交叉CC排程)之情況下,在DL CC #0上發射用於進行DL分配之PDCCH,且對應之PDSCH可在DL CC #2上發射。對於交叉CC排程而言,可考慮引入載波指示符欄位(carrier indicator field;CIF)。CIF是否存在於PDCCH內部可經由上層傳訊(例如RRC傳訊)以半靜態及特定於使用者(或特定於使用者群組)之方式而經配置。PDCCH發射之基本要素可概述如下。 As shown in one example, in the case of applying cross-carrier scheduling (or cross-CC scheduling), a PDCCH for DL allocation is transmitted on DL CC #0, and the corresponding PDSCH can be transmitted on DL CC #2. . For cross-CC scheduling, consider introducing a carrier indicator field (CIF). Whether the CIF exists inside the PDCCH can be configured in a semi-static and user-specific (or user-specific group) manner via upper layer communication (eg, RRC communication). The basic elements of PDCCH transmission can be summarized as follows.

■CIF已去能:DL CC上之PDCCH在相同DL CC上分配PDSCH資源或在單鏈接UL CC上分配PUSCH資源。 ■ CIF has been de-energized: The PDCCH on the DL CC allocates PDSCH resources on the same DL CC or allocates PUSCH resources on a single-link UL CC.

●無CIF ●No CIF

●與LTE PDCCH結構(相同的編碼、相同的基於CCE之資源映射)及DCI格式相同 ● Same as LTE PDCCH structure (same coding, same CCE-based resource mapping) and DCI format

■CIF已賦能:DL CC上之PDCCH在複數個聚合DL/UL CC中之特定DL/UL CC上使用CIF來分配PDSCH或PUSCH資源。 ■ CIF is enabled: The PDCCH on the DL CC uses CIF to allocate PDSCH or PUSCH resources on a specific DL/UL CC in a plurality of aggregated DL/UL CCs.

●包括CIF之擴展LTE DCI格式 ●Extended LTE DCI format including CIF

- CIF(若配置)是固定x位元欄(例如x=3) - CIF (if configured) is a fixed x bit field (eg x=3)

-無論DCI格式大小如何,CIF(若配置)之位置是固定的 - Regardless of the size of the DCI format, the location of the CIF (if configured) is fixed

●LTE PDCCH結構(相同的編碼、相同的基於CCE之資源映射)之再使用 ● Reuse of LTE PDCCH structure (same coding, same CCE-based resource mapping)

在CIF存在於PDCCH內部之情況下,基地台能夠分配PDCCH監測之DL CC集,以降低使用者裝備側之BD複雜度。PDCCH監測之DL CC集為經聚合之整體DL CC中之一部分,且包括至少一個DL CC。使用者裝備可僅能夠在對應DL CC上執行PDCCH之偵測/解碼。特定而言,對於PDSCH/PUSCH之排程,基地台可僅能夠在PDCCH監測之DL CC上發射PDCCH。PDCCH監測之DL CC集可特定於UE、特定於UE群組或特定於單元而配置。術語「PDCCH監測之DL CC」可由同等術語替代,該術語如監測載波、監測單元等等。此外,經聚合以用於使用者裝備之CC可由同等術語替代,該術語如服務CC、服務載波、服務單元,等等。 In the case where the CIF exists inside the PDCCH, the base station can allocate the DL CC set of the PDCCH monitoring to reduce the BD complexity of the user equipment side. The DL CC set monitored by the PDCCH is part of the aggregated overall DL CC and includes at least one DL CC. The user equipment can only perform PDCCH detection/decoding on the corresponding DL CC. In particular, for scheduling of PDSCH/PUSCH, the base station may only be able to transmit the PDCCH on the DL CC monitored by the PDCCH. The DL CC set monitored by the PDCCH may be UE-specific, UE-specific, or cell-specific. The term "DL CC for PDCCH monitoring" may be replaced by an equivalent term such as a monitoring carrier, a monitoring unit, and the like. Moreover, CCs that are aggregated for use in user equipment may be replaced by equivalent terms such as a serving CC, a service carrier, a service unit, and the like.

第12圖是在複數個載波彼此聚合之情況下的排程實例之圖表。假設3個DL CC聚合,且DL CC A經配置為PDCCH監測之DL CC。DL CC A至C可被稱作服務CC、服務載波、服務單元,等等。如若CIF去能,則每一DL CC僅能夠根據LTE PDCCH規則而在無CIF之情況下發射PDCCH,PDCCH對每一DL CC進行排程。另一方面,如若藉由(特定於UE群組或特定於單元之)上層傳訊而賦能CIF,則DL CC A(監測DL CC)可以能夠藉由使用CIF發射PDCCH以及 DL CC A之PDSCH,該PDCCH對不同的DL CC之PDSCH進行排程。在此情況下,PDCCH並非在DL CC B及DL CC C上發射,該等DL CC未經配置為PDCCH監測之DL CC。因此,DL CC A(監測DL CC)應包括所有以下三者:與DL CC A相關之PDCCH搜尋空間、與DL CC B相關之PDCCH搜尋空間,及與DL CC C相關之PDCCH搜尋空間。在本說明書中,假定PDCCH搜尋空間是根據載波定義的。 Figure 12 is a diagram of an example of scheduling in the case where a plurality of carriers are aggregated with each other. It is assumed that 3 DL CCs are aggregated, and DL CC A is configured as a DL CC for PDCCH monitoring. DL CCs A through C may be referred to as service CCs, service carriers, service units, and the like. If the CIF is de-energized, each DL CC can only transmit the PDCCH without CIF according to the LTE PDCCH rule, and the PDCCH schedules each DL CC. On the other hand, if CIF is enabled by upper layer communication (specific to UE group or cell-specific), DL CC A (Monitoring DL CC) may be able to transmit PDCCH by using CIF and PDSCH of DL CC A, the PDCCH schedules PDSCHs of different DL CCs. In this case, the PDCCH is not transmitted on DL CC B and DL CC C, which are not configured as DL CCs for PDCCH monitoring. Therefore, DL CC A (Monitoring DL CC) should include all three: PDCCH search space associated with DL CC A, PDCCH search space associated with DL CC B, and PDCCH search space associated with DL CC C. In this specification, it is assumed that the PDCCH search space is defined according to a carrier.

如前述描述中所提及,LTE-A假定在PDCCH中使用CIF以執行交叉CC排程。是否使用CIF(亦即,是否支***叉CC排程模式或非交叉CC排程模式)及模式之間的切換可經由RRC傳訊而以半靜態方式/特定於UE之方式得以配置。在進行RRC傳訊過程之後,使用者裝備可辨識CIF是否用於針對使用者裝備而待排程之PDCCH中。 As mentioned in the foregoing description, LTE-A assumes that CIF is used in the PDCCH to perform cross CC scheduling. Whether to use CIF (that is, whether to support cross-CC scheduling mode or non-cross-CC scheduling mode) and switching between modes can be configured in a semi-static manner/UE-specific manner via RRC communication. After the RRC communication process, the user equipment can identify whether the CIF is used in the PDCCH to be scheduled for the user equipment.

第13圖是由EPDCCH排程之PDSCH及EPDCCH的實例之圖表。 Figure 13 is a diagram of an example of PDSCH and EPDCCH scheduled by EPDCCH.

參看第13圖,一般而言,EPDCCH可以定義在PDSCH區域中發射資料之一部分之方式使用,且UE應執行盲解碼以偵測UE是否偵測到UE之EPDCCH。儘管EPDCCH執行與舊有PDCCH之排程操作相同之排程操作(亦即PDSCH、PUSCH控制),但如若存取諸如RRH之節點的UE數目增大,則更大數目之EPDCCH被分配至PDSCH區域,且由UE執行之盲解碼之計數增大。因此,可能存在複雜度會增大之缺點。 Referring to FIG. 13, in general, the EPDCCH may be defined in a manner of transmitting a portion of the data in the PDSCH region, and the UE shall perform blind decoding to detect whether the UE detects the EPDCCH of the UE. Although the EPDCCH performs the same scheduling operation as the scheduling operation of the legacy PDCCH (ie, PDSCH, PUSCH control), if the number of UEs accessing a node such as the RRH increases, a larger number of EPDCCHs are allocated to the PDSCH region. And the count of blind decoding performed by the UE increases. Therefore, there may be a disadvantage that the complexity may increase.

第14圖是在TDD系統環境中將舊有子訊框分為一組靜態子訊框及一組撓性子訊框的實例之圖表。經由第8圖中之系統資訊區塊(system information block;SIB)配置之舊有上行鏈路-下行鏈路配置經假定為上行鏈路-下行鏈路配置#1(亦即DSUUDDSUUD)。假定基地 台經由預定信號將無線電資源之用途的重新配置資訊通知使用者裝備。 Figure 14 is a diagram of an example of dividing a legacy sub-frame into a set of static sub-frames and a set of flexible sub-frames in a TDD system environment. The legacy uplink-downlink configuration configured via the system information block (SIB) in Figure 8 is assumed to be uplink-downlink configuration #1 (i.e., DSUUDDSUUD). Assumed base The station notifies the user equipment of the reconfiguration information of the use of the radio resource via a predetermined signal.

無線電資源用途改變訊息(重新配置訊息)根據一預定規則而用於實現告知無線電資源之用途的目的,該等無線電資源:i)在接收重新配置訊息之時序(包括接收重新配置訊息之時序)之後出現;ii)在接收重新配置訊息之時序(不包括接收重新配置訊息之時序)之後出現;或iii)在自接收重新配置訊息之時序起經過預定時間(亦即子訊框偏移)之後出現。 The radio resource usage change message (reconfiguration message) is used for the purpose of informing the use of the radio resource according to a predetermined rule: i) after receiving the timing of the reconfiguration message (including the timing of receiving the reconfiguration message) Appears; ii) occurs after the timing of receiving the reconfiguration message (excluding the timing of receiving the reconfiguration message); or iii) after a predetermined time (ie, subframe offset) has elapsed since the timing of receiving the reconfiguration message .

基於前述描述中提及之內容,本發明說明在上行鏈路資料通道上執行揹負(piggyback on uplink data channel;PUSCH)之方法,或在根據負載狀態而變更特定單元(亦即,增強干擾管理及訊務調適(enhanced interference management and traffic adaptation;eIMTA)單元)中之無線電資源用途之情況下,在PUSCH上有效發射上行鏈路控制資訊(uplink control information;UCI)之方法。 Based on the content mentioned in the foregoing description, the present invention describes a method of performing a piggyback on uplink data channel (PUSCH) on an uplink data channel, or changing a specific unit according to a load status (ie, enhancing interference management and In the case of radio resource usage in the enhanced interference management and traffic adaptation (eIMTA) unit, a method of effectively transmitting uplink control information (UCI) on the PUSCH.

根據本發明,用途改變訊息(重新配置訊息)可在預定單元中以上層信號(例如SIB/PBCH/MAC/RRC)之方式或實體層信號(例如PDCCH/EPDCCH/PDSCH)之形式發射。此外,用途改變訊息可具有特定於UE、特定於單元、特定於UE群組或共用於UE群組之特徵。 另外,用途改變訊息可經由特定於UE之搜尋空間(UE-specific search space;USS)或共用搜尋空間(common search space;CSS)而在預定單元(例如PCell)中發射。 According to the present invention, the usage change message (reconfiguration message) may be transmitted in the form of an upper layer signal (e.g., SIB/PBCH/MAC/RRC) or a physical layer signal (e.g., PDCCH/EPDCCH/PDSCH) in a predetermined unit. Further, the usage change message may have UE-specific, cell-specific, UE-specific, or common UE group characteristics. In addition, the usage change message may be transmitted in a predetermined unit (eg, PCell) via a UE-specific search space (USS) or a common search space (CSS).

在以下描述中,為明確性起見,本發明基於3GPP LTE系統進行說明。然而,本發明所應用至之系統範圍可擴大至除3GPP LTE系統以外之不同系統。此外,本發明之實施例可擴展至以下情況:i)藉由載波聚合(carrier aggregation;CA)技術使用TDD單元,及至少一或更 多個聚合單元(亦即聚合單元之一部分或全部)在無線電資源用途改變模式下操作;及/或ii)藉由載波聚合(carrier aggregation;CA)技術使用TDD單元與FDD單元之組合(例如TDD PCell與FDD SCell之組合或FDD PCell與TDD SCell之組合)及至少一或更多個聚合單元(亦即聚合單元之一部分或全部)在無線電資源用途改變模式下操作。 In the following description, for the sake of clarity, the present invention is described based on a 3GPP LTE system. However, the system to which the present invention is applied can be extended to different systems than the 3GPP LTE system. Furthermore, embodiments of the present invention can be extended to: i) use a TDD unit by carrier aggregation (CA) technology, and at least one or more Multiple aggregation units (ie, part or all of the aggregation units) operate in a radio resource usage change mode; and/or ii) use a combination of TDD units and FDD units by carrier aggregation (CA) techniques (eg, TDD) The combination of PCell and FDD SCell or the combination of FDD PCell and TDD SCell) and at least one or more of the aggregation units (ie, part or all of the aggregation unit) operate in a radio resource usage change mode.

首先,根據舊有無線通訊系統(3GPP TS 36.213),能夠確保上行鏈路資料通道(uplink data channel;PUSCH)上之上行鏈路控制資訊(unlink control information;UCI)揹負或在PUSCH上發射之上行鏈路控制資訊將經由基於上層信號(RRC)之額外MCS偏移配置(參看3GPP TS 36.213 8.6.3)而更可靠地發射。在此情況下,基於上層信號之額外MCS偏移經設定至經由揹負而在PUSCH上發射之UCI,該偏移經配置以確保UCI將被可靠地接收。特定而言,當服務單元接收上行鏈路信號(自使用者裝備發射)時,前述操作在以下情況下可十分實用:i)接收來自相鄰單元之強干擾,該相鄰單元在相鄰頻帶/通道上執行上行鏈路/下行鏈路通訊;或ii)接收來自相鄰單元之強干擾,該相鄰單元在相同頻帶/通道上執行上行鏈路/下行鏈路通訊。 First, according to the old wireless communication system (3GPP TS 36.213), it is possible to ensure that uplink control information (UCI) on the uplink data channel (PUSCH) is piggybacked or uplinked on the PUSCH. The link control information will be transmitted more reliably via an additional MCS offset configuration based on the upper layer signal (RRC) (see 3GPP TS 36.213 8.6.3). In this case, the additional MCS offset based on the upper layer signal is set to the UCI transmitted on the PUSCH via piggyback, the offset being configured to ensure that the UCI will be reliably received. In particular, when the serving unit receives an uplink signal (transmitted from a user equipment), the foregoing operations can be very useful in the following situations: i) receiving strong interference from neighboring units in adjacent frequency bands Perform uplink/downlink communication on the channel; or ii) receive strong interference from neighboring cells that perform uplink/downlink communication on the same frequency band/channel.

然而,如若相鄰單元在無線電資源用途之動態改變模式(亦即『eIMTA模式』)下操作,則就服務單元(例如賦能eIMTA之服務單元或去能eIMTA之服務單元)而言,儘管子訊框同等地用於上行鏈路之目的,但來自外部的干擾強度或干擾之改變程度可能根據每一子訊框而有所不同。 However, if the neighboring unit operates under the dynamic change mode of the radio resource usage (ie, the "eIMTA mode"), then the service unit (for example, the service unit that enables eIMTA or the service unit that can be eIMTA), although The frame is equally used for the purpose of the uplink, but the degree of change in interference intensity or interference from the outside may vary according to each subframe.

如具體實例,就服務單元而言,來自相鄰單元之由DL通訊(DL干擾)引起之干擾在用於上行鏈路用途之子訊框#A中被接收。就服務單元而言,來自相鄰單元之由UL通訊(UL干擾)引起之干擾在用於上行鏈路用途之子訊框#B中被接收。因此,就服務單元而言,根據用於UL用途之子訊框(組),在慮及彼此不同之干擾特性的情況下,引入對獨立功率控制參數進行配置(例如根據子訊框(組)配置開放迴路參數(例如PO、α)(及/或根據子訊框(組)獨立執行TPC積聚))之「依據子訊框(組)之UL功率控制」技術。 As a specific example, in the case of a serving unit, interference caused by DL communication (DL interference) from neighboring units is received in subframe #A for uplink use. In the case of a service unit, interference caused by UL communication (UL interference) from neighboring units is received in subframe #B for uplink use. Therefore, in terms of the service unit, according to the subframes (groups) for UL use, the independent power control parameters are introduced in consideration of different interference characteristics (for example, according to the subframe configuration) Open loop parameters (eg, P O , α) (and/or independent implementation of TPC accumulation based on subframes (groups))) "Using sub-frame (group) UL power control" technique.

然而,儘管PUSCH(及/或在PUSCH上經由揹負而發射之UCI)發射功率經由接收強干擾(例如DL干擾)之UL子訊框(組) 中依據子訊框(組)之UL功率控制而經設定為較高值,但該發射功率不能確保在PUSCH上經由揹負而發射之UCI之成功接收。而且,就系統實施(或系統管理)而言,根據具有彼此不同之干擾特性之UL子訊框組,並非必須配置相同目標的目標區塊錯誤率(target block error rate;BLER)(以用於PUSCH的接收或在PUSCH上經由揹負而發射之UCI的接收)。因此,如以下表4中所示,根據具有彼此不同之干擾特性之UL子訊框組,獨立於彼此(例如彼此不同)之MCS偏移可經設定至在PUSCH上經由揹負而發射之UCI(亦即RI、CQI)。 However, although the PUSCH (and/or the UCI transmitted on the PUSCH via piggyback) transmits power via the UL subframe (group) that receives strong interference (eg, DL interference) The middle value is set to a higher value according to the UL power control of the subframe (group), but the transmission power cannot ensure successful reception of the UCI transmitted on the PUSCH via piggyback. Moreover, in terms of system implementation (or system management), it is not necessary to configure a target block error rate (BLER) of the same target according to UL subframe groups having mutually different interference characteristics (for Reception of PUSCH or reception of UCI transmitted on the PUSCH via piggyback). Therefore, as shown in Table 4 below, according to the UL subframe group having interference characteristics different from each other, the MCS offsets that are independent of each other (for example, different from each other) can be set to the UCI transmitted on the PUSCH via piggyback ( That is RI, CQI).

在下文中,本發明不僅提出賦能與CSI相關之UCI(亦即RI、CQI)的方法(該UCI根據具有彼此不同之干擾特性的UL子訊框組,在PUSCH上經由揹負而發射)以使MCS偏移配置彼此獨立(例如彼此不同),而且提出賦能HARQ-ACK資訊之方法以應用彼此獨立(例如彼此不同)之MCS偏移配置(亦即)。 In the following, the present invention not only proposes a method of enabling UCI (i.e., RI, CQI) related to CSI (the UCI is transmitted on the PUSCH via piggyback according to a UL subframe group having interference characteristics different from each other). The MCS offset configurations are independent of each other (eg, different from each other), and a method of enabling HARQ-ACK information is proposed to apply MCS offset configurations that are independent of each other (eg, different from each other) (ie, ).

特定而言,在應用載波聚合技術(carrier aggregation;CA)之以下環境中,根據表5推導出與SCell(例如賦能eIMTA之SCell)相關之DL參考UL/DL配置之時,本發明十分實用。換言之,此情況之原因在於i)最終應用於SCell(例如賦能eIMTA之SCell)之DL參考UL/DL配置不能確保在設定至SCell的eIMTA(或配置有RRC的)DL HARQ參考配置之UL子訊框(亦即靜態UL SF)中之HARQ-ACK發射(亦即在PUSCH上經由揹負發射之HARQ-ACK);或ii)最終應 用於SCell之DL參考UL/DL配置不能確保在接收相對較低干擾之UL子訊框組中之HARQ-ACK發射(亦即在PUSCH上經由揹負發射之HARQ-ACK)(參看3GPP TS 36.213)。 In particular, the present invention is very practical when deriving a DL reference UL/DL configuration associated with an SCell (eg, an SCell enabling eIMTA) according to Table 5 in an environment where carrier aggregation (CA) is applied. . In other words, the reason for this is that i) the DL reference UL/DL configuration that is finally applied to the SCell (eg, the SCell that enables eIMTA) cannot ensure the UL sub-configuration in the DL HARQ reference configuration of the eIMTA (or RRC configured) to the SCell. HARQ-ACK transmission in a frame (ie, static UL SF) (ie, HARQ-ACK transmitted via piggyback on PUSCH); or ii) final should The DL reference UL/DL configuration for SCell does not guarantee HARQ-ACK transmission in a UL subframe group that receives relatively low interference (ie, HARQ-ACK via piggyback transmission on PUSCH) (see 3GPP TS 36.213) .

在此情況下,例如,在前述表5(亦即,基於Rel-10/11 CA操作來推導SCell(服務單元)之DL參考UL/DL配置的方法)中,PCell可能始終假定將SIB1 UL-DL配置設定至PCell以作為DL參考UL/DL配置,無論採用自排程還是交叉載波排程(cross carrier scheduling;CCS)。 In this case, for example, in the aforementioned Table 5 (that is, the method of deriving the DL reference UL/DL configuration of the SCell (Service Unit) based on the Rel-10/11 CA operation), the PCell may always assume that the SIB1 UL- The DL configuration is set to the PCell as a DL reference UL/DL configuration, whether self-scheduled or cross carrier scheduling (CCS) is employed.

特定而言,如不確保前述之可靠的HARQ-ACK發射的實例,假定藉由使用載波聚合技術將兩個單元(亦即,非eIMTA PCell及賦能eIMTA之SCell)設定至未設定有PUCCH/PUSCH同時發射之UE(eIMTA UE),則非eIMTA PCell之SIB1 UL-DL配置對應於UL-DL配置1,賦能eIMTA之SCell的SIB1 UL-DL配置對應於UL-DL配置1,且賦能eIMTA之SCell之eIMTA(或配置有RRC的)DL HARQ參考配置對應於UL-DL配置5。在此情況下,就賦能eIMTA之SCell 而言,假定固定的UL SF(亦即假定在接收到來自外部之相對較低干擾時的位置)對應於UL SF #2及撓性UL SF(亦即假定在接收到來自外部之相對較高干擾時的位置)對應於UL SF #3、#7及#8。此外,如若交叉載波排程(cross carrier scheduling;CCS)經設定至兩個單元,則賦能eIMTA之SCell的最終DL參考UL/DL配置由UL-DL配置1來決定。然而,在此情況下,由於賦能eIMTA之SCell的eIMTA(或配置有RRC之)DL HARQ參考配置(亦即UL-DL配置5)與初始DL參考UL/DL配置(亦即UL-DL配置1)彼此不同,因此就賦能eIMTA之SCell而言,可在PUSCH(亦即在SCell中發射之PUSCH)上在假定為撓性UL SF之位置處經由揹負而發射。 In particular, if the aforementioned example of reliable HARQ-ACK transmission is not ensured, it is assumed that two units (ie, non-eIMTA PCell and SCell of the enabled eIMTA) are set to not set PUCCH/ by using carrier aggregation technology. For a PUSCH simultaneous UE (eIMTA UE), the SIB1 UL-DL configuration of the non-eIMTA PCell corresponds to the UL-DL configuration 1, and the SIB1 UL-DL configuration of the SCell that enables the eIMTA corresponds to the UL-DL configuration 1, and is enabled. The eIMTA (or RRC configured) DL HARQ reference configuration of the SCell of the eIMTA corresponds to the UL-DL configuration 5. In this case, the SCell of eIMTA is enabled. In this case, it is assumed that a fixed UL SF (that is, a position assumed to be relatively low-interference from the outside) corresponds to UL SF #2 and flexible UL SF (that is, a relatively high reception from the outside is assumed The position at the time of interference corresponds to UL SF #3, #7, and #8. Furthermore, if the cross carrier scheduling (CCS) is set to two units, the final DL reference UL/DL configuration of the SCell that enables the eIMTA is determined by the UL-DL configuration 1. However, in this case, the eIMTA (or RRC configured) DL HARQ reference configuration (ie, UL-DL configuration 5) and the initial DL reference UL/DL configuration (ie, UL-DL configuration) of the SCell enabling the eIMTA 1) Different from each other, so in the case of the SCell enabling the eIMTA, it can be transmitted via piggyback at the position assumed to be the flexible UL SF on the PUSCH (i.e., the PUSCH transmitted in the SCell).

具體而言,如若賦能eIMTA之SCell之實際UL-DL配置(亦即經由重新配置DCI而經(重新)配置之UL-DL配置)係由UL-DL配置2配置,則就賦能eIMTA之SCell而言,(與DL SF #0、#1、#3及#9有關之)HARQ-ACK可在PUSCH(亦即在SCell上發射之PUSCH)上於假定為撓性UL SF之UL SF #7中經由揹負發射。 Specifically, if the actual UL-DL configuration of the SCell that enables the eIMTA (ie, the (re)configured UL-DL configuration via reconfiguration DCI) is configured by the UL-DL configuration 2, then the eIMTA is enabled. For SCell, the HARQ-ACK (related to DL SF #0, #1, #3, and #9) can be on the PUSCH (that is, the PUSCH transmitted on the SCell) on the UL SF that is assumed to be a flexible UL SF # 7 is transmitted via piggyback.

因此,如本發明之一個實施例,如若與依據子訊框(組)之UL功率控制相關的兩個子訊框組(亦即UL PC SF SET #0(接收相對較低干擾(例如UL干擾)的子訊框組)及UL PC SF SET #1(接收相對較高干擾(例如DL干擾)的子訊框組))經設定至特定單元(例如賦能eIMTA之單元),則該單元(或基地台)可經由預定信號(例如上層信號(RRC))將用於UL PC SF SET #0之及用於UL SF SET #1之分別通知UE(例如eIMTA UE)。在此情況下,可由與相比相對較高之值配置。 Therefore, as one embodiment of the present invention, if there are two sub-frame groups associated with UL power control according to the subframe (group) (ie, UL PC SF SET #0 (receive relatively low interference (eg, UL interference) (sub-frame group) and UL PC SF SET #1 (sub-frame group receiving relatively high interference (such as DL interference))) (A sub-frame group receiving relatively high interference (such as DL interference)) is set to a specific unit (for example, a unit that enables eIMTA), then the unit ( Or base station) may be used for UL PC SF SET #0 via a predetermined signal (eg, upper layer signal (RRC)) And for UL SF SET #1 The UE (for example, eIMTA UE) is separately notified. In this situation, Can be Compared to a relatively high value configuration.

如一不同實施例,i)如若對應通訊單元之與依據子訊框(組) 之UL功率控制相關的子訊框組數目從一個改變至兩個;或ii)如若依據子訊框(組)之UL功率控制並非在對應通訊單元上配置,且依據子訊框(組)之UL功率控制經(重新)配置(賦能),則可經配置以按照原樣重新使用/繼承先前已使用(或配置)之值(例如偏移)(例如用於UL PC SF SET #1之MCS偏移值可僅經傳訊)。 As a different embodiment, i) if the number of subframe groups associated with the UL power control according to the subframe (group) of the corresponding communication unit is changed from one to two; or ii) according to the subframe (group) The UL power control is not configured on the corresponding communication unit, and is (re)configured (energized) according to the UL power control of the subframe (group). Can be configured to reuse/inherit the previously used (or configured) values as they are (for example Offset) (eg MCS offset value for UL PC SF SET #1 may only be transmitted).

此外,i)如若對應通訊單元之與依據子訊框(組)之UL功率控制相關的子訊框組數目從一個改變至兩個;或ii)如若依據子訊框(組)之UL功率控制在對應通訊單元上配置,及依據子訊框(組)之UL功率控制未經配置(去能),則經配置以用於特定UL功率控制子訊框組(UL power control subframe set;UL PC SF SET)之MCS偏移值,或應用於/用於特定UL功率控制子訊框組之MCS偏移值(例如經配置以用於UL PC SF SET #0之MCS偏移值(亦即))可經配置以按照原樣重新使用/繼承(亦即並非必須額外傳訊MCS偏移值)。 In addition, i) if the number of subframe groups associated with the UL power control according to the subframe (group) of the corresponding communication unit is changed from one to two; or ii) if the UL power control according to the subframe (group) Configured on the corresponding communication unit and unconfigured (de-energized) according to the UL power control of the subframe (group), configured for a specific UL power control subframe set (UL PC) MCS offset value of SF SET), or MCS offset value applied to/for a particular UL power control subframe group (eg, MCS offset value configured for UL PC SF SET #0 (ie, )) can be configured to reuse/inherit as it is (ie, it is not necessary to additionally communicate MCS offset values).

特定而言,根據本發明,當配置基於子訊框組之UL功率控制(依據SF SET之UL PC)操作時,與UL PC SF SET #0相關之β偏移值繼承舊有β偏移值,而非經由RRC傳訊而額外接收值。相反,當釋放(去能)基於子訊框組之UL功率控制(依據SF SET之UL PC)操作時,與UL PC SF SET #0相關之β偏移值得以繼承以用於應用於全部UL SF之β偏移值,而非經由RRC傳訊額外接收應用於全部UL SF之β偏移值。 In particular, according to the present invention, when the sub-frame group based UL power control (UL PC according to SF SET) is configured, the β offset value associated with UL PC SF SET #0 inherits the old β offset value. Instead of receiving additional values via RRC messaging. Conversely, when releasing (de-energizing) based on the sub-frame group's UL power control (UL PC according to SF SET), the beta offset associated with UL PC SF SET #0 is worth inheriting for use in all ULs. The beta offset value of SF, rather than the additional reception of the beta offset value applied to all UL SFs via RRC signaling.

如又一不同實施例,與依據子訊框(組)之UL功率控制相關之兩個子訊框組(亦即用於上行鏈路功率控制之兩個子訊框組)是否經配置,及/或依據子訊框(組)之UL功率控制操作是否經設定,及/ 或eIMTA模式是否經配置可能根據單元而彼此不同,下文中之配置/規則可額外應用於本發明。 As a further different embodiment, whether two sub-frame groups (ie, two sub-frame groups for uplink power control) associated with UL power control according to the subframe (group) are configured, and / or according to the UL power control operation of the subframe (group) is set, and / Whether the eIMTA mode is configured may be different from each other depending on the unit, and the configuration/rules hereinafter may be additionally applied to the present invention.

在下文之描述中,為明確地說明本發明,假定一情境,亦即兩個單元(例如(非eIMTA)PCell及賦能eIMTA之SCell)藉由載波聚合技術而使用。然而,本發明亦可擴展至以下情境:i)藉由載波聚合技術而使用三個或三個以上之單元;及/或ii)與依據子訊框(組)之UL功率控制相關之兩個子訊框組(亦即用於上行鏈路功率控制之兩個子訊框組)或依據子訊框(組)之UL功率控制操作經設定至至少一或更多個單元;及/或iii)至少一或更多個單元在eIMTA模式下操作。 In the following description, in order to clearly illustrate the present invention, it is assumed that a scenario, that is, two units (e.g., (non-eIMTA) PCell and SCell that enables eIMTA) is used by carrier aggregation techniques. However, the present invention can also be extended to the following scenarios: i) using three or more units by carrier aggregation techniques; and/or ii) two related to UL power control according to subframes (groups) a subframe group (ie, two subframe groups for uplink power control) or a UL power control operation according to a subframe (group) is set to at least one or more units; and/or iii At least one or more units operate in eIMTA mode.

‧儘管與依據子訊框(組)之UL功率控制相關之兩個子訊框組或依據子訊框(組)之UL功率控制經設定至相關於載波聚合技術之特定單元(例如賦能eIMTA之SCell),但彼此獨立(例如彼此不同)之(亦即)根據子訊框組而得以設定/傳訊。 ‧Although the two sub-frame groups associated with the UL power control according to the subframe (group) or the UL power control according to the subframe (group) are set to specific units related to carrier aggregation technology (eg enabling eIMTA) SCell), but independent of each other (eg different from each other) (that is and ) Set/tune according to the sub-frame group.

- i)如若HARQ-ACK資訊在與載波聚合技術相關之不同單元中(例如,(非eIMTA)PCell)在PUSCH上經由揹負發射,及/或與依據子訊框(組)之UL功率控制相關之兩個子訊框組或依據子訊框(組)之UL功率控制操作並未設定至不同單元(例如(非eIMTA)PCell);或ii)如若HARQ-ACK資訊在與載波聚合技術相關之不同單元(例如(非eIMTA)PCell)中在PUSCH上經由揹負發射,及/或不同單元(例如(非eIMTA)PCell)不在eIMTA模式下操作,則能夠配置與特定子訊框組相關之(該經設定至特定單元(例如賦能eIMTA之SCell)),該將根據預定規則而應用。 - i) if the HARQ-ACK information is transmitted on the PUSCH via piggyback in different units related to the carrier aggregation technique (eg (non-eIMTA) PCell) and/or related to UL power control according to the subframe (group) The two sub-frame groups or the UL power control operations according to the subframe (group) are not set to different units (for example, (non-eIMTA) PCell); or ii) if the HARQ-ACK information is related to carrier aggregation technology Different units (eg, (non-eIMTA) PCell) can be configured to be associated with a particular subframe group via piggyback transmission on PUSCH, and/or different units (eg, (non-eIMTA) PCell) are not operating in eIMTA mode. (the Set to a specific unit (such as the SCell that enables eIMTA), Will be applied according to the predetermined rules.

-在此情況下,特定子訊框組可由選自以下各者組成之群組中 之一者來定義:i)包括相對較低之子訊框組指標之組(亦即,UL PC SF SET #0,);ii)兩個子訊框組中接收相對較低(及/或靜態)干擾之子訊框組;及iii)其中包括靜態UL子訊框(例如eIMTA(或配置有RRC的)DL HARQ參考配置之UL SF)之組。 - In this case, the specific subframe group can be defined by one of the groups consisting of: i) a group comprising relatively low subframe group indicators (ie, UL PC SF SET # 0, (ii) a sub-frame group that receives relatively low (and/or static) interference in two sub-frame groups; and iii) includes a static UL subframe (eg, eIMTA (or RRC configured) DL HARQ reference Group of configured UL SF).

-或者,相對於特定子訊框組,基地台可經由預定信號(例如RRC信號)將與子訊框組相關之待應用的通知UE。 Or, relative to a particular subframe group, the base station may associate the subframe group with the predetermined signal (eg, RRC signal) to be applied. Notify the UE.

特定而言,根據本發明,如若根據應用載波聚合技術之單元,是否配置基於子訊框組之UL功率控制(依據SF SET之UL PC)操作是彼此獨立的,則「與UL PC SF SET #0相關之β偏移值」通常僅應用於「未設定依據SF SET之UL PC操作的單元之所有UL SF」及「已設定依據SF SET之UL PC操作的單元之所有UL PC SF SET #0」。 此外,如若根據應用載波聚合技術之單元,是否配置基於子訊框組之UL功率控制(依據SF SET之UL PC)操作是彼此獨立的,則「與UL PC SF SET #1相關之β偏移值」通常僅應用於「已設定依據SF SET之UL PC操作的單元之所有UL PC SF SET #1」。 In particular, according to the present invention, if the sub-frame group-based UL power control (UL PC according to SF SET) operation is independent of each other according to the unit of the carrier aggregation technology, "with UL PC SF SET # The 0-related β offset value is usually applied only to "all UL SFs of cells that do not have UL PC operation according to SF SET" and "all UL PC SF SET #0 of cells that have been set to operate according to SF SET's UL PC" "." In addition, if the UL power control based on the sub-frame group (UL PC according to SF SET) is independent of each other according to the unit of the carrier aggregation technology, the "β offset associated with the UL PC SF SET #1" The value is usually applied only to "all UL PC SF SET #1" of the unit in which UL PC operation according to SF SET has been set.

本發明之實施例可經配置以限制性地應用於選自以下各者組成之群組中的至少一者:i)SCell(在eIMTA模式下操作);ii)SCell(在eIMTA模式下操作),該SCell設定有與依據子訊框(組)之UL功率控制相關之兩個子訊框組(亦即用於上行鏈路功率控制之兩個子訊框組)或依據子訊框(組)之UL功率控制操作;iii)未配置PUCCH與PUSCH之同時發射之情況;iv)至少一或更多個單元在eIMTA模式下操作或應用依據子訊框(組)之UL功率控制操作之情況;v)PCell之SIB1 UL-DL配置及SCell之基於tdd-Config-r10之UL-DL配置彼此不同之情況;vi)PCell之eIMTA(或者配置有RRC之)DL HARQ參 考配置及SCell之eIMTA(或者配置有RRC之)DL HARQ參考配置彼此不同之情況;vii)交叉載波排程(cross carrier scheduling;CCS)經配置之情況;viii)自排程經配置之情況;ix)半雙工(half-duplex;HD)UE;x)無法同時發射PUCCH與PUSCH之UE;及x)能夠在應用載波聚合(carrier aggregation;CA)技術之情境下同時發射PUCCH與PUSCH之UE。 Embodiments of the invention may be configured to be applied to at least one of the group consisting of: i) SCell (operating in eIMTA mode); ii) SCell (operating in eIMTA mode) The SCell is configured with two sub-frame groups (ie, two sub-frame groups for uplink power control) related to the UL power control according to the subframe (group) or according to the subframe (group) UL power control operation; iii) unconfigured PUCCH and PUSCH simultaneous transmission; iv) at least one or more units operating in eIMTA mode or applying UL power control operation according to subframe (group) ;v) PCell's SIB1 UL-DL configuration and SCell's tdd-Config-r10 based UL-DL configuration are different from each other; vi) PCell's eIMTA (or RRC configured) DL HARQ The configuration of the eIMTA (or RRC configured) of the SCell is different from each other; vii) the case where the cross carrier scheduling (CCS) is configured; viii) the self-scheduled configuration; Ix) half-duplex (HD) UE; x) UEs that cannot transmit PUCCH and PUSCH simultaneously; and x) UEs capable of simultaneously transmitting PUCCH and PUSCH in the context of applying carrier aggregation (CA) technology .

例如,本發明亦可應用於以下情況:藉由載波聚合技術而使用TDD單元及FDD單元之組合(例如:i)在TDD PCell與FDD Scell之組合或FDD PCell與TDD Scell之組合情況下)之情況,及至少一或更多個(亦即一部分或者全部)TDD單元在無線電資源用途改變模式下操作之情況。 For example, the present invention is also applicable to a case where a combination of a TDD unit and an FDD unit is used by a carrier aggregation technique (for example, i) in a combination of TDD PCell and FDD Scell or a combination of FDD PCell and TDD Scell) The situation, and the case where at least one or more (ie, some or all) of the TDD units operate in the radio resource usage change mode.

此外,本發明之前述實施例可經配置以限制性地應用於選自以下各者組成之群組中之至少一情況:i)至少一或更多個特定單元之無線電資源用途根據負載狀態而動態地改變;ii)至少一或更多個特定單元之發射模式(transmission mode;TM)由預定發射模式指定;iii)至少一或更多個特定單元(例如TDD eIMTA單元)之UL-DL配置由比值(重新)配置;iv)CCS經配置;及v)在應用載波聚合(carrier aggregation;CA)技術之情境中配置自排程。 Furthermore, the aforementioned embodiments of the present invention may be configured to be limitedly applied to at least one of the group consisting of: i) at least one or more specific units of radio resource usage depending on the load status Dynamically changing; ii) a transmission mode (TM) of at least one or more specific units is specified by a predetermined transmission mode; iii) a UL-DL configuration of at least one or more specific units (eg, TDD eIMTA units) By ratio (re)configuration; iv) CCS is configured; and v) self-scheduling is configured in the context of applying carrier aggregation (CA) technology.

此外,前述實施例/配置/規則/實例可解釋為用以實施本發明之方法中之一者,及顯而易見,該等實施例/配置/規則/實例被認作一類實施例。而且,前述實施例可獨立實施,及亦可由實施例之一部分之組合或聚合形式實施。 Furthermore, the foregoing embodiments/configurations/rules/examples may be construed as one of the methods for implementing the invention, and it is obvious that the embodiments/configurations/rules/examples are considered as a class of embodiments. Furthermore, the foregoing embodiments may be implemented independently, and may also be implemented in a combination or a combination of a part of the embodiments.

此外,基地台可經由預定信號(例如實體層或者上層信號)將關於本發明之前述實施例/配置/規則/實例之資訊或關於是否應用本 發明之該等實施例/配置/規則/實例之資訊告知使用者裝備。 Furthermore, the base station can communicate information about the aforementioned embodiments/configurations/rules/instance of the present invention or whether the application is applied via a predetermined signal (e.g., physical layer or upper layer signal) The information of the embodiments/configurations/rules/instance of the invention informs the user of the equipment.

此外,前述實施例亦可應用於以下情況:藉由載波聚合(carrier aggregation;CA)技術使用包括不同TDD UL-DL配置(例如SIB1 UL-DL配置(PCell)、RadioResourceConfigCommonSCell IE(Scell))之單元,且該等單元中至少一或更多個單元之無線電資源用途根據負載狀態而動態地改變。 In addition, the foregoing embodiments may also be applied to a case where a unit including different TDD UL-DL configurations (for example, SIB1 UL-DL configuration (PCell), RadioResourceConfigCommonSCell IE (Scell)) is used by carrier aggregation (CA) technology. And the radio resource usage of at least one or more of the units is dynamically changed according to the load status.

此外,本發明之前述實施例可經配置以限制性地應用於以下情況:i)至少一或更多個單元之發射模式(transmission mode;TM)由預定發射模式指定;及/或ii)至少一或更多個特定單元(例如TDD eIMTA單元)之UL-DL配置藉由比值而經(重新)配置。 Furthermore, the aforementioned embodiments of the present invention may be configured to be limitedly applied to the following cases: i) at least one or more units of a transmission mode (TM) are specified by a predetermined transmission mode; and/or ii) at least The UL-DL configuration of one or more specific units (eg, TDD eIMTA units) is (re)configured by a ratio.

第15圖是適用於本發明之一個實施例的基地台(base station;BS)及使用者裝備(user equipment;UE)之圖表。 Figure 15 is a diagram of a base station (BS) and user equipment (UE) applicable to one embodiment of the present invention.

如若中繼包括在無線通訊系統中,則在基地台與回載鏈路中之中繼之間執行通訊,且在中繼與存取鏈路中之使用者裝備之間執行通訊。因此,圖式中圖示之基地台與使用者裝備可依據情境而替換為中繼。 If the relay is included in the wireless communication system, communication is performed between the base station and the relay in the backhaul link, and communication is performed between the relay and the user equipment in the access link. Thus, the base station and user equipment illustrated in the figures can be replaced with relays depending on the context.

參看第15圖,無線通訊系統包括基地台(base station;BS)110及使用者裝備(user equipment;UE)120。BS 110包括處理器112、記憶體114及射頻(radio frequency;RF)單元116。處理器112可經配置以實施文中提出之功能、過程及/或方法。記憶體114與處理器112連接,然後記憶體114儲存與處理器112之操作相關聯之多種資訊。射頻單元116與處理器112連接及發射及/或接收無線電信號。使用者裝備120包括處理器122、記憶體124及射頻(radio frequency;RF)單元126。處理器122可經配置以實施文中提出之功能、過程及/或方法。記憶體124與處理器122連接,然後記憶體124儲存與處理器122之操 作相關聯之多種資訊。射頻單元126與處理器122連接及發射及/或接收無線電信號。基地台110及/或使用者裝備120可具有單個天線或多個天線。 Referring to FIG. 15, the wireless communication system includes a base station (BS) 110 and user equipment (UE) 120. The BS 110 includes a processor 112, a memory 114, and a radio frequency (RF) unit 116. The processor 112 can be configured to implement the functions, processes, and/or methods presented herein. The memory 114 is coupled to the processor 112, which then stores a variety of information associated with the operation of the processor 112. The radio unit 116 is coupled to the processor 112 and transmits and/or receives radio signals. The user equipment 120 includes a processor 122, a memory 124, and a radio frequency (RF) unit 126. The processor 122 can be configured to implement the functions, processes, and/or methods presented herein. The memory 124 is connected to the processor 122, and then the memory 124 is stored and operated by the processor 122. Make a variety of related information. Radio frequency unit 126 is coupled to processor 122 and transmits and/or receives radio signals. Base station 110 and/or user equipment 120 may have a single antenna or multiple antennas.

上述實施例對應於具有規定形式之本發明之元件及特徵的組合。此外,各個元件或特徵可被視作具有可選擇性,除非文中明確提及該等元件或特徵。每一元件或特徵可以未能與其他元件或特徵組合之形式而經實施。而且,能夠藉由部分地將元件及/或特徵組合在一起來實施本發明之實施例。可修正所說明之本發明之每一實施例的操作順序。一個實施例之一些配置或特徵可包括在另一實施例中,或可針對另一個實施例之對應配置或特徵而經替換。此外,顯而易見,可理解,藉由將未能在所附申請專利範圍中具有明顯引用關係之請求項組合在一起而配置實施例,或可在歸檔申請案之後藉由修正將實施例作為新請求項包括在內。 The above embodiments correspond to combinations of elements and features of the invention in a defined form. In addition, individual elements or features may be considered as optional, unless such elements or features are specifically mentioned herein. Each element or feature may be implemented in a form that is not combined with other elements or features. Moreover, embodiments of the invention can be implemented by combining elements and/or features in part. The sequence of operations of each of the illustrated embodiments of the invention may be modified. Some configurations or features of one embodiment may be included in another embodiment or may be substituted for corresponding configurations or features of another embodiment. In addition, it is apparent that the embodiments may be configured by combining request items that do not have a clear citation relationship in the scope of the appended claims, or may be modified by the embodiment as a new request after filing the application. Items are included.

在本揭示案中,經說明為由基地台執行之特定操作在一些情況下可由基地台之上級節點執行。特定而言,在利用包括基地台在內之複數個網路節點構造之網路中,顯而易見,多個經執行以用於與使用者裝備通訊的操作可由基地台或除該基地台以外之其他網路執行。『基地台(Base station;BS)』可用諸如固定站、節點B、eNode B(eNB)、存取點(access point;AP)等術語替換。 In the present disclosure, the particular operations illustrated to be performed by the base station may in some cases be performed by the base station superior node. In particular, in a network constructed using a plurality of network nodes including a base station, it is apparent that a plurality of operations performed for communicating with user equipment may be performed by the base station or other than the base station. Network execution. "Base station (BS)" may be replaced with terms such as a fixed station, a Node B, an eNode B (eNB), an access point (AP), and the like.

本發明之實施例可藉由使用多種手段而實施。例如,本發明之實施例可藉由使用硬體、韌體、軟體及/或上述各者之任何組合來實施。在硬體之實施中,根據本發明之每一實施例之方法可由選自以下各者組成之群組中之至少一者來實施:特殊應用積體電路(application specific integrated circuit;ASIC)、數位訊號處理器(digital signal processor;DSP)、數位訊號處理裝置(digital signal processing device;DSPD)、可程式化邏輯裝置(programmable logic device;PLD)、場可程式化閘極陣列(field programmable gate array;FPGA)、處理器、控制器、微控制器、微處理器,等等。 Embodiments of the invention can be implemented by using a variety of means. For example, embodiments of the invention may be implemented by using hardware, firmware, software, and/or any combination of the above. In a hardware implementation, the method according to each embodiment of the present invention may be implemented by at least one selected from the group consisting of: an application specific integrated circuit (ASIC), a digital bit Signal processor Processor; DSP), digital signal processing device (DSPD), programmable logic device (PLD), field programmable gate array (FPGA), processor, Controllers, microcontrollers, microprocessors, and more.

在韌體或軟體之實施情況下,根據本發明之每一實施例之方法可由模組、程序及/或功能來實施,以用於執行上文說明之功能或操作。軟體代碼儲存在記憶體單元中,然後由處理器驅動。 In the case of a firmware or software implementation, the method in accordance with each embodiment of the present invention can be implemented by modules, programs, and/or functions for performing the functions or operations described above. The software code is stored in the memory unit and then driven by the processor.

處理器內側或外側提供記憶體單元以經由公眾已知的多種手段與處理器交換資料。 A memory unit is provided inside or outside the processor to exchange data with the processor via a variety of means known to the public.

儘管本發明已在本文中藉由參考其較佳實施例而進行描述及圖示,但熟習該項技術者將顯而易見,可在不背離本發明之精神及範疇的情況下在該等實施例中進行多種修改及變更。由此,本發明意欲包括符合所附之專利申請範圍及其同等內容之範疇之本發明的修改及更動。 Although the present invention has been described and illustrated by reference to the preferred embodiments of the present invention, it will be apparent to those skilled in the <RTIgt; Make a variety of modifications and changes. Thus, it is intended that the present invention cover the modifications and modifications of the invention

工業適用性 Industrial applicability

儘管在支援改變無線電資源之用途之無線通訊系統中發射上行鏈路控制資訊之方法及其設備係以應用於3GPP LTE系統的實例為中心進行描述,但該方法及其設備亦適用於除3GPP LTE系統之外的多種無線通訊系統。 Although the method of transmitting uplink control information and the device thereof in a wireless communication system supporting the use of changing radio resources are described centering on an example applied to a 3GPP LTE system, the method and the device thereof are also applicable to 3GPP LTE. A variety of wireless communication systems outside the system.

Claims (12)

一種由一使用者裝備在一無線通訊系統中發射上行鏈路控制資訊(uplink control information;UCI)之方法,該方法包括以下步驟:根據一服務單元之上行鏈路-下行鏈路配置,在上行鏈路子訊框中接收與該上行鏈路控制資訊(uplink control information;UCI)發射相關聯之第一偏移資訊;及接收一功率控制參數,該功率控制參數為該等上行鏈路子訊框配置一第一上行鏈路功率控制子訊框組及一第二上行鏈路功率控制子訊框組;其中該第一上行鏈路功率控制子訊框組及該第二上行鏈路功率控制子訊框組經配置以按照一偏移獨立應用,以用於發射該上行鏈路控制資訊。 A method for transmitting uplink control information (UCI) by a user in a wireless communication system, the method comprising the steps of: uplinking according to an uplink-downlink configuration of a service unit Receiving, by the link subframe, first offset information associated with the uplink control information (UCI) transmission; and receiving a power control parameter, where the power control parameter is configured for the uplink subframe a first uplink power control subframe group and a second uplink power control subframe group; wherein the first uplink power control subframe group and the second uplink power control subframe The set of blocks is configured to be independently applied at an offset for transmitting the uplink control information. 如請求項1所述之方法,其中經配置用於該等上行鏈路子訊框之該第一偏移資訊應用於該第一上行鏈路功率控制子訊框組以發射該上行鏈路控制資訊。 The method of claim 1, wherein the first offset information configured for the uplink subframes is applied to the first uplink power control subframe group to transmit the uplink control information . 如請求項1所述之方法,其中藉由上層傳訊所指示之第二偏移資訊應用於該第二上行鏈路功率控制子訊框組以發射該上行鏈路控制資訊。 The method of claim 1, wherein the second offset information indicated by the upper layer communication is applied to the second uplink power control subframe group to transmit the uplink control information. 如請求項1所述之方法,其中該功率控制參數經由上層傳訊而接收。 The method of claim 1, wherein the power control parameter is received via an upper layer communication. 如請求項1所述之方法,進一步包括以下步驟:接收一功率控制參數,該功率控制參數釋放該第一上行鏈路功率控制子訊框組及該第二上行鏈路功率控制子訊框組。 The method of claim 1, further comprising the steps of: receiving a power control parameter, the power control parameter releasing the first uplink power control subframe group and the second uplink power control subframe group . 如請求項5所述之方法,其中如若釋放該第一上行鏈路功率 控制子訊框組及該第二上行鏈路功率控制子訊框組,則該等上行鏈路子訊框經配置以由該第一偏移資訊應用。 The method of claim 5, wherein if the first uplink power is released And controlling the subframe group and the second uplink power control subframe group, wherein the uplink subframes are configured to be applied by the first offset information. 如請求項1所述之方法,其中該偏移資訊用以在一實體上行鏈路共享通道(physical uplink shared channel;PUSCH)上發射該上行鏈路控制資訊。 The method of claim 1, wherein the offset information is used to transmit the uplink control information on a physical uplink shared channel (PUSCH). 如請求項7所述之方法,其中該偏移資訊經配置以用於選自由以下各者組成之該群組中之至少一者:一HARQ-ACK、一秩指示符(rank indicator;RI)及一通道品質指示符(channel quality indicator;CQI)。 The method of claim 7, wherein the offset information is configured for at least one selected from the group consisting of: a HARQ-ACK, a rank indicator (RI) And a channel quality indicator (CQI). 一種由一使用者裝備在一支援載波聚合(carrier aggregation;CA)之無線通訊系統中發射上行鏈路控制資訊之方法,該方法包括以下步驟:根據一服務單元之一上行鏈路-下行鏈路配置,在上行鏈路子訊框中接收與該上行鏈路控制資訊(uplink control information;UCI)發射相關聯之第一偏移資訊;及接收一功率控制參數,該功率控制參數為該等服務單元中之至少一或更多個服務單元配置一第一上行鏈路功率控制子訊框組及一第二上行鏈路功率控制子訊框組;其中該第一上行鏈路功率控制子訊框組及該第二上行鏈路功率控制子訊框組經配置以按照一偏移獨立應用,以用於發射該上行鏈路控制資訊。 A method for transmitting uplink control information by a user in a wireless communication system supporting carrier aggregation (CA), the method comprising the steps of: uplink-downlink according to one of a service unit Configuring to receive, in an uplink subframe, first offset information associated with the uplink control information (UCI) transmission; and receive a power control parameter, the power control parameter being the service unit At least one or more service units are configured with a first uplink power control subframe group and a second uplink power control subframe group; wherein the first uplink power control subframe group And the second uplink power control subframe group is configured to apply independently according to an offset for transmitting the uplink control information. 如請求項9所述之方法,其中經配置以用於該等上行鏈路子訊框之該第一偏移資訊應用於該等服務單元中之一第一服務單元以發射該上行鏈路控制資訊,該第一上行鏈路功率控制子訊框組係配置至 該第一服務單元。 The method of claim 9, wherein the first offset information configured for the uplink subframes is applied to one of the first service units of the service units to transmit the uplink control information The first uplink power control subframe group is configured to The first service unit. 如請求項9所述之方法,其中經由上層傳訊而指示之該第二偏移資訊應用於該等服務單元中之一第二服務單元以發射該上行鏈路控制資訊,該第二上行鏈路功率控制子訊框組係配置至該第二服務單元。 The method of claim 9, wherein the second offset information indicated via the upper layer communication is applied to one of the service units to transmit the uplink control information, the second uplink The power control subframe group is configured to the second service unit. 一種使用者裝備,該使用者裝備在一無線通訊系統中發射上行鏈路控制資訊,該使用者裝備包括:一射頻單元;及一處理器;其中該處理器經配置以根據一服務單元之上行鏈路-下行鏈路配置,在上行鏈路子訊框中接收與上行鏈路控制資訊(uplink control information;UCI)發射相關聯之第一偏移資訊,該處理器經配置以接收一功率控制參數,該功率控制參數為該等上行鏈路子訊框配置一第一上行鏈路功率控制子訊框組及一第二上行鏈路功率控制子訊框組,其中該第一上行鏈路功率控制子訊框組及該第二上行鏈路功率控制子訊框組經配置以按照一偏移獨立應用,以用於發射該上行鏈路控制資訊。 A user equipment for transmitting uplink control information in a wireless communication system, the user equipment comprising: a radio frequency unit; and a processor; wherein the processor is configured to uplink according to a service unit a link-downlink configuration for receiving, in an uplink subframe, first offset information associated with uplink control information (UCI) transmission, the processor configured to receive a power control parameter The power control parameter is configured to configure a first uplink power control subframe group and a second uplink power control subframe group for the uplink subframes, where the first uplink power controller is configured The frame group and the second uplink power control subframe group are configured to apply independently according to an offset for transmitting the uplink control information.
TW104111294A 2014-04-08 2015-04-08 Method of transmitting uplink control information in wireless communication system supporting change of usage of radio resource and apparatus therefor TWI575986B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201461977072P 2014-04-08 2014-04-08
US201461976514P 2014-04-08 2014-04-08
US201461979007P 2014-04-14 2014-04-14

Publications (2)

Publication Number Publication Date
TW201540109A true TW201540109A (en) 2015-10-16
TWI575986B TWI575986B (en) 2017-03-21

Family

ID=54210966

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104111294A TWI575986B (en) 2014-04-08 2015-04-08 Method of transmitting uplink control information in wireless communication system supporting change of usage of radio resource and apparatus therefor

Country Status (7)

Country Link
US (2) US9674790B2 (en)
EP (1) EP3131350B1 (en)
JP (1) JP6396494B2 (en)
KR (1) KR101931948B1 (en)
CN (1) CN106537999B (en)
TW (1) TWI575986B (en)
WO (1) WO2015156521A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI790775B (en) * 2016-07-01 2023-01-21 美商高通公司 Techniques for transmitting a physical uplink shared channel in an uplink pilot time slot

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6475634B2 (en) * 2012-12-30 2019-02-27 エルジー エレクトロニクス インコーポレイティド Radio resource information sharing method and apparatus therefor in multi-cell radio communication system
US10674487B2 (en) * 2014-03-12 2020-06-02 Lg Electronics Inc. Method for transmitting uplink control channel in wireless communication system that supports use change of radio resources, and apparatus therefor
KR101931948B1 (en) 2014-04-08 2018-12-24 엘지전자 주식회사 Method and apparatus for transmitting uplink control information in wireless communication system supporting change of usage of radio resource
US20160143030A1 (en) * 2014-11-14 2016-05-19 Electronics And Telecommunications Research Institute Method of transmitting frame for supporting legacy system, and method and apparatus of searching cell using the same
KR102233137B1 (en) * 2015-04-10 2021-03-26 텔레폰악티에볼라겟엘엠에릭슨(펍) Implementation of harq on pusch for multiple carriers
WO2017088783A1 (en) * 2015-11-24 2017-06-01 联发科技(新加坡)私人有限公司 Transmission mode reporting method and user equipment
US11477766B2 (en) 2016-05-24 2022-10-18 Qualcomm Incorporated Uplink control information reporting
JP2019520759A (en) * 2016-06-30 2019-07-18 華為技術有限公司Huawei Technologies Co.,Ltd. Uplink control channel transmission method, uplink control channel reception method, and apparatus
CN107567098B (en) * 2016-06-30 2021-06-15 华为技术有限公司 Method and device for power distribution
CN107800508B (en) * 2016-08-31 2022-01-25 中兴通讯股份有限公司 Channel coding indication method, device and system
EP3537830B1 (en) * 2016-11-02 2022-01-12 LG Electronics Inc. Method for performing sidelink transmission in wireless communication system and apparatus therefor
EP3566474B1 (en) * 2017-01-06 2022-03-30 Panasonic Intellectual Property Corporation of America Terminal and communication method
CN110249689B (en) 2017-01-07 2022-10-21 Lg电子株式会社 Method for transmitting uplink control channel by terminal in wireless communication system and communication device using the same
MX2019009207A (en) * 2017-02-03 2019-09-10 Ericsson Telefon Ab L M Dynamic mcs offset for short tti.
US10880167B2 (en) * 2017-03-10 2020-12-29 Qualcomm Incorporated High reliability low latency configuration for wireless communications systems
US10904908B2 (en) * 2017-06-01 2021-01-26 Qualcomm Incorporated Grantless uplink transmission for eMTC-U
EP3646502A1 (en) * 2017-08-10 2020-05-06 Ofinno, LLC Uplink control information multiplexing
WO2019057092A1 (en) * 2017-09-19 2019-03-28 Mediatek Inc. Uplink channel information feedback timing signaling in wireless communications
CN111034312A (en) 2017-10-13 2020-04-17 Oppo广东移动通信有限公司 Data transmission method, terminal equipment and network equipment
EP3706352B1 (en) * 2017-11-10 2022-08-24 LG Electronics Inc. Method for transmitting or receiving pucch carrying sr in wireless communication system and apparatus therefor
WO2019097646A1 (en) * 2017-11-16 2019-05-23 株式会社Nttドコモ User terminal and wireless communications method
CN109802813B (en) * 2017-11-17 2021-03-02 华为技术有限公司 Uplink control information transmission method and device
WO2019131878A1 (en) * 2017-12-28 2019-07-04 シャープ株式会社 Terminal equipment, base station device, and communication method
AR114517A1 (en) * 2018-01-19 2020-09-16 Ericsson Telefon Ab L M UCI URLLC TRANSMISSION
US10951366B2 (en) * 2018-02-16 2021-03-16 Qualcomm Incorporated Uplink transmission collision management
JP7108021B2 (en) 2018-03-30 2022-07-27 株式会社Nttドコモ TERMINAL, BASE STATION, WIRELESS COMMUNICATION METHOD AND SYSTEM
CN108932690A (en) * 2018-07-04 2018-12-04 合肥信亚达智能科技有限公司 A method of improving middle tone and shadow image raster anti-counterfeiting performance
US11706812B2 (en) 2018-07-04 2023-07-18 Lg Electronics Inc. Method for performing uplink transmission in wireless communication system, and device therefor
KR102522056B1 (en) * 2018-08-07 2023-04-14 삼성전자주식회사 Method for controlling tranmission power of uplink tranmission and electronic device therefor
CN110932821B (en) * 2018-09-19 2023-04-07 ***通信有限公司研究院 Control information transmission method, device, equipment and storage medium
CN111953456B (en) * 2019-05-14 2021-10-29 大唐移动通信设备有限公司 Signaling transmission method, user terminal, base station and storage medium
CN111601390B (en) * 2019-05-14 2021-11-02 维沃移动通信有限公司 Processing method and equipment for cross-time-slot scheduling
EP4022816A1 (en) * 2019-08-26 2022-07-06 Telefonaktiebolaget Lm Ericsson (Publ) Resource scaling for urllc transmissions
US11617136B2 (en) * 2020-01-10 2023-03-28 Qualcomm Incorporated Non-terrestrial network power control based on HARQ retransmission on or off

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5101568B2 (en) * 2009-06-23 2012-12-19 株式会社エヌ・ティ・ティ・ドコモ Radio base station apparatus, mobile terminal apparatus, and transmission power control method
KR101225928B1 (en) * 2009-09-08 2013-01-24 엘지전자 주식회사 Method and apparatus for controlling transmit power in wireless communication system
US8434336B2 (en) * 2009-11-14 2013-05-07 Qualcomm Incorporated Method and apparatus for managing client initiated transmissions in multiple-user communication schemes
US20110235582A1 (en) 2010-03-25 2011-09-29 Qualcomm Incorporated Subframe dependent transmission power control for interference management
US8489100B2 (en) * 2010-04-13 2013-07-16 Qualcomm Incorporated Uplink power control in long term evolution networks
US8520572B2 (en) * 2010-05-05 2013-08-27 Motorola Mobility Llc Multiplexing control and data on multilayer uplink transmissions
CA2809663A1 (en) * 2010-06-18 2011-12-22 Research In Motion Limited System and method for uplink control information transmission in carrier aggregation
US8582518B2 (en) * 2010-11-09 2013-11-12 Telefonaktiebolaget L M Ericsson (Publ) Power control for ACK/NACK formats with carrier aggregation
CN102045827B (en) * 2011-01-06 2013-07-31 大唐移动通信设备有限公司 Uplink power control method, power control parameter configuration method and equipment of methods
US8724492B2 (en) * 2011-04-08 2014-05-13 Motorola Mobility Llc Method and apparatus for multi-radio coexistence on adjacent frequency bands
EP2709299B1 (en) 2011-05-12 2016-04-13 LG Electronics Inc. Method for transmitting control information and apparatus therefor
JP5841148B2 (en) * 2011-06-29 2016-01-13 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America Terminal apparatus, base station apparatus, transmission method, and transmission power setting method
JP5927802B2 (en) * 2011-08-02 2016-06-01 シャープ株式会社 Base station, terminal and communication method
KR20140060485A (en) * 2011-09-05 2014-05-20 엘지전자 주식회사 Terminal apparatus for controlling uplink signal transmission power and method for same
CN103327594B (en) * 2012-03-22 2017-04-05 电信科学技术研究院 Ascending power control method, equipment and system
US8868123B2 (en) * 2012-07-16 2014-10-21 Motorola Mobility Llc Method and system for managing transmit power on a wireless communication network
US9338768B2 (en) * 2012-07-27 2016-05-10 Intel Corporation Uplink power control for physical uplink control channel
US8923880B2 (en) * 2012-09-28 2014-12-30 Intel Corporation Selective joinder of user equipment with wireless cell
US9220070B2 (en) * 2012-11-05 2015-12-22 Google Technology Holdings LLC Method and system for managing transmit power on a wireless communication network
WO2014161175A1 (en) * 2013-04-03 2014-10-09 Nokia Siemens Networks Oy Method and apparatus for uplink power control enhancement
KR101931948B1 (en) 2014-04-08 2018-12-24 엘지전자 주식회사 Method and apparatus for transmitting uplink control information in wireless communication system supporting change of usage of radio resource

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI790775B (en) * 2016-07-01 2023-01-21 美商高通公司 Techniques for transmitting a physical uplink shared channel in an uplink pilot time slot

Also Published As

Publication number Publication date
US20150289211A1 (en) 2015-10-08
CN106537999B (en) 2019-08-09
KR20160122199A (en) 2016-10-21
WO2015156521A1 (en) 2015-10-15
JP2017516384A (en) 2017-06-15
US20170238263A1 (en) 2017-08-17
EP3131350A1 (en) 2017-02-15
US9967829B2 (en) 2018-05-08
EP3131350B1 (en) 2019-05-08
EP3131350A4 (en) 2017-10-25
US9674790B2 (en) 2017-06-06
KR101931948B1 (en) 2018-12-24
CN106537999A (en) 2017-03-22
JP6396494B2 (en) 2018-09-26
TWI575986B (en) 2017-03-21

Similar Documents

Publication Publication Date Title
TWI575986B (en) Method of transmitting uplink control information in wireless communication system supporting change of usage of radio resource and apparatus therefor
CN110249568B (en) Method for transmitting/receiving wireless signal in wireless communication system and apparatus therefor
KR101857667B1 (en) Method for transmitting uplink control channel in wireless communication system that supports use change of radio resources, and apparatus therefor
US20170347343A1 (en) Method and device for setting a control channel and a data channel in a wireless communication system
KR101759946B1 (en) Method for transmitting and receiving control information in wireless communications system and apparatus therefor
US10447460B2 (en) Communication method using carrier aggregation and device for same
US9461779B2 (en) Method for transmitting uplink data information in a wireless communication system and apparatus therefor
US9473965B2 (en) Method for monitoring downlink control channel in wireless communication system, and apparatus therefor
US9544884B2 (en) Method for configuring resource block for search region of downlink control channel in wireless communication system, and apparatus therefor
US20150055584A1 (en) Method for dynamic allocation of radio resources in wireless communication system and device therefor
KR20210070396A (en) Method for transmitting and receiving control information for device-to-device (d2d) communication in wireless communication system and apparatus therefor
EP3190738B1 (en) Signal transmission and reception method in wireless communication system supporting carrier aggregation, and device for same
KR102284363B1 (en) Method for transmitting and receiving downlink signal in wireless communication system and device for same
US11411686B2 (en) Method for performing HARQ process in wireless communication system and apparatus therefor
US20210266874A1 (en) Method for transmitting/receiving special subframe in wireless communication system and device therefor
KR20160046562A (en) Method for transmitting uplink data in a wireless communication system and an user equipment for operating the same