TW201533963A - Process for producing LFMP/C composite material and use the same - Google Patents

Process for producing LFMP/C composite material and use the same Download PDF

Info

Publication number
TW201533963A
TW201533963A TW103105798A TW103105798A TW201533963A TW 201533963 A TW201533963 A TW 201533963A TW 103105798 A TW103105798 A TW 103105798A TW 103105798 A TW103105798 A TW 103105798A TW 201533963 A TW201533963 A TW 201533963A
Authority
TW
Taiwan
Prior art keywords
lithium
manganese
carbon
lfmp
iron
Prior art date
Application number
TW103105798A
Other languages
Chinese (zh)
Other versions
TWI513084B (en
Inventor
Ruey-Yu Wang
Chun-Chen Yang
Wei-Houng Chen
Jhong-Ren Jhang
Original Assignee
Formosa Biomedical Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Formosa Biomedical Technology Corp filed Critical Formosa Biomedical Technology Corp
Priority to TW103105798A priority Critical patent/TWI513084B/en
Priority to CN201510080342.3A priority patent/CN104681799A/en
Publication of TW201533963A publication Critical patent/TW201533963A/en
Application granted granted Critical
Publication of TWI513084B publication Critical patent/TWI513084B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

A process for producing Lithium Manganese Iron Phosphate/Carbon (LFMP/C) composite cathode material using a Solid-state method or a Spray dry method to have carbon-coating materials coated on LFMP, particularly the LFMP/C composite cathode material can not only significantly improve conductivity of the active materials of LFMP, but also markedly solve the low electronic conductivity problem of the LFMP material, as well as improve the obtained LFMP/C composite cathode material exhibited excellent in high power characteristics and having very good cycling charge/discharge performances, and suited for making as a secondary lithium ion battery cathode.

Description

一種磷酸鋰鐵錳/碳陰極材料的製造方法及其用途 Method for producing lithium iron manganese/carbon cathode material and use thereof

本發明涉及一種磷酸鋰鐵錳/碳(LFMP/C)陰極材料,特別是一種以固相法合成磷酸鋰鐵錳/碳(LFMP/C)陰極材料的製造方法及其用途。 The invention relates to a lithium iron phosphate manganese/carbon (LFMP/C) cathode material, in particular to a method for producing a lithium iron iron manganese/carbon (LFMP/C) cathode material by a solid phase method and a use thereof.

近年來,鋰離子二次電池的性能,隨著材料及電化學技術不斷的發展,已明顯的提升,且大量使用在各類3C產品上。 In recent years, the performance of lithium ion secondary batteries has been significantly improved with the continuous development of materials and electrochemical technology, and is widely used in various types of 3C products.

鋰離子二次電池的基本架構,包括:(1)陽極材料(Anode material)、(2)電解液(Electrolyte)、(3)隔離膜(Separator)以及(4)陰極材料(或稱正極材料,Cathode material)四個部分,其中,陰極材料的活性物質,不但主導著鋰離子二次電池的電容量大小,也決定著鋰離子二次電池的安全性。因此,應用於鋰離子二次電池的理想陰極材料,需具備優異的克電容量以及材料熱穩定性。 The basic structure of a lithium ion secondary battery includes: (1) anode material (Anode material), (2) electrolyte solution (Electrolyte), (3) separator (Separator), and (4) cathode material (or cathode material, Cathode material), in which the active material of the cathode material not only dominates the capacitance of the lithium ion secondary battery, but also determines the safety of the lithium ion secondary battery. Therefore, an ideal cathode material for a lithium ion secondary battery needs to have excellent gram capacity and material thermal stability.

在現有技術中,適用於製成二次鋰離子電池的圓形陰電極,有鋰鈷氧化物(LiCoO2)、鋰鎳氧化物(LiNiO2)、鋰錳氧化物(LiMn2O4)和磷酸鋰鐵(LiFePO4)等陰極材料。使用上,上述四種陰極材料皆有其缺點,導致鋰離子二次電池的發展受到限制。 In the prior art, a circular cathode electrode suitable for making a secondary lithium ion battery is lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), lithium manganese oxide (LiMn 2 O 4 ), and A cathode material such as lithium iron phosphate (LiFePO 4 ). In use, the above four cathode materials all have their disadvantages, resulting in the development of lithium ion secondary batteries being limited.

例如,鋰鈷氧化物(LiCoO2)除原料來源缺乏價格昂貴外,還有環保的問題;鋰鎳氧化物(LiNiO2)的重量能量密度較高,熱安定性較差;鋰錳氧化物(LiMn2O4)在放電下的結構安定性較佳,但錳離子易溶解於電解質液中,電容量不高;磷酸鋰鐵(LiFePO4)雖具結構穩定、無毒、成本較低及安全性較高的特點,卻也存在著「電子導電度低」與「鋰離子擴散係數低」的缺點。 For example, lithium cobalt oxide (LiCoO 2 ) has environmental problems in addition to the lack of expensive raw material sources; lithium nickel oxide (LiNiO 2 ) has high weight energy density and poor thermal stability; lithium manganese oxide (LiMn) 2 O 4 ) The structure stability under discharge is better, but manganese ions are easily dissolved in the electrolyte solution, and the capacity is not high; lithium iron phosphate (LiFePO 4 ) is structurally stable, non-toxic, low in cost and safer. The high characteristics, but also the shortcomings of "low electron conductivity" and "low lithium ion diffusion coefficient".

為解決上述陰極材料的問題,現有技術的解決方案,包括 將鋰鈷氧化物(LiCoO2)與鋰鎳氧化物(LiNiO2)摻和成鋰鈷鎳氧化物(二元)陰極複合材料,分子式為LiCo1-xNixO2,或將鋰鎳氧化物(LiNiO2)和鋰錳氧化物(LiMn2O4)改變為鋰鎳錳氧化物(二元)陰極複合材料,分子式為LiNi1-xMnxO2,或將鋰鈷氧化物(LiCoO2)、鋰鎳氧化物(LiNiO2)與和鋰錳氧化物(LiMn2O4)三種材料合成為鋰鈷鎳錳氧化物(三元)陰極複合材料,分子式為LiCo1/3Ni1/3Mn1/3O2In order to solve the above problems of the cathode material, the prior art solution includes blending lithium cobalt oxide (LiCoO 2 ) with lithium nickel oxide (LiNiO 2 ) into a lithium cobalt nickel oxide (binary) cathode composite, molecular formula LiCo 1-x Ni x O 2 , or lithium nickel oxide (LiNiO 2 ) and lithium manganese oxide (LiMn 2 O 4 ) changed to a lithium nickel manganese oxide (binary) cathode composite, the molecular formula is LiNi 1 -x Mn x O 2 , or synthesize lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ) and lithium manganese oxide (LiMn 2 O 4 ) into lithium cobalt nickel manganese oxide (three The cathode composite material has a molecular formula of LiCo 1/3 Ni 1/3 Mn 1/3 O 2 .

然而,二元或三元陰極複合材料的缺點,又在於結構愈複雜,即表示合成方法越加困難,不利在產業上利用及生產,導致鋰離子二次電池的發展仍然受到限制。 However, the disadvantage of the binary or ternary cathode composite material is that the more complicated the structure, that is, the more difficult the synthesis method is, which is disadvantageous in industrial utilization and production, and the development of the lithium ion secondary battery is still limited.

有鑑於此,本發明的主要目的在於揭露一種製程簡單且具備優異的克電容量及材料熱穩定性的磷酸鋰鐵錳/碳(二元)陰極複合材料,分子式為LiFe1-yMnyPO4/C,且0<y<1,可以有效解決鋰錳氧化物(LiMn2O4)及磷酸鋰鐵(LiFePO4)陰極材料的缺點。 In view of this, the main object of the present invention is to disclose a lithium iron iron manganese/carbon (binary) cathode composite material which is simple in process and has excellent gram capacity and material thermal stability, and has a molecular formula of LiFe 1-y Mn y PO 4 / C, and 0 < y < 1, can effectively solve the shortcomings of lithium manganese oxide (LiMn 2 O 4 ) and lithium iron phosphate (LiFePO 4 ) cathode materials.

所述磷酸鋰鐵錳/碳陰極複合材料的製造方法,以固相法或噴霧乾燥法合成磷酸鋰鐵錳陰極複合材料,且在合成過程中使用不同碳源或碳材對磷酸鋰鐵錳陰極複合材料進行包覆碳層改質,藉所添加的碳源或導電碳材均勻分散於磷酸鋰鐵錳活性物質的表面上,增加粒子與粒子間的電子傳導路徑,有效改善及提高磷酸鋰鐵錳活性物質的導電度,故所製得的磷酸鋰鐵錳/碳陰極複合材料具有非常好的高功率特性與良好的充/放循環壽命,在進行高速率充/放電下,具有極佳的穩定性及克電容量。 The method for manufacturing the lithium iron iron manganese/carbon cathode composite material comprises the steps of: synthesizing lithium iron iron manganese cathode composite material by solid phase method or spray drying method, and using different carbon source or carbon material for lithium iron phosphate manganese cathode in the synthesis process; The composite material is modified by coating the carbon layer, and the carbon source or the conductive carbon material is uniformly dispersed on the surface of the lithium iron manganese active material, thereby increasing the electron conduction path between the particles and the particles, thereby effectively improving and improving the lithium iron phosphate. The conductivity of the manganese active material, so the prepared lithium iron manganese/carbon cathode composite has very good high power characteristics and good charge/discharge cycle life, and has excellent performance under high rate charge/discharge. Stability and gram capacity.

所述磷酸鋰鐵錳/碳陰極複合材料使用固相法的製備步驟,包括:1.選擇一定比例的鋰源、鐵源、錳源及磷酸源為原料;2.選擇一定使用量的碳源及還原劑;或視情況需要,另選擇一定使用量的導電碳材;3.將鋰源、鐵源、錳源、磷酸源、碳源五種原料,以及需要加入的導電碳材,直接做固相混合及研磨;4.將均勻研磨後的陰極材料前趨物置入高溫爐在600~900℃溫度下進行煅燒 熱處理,使得碳源或導電碳材對經過煅燒的磷酸鋰鐵錳(LFMP)粒子進行包覆碳層改質,即製得所述磷酸鋰鐵錳/碳陰極複合材料。 The lithium iron manganese/carbon cathode composite material adopts a preparation step of a solid phase method, comprising: 1. selecting a certain proportion of a lithium source, an iron source, a manganese source, and a phosphoric acid source as raw materials; 2. selecting a certain amount of carbon source. And reducing agent; or as needed, choose a certain amount of conductive carbon material; 3. Lithium source, iron source, manganese source, phosphoric acid source, carbon source, five kinds of raw materials, and conductive carbon materials to be added directly Solid phase mixing and grinding; 4. Place the uniformly ground cathode material precursor into a high temperature furnace for calcination at 600~900 °C The heat treatment is such that the carbon source or the conductive carbon material is modified by coating the carbon layer with the calcined lithium iron iron manganese (LFMP) particles, that is, the lithium iron manganese/carbon cathode composite material is prepared.

所述磷酸鋰鐵錳/碳陰極複合材料使用噴霧乾燥法的製備步驟,包括:1.製備磷酸鋰鐵錳(LFMP)陰極複合材料;2.將磷酸鋰鐵錳(LFMP)陰極複合材料與碳源或導電碳材直接做液相混合;3.施予噴霧乾燥形成包覆碳源的球體結構磷酸鋰鐵錳/碳陰極複合材料前趨物;4.將前趨物置入高溫爐在600~900℃溫度下進行煅燒熱處理,使得碳源或導電碳材對經過煅燒的磷酸鋰鐵錳(LFMP)粒子進行包覆碳層改質,即製得所述磷酸鋰鐵錳/碳陰極複合材料。 The lithium iron manganese/carbon cathode composite material adopts a preparation step of a spray drying method, comprising: 1. preparing a lithium iron phosphate manganese (LFMP) cathode composite material; 2. a lithium iron phosphate manganese (LFMP) cathode composite material and carbon The source or the conductive carbon material is directly mixed in the liquid phase; 3. The spray structure is applied to form a spherical structure of a lithium carbonate iron manganese/carbon cathode composite material precursor; and the precursor is placed in a high temperature furnace at 600~ The calcination heat treatment is performed at a temperature of 900 ° C, so that the carbon source or the conductive carbon material is modified by coating the carbon layer with the calcined lithium iron iron manganese (LFMP) particles, thereby preparing the lithium iron manganese/carbon cathode composite material.

所述磷酸鋰鐵錳/碳陰極複合材料的製造方法,在製造過程中加入螫合劑作為還原劑,選自草酸、酒石酸、檸檬酸、聚丙烯酸或琥珀酸的其中一種或以上混合。 The method for producing the lithium iron iron manganese/carbon cathode composite material comprises adding a chelating agent as a reducing agent during the manufacturing process, and mixing one or more of oxalic acid, tartaric acid, citric acid, polyacrylic acid or succinic acid.

所述磷酸鋰鐵錳/碳陰極複合材料的製造方法,在進行持續煅燒熱處理之前,對置入高溫爐的前趨物,可預先進行預燒熱處理,在溫度350~500℃下熱處理1~10小時,將前趨物的水份及小分子除掉。 The method for manufacturing the lithium iron iron manganese/carbon cathode composite material, before performing the continuous calcination heat treatment, may preheat the predecessor placed in the high temperature furnace, and heat treatment at a temperature of 350 to 500 ° C for 1 to 10 In hours, the moisture and small molecules of the precursor are removed.

所述磷酸鋰鐵錳/碳陰極複合材料的製造方法,是在空氣中、或在氬氣或氮氣環境下、或在通入氫氣及氬氣混合氣環境下,進行持續煅燒熱處理的過程;其中,通入氫氣及氬氣混合氣體的組成,為H2:Ar=10%:90%、H2:Ar=5%:95%、H2:Ar=4%:96%、H2:Ar=3%:97%、H2:Ar=2%:98%、H2:Ar=1%:99%或H2:Ar=0.5%:99.5%的其中一種組成。 The method for manufacturing the lithium iron manganese/carbon cathode composite material is a process of continuously calcining heat treatment in air or under an argon or nitrogen atmosphere or in a mixed gas atmosphere of hydrogen and argon; The composition of the mixed gas of hydrogen and argon is H 2 : Ar = 10%: 90%, H 2 : Ar = 5%: 95%, H 2 : Ar = 4%: 96%, H 2 : Ar = 3%: 97%, H 2 : Ar = 2%: 98%, H 2 : Ar = 1%: 99% or H 2 : Ar = 0.5%: 99.5% of one of the compositions.

所製得的磷酸鋰鐵錳/碳陰極複合材料,具包覆碳層改質結構,殘留碳量佔磷酸鋰鐵錳/碳陰極複合材料總重量的0.10~20wt%。 The prepared lithium iron manganese/carbon cathode composite material has a modified carbon layer modified structure, and the residual carbon amount is 0.10-20% by weight of the total weight of the lithium iron iron manganese/carbon cathode composite material.

所製得的磷酸鋰鐵錳/碳陰極複合材料,具備優異的克電容量及材料熱穩定性,是一種理想的(二元)陰極複合材料。 The prepared lithium iron manganese/carbon cathode composite material has excellent gram capacity and material thermal stability, and is an ideal (binary) cathode composite material.

所製得的磷酸鋰鐵錳/碳陰極複合材料的用途,非常適用於製成鋰離子二次電池的陰電極(或稱正極),經組裝成鈕扣型(Coin cell)半電池的圓形陰電極,有助於提升鈕扣型電池具高速率充放能力及優異電性表 現。 The use of the prepared lithium iron manganese/carbon cathode composite material is very suitable for forming a cathode electrode (or a positive electrode) of a lithium ion secondary battery, and is assembled into a circular type of a coin-type half-cell. Electrode, which helps to improve the high-speed charge and discharge capacity of the button type battery and excellent electrical meter Now.

10‧‧‧鈕扣型電池 10‧‧‧ button battery

20‧‧‧上蓋 20‧‧‧Upper cover

30‧‧‧彈簧 30‧‧‧ Spring

40‧‧‧墊片 40‧‧‧shims

50‧‧‧圓形陰電極 50‧‧‧Circular cathode electrode

60‧‧‧隔離膜 60‧‧‧Separator

70‧‧‧鋰金屬陽電極 70‧‧‧Lithium metal anode

80‧‧‧下蓋 80‧‧‧Under the cover

第1圖係本發明使用固相法以鋰、鐵及錳金屬鹽類及磷酸源為原料製成磷酸鋰鐵錳/碳(LFMP/C)陰極材料的製備流程圖。 Fig. 1 is a flow chart showing the preparation of a lithium iron phosphate manganese/carbon (LFMP/C) cathode material using a solid phase method using lithium, iron and manganese metal salts and a phosphoric acid source as a raw material.

第2圖係本發明使用固相法以鋰、鐵及錳氧化物及磷酸源為原料製成磷酸鋰鐵錳/碳(LFMP/C)陰極材料的製備流程圖。 Fig. 2 is a flow chart showing the preparation of a lithium iron phosphate manganese/carbon (LFMP/C) cathode material using a solid phase method using lithium, iron and manganese oxides and a phosphoric acid source as a raw material.

第3圖係本發明使用噴霧乾燥法以鋰、鐵及錳金屬鹽類及磷酸源為原料製成磷酸鋰鐵錳/碳(LFMP/C)陰極材料的製備流程圖。 Fig. 3 is a flow chart showing the preparation of a lithium iron phosphate manganese/carbon (LFMP/C) cathode material using a spray drying method using lithium, iron and manganese metal salts and a phosphoric acid source as raw materials.

第4圖係本發明使用“SS-氧化物製法”製成的LFMP/C樣品A陰極材料在放大倍率1K、3K、5K及10K下的SEM表面形態檢測圖。 Fig. 4 is a SEM surface morphology detection chart of the LFMP/C sample A cathode material prepared by the "SS-oxide production method" at magnifications of 1K, 3K, 5K and 10K.

第5圖係第4圖的LFMP/C樣品A陰極材料的X光繞射(XRD)圖譜。 Figure 5 is an X-ray diffraction (XRD) pattern of the LFMP/C Sample A cathode material of Figure 4.

第6圖係本發明使用“SS-鹽類製法”製成的LFMP/C樣品B陰極材料的XRD分析圖。 Fig. 6 is an XRD analysis chart of the LFMP/C sample B cathode material produced by the "SS-salt process" of the present invention.

第7圖係本發明使用“SS-鹽類製法”製成的LFMP/C樣品B陰極材料的micro-Raman分析檢測圖。 Fig. 7 is a micro-Raman analysis test chart of the LFMP/C sample B cathode material prepared by the "SS-salt method" of the present invention.

第8圖係本發明使用“SP-鹽類製法”製成的LFMP/C樣品C陰極材料的micro-Raman分析檢測圖。 Fig. 8 is a micro-Raman analysis test chart of the LFMP/C sample C cathode material produced by the "SP-salt method" of the present invention.

第9圖係本發明使用“SS-氧化物製法”製成的LFMP/C樣品D陰極材料的micro-Raman分析檢測圖。 Fig. 9 is a micro-Raman analysis test chart of the LFMP/C sample D cathode material produced by the "SS-oxide process" of the present invention.

第10圖係本發明使用“SS-氧化物製法”製成添加不同碳源比例的LFMP/C樣品E陰極材料的micro-Raman分析檢測圖。 Figure 10 is a micro-Raman analysis test chart of the LFMP/C sample E cathode material in which the ratio of different carbon sources is added using the "SS-oxide process".

第11圖係使用以“SS-鹽類製法”製成的陰極材料製成適用於鈕扣型電池的陰極電極片的製備流程圖。 Fig. 11 is a flow chart showing the preparation of a cathode electrode sheet suitable for a button type battery using a cathode material made of "SS-salt method".

第12圖係一般2032鈕扣型電池的結構圖。 Figure 12 is a structural view of a general 2032 button type battery.

第13圖係實施例1使用本發明的LFMP/C樣品B製成用於鈕扣型電池的圓形陰電極的CV圖。 Fig. 13 is a CV diagram of a circular cathode electrode for a button type battery using the LFMP/C sample B of the present invention.

第14圖係實施例1製成的鈕扣型電池在0.1/0.1C充/放電速率下的充放電曲線圖。 Fig. 14 is a graph showing charge and discharge curves of a button type battery fabricated in Example 1 at a charge/discharge rate of 0.1/0.1C.

第15圖係實施例1製成的鈕扣型電池在0.2~10C充/放電速率下的充放電曲線圖。 Fig. 15 is a graph showing charge and discharge curves of a button type battery fabricated in Example 1 at a charge/discharge rate of 0.2 to 10C.

第16圖係實施例3製成的鈕扣型電池在0.1/0.1C充/放電速率下的充放電曲線圖。 Fig. 16 is a graph showing charge and discharge curves of a button type battery fabricated in Example 3 at a charge/discharge rate of 0.1/0.1C.

第17圖係實施例3製成的鈕扣型電池在0.2~10C充/放電速率下的充放電曲線圖。 Fig. 17 is a graph showing the charge and discharge curves of the button type battery fabricated in Example 3 at a charge/discharge rate of 0.2 to 10C.

第18圖係實施例4製成的鈕扣型電池在0.1/0.1C充/放電速率下的充放電曲線圖。 Fig. 18 is a graph showing charge and discharge curves of a button type battery fabricated in Example 4 at a charge/discharge rate of 0.1/0.1C.

第19圖係實施例4製成的鈕扣型電池在0.2~10C充/放電速率下的充放電曲線圖。 Fig. 19 is a graph showing the charge and discharge curves of the button type battery fabricated in Example 4 at a charge/discharge rate of 0.2 to 10C.

第20圖係實施例5製成的鈕扣型電池在0.1/0.1C充/放電速率下的充放電曲線圖。 Fig. 20 is a graph showing charge and discharge curves of a button type battery fabricated in Example 5 at a charge/discharge rate of 0.1/0.1C.

第21圖係實施例5製成的鈕扣型電池在0.2~10C充/放電速率下的充放電曲線圖。 Fig. 21 is a graph showing charge and discharge curves of a button type battery fabricated in Example 5 at a charge/discharge rate of 0.2 to 10C.

第22圖係實施例5製成的鈕扣型電池在0.2C/1C速率下充/放電速率下經過30次(cycles)充放電測試的充放電曲線圖。 Fig. 22 is a graph showing the charge and discharge curves of a button type battery fabricated in Example 5 after a cycle of charge and discharge tests at a charge/discharge rate of 0.2 C/1C.

第23圖係實施例5製成的鈕扣型電池在0.2C/1C速率下充/放電速率下經過30次(cycles)充放電測試的循環壽命電性分析圖。 Fig. 23 is a cycle life electrical analysis diagram of a button type battery fabricated in Example 5 after a cycle charge and discharge test at a charge/discharge rate of 0.2 C/1C.

第24圖係實施例5製成的鈕扣型電池在-20℃環境下0.1/0.1C充/放電速率下的充放電曲線圖。 Fig. 24 is a graph showing charge and discharge curves of a button type battery fabricated in Example 5 at a charge/discharge rate of 0.1/0.1 C in an environment of -20 °C.

第25圖係實施例5製成的鈕扣型電池在-20℃測試環境下0.2C/1C速率下充/放電速率下經過30次(cycles)充放電測試的充放電曲線圖。 Fig. 25 is a graph showing the charge and discharge curves of a button type battery fabricated in Example 5 after 30 cycles of charge and discharge test at a charge/discharge rate of 0.2 C/1 C rate in a test environment of -20 °C.

第26圖係實施例5製成的鈕扣型電池在50℃環境下0.1/0.1C充/放電速率下的充放電曲線圖。 Fig. 26 is a graph showing charge and discharge curves of a button type battery fabricated in Example 5 at a charge/discharge rate of 0.1/0.1 C in an environment of 50 °C.

第27圖係實施例9製成的鈕扣型電池在0.1/0.1C充/放電速率下的充放電曲線圖。 Fig. 27 is a graph showing the charge and discharge curves of the button type battery fabricated in Example 9 at a charge/discharge rate of 0.1/0.1C.

第28圖係實施例9製成的鈕扣型電池在0.2~10C充/放電速率下的充放電曲線圖。 Fig. 28 is a graph showing the charge and discharge curves of the button type battery fabricated in Example 9 at a charge/discharge rate of 0.2 to 10C.

第29圖係實施例10製成的鈕扣型電池在0.1/0.1C充/放電速率下的充放 電曲線圖。 Figure 29 is a charging and discharging of a button type battery made in Example 10 at a charge/discharge rate of 0.1/0.1C. Electric graph.

第30圖係實施例10製成的鈕扣型電池在0.2~10C充/放電速率下的充放電曲線圖。 Fig. 30 is a graph showing charge and discharge curves of a button type battery fabricated in Example 10 at a charge/discharge rate of 0.2 to 10C.

第31圖係實施例11製成的鈕扣型電池在0.1/0.1C充/放電速率下的充放電曲線圖。 Fig. 31 is a graph showing charge and discharge curves of a button type battery fabricated in Example 11 at a charge/discharge rate of 0.1/0.1C.

第32圖係實施例11製成的鈕扣型電池在0.2~10C充/放電速率下的充放電曲線圖。 Fig. 32 is a graph showing the charge and discharge curves of the button type battery fabricated in Example 11 at a charge/discharge rate of 0.2 to 10C.

第33圖係實施例2、實施例5及實施例9在相同Fe:Mn=5:5莫耳比例下,分別使用“SS-鹽類製法”、“SS-氧化物製法”及“SP-鹽類製法”製成LFMP/C陰極材料,再分別製成鈕扣型電池的功率電性分析圖。 Figure 33 shows the results of "SS-salt method", "SS-oxide method" and "SP-" in the same Fe:Mn=5:5 molar ratio in Example 2, Example 5 and Example 9 respectively. The salt preparation method is made into a LFMP/C cathode material, and then a power electrical analysis chart of a button type battery is separately prepared.

本發明的磷酸鋰鐵錳/碳陰極複合材料,下文簡稱為LFMP/C陰極材料或複合材料,分子式為LiFe1-yMnyPO4/C,且0<y<1,具備非常穩定的充/放電循環壽命性能,在0.1C放電下克電容量約達170mAh/g、在10C高速率放電下克電容量介於97~100mAh/g,適用於製成二次鋰離子電池的正極。 The lithium iron iron manganese/carbon cathode composite material of the invention, hereinafter referred to as LFMP/C cathode material or composite material, has a molecular formula of LiFe 1-y Mn y PO 4 /C, and 0<y<1, and has a very stable charge. /Discharge cycle life performance, the gram capacity is about 170mAh/g under 0.1C discharge, and the gram capacity is 97~100mAh/g under 10C high rate discharge, which is suitable for making the positive electrode of secondary lithium ion battery.

本發明的LFMP/C陰極材料,優選實施例為y=0.5(即LiFe0.5Mn0.5PO4/C)、y=0.7(即LiFe0.3Mn0.7PO4/C)或y=0.8(即LiFe0.2Mn0.8PO4/C)的LFMP/C複合材料;最優選實施例為y=0.5(即LiFe0.5Mn0.5PO4/C)的LFMP/C複合材料,下文簡稱為LFMP/C(y=0.5)複合材料。其它包含不同y=n數值的LFMP/C複合材料,下文將類推簡稱為LFMP/C(y=n)複合材料。 The preferred embodiment of the LFMP/C cathode material of the present invention is y = 0.5 (i.e., LiFe 0.5 Mn 0.5 PO 4 /C), y = 0.7 (i.e., LiFe 0.3 Mn 0.7 PO 4 /C) or y = 0.8 (i.e., LiFe 0.2). LFMP/C composite material of Mn 0.8 PO 4 /C); the most preferred embodiment is LFMP/C composite material with y=0.5 (ie LiFe 0.5 Mn 0.5 PO 4 /C), hereinafter referred to as LFMP/C (y=0.5) ) Composite materials. Other LFMP/C composites containing different values of y=n, hereinafter referred to as LFMP/C (y=n) composites.

所述LFMP/C陰極材料的製造法,有固相法(Solid-state method,簡稱SS製法)或噴霧乾燥法(Spray dry method,簡稱SP製法)兩種製備方法。為了簡潔說明,本文定義:1.LFMP/C陰極材料的“SS-鹽類製法”,是指以鋰、鐵及錳金屬鹽類為原料及使用固相法(SS製法)製備LFMP/C複合材料;2.LFMP/C陰極材料的“SS-氧化物製法”,是指以鋰、鐵及錳金屬氧化物為原料及使用固相法(SS製法)製備LFMP/C複合材料;及 3.LFMP/C陰極材料的“SP-鹽類製法”,是指以鋰、鐵及錳源為原料及使用噴霧乾燥法(SP製法)製備LFMP/C複合材料, 本發明的LFMP/C陰極材料,使用SS製法(固相法)製備時,包括下列各項步驟:1.選擇一定比例的鋰源、鐵源、錳源及磷酸源為原料;2.選擇一定使用量的碳源及還原劑;或視情況需要,另選擇一定使用量的導電碳材;3.將鋰源、鐵源、錳源、磷酸源、碳源五種原料,以及需要加入的導電碳材,直接做固相混合及研磨;4.將均勻研磨後的陰極材料前趨物置入高溫(管狀)爐煅燒,使得碳源或導電碳材對經過煅燒的磷酸鋰鐵錳(LFMP)粒子進行包覆碳層改質,即製得所述磷酸鋰鐵錳/碳(LFMP/C(y=n))複合材料。 The manufacturing method of the LFMP/C cathode material may be a solid phase method (Solid-state method, SS process for short) or a spray dry method (SP method for short). For the sake of brevity, this paper defines: 1. "SS-salt method" for LFMP/C cathode material refers to the preparation of LFMP/C composite using lithium, iron and manganese metal salts as raw materials and solid phase method (SS method). Material; 2. LFMP/C cathode material "SS-oxide production method" refers to the preparation of LFMP/C composite materials using lithium, iron and manganese metal oxides as raw materials and using solid phase method (SS method); 3. "SP-salt method" for LFMP/C cathode material refers to the preparation of LFMP/C composite material by using lithium, iron and manganese sources as raw materials and by spray drying method (SP method). The LFMP/C cathode material of the invention is prepared by the SS method (solid phase method), and comprises the following steps: 1. selecting a certain proportion of lithium source, iron source, manganese source and phosphoric acid source as raw materials; The amount of carbon source and reducing agent used; or, depending on the situation, choose a certain amount of conductive carbon material; 3. Lithium source, iron source, manganese source, phosphoric acid source, carbon source, and the conductive materials to be added Carbon material, directly do solid phase mixing and grinding; 4. Place the uniformly ground cathode material precursor into a high temperature (tubular) furnace for calcination, so that the carbon source or conductive carbon material is subjected to calcined lithium iron iron manganese (LFMP) particles. The coated carbon layer is modified to obtain the lithium iron manganese/carbon (LFMP/C(y=n)) composite.

在本發明的LFMP/C(y=n)複合材料固相法製法中,鋰源:鐵源:錳源:磷酸源的莫耳比為1:1-y:y:1,且0<y<1;優選為y=0.2、0.5、0.7或0.8,最優選為y=0.5。 In the LFMP/C(y=n) composite solid phase method of the present invention, the lithium source: iron source: manganese source: the molar ratio of the phosphate source is 1:1-y:y:1, and 0<y <1; preferably y = 0.2, 0.5, 0.7 or 0.8, most preferably y = 0.5.

所述鋰源的定義,是指鋰金屬的來源,可為(鋰)金屬氫氧化物、(鋰)金屬氯化物或(鋰)金屬鹽類,優選為選自氫氧化鋰、硝酸鋰、醋酸鋰、氯化鋰、磷酸氫鋰、磷酸鋰、碳酸鋰或碳酸氫鋰的其中一種或以上混合。 The definition of the lithium source refers to a source of lithium metal, which may be (lithium) metal hydroxide, (lithium) metal chloride or (lithium) metal salt, preferably selected from lithium hydroxide, lithium nitrate, acetic acid. One or more of lithium, lithium chloride, lithium hydrogen phosphate, lithium phosphate, lithium carbonate or lithium hydrogencarbonate are mixed.

所述鐵源的定義,是指鐵金屬的來源,包括摻雜(doped)適量過渡金屬元素或稀土金屬元素的這種鐵金屬,可為(鐵)金屬氧化物、(鐵)金屬氯化物或(鐵)金屬鹽類,優選為選自硫酸鐵、草酸亞鐵、磷酸鐵、醋酸鐵、硝酸鐵、氯化鐵或氧化鐵(包括Fe2O3或Fe3O4)的其中一種或以上混合。 The definition of the iron source refers to a source of iron metal, including such an iron metal doped with an appropriate amount of a transition metal element or a rare earth metal element, which may be an (iron) metal oxide, an (iron) metal chloride or a (iron) metal salt, preferably one or more selected from the group consisting of iron sulfate, ferrous oxalate, iron phosphate, iron acetate, iron nitrate, iron chloride or iron oxide (including Fe 2 O 3 or Fe 3 O 4 ) mixing.

所述鐵源摻雜過渡金屬或稀土金屬的目的,在於提高本發明的LFMP/C複合材料的電子導電率及改善高功率充放電電池性能。所述摻雜過渡金屬元素的鐵金屬,優選為選自摻雜鈮(Nb)、鉬(Mo)、釩(V)、鈦(Ti)、錳(Mn)、釔(Y)或釕(Ru)的鐵金屬,其中,過渡金屬的摻合量介於 0.1~10%莫耳。 The purpose of the iron source doping transition metal or rare earth metal is to improve the electronic conductivity of the LFMP/C composite material of the present invention and to improve the performance of the high power charge and discharge battery. The transition metal element-doped iron metal is preferably selected from the group consisting of doped yttrium (Nb), molybdenum (Mo), vanadium (V), titanium (Ti), manganese (Mn), yttrium (Y) or yttrium (Ru). Iron metal, in which the amount of transition metal is between 0.1~10% Moule.

所述摻雜稀土金屬元素的鐵金屬,優選為選自摻雜或適量的稀土金屬元素,如:鑭(La)、鈰(Ce)、釹(Nd)、鉕(Pm)、釤(Sm)、釓(Gd)或鉺(Er);其中,稀土金屬的摻合量介於0.1~10%莫耳摻合量。 The rare earth metal element-doped iron metal is preferably selected from doped or an appropriate amount of rare earth metal elements such as lanthanum (La), cerium (Ce), cerium (Nd), cerium (Pm), cerium (Sm). , 釓 (Gd) or 铒 (Er); wherein the blending amount of the rare earth metal is between 0.1 and 10% molar blending amount.

所述錳源的定義,是指錳金屬的來源,可為(錳)金屬氧化物或(錳)金屬鹽類,優選為選自草酸錳、碳酸錳、檸檬酸錳、硫酸錳、醋酸錳、硝酸錳、磷酸錳或氧化錳(包括α-MnO2、β-MnO2或γ-MnO2)的其中一種或以上混合。 The definition of the manganese source refers to a source of manganese metal, which may be a (manganese) metal oxide or a (manganese) metal salt, preferably selected from the group consisting of manganese oxalate, manganese carbonate, manganese citrate, manganese sulfate, manganese acetate, One or more of manganese nitrate, manganese phosphate or manganese oxide (including α-MnO 2 , β-MnO 2 or γ-MnO 2 ) is mixed.

所述磷酸源的定義,是指磷酸的來源,選自磷酸銨、磷酸氫銨、磷酸二氫銨、磷酸鋰、磷酸氫鋰、磷酸銨鋰、磷酸或磷酸鈉的其中一種或以上混合。 The definition of the phosphoric acid source refers to a source of phosphoric acid selected from one or more of ammonium phosphate, ammonium hydrogen phosphate, ammonium dihydrogen phosphate, lithium phosphate, lithium hydrogen phosphate, lithium ammonium phosphate, phosphoric acid or sodium phosphate.

所述碳源的定義,是指碳的來源,可為有機化合物、天然高分子化合物或合成高分子化合物,優選為選自蔗糖(Sucrose,以下簡稱Suc)、葡萄糖(Glucose)、澱粉(Starch)、呋喃(Furan)樹脂、聚乙烯醇(PVA)、聚苯乙烯(PS)、聚苯乙烯球(PS球)或甲基丙烯甲酯球(PMMA球)高分子材料的其中一種或以上混合。 The definition of the carbon source refers to a source of carbon, and may be an organic compound, a natural polymer compound or a synthetic polymer compound, and is preferably selected from the group consisting of sucrose (Sucrose, hereinafter referred to as Glucose), and starch (Starch). One or more of a polymer material of furan (Furan) resin, polyvinyl alcohol (PVA), polystyrene (PS), polystyrene sphere (PS sphere) or methyl methacrylate sphere (PMMA sphere) is mixed.

所述碳源可以是任何大小形狀,包括1D、2D或3D奈米材料,較佳實施例為使用具3D球狀、大小在100~1,000nm的高分子材料作為碳源,例如,所述PS球或PMMA球的粒徑,優選介於200~400nm。 The carbon source may be any size and shape, including a 1D, 2D or 3D nano material. The preferred embodiment uses a polymer material having a 3D spherical shape and a size of 100 to 1,000 nm as a carbon source, for example, the PS. The particle size of the sphere or PMMA sphere is preferably between 200 and 400 nm.

為了簡潔說明,以下文中凡提到“碳源”,也包括導電碳材的來源。所述導電碳材可以使用選自Super P導電碳材(以下簡稱SP導電碳材)、碳球導電碳材(以下簡稱CS)、碳黑導電碳材(以下簡稱CB)、石墨烯導電碳材、奈米碳管碳材(以下簡稱CNTs碳材)、人工石墨、合成石墨或中間相碳微球(MCMB)的其中一種;也可以使用不同組合的導電碳材,例如,使用SP導電碳材與CS導電碳材的組合、或SP導電碳材與與CNTs碳材的組合、或是使用石墨與CNTs碳材的組合;也可以使用相同或不同形態的導電碳材。其中,所述CS導電碳材的粒徑,介於200~500nm。 For the sake of brevity, the following references to "carbon sources" also include sources of conductive carbon materials. The conductive carbon material may be selected from the group consisting of Super P conductive carbon materials (hereinafter referred to as SP conductive carbon materials), carbon ball conductive carbon materials (hereinafter referred to as CS), carbon black conductive carbon materials (hereinafter referred to as CB), graphene conductive carbon materials. , carbon nanotube carbon material (hereinafter referred to as CNTs carbon material), artificial graphite, synthetic graphite or mesocarbon microspheres (MCMB); can also use different combinations of conductive carbon materials, for example, using SP conductive carbon The combination with the CS conductive carbon material, or the combination of the SP conductive carbon material and the CNTs carbon material, or the combination of the graphite and the CNTs carbon material; the same or different forms of the conductive carbon material may also be used. Wherein, the CS conductive carbon material has a particle diameter of 200 to 500 nm.

在本發明的LFMP/C(y=n)複合材料固相法製法中,所述碳源的使用量,基於LFMP/C總重量,是介於1~30wt%,優選為5~10wt%。 In the LFMP/C (y=n) composite solid phase process of the present invention, the carbon source is used in an amount of from 1 to 30% by weight, preferably from 5 to 10% by weight, based on the total weight of LFMP/C.

在本發明的LFMP/C(y=n)複合材料的固相法製備過程中,需要使用螫合劑作為還原劑,可使用選自草酸、酒石酸、檸檬酸、聚丙烯酸或琥珀酸的的其中一種或以上混合。優選為使用檸檬酸(citric acid,下文簡稱CA)。 In the solid phase preparation process of the LFMP/C(y=n) composite material of the present invention, it is necessary to use a chelating agent as a reducing agent, and one of oxalic acid, tartaric acid, citric acid, polyacrylic acid or succinic acid may be used. Or mix above. Preferably, citric acid (hereinafter abbreviated as CA) is used.

本發明的LFMP/C陰極材料,使用另一種SP製法(噴霧乾燥法)製備時,包括下列各項步驟:1.製備磷酸鋰鐵錳(LFMP)陰極材料;2.將LFMP陰極材料與碳源直接做液相混合;3.施予噴霧乾燥形成包覆碳源的球體結構LFMP/C陰極材料;4.置入高溫爐在600~900℃溫度下進行煅燒熱處理,以製得所述磷酸鋰鐵錳/碳(LFMP/C(y=n))複合材料。 The LFMP/C cathode material of the present invention, when prepared by another SP method (spray drying method), comprises the following steps: 1. preparing lithium iron phosphate manganese (LFMP) cathode material; 2. using LFMP cathode material and carbon source Directly do liquid phase mixing; 3. Apply spray drying to form a globular structure LFMP/C cathode material coated with carbon source; 4. Place in a high temperature furnace at a temperature of 600-900 ° C for calcination heat treatment to obtain the lithium phosphate Iron-manganese/carbon (LFMP/C(y=n)) composite.

所述磷酸鋰鐵錳(LFMP)陰極材料的分子式為LiFe1-yMnyPO4,且0<y<1,得選用固相法、液相法或其他合成LFMP材料的製法製得。製備LFMP陰極材料使用的鋰源、鐵源、錳源及磷酸源的莫耳比為1:1-y:y:1,且0<y<1;優選為y=0.2、0.5或0.8,最優選為y=0.5。 The lithium iron phosphate manganese (LFMP) cathode material has a molecular formula of LiFe 1-y Mn y PO 4 and 0 < y < 1, which can be obtained by a solid phase method, a liquid phase method or other synthetic LFMP materials. The molar ratio of the lithium source, the iron source, the manganese source and the phosphoric acid source used for preparing the LFMP cathode material is 1:1-y:y:1, and 0<y<1; preferably y=0.2, 0.5 or 0.8, most It is preferably y=0.5.

本發明的LFMP/C(y=n)複合材料,使用SP製法時,在製備過程中所使用的鋰源、鐵源、錳源、磷酸源及碳源,除有不同定義外,均援用前面SS製法敘述的定義。 In the LFMP/C(y=n) composite material of the present invention, when the SP method is used, the lithium source, the iron source, the manganese source, the phosphoric acid source and the carbon source used in the preparation process are all used in addition to different definitions. The definition of the SS law.

本發明的LFMP/C(y=n)複合材料,不論是使用SS製法或SP製法,在製程中將LFMP/C前趨物置入高溫管狀爐進行煅燒之前,可選擇性進行預燒熱處理,在溫度350~500℃的條件下,進行熱處理1~10小時,較佳實施例是在溫度400~450℃的條件下,進行熱處理4~6小時,將LFMP/C前趨物的水份及小分子除掉,以及改善LFMP/C前趨物的結晶性之後,再置入高溫爐進行煅燒熱處理:本發明的LFMP/C(y=n)複合材料,不論是使用SS製法或SP製法,在高溫爐進行煅燒熱處理的條件,是在氬氣環境下、或在氮氣環境下、或在空氣中、或在通入氬氣及氫氣環境下,以2~10℃/min的昇溫速率,在煅燒溫度600~900℃下進行煅燒熱處理,且持續熱處理10~72小時, 優選是在煅燒溫度600~700℃下進行煅燒熱處理,且持續熱處理10~24小時;煅燒結束後待降至室溫,即製得一種的LFMP/C(y=n)複合材料。 The LFMP/C(y=n) composite material of the present invention can be selectively subjected to pre-baking heat treatment before the LFMP/C precursor is placed in a high-temperature tubular furnace for calcination by using the SS method or the SP method. The heat treatment is carried out at a temperature of 350 to 500 ° C for 1 to 10 hours. The preferred embodiment is heat treatment at a temperature of 400 to 450 ° C for 4 to 6 hours to increase the moisture content of the LFMP/C precursor. After the molecule is removed and the crystallinity of the LFMP/C precursor is improved, it is placed in a high temperature furnace for calcination heat treatment: the LFMP/C (y=n) composite material of the present invention, whether using the SS method or the SP method, The high temperature furnace is subjected to calcination heat treatment under the argon atmosphere, or under a nitrogen atmosphere, or in the air, or under an argon gas and hydrogen atmosphere, at a heating rate of 2 to 10 ° C / min, in the calcination The calcination heat treatment is carried out at a temperature of 600 to 900 ° C, and the heat treatment is continued for 10 to 72 hours. Preferably, the calcination heat treatment is performed at a calcination temperature of 600 to 700 ° C, and the heat treatment is continued for 10 to 24 hours; after the completion of the calcination, the mixture is cooled to room temperature to obtain a LFMP/C (y=n) composite material.

在進行煅燒熱處理的過程中,氬氣及氫氣的混合氣體組成,可以為H2:Ar=10%:90%、H2:Ar=5%:95%、H2:Ar=4%:96%、H2:Ar=3%:97%、H2:Ar=2%:98%、H2:Ar=1%:99%或H2:Ar=0.5%:99.5%,其中,Ar惰性氣體也可以使用氮氣(N2)取代。 In the process of performing the calcination heat treatment, the mixed gas composition of argon gas and hydrogen gas may be H 2 : Ar = 10%: 90%, H 2 : Ar = 5%: 95%, H 2 : Ar = 4%: 96 %, H 2 : Ar = 3%: 97%, H 2 : Ar = 2%: 98%, H 2 : Ar = 1%: 99% or H 2 : Ar = 0.5%: 99.5%, wherein Ar is inert The gas can also be replaced with nitrogen (N 2 ).

本發明的LFMP/C陰極材料,不論是使用SS製法或SP製法製得時,LFMP/C陰極材料經過煅燒後的碳源含量(或稱殘留碳量),佔LFMP/C陰極材料的重量百分比0.10~20wt%之間,較佳殘留碳量介於2~10wt%之間,最佳殘留碳量介於5~10wt%之間。 The LFMP/C cathode material of the present invention, whether prepared by the SS method or the SP method, the carbon source content (or residual carbon amount) of the LFMP/C cathode material after calcination, and the weight percentage of the LFMP/C cathode material Between 0.10 and 20 wt%, the preferred residual carbon amount is between 2 and 10 wt%, and the optimum residual carbon amount is between 5 and 10 wt%.

為了具體說明使用SS製法製備本發明的LFMP/C複合材料,舉LFMP/C(y=0.5)複合材料(即,LiFe0.5Mn0.5PO4/C)為說明例,其材料成分包括:取鋰、鐵及錳金屬鹽類或其氧化物為原料,取使用蔗糖(Suc)為碳源及使用檸檬酸(CA)為還原劑,或再進一步添加導電碳材為碳源。 In order to specifically describe the preparation of the LFMP/C composite of the present invention by the SS method, the LFMP/C (y=0.5) composite (ie, LiFe 0.5 Mn 0.5 PO 4 /C) is taken as an illustrative example, and the material composition thereof includes: taking lithium Iron, manganese and metal salts or their oxides are used as raw materials, and sucrose (Suc) is used as a carbon source and citric acid (CA) is used as a reducing agent, or a conductive carbon material is further added as a carbon source.

如第1圖所示,所述LFMP/C(y=0.5)複合材料的第一種製法,是使用“SS-鹽類製法”製備,包括下列各項步驟:1.取鋰(Li):鐵(Fe):錳(Mn):磷酸(PO4)的莫耳比為1:0.5:0.5:1的鋰、鐵及錳金屬鹽類與磷酸源為原料;具體例為秤取10.394g(相當於0.1mol)磷酸二氫鋰(LiH2PO4)、6.197g(相當於0.05mol)碳酸錳(MnCO3)及8.995g(相當於0.05mol)乙二酸亞鐵(FeC2O4‧2H2O)為原料;2.取0.79g(基於LFMP/C重量,相當於5wt%)蔗糖(Sue)及0.7536g(基於LFMP/C重量,相當於5wt%)檸檬酸(CA)為螫合劑;3.將上述前趨物材料放入球磨罐進行濕磨;球磨條件:將待球磨的前趨物材料以1:10的比例混入丙酮溶液中,且在轉速400rpm下,球磨10小時;4.將完成球磨的前趨物細粉烘乾成固體細粉;乾燥條件:在溫度60℃下,烘乾整晚; 5.將前趨物固體細粉置入高溫爐煅燒熱處理,製得所述LFMP/C(y=0.5)複合材料;煅燒條件:在高溫煅燒爐通以氬氣Ar的環境下或在空氣中進行煅燒,第一階段預燒熱處理是在煅燒溫度350~500℃下,恒溫約4小時;再升溫至第二階段煅燒熱處理的預定溫度,在煅燒溫度650℃下,恒溫約10~15小時;煅燒結束後待降至室溫,即製得LiFe0.5Mn0.5PO4/C複合材料。 As shown in Fig. 1, the first method for preparing the LFMP/C (y=0.5) composite material is prepared by using the "SS-salt method" and includes the following steps: 1. Taking lithium (Li): Iron (Fe): Manganese (Mn): Phosphoric acid (PO 4 ) has a molar ratio of 1:0.5:0.5:1 for lithium, iron and manganese metal salts and a phosphoric acid source; a specific example is 10.394 g ( Equivalent to 0.1 mol) lithium dihydrogen phosphate (LiH 2 PO 4 ), 6.197 g (corresponding to 0.05 mol) of manganese carbonate (MnCO 3 ) and 8.995 g (corresponding to 0.05 mol) of ferrous oxalate (FeC 2 O 4 ‧ 2H 2 O) as a raw material; 2. Take 0.79 g (based on LFMP/C weight, equivalent to 5 wt%) sucrose (Sue) and 0.7536 g (based on LFMP/C weight, equivalent to 5 wt%) citric acid (CA) is 螫Mixture; 3. The above precursor material is placed in a ball mill for wet grinding; ball milling conditions: the precursor material to be ball milled is mixed into the acetone solution at a ratio of 1:10, and ball milled at a rotation speed of 400 rpm for 10 hours; 4. Drying the fine powder of the precursor of the ball mill into a solid fine powder; drying conditions: drying at a temperature of 60 ° C for a whole night; 5. placing the precursor solid powder into a high temperature furnace for calcination heat treatment, and preparing The LFMP/C (y=0.5) composite material; calcination conditions: The high-temperature calcination furnace is subjected to calcination in an atmosphere of Ar gas or in air. The first-stage calcination heat treatment is performed at a calcination temperature of 350 to 500 ° C for a temperature of about 4 hours; and then the temperature is raised to a second stage calcination heat treatment schedule. The temperature is kept at a calcination temperature of 650 ° C for about 10 to 15 hours; after the calcination is completed, the temperature is lowered to room temperature to obtain a LiFe 0.5 Mn 0.5 PO 4 /C composite material.

如第2圖所示,所述LFMP/C(y=0.5)複合材料的第二種製法,是使用“SS-氧化物製法”製備,包括下列各項步驟,其中,球磨條件、乾燥條件及煅燒條件,同上述“SS-鹽類製法”:1.秤取10.394g(相當於0.1mol)磷酸二氫鋰(LiH2PO4)、4.347g(相當於0.05mol)二氧化錳(MnO2)及8.995g(相當於0.05mol)三氧化二鐵(Fe2O3)為原料;2.取0.79g蔗糖(Sue)、0.79g(相當於5wt%)導電碳黑及3.16g(相當於20wt%)檸檬酸(CA)為螫合劑;3.將上述前趨物材料放入球磨罐進行濕磨;4.將完成球磨的前趨物細粉烘乾成固體細粉;5.將前趨物固體細粉置入高溫爐煅燒熱處理,製得所述LFMP/C(y=0.5)複合材料。 As shown in Fig. 2, the second method for preparing the LFMP/C (y=0.5) composite material is prepared by using the "SS-oxide production method", and includes the following steps, wherein the ball milling conditions, drying conditions, and Calcination conditions, same as the above "SS-salt preparation method": 1. Weigh 10.394 g (corresponding to 0.1 mol) of lithium dihydrogen phosphate (LiH 2 PO 4 ), 4.347 g (corresponding to 0.05 mol) of manganese dioxide (MnO 2 ) And 8.995g (corresponding to 0.05mol) of ferric oxide (Fe 2 O 3 ) as raw material; 2. Take 0.79g of sucrose (Sue), 0.79g (equivalent to 5wt%) of conductive carbon black and 3.16g (equivalent to 20wt%) citric acid (CA) is a chelating agent; 3. The above-mentioned precursor material is placed in a ball mill jar for wet grinding; 4. The ball precursor fine powder is dried to form a solid fine powder; The TFMP/C (y=0.5) composite material is prepared by placing the solid fine powder in a high temperature furnace for calcination heat treatment.

如第3圖所示,所述LFMP/C(y=0.5)複合材料的第三種製法,是使用“SP-鹽類製法”製備,包括下列各項步驟,其中煅燒條件,同上述“SS-鹽類製法”:1.取鋰(Li):鐵(Fe):錳(Mn):磷酸(PO4)的莫耳比為1:0.5:0.5:1的鋰、鐵及錳金屬鹽類與磷酸源為原料;2.上述原料以固相法製成LiFe0.5Mn0.5PO4磷酸鋰鐵錳(LFMP)陰極材料;3.基於LFMP/C總重量,取6wt%蔗糖(Sue)及10wt%PS球為碳源;4.將蔗糖(Sue)溶入去離子水,再加入經過研磨的LFMP陰極材料細粉均勻混合約1小時;5.將PS球再加入於LFMP水溶液中均勻攪拌2小時; 6.施予噴霧乾燥形成包覆碳源的球體結構LFMP/C陰極材料前趨物;7.將噴霧乾燥完成後的LFMP/C陰極材料前趨物置入高溫爐在600~900℃溫度下進行煅燒熱處理,以製得所述LFMP/C(y=0.5)複合材料;為了具體說明本發明的LFMP/C複合材料的特點,按照下列表1的材料成分配比,再使用“SS-氧化物製法”、“SS-鹽類製法”或“SP-鹽類製法”的其中一種製法,分別製成以有機化合物、不同高分子材料及有無添加導電碳材為碳源的本發明LFMP/C樣品A~G,同時取LFP/C樣品H為對照例。 As shown in Fig. 3, the third method for preparing the LFMP/C (y=0.5) composite material is prepared by using the "SP-salt method", and includes the following steps, wherein the calcination conditions are the same as the above "SS - Salt preparation method: 1. Taking lithium (Li): Iron (Fe): Manganese (Mn): Phosphoric acid (PO 4 ) having a molar ratio of 1:0.5:0.5:1 of lithium, iron and manganese metal salts The raw material is used as a raw material; 2. The above raw material is made into a LiFe 0.5 Mn 0.5 PO 4 lithium iron manganese (LFMP) cathode material by a solid phase method; 3. 6 wt% sucrose (Sue) and 10 wt% based on the total weight of LFMP/C The %PS ball is a carbon source; 4. The sucrose (Sue) is dissolved in deionized water, and the ground LFMP cathode material fine powder is uniformly mixed for about 1 hour; 5. The PS ball is further added to the LFMP aqueous solution and uniformly stirred. 6. Apply spray drying to form a spherical structure of the coated carbon source LFMP/C cathode material precursor; 7. Place the LFMP/C cathode material precursor after spray drying into a high temperature furnace at a temperature of 600~900 °C The calcination heat treatment is performed to obtain the LFMP/C (y=0.5) composite material; in order to specifically describe the characteristics of the LFMP/C composite material of the present invention, according to the material distribution ratio of the following Table 1, One of the "SS-oxide production method", "SS-salt production method" or "SP-salt production method" is prepared by using organic compounds, different polymer materials and the presence or absence of added conductive carbon materials as carbon sources. In the LFMP/C samples A to G of the present invention, the LFP/C sample H was taken as a comparative example.

選取以“SS-氧化物製法”製成的LFMP/C樣品A(LFMP+10wt%Suc+5wt%CA),再以電子顯微鏡(SEM,Hitachi 2600S)觀察分析其表面形態,取得如第4圖所示的SEM表面分析結構圖。 LFMP/C sample A (LFMP + 10 wt% Suc + 5 wt% CA) prepared by "SS-oxide production method" was selected, and the surface morphology was observed by an electron microscope (SEM, Hitachi 2600S), and the image was obtained as shown in Fig. 4. The SEM surface analysis structure shown is shown.

從觀察分析第4圖的SEM表面分析結構圖,得到以下結論:1.本發明的LFMP/C陰極材料,使用“SS-氧化物製法”製備時,在LFMP活性物質的表面上可以均勻包覆上碳層;2.尤其是“SS-氧化物製法”可促使蔗糖(Sue)均勻分散及附著在LFMP活性物質的表面周圍,且形成許多孔隙,可防止活性物質與氧氣反應而氧化,在進行高充放電時,有利於電子更容易進出,進而提升本發明的LFMP/C複合材料的整體電子導電率。 From the observation of the SEM surface analysis structure diagram of Fig. 4, the following conclusions were obtained: 1. The LFMP/C cathode material of the present invention can be uniformly coated on the surface of the LFMP active material when prepared by the "SS-oxide production method". The upper carbon layer; 2. In particular, the "SS-oxide process" promotes the uniform dispersion of sucrose (Sue) around the surface of the LFMP active material, and forms a plurality of pores, which prevents the active substance from reacting with oxygen to oxidize. In the case of high charge and discharge, it is advantageous for electrons to enter and exit more easily, thereby improving the overall electronic conductivity of the LFMP/C composite of the present invention.

因此,本發明的LFMP/C陰極材料,應用於製成鈕扣型電池的陰極電極片時,在進行高充放電時確實具有極佳的穩定性及克電容量,可增加電池整體的穩定性及克電容量。 Therefore, the LFMP/C cathode material of the present invention is applied to a cathode electrode sheet of a button type battery, and has excellent stability and gram capacity at the time of high charge and discharge, and can improve the overall stability of the battery and Electricity capacity.

選取LFMP/C樣品A及選取相同成分但改以“SS-鹽類製法”製成的LFMP/C樣品B,以不銹鋼研缽,分別磨細之後,填入不銹鋼載台中壓平,再分別放入X光繞射儀(XRD,硬體設備:X’Pert Pro system,Philip,USA)中分析晶體結構。操作條件如下:X’Pert電壓為45KV,電流為40mA,掃描範圍為2 θ=10°~70°之間,掃描速率為0.05°/step和4sec/step,取得第5圖或第6圖所示的X光繞射(XRD)圖譜。 Select LFMP/C sample A and select LFMP/C sample B which is made of the same material but changed to “SS-salt method”, grind it in stainless steel, grind it separately, fill it in stainless steel stage, and place it separately. The crystal structure was analyzed in an X-ray diffractometer (XRD, hardware device: X'Pert Pro system, Philip, USA). The operating conditions are as follows: X'Pert voltage is 45KV, current is 40mA, scanning range is 2 θ=10°~70°, scanning rate is 0.05°/step and 4sec/step, and the 5th or 6th image is obtained. An X-ray diffraction (XRD) pattern is shown.

經比對,第5圖或第6圖的X光繞射(XRD)圖譜與文獻上的X光繞射(XRD)一樣,並無其他雜項產生。而且,在LFMP/C陰極材料的結晶性方面,經比對第5圖或第6圖的X光繞射(XRD)圖譜,可獲知LFMP/C陰極材料使用“SS-鹽類製法”製成具有最佳結晶性。 By comparison, the X-ray diffraction (XRD) pattern of Figure 5 or Figure 6 is the same as the X-ray diffraction (XRD) in the literature, and no other miscellaneous items are produced. Moreover, in terms of the crystallinity of the LFMP/C cathode material, by comparing the X-ray diffraction (XRD) pattern of Fig. 5 or Fig. 6, it can be known that the LFMP/C cathode material is made using the "SS-salt method". Has the best crystallinity.

根據上述X光繞射圖譜的分析,本發明的LFMP/C複合材料,確實是可以使用SS製法(包括“SS-氧化物製法”或“SS-鹽類製法”)對LFMP添加不同碳源做碳層包覆而製得。 According to the analysis of the X-ray diffraction pattern described above, the LFMP/C composite material of the present invention can be made by adding different carbon sources to the LFMP using the SS method (including the "SS-oxide method" or the "SS-salt method"). It is made by coating a carbon layer.

為了更具體說明本發明的LFMP/C複合材料的特點,再選取表1的LFMP/C樣品B~E,且使用拉曼光譜對樣品材料表面做分析,取得全範圍顯微拉曼光譜圖。 In order to more specifically illustrate the characteristics of the LFMP/C composite of the present invention, the LFMP/C samples B~E of Table 1 were selected, and the surface of the sample material was analyzed by Raman spectroscopy to obtain a full range of Raman spectra.

秤取表1的LFMP/C樣品B~E,分別約5mg左右,再分別放置顯微鏡試片座上,並以藥匙壓平,把顯微鏡試片置於顯微拉曼光譜儀(Confocal micro-Raman)顯微鏡試片座上,並使用拉曼光譜取得第7圖至第 10圖所示的各個LFMP/C樣品的全範圍micro-Raman分析檢測圖。 Weigh LFMP/C samples B~E of Table 1 to about 5 mg, respectively, and place them on the microscope test piece, and flatten them with a spatula. Place the microscope test piece on a micro-Raman microscope (Confocal micro-Raman). ) on the microscope test piece, and using Raman spectroscopy to obtain the 7th to the A full-range micro-Raman analysis test plot for each LFMP/C sample shown in Figure 10.

針對LFMP/C樣品B~E材料表面做R1值及R2值分析的結果,如表2所示。 The results of R 1 value and R 2 value analysis on the surface of the LFMP/C sample B~E material are shown in Table 2.

分析第7圖至第10圖的全範圍micro-Raman分析檢測圖,得到以下結論: Analysis of the full-scale micro-Raman analysis test chart in Figures 7 to 10 gives the following conclusions:

1.LFMP/C樣品B~E的磷酸根(PO43-)主要位置,分別在940cm-1、990cm-1、1060cm-1;而碳源的Raman峰主要是D-band(ID,屬非石墨化碳)在1320cm-1及G-band(IG,屬石墨化碳)在1580cm-1左右二支peaks; 1. The main positions of phosphate (PO4 3- ) in LFMP/C sample B~E are 940cm -1 , 990cm -1 and 1060cm -1 respectively ; while the Raman peak of carbon source is mainly D-band (I D , genus Non-graphitizable carbon) at 1320 cm -1 and G-band (I G , belonging to graphitized carbon) at about 1580 cm -1 two peaks;

2.觀察各個LFMP/C樣品B~E的拉曼光譜圖的結果,發現本發明的LFMP/C陰極材料使用SS製法(固相法)製備的石墨化程度會越好,原因是使用SS製法製備時LFMP粒子與碳源分散均勻,在進行碳包覆煅燒時,碳源因為受熱更均勻,對LFMP可以進行完整均勻的碳包覆。 2. Observing the results of the Raman spectrum of each LFMP/C sample B~E, it was found that the degree of graphitization prepared by the SS method (solid phase method) of the LFMP/C cathode material of the present invention is better, because the SS method is used. During the preparation, the LFMP particles are uniformly dispersed with the carbon source. When the carbon coating is calcined, the carbon source is more uniformly heated, and the LFMP can be completely and uniformly carbon coated.

3.而且,LFMP/C陰極材料使用SS製法製備的石墨結構較多,R1(即,ID/IG)的比值較低,有利於提升本發明的LFMP/C陰極材料的電子導電率;R2(即,(ID+IG)/PO4 3-)的比值,以樣品E的R2=3.44最高,此說明加入適當比例 的檸檬酸(CA)還原劑後,有利於LFMP/C陰極材料的碳增加,並提升碳包覆的均勻性。 3. Moreover, the LFMP/C cathode material has more graphite structures prepared by the SS method, and the ratio of R 1 (ie, I D /I G ) is lower, which is advantageous for improving the electronic conductivity of the LFMP/C cathode material of the present invention. The ratio of R 2 (ie, (I D +I G )/PO 4 3- ) is the highest with R 2 = 3.44 of sample E, which means that LFMP is favored after adding an appropriate ratio of citric acid (CA) reducing agent. The carbon of the /C cathode material increases and the uniformity of the carbon coating is enhanced.

4.觀察各個LFMP/C樣品的拉曼光譜圖,結果發現使用蔗糖(Suc)包覆LFMP及使用SS製法製備的LFMP/C的偵測強度較強,這表示本發明的LFMP/C陰極材料使用SS製法製備,有增加LFMP整體結晶性與包覆性的加成效果,將促進本發明的LFMP/C陰極材料的導電性更加穩定。 4. Observing the Raman spectrum of each LFMP/C sample, it was found that the LFMP coated with sucrose (Suc) and the LFMP/C prepared by the SS method have strong detection intensity, which indicates the LFMP/C cathode material of the present invention. The preparation by the SS method has an additive effect of increasing the overall crystallinity and coating property of the LFMP, and promotes the conductivity of the LFMP/C cathode material of the present invention to be more stable.

取表1的LFMP/C樣品B、樣品D、樣品F及樣品G材料,再取表1的照對組LFP/C樣品H,按每次秤取量約1.5~2.5mg方式,各分別秤取二次,再分別放入鋁盤中並包覆好之後,再置入元素分析儀(EA,硬體設備:PerkinElmer EA 2400)的樣品槽中,作LFMP/C及LFP/C的殘留碳量。 Take the LFMP/C sample B, sample D, sample F and sample G materials of Table 1, and take the LFP/C sample H of the photo group of Table 1, according to the method of weighing about 1.5~2.5mg each time, each weighing scale Take two times, put them into an aluminum pan and wrap them separately, and then place them in the sample tank of the elemental analyzer (EA, hardware equipment: PerkinElmer EA 2400) for residual carbon of LFMP/C and LFP/C. the amount.

經過EA分析的結果,如表3所示。 The results of the EA analysis are shown in Table 3.

根據表3的數據,得到以下結論: According to the data in Table 3, the following conclusions are obtained:

1.本發明的LFMP/C陰極材料,使用不同“SS-鹽類製法”、“SS-氧化物製法”或“SP-鹽類製法”製備,或使用有機化合物、不同高分子材料當作碳源,煅燒後的殘留碳量皆有所不同,例如,相對於使用固相法製備的LFP/C樣品H的(最高)殘留碳量為3.64wt%;使用“SS-鹽類製法”(固相法)製備的LFMP/C樣品D的殘留碳量為3.79wt%;而使用“SP-鹽類製法”(噴霧乾燥法)製備且經過煅燒處理的LFMP/C樣品G的殘留碳量高達7.09wt%; 1. The LFMP/C cathode material of the present invention is prepared by using different "SS-salt method", "SS-oxide method" or "SP-salt method", or using organic compounds and different polymer materials as carbon. The amount of residual carbon after calcination is different. For example, the (highest) residual carbon amount of the LFP/C sample H prepared by the solid phase method is 3.64 wt%; using the "SS-salt method" (solid The residual carbon content of the prepared LFMP/C sample D was 3.79 wt%; and the residual carbon content of the LFMP/C sample G prepared by the "SP-salt method" (spray drying method) and calcined was as high as 7.09. Wt%;

2.LFMP/C樣品B的Fe與Mn的比例為5:5,且殘留碳量為3.79wt%;LFMP/C樣品F的Fe與Mn的比例為2:8,且殘留碳量為3.88wt%;兩者的殘留碳量僅相差不到0.1wt%,顯示改變Fe與Mn的組成比例,對於LFMP/C陰極材料的殘留碳量影響不大; 2. The ratio of Fe to Mn in LFMP/C sample B is 5:5, and the residual carbon content is 3.79 wt%; the ratio of Fe to Mn in LFMP/C sample F is 2:8, and the residual carbon content is 3.88 wt. %; the residual carbon content of the two differs by less than 0.1wt%, which shows that the composition ratio of Fe and Mn is changed, which has little effect on the residual carbon content of the LFMP/C cathode material;

3.LFMP/C樣品D的殘留碳量3.79wt%高於LFP/C樣品H的殘留碳量3.64wt%,顯示導電性方面LFMP/C陰極材料較LFP/C陰極材料更加穩定。 3. The residual carbon content of LFMP/C sample D is 3.79 wt% higher than the residual carbon content of LFP/C sample H 3.64 wt%, indicating that the LFMP/C cathode material is more stable than the LFP/C cathode material in terms of conductivity.

4.根據表3的LFMP/C樣品B、樣品D、樣品F及樣品G的殘留碳量,顯示LFMP/C陰極材料的殘留碳量可控制介於3.79~7.09wt%之間。 4. According to the residual carbon content of LFMP/C sample B, sample D, sample F and sample G in Table 3, it is shown that the residual carbon amount of the LFMP/C cathode material can be controlled between 3.79 and 7.09 wt%.

如第11圖所示,本發明的LFMP/C陰極材料適用於製成陰極電極片,製作時,取使用本發明的SS製法製成的LFMP/C陰極材料、聚偏二氟乙烯(PVDF,Poly(vinylidene difluoride))黏著劑/N-甲基吡咯酮[即14wt% PVDF in NMP]、N-甲基吡咯酮溶劑(NMP有機溶劑,百瑞克(Panreac)公司製品)和Super P導電碳材為原料;依照LFMP/C:PVDF/NMP:Super P=80wt%:10wt%:10wt%之比例摻合,分別秤取3g的LFMP/C陰極材料、2.678g的PVDF/NMP(約14wt%)、8g的NMP、0.375g的SP導電碳材後;將PVDF/NMP與NMP先攪拌10min後,將SP導電碳材緩緩加入10.678g的PVDF/NMP中並用攪拌機攪拌,待攪拌均勻後,接著將LFMP/C慢慢加入漿料當中持續攪拌,待完全攪拌均勻後,將配製好的漿料以刮刀塗佈於經過處理的鋁箔(Al foil)上,且製成陰電極,並將製作好的陰電極放入烘箱中,在温度70℃下烘乾2~3小時後,再於温度120℃烘乾2小時,以去除殘留的 有機溶劑;將烘乾後的陰電極利用滾壓機碾壓整平處理。最後,使用13mm裁切機裁切圓形陰電極。陰極電極片製作過程中的固液比控制為1:3,陰極電極片的活性物質平均重量大約在4~6mg之間。 As shown in Fig. 11, the LFMP/C cathode material of the present invention is suitable for use as a cathode electrode sheet, and is prepared by using the SS method of the present invention, LFMP/C cathode material, and polyvinylidene fluoride (PVDF). Poly(vinylidene difluoride) adhesive/N-methylpyrrolidone [ie 14wt% PVDF in NMP], N-methylpyrrolidone solvent (NMP organic solvent, manufactured by Panreac) and Super P conductive carbon The material was raw material; blended according to LFMP/C: PVDF/NMP: Super P=80 wt%: 10 wt%: 10 wt%, and 3 g of LFMP/C cathode material and 2.678 g of PVDF/NMP (about 14 wt%, respectively) were weighed. After 8 g of NMP and 0.375 g of SP conductive carbon material; after stirring PVDF/NMP and NMP for 10 min, the SP conductive carbon material was slowly added to 10.678 g of PVDF/NMP and stirred with a stirrer. Then, LFMP/C is slowly added to the slurry and continuously stirred. After being completely stirred uniformly, the prepared slurry is applied to the treated aluminum foil by a doctor blade, and a cathode electrode is prepared and produced. A good cathode electrode is placed in an oven, dried at a temperature of 70 ° C for 2 to 3 hours, and then dried at a temperature of 120 ° C for 2 hours to remove residual Organic solvent; the dried cathode electrode is rolled and leveled by a roller press. Finally, the circular cathode electrode was cut using a 13 mm cutter. The solid-liquid ratio control during the preparation of the cathode electrode sheet is 1:3, and the average weight of the active material of the cathode electrode sheet is between 4 and 6 mg.

如第12圖所示,一般2032鈕扣型電池10的結構,包括一上蓋20、一彈簧30、一墊片40、一圓形陰電極50、一隔離膜60、一鋰金屬陽電極70及一下蓋80。本發明的LFMP/C陰極材料適用於製成陰極電極片,可以做為2032鈕扣型電池10的圓形陰電極50使用。 As shown in FIG. 12, the structure of the general 2032 button type battery 10 includes an upper cover 20, a spring 30, a spacer 40, a circular negative electrode 50, an isolation film 60, a lithium metal anode electrode 70, and the like. Cover 80. The LFMP/C cathode material of the present invention is suitable for use as a cathode electrode sheet, and can be used as a circular cathode electrode 50 of a 2032 button type battery 10.

【實施例】 [Examples]

下列實施例中的LFMP/C樣品A、樣品B、樣品D、樣品F、樣品G、樣品J及樣品K,按下表的材料成分製成: The LFMP/C sample A, sample B, sample D, sample F, sample G, sample J, and sample K in the following examples were prepared according to the material composition of the following table:

而且,以下舉實施例具體說明本發明的LFMP/C陰極材料適用於製成用於二次鋰離子電池(例如,鈕扣型電池)的圓形陰電極。測定條件包括: Moreover, the LFMP/C cathode material of the present invention is specifically described below as being suitable for forming a circular cathode electrode for a secondary lithium ion battery (for example, a button type battery). The measurement conditions include:

1.循環伏安法分析1. Cyclic voltammetry analysis :

循環伏安法(cyclic voltammetry,CV)是判斷電極是否具備可逆性氧化/還原電化學反應的方法。實施例的LFMP/C陰電極的CV圖及其參數值,是在2.0V~4.5V之間的電位範圍內利用循環伏安法(CV)取得,且藉以判斷及分析LFMP/C陰電極是在何種電位範圍內發生可逆性氧化/還原電化學反應。 Cyclic voltammetry (CV) is a method for determining whether a electrode has a reversible oxidation/reduction electrochemical reaction. The CV diagram of the LFMP/C cathode electrode of the embodiment and its parameter values are obtained by cyclic voltammetry (CV) in the potential range between 2.0V and 4.5V, and the LFMP/C cathode electrode is judged and analyzed. A reversible oxidation/reduction electrochemical reaction occurs in which potential range.

基本原理是利用改變電位而得到電極的氧化還原反應循環電位圖(或稱循環伏安法圖,簡稱CV圖)。當從低電位往高電位掃瞄時,會使分析物產生氧化電流的氧化波,反之,當從高電位往低電位掃瞄時,會使分析物產生還原電流的還原波。從所得的CV圖中的氧化波和還原波的峰高和對稱性,可以判斷電活性物質在電極表面反應的可逆程度。若電極的氧化/還原電化學反應是可逆的,則CV圖中的曲線呈上下對稱,反之,若是不可逆,則CV圖中的曲線呈上下不對稱。 The basic principle is to use a change potential to obtain a redox reaction cycle potential map (or cyclic voltammetry map, referred to as CV map). When scanning from a low potential to a high potential, the analyte will generate an oxidation wave of the oxidation current. Conversely, when scanning from a high potential to a low potential, the analyte will generate a reduction wave of the reduction current. From the peak height and symmetry of the oxidation wave and the reduction wave in the obtained CV diagram, the degree of reversibility of the reaction of the electroactive substance on the electrode surface can be judged. If the oxidation/reduction electrochemical reaction of the electrode is reversible, the curve in the CV diagram is vertically symmetrical, whereas if it is irreversible, the curve in the CV diagram is asymmetrical.

根據從CV圖獲得的CV參數R1(=ip.a1/ip.c1)及R2(=ip.a2/ip.c2),其中,ip.a為陽極波峰電流(anodic peak current)、ip.c為陰極波峰電流(cathodic peak current)、Ep.a為陽極波峰電位(anodic peak potential,)以及Ep.c為陰極波峰電位(cathodic peak potential)。如果R1、R2的值愈接近1時,表示LFMP/C陰電極的氧化/還原的可逆性愈好。而且,△E1表示Ep.a1與Ep.c1的差值,△E2表示Ep.a2與Ep.c2的差值,如果△E1、△E2的值愈接近0,表示電子更容易在LFMP內部傳導,有助於提升電池在高充/放電的能力。 According to the CV parameter R 1 (=i p.a1 /i p.c1 ) and R 2 (=i p.a2 /i p.c2 ) obtained from the CV map, where i pa is the anodic peak current I pc is a cathodic peak current, E pa is an anodic peak potential, and E pc is a cathodic peak potential. If the value of R 1 and R 2 is closer to 1, it means that the reversibility of oxidation/reduction of the LFMP/C cathode electrode is better. Moreover, ΔE1 represents the difference between E p.a1 and E p.c1 , and ΔE2 represents the difference between E p.a2 and E p.c2 . If the values of ΔE1 and ΔE2 are closer to 0, it means that electrons are easier. Conduction inside the LFMP helps to improve the battery's ability to charge/discharge.

2.交流阻抗分析2. AC impedance analysis :

交流阻抗分析(AC impedance)是量測電池電極行為及分析材料電子阻抗的重要項目。藉交流阻抗頻譜儀取得交流阻抗分析圖(或稱訊號響應圖(Nyquist plot),以下簡稱為AC圖),以分析鋰離子電池內部可能發生的電化學反應。 AC impedance is an important item for measuring battery electrode behavior and analyzing the electronic impedance of materials. An AC impedance analysis map (or Nyquist plot, hereinafter referred to as an AC map) is obtained by an AC impedance spectrometer to analyze an electrochemical reaction that may occur inside a lithium ion battery.

基本原理是將測試電池置入測試製具中,利用恆電位儀(Potentionstat Analyzer)使測試電池在恒定電流速率下充/放電,再使用交流電阻抗頻譜儀發出設定的交流訊號,使得原本恆電位儀供應給測試製具的穩定電場產生不同頻率的振幅訊號,藉此方法可觀察測試電池經過電化學反應時 的電子對不同頻率所產生的響應訊號,而取得測試電池的交流阻抗分析圖。 The basic principle is to put the test battery into the test fixture, use the potentiostat (Potentionstat Analyzer) to charge/discharge the test battery at a constant current rate, and then use the AC resistance spectrum analyzer to send a set AC signal, so that the original potentiostat The stable electric field supplied to the test tool generates amplitude signals of different frequencies, and the method can observe the electrochemical reaction of the test battery The electrons respond to signals generated by different frequencies, and obtain an AC impedance analysis chart of the test battery.

從交流阻抗分析圖可以分辨出測試電池的各組成元件(例如陰電極)的表面反應與本質阻抗、界面阻抗及電容效應等數交流(AC)阻抗參數值的變化。例如,整體阻抗值(Bulk Resistance、Rb)與電極上電荷轉移阻抗(Charge Transfer Resistance、Rct)的AC阻抗參數值的變化。 From the AC impedance analysis chart, the surface reaction of each component of the test battery (for example, the cathode electrode) and the change of the number of alternating current (AC) impedance parameters such as the intrinsic impedance, the interface impedance, and the capacitance effect can be distinguished. For example, the change in the overall impedance value (Bulk Resistance, R b ) and the AC impedance parameter value of the charge transfer resistance (R ct ) on the electrode.

電荷轉移阻抗(Rct)代表電極上電荷轉移阻力,也就是鋰離子在電極上得失電子的阻力。Rct參數值的大小可用來觀察電極上反應的難易度;若Rct參數值很大,則表示電極反應相當緩慢,若Rct參數值很小,則表示電極反應相當迅速。 The charge transfer impedance (R ct ) represents the charge transfer resistance on the electrode, that is, the resistance of the lithium ion to electron loss at the electrode. The value of the R ct parameter value can be used to observe the ease of reaction on the electrode; if the R ct parameter value is large, it means that the electrode reaction is quite slow, and if the R ct parameter value is small, it means that the electrode reaction is quite rapid.

3.充/放電分析 3. Charge / discharge analysis

量測硬體:使用佳優公司製的型號(Model BAT-750B)充放電分析儀。 Measuring hardware: Model (Model BAT-750B) charge and discharge analyzer manufactured by Jiayou.

量測方式:將沒有短路的鈕扣型電池置於充/放電分析儀上,設定及調整參數,設定電壓範圍介於2.0V至4.5V,依不同的設定電流值進行在定電流下的不同充/放電速率檢測。 Measurement method: Place the button type battery without short circuit on the charge/discharge analyzer, set and adjust the parameters, set the voltage range from 2.0V to 4.5V, and perform different charge at constant current according to different set current values. /Discharge rate detection.

限定條件:每次充放電結束後,休息間隔約3分鐘後,再繼續進行下一個循環檢測。 Qualification: After each charge and discharge, the rest interval is about 3 minutes, and then the next cycle test is continued.

經過連續數次充/放電檢測,利用電腦記錄及取得電壓與時間變化的放電曲線及電容量資料,經分析比較,即取得測試電池在不同放電率下的實際放電量。 After several consecutive charge/discharge tests, the computer records and obtains the discharge curve and capacitance data of voltage and time changes. After analysis and comparison, the actual discharge capacity of the test battery at different discharge rates is obtained.

實施例1 Example 1 :

使用以SS-鹽類製法製成的LFMP/C(y=0.5,LiFe0.5Mn0.5PO4/C)複合材料樣品B為材料,製成用於鈕扣型電池的圓形陰電極,且經由電池封裝機密封分別製成鈕扣型電池。利用循環伏安法(CV)取得LFMP/C圓形陰電極的可逆性氧化/還原電化學反應CV圖,如第13圖所示,以及取得其相關CV參數值,如表4所示。 Using a LFMP/C (y=0.5, LiFe 0.5 Mn 0.5 PO 4 /C) composite material sample B prepared by the SS-salt method, a circular cathode electrode for a button type battery was fabricated and passed through a battery. The sealing machine seals are respectively made into button type batteries. The reversible oxidation/reduction electrochemical reaction CV pattern of the LFMP/C circular cathode electrode was obtained by cyclic voltammetry (CV), as shown in Fig. 13, and the relevant CV parameter values were obtained, as shown in Table 4.

而且,根據表4的CV參數值,由LFMP/C樣品B製成的圓形陰電極,其△E1、△E2介在0.380~0.404之間,此表示LFMP使用SS-鹽類製法製作,在2.0-4.5V電位範圍內,具備不錯的可逆性氧化/還原電化學反應,也能增加二次電池的整體穩定性及充放電的能力。 Moreover, according to the CV parameter value of Table 4, the circular cathode electrode made of LFMP/C sample B has ΔE1 and ΔE2 interposed between 0.380 and 0.404, which means that LFMP is produced by SS-salt method, at 2.0. - 4.5V potential range, with a good reversible oxidation / reduction electrochemical reaction, can also increase the overall stability of the secondary battery and charge and discharge capacity.

實施例2 Example 2 :

將實施例1製成的鈕扣型電池置於充/放電分析儀上,在溫度25℃環境下,測試在0.1C,0.2C~10C充/放電速率下的放電量。測試結果如表5及表6所示,充放電曲線分別如第14圖及第15圖所示。 The button type battery fabricated in Example 1 was placed on a charge/discharge analyzer, and the discharge amount at a charge/discharge rate of 0.1 C, 0.2 C to 10 C was measured at a temperature of 25 ° C. The test results are shown in Tables 5 and 6, and the charge and discharge curves are shown in Figures 14 and 15, respectively.

根據表5及表6的克電容量參數值,本實施例的鈕扣型電池,使用以SS-鹽類製法製成的LFMP/C(y=0.5,LiFe0.5Mn0.5PO4/C)陰極材料為圓形陰電極,在0.1C充/放電速率下,其克電容量可達169.7mAh/g,而在0.2C/0.2C、0.2C/0.5C及0.2C/1C充/放電速率下,其克電容量分別為160mAh/g、160mAh/g及157mAh/g,可據以證實本實施例的鈕扣型電池在25℃環境下具備極佳的高速率充放能力及非常優異的電性表現。 According to the gram capacity parameter values of Tables 5 and 6, the button type battery of the present embodiment uses the LFMP/C (y=0.5, LiFe 0.5 Mn 0.5 PO 4 /C) cathode material prepared by the SS-salt method. The circular cathode electrode has a gram capacity of 169.7 mAh/g at a charge/discharge rate of 0.1 C, and at a charge/discharge rate of 0.2 C/0.2 C, 0.2 C/0.5 C, and 0.2 C/1 C, The gram capacity is 160 mAh/g, 160 mAh/g and 157 mAh/g, respectively. It can be confirmed that the button type battery of the embodiment has excellent high rate charge and discharge capability and excellent electrical performance at 25 ° C environment. .

實施例3 Example 3 :

使用以SS-鹽類製法製成的LFMP/C(y=0.8,LiFe0.2Mn0.8PO4/C)複合材料樣品F為材料,製成用於鈕扣型電池的圓形陰電 極,且經由電池封裝機密封分別製成鈕扣型電池。將鈕扣型電池置於充/放電分析儀上,在溫度25℃環境下,測試在0.1C,0.2C~10C充/放電速率下的放電量。測試結果如表7及表8所示,充放電曲線分別如第16圖及第17圖所示。 A circular negative electrode for a button type battery was fabricated using a LFMP/C (y=0.8, LiFe 0.2 Mn 0.8 PO 4 /C) composite material sample F prepared by a SS-salt method, and was passed through a battery. The sealing machine seals are respectively made into button type batteries. The button type battery was placed on a charge/discharge analyzer, and the discharge amount at a charge/discharge rate of 0.1 C, 0.2 C to 10 C was measured at a temperature of 25 ° C. The test results are shown in Tables 7 and 8, and the charge and discharge curves are shown in Figures 16 and 17, respectively.

根據表7及表8的克電容量參數值,本實施例的鈕扣型電池,使用以SS-鹽類製法製成的LFMP/C(y=0.8,LiFe0.2Mn0.8PO4/C)陰極材料為圓形陰電極,在0.1C充/放電速率下,其克電容量可達155mAh/g,而在0.2C/0.2C、0.2C/0.5C及0.2C/1C充/放電速率下,其克電容量分別為145mAh/g、150mAh/g及150mAh/g,可據以證實本實施例的鈕扣型電池在25℃環境下具備極佳的高速率充放能力及非常優異的電性表現。 According to the gram capacity parameter values of Tables 7 and 8, the button type battery of the present embodiment uses the LFMP/C (y=0.8, LiFe 0.2 Mn 0.8 PO 4 /C) cathode material prepared by the SS-salt method. The circular cathode electrode has a gram capacity of 155 mAh/g at a charge/discharge rate of 0.1 C, and at a charge/discharge rate of 0.2 C/0.2 C, 0.2 C/0.5 C, and 0.2 C/1 C. The gram capacity is 145 mAh/g, 150 mAh/g, and 150 mAh/g, respectively, and it can be confirmed that the button type battery of the present embodiment has excellent high rate charge and discharge capability and excellent electrical performance at 25 ° C environment.

實施例4 Example 4 :

使用以SS-鹽類製法製成的LFMP/C(y=0.7,LiFe0.3Mn0.7PO4/C)複合材料樣品J為材料,製成用於鈕扣型電池的圓形陰電極,且經由電池封裝機密封分別製成鈕扣型電池。將鈕扣型電池置於充/放電分析儀上,在溫度25℃環境下,測試在0.1C,0.2C~10C充/放電速率下的放電量。測試結果如表9及表10所示,充放電曲線分別如第18圖及第19圖所示。 The LFMP/C (y=0.7, LiFe 0.3 Mn 0.7 PO 4 /C) composite material sample J prepared by the SS-salt method was used as a material to prepare a circular cathode electrode for a button type battery, and was passed through a battery. The sealing machine seals are respectively made into button type batteries. The button type battery was placed on a charge/discharge analyzer, and the discharge amount at a charge/discharge rate of 0.1 C, 0.2 C to 10 C was measured at a temperature of 25 ° C. The test results are shown in Tables 9 and 10, and the charge and discharge curves are shown in Figs. 18 and 19, respectively.

根據表9及表10的克電容量參數值,本實施例的鈕扣型電池,使用以SS-鹽類製法製成的LFMP/C(y=0.7,LiFe0.3Mn0.7PO4/C)陰極材料為圓形陰電極,在0.1C充/放電速率下,其克電容量可達120mAh/g,而在0.2C/0.2C、0.2C/0.5C及0.2C/1C充/放電速率下,其克電容量分別為120mAh/g、135mAh/g及136mAh/g,可據以證實本實施例的鈕扣型電池在25℃環境下具備極佳的高速率充放能力及非常優異的電性表現。 According to the gram capacity parameter values of Tables 9 and 10, the button type battery of the present embodiment uses the LFMP/C (y=0.7, LiFe 0.3 Mn 0.7 PO 4 /C) cathode material prepared by the SS-salt method. It is a circular cathode electrode with a charge capacity of 120 mAh/g at a charge/discharge rate of 0.1 C, and at a charge/discharge rate of 0.2 C/0.2 C, 0.2 C/0.5 C and 0.2 C/1 C. The gram capacity is 120 mAh/g, 135 mAh/g, and 136 mAh/g, respectively, and it can be confirmed that the button type battery of the present embodiment has excellent high rate charge and discharge capability and excellent electrical performance at 25 ° C environment.

實施例5 Example 5 :

對照實施例1,但改用以SS-氧化物製法製成的LFMP/C(y=0.5,LiFe0.5Mn0.5PO4/C)複合材料樣品A為材料,製成用於鈕扣型電池的圓形陰電極,且經由電池封裝機密封分別製成鈕扣型電池。將鈕扣型電池置於充/放電分析儀上,在溫度25℃環境下,測試在0.1C,0.2C~10C充/放電速率下的放電量。測試結果如表11及表12所示,充放電曲線分別如第20圖及第21圖所示。 Comparative Example 1, but LFMP/C (y=0.5, LiFe 0.5 Mn 0.5 PO 4 /C) composite material sample A prepared by the SS-oxide process was used as a material to make a circle for a button type battery. The cathode electrodes are shaped and sealed by a battery packer to form a button type battery. The button type battery was placed on a charge/discharge analyzer, and the discharge amount at a charge/discharge rate of 0.1 C, 0.2 C to 10 C was measured at a temperature of 25 ° C. The test results are shown in Table 11 and Table 12, and the charge and discharge curves are shown in Fig. 20 and Fig. 21, respectively.

根據表11及表12的克電容量參數值,本實施例的鈕扣型電池,使用以SS-氧化物製法製成的LFMP/C(y=0.5,LiFe0.5Mn0.5PO4/C)陰極材料為圓形陰電極,在0.1C充/放電速率下,其克電容量可達136mAh/g,而在0.2C/0.2C、0.2C/0.5C及0.2C/1C充/放電速率下,其克電容量分別為121mAh/g、116mAh/g及112mAh/g,可據以證實本實施例的鈕扣型電池在25℃環境下具備極佳的高速率充放能力及非常優異的電性表現。 According to the gram capacity parameter values of Tables 11 and 12, the button type battery of the present embodiment uses the LFMP/C (y=0.5, LiFe 0.5 Mn 0.5 PO 4 /C) cathode material prepared by the SS-oxide method. The circular cathode electrode has a gram capacity of 136 mAh/g at a charge/discharge rate of 0.1 C, and at a charge/discharge rate of 0.2 C/0.2 C, 0.2 C/0.5 C, and 0.2 C/1 C. The gram capacity is 121 mAh/g, 116 mAh/g, and 112 mAh/g, respectively, and it can be confirmed that the button type battery of the present embodiment has excellent high rate charge and discharge capability and excellent electrical performance at 25 ° C environment.

實施例6 Example 6 :

將實施例5鈕扣型電池置於充/放電分析儀上,測試在0.2C/1C充/放電速率下經過過30次(cycles)充放電測試的放電量,測試結果如表13所示,在0.2C/1C充/放電速率下經過30次(cycles)充放電測試的充放電曲線及循環壽命電性分析,分別如第22圖及第23圖所示。 The button type battery of Example 5 was placed on a charge/discharge analyzer, and the discharge amount after 30 cycles of charge and discharge test at a charge/discharge rate of 0.2 C/1 C was tested. The test results are shown in Table 13, The charge-discharge curve and the cycle life electrical analysis after 30 cycles of charge and discharge tests at a charge/discharge rate of 0.2 C/1 C are shown in Fig. 22 and Fig. 23, respectively.

根據表13的克電容量參數值,本實施例的鈕扣型電池,使用以SS-氧化物製法製成的LFMP/C(y=0.5,LiFe0.5Mn0.5PO4/C)陰極材料為圓形陰電極,在0.2C/1C充/放電速率下,即使經過30次充放電測試之後,其克電容量仍達113mAh/g左右。 According to the gram capacity parameter value of Table 13, the button type battery of the present embodiment uses a LFMP/C (y=0.5, LiFe 0.5 Mn 0.5 PO 4 /C) cathode material prepared by the SS-oxide method as a circular shape. The cathode electrode, at a charge/discharge rate of 0.2 C/1 C, has a gram capacity of about 113 mAh/g even after 30 charge and discharge tests.

實施例7 Example 7 :

將實施例5鈕扣型電池置於充/放電分析儀上,在-20℃低溫環境下,測試在0.1C/0.1C充/放電速率下的放電量、以及在0.2C/1C充/放電速率下經過過30次(cycles)充放電測試的放電量,測試結果如表14及表15所示,充放電曲線分別如第24圖及第25圖所示。 The button type battery of Example 5 was placed on a charge/discharge analyzer, and the discharge amount at a charge/discharge rate of 0.1 C/0.1 C and the charge/discharge rate at 0.2 C/1 C were measured at a low temperature of -20 ° C. The discharge amount after 30 cycles of charge and discharge test is shown in Table 14 and Table 15, and the charge and discharge curves are shown in Fig. 24 and Fig. 25, respectively.

根據表14及表15的克電容量參數值,本實施例的鈕扣型電池,使用以SS-氧化物製法製成的LFMP/C(y=0.5(LiFe0.5Mn0.5PO4/C))陰極材料為圓形陰電極,在-20℃低溫下,0.1C/0.1C充/放電速率的克電容量可達93mAh/g;但在0.2C/1C充/放電速率下經過30次充放電測試之後,其克電容量僅達40mAh/g左右。 According to the gram capacity parameter values of Tables 14 and 15, the button type battery of the present embodiment uses the LFMP/C (y=0.5 (LiFe 0.5 Mn 0.5 PO 4 /C)) cathode prepared by the SS-oxide method. The material is a circular cathode electrode. At a low temperature of -20 °C, the charge capacity of 0.1C/0.1C charge/discharge rate can reach 93mAh/g; but after 30 times charge and discharge test at 0.2C/1C charge/discharge rate After that, its electric capacity is only about 40 mAh/g.

實施例8 Example 8 :

將實施例5鈕扣型電池置於充/放電分析儀上,在50℃高溫環境下,測試在0.1C/0.1C充/放電速率下的放電量、以及在0.2C/1C充/放電 速率下經過過10次(cycles)充放電測試的放電量,測試結果如表16及表17所示,充放電曲線分別如第26圖所示。 The button type battery of Example 5 was placed on a charge/discharge analyzer, and the discharge amount at a charge/discharge rate of 0.1 C/0.1 C and the charge/discharge at 0.2 C/1 C were tested under a high temperature environment of 50 ° C. The discharge amount after 10 cycles of charge and discharge test at the rate is shown in Table 16 and Table 17, and the charge and discharge curves are as shown in Fig. 26, respectively.

根據16及表17的克電容量參數值,本實施例的鈕扣型電池,使用以SS-氧化物製法製成的LFMP/C(y=0.5(LiFe0.5Mn0.5PO4/C))陰極材料為圓形陰電極,在50℃高溫下,0.1C/0.1C充/放電速率的克電容量可達155mAh/g;在0.2C/1C充/放電速率下經過30次充放電測試之後,其克電容量仍達158~162mAh/g左右,可據以證實本實施例的鈕扣型電池在50℃高溫環境下具備極佳及非常穩定的高速率充放能力及非常優異的電性表現。 According to the gram capacity parameter values of 16 and Table 17, the button type battery of the present embodiment uses the LFMP/C (y=0.5 (LiFe 0.5 Mn 0.5 PO 4 /C)) cathode material prepared by the SS-oxide method. For a circular cathode electrode, the charge capacity of 0.1C/0.1C charge/discharge rate can reach 155mAh/g at 50 °C; after 30 charge and discharge tests at 0.2C/1C charge/discharge rate, The electric capacity is still about 158~162mAh/g, which proves that the button type battery of the embodiment has excellent and very stable high rate charge and discharge capability and excellent electrical performance in a high temperature environment of 50 °C.

實施例9 Example 9 :

使用以SP-鹽類製法製成呈2~10微米球形結構的LFMP/C(y =0.5(LiFe0.5Mn0.5PO4/C))複合材料樣品G為材料,製成用於鈕扣型電池的圓形陰電極,且經由電池封裝機密封分別製成鈕扣型電池。將鈕扣型電池置於充/放電分析儀上,在溫度25℃環境下,測試在0.1C,0.2C~10C充/放電速率下的放電量。測試結果如表18及表19所示,充放電曲線分別如第27圖及第28圖所示。 LFMP/C (y = 0.5 (LiFe 0.5 Mn 0.5 PO 4 /C)) composite material sample G having a spherical structure of 2 to 10 μm was prepared by SP-salt method to prepare a button type battery. A circular cathode electrode is formed and sealed by a battery packer to form a button type battery. The button type battery was placed on a charge/discharge analyzer, and the discharge amount at a charge/discharge rate of 0.1 C, 0.2 C to 10 C was measured at a temperature of 25 ° C. The test results are shown in Table 18 and Table 19. The charge and discharge curves are shown in Figures 27 and 28, respectively.

根據表18及表19的克電容量參數值,本實施例的鈕扣型電池,使用以SP-鹽類製法製成的LFMP/C(y=0.5(LiFe0.5Mn0.5PO4/C))陰極材料為圓形陰電極,在0.1C充/放電速率下,其克電容量可達157mAh/g左右,而在0.2C/0.2C、0.2C/0.5C及0.2C/1C充/放電速率下,其克電容量分別約為146mAh/g、143mAh/g及139mAh/g,可據以證實本實施例的鈕扣型電池在25℃環境下具備極佳的高速率充放能力及非常優異的電性表現,乃因其添加導電材料及PS球碳源均勻分散於LFMP/C球體上,可以有效提高LFMP/C克電容量及高功率放電能力。 According to the gram capacity parameter values of Tables 18 and 19, the button type battery of the present embodiment uses the LFMP/C (y=0.5 (LiFe 0.5 Mn 0.5 PO 4 /C)) cathode prepared by the SP-salt method. The material is a circular cathode electrode, which has a gram capacity of about 157 mAh/g at a charge/discharge rate of 0.1 C, and at a charge/discharge rate of 0.2 C/0.2 C, 0.2 C/0.5 C, and 0.2 C/1 C. The gram capacity is about 146 mAh/g, 143 mAh/g, and 139 mAh/g, respectively. It can be confirmed that the button type battery of the embodiment has excellent high rate charge and discharge capability and excellent electric power at 25 ° C environment. Sexual performance is due to the addition of conductive materials and PS ball carbon source evenly dispersed on the LFMP/C sphere, which can effectively improve the LFMP/C gram capacity and high power discharge capacity.

實施例10 Example 10 :

對照實施例5,使用添加不同碳源但同樣以SS-氧化物製法製成的LFMP/C(y=0.5(LiFe0.5Mn0.5PO4/C))複合材料樣品D為材料,製成用於鈕扣型電池的圓形陰電極,且經由電池封裝機密封分別製成鈕扣型電池。將鈕扣型電池置於充/放電分析儀上,在溫度25℃環境下,測試在0.1C,0.2C~10C充/放電速率下的放電量。測試結果如表20及表21所示,充放電曲線分別如第29圖及第30圖所示。 In Comparative Example 5, a LFMP/C (y=0.5 (LiFe 0.5 Mn 0.5 PO 4 /C)) composite material sample D prepared by adding a different carbon source but also prepared by an SS-oxide method was used as a material for The circular cathode electrode of the button type battery is sealed by a battery packer to form a button type battery. The button type battery was placed on a charge/discharge analyzer, and the discharge amount at a charge/discharge rate of 0.1 C, 0.2 C to 10 C was measured at a temperature of 25 ° C. The test results are shown in Tables 20 and 21, and the charge and discharge curves are shown in Fig. 29 and Fig. 30, respectively.

根據表20及表21的克電容量參數值,本實施例的鈕扣型電池,使用以SS-氧化物製法製成的LFMP/C(y=0.5(LiFe0.5Mn0.5PO4/C))陰極材料為圓形陰電極,在0.1C充/放電速率下,其克電容量可達136mAh/g,而在0.2C/0.2C、0.2C/0.5C及0.2C/1C充/放電速率下,其克電容量分別為120mAh/g、115mAh/g及111mAh/g,可據以證實本實施例的鈕扣型電池在25℃環境下具備極佳的高速率充放能力及非常優異的電性表現,與實施例5的鈕扣型電池比較,幾乎相同性能。 According to the gram capacity parameter values of Tables 20 and 21, the button type battery of the present embodiment uses the LFMP/C (y=0.5 (LiFe 0.5 Mn 0.5 PO 4 /C)) cathode prepared by the SS-oxide method. The material is a circular cathode electrode, which has a gram capacity of 136 mAh/g at a charge/discharge rate of 0.1 C, and at a charge/discharge rate of 0.2 C/0.2 C, 0.2 C/0.5 C, and 0.2 C/1 C. The gram capacity is 120 mAh/g, 115 mAh/g and 111 mAh/g, respectively. It can be confirmed that the button type battery of the embodiment has excellent high-rate charge and discharge capability and excellent electrical performance at 25 ° C environment. Compared with the button type battery of Example 5, almost the same performance.

實施例11 Example 11 :

對照實施例5,使用摻合3mole%過渡金屬鈮(Nb)元素且同樣以SS-氧化物製法製成的LFMP/C(y=0.5(LiFe0.5Mn0.5PO4/C))複合材料樣品K為材料,製成用於鈕扣型電池的圓形陰電極,且經由電池封裝機密封分別製成鈕扣型電池。將鈕扣型電池置於充/放電分析儀上,在溫度25℃環境下,測試在0.1C,0.2C~10C充/放電速率下的放電量。測試結果如表22及表23所示,充放電曲線分別如第31圖及第32圖所示。 Comparative Example 5, a LFMP/C (y=0.5 (LiFe 0.5 Mn 0.5 PO 4 /C)) composite sample K prepared by blending a 3 mole% transition metal ruthenium (Nb) element and also prepared by an SS-oxide process was used. As the material, a circular cathode electrode for a button type battery was fabricated, and a button type battery was separately formed by sealing with a battery packer. The button type battery was placed on a charge/discharge analyzer, and the discharge amount at a charge/discharge rate of 0.1 C, 0.2 C to 10 C was measured at a temperature of 25 ° C. The test results are shown in Table 22 and Table 23. The charge and discharge curves are shown in Figures 31 and 32, respectively.

根據表22及表23所示的克電容量參數值,本實施例的鈕扣型電池,使用以SS-氧化物製法製成的LFMP/C(y=0.5(LiFe0.5Mn0.5PO4/C))陰極材料為圓形陰電極,在0.1C充/放電速率下,其克電容量可達113mAh/g,而在0.2C/0.2C、0.2C/0.5C及0.2C/1C充/放電速率下,其克電容量分別為100mAh/g、97mAh/g及93mAh/g。 According to the gram capacity parameter values shown in Tables 22 and 23, the button type battery of the present embodiment uses LFMP/C (y = 0.5 (LiFe 0.5 Mn 0.5 PO 4 /C) made by the SS-oxide method. The cathode material is a circular cathode electrode with a charge capacity of 113 mAh/g at a charge/discharge rate of 0.1 C, and a charge/discharge rate of 0.2 C/0.2 C, 0.2 C/0.5 C, and 0.2 C/1 C. The gram capacity is 100 mAh/g, 97 mAh/g and 93 mAh/g, respectively.

結果result

1.實施例2、實施例3及實施例4在不同Fe:Mn莫耳比例下(即,Fe:Mn=5:5或2:8或3:7),使用相同“SS-鹽類製法”製成LFMP/C陰極材料,再分別製成用於鈕扣型電池的圓形陰電極;經比對結果,顯示實施例2的LFMP/C(y=0.5(LiFe0.5Mn0.5PO4/C))複合材料的電性表現為最佳,在0.1C充/放電速率下,放電克電容量可達169.7mAh/g,在0.2C、0.5C及1C充/放電速率下,則分別達160mAh/g、160mAh/g及157mAh/g。 1. Example 2, Example 3 and Example 4 at different Fe:Mn molar ratios (i.e., Fe:Mn = 5:5 or 2:8 or 3:7), using the same "SS-salt method""The LFMP/C cathode material was fabricated and separately made into a circular cathode electrode for a button type battery; the comparison result showed the LFMP/C of Example 2 (y = 0.5 (LiFe 0.5 Mn 0.5 PO 4 /C) )) The electrical properties of the composites are optimal. At a charge/discharge rate of 0.1 C, the discharge capacity can reach 169.7 mAh/g, and at 0.2 C, 0.5 C, and 1 C charge/discharge rates, respectively, 160 mAh. /g, 160 mAh/g and 157 mAh/g.

2.實施例2、實施例5及實施例9在相同Fe:Mn=5:5莫耳比例下,分別使用“SS-鹽類製法”、“SS-氧化物製法”及“SP-鹽類製法”製成LFMP/C陰極材料,再分別製成用於鈕扣型電池的圓形陰電極;參照第33圖所示,經比對電性表現結果,以實施例2使用“SS-鹽類製法”製成的LFMP/C陰極材料的電性表現為最佳,實施例9使用“SP-鹽類製法”製成的LFMP/C複合材料的電性表現為其次;但,實施例5使用“SS-氧化物製法”製成的LFMP/C複合材料的電性表現,在0.1C充/放電速率下,放電克電容量達136mAh/g,在0.2C、0.5C及1C充/放電速率下,仍分別達121mAh/g、116mAh/g及112mAh/g,此顯示所述三種製法均得用於製成LFMP/C陰極材料。 2. Example 2, Example 5, and Example 9 use the "SS-salt method", "SS-oxide method" and "SP-salt" at the same Fe:Mn=5:5 molar ratio. The preparation method is made into a LFMP/C cathode material, and then a circular cathode electrode for a button type battery is separately prepared; as shown in Fig. 33, the "SS-salt type" is used in the second embodiment by comparing the electrical performance results. The electrical performance of the LFMP/C cathode material prepared by the method is optimal, and the electrical performance of the LFMP/C composite material prepared by using the "SP-salt method" in Example 9 is secondary; however, the embodiment 5 is used. The electrical performance of the LFMP/C composite made by "SS-oxide process" has a discharge capacity of 136 mAh/g at a charge/discharge rate of 0.1 C, and a charge/discharge rate of 0.2 C, 0.5 C, and 1 C. Under the conditions, still reached 121 mAh / g, 116 mAh / g and 112 mAh / g, which shows that the three methods are used to make LFMP / C cathode material.

3.承續前項說明,也顯示添加適量蔗糖(Suc)與檸檬酸(CA)做為碳源與還原劑,可以大幅改善磷酸鋰鐵錳(LFMP)活性物質的導電性,有助於使LiFe1-yMnyPO4/C(0<y<1)陰極材料具備極佳的高功率特性與優異的充/放循環壽命。 3. Continued from the previous paragraph, it also shows that adding appropriate amount of sucrose (Suc) and citric acid (CA) as carbon source and reducing agent can greatly improve the conductivity of lithium iron manganese (LFMP) active material and help to make LiFe 1-y Mn y PO 4 /C (0<y<1) cathode materials have excellent high power characteristics and excellent charge/discharge cycle life.

3.根據實施例5、實施例7至實施例8的鈕扣型電池的圓形陰電極電性表現,在-20℃~50℃的溫度環境下,本發明的LFMP/C陰極材料,仍具備極佳的高功率放電能力。 3. According to the circular cathode electrode of the embodiment 5 and the button battery of the embodiment 8, the LFMP/C cathode material of the present invention is still provided in a temperature environment of -20 ° C to 50 ° C. Excellent high power discharge capability.

4.根據實施例4、實施例9及實施例10的鈕扣型電池的圓形陰電極電性表現,顯示本發明的LFMP/C陰極材料可添加有機化合物、不同高分子材料及/或導電碳材為碳源,且添加不同碳源有助於使鈕扣型電池具備極佳的高功率放電能力。 4. According to the circular cathode electrical performance of the button type battery of Example 4, Example 9 and Example 10, it is shown that the LFMP/C cathode material of the present invention can be added with an organic compound, a different polymer material and/or a conductive carbon. The carbon source and the addition of different carbon sources help the button cell to have excellent high power discharge capability.

5.根據實施例11的鈕扣型電池的圓形陰電極電性表現,顯示LFMP/C陰極材料摻雜過渡金屬元素,有助於改善磷酸鋰鐵錳(LFMP)材料的導電率,也可提昇LFMP/C陰極材料的放電電容量及高功率放電能力。 5. The electrical performance of the circular cathode electrode of the button type battery according to the embodiment 11 shows that the LFMP/C cathode material is doped with a transition metal element, which contributes to improving the conductivity of the lithium iron phosphate manganese (LFMP) material, and can also be improved. Discharge capacity and high power discharge capacity of LFMP/C cathode materials.

Claims (13)

一種磷酸鋰鐵錳/碳陰極材料的製造方法,包括以下步驟:a)依莫耳比為1:1-y:y:1,且0<y<1;選擇鋰源、鐵源、錳源及磷酸源為原料;b)基於磷酸鋰鐵錳/碳(LFMP/C)的總重量,選擇使用量介於1~30wt%的碳源;c)將鋰源、鐵源、錳源、磷酸源及碳源直接做固相混合及研磨;d)將步驟c)研磨後的前趨物置入高溫爐,在空氣中、或在氬氣或氮氣環境下、或在通入氫氣及氬氣混合氣環境下,在煅燒溫度600~900℃下,持續煅燒熱處理10~72小時,取得獲得碳源包覆改質的磷酸鋰鐵錳(LFMP)煅燒產物,即製得分子式為LiFe1-yMnyPO4/C的磷酸鋰鐵錳/碳(LFMP/C)陰極材料,其中0<y<1。 A method for manufacturing a lithium iron iron manganese/carbon cathode material comprises the steps of: a) an Imol ratio of 1:1-y:y:1, and 0<y<1; selecting a lithium source, an iron source, and a manganese source And a phosphoric acid source as a raw material; b) a carbon source selected from 1 to 30 wt% based on the total weight of lithium iron manganese/carbon (LFMP/C); c) a lithium source, an iron source, a manganese source, and a phosphoric acid The source and the carbon source are directly subjected to solid phase mixing and grinding; d) the precursor of the step c) is placed in a high temperature furnace, mixed in air or under an argon or nitrogen atmosphere, or with hydrogen and argon. Under the gas environment, the calcination temperature is 600-900 °C, the calcination heat treatment is continued for 10 to 72 hours, and the calcined product of lithium iron phosphate (LFMP) obtained by carbon source coating modification is obtained, and the molecular formula is LiFe 1-y Mn. y PO 4 /C lithium iron iron manganese/carbon (LFMP/C) cathode material, where 0 < y < 1. 如申請專利範圍第1項所述之磷酸鋰鐵錳/碳陰極材料的製造方法,其中,在步驟c)進行五種原料固相混合時,加入螫合劑作為還原劑,且選自草酸、酒石酸、檸檬酸、聚丙烯酸或琥珀酸的其中一種或以上混合。 The method for producing a lithium iron manganese/carbon cathode material according to claim 1, wherein in the step c), when the five raw materials are mixed by solid phase, a chelating agent is added as a reducing agent, and is selected from the group consisting of oxalic acid and tartaric acid. One or more of citric acid, polyacrylic acid or succinic acid are mixed. 如申請專利範圍第1項所述之磷酸鋰鐵錳/碳陰極材料的製造方法,其中,在進行步驟d)持續煅燒熱處理之前,對置入高溫爐的前趨物先進行預燒熱處理,在溫度350~500℃下熱處理1~10小時,將前趨物的水份及小分子除掉。 The method for producing a lithium iron manganese/carbon cathode material according to claim 1, wherein before the step d) is continued to perform the calcination heat treatment, the precursor of the high temperature furnace is first subjected to a calcination heat treatment. Heat treatment at 350~500 °C for 1~10 hours to remove the moisture and small molecules of the precursor. 如申請專利範圍第1項、第2項或第3項所述之磷酸鋰鐵錳/碳陰極材料的製造方法,其中,在步驟d)進行煅燒熱處理的過程中,通入氫氣及氬氣混合氣體的組成,為H2:Ar=10%:90%、H2:Ar=5%:95%、H2:Ar=4%:96%、H2:Ar=3%:97%、H2:Ar=2%:98%、H2:Ar=1%:99%或H2:Ar=0.5%:99.5%的其中一種組成。 The method for producing a lithium iron manganese/carbon cathode material according to the first, second or third aspect of the patent application, wherein in the step d), the hydrogenation and the argon gas are mixed during the calcination heat treatment. The composition of the gas is H 2 : Ar = 10%: 90%, H 2 : Ar = 5%: 95%, H 2 : Ar = 4%: 96%, H 2 : Ar = 3%: 97%, H 2 : Ar = 2%: 98%, H 2 : Ar = 1%: 99% or H 2 : Ar = 0.5%: 99.5% of one of the compositions. 如申請專利範圍第4項所述之磷酸鋰鐵錳/碳陰極材料的製造方法,其中,在步驟d)製得的磷酸鋰鐵錳/碳陰極材料,包含殘留碳量佔磷酸鋰鐵錳/碳(LFMP/C)總重量的0.10~20wt%。 The method for producing a lithium iron manganese/carbon cathode material according to the fourth aspect of the invention, wherein the lithium iron phosphate/carbon cathode material obtained in the step d) comprises residual lithium in the amount of lithium iron manganese oxide/ The total weight of carbon (LFMP/C) is 0.10-20% by weight. 如申請專利範圍第4項所述之磷酸鋰鐵錳/碳陰極材料的製造方法,其中,在步驟d)製得的磷酸鋰鐵錳/碳陰極材料,分子式為LiFe1-yMnyPO4/C,且y=0.2、0.5、0.7及0.8。 The method for producing a lithium iron manganese/carbon cathode material according to the fourth aspect of the invention, wherein the lithium iron phosphate/carbon cathode material obtained in the step d) has a molecular formula of LiFe 1-y Mn y PO 4 /C, and y = 0.2, 0.5, 0.7, and 0.8. 如申請專利範圍第4項所述之磷酸鋰鐵錳/碳陰極材料的製造方法,其中,所述鋰源為鋰金屬氫氧化物、鋰金屬氯化物或鋰金屬鹽類;所述鐵源為鐵金屬氧化物、鐵金屬氯化物或鐵金屬鹽類;所述錳源為錳金屬氧化物或錳金屬鹽類;所述磷酸源為選自磷酸銨、磷酸氫銨、磷酸二氫銨、磷酸鋰、磷酸氫鋰、磷酸銨鋰、磷酸或磷酸鈉的其中一種或以上混合;所述碳源為有機化合物、天然高分子化合物、合成高分子化合物或導電碳材。 The method for producing a lithium iron manganese/carbon cathode material according to the fourth aspect of the invention, wherein the lithium source is a lithium metal hydroxide, a lithium metal chloride or a lithium metal salt; An iron metal oxide, an iron metal chloride or an iron metal salt; the manganese source being a manganese metal oxide or a manganese metal salt; the phosphoric acid source being selected from the group consisting of ammonium phosphate, ammonium hydrogen phosphate, ammonium dihydrogen phosphate, phosphoric acid One or more of lithium, lithium hydrogen phosphate, lithium ammonium phosphate, phosphoric acid or sodium phosphate are mixed; the carbon source is an organic compound, a natural polymer compound, a synthetic polymer compound or a conductive carbon material. 如申請專利範圍第4項所述之磷酸鋰鐵錳/碳陰極材料的製造方法,其中,所述氬氣(Ar)以氮氣(N2)取代。 The method for producing a lithium iron manganese/carbon cathode material according to claim 4, wherein the argon (Ar) is substituted with nitrogen (N 2 ). 如申請專利範圍第7項所述之磷酸鋰鐵錳/碳陰極材料的製造方法,其中,所述碳源選自蔗糖、葡萄糖、澱粉、呋喃樹脂、聚乙烯醇(PVA)、聚苯乙烯(PS)、聚苯乙烯球(PS球)、甲基丙烯甲酯球(PMMA球)、Super P導電碳材、碳球導電碳材(CS)、碳黑導電碳材(CB)、石墨烯導電碳材、奈米碳管碳材、人工石墨、合成石墨或中間相碳微球(MCMB)的其中一種或以上混合。 The method for producing a lithium iron manganese/carbon cathode material according to claim 7, wherein the carbon source is selected from the group consisting of sucrose, glucose, starch, furan resin, polyvinyl alcohol (PVA), and polystyrene ( PS), polystyrene ball (PS ball), methyl methacrylate ball (PMMA ball), Super P conductive carbon material, carbon ball conductive carbon material (CS), carbon black conductive carbon material (CB), graphene conductive One or more of carbon material, carbon nanotube carbon material, artificial graphite, synthetic graphite or mesocarbon microbeads (MCMB) are mixed. 如申請專利範圍第7項所述之磷酸鋰鐵錳/碳陰極材料的製造方法,其中,所述鐵源為摻雜0.1~10%莫耳過渡金屬元素或稀土金屬元素的鐵金屬,且所述過渡金屬元素至少選自鈮(Nb)、鉬(Mo)、釩(V)、鈦(Ti)、錳(Mn)、釔(Y)或釕(Ru)的其中一種,所述稀土金屬元素至少選自鑭(La)、鈰(Ce)、釹(Nd)、鉕(Pm)、釤(Sm)、釓(Gd)或鉺(Er)的其中一種。 The method for producing a lithium iron manganese/carbon cathode material according to claim 7, wherein the iron source is an iron metal doped with 0.1 to 10% of a molar transition metal element or a rare earth metal element. The transition metal element is at least one selected from the group consisting of niobium (Nb), molybdenum (Mo), vanadium (V), titanium (Ti), manganese (Mn), yttrium (Y) or yttrium (Ru), the rare earth metal element It is at least one selected from the group consisting of La, Ca, Nd, Pm, Sm, Gd or Er. 如申請專利範圍第7項所述之磷酸鋰鐵錳/碳陰極材料的製造方法,其中,所述鋰源選自氫氧化鋰、硝酸鋰、醋酸鋰、氯化鋰、磷酸氫鋰、磷酸鋰、碳酸鋰或碳酸氫鋰的其中一種或以上混合;所述鐵源選自硫酸鐵、草酸亞鐵、磷酸鐵、醋酸鐵、硝酸鐵、氯化鐵或氧化鐵的其中一種或 以上混合;所述錳源選自草酸錳、碳酸錳、檸檬酸錳、硫酸錳、醋酸錳、硝酸錳、磷酸錳或氧化錳的其中一種或以上混合。 The method for producing a lithium iron manganese/carbon cathode material according to claim 7, wherein the lithium source is selected from the group consisting of lithium hydroxide, lithium nitrate, lithium acetate, lithium chloride, lithium hydrogen phosphate, and lithium phosphate. One or more of lithium carbonate or lithium hydrogencarbonate; the iron source is selected from the group consisting of iron sulfate, ferrous oxalate, iron phosphate, iron acetate, iron nitrate, iron chloride or iron oxide or And mixing the manganese source from one or more of manganese oxalate, manganese carbonate, manganese citrate, manganese sulfate, manganese acetate, manganese nitrate, manganese phosphate or manganese oxide. 一種磷酸鋰鐵錳/碳陰極材料的製造方法,包括以下步驟:a)選擇鋰源、鐵源、錳源及磷酸源為原料,在滿足莫耳比1:1-y:y:1及0<y<1的條件下,製得磷酸鋰鐵錳(LFMP)陰極材料;b)基於磷酸鋰鐵錳/碳(LFMP/C)的總重量,選擇使用量介於1~30wt%的碳源,且與步驟a)製得的磷酸鋰鐵錳(LFMP)陰極材料直接做液相混合;c).施予噴霧乾燥形成包覆碳源的球體結構LFMP/C陰極材料前驅物;d)將步驟c)的前趨物置入高溫爐,在空氣中、或在氬氣或氮氣環境下、或在通入氫氣及氬氣混合氣環境下,在煅燒溫度600~900℃下,持續煅燒熱處理10~72小時,取得獲得碳源包覆改質的磷酸鋰鐵錳(LFMP)煅燒產物,即製得分子式為LiFe1-yMnyPO4/C的磷酸鋰鐵錳/碳(LFMP/C)陰極材料,其中0<y<1。 A method for producing lithium iron manganese/carbon cathode material comprises the following steps: a) selecting a lithium source, an iron source, a manganese source and a phosphoric acid source as raw materials, satisfying a molar ratio of 1:1-y:y:1 and 0 <y<1>, a lithium iron phosphate manganese (LFMP) cathode material is prepared; b) a carbon source of 1 to 30 wt% is selected based on the total weight of lithium iron iron manganese/carbon (LFMP/C) And directly mixing the liquid phase with the lithium iron phosphate manganese (LFMP) cathode material prepared in the step a); c) applying spray drying to form a spherical structure LFMP/C cathode material precursor coated with a carbon source; d) The precursor of step c) is placed in a high temperature furnace, and the calcination heat treatment is continued at a calcination temperature of 600 to 900 ° C in air or under an argon or nitrogen atmosphere or in a mixture of hydrogen and argon. ~72 hours, obtaining a calcined product of lithium iron phosphate (LFMP) obtained by carbon source coating modification, thereby preparing lithium iron manganese/carbon (LFMP/C) having a molecular formula of LiFe 1-y Mn y PO 4 /C Cathode material, where 0 < y < 1. 一種鋰離子二次電池的陰極電極,使用申請專利範圍第1項製得的磷酸鋰鐵錳/碳(LFMP/C)陰極材料製成。 A cathode electrode of a lithium ion secondary battery is produced using a lithium iron phosphate manganese/carbon (LFMP/C) cathode material prepared in the first claim.
TW103105798A 2014-02-21 2014-02-21 Process for producing lfmp/c composite material and use the same TWI513084B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW103105798A TWI513084B (en) 2014-02-21 2014-02-21 Process for producing lfmp/c composite material and use the same
CN201510080342.3A CN104681799A (en) 2014-02-21 2015-02-13 Method for manufacturing lithium iron manganese phosphate/carbon cathode material and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103105798A TWI513084B (en) 2014-02-21 2014-02-21 Process for producing lfmp/c composite material and use the same

Publications (2)

Publication Number Publication Date
TW201533963A true TW201533963A (en) 2015-09-01
TWI513084B TWI513084B (en) 2015-12-11

Family

ID=53316580

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103105798A TWI513084B (en) 2014-02-21 2014-02-21 Process for producing lfmp/c composite material and use the same

Country Status (2)

Country Link
CN (1) CN104681799A (en)
TW (1) TWI513084B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106784788A (en) * 2016-12-23 2017-05-31 安徽工业大学 One kind prepares porous LiMn by template of carbon ball2O4Method
CN107546379B (en) * 2017-08-18 2020-02-28 宁波致良新能源有限公司 Lithium iron manganese phosphate-ternary material composite cathode material and preparation method thereof
CN109103452A (en) * 2018-08-28 2018-12-28 重庆大学 The preparation method of nano lithium iron manganese anode composite material
CN114210323A (en) * 2021-12-28 2022-03-22 苏州清控环保科技有限公司 Preparation method and application of novel efficient heterogeneous catalyst
KR20230164547A (en) * 2022-05-25 2023-12-04 후베이 알티 어드밴스드 머터리얼스 그룹 컴퍼니 리미티드 Preparation method of multiple carbon-coated high-compaction lithium iron manganese phosphate
CN115275170B (en) * 2022-09-02 2023-06-30 永州昊利新材料科技有限公司 Preparation method of cerium dioxide modified lithium iron manganese phosphate electrode material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102306753B (en) * 2011-09-03 2013-12-18 深圳市贝特瑞新能源材料股份有限公司 Full solid phase preparation method of lithium ion positive electrode material lithium iron phosphate
TW201323322A (en) * 2011-12-13 2013-06-16 Hirose Tech Co Ltd Porous lithium phosphate metal salt and method for preparing the same
CN102738465B (en) * 2012-07-20 2014-10-29 重庆大学 Preparation method of lithium iron manganese phosphate cathode composite material
CN103178266A (en) * 2013-01-24 2013-06-26 宁波力邦新能源科技有限公司 Preparation method of water system lithium ion battery material
CN104218244A (en) * 2014-09-28 2014-12-17 唐贵凤 Preparation method of high-activity material

Also Published As

Publication number Publication date
CN104681799A (en) 2015-06-03
TWI513084B (en) 2015-12-11

Similar Documents

Publication Publication Date Title
Tang et al. Improving the electrochemical performance of Ni-rich cathode material LiNi0. 815Co0. 15Al0. 035O2 by removing the lithium residues and forming Li3PO4 coating layer
Mao et al. O3-type NaNi0. 5Mn0. 5O2 hollow microbars with exposed {0 1 0} facets as high performance cathode materials for sodium-ion batteries
Arumugam et al. Synthesis and electrochemical characterization of nano-CeO2-coated nanostructure LiMn2O4 cathode materials for rechargeable lithium batteries
Yi et al. A literature review and test: Structure and physicochemical properties of spinel LiMn2O4 synthesized by different temperatures for lithium ion battery
He et al. Solvent-free mechanochemical synthesis of Na-rich Prussian white cathodes for high-performance Na-ion batteries
Yang et al. Synthesis and characterization of LiFePO4 and LiFePO4/C cathode material from lithium carboxylic acid and Fe3+
TWI513084B (en) Process for producing lfmp/c composite material and use the same
TWI483448B (en) Process for producing spherical lfp/c or lfpo/c composite material through spray drying method and use the same
Zhou et al. Preparation and electrochemical properties of spinel LiMn2O4 prepared by solid-state combustion synthesis
Zhang et al. Graphene oxide-confined synthesis of Li4Ti5O12 microspheres as high-performance anodes for lithium ion batteries
Sen et al. Synthesis of molybdenum oxides and their electrochemical properties against Li
Sun et al. Carbon-coated mesoporous LiTi2 (PO4) 3 nanocrystals with superior performance for lithium-ion batteries
Qiao et al. Synthesis and electrochemical performance of rod-like LiV3O8 cathode materials for rechargeable lithium batteries
Yang et al. Synthesis and electrochemical properties of Zn-doped, carbon coated lithium vanadium phosphate cathode materials for lithium-ion batteries
Huang et al. LiMgxMn2− xO4 (x≤ 0.10) cathode materials with high rate performance prepared by molten-salt combustion at low temperature
CN104393272A (en) Lithium titanate cathode composite material and preparation method
Huang et al. Carbon-coated lithium titanium phosphate nanoporous microplates with superior electrochemical performance
Kang et al. Design of Nb2O5@ rGO composites to optimize the lithium-ion storage performance
Hou et al. Facile hydrothermal method synthesis of coralline-like Li1. 2Mn0. 54Ni0. 13Co0. 13O2 hierarchical architectures as superior cathode materials for lithium-ion batteries
Li et al. Enhanced properties of LiFePO4/C cathode materials co-doped with V and F ions via high-temperature ball milling route
Li et al. Solvothermal preparation of carbon coated V6O13 nanocomposite as cathode material for lithium-ion battery
TWI651272B (en) Process for producing lr-lnmo composite materials and use the same
Yu et al. Oxygen vacancies enhance lithium storage performance in ultralong vanadium pentoxide nanobelt cathodes
Liu et al. A facile polymer-pyrolysis preparation of submicrometer CoMoO4 as an electrode of lithium ion batteries and supercapacitors
CN103746117A (en) Preparation method of magnesium-ion-doped lithium ion battery positive pole lithium vanadium phosphate/carbon material