TW201524997A - 抗壁磷壁酸抗體(anti-wall teichoic acid antibodies)及結合物 - Google Patents

抗壁磷壁酸抗體(anti-wall teichoic acid antibodies)及結合物 Download PDF

Info

Publication number
TW201524997A
TW201524997A TW103118003A TW103118003A TW201524997A TW 201524997 A TW201524997 A TW 201524997A TW 103118003 A TW103118003 A TW 103118003A TW 103118003 A TW103118003 A TW 103118003A TW 201524997 A TW201524997 A TW 201524997A
Authority
TW
Taiwan
Prior art keywords
antibody
seq
antibiotic
aac
group
Prior art date
Application number
TW103118003A
Other languages
English (en)
Other versions
TWI632157B (zh
Inventor
Eric Brown
Martine Darwish
John Flygare
Wouter Hazenbos
Byoung-Chul Lee
Sophie M Lehar
Sanjeev Mariathasan
John Hiroshi Morisaki
Thomas H Pillow
Leanna Staben
Richard Vandlen
Klaus Koefoed
Magnus Strandh
Peter S Andersen
Original Assignee
Genentech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genentech Inc filed Critical Genentech Inc
Publication of TW201524997A publication Critical patent/TW201524997A/zh
Application granted granted Critical
Publication of TWI632157B publication Critical patent/TWI632157B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/12Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria
    • C07K16/1267Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-positive bacteria
    • C07K16/1271Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-positive bacteria from Micrococcaceae (F), e.g. Staphylococcus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/53831,4-Oxazines, e.g. morpholine ortho- or peri-condensed with heterocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6801Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
    • A61K47/6803Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
    • A61K47/6807Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates the drug or compound being a sugar, nucleoside, nucleotide, nucleic acid, e.g. RNA antisense
    • A61K47/6809Antibiotics, e.g. antitumor antibiotics anthracyclins, adriamycin, doxorubicin or daunomycin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/21Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/522CH1 domain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/55Fab or Fab'
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/567Framework region [FR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/624Disulfide-stabilized antibody (dsFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value

Abstract

本發明提供抗壁磷壁酸抗體(anti-wall teichoic acid antibodies)及其抗生素結合物以及其使用方法。

Description

抗壁磷壁酸抗體(ANTI-WALL TEICHOIC ACID ANTIBODIES)及結合物 相關申請案之交叉參考
根據37 CFR §1.53(b)提出申請之本非臨時申請案根據35 USC §119(e)主張於2013年5月31日提出申請之美國臨時申請案第61/829,461號之權益,該案件之全部內容以引用方式併入。
序列表
本申請案含有以ASCII格式電子提交之序列表且其全部內容在此以引用方式併入。於2014年5月20日創建之該ASCII拷貝命名為P4960R1-WO_SequenceListing.txt且大小為196,103個位元。
本發明係關於抗壁磷壁酸(anti-wall teichoic acid,「抗WTA」)抗體與雷福黴素(rifamycin)型抗生素之結合物且係關於所得抗體-抗生素結合物在治療傳染病中之用途。
病原性細菌係人類及動物兩者之疾病及死亡之實質性原因。該等細菌中之突出者係金黃色葡萄球菌(Staphylococcus aureusS.aureus;SA),其係全世界人類之細菌感染之主要原因。金黃色葡萄球菌可引起一系列疾病,自不嚴重之皮膚感染至諸如以下等危及生命之疾病:肺炎、腦膜炎、骨髓炎、心內膜炎、中毒性休克症候群(TSS)、菌血症及敗血症。其發病在皮膚、軟組織、呼吸道、骨、關 節、血管內至傷口感染範圍內。其仍係院內感染之5種最常見原因之一且通常係術後傷口感染之原因。在美國醫院,每年大約有500,000名患者感染葡萄球菌感染。
在過去幾十年裏,金黃色葡萄球菌感染正變得愈來愈難以治療,此主要歸因於抵抗所有已知β-內醯胺抗生素之抗二甲氧苯青黴素(methicillin)之金黃色葡萄球菌(MRSA)的出現(Boucher,H.W.等人Bad bugs,no drugs:no ESKAPE!An update from the Infectious Diseases Society of America.Clinical infectious diseases:an official publication of the Infectious Diseases Society of America 48,1-12(2009))。情況如此嚴重,以致於到2005年,將MRSA感染報導為因單一感染物所致之主要死亡原因-導致美國超過15,000人死亡(DeLeo,F.R.及Chambers,H.F.Reemergence of antibiotic-resistant Staphylococcus aureus in the genomics era.The Journal of Clinical Investigation 119:2464-2474(2009))。梵穀黴素(Vancomycin)、利奈唑胺(linezolid)及達托黴素(daptomycin)已成為用於治療侵襲性MRSA感染之精選抗生素(Boucher,H.,Miller,L.G.及Razonable,R.R.Serious infections caused by methicillin-resistant Staphylococcus aureus.Clinical infectious diseases:an official publication of the Infectious Diseases Society of America 51增刊2,S183-197(2010))。然而,亦已在MRSA臨床菌株中報導對梵穀黴素之敏感性之降低以及對利奈唑胺及達托黴素之交叉抗性(Nannini,E.,Murray,B.E.及Arias,C.A.Resistance or decreased susceptibility to glycopeptides,daptomycin,and linezolid in methicillin-resistant Staphylococcus aureus.Current opinion in pharmacology 10,516-521(2010))。隨著時間的推移,克服抗性所必需之梵穀黴素劑量已緩慢上升至發生腎毒性之程度。因此,儘管有該等抗生素,但來自侵襲性MRSA感染之死亡率及發病率仍然較高。
儘管一般認為SA係細胞外病原體,但過去至少50年之研究已揭示其在多種類型之宿主細胞(職業性吞噬細胞及非吞噬細胞兩者)中感染及存活之能力(Gresham,H.D.等人Survival of Staphylococcus aureus inside neutrophils contributes to infection.J Immunol 164,3713-3722(2000);Anwar,S.,Prince,L.R.,Foster,S.J.,Whyte,M.K.及Sabroe,I.The rise and rise of Staphylococcus aureus:laughing in the face of granulocytes.Clinical and Experimental Immunology 157,216-224(2009);Fraunholz,M.及Sinha,B.Intracellular staphylococcus aureus:Live-in and let die.Frontiers in cellular and infection microbiology 2,43(2012);Garzoni,C.及Kelley,W.L.Return of the Trojan horse:intracellular phenotype switching and immune evasion by Staphylococcus aureus.EMBO molecular medicine 3:115-117(2011))。 此兼性細胞內存留使得能夠躲避宿主免疫、長期定殖於宿主、維持慢性感染狀態,且可能係習用抗生素療法之臨床失敗及該習用抗生素療法後復發之原因。此外,細胞內細菌暴露於次最佳抗生素濃度可刺激出現抗生素抗性菌株,由此使得此臨床問題更為嚴重。與該等觀察結果一致,利用梵穀黴素或達托黴素治療患有諸如菌血症或心內膜炎等侵襲性MRSA感染之患者與大於50%之失敗率相關(Kullar,R.,Davis,S.L.,Levine,D.P.及Rybak,M.J.Impact of vancomycin exposure on outcomes in patients with methicillin-resistant Staphylococcus aureus bacteremia:support for consensus guidelines suggested targets.Clinical infectious diseases:an official publication of the Infectious Diseases Society of America 52,975-981(2011);Fowler,V.G.,Jr.等人Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus.The New England journal of medicine 355,653-665(2006);Yoon,Y.K.,Kim,J.Y.,Park,D.W.,Sohn,J.W.及 Kim,M.J.Predictors of persistent methicillin-resistant Staphylococcus aureus bacteraemia in patients treated with vancomycin.The Journal of antimicrobial chemotherapy 65:1015-1018(2010))。因此,較成功之抗葡萄球菌療法應包括消除細胞內細菌。
多數當前抗細菌劑在化學上係多種天然化合物之半合成修飾物。該等包括例如β-內醯胺抗細菌劑,其包括青黴素(penicillin)(由青黴菌屬(Penicillium)中之真菌產生)、頭孢菌素(cephalosporin)及碳青黴烯(carbapenem)。仍自活生物體分離之抗微生物化合物包括胺基糖苷,而其他抗細菌劑(例如,磺胺、喹啉酮及噁唑啶酮)僅係藉由化學合成產生。據此,基於化合/生物合成來源將許多抗細菌化合物分類成天然的、半合成的及合成的。另一分類系統係基於生物活性;在此分類中,根據對微生物之生物效應將抗菌劑劃分成兩個寬群組:殺菌劑殺死細菌,且抑菌劑減緩或延緩細菌生長。
安沙黴素(Ansamycin)係抑制細菌RNA聚合酶且針對革蘭氏(gram)陽性細菌及選擇性革蘭氏陰性細菌具有優異效能之抗生素類別,包括雷福黴素、雷發平(rifampin)、利福平(rifampicin)、利福布汀(rifabutin)、利福噴汀(rifapentine)、利福拉齊、ABI-1657及其類似物(Rothstein,D.M.等人(2003)Expert Opin.Invest.Drugs 12(2):255-271;US 7342011;US 7271165)。
已報導將免疫療法用於預防及治療金黃色葡萄球菌(包括MRSA)感染。US2011/0262477係關於使用細菌黏附蛋白Eap、Emp及AdsA作為疫苗來刺激針對MRSA之免疫反應。WO2000071585闡述對特定金黃色葡萄球菌菌株分離物有反應性之經分離單株抗體。 US20110059085A1提出利用對一或多種SA鞘膜抗原具有特異性之IgM Ab之基於Ab之策略,但未闡述實際抗體。
磷壁酸(TA)係在包括SA在內之革蘭氏陽性細菌之細胞壁內發現 之細菌多糖。壁磷壁酸(WTA)係彼等共價連接至細胞壁之肽聚糖(PDG)層者;而脂磷壁酸(LTA)係彼等共價連接至細胞質膜之脂質者。 Xia等人(2010)Intl.J.Med.Microbiol.300:148-54。該等含糖聚合物在不利條件下之細菌存活及其他基本細胞過程中起至關重要之作用。 已知WTA結構隨細菌物種而寬泛地變化。金黃色葡萄球菌TA係由諸如核糖醇磷酸酯或甘油磷酸酯等重複多元醇磷酸酯亞單位構成。考慮到其結構多樣性及可變性,將WTA視為有吸收力之抗體靶標且視為疫苗,出處見上文。
亦稱為免疫結合物之抗體-藥物結合物(ADC)係經靶向化學治療分子,其藉由使有效細胞毒性藥物靶向表現抗原之腫瘤細胞來組合抗體及細胞毒性藥物兩者之理想性質(Teicher,B.A.(2009)Curr.Cancer Drug Targets 9:982-1004),藉此藉由使功效最大化及使偏離靶標之毒性最小化來提高治療指數(Carter,P.J.及Senter P.D.(2008)The Cancer J..14(3):154-169;Chari,R.V.(2008)Acc.Chem.Res.41:98-107。ADC包含經由連接體單元共價附著至細胞毒性藥物部分之靶向抗體。免疫結合物允許將藥物部分靶向遞送至腫瘤及其中之細胞內累積,其中全身性投與未結合藥物可導致對正常細胞以及設法消除之腫瘤細胞不可接受之毒性程度(Polakis P.(2005)Curr.Opin.Pharmacol.5:382-387)。給定靶抗原之有效ADC產生取決於諸如以下等參數之最佳化:靶抗原表現程度、腫瘤可及性(Kovtun,Y.V.及Goldmacher V.S.(2007)Cancer Lett.255:232-240)、抗體選擇(US 7964566)、連接體穩定性(Erickson等人(2006)Cancer Res.66(8):4426-4433;Doronina等人(2006)Bioconjugate Chem.17:114-124;Alley等人(2008)Bioconjugate Chem.19:759-765)、細胞毒性藥物作用機制及效能、藥物負載(Hamblett等人(2004)Clin.Cancer Res.10:7063-7070)及連接體-藥物與抗體之結合模式(Lyon,R.等人(2012)Methods in Enzym.502:123- 138;Xie等人(2006)Expert.Opin.Biol.Ther.6(3):281-291;Kovtun等人(2006)Cancer Res.66(6):3214-3121;Law等人(2006)Cancer Res.66(4):2328-2337;Wu等人(2005)Nature Biotech.23(9):1137-1145;Lambert J.(2005)Current Opin.in Pharmacol.5:543-549;Hamann P.(2005)Expert Opin.Ther.Patents 15(9):1087-1103;Payne,G.(2003)Cancer Cell 3:207-212;Trail等人(2003)Cancer Immunol.Immunother.52:328-337;Syrigos及Epenetos(1999)Anticancer Res.19:605-614)。
ADC於癌症療法中之概念亦已擴展至抗細菌療法中,在此情況下,藥物部分係抗生素,從而產生抗體-抗生素結合物(AAC)。US 5545721及US 6660267闡述經由抗生素結合靶細菌之表面之非特異性免疫球蛋白-抗生素結合物之合成及其用於治療敗血症之用途。US 7569677及相關專利預測性地提出抗生素結合抗體,其具有對細菌抗原(例如SA鞘膜多糖)具有特異性之抗原結合部分,但缺乏與細菌Fc-結合蛋白(例如,葡萄球菌蛋白A)反應之恆定區。
本發明提供稱作「抗體-抗生素結合物」或「AAC」之組合物,其包含藉由共價附著至一或多個雷福黴素型抗生素部分結合之抗體。
本發明之一個態樣係包含輕鏈及H鏈之經分離抗WTA單株抗體,該L鏈包含CDR L1、CDR L2及CDR L3且該H鏈包含CDR H1、CDR H2及CDR H3,其中該等CDR L1、CDR L2及CDR L3以及CDR H1、CDR H2及CDR H3分別包含Ab 4461(SEQ ID NO.1-6)、4624(SEQ ID NO.7-12)、4399(SEQ ID NO.13-18)及6267(SEQ ID NO.19-24)中每一者之CDR之胺基酸序列,如表6A及6B中所示。
在一個實施例中,經分離抗WTA單株抗體包含重鏈可變區(VH),其中該VH在分別選自抗體4461、4624、4399及6267之SEQ ID NO.26、SEQ ID NO.28、SEQ ID NO.30、SEQ ID NO.32之VH序列之 VH區的長度內包含至少95%序列一致性。在一個實施例中,此抗體進一步包含L鏈可變區(VL),其中該VL在分別選自抗體4461、4624、4399及6267之SEQ ID NO.25、SEQ ID NO.27、SEQ ID NO.29、SEQ ID NO.31之VL序列之VL區的長度內包含至少95%序列一致性。在其他實施例中,序列一致性係96%、97%、98%、99%或100%。
在更具體之實施例中,抗體包含:(i)SEQ ID NO.25之VL及SEQ ID NO.26之VH;(ii)SEQ ID NO.27之VL及SEQ ID NO.28之VH;(iii)SEQ ID NO.29之VL及SEQ ID NO.30之VH;或(iv)SEQ ID NO.31之VL及SEQ ID NO.32之VH。
在一個態樣中,前述實施例中任一者之Ab結合WTAα。
在另一態樣中,本發明提供包含輕鏈及H鏈之經分離抗WTA單株抗體,該L鏈包含CDR L1、CDR L2及CDR L3且該H鏈包含CDR H1、CDR H2及CDR H3,其中該等CDR L1、CDR L2及CDR L3以及CDR H1、CDR H2及CDR H3包含圖14中所示每一Ab之相應CDR之胺基酸序列(SEQ ID NO.33-110)。在具體實施例中,該等Ab結合WTAα。
在另一態樣中,本發明提供經分離抗WTA單株抗體,具體而言包含L鏈可變區(VL)之抗WTAβ單株抗體,其中該VL在選自分別對應於抗體6078、6263、4450、6297、6239、6232、6259、6292、4462、6265、6253、4497及4487中每一者之VL序列之VL區的長度內包含至少95%序列一致性,如圖17A-1至17A-2中於Kabat位置1-107處所示。在其他實施例中,抗體進一步包含重鏈可變區(VH),其中該VH在選自分別對應於抗體6078、6263、4450、6297、6239、6232、6259、6292、4462、6265、6253、4497及4487中每一者之VH序列之VH區的長度內包含至少95%序列一致性,如圖17B-1至17B-2中於Kabat位置1-113處所示。在抗體之更具體實施例中,VH包含SEQ ID NO.112之序 列且VL包含SEQ ID NO.111。
在某一實施例中,經分離抗WTAβ抗體係其中輕鏈包含SEQ ID NO.115之序列且具有經改造半胱胺酸之H鏈包含SEQ ID NO.116之序列者。在另一實施例中,抗體係其中輕鏈包含SEQ ID NO.115之序列且具有經改造半胱胺酸之H鏈包含SEQ ID NO.117之序列者,其中X係M、I或V。在不同實施例中,使包含SEQ ID NO.113之序列之L鏈與SEQ ID NO.117之Cys改造之H鏈變體配對;變體係其中X係M、I或V者。
藉由本發明提供之另一經分離抗WTAβ抗體包含重鏈及輕鏈,其中該重鏈包含與SEQ ID NO.120具有至少95%序列一致性之VH。在另一實施例中,此抗體進一步包含與SEQ ID NO.119具有至少95%序列一致性之VL。在具體實施例中,抗WTAβ抗體包含輕鏈及重鏈,其中該L鏈包含SEQ ID NO.119之VL序列且該H鏈包含SEQ ID NO.120之VH序列。在再一更具體之實施例中,結合WTAβ之經分離抗體包含SEQ ID NO.121之L鏈及SEQ ID NO.122之H鏈。
抗WTAβCys改造之H鏈及L鏈變體可以任一以下組合配對以形成完整Ab用於結合至連接體-Abx中間體以生成本發明之抗WTA AAC。在一個實施例中,L鏈包含SEQ ID NO.121之序列且H鏈包含SEQ ID NO.124之序列。在另一實施例中,經分離抗體包含SEQ ID NO.123之L鏈且及包含SEQ ID NO.124或SEQ ID NO.157之序列之H鏈。在特定實施例中,本發明之抗WTAβ抗體以及抗WTAβ AAC包含SEQ ID NO.123之L鏈。
又一實施例係結合與圖13A及圖13B之每一抗WTAα Ab相同之表位之抗體。亦提供結合與圖14、圖15A及15B以及圖16A及16B之每一抗WTAβ Ab相同之表位之抗體。
在又一實施例中,本發明之抗WTAβ及抗WTAα抗體係缺乏Fc區 之抗原結合片段,較佳為F(ab’)2或F(ab)。因此,本發明提供其中WTA抗體係F(ab’)2或F(ab)之抗體-抗生素結合物。
在另一態樣中,本發明提供包含本文所揭示任一抗體及醫藥上可接受之載劑之醫藥組合物。
在又一態樣中,本發明亦提供編碼本文所揭示任一抗體之經分離核酸。在再一態樣中,本發明提供包含編碼本文所揭示任一抗體之核酸之載體。在又一實施例中,載體係表現載體。
本發明亦提供包含編碼本文所揭示任一抗體之核酸之宿主細胞。在又一實施例中,宿主細胞係原核或真核。
本發明進一步提供產生抗體之方法,其包含在適於表現編碼本文所揭示任一抗體之核酸之條件下培養包含該核酸之宿主細胞;及回收由該細胞產生之該抗體。在一些實施例中,該方法進一步包含純化該抗體。
本發明之另一態樣係包含藉由肽連接體共價附著至雷福黴素型抗生素之本發明抗壁磷壁酸(WTA)抗體之抗體-抗生素結合物(AAC)化合物。
抗體-抗生素結合物化合物之實例性實施例具有下式:Ab-(L-abx)p
其中:Ab係抗壁磷壁酸抗體;L係具有下式之肽連接體:-Str-Pep-Y-
其中Str係延伸體單元;Pep係2至12個胺基酸殘基之肽,且Y係間隔體單元;abx係雷福黴素型抗生素;且p係1至8之整數。
本發明之抗體-抗生素結合物化合物可包含為金黃色葡萄球菌半胱胺酸蛋白酶可裂解連接體之肽連接體;此等連接體包括葡萄球菌素(staphopain)B或葡萄球菌素A可裂解連接體。在另一實施例中,連接體係宿主蛋白酶可裂解連接體,較佳為人類蛋白酶組織蛋白酶B可裂解連接體。
在一個實施例中,前述中任一者之抗體-抗生素結合物化合物包含2或4之抗生素抗體比(AAR)。
本發明之另一態樣係包含本發明抗體-抗生素結合物化合物之醫藥組合物。
本發明之另一態樣係藉由向患者投與治療有效量之上述實施例中任一者之抗體-抗生素結合物化合物來治療細菌感染之方法。在一個實施例中,患者係人類。在一個實施例中,細菌感染係金黃色葡萄球菌感染。在一些實施例中,患者已診斷患有金黃色葡萄球菌感染。在一些實施例中,治療細菌感染包含減少細菌負載。
本發明進一步提供藉由投與上述實施例中任一者之抗WTA-抗生素結合物化合物殺死金黃色葡萄球菌感染患者之宿主細胞中之細胞內金黃色葡萄球菌而不殺死宿主細胞之方法。提供藉由使持留細菌(persister bacterial)與前述實施例中任一者之AAC接觸在活體內殺死持留細菌細胞(例如,金黃色葡萄球菌)之另一方法。
在另一實施例中,治療方法進一步包含投與第二治療劑。在又一實施例中,第二治療劑係抗生素,包括抵抗通常金黃色葡萄球菌或特定而言MRSA之抗生素。
在一個實施例中,與本發明之抗體-抗生素結合物化合物組合投與之第二抗生素係選自以下結構類別:(i)胺基糖苷;(ii)β-內醯胺;(iii)巨環內酯/環肽;(iv)四環素;(v)氟喹啉/氟喹啉酮;(vi)及噁唑啶酮。
在一個實施例中,與本發明之抗體-抗生素結合物化合物組合投與之第二抗生素係選自克林達黴素(clindamycin)、新生黴素(novobiocin)、瑞他帕林(rctapamulin)、達托黴素、GSK-2140944、CG-400549、西他沙星(sitafloxacin)、替考拉寧(teicoplanin)、三氯沙(triclosan)、萘啶酮、雷得唑來(radezolid)、阿黴素(doxorubicin)、安比西林(ampicillin)、梵穀黴素、亞胺培南(imipenem)、多利培南(doripenem)、吉西他濱(gemcitabine)、達巴萬星(dalbavancin)及阿奇黴素(azithromycin)。
在本文中之一些實施例中,治療後個體中之細菌負載已降低至不可檢測之程度。在一個實施例中,相較於治療前之陽性血液培養物,治療後患者之血液培養物係陰性。在本文中之一些實施例中,個體中之抗細菌性不可檢測或較低。在本文中之一些實施例中,個體對利用二甲氧苯青黴素或梵穀黴素治療無反應。
本發明之另一態樣係製備本發明抗體或抗體-抗生素結合物化合物之方法。
本發明之另一態樣係用於治療細菌感染之套組,其包含本發明醫藥組合物及使用說明書。
本發明之另一態樣係具有式II之連接體-抗生素中間體:
其中:虛線指示可選鍵; R係H、C1-C12烷基或C(O)CH3;R1係OH;R2係CH=N-(雜環基),其中該雜環基視情況經一或多個獨立地選自以下之基團取代:C(O)CH3、C1-C12烷基、C1-C12雜芳基、C2-C20雜環基、C6-C20芳基及C3-C12碳環基;或R1及R2形成5員或6員稠合雜芳基或雜環基,且視情況形成螺環或稠合6員雜芳基環、雜環基環、芳基環或碳環基環,其中該螺環或稠合6員雜芳基環、雜環基環、芳基環或碳環基環視情況經H、F、Cl、Bf、I、C1-C12烷基或OH取代;L係附著至R2或由R1及R2形成之稠合雜芳基或雜環基之肽連接體;且具有下式:-Str-Pep-Y-其中Str係延伸體單元;Pep係2至12個胺基酸殘基之肽,且Y係間隔體單元;且X係選自以下之反應性官能基:馬來醯亞胺、硫醇基、胺基、溴化物、溴乙醯胺基、碘乙醯胺基、對甲苯磺酸酯基、碘化物、羥基、羧基、吡啶基二硫化物及N-羥基琥珀醯亞胺。
圖1顯示暴露於梵穀黴素或利福平逐漸殺死MRSA。以2μg/mL(空心正方形)及20μg/mL(實心正方形)測試梵穀黴素。以0.02μg/mL(空心三角形)及0.2μg/mL(實心三角形)測試利福平。
圖2顯示受感染腹膜細胞能夠在梵穀黴素存在下將感染轉移至成骨細胞。
圖3顯示諸如金黃色葡萄球菌等革蘭氏陽性細菌之細胞壁,其中卡通呈現了壁磷壁酸(WTA)、脂磷壁酸(LTA)及使細胞膜穩定並提供附著位點之肽聚糖(PGN)鞘。
圖4顯示在定義中詳細闡述之壁磷壁酸(WTA)之化學結構及糖基修飾。
圖5顯示抗體-抗生素結合物(AAC)之可能藥物活化機制。活性抗生素(Abx)在AAC於哺乳動物細胞內部內化後釋放。
圖6A及6B匯總來自mAb文庫之初步篩選之Ab之特性,該mAb文庫顯示與來自USA300或Wood46菌株金黃色葡萄球菌菌株之細胞壁製劑之陽性ELISA結合,如實例21中所述。在結合WTA之Ab中,4個對WTAα具有特異性且13個特異性地結合WTAβ。
圖7A顯示證明AAC殺死細胞內MRSA之活體外巨噬細胞分析。
圖7B顯示相較於裸露之未結合抗WTA抗體S4497利用50μg/mL硫代-S4497-HC-A118C-pipBOR 102在巨噬細胞、成骨細胞(MG63)、氣道上皮細胞(A549)及人類臍靜脈內皮細胞(HUVEC)中對MRSA(USA300菌株)之細胞內殺死。虛線指示分析用檢測極限。
圖7C顯示利用連接體-抗生素中間體LA-51及LA-54(表2)製備之AAC之比較。利用單獨S4497抗體或利用AAC:AAC-102或AAC-105(表3)(以10μg/mL至0.003μg/mL範圍內之不同濃度)來調理MRSA。
圖7D顯示AAC殺死細胞內細菌而不損害巨噬細胞。
圖7E顯示自上述巨噬細胞細胞溶解之巨噬細胞內部之活USA300的回收。相較於裸露抗體處理對照,自受S-4497-AAC調理細菌感染之巨噬細胞回收的活的金黃色葡萄球菌極少(1/10,000)。
圖8A顯示硫代-S4497-HC-A118C-MC-vc-PAB-pipBOR 102 AAC在A/J小鼠之腹膜內感染模型中之活體內功效。藉由腹膜內注射利用MRSA感染小鼠且利用單獨50mg/Kg S4497抗體或利用50mg/Kg 102 AAC(HC-A114C Kabat=HC-A118C EU)藉由腹膜內注射進行治療。在感染後2天將小鼠處死且評價腹膜上清液(細胞外細菌)、腹膜細胞(細胞內細菌)或腎臟之總細菌負載。
圖8B顯示A/J小鼠之靜脈內活體內感染模型。藉由靜脈內注射利用MRSA感染小鼠且利用50mg/Kg S4497抗體、50mg/Kg硫代-S4497-HC-A118C-MC-vc-PAB-pipBOR 102 AAC或50mg/Kg S4497抗體+0.5mg/Kg游離雷福黴素之簡單混合物進行治療。灰色虛線指示每一器官之檢測極限。
圖9A藉由滴定S4497-pipBOR AAC顯示硫代-S4497-HC-A118C-MC-vc-PAB-pipBOR 102 AAC在靜脈內感染模型中之功效。
圖9B藉由滴定顯示在靜脈內感染模型中,硫代-S4497-HC-A118C-MC-vc-PAB-二甲基pipBOR 105 AAC比硫代-S4497-HC-A118C-MC-vc-PAB-pipBOR 102 AAC更有效。在感染後30分鐘以所示劑量投與利用S4497抗體、102 AAC或硫代-S4497-HC-A118C-MC-vc-PAB-二甲基-pipBOR 112 AAC之治療。在感染後4天將小鼠處死且藉由平鋪確定每只小鼠(彙集2個腎臟)之存活細菌總數。
圖9C顯示在靜脈內感染模型中硫代-S4497-HC-A118C-MC-vc-PAB-二甲基pipBOR 105 AAC比單獨S4497抗體或二甲基pipBOR 7抗生素更有效。藉由靜脈內注射利用2×107CFU之MRSA感染CB17.SCID小鼠。在感染後一天,利用50mg/Kg S4497抗體、50mg/Kg AAC 105或利用0.5mg/Kg二甲基-pipBOR 7(含於50mg/Kg AAC中之等效劑量之抗生素)治療小鼠。在感染後4天將小鼠處死且藉由平鋪確定每只小鼠(彙集2個腎臟)之存活細菌總數。
圖10A顯示抗金黃色葡萄球菌抗體於人類血清中之盛行率。金黃色葡萄球菌感染患者或正常對照含有與抗WTA S4497具有相同特異性之大量WTA特異性血清抗體。相對於與缺乏由S4497抗體識別之糖修飾之MRSA菌株TarM/TarS DKO(雙剔除)突變體的結合,檢查多種野生型(WT)血清試樣與表現S4497抗原之MRSA之結合。
圖10B顯示在利用MRSA之USA300菌株進行之活體外巨噬細胞分 析中在生理濃度之人類IgG(10mg/mL)存在下AAC係有效的。在10mg/mL人類IgG存在下,硫代-S4497-HC-A118C-MC-vc-PAB-二甲基pipBOR 105係有效的。利用單獨AAC或利用於10mg/mL人類IgG中稀釋之AAC調理MRSA之USA300菌株。在感染後2天評價細胞內存活細菌總數。
圖10C顯示證明在生理濃度之人類IgG存在下AAC有效之活體內感染模型。組合數據係來自使用硫代-S4497-HC-A118C-MC-vc-PAB-二甲基pipBOR 105112 AAC之兩種單獨製劑進行之3次獨立實驗。利用AAC治療之小鼠具有大於4-log之細菌負載減小(司徒頓氏t-測試(Students t-test)p=0.0005)。
圖11A顯示在利用正常濃度之人類IgG重構之小鼠中證明AAC比現行護理標準(SOC)抗生素梵穀黴素更有效之活體內感染模型。利用S4497抗體(50mg/Kg)、梵穀黴素(100mg/Kg)、硫代-S4497-HC-A118C-MC-vc-PAB-二甲基pipBOR 105 AAC(50mg/Kg)或利用不識別MRSA之同種型對照抗體製得之AAC(硫代-hu-抗gD 5B5-HC-A118C-MC-vc-PAB-二甲基pipBOR 110 AAC)(50mg/Kg)治療小鼠。
圖11B顯示在活體內感染模型中抗金黃色葡萄球菌抗體與自腎臟分離之USA300菌株之相對結合,如藉由FACS所確定。S4497抗體識別金黃色葡萄球菌之細胞壁上經由β-變旋異構鍵連接至壁磷壁酸(WTA)之N-乙醯基葡糖胺修飾。S7578抗體結合經由α-變旋異構鍵接合至WTA之類似N-乙醯基葡糖胺修飾。rF1抗體係識別在含有細胞壁錨定蛋白之SDR-重複家族上發現之糖修飾之陽性對照抗MRSA抗體。gD抗體係不識別金黃色葡萄球菌之陰性對照人類IgG1
圖11C顯示在利用正常濃度之人類IgG重構之小鼠中根據與圖11A相同之方案證明硫代-S6078-HC A114C-LCWT-MC-vc-PAB-二甲基pipBOR 129 AAC比裸露抗WTA抗體S4497更有效的活體內感染模型。 利用S4497抗體(50mg/Kg)或硫代-S6078-HC A114C-LCWT-MC-vc-PAB-二甲基pipBOR 129 AAC(50mg/Kg)治療小鼠。
圖12顯示證明除非組織蛋白酶B將連接體裂解否則AAC對金黃色葡萄球菌無毒之生長抑制分析。示意性組織蛋白酶釋放分析(實例20)顯示在左邊。利用組織蛋白酶B處理AAC以釋放游離抗生素。藉由製備所得反應物之連續稀釋物並確定能夠抑制金黃色葡萄球菌生長之AAC之最低劑量來確定完整AAC對組織蛋白酶B處理AAC中之抗生素活性總量。右上圖顯示硫代-S4497-HC-A118C-MC-vc-PAB-pipBOR 102之組織蛋白酶釋放分析且右下圖顯示硫代-S4497-HC-A118C-MC-vc-PAB-二甲基pipBOR 105之組織蛋白酶釋放分析。
圖13A顯示4種人類抗WTAα抗體之輕鏈可變區(VL)之胺基酸序列比對(按出現順序分別為SEQ ID NO 25、27、29及31)。根據Kabat編號之CDR序列CDRL1、L2及L3帶下劃線。
圖13B顯示圖13A之4種人類抗WTAα抗體之重鏈可變區(VH)之胺基酸序列比對。根據Kabat編號之CDR序列CDR H1、H2及H3帶下劃線(按出現順序分別為SEQ ID NO 26、28、30及32)。
圖14顯示13種人類抗WTAβ抗體之CDR序列之L鏈及H鏈(SEQ ID NO 33-110)。
圖15A-1及15A-2顯示抗WTAβAb 6078(未經修飾)及其變體v2、v3、v4之全長L鏈(輕鏈)(按出現順序分別為SEQ ID NO 113、113、115、113、115、113、115及115)之比對。根據Kabat編號之CDR序列CDRL1、L2及L3帶下劃線。框顯示根據Kabat及Chothia之接觸殘基及CDR殘基。含有經改造Cys之L鏈變體係藉由恆定區末端黑框中之C(在此情況下於EU殘基號205處)指示。變體名稱(例如,v2LC-Cys)意指含有改造至L鏈中之Cys之變體2。HCLC-Cys意指H鏈及L鏈中之每一者含有經改造Cys。變體2、3及4在H鏈開始處具有變化,如圖15B 中所示。
圖15B-1、15B-2、15B-3、15B-4顯示抗WTAβAb 6078(未經修飾)及其在H鏈開始處具有變化之變體v2、v3、v4之全長H鏈(重鏈)(按出現順序分別為SEQ ID NO 114、139-144及143)之比對。含有經改造Cys之H鏈變體係藉由恆定區末端黑框中之C(在此情況下於EU殘基號118處)指示。
圖16A-1及16A-2顯示抗WTAβAb 4497(未經修飾)之全長L鏈及Cys經改造L鏈(按出現順序分別為SEQ ID NO 121、123、145及145)之比對。根據Kabat編號之CDR序列CDRL1、L2及L3帶下劃線。框顯示根據Kabat及Chothia之接觸殘基及CDR殘基。含有經改造Cys之L鏈變體係藉由靠近恆定區末端之虛線框中之C(在此情況下於EU殘基號205處)指示。
圖16B-1、16B-2、16B-3顯示抗WTAβAb 4497(未經修飾)及其v8變體(CDR H3位置96處之D改變成E,具有或不具有經改造Cys)之全長H鏈(按出現順序分別為SEQ ID NO 146-147、157及147)之比對。含有經改造Cys之H鏈變體係藉由恆定區末端黑框中之C(在此情況下於EU殘基號118處)指示。
圖17A-1、17A-2、17A-3顯示13種人類抗WTAβ抗體之全長輕鏈之胺基酸序列比對(按出現順序分別為SEQ ID NO 113、158-167、121及168)。可變區(VL)跨越Kabat胺基酸位置1至107。根據Kabat編號之CDR序列CDRL1、L2及L3帶下劃線。
圖17B-1至17B-6顯示圖17A-1、17A-2、17A-3之13種人類抗WTAβ抗體之全長重鏈之胺基酸序列比對(按出現順序分別為SEQ ID NO 114、169-176、133-134、138及127)。可變區(VH)跨越Kabat胺基酸位置1至113。根據Kabat編號之CDR序列CDR H1、H2及H3帶下劃線。藉由星號標記之H鏈Eu位置118可改變成Cys用於藥物結合。以黑 色突出顯示之殘基可經不影響抗原結合其他殘基替代以避免去醯胺、天冬胺酸異構化、氧化或N-連接糖基化。
圖18A顯示如藉由ELISA所分析Ab 4497突變體與金黃色葡萄球菌細胞壁之結合。
圖18B顯示Ab 4497及其突變體(按出現順序分別為SEQ ID NO 177、177、177-178、178-179、179-180、180及180)於突出顯示之胺基酸位置處及其如藉由ELISA所測試之相對抗原結合強度之比較。
圖19顯示Ab 6078 WT及突變體與蛋白質A缺陷型菌株USA300(USA300-SPA)之結合之FACS分析結果,如實例23中所述。該等突變體顯示與金黃色葡萄球菌之未受損結合。
圖20顯示在靜脈內感染模型中利用50mg/kg游離抗體進行預治療並不有效。在利用2×107個CFU之USA300感染前30分鐘藉由靜脈內注射向Balb/c小鼠給予單劑量之媒劑對照(PBS)或50mg/Kg抗體。治療組包括不結合金黃色葡萄球菌之同種型對照抗體(gD)、針對壁磷壁酸之β修飾之抗體(4497)或針對壁磷壁酸之α修飾之抗體(7578)。藉由腹膜內注射向對照小鼠每天兩次給予利用110mg/Kg梵穀黴素(Vanco)進行之治療。
圖21及圖22顯示在使用利用正常濃度之人類IgG重構之小鼠之靜脈內感染模型中針對壁磷壁酸之β修飾或壁磷壁酸之α修飾之AAC係有效的。使用經最佳化給藥方案利用人類IgG對CB17.SCID小鼠進行重構以在血清中獲得至少10mg/mL恆定濃度之人類IgG且藉由靜脈內注射利用2×107個CFU之USA300進行感染。在感染後1天起始利用僅有緩衝液之對照(PBS)、60mg/Kg β-WTA AAC(136 AAC)或60mg/Kg α-WTA AAC(155 AAC)進行治療。
圖23A及圖23B顯示自2-硝基苯-1,3-二醇1合成連接體-抗生素中間體51
圖24顯示自TBS-保護之苯并噁嗪并雷福黴素4合成連接體-抗生素中間體MC-vc-PAB-二甲基pipBOR 54
圖25A及圖25B顯示自(5-氟-2-硝基-1,3-伸苯基)雙(氧基)雙(亞甲基)二苯9合成二甲基pipBOR 7
圖26顯示用於裂解確認之FRET肽受質、即自REPLi蛋白酶活性篩選於P1、P2及P3處含有最豐富殘基之mal-K(TAMRA)GGAFAGGGK(螢光黃)(SEQ ID NO:125)之結構。來自REPLi FRET肽結構之側接Gly殘基係保守的。N末端上之硫醇反應性馬來醯亞胺基團允許結合至具有反應性半胱胺酸之抗體。在FRET肽裂解後,淬滅效應喪失並觀察到螢光增強。
圖27顯示硫代FAB S4497-MC-GGAFAGGG-(pipBOR)(揭示為SEQ ID NO:126之「核心肽」)、即用於鑑別含有所關注蛋白酶之活性部分之工具化合物之結構。Mal-GGAFAGGG-DNA31(揭示為SEQ ID NO:126之「核心肽」)結合至硫代FAB 4497。硫代FAB含有一個反應性半胱胺酸。金黃色葡萄球菌蛋白酶裂解Ala之C末端之連接體,從而釋放Gly-Gly-Gly-(pipBOR)。
圖28及圖29顯示,Mal-K(tamra)GGAFAGGGK(螢光黃)(SEQ ID NO:125)AAC在結合至結合金黃色葡萄球菌之抗體(硫代-S4497)時於Wood46(圖28)及USA300(圖29)兩者中皆裂解,且在結合至不結合金黃色葡萄球菌之抗體(硫代-曲妥珠單抗(trastuzumab))時不會於Wood46(圖28)及USA300(圖29)兩者中裂解。隨時間量測與Wood46及USA300 MRSA之對數期培養物一起培育之硫代MAB 4497 mal-K(tamra)GGAFAGGGK(螢光黃)(SEQ ID NO:125)的螢光強度。自圖26之mal-K(TAMRA)GGAFAGGGK(螢光黃)(SEQ ID NO:125)製得之硫代MAB 4497 FRET肽結合物顯示在兩種菌株中之螢光增強,從而指示實驗連接體藉由金黃色葡萄球菌蛋白酶裂解且該蛋白酶存在於 MRSA之臨床相關菌株USA300中(圖29)。細胞密度影響裂解速率,其中裂解較早發生於較高細胞密度(108個細胞/ml)之培養物中。同位素對照結合物(硫代-曲妥珠單抗)在任何條件下皆不顯示螢光增強。
圖30顯示兩種針對AAC中之葡萄球菌素B裂解經最佳化之連接體。連接體係針對葡萄球菌素B裂解經最佳化包括對P4及P1’之殘基偏好。使用來自REPLi篩選之數據設計連接體。將QSY7添加至每一連接體之C末端以用作抗生素代用品。
圖31顯示來自巨噬細胞分析之結果,證明葡萄球菌素可裂解AAC能夠殺死細胞內細菌。將金黃色葡萄球菌之USA300菌株與不同劑量(100μg/mL、10μg/mL、1μg/mL或0.1μg/mL)之單獨S4497抗體、硫代-S4497 HC WT(v8)、LC V205C-MC-vc-PAB-(二甲基pipBOR)AAC-192或硫代-S4497 HC v1-MP-LAFG-PABC-(六氫吡嗪基BOR)(揭示為SEQ ID NO:128之「核心肽」)AAC-193一起培育以允許AAC與細菌結合(圖31)。在1小時培育後,將經調理細菌進給至鼠類巨噬細胞中且在37℃下培育2小時以允許吞噬作用。在吞噬作用完成後,用補充有50μg/mL健他黴素(gentamycin)之正常生長培養基替代感染混合物以殺死任何殘留之細胞外細菌且在2天後藉由將巨噬細胞溶解物之連續稀釋物平鋪於胰蛋白酶大豆瓊脂板上來確定細胞內存活細菌總數。葡萄球菌素可裂解AAC能夠以相較於組織蛋白酶B可裂解AAC類似之效能殺死細胞內USA300。灰色虛線指示分析用檢測極限(10個CFU/孔)。
圖32顯示來自巨噬細胞分析之結果,證明葡萄球菌素可裂解AAC能夠殺死細胞內細菌。AAC經由抗體之抗原特異性結合使抗生素靶向殺死金黃色葡萄球菌。選擇金黃色葡萄球菌之Wood46菌株用於此實驗,此乃因其不表現蛋白質A,一種結合IgG抗體之Fc區之分子。將金黃色葡萄球菌之Wood46菌株與10μg/mL或0.5μg/mL之S4497 抗體、含有組織蛋白酶B可裂解連接體之同種型對照-AAC、硫代-曲妥珠單抗HC A118C-MC-vc-PAB-(二甲基-pipBOR)AAC-101、硫代-S4497 HC WT(v8)、LC V205C-MC-vc-PAB-(二甲基pipBOR)AAC-192、含有葡萄球菌素可裂解連接體之同種型對照-AAC、硫代-曲妥珠單抗HC A118C-MP-LAFG-PABC-(六氫吡嗪基BOR)(揭示為SEQ ID NO:128之「核心肽」)或硫代-S4497 HC v1-MP-LAFG-PABC-(六氫吡嗪基BOR)(揭示為SEQ ID NO:128之「核心肽」)AAC-193一起培育1小時以允許AAC與細菌結合。為了限制AAC之非特異性結合,將經調理細菌離心,洗滌一次且再懸浮於緩衝液中,然後進給至鼠類巨噬細胞中。在吞噬作用完成後,用補充有50μg/mL健他黴素之正常生長培養基替代感染混合物以殺死任何殘留之細胞外細菌且在2天後藉由將巨噬細胞溶解物之連續稀釋物平鋪於胰蛋白酶大豆瓊脂板上來確定細胞內存活細菌總數。含有葡萄球菌素可裂解連接體之4497-AAC能夠殺死所有可檢測細胞內細菌,而同種型對照AAC顯示無活性。
圖33及34顯示在鼠類靜脈內感染模型中葡萄球菌素AAC在活體內具有活性。使用經最佳化給藥方案利用人類IgG對CB17.SCID小鼠進行重構以在血清中獲得至少10mg/mL恆定濃度之人類IgG。利用4497抗體(50mg/kg)、具有葡萄球菌素可裂解連接體之AAC-215(50mg/kg)或含有葡萄球菌素可裂解連接體之同種型對照抗gD AAC(50mg/kg)治療小鼠。在感染後第1天藉由靜脈內注射向小鼠給予單劑量之AAC-215。藉由平鋪確定2個腎臟(圖33)或心臟(圖34)中之存活細菌總數。
圖35及36顯示來自硫代-S6078 AAC之活體外巨噬細胞分析之結果。在圖35中,硫代-S6078.v4.HC-WT LC-Cys-MC-vc-PAB-(二甲基pipBOR)AAC在0.5μg/mL或高於0.5μg/mL之劑量下可有效殺死細胞內細菌,且每硫代-S6078抗體具有2.0(AAC-173)或3.9(AAC-171)二 甲基pipBOR抗生素(LA-54)之抗生素負載。在圖36中,硫代-S6078.v4.HC-WT LC-Cys-MC-vc-PAB-(六氫吡嗪基BOR)在0.5μg/mL或高於0.5μg/mL之劑量下可有效殺死細胞內細菌,且每硫代-S6078抗體具有1.8(AAC-174)或3.9(AAC-172)六氫吡嗪基BOR抗生素(LA-65)之抗生素負載。
圖37及38顯示來自硫代-S6078 AAC在鼠類靜脈內感染模型中之活體內功效之結果。使用經最佳化給藥方案利用人類IgG對CB17.SCID小鼠進行重構以在血清中獲得至少10mg/mL恆定濃度之人類IgG。利用USA300感染小鼠並利用媒劑對照(PBS)、每硫代-S6078抗體具有2.0(AAC-173)或3.9(AAC-171)二甲基pipBOR抗生素(LA-54)之抗生素負載之硫代-S6078.v4.HC-WT,LC-Cys-MC-vc-PAB-(二甲基pipBOR)AAC(圖37)及每硫代-S6078抗體具有1.8(AAC-174)或3.9(AAC-172)六氫吡嗪基BOR抗生素(LA-65)之抗生素負載之硫代-S6078.v4.HC-WT,LC-Cys-MC-vc-PAB-(六氫吡嗪基BOR)(圖38)進行治療。在感染後第1天藉由靜脈內注射向小鼠給予單劑量之AAC且在感染後第4天將其處死。藉由平鋪確定2個腎臟中之存活細菌總數。利用含有較低抗生素負載之AAC進行治療將細菌負載降低至大約1/1,000且利用含有較高抗生素負載之AAC進行治療將細菌負載降低至小於1/10,000。
現將詳細參照本發明某些實施例,其實例說明於隨附結構及化學式中。儘管將結合列舉之實施例(包括方法、材料及實例)來闡述本發明,但此說明係非限制性的且本發明意欲涵蓋所有替代物、修飾及等效物,無論其眾所周知抑或併入本文中。倘若所併入文獻、專利及類似材料中之一或多者與本申請案不同或矛盾,包括但不限於所定義術語、術語之使用、所述技術或諸如此類,則以本申請案為準。除非 另有說明,否則本文所用之所有技術及科學術語皆具有與熟習本發明所屬技術者通常所理解之含義相同的含義。熟習此項技術者將瞭解多種與本文所述之方法及材料類似或等效者,其皆可用於實踐本發明。 本發明決不受限於所述方法及材料。
本文所提及之所有出版物、專利申請案、專利及其他參考文獻之全部內容皆以引用方式併入本文中。
I.一般技術
本文所述或提及之技術及程序已眾所周知且通常由熟習此項技術者使用習用方法採用,例如,闡述於以下文獻中之廣泛利用之方法:Sambrook等人,Molecular Cloning:A Laboratory Manual第3版(2001)Cold Spring Harbor Laboratory Press,Cold Spring Harbor,N.Y.;Current Protocols in Molecular Biology(F.M.Ausubel等人編輯,(2003));the series Methods in Enzymology(Academic Press公司):PCR 2:A Practical Approach(M.J.MacPherson,B.D.Hames及G.R.Taylor編輯(1995));Harlow及Lane編輯(1988)Antibodies,A Laboratory Manual,and Animal Cell Culture(R.I.Freshney編輯(1987));Oligonucleotide Synthesis(M.J.Gait編輯,1984);Methods in Molecular Biology,Humana Press;Cell Biology:A Laboratory Notebook(J.E.Cellis編輯,1998)Academic Press;Animal Cell Culture (R.I.Freshney)編輯,1987);Introduction to Cell and Tissue Culture (J.P.Mather及P.E.Roberts,1998)Plenum Press;Cell and Tissue Culture:Laboratory Procedures(A.Doyle,J.B.Griffiths及D.G.Newell編輯,1993-8)J.Wiley and Sons;Handbook of Experimental Immunology(D.M.Weir及C.C.Blackwell編輯);Gene Transfer Vectors for MammalianCell(J.M.Miller及M.P.Calos編輯,1987);PCR:The Polymerase Chain Reaction,(Mullis等人編輯,1994);Current Protocols in Immunology(J.E.Coligan等人編輯,1991);Short Protocols in Molecular Biology(Wiley and Sons,1999);Immunobiology(C.A.Janeway及P.Travers,1997);Antibodies(P.Finch,1997);Antibodies:A Practical Approach(D.Catty.編輯,IRL Press,1988-1989);Monoclonal Antibodies:A Practical Approach(P.Shepherd及C.Dean編輯,Oxford University Press,2000);Using Antibodies:A Laboratory Manual(E.Harlow及D.Lane(Cold Spring Harbor Laboratory Press,1999);The Antibodies(M.Zanetti及J.D.Capra編輯,Harwood Academic Publishers,1995);及Cancer:Principles and Practice of Oncology(V.T.DeVita等人編輯,J.B.Lippincott公司,1993)。
除非另有指示,否則本申請案中使用之命名法係基於IUPAC系統命名法。除非另有定義,否則本文所用之技術及科學術語具有與熟習本發明所屬技術者通常所理解之含義相同的含義,且與以下一致:Singleton等人(1994)Dictionary of Microbiology and Molecular Biology,第2版,J.Wiley & Sons,New York,NY;及Janeway,C.,Travers,P.,Walport,M.,Shlomchik(2001)Immunobiology,第5版,Garland Publishing,New York。
II.定義
當指示取代基之數量時,術語「一或多個」係指自一個取代基至最高可能取代數量之範圍,即經取代基替代一個氫至多達替代所有氫。術語「取代基」表示替代母體分子上之氫原子的原子或原子群。術語「經取代」表示指定基團具有一或多個取代基。當任一基團可帶有多個取代基並提供多個可能取代基時,該等取代基係獨立地選擇且不必相同。術語「未經取代」意指指定基團不具有取代基。術語「視情況經取代」意指指定基團未經取代或經一或多個獨立地選自可能取 代基群之取代基取代。當指示取代基之數量時,術語「一或多個」意指自一個取代基至最高可能取代數量之範圍,即經取代基替代一個氫至多達替代所有氫。
術語「壁磷壁酸」(WTA)意指經由連接至N-乙醯基胞壁酸糖之C6羥基之磷酸二酯連接共價附著至肽聚糖的陰離子含糖聚合物。儘管精確化學結構可在生物體之間變化,但在一個實施例中,WTA係在2位上具有D-核糖醇及D-丙胺醯基酯之1,5-磷酸二酯重複連接單元且在4位上具有糖基取代基的核糖醇磷壁酸。糖基當存在於金黃色葡萄球菌中時可為N-乙醯葡糖胺基α(alpha)或β(beta)。醛糖醇/糖醇磷酸酯重複上之羥基經陽離子D-丙胺酸酯及單糖(例如N-乙醯葡糖胺)取代。在一個態樣中,羥基取代基包括D-丙胺醯基及alpha(α)或beta(β)GlcNHAc。在一個具體態樣中,WTA包含下式化合物:
其中波形線指示重複連接單元或聚醛糖醇-P或肽聚糖之附著位點,其中X係D-丙胺醯基或-H;且Y係α(alpha)-GlcNHAc或β(beta)-GlcNHAc。
在金黃色葡萄球菌中,WTA經由N-乙醯基葡糖胺(GlcNAc)-1-P及N-乙醯基甘露糖胺(ManNAc)構成之二糖共價連接至N-乙醯基胞壁酸(MurNAc)之6-OH,之後為兩個或三個甘油磷酸酯單元。則實際WTA聚合物係由11-40個核醣醇磷酸酯(Rbo-P)重複單元構成。首先藉由稱為TagO之酶起始WTA之逐步合成,且缺乏TagO基因(藉由人工缺失該 基因)之金黃色葡萄球菌菌株不產生任何WTA。重複單元可進一步經由α-(alpha)或β-(beta)糖苷連接於C2-OH位置經D-丙胺酸(D-Ala)及/或於C4-OH位置經N-乙醯基葡糖胺(GlcNAc)調適。端視金黃色葡萄球菌菌株或該細菌之生長階段而定,糖苷連接可為α-變旋異構物、β-變旋異構物或該兩種變旋異構物之混合物。
術語「抗生素「(abx或Abx)包括在所投與之濃度及給藥間隔下特異性抑制諸如細菌等微生物生長或將其殺死但對宿主不具有致死性之任何分子。在具體態樣中,抗生素在所投與之濃度及給藥間隔下對宿主無毒。可將針對細菌有效之抗生素廣泛地分類為殺細菌的(即,直接殺死)或細菌抑制的(即,阻止***)。可將殺細菌性抗生素進一步細分為窄譜或廣譜。與針對較小範圍或特定家族之細菌有效之窄譜抗生素相比,廣譜抗生素係針對寬範圍之細菌(包括革蘭氏陽性細菌與革蘭氏陰性細菌兩者)有效者。抗生素之實例包括:(i)胺基糖苷,例如,阿米卡星(amikacin)、建它黴素(gentamicin)、康黴素(kanamycin)、新黴素(neomycin)、奈替米星(netilmicin)、鏈黴素(streptomycin)、妥布黴素(tobramycin)、巴龍黴素(paromycin);(ii)安沙黴素,例如,格爾德黴素(geldanamycin)、除莠黴素(herbimycin);(iii)碳頭孢烯,例如,羅拉卡巴夫(loracarbef);(iv)碳青黴烯,例如,厄他培南(ertapenum)、多利培南、亞胺培南/西司他丁(cilastatin)、美羅培南(meropenem);(v)頭孢菌素(第一代),例如,頭孢羥胺苄(cefadroxil)、頭孢唑林(cefazolin)、頭孢噻吩(cefalotin)、頭孢胺苄(cefalexin);(vi)頭孢菌素(第二代),例如,頭孢可若(ceflaclor)、頭孢孟多(cefamandole)、頭孢西丁(cefoxitin)、頭孢丙烯(cefprozil)、頭孢呋辛(cefuroxime);(vi)頭孢菌素(第三代),例如,希復欣敏(cefixime)、頭孢地尼(cefdinir)、頭孢托侖(cefditoren)、頭孢匹拉腙(cefoperazone)、頭孢泰新(cefotaxime)、頭 孢泊肟(cefpodoxime)、頭孢他汀(ceftazidime)、頭孢布烯(ceftibuten)、頭孢若欣(ceftizoxime)、頭孢曲松(ceftriaxone);(vii)頭孢菌素(***),例如,頭孢吡肟(cefepime);(viii)、頭孢菌素(第五代),例如,頭孢比普(ceftobiprole);(ix)糖肽,例如,替考拉甯、梵穀黴素;(x)巨環內酯,例如,阿奇黴素、克拉黴素(clarithromycin)、地紅黴素(dirithromycine)、紅黴素(erythromycin)、羅紅黴素(roxithromycin)、桃黴素(troleandomycin)、泰利黴素(telithromycin)、觀黴素(spectinomycin);(xi)單醯胺菌素,例如,氮烯內醯胺(aztreonam);(xii)青黴素,例如,阿莫西林(amoxicillin)、安比西林、阿洛西林(azlocillin)、卡本西林(carbenicillin)、氯噻青黴素(cloxacillin)、二氯噻青黴素(dicloxacillin)、氟氯噻青黴素(flucloxacillin)、美洛西林(mezlocillin)、甲氧西林(meticillin)、萘夫西林(nafcilin)、扼噻青黴素(oxacillin)、青黴素、必倍西林(piperacillin)、泰卡青黴素(ticarcillin);(xiii)抗生素多肽,例如,桿菌肽、黏菌素、多黏菌素B;(xiv)喹啉酮,例如,環丙沙星(ciprofloxacin)、依諾沙星(enoxacin)、加替沙星(gatifloxacin)、左氧氟沙星(levofloxacin)、洛美沙星(lemefloxacin)、莫西沙星(moxifloxacin)、諾氟沙星(norfloxacin)、氧氟沙星(ofloxacin)、曲伐沙星(trovafloxacin);(xv)磺胺,例如,磺胺米隆(mafenide)、普隆托西(prontosil)、乙醯磺胺、磺胺甲二唑、對苯胺磺醯胺、灑拉淨(sulfasalazine)、異唑磺胺磺胺異噁唑、曲美普林(trimethoprim)、曲美普林-磺胺甲異噁唑(TMP-SMX);(xvi)四環素,例如,去甲基氯四環素、去氧羥四環素、米諾四環素(minocycline)、氧四環素(oxytetracycline)、四環素;及(xvii)其他,例如砷凡納明(arspenamine)、氯黴素(chloramphenicol)、克林達黴素、林可黴素(lincomycin)、乙胺丁醇、弗司弗黴素(fosfomycin)、梭鏈孢酸(fusidic acid)、呋喃唑酮(furazolidone)、異菸酸酊(isoniazid)、利奈唑胺、甲硝唑、莫匹羅星(mupirocin)、硝基呋喃妥因(nitrofurantoin)、平板黴素(platensimycin)、吡嗪甲醯胺、奎奴普丁(quinupristin)/達福普丁(dalfopristin)、雷發平/利福平或替尼噠唑(tinidazole)。
本文所用術語「WTA抗體」係指結合WTA(無論WTAα還是WTAβ)之任何抗體。術語「抗壁磷壁酸α抗體」或「抗WTAα抗體」或「抗αWTA」或「抗αGlcNac WTA抗體」可互換用於指特異性結合壁磷壁酸(WTA)α之抗體。類似地,術語「抗壁磷壁酸β抗體「或「抗WTAβ抗體」或「抗βWTA」或「抗βGlcNac WTA抗體」可互換地用於指特異性結合壁磷壁酸(WTA)β之抗體。術語「抗金黃色葡萄球菌抗體」及「結合金黃色葡萄球菌之抗體」係指能夠以足夠親和力結合金黃色葡萄球菌(「Staphylococcus aureus」、「Staph」或「S.aureu」)上之抗原之抗體,使得該抗體可用作靶向金黃色葡萄球菌中之診斷劑及/或治療劑。在一個實施例中,抗金黃色葡萄球菌抗體與無關非金黃色葡萄球菌蛋白結合之程度低於該抗體與MRSA結合之約10%,如例如藉由放射免疫分析(RIA)所量測。在某些實施例中,結合金黃色葡萄球菌之抗體具有1μM、100nM、10nM、5nM、4nM、3nM、2nM、1nM、0.1nM、0.01nM或0.001nM(例如10-8M或更小,例如10-8M至10-13M,例如10-9M至10-13M)之解離常數(Kd)。在某些實施例中,抗金黃色葡萄球菌抗體結合在來自不同物種之金黃色葡萄球菌中保守之金黃色葡萄球菌表位。
術語「抗二甲氧苯青黴素之金黃色葡萄球菌」(MRSA)(或者稱為多重抗藥性金黃色葡萄球菌)或抗扼噻青黴素之金黃色葡萄球菌(ORSA)係指抵抗β-內醯胺抗生素之任何金黃色葡萄球菌菌株,該等β-內醯胺抗生素包括青黴素(例如,二甲氧苯青黴素、二氯噻青黴素、 萘夫西林、扼噻青黴素等)及頭孢菌素。「二甲氧苯青黴素敏感性金黃色葡萄球菌」(MSSA)係指對β-內醯胺抗生素敏感之任何金黃色葡萄球菌菌株。
術語「最低抑制濃度」(「MIC」)係指在過夜培育後將抑制微生物之可見生長之抗微生物劑之最低濃度。用於確定MIC之分析為業內已知。一種方法係如下文實例18中所述。
術語「抗體」在本文中在最廣泛意義上使用且具體地涵蓋單株抗體、多株抗體、二聚物、多聚物、多特異性抗體(例如,雙特異性抗體)及其抗原結合抗體片段(Miller等人(2003)J.of Immunology 170:4854-4861)。抗體可為鼠類、人類、人類化的、嵌合的或源自其他物種。抗體係由免疫系統生成之能夠識別並結合特異性抗原之蛋白質(Janeway,C.,Travers,P.,Walport,M.,Shlomchik(2001)Immuno Biology,第5版,Garland Publishing,New York)。靶抗原通常具有諸多由多種抗體上之CDR識別之結合位點,該等結合位點亦稱為表位。特異性結合不同表位之每一抗體具有不同結構。因此,一種抗原可由超過一種之相應抗體識別並結合。抗體包括全長免疫球蛋白分子或全長免疫球蛋白分子之免疫活性部分,即,含有免疫特異性地結合所關注靶標抗原或其一部分之抗原結合位點之分子,此等靶標包括但不限於一或多個產生與自體免疫疾病相關之自體免疫抗體之細胞、受感染細胞或諸如細菌等微生物。本文所揭示之免疫球蛋白(Ig)可為除IgM以外之任何同種型(例如,IgG、IgE、IgD及IgA)及亞類(例如,IgG1、IgG2、IgG3、IgG4、IgA1及IgA2)。免疫球蛋白可源自任何物種。在一個態樣中,Ig係人類、鼠類或兔來源。在具體實施例中,Ig係人類來源。
抗體「類別」係指重鏈所擁有之恆定結構域或恆定區之類型。存在5大類抗體:IgA、IgD、IgE、IgG及IgM,且該等類別中之若干 種可進一步分成亞類(同種型),例如,IgG1、IgG2、IgG3、IgG4、IgA1及IgA2。對應於不同類別之免疫球蛋白之重鏈恆定結構域分別稱為α、δ、ε、γ及μ。
「天然抗體」係指具有不同結構之天然存在之免疫球蛋白分子。例如,天然IgG抗體係約150,000道爾頓(dalton)之異四聚物糖蛋白,其由二硫鍵鍵結之兩條相同輕鏈及兩條相同重鏈構成。自N末端至C末端,每一重鏈依次具有可變區(VH)(亦稱為可變重鏈結構域或重鏈可變結構域)及三個恆定結構域(CH1、CH2及CH3)。類似地,自N末端至C末端,每一輕鏈依次具有可變區(VL)(亦稱為可變輕鏈結構域或輕鏈可變結構域)及恆定輕鏈(CL)結構域。基於抗體恆定結構域之胺基酸序列,可將該抗體之輕鏈指派為兩種類型中之一者,稱為卡帕型(κ)及拉姆達(λ)。
術語「全長抗體」、「完整抗體」及「全抗體」在本文中可互換用於指具有與天然抗體結構實質上類似之結構或具有含有如本文所定義Fc區之重鏈的抗體。
抗體之「抗原結合片段」係指除完整抗體以外之分子,其包含完整抗體中結合完整抗體所結合之抗原的部分。抗體片段之實例包括但不限於Fv、Fab、Fab'、Fab’-SH、F(ab')2、雙特異性抗體、直鏈抗體、單鏈抗體分子(例如scFv)及自抗體片段形成之多特異性抗體。
本文所用術語「單株抗體」係指自實質上同源抗體群體獲得之抗體,即,包含該群體之個別抗體相同及/或結合相同表位,不包括可能之變體抗體,例如,含有天然突變或在產生單株抗體製劑期間產生之變體(例如,天然糖基化變異),此等變體通常以少量存在。IgG1抗體之一種此類可能變體係重鏈恆定區之C末端離胺酸(K)之裂解。與通常編號針對不同決定簇(表位)之不同抗體的多株抗體製劑相比,單株抗體製劑之每一單株抗體針對抗原上之單個決定簇。因此,修飾語 「單株」指示抗體之特徵在於得自實質上同源之抗體群體,且不應視為需要藉由任一特定方法產生該抗體。例如,欲根據本發明使用之單株抗體可藉由多種技術製得,包括但不限於融合瘤法、重組DNA法、噬菌體顯示法及利用含有所有或部分之人類免疫球蛋白基因座之轉基因動物之方法,此等方法及製備單株抗體之其他實例性方法闡述於本文中。除特異性外,單株抗體有利之原因亦在於其可經合成而不受其他抗體污染。
術語「嵌合抗體」係指其中重鏈及/或輕鏈之一部分源自特定來源或物種、而重鏈及/或輕鏈之其餘部分源自不同來源或物種的抗體。
「人類抗體」係具有對應於如下抗體之胺基酸序列的胺基酸序列者:其係由人類或人類細胞產生或源自利用人類抗體譜或其他編碼人類抗體之序列之非人類來源。此人類抗體之定義明確排除包含非人類抗原結合殘基之人類化抗體。
「人類化抗體」係指包含來自非人類HVR之胺基酸殘基及來自人類FR之胺基酸殘基的嵌合抗體。在某些實施例中,人類化抗體將包含實質上全部之至少一個且通常兩個可變結構域,其中全部或實質上全部之HVR(例如,CDR)對應於非人類之彼等HVR,且全部或實質上全部之FR對應於人類抗體之彼等FR。人類化抗體視情況可包含源自人類抗體之抗體恆定區域的至少一部分。抗體之「人類化形式」(例如,非人類抗體)係指已經歷人類化之抗體。
術語「可變區」或「可變結構域」係指抗體重鏈或輕鏈中參與使抗體與抗原結合之結構域。天然抗體之重鏈及輕鏈之可變結構域(分別為VH及VL)通常具有相似結構,其中各結構域包含4個保守框架區(FR)及三個超變區(HVR)。(例如,參見Kindt等人Kuby Immunology,第6版,W.H.Freeman and Co.,第91頁(2007)。)單一 VH或VL結構域可足以賦予抗原結合特異性。此外,結合特定抗原之抗體可使用來自結合該抗原之抗體之VH或VL結構域分離以分別篩選互補VL或VH結構域文庫。例如,參見Portolano等人,J.Immunol.150:880-887(1993);Clarkson等人,Nature 352:624-628(1991)。
當在本文中使用時,術語「超變區」、「HVR」或「HV」係指抗體可變結構域之在序列上超變(「互補決定區」或「CDR」)及/或形成結構界定環及/或含有抗原接觸殘基(「抗原接觸」)之區域。通常,抗體包含6個HVR;3個位於VH中(H1、H2、H3),且3個位於VL中(L1、L2、L3)。在天然抗體中,H3及L3展示6個HVR之大部分多樣性,且相信尤其H3在賦予抗體特異性方面發揮獨特作用。例如,參見Xu等人,Immunity 13:37-45(2000);Johnson及Wu,Methods in Molecular Biology 248:1-25(Lo編輯,Human Press,Totowa,NJ,2003)。事實上,僅由重鏈組成之天然存在之駱駝科抗體係功能性的且在輕鏈不存在下穩定(Hamers-Casterman等人,(1993)Nature 363:446-448;Sheriff等人,(1996)Nature Struct.Biol.3:733-736)。
本文使用且涵蓋諸多HVR之描述。Kabat互補決定區(CDR)係基於序列可變性且使用最為廣泛(Kabat等人,Sequences of Proteins of Immunological Interest,第5版,Public Health Service,National Institutes of Health,Bethesda,MD.(1991))。而Chothia係指結構環之位置(Chothia及Lesk,(1987)J.Mol.Biol.196:901-917)。關於抗原接觸,參照MacCallum等人,J.Mol.Biol.262:732-745(1996)。AbM HVR表示Kabat HVR與Chothia結構環之間的折衷方案且用於Oxford Molecular之AbM抗體建模軟體中。「接觸」HVR係基於對可用複雜晶體結構之分析。來自該等HVR中每一者之殘基係如下所述。
HVR可包含如下「經延伸HVR」:VL中之24-36或24-34(L1)、46-56或50-56(L2)及89-97或89-96(L3)以及VH中之26-35(H1)、50-65或49-65(H2)及93-102、94-102或95-102(H3)。除非另有指示,否則可變結構域中之HVR殘基及其他殘基(例如,FR殘基)在本文中係根據Kabat等人(見上文)來編號。
表達「如Rabat中之可變結構域殘基編號」或「如Kabat中之胺基酸位置編號」及其變化形式係指用於Kabat等人(見上文)中之所彙編抗體之重鏈可變結構域或輕鏈可變結構域中的編號系統。使用此編號系統,實際線性胺基酸序列可含有較少或額外之對應於可變結構域FR或HVR之縮短或***之胺基酸。例如,重鏈可變結構域可包括在H2之殘基52後之單胺基酸***(根據Kabat編號之殘基52a)及重鏈FR殘基82後之***殘基(例如,根據Kabat編號之殘基82a、82b及82c等)。可藉由將抗體序列之同源區與「標準」Kabat編號序列比對來確定給定抗體殘基之Kabat編號。
「框架」或「FR」係指除超變區(HVR)殘基外之可變結構域殘基。可變結構域之FR通常由4個FR結構域FR1、FR2、FR3及FR4組成。因此,HVR及FR序列通常出現於VH(或VL)中之下列序列中:FR1-H1(L1)-FR2-H2(L2)-FR3-H3(L3)-FR4。
出於本文目的,「受體人類框架」係包含源自人類免疫球蛋白框架或人類共有框架之輕鏈可變結構域(VL)框架或重鏈可變結構域(VH) 框架之胺基酸序列的框架,如下文所定義。「源自」人類免疫球蛋白框架或人類共有框架之受體人類框架可包含其相同胺基酸序列,或其可含有胺基酸序列變化。在一些實施例中,胺基酸變化之數量為10或更小、9或更小、8或更小、7或更小、6或更小、5或更小、4或更小、3或更小或2或更小。在一些實施例中,VL受體人類框架之序列與VL人類免疫球蛋白框架序列或人類共有框架序列一致。
「人類共有框架」係表示在選擇人類免疫球蛋白VL或VH框架序列中最普遍存在之胺基酸殘基之框架。通常,人類免疫球蛋白VL或VH序列之選擇係來自可變結構域序列亞組。通常,序列亞組係如Kabat等人,Sequences of Proteins of Immunological Interest,第5版,NIH出版物91-3242,Bethesda MD(1991),第1-3卷中之亞組。在一個實施例中,對於VL而言,亞組係如Kabat等人(見上文)中所述之亞組κ I。在一個實施例中,對於VH而言,亞組係如Kabat等人(見上文)所述之亞組III。
「親和力」係指分子(例如,抗體)之單一結合位點與其結合配偶體(例如,抗原)間之非共價相互作用之總和強度。除非另有指示,否則本文所用「結合親和力」係指反映結合對成員(例如,抗體及抗原)之間之1:1相互作用之固有結合親和力。分子X對於其配偶體Y之親和力通常可表示為解離常數(Kd)。可藉由業內已知之常用方法(包括彼等本文所述者)來量測親和力。
「親和力成熟」抗體係指相較於不具有改變之親代抗體在一或多個超變區(HVR)中具有一或多個改變的抗體,此等改變使得可改良抗體對抗原之親和力。
術語「表位」係指抗原分子上與抗體結合之特定位點。
「結合相同表位之抗體」(作為參考抗體)係指在競爭分析中將參考抗體與其抗原之結合阻斷50%或更高的抗體,且反之,參考抗體在 競爭分析中將該抗體與其抗原之結合阻斷50%或更高。實例性競爭分析提供於本文中。
「裸露抗體」係指不與異源部分(例如,細胞毒性部分)或放射性標記結合之抗體。裸露抗體可存在於醫藥調配物中。
「效應子功能」係指彼等歸因於抗體Fc區之生物活性,其隨抗體同種型而變。抗體效應子功能之實例包括:C1q結合及補體依賴性細胞毒性(CDC);Fc受體結合;抗體依賴性細胞介導之細胞毒性(ADCC);吞噬作用;細胞表面受體(例如B細胞受體)之下調;及B細胞活化。
「抗體依賴性細胞介導之細胞毒性」或ADCC係指以下細胞毒性形式:其中結合至存在於某些細胞毒性細胞(例如,自然殺傷(NK)細胞、嗜中性球及巨噬細胞)上之Fc受體(FcR)之經分泌Ig使該等細胞毒性效應子細胞能夠特異性地結合帶抗原靶細胞且隨後利用細胞毒素殺死該靶細胞。抗體「臂接」細胞毒性細胞且係藉由此機制殺死靶細胞所需。用於介導ADCC之原代細胞NK細胞僅表現Fcγ(gamma)RIII,而單核球表現Fcγ(gamma)RI、Fcγ(gamma)RII及Fcγ(gamma)RIII。在Ravetch及Kinet,Annu.Rev.Immunol 9:457-92(1991)之第464頁表3中匯總造血細胞上之Fc表現。為了評價所關注分子之ADCC活性,可實施活體外ADCC分析,例如闡述於US 5,500,362或US 5,821,337中者。用於此等分析之可用效應子細胞包括周邊血單核球(PBMC)及天然殺傷(NK)細胞。或者或另外,可在活體內(例如在諸如揭示於Clynes等人PNAS(USA)95:652-656(1998)中之動物模型等動物模型中)評價所關注分子之ADCC活性。
「吞噬作用」係指宿主細胞(例如,巨噬細胞或嗜中性球)將病原體吞食或內化之過程。吞噬細胞藉由三種途徑介導吞噬作用:(i)引導細胞表面受體(例如,凝集蛋白、整合素及清除劑受體)、(ii)補體 增強-使用補體受體(包括CRI(C3b受體)、CR3及CR4)來結合並攝入補體調理病原體及(iii)抗體增強-使用Fc受體(包括FcγgammaRI、FcγgammaRIIA及FcγgammaRIIIA)來結合抗體調理粒子,該等粒子然後變得內化且與溶酶體稠合以變成吞噬溶酶體。在本發明中,相信途徑(iii)在將抗MRSA AAC治療劑遞送至受感染白血球(例如,嗜中性球及巨噬細胞)中發揮重要作用(Phagocytosis of Microbes:complexity in Action by D.Underhill and A Ozinsky.(2002)Annual Review of Immunology,第20:825卷)。
「補體依賴性細胞毒性」或「CDC」係指在補體存在下靶細胞之溶解。經典補體途徑之活化係藉由補體系統之第一補體(C1q)與抗體(適當亞類)之結合來起始,該等抗體結合其同族抗原。為為評價補體活化,可實施CDC分析,例如如Gazzano-Santoro等人,J.Immunol.Methods 202:163(1996)中所述。
術語「Fc區」在本文中用於界定免疫球蛋白重鏈之C末端區。該術語包括天然序列Fc區及變體Fc區。儘管免疫球蛋白重鏈Fc區之邊界可有所變化,但通常將人類IgG重鏈Fc區界定為自Cys226位處之胺基酸殘基或自Pro230延伸至其羧基末端。例如,可在抗體產生或純化期間或藉由重組改造編碼抗體重鏈之核酸來去除Fc區之C末端離胺酸(根據EU編號系統(亦稱為EU指數)之殘基447,如Kabat等人,Sequences of Proteins of Immunological Interest,第5版,Public Health Service,National Institutes of Health,Bethesda,MD,1991中所述)。因此,完整抗體之組成可包含去除全部K447殘基之抗體群體、未去除K447殘基之抗體群體及具有含有及不含有K447殘基之抗體之混合物的抗體群體。術語Fc受體」或「FcR」亦包括負責將母體IgG轉移至胎兒之新生兒受體FcRn。Guyer等人,J.Immunol.117:587(1976)及Kim等人,J.Immunol.24:249(1994)。業內已知量測與FcRn之結合之方法 (例如,參見Ghetie及Ward,Immunol.Today 18:(12):592-8(1997);Ghetie等人,Nature Biotechnology 15(7):637-40(1997);Hinton等人,J.Biol.Chem.279(8):6213-6(2004);WO 2004/92219(Hinton等人)。可在(例如)表現人類FcRn之轉基因小鼠或經轉染人類細胞系中或在投與具有變體Fc區之多肽之靈長類動物中分析人類FcRn高親和力結合多肽與FcRn之活體內結合及血清半衰期。WO 2004/42072(Presta)闡述改良或減少與FcR之結合之抗體變體。例如,亦參見Shields等人,J.Biol.Chem.9(2):6591-6604(2001)。
可改變附著至Fc區之碳水化合物。由哺乳動物細胞產生之天然抗體通常包含通常藉由N-連接附著至Fc區之CH2結構域的Asn297之支鏈、二分枝寡糖。例如,參見Wright等人(1997)TIBTECH 15:26-32。該寡糖可包括多種碳水化合物,例如甘露糖、N-乙醯基葡糖胺(GlcNAc)、半乳糖及唾液酸,以及附著至雙觸角寡糖結構之「主幹」中之GlcNAc之海藻糖。在一些實施例中,可對IgG中之寡糖進行修飾以產生具有某些其他改良性質之IgG。例如,提供具有缺乏附著(直接或間接)至Fc區之海藻糖之碳水化合物結構的抗體修飾。此等修飾可具有經改良ADCC功能。例如,參見US 2003/0157108(Presta,L.);US 2004/0093621(Kyowa Hakko Kogyo有限公司Ltd)。與「去海藻糖基化」或「缺乏海藻糖」抗體變體相關之公開案(出版物)之實例包括:US 2003/0157108;WO 2000/61739;WO 2001/29246;US 2003/0115614;US 2002/0164328;US 2004/0093621;US 2004/0132140;US 2004/0110704;US 2004/0110282;US 2004/0109865;WO 2003/085119;WO 2003/084570;WO 2005/035586;WO 2005/035778;WO2005/053742;WO2002/031140;Okazaki等人,J.Mol.Biol.336:1239-1249(2004);Yamane-Ohnuki等人,Biotech.Bioeng.87:614(2004)。能產 生去海藻糖基化抗體之細胞系之實例包括缺乏蛋白質海藻糖基化之Lec13 CHO細胞(Ripka等人,Arch.Biochem.Biophys.249:533-545(1986);美國專利申請案第US 2003/0157108 A1號,Presta,L;及WO 2004/056312 A1,Adams等人,尤其在實例11中)及基因剔除細胞系,例如α-1,6-海藻糖基轉移酶基因FUT8剔除CHO細胞(例如,參見Yamane-Ohnuki等人,Biotech.Bioeng.87:614(2004);Kanda,Y.等人Biotechnol.Bioeng.,94(4):680-688(2006);及WO2003/085107)。
「經分離抗體」係自其天然環境組份分離者。在一些實施例中,將抗體純化至具有大於95%或99%之純度,如藉由例如電泳(例如,SDS-PAGE、等電聚焦(IEF)、毛細管電泳)或層析(例如,離子交換或反相HPLC)所測定。關於評價抗體純度之方法之綜述,例如,參見Flatman等人,J.Chromatogr.B 848:79-87(2007)。
「經分離核酸」係指自天然環境組份分離之核酸分子。經分離核酸包括通常含有核酸分子之細胞中所含的核酸分子,但該核酸分子存在於染色體外或存在於與其天然染色體位置不同之染色體位置。
「編碼抗-WTA β抗體之經分離核酸」係指編碼抗體重鏈及輕鏈之一或多個核酸分子,包括單一載體或單獨載體中之此(等)核酸分子及存在於宿主細胞中一或多個位置處之此(等)核酸分子。
本文所用術語「特異性結合」或「對……具有特異性」係指可量測且可再現之相互作用,例如靶標與抗體間之結合,其決定在異源性分子群體(包括生物分子)存在下靶標之存在。例如,特異性結合靶標(其可為表位)之抗體係與其結合其他靶標相比以更大親和力、親合力更容易地及/或以更長持續時間結合此靶標之抗體。在一個實施例中,抗體與WTA-β無關靶標之結合程度小於抗體與靶標之結合之約10%,如藉由例如放射免疫分析(RIA)所量測。在某些實施例中,特異性結合WTA β之抗體之解離常數(Kd)1μM、100nM、 10nM、1nM或0.1nM。在某些實施例中,抗體特異性結合自不同物種保守之表位。在另一實施例中,特異性結合可包括(但不要求)排他性結合。
「結合親和力」通常係指分子(例如,抗體)之單一結合位點與其結合配偶體(例如,抗原)間之非共價相互作用之總和強度。除非另有指示,否則本文所用結合親和力摂係指反映結合對成員(例如,抗體及抗原)之間之1:1相互作用之固有結合親和力。分子X對於其配偶體Y之親和力通常可表示為解離常數(Kd)。可藉由業內已知之常用方法(包括彼等本文所述者)來量測親和力。低親和力抗體通常緩慢地結合抗原且往往易於解離,而高親和力抗體通常較快結合抗原且往往較長時間保持結合。多種量測結合親和力之方法為業內已知,其任一者皆可用於本發明目的。用於量測結合親和力之具體說明性及實例性實施例闡述於下文中。
在一個實施例中,本發明之「Kd」或「Kd值」係藉由利用所關注抗體之Fab形式及其抗原實施之放射性標記抗原結合分析(RIA)來量測,如藉由以下分析來闡述。藉由以下方式來量測Fab對抗原之溶液結合親和力:在滴定系列之未經標記抗原存在下利用最低濃度之經(125I)標記之抗原使Fab平衡,然後利用塗佈有抗Fab抗體之板捕獲經結合之抗原(例如,參見,Chen等人,(1999)J.Mol.Biol.293:865-881)。為建立該分析之條件,將微量滴定板(DYNEX Technologies公司)用5μg/ml於50mM碳酸鈉(pH 9.6)中之捕獲用抗Fab抗體(Cappel Labs)塗佈過夜,且隨後在室溫(大約23℃)下利用於PBS中之2%(w/v)牛血清白蛋白阻斷2小時至5小時。在非吸收性板(Nunc編號269620)中,將100pM或26pM[125I]抗原與所關注Fab(例如,與Presta等人,Cancer Res.57:4593-4599(1997)中對抗VEGF抗體(Fab-12)之評估一致)之系列稀釋物混合。57:4593-4599(1997))。然後將所關注Fab培育 過夜;然而,可繼續培育較長時間(例如,約65小時)以確保達到平衡。然後,將混合物轉移至捕獲板中以在室溫下進行培育(例如,1小時)。然後移出溶液,並用於PBS中之0.1% TWEEN-20TM將板洗滌8次。在已乾燥板時,添加150μl/孔之閃爍體(MICROSCINT-20TM;Packard),且將板在TOPCOUNTTM γ計數器(Packard)上計數10分鐘。選擇得到小於或等於20%之最大結合之每一Fab的濃度用於競爭性結合分析。
根據另一實施例,在25℃下,藉由使用表面電漿子共振分析,使用BIACORE®-2000或BIACORE®-3000儀器(BIAcore公司,Piscataway,NJ)以約10個反應單位(RU)之固定化抗原CM5晶片來量測Kd。簡言之,根據供應商說明書利用N-乙基-N’-(3-二甲基胺基丙基)-碳化二亞胺鹽酸鹽(EDC)及N-羥基琥珀醯亞胺(NHS)來活化羧甲基化之葡聚糖生物感測器晶片(CM5,BIAcore公司)。使用10mM乙酸鈉(pH 4.8)將抗原稀釋至5μg/ml(約0.2μM),然後以5μl/分鐘之流速注射以達成約10個反應單位(RU)之偶聯蛋白。注射抗原後,注射1M乙醇胺以阻斷未反應之基團。對於動力學量測,在25℃下以大約25μl/min之流速注射Fab於含有0.05% TWEEN-20TM表面活性劑(PBST)中之兩倍連續稀釋物(0.78nM至500nM)。締合速率(k締合)及解離速率(k解離)係使用簡單一對一Langmuir結合模型(BIAcore®評估軟體3.2版)藉由同時擬合結合及解離感測圖來計算。以比率k解離/k締合之形式來計算平衡解離常數(Kd).例如,參見Chen等人,J.Mol.Biol.293:865-881(1999)。若藉由上文表面電漿子共振分析締合速率(on-rate)超過106M-1 s-1,則締合速率可藉由使用螢光淬滅技術來測定,該技術係在25℃下在增加濃度之抗原存在下量測於PBS(pH 7.2)中之20nM抗抗原抗體(Fab形式)之螢光發射強度(激發=295nm;發射=340nm,16nm帶通)之增強或降低,如在光譜儀中所量測,例如配備有停流技術 之分光光度計(Aviv Instruments)或帶有經攪拌光析管之8000系列SLM-AMINCOTM分光光度計(ThermoSpectronic)。
根據本發明之「結合速率(on-rate、rate of association、association rate或kon)亦可如上文所述使用BIACORE®-2000或BIACORE®-3000系統(BIAcore公司,Piscataway,NJ)測定。
術語「宿主細胞」、「宿主細胞系」及「宿主細胞培養物」可互換使用且係指已引入外源核酸之細胞,包括此等細胞之子代。宿主細胞包括「轉化體」及「經轉化細胞」,其包括原代經轉化細胞及源自其之子代(與傳代次數無關)。子代與親代細胞之核酸含量可能並不完全相同,但可含有突變。本文包括經篩選或選擇用於原始經轉化細胞中之具有相同功能或生物活性的突變體子代。
本文所用術語「載體」係指能夠轉運與其連接之另一核酸的核酸分子。該術語包括呈自複製核酸結構之載體,以及併入引入其之宿主細胞基因組中的載體。某些載體能夠引導與其可操作連接之核酸的表現。此等載體在本文中稱作「表現載體「。
就參考多肽序列而言,「胺基酸序列一致性百分比(%)」定義為在比對序列並引入空位(若需要)以達到最大序列一致性百分比後候選序列中與參考肽序列中之胺基酸殘基一致之胺基酸殘基的百分比,且不將任何保守取代視為序列一致性之一部分。出於確定胺基酸序列一致性百分比之目的,比對可以熟習此項技術者所熟知之多種方式來達成,例如使用可公開獲得之電腦軟體,例如BLAST、BLAST-2、ALIGN或Megalign(DNASTAR)軟體。彼等熟習此項技術者可確定用於比對序列之適當參數,包括在所比較序列之全長範圍內達成最大比對所需要之任何算法。然而,出於本文目的,使用序列對比電腦程式ALIGN-2來產生胺基酸序列一致性%之值。ALIGN-2序列對比電腦程式系由Genentech公司設計,且原始碼與使用者文件已一起編入美國 版權局,Washington D.C.,20559中,其中其以美國版權註冊號TXU510087註冊。ALIGN-2程式可自Genentech公司,South San Francisco,California公開獲得,或可自源代碼進行編譯。ALIGN-2程式應經編譯用於UNIX操作系統(包括數位UNIX V4.0D)中。所有序列比較參數皆由ALIGN-2程式設定且不變化。
在將ALIGN-2用於胺基酸序列比較之情形下,給定胺基酸序列A相對於(to)、與(with)或對(against)給定胺基酸序列B之胺基酸序列一致性%(或者可表達為相對於、與或對給定胺基酸序列B給定胺基酸序列A所具有或包括之一定胺基酸序列一致性%)計算如下:100乘以分數X/Y,其中X係在A與B之程式比對中由序列比對程式ALIGN-2評定為一致性匹配之胺基酸殘基數,且其中Y係B中胺基酸殘基之總數。 應瞭解,倘若胺基酸序列A之長度不等於胺基酸序列B之長度,則A相對於B之胺基酸序列一致性%不等於B相對於A之胺基酸序列一致性%。除非另有明確說明,否則本文所用之所有胺基酸序列一致性%的值係如所述獲得。
術語「雷福黴素型抗生素」意指具有雷福黴素之結構或類似結構之抗生素之類別或群組。
術語「利福拉齊型抗生素」意指具有利福拉齊結構或類似結構之抗生素之類別或群組。
當指示取代基之數量時,術語「一或多個」係指自一個取代基至最高可能取代數量之範圍,即經取代基替代一個氫至多達替代所有氫。術語「取代基」表示替代母體分子上之氫原子的原子或原子群。術語「經取代」表示指定基團具有一或多個取代基。當任一基團可帶有多個取代基並提供多個可能取代基時,該等取代基係獨立地選擇且不必相同。術語「未經取代」意指指定基團不具有取代基。術語「視情況經取代」意指指定基團未經取代或經一或多個獨立地選自可能取 代基群之取代基取代。當指示取代基之數量時,術語「一或多個」意指自一個取代基至最高可能取代數量之範圍,即經取代基替代一個氫至多達替代所有氫。
本文所用術語「烷基」係指1至12個碳原子(C1-C12)之飽和直鏈或支鏈單價烴基,其中該烷基可視情況經獨立地經一或多個下文所述取代基取代。在另一實施例中,烷基係1至8個碳原子(C1-C8)或1至6個碳原子(C1-C6)。烷基之實例包括但不限於甲基(Me、-CH3)、乙基(Et、-CH2CH3)、1-丙基(n-Pr、正丙基、-CH2CH2CH3)、2-丙基(i-Pr、i-丙基、-CH(CH3)2)、1-丁基(n-Bu、正丁基、-CH2CH2CH2CH3)、2-甲基-1-丙基(i-Bu、異丁基、-CH2CH(CH3)2)、2-丁基(s-Bu、第二丁基、-CH(CH3)CH2CH3)、2-甲基-2-丙基(t-Bu、第三丁基、-C(CH3)3)、1-戊基(正戊基、-CH2CH2CH2CH2CH3)、2-戊基(-CH(CH3)CH2CH2CH3)、3-戊基(-CH(CH2CH3)2)、2-甲基-2-丁基(-C(CH3)2CH2CH3)、3-甲基-2-丁基(-CH(CH3)CH(CH3)2)、3-甲基-1-丁基(-CH2CH2CH(CH3)2)、2-甲基-1-丁基(-CH2CH(CH3)CH2CH3)、1-己基(-CH2CH2CH2CH2CH2CH3)、2-己基(-CH(CH3)CH2CH2CH2CH3)、3-己基(-CH(CH2CH3)(CH2CH2CH3))、2-甲基-2-戊基(-C(CH3)2CH2CH2CH3)、3-甲基-2-戊基(-CH(CH3)CH(CH3)CH2CH3)、4-甲基-2-戊基(-CH(CH3)CH2CH(CH3)2)、3-甲基-3-戊基(-C(CH3)(CH2CH3)2)、2-甲基-3-戊基(-CH(CH2CH3)CH(CH3)2)、2,3-二甲基-2-丁基(-C(CH3)2CH(CH3)2)、3,3-二甲基-2-丁基(-CH(CH3)C(CH3)3、1-庚基、1-辛基及諸如此類。
本文所用術語「伸烷基」係指1至12個碳原子(C1-C12)之飽和直鏈或支鏈二價烴基,其中該伸烷基可視情況獨立地經一或多個下文所述取代基取代。在另一實施例中,伸烷基係1至8個碳原子(C1-C8)或1至6個碳原子(C1-C6)。伸烷基之實例包括但不限於亞甲基(-CH2-)、伸乙 基(-CH2CH2-)、伸丙基(-CH2CH2CH2-)及諸如此類。
術語「烯基」係指具有至少一個不飽和位點(即,碳-碳sp2雙鍵)之2至8個碳原子(C2-C8)之直鏈或支鏈單價烴基,其中該烯基可視情況獨立地經一或多個本文所述取代基取代,且包括具有「順式」及「反式」定向或或者「E」及「Z」定向之基團。實例包括但不限於乙烯基(ethylenyl或vinyl)(-CH=CH2)、烯丙基(-CH2CH=CH2)及諸如此類。
術語「伸烯基」係指具有至少一個不飽和位點(即,碳-碳sp2雙鍵)之2至8個碳原子(C2-C8)之直鏈或支鏈二價烴基,其中該伸烯基可視情況獨立地經一或多個本文所述取代基取代,且包括具有「順式」及「反式」定向或或者「E」及「Z」定向之基團。實例包括但不限於伸乙烯基(ethylenylene或vinylene)(-CH=CH-)、烯丙基(-CH2CH=CH-)及諸如此類。
術語「炔基」係指具有至少一個不飽和位點(即,碳-碳sp三鍵)之2至8個碳原子(C2-C8)之直鏈或支鏈單價烴基,其中該炔基可視情況獨立地經一或多個本文所述取代基取代。實例包括但不限於乙炔基(-C≡CH)、丙炔基(炔丙基、-CH2C≡CH)及諸如此類。
術語「伸炔基」係指具有至少一個不飽和位點(即,碳-碳sp三鍵)之2至8個碳原子(C2-C8)之直鏈或支鏈二價烴基,其中該伸炔基可視情況獨立地經一或多個本文所述取代基取代。實例包括但不限於伸乙炔基(-C≡C-)、伸丙炔基(伸炔丙基、-CH2C≡C-)及諸如此類。
術語「碳環」、「碳環基」、「碳環狀環」及「環烷基」係指具有3至12個呈單環之碳原子或7至12個呈二環之碳原子之單價非芳香族飽和或部分不飽和環。具有7至12個原子之二環碳環可佈置呈例如二環[4,5]、[5,5]、[5,6]或[6,6]系統,且具有9或10個環原子之二環碳環可佈置呈二環[5,6]或[6,6]系統或橋接系統,例如二環[2.2.1]庚烷、二環[2.2.2]辛烷及二環[3.2.2]壬烷。螺環部分亦包括在此定義之範圍內。 單環碳環之實例包括但不限於環丙基、環丁基、環戊基、1-戊-1-烯基、1-環戊-2-烯基、1-環戊-3-烯基、環己基、1-環己-1-烯基、1-環己-2-烯基、1-環己-3-烯基、環己二烯基、環庚基、環辛基、環壬基、環癸基、環十一烷基、環十二烷基及諸如此類。碳環基視情況獨立地經一或多個本文所述取代基取代。
「芳基」意指藉由自母體芳香族環系統之單一碳原子去除一個氫原子獲得之6至20個碳原子(C6-C20)的單價芳香族烴基。一些芳基在實例性結構中表示為「Ar」。芳基包括包含稠合至飽和、部分不飽和環或芳香族碳環狀環之芳香族環的二環基團。典型芳基包括但不限於衍生自苯(苯基)、經取代苯、萘、蒽、聯苯、茚基、二氫茚基、1,2-二氫萘、1,2,3,4-四氫萘基及諸如此類之基團。芳基視情況獨立地經一或多個本文所述取代基取代。
「伸芳基」意指藉由自母體芳香族環系統之兩個碳原子去除兩個氫原子獲得之6至20個碳原子(C6-C20)的二價芳香族烴基。一些伸芳基在實例性結構中表示為「Ar」。伸芳基包括包含稠合至飽和、部分不飽和環或芳香族碳環狀環之芳香族環的二環基團。典型伸芳基包括但不限於衍生自苯(苯基)、經取代苯、萘、蒽、聯苯基、茚基、二氫茚基、1,2-二氫萘、1,2,3,4-四氫萘基及諸如此類之基團。伸芳基視情況經一或多個本文所述取代基取代。
術語「雜環」、「雜環基」及「雜環狀環」在本文中可互換使用且係指3至約20個環原子之飽和或部分不飽和(即在環內具有一或多個雙鍵及/或三鍵)碳環基團,其中至少一個環原子係選自氮、氧及硫之雜原子,其餘環原子為C,其中一或多個環原子視情況獨立地經一或多個下文所述取代基取代。雜環可係具有3至7個環成員(2至6個碳原子及1至4個雜原子選自N、O、P及S)之單環或具有7至10個環成員(4至9個碳原子及1至6個選自N、O、P及S之雜原子)之二環,例如:二 環[4,5]、[5,5]、[5,6]或[6,6]系統。雜環闡述於以下文獻中:Paquette,Leo A.「Principles of Modern Heterocyclic Chemistry」(W.A.Benjamin,New York,1968),尤其第1、3、4、6、7及9章;「The Chemistry of Heterocyclic Compounds,A series of Monographs」(John Wiley & Sons,New York,1950年至今),尤其第13、14、16、19及28卷;及J.Am.Chem.Soc.(1960)82:5566。「雜環基」亦包括其中雜環基與飽和、部分不飽和環或芳香族碳環狀環或雜環狀環稠合之基團。雜環狀環之實例包括但不限於嗎啉-4-基、六氫吡啶-1-基、六氫吡嗪基、六氫吡嗪-4-基-2-酮、六氫吡嗪-4-基-3-酮、吡咯啶-1-基、硫代嗎啉-4-基、S-二側氧基硫代嗎啉-4-基、氮雜環辛-1-基、氮雜環丁-1-基、八氫吡啶并[1,2-a]吡嗪-2-基、[1,4]二氮呯-1-基、吡咯啶基、四氫呋喃基、二氫呋喃基、四氫噻吩基、四氫吡喃基、二氫吡喃基、四氫硫代吡喃基、六氫吡啶基、嗎啉基、硫代嗎啉基、噻烷基、六氫吡嗪基、高六氫吡嗪基、氮雜環丁基、環氧丙烷基、硫雜環丁基、高六氫吡啶基、氧雜環庚基、硫雜環庚基、氧氮呯基、二氮呯基、硫氮呯基、2-吡咯啉基、3-吡咯啉基、吲哚啉基、2H-吡喃基、4H-吡喃基、二噁烷基、1,3-二氧戊環基、吡唑啉基、二噻烷基、二噻基、二氫吡喃基、二氫噻吩基、二氫呋喃基、吡唑啶基、咪唑啉基、咪唑啶基、3-氮雜二環[3.1.0]己基、3-氮雜二環[4.1.0]庚基、氮雜二環[2.2.2]己基、3H-吲哚基、喹嗪基及N-吡啶基脲。螺環部分亦包括在此定義之範圍內。2個環原子經側氧基(=O)部分取代之雜環基團之實例係嘧啶酮基及1,1-二側氧基-硫嗎啉基。本文中之雜環基團視情況獨立地經一或多個本文所述取代基取代。
術語「雜芳基」係指5員、6員或7員環之單價芳香族基團,且包括5至20個原子之稠合環系統(其中至少一者係芳香族),該等原子獨立地含有一或多個獨立地選自氮、氧及硫之雜原子。雜芳基之實例係 吡啶基(包括例如2-羥基吡啶基)、咪唑基、吡唑并吡啶基、嘧啶基(包括例如4-羥基嘧啶基)、吡唑基、***基、吡嗪基、四唑基、呋喃基、噻吩基、異噁唑基、噻唑基、噁二唑基、噁唑基、異噻唑基、吡咯基、喹啉基、異喹啉基、四氫異喹啉基、吲除基、苯并咪唑基、苯并呋喃基、啉基、吲唑基、吡嗪基、呔嗪基、噠嗪基、三嗪基、異吲哚基、喋啶基、嘌呤基、噁二唑基、***基、噻二唑基、呋呫基、苯并呋呫基、苯并噻吩基、苯并噻唑基、苯并噁唑基、喹唑啉基、喹噁啉基、萘啶基及呋喃并吡啶基。雜芳基視情況獨立地經一或多個本文所述取代基取代。
倘若可能,則雜環基或雜芳基可與碳(碳連接)或氮(氮連接)鍵結。例如且不加以限制,與碳鍵結之雜環或雜芳基可在以下位置處鍵結:吡啶之2、3、4、5或6位;嗒嗪之3、4、5或6位;嘧啶之2、4、5或6位;吡嗪之2、3、5或6位;呋喃、四氫呋喃、硫代呋喃、噻吩、吡咯或四氫吡咯之2、3、4或5位;噁唑、咪唑或噻唑之2、4或5位;異噁唑、吡唑或異噻唑之3、4或5位;氮雜環丙烷之2或3位;氮雜環丁烷之2、3或4位;喹啉之2、3、4、5、6、7或8位;或異喹啉之1、3、4、5、6、7或8位。
例如且不加以限制,與氮鍵結之雜環或雜芳基可在以下位置處鍵結:氮雜環丙烷、氮雜環丁烷、吡咯、吡咯啶、2-吡咯啉、3-吡咯啉、咪唑、咪唑啶、2-咪唑啉、3-咪唑啉、吡唑、吡唑啉、2-吡唑啉、3-吡唑啉、六氫吡啶、六氫吡嗪、吲哚、吲哚啉、1H-吲唑之1位;異吲哚或異吲哚啉之2位;嗎啉之4位及咔唑或β-哢啉之9位。
「代謝物」係經由指定化合物或其鹽在機體中代謝產生之產物。化合物之代謝物可使用業內已知之常規技術鑑別且使用測試(例如彼等本文所述者)來確定其活性。此等產物可源自例如所投與化合物之氧化、還原、水解、胺化、去醯胺、酯化、去酯化、酶促裂解及 諸如此類。因此,本發明包括本發明化合物之代謝物,包括藉由包含使本發明之式I化合物與哺乳動物接觸足以產生其代謝產物之時間段之方法產生之化合物。
術語「醫藥調配物」係指呈允許所含活性成份之生物活性有效之形式且不含對投與該調配物之個體具有不可接受之毒性之其他組份之製劑。
「無菌」調配物係無菌的或不含所有活微生物及其孢子。
「穩定」調配物係以下調配物:其中之蛋白質在儲存後基本上保持其物理及化學穩定性及完整性。用於量測蛋白質穩定性之多種分析技術可在業內獲得且綜述於Peptide and Protein Drug Delivery,247-301,Vincent Lee編輯,Marcel Dekker公司,New York,New York,Pubs.(1991)及Jones,A.Adv.Drug Delivery Rev.10:29-90(1993)中。可於所選時間段之所選溫度下量測穩定性。對於快速篩選而言,調配物可在40℃下保持2週至1個月,此時量測穩定性。倘若欲將調配物儲存在2-8℃下,則通常調配物應在30℃或40℃下穩定至少1個月及/或在2-8℃下穩定至少2年。倘若欲將調配物儲存在30℃下,則通常調配物應在30℃下穩定至少2年及/或在40℃下穩定至少6個月。例如,可使用儲存期間之聚集程度作為蛋白質穩定性之指標。因此,「穩定」調配物可係以下調配物:其中小於約10%且較佳小於約5%之蛋白質作為聚集物存在於該調配物中。在其他實施例中,可確定在調配物儲存期間聚集物形成之任何增加。
「等滲」調配物係具有與人類血液基本上相同之滲透壓力之調配物。等滲調配物通常將具有約250mOsm至350mOsm之滲透壓力。術語「低滲壓的」闡述滲透壓力低於人類血液之調配物。因此,術語「高滲壓的」用於闡述滲透壓力高於人類血液之調配物。可例如使用蒸氣壓或冰凍型滲透壓計量測等滲性。本發明調配物因添加鹽及/或 緩衝液而為高滲壓的。
本文所用「載劑」包括在所用劑量及濃度下對所暴露細胞或哺乳動物無毒之醫藥上可接受之載劑、賦形劑或穩定劑。通常,生理學上可接受之載劑係pH緩衝水溶液。生理學上可接受之載劑的實例包括緩衝液,例如磷酸鹽、檸檬酸鹽及其他有機酸;抗氧化劑,包括抗壞血酸,低分子量(小於約10個殘基)多肽;蛋白質,例如血清白蛋白、明膠或免疫球蛋白;親水性聚合物,例如聚乙烯吡咯啶酮;胺基酸,例如甘胺酸、麩醯胺酸、天冬醯胺、精胺酸或離胺酸;單糖、二糖及其他碳水化合物,包括葡萄糖、甘露糖或糊精;螯合劑,例如EDTA;糖醇,例如甘露糖醇或山梨糖醇;形成鹽之抗衡離子,例如鈉;及/或非離子型表面活性劑,例如TWEE®、聚乙二醇(PEG)及PLURONICSTM
「醫藥上可接受之載劑」係指醫藥調配物中除活性成份外對個體無毒之成份。醫藥上可接受之載劑包括但不限於緩衝液、賦形劑、穩定劑或防腐劑。「醫藥上可接受之酸」包括在調配其之濃度及方式下無毒之無機酸及有機酸。例如,適宜無機酸包括鹽酸、過氯酸、氫溴酸、氫碘酸、硝酸、硫酸、磺酸、亞磺酸、對胺苯磺酸、磷酸、碳酸等。適宜有機酸包括直鏈及支鏈烷基、芳香族、環狀、環脂族、芳基脂肪族、雜環、飽和、不飽和單羧酸、二羧酸及三羧酸,包括例如,甲酸、乙酸、2-羥基乙酸、三氟乙酸、苯乙酸、三甲基乙酸、第三丁基乙酸、鄰胺苯甲酸、丙酸、2-羥基丙酸、2-側氧基丙酸、丙二酸、環戊烷丙酸、3-苯基丙酸、丁酸、丁二酸、苯甲酸、3-(4-羥基苄醯基)苯甲酸、2-乙醯氧基-苯甲酸、抗壞血酸、肉桂酸、月桂基硫酸、硬脂酸、黏康酸、苦杏仁酸、琥珀酸、撲酸、富馬酸、蘋果酸、馬來酸、羥基馬來酸、丙二酸、乳酸、檸檬酸、酒石酸、羥乙酸、醛糖酸、葡萄糖酸、丙酮酸、乙醛酸、草酸、甲磺酸、琥珀酸、水楊 酸、鄰苯二甲酸、巴莫酸、棕櫚酸、硫氰酸、甲烷磺酸、乙烷磺酸、1,2-乙烷二磺酸、2-羥基乙烷磺酸、苯磺酸、4-氯苯磺酸、萘-2-磺酸、對甲苯磺酸、樟腦磺酸、4-甲基二環[2.2.2]-辛-2-烯-1-甲酸、葡萄庚酸、4,4’-亞甲基雙-3-(羥基-2-烯-1-甲酸)、羥基萘甲酸。
「醫藥上可接受之鹼」包括在調配其之濃度及方式下無毒之無機鹼及有機鹼。例如,適宜鹼包括彼等自形成無機鹼之金屬(例如鋰、鈉、鉀、鎂、鈣、銨、鐵、鋅、銅、錳、鋁)形成者、N-甲基葡糖胺、嗎啉、六氫吡啶及有機無毒鹼,包括一級、二級及三級胺、經取代胺、環狀胺及鹼離子交換樹脂[例如,N(R’)4 +(其中R’獨立地為H或C1-4烷基,例如,銨、Tris)],例如,異丙胺、三甲胺、二乙胺、三乙胺、三丙胺、乙醇胺、2-二乙胺基乙醇、三甲胺、二環己基胺、離胺酸、精胺酸、組胺酸、咖啡因、普羅卡因(procaine)、哈胺(hydrabamine)、膽鹼、甜菜鹼、乙二胺、葡糖胺、甲基葡糖胺、可可鹼、嘌呤、六氫吡嗪、六氫吡啶、N-乙基六氫吡啶、多胺樹脂及諸如此類。尤佳有機無毒鹼係異丙胺、二乙胺、乙醇胺、三甲胺、二環己胺、膽鹼及咖啡因。
可與本發明一起使用之其他醫藥上可接受之酸及鹼包括彼等衍生自諸如以下等胺基酸者:組胺酸、甘胺酸、***酸、天冬胺酸、麩胺酸、離胺酸及天冬醯胺酸。
「醫藥上可接受之」緩衝液及鹽包括彼等衍生自上述酸及鹼之酸加成鹽及鹼加成鹽。具體緩衝液及/或鹽包括組胺酸、琥珀酸鹽及乙酸鹽。
「醫藥上可接受之糖」係在與所關注蛋白質組合時顯著地防止或降低該蛋白質在儲存後之化學及/或物理不穩定性之分子。當意欲將調配物凍乾且然後重構時,「醫藥上可接受之糖」亦可稱為「凍乾保護劑」。實例性糖及其相應糖醇包括:胺基酸,例如麩胺酸單鈉或 組胺酸;甲胺,例如甜菜鹼;溶致鹽,例如硫酸鎂;多元醇,例如三元或更高分子量糖醇,例如甘油、葡聚糖、赤藻糖醇、丙三醇、***糖醇、木糖醇、山梨糖醇及甘露糖醇;丙二醇;聚乙二醇;PLURONICS®;及其組合。其他實例性凍乾保護劑包括甘油及明膠,以及蜜二糖、蜜三糖、棉子糖、甘露三糖及水蘇糖。還原糖之實例包括葡萄糖、麥芽糖、乳糖、麥芽酮糖、異麥芽酮糖及乳酮糖。非還原糖之實例包括選自糖醇及其他直鏈多元醇之多羥基化合物之非還原糖苷。較佳糖醇係單糖苷,尤其彼等藉由還原諸如乳糖、麥芽糖、乳酮糖及麥芽酮糖等二糖獲得之化合物。糖苷側基可為葡萄糖苷或半乳糖苷。糖醇之其他實例係山梨醇、麥芽糖醇、乳糖醇及異麥芽酮糖。較佳醫藥上可接受之糖係非還原糖菌藻糖或蔗糖。將醫藥上可接受之糖以「保護量」(例如預凍乾)添加至調配物中,此意味著該蛋白質在儲存期間(例如,在重構及儲存後)基本上保持其物理及化學穩定性及完整性。
本文所關注「稀釋劑」係在醫藥上可接受(對於投與人類而言安全且無毒)且可用於製備液體調配物(例如在凍乾後重構之調配物)之稀釋劑。實例性稀釋劑包括無菌水、注射用抑菌水(BWFI)、pH緩衝溶液(例如磷酸鹽緩衝鹽水)、無菌鹽水溶液、林格氏溶液(Ringer's solution)或右旋糖溶液。在替代實施例中,稀釋劑可包括鹽水溶液及/或緩衝液。
「防腐劑」係可添加至本文中之調配物中以降低細菌活性之化合物。添加防腐劑可例如促進多用途(多劑量)調配物之產生。潛在防腐劑之實例包括十八烷基二甲基苄基氯化銨、氯化六甲雙銨、苯紮氯銨(benzalkonium chloride)(烷基苄基二甲基氯化銨之混合物,其中該等烷基係長鏈化合物)及苄索氯銨(benzethonium chloride)。其他防腐劑類型包括芳香族醇,例如苯酚、丁醇及苄醇;對羥基苯甲酸烷基 酯,例如對羥基苯甲酸甲酯或對羥基苯甲酸丙酯;兒茶酚;間苯二酚;環己醇;3-戊醇及間甲酚。本文中之最佳防腐劑係苄醇。
「個體(individual或subject)」或「患者」係哺乳動物。哺乳動物包括但不限於家養動物(例如,牛、綿羊、貓、狗、及馬)、靈長類動物(例如,人類及非人類靈長類動物,例如猴子)、兔及齧齒類動物(例如,小鼠及大鼠)。在某些實施例中,個體(individual或subject)係人類。
本文所用「治療(treatment)」(及其語法變化形式,例如「treat」或「treating」)係指設計用以改變所治療個體、組織或細胞在臨床病理學過程中之自然過程之臨床幹預。合意治療效應包括但不限於降低疾病進展速率、改善或減輕疾病狀態及緩解或改良預後,全部皆可由例如醫師等熟習此項技術者量測。在一個實施例中,治療可意指緩和症狀、減少疾病之任何直接或間接病理學結果、降低傳染病進展速率、改善或減輕疾病狀態及緩解或改良預後。在一些實施例中,使用本發明抗體來延遲疾病發生或減緩傳染病進展。
本文所用「結合」係指投與一種治療形式與另一治療形式。同樣,「結合」係指在向個體投與另一治療形式之前、期間或之後投與一種治療形式。
術語「吞噬體」係指吞噬細胞之內化之膜封閉之胞吞容器(endocytic vessel)。其可藉由直接-、抗體-或補體-增強之吞噬作用起始。術語「吞噬溶酶體」係指已與一或多個溶酶體融合之內化細胞容器。
細菌在傳統上基於其革蘭氏染劑保留劃分成兩個主要群組:革蘭氏陽性(Gm+)及革蘭氏陰性(Gm-)。革蘭氏陽性細菌與單一單元脂質膜結合,且其通常含有負責保留革蘭氏染劑之厚肽聚糖層(20-80nm)。革蘭氏陽性細菌係彼等藉由革蘭氏染色染色成深藍色或紫色 者。相比之下,革蘭氏陰性細菌不能保留結晶紫染劑,而是吸入複染劑(番紅花紅或品紅)且呈現紅色或粉紅色。革蘭氏陽性細胞壁通常缺乏在革蘭氏陰性細菌中發現之外膜。
術語「菌血症」係指在血流中存在經由血液培養最常檢測到之細菌。細菌可由於嚴重感染併發症(如肺炎或腦膜炎)、在手術期間(尤其在涉及例如胃腸道等黏膜時)或由於進入動脈或靜脈中之導管及其他異物而進入血流中。菌血症可具有若干結果。對細菌之免疫反應可引起敗血症及敗血性休克,此具有相對較高之死亡率。細菌亦可利用血液來擴散至機體其他部分,在原始感染部位遠處引起感染。實例包括心內膜炎或骨髓炎。
「治療有效量」係實現特定病症之可量測改良所需之最低濃度。本文中之治療有效量可根據諸如以下等因素而變化:患者之疾病狀態、年齡、性別及重量以及抗體在個體中誘發期望反應之能力。治療有效量亦為抗體之治療有益效應勝過其任何毒性或有害效應的量。在一個實施例中,治療有效量係有效減少活體內感染中之菌血症之量。在一個態樣中,「治療有效量」係至少將自例如血液等患者試樣分離之細菌負載或菌落形成單位(CFU)相對於在藥物投與前有效降低至少1 log之量。在更具體之態樣中,降低係至少2 log。在另一態樣中,降低係3 log、4 log、5 log。在又一態樣中,降低低於可檢測量。在另一實施例中,治療有效量係治療期過程內所給予一或多次劑量中AAC之量,其+相較於在治療受感染患者開始前或開始時之陽性血液培養物達成陰性血液培養物(即,不長出為AAC靶標之細菌)。
「預防有效量」係指在所需時間段內以所需劑量有效達成期望預防效果之量。通常但未必,由於在個體患病前、在疾病較早階段或甚至在暴露於感染風險升高之條件之前使用預防劑量,因此預防有效量可小於治療有效量。在一個實施例中,預防有效量係至少有效減 少、預防細胞間發生感染或擴散之量。
「長期」投與係指以連續模式而非急性模式投與藥劑,以將初始治療效應(活性)維持延長時間段。「間歇」投與係並非無中斷地連續進行而是本質上循環之治療。
術語「包裝插頁」用於指通常包括於治療產品之商業包裝內之說明書,其含有有關適應症、用法、劑量、投與、組合療法、禁忌及/或關於此等治療產品之使用之警告的資訊。
術語「對掌性」係指與鏡像配偶體具有不可疊合性質之分子,而術語「非對掌性」係指與其鏡像配偶體可疊合之分子。
術語「立體異構物」係指具有相同化學組成但在原子或群組在空間中之佈置方面不同之化合物。
「非鏡像異構物」係指具有兩個或更多個對掌性中心且其分子彼此不為鏡像之立體異構物。非鏡像異構物具有不同物理性質,例如熔點、沸點、光譜性質及反應性。非鏡像異構物混合物可根據諸如電泳及層析等高解析度分析程序分離。
「鏡像異構物」係指化合物之鏡像彼此不可疊合之兩種立體異構物。
本文所用之立體化學定義及規則通常遵循S.P.Parker編輯,McGraw-Hill Dictionary of Chemical Terms(1984)McGraw-Hill Book公司,New York;及Eliel,E.及Wilen,S.,Stereochemistry of Organic Compounds(1994),John Wiley & Sons公司,New York。許多有機化合物以光學活性形式存在,即其具有旋轉平面偏振光之平面之能力。在闡述光學活性化合物時,使用前綴D及L或R及S來表示分子圍繞其對掌性中心之絕對組態。採用前綴d及l或(+)及(-)來指定化合物之平面偏振光之旋轉符號,其中(-)或l意指該化合物係左旋。有(+)或d前綴之化合物係右旋。對於給定化學結構而言,該等立體異構物係相同 的,只是其彼此為鏡像。具體立體異構物亦可稱作鏡像異構物,且此等異構物之混合物通常稱為鏡像異構物混合物。鏡像異構物之50:50混合物稱作外消旋混合物或外消旋物,其可發生於在化學反應或過程中沒有立體選擇性或立體特異性時。術語「外消旋混合物」及「外消旋物」係指兩種無光學活性之鏡像異構物質之等莫耳混合物。
術語「保護基團」係指化合物上通常用於阻斷或保護特定官能基而其他官能基反應之取代基。例如,「胺基-保護基團」係附著至胺基之阻斷或保護化合物中之胺基官能基之取代基。適宜胺基-保護基團包括但不限於乙醯基、三氟乙醯基、第三丁氧基羰基(BOC)、苄氧基羰基(CBZ)及9-茀基甲氧基羰基(Fmoc)。關於保護基團及其用途之一般說明,參見T.W.Greene,Protective Groups in Organic Synthesis,John Wiley & Sons,New York,1991或後續版本。
本文所用術語「約」係指熟習本技術領域者容易瞭解之各別值之一般誤差範圍。提及「約」一值或參數在本文中包括(且闡述)關於該值或參數本身之實施例。
除非上下文另有明確指示,否則本文及在隨附申請專利範圍中所使用單數形式「一(a、an)」及「該」(「the」)皆包括複數個指示物。例如,提及「抗體」係提及一至許多個抗體,例如莫耳量,且包括其為熟習此項技術者已知之等效物及諸如此類。
III.組合物及方法 抗體-抗生素結合物(AAC)
本發明之AAC化合物包括彼等具有抗細菌活性者,其可有效抵抗諸多人類及獸醫革蘭氏陽性、革蘭氏陰性病原體,包括葡萄球菌屬。在實例性實施例中,AAC化合物包括結合(即藉由連接體共價附著)至雷福黴素型抗生素部分之半胱胺酸改造之抗體。雷福黴素型抗生素部分之生物活性係藉由結合至抗體來調節。本發明之抗體-抗生 素結合物(AAC)將有效劑量之抗細菌選擇性地遞送至感染部位,藉此可達成較大選擇性,即較低有效劑量,同時增加治療指數(「治療窗」)。
本發明提供新穎抗細菌療法,其旨在藉由靶向躲避常用抗生素療法之細菌群體來防止抗生素逃避。新穎抗細菌療法係利用抗體抗生素結合物(AAC)來達成,其中對在金黃色葡萄球菌(包括MRSA)上發現之細胞壁組份具有特異性之抗體化學連接至有效抗生素(雷福黴素衍生物)。抗生素經由設計成藉由組織蛋白酶B(在多數哺乳動物細胞類型中發現之溶酶體蛋白酶)裂解之蛋白酶可裂解肽連接體接合至抗體(Dubowchik等人(2002)Bioconj.Chem.13:855-869)。AAC用作前藥,此乃因抗生素直至連接體裂解才具有活性(由於抗體之大尺寸)。由於主要為嗜中性球及巨噬細胞之宿主細胞在宿主感染過程中之某一點攝取在自然感染中發現之相當比例之金黃色葡萄球菌,因此宿主細胞內耗用之時間為細菌躲避抗生素活性提供大量機會。本發明AAC經設計以在宿主細胞攝取金黃色葡萄球菌後結合該等細菌且在吞噬溶酶體內部釋放抗生素。藉由此機制,AAC能夠特異性地在其中金黃色葡萄球菌受到習用抗生素差治療之位置處集中活性抗生素。儘管本發明並不受特定作用機制限制或界定,但AAC經由三種潛在機制改良抗生素活性:(1)AAC在攝取細菌之哺乳動物細胞內部遞送抗生素,由此增強較差地擴散至其中隔離細菌之吞噬溶酶體中之抗生素之效能。(2)AAC調理細菌,由此增強吞噬細胞對游離細菌之攝取,且在細菌隔離於吞噬溶酶體中時局部地釋放抗生素以殺死該等細菌。(3)AAC藉由將抗生素連接至抗體來改良抗生素之活體內半衰期(經改良藥物動力學)。AAC之經改良藥物動力學使得能夠在其中金黃色葡萄球菌集中之區域中遞送足夠抗生素,同時限制需要全身性投與之總體抗生素劑量。此性質應允許利用AAC進行長期治療以靶向持續性感染且具 有最低抗生素副效應。
本申請案闡述新穎結合之抗WTA抗體治療劑的生成及其在治療革蘭氏陽性(Gm+)細菌感染(包括金黃色葡萄球菌感染)中之用途。該等抗體能夠靶向躲避習用抗生素療法之Gm+細菌群體。
本發明之抗體-抗生素結合物化合物包含藉由肽連接體共價附著至雷福黴素型抗生素之抗壁磷壁酸β(WTAβ)抗體。
在一個實施例中,抗體-抗生素結合物具有下式:Ab-(L-abx)p
其中:Ab係抗壁磷壁酸抗體;L係具有下式之肽連接體:-Str-Pep-Y-
其中Str係延伸體單元;Pep係2至12個胺基酸殘基之肽,且Y係間隔體單元;abx係雷福黴素型抗生素;且p係1至8之整數。
藉由本文所述方法引入之游離半胱胺酸殘基之數量可限制可經由反應性連接體部分結合至抗體分子之抗生素部分之數量。因此式I之實例性AAC包含具有1個、2個、3個或4個經改造半胱胺酸胺基酸之抗體(Lyon,R.等人(2012)Methods in Enzym.502:123-138)。
抗壁磷壁酸(WTA)抗體
本文揭示某些抗WTA Ab及結合諸多Gm+細菌(包括金黃色葡萄球菌)上表現之WTA之經結合抗WTA抗體。抗WTA抗體可藉由US 8283294;Meijer PJ等人(2006)J Mol Biol.358(3):764-72;Lantto J等人(2011)J Virol.85(4):1820-33及下文實例21中教示之方法選擇並產生。本發明提供該等抗WTA Ab之組合物。
革蘭氏陽性細菌之細胞壁包含多種肽聚糖(PGN)鞘之厚層,該等鞘不僅使細胞膜穩定且亦提供可附著其他分子之許多位點(圖3)。該等細胞表面糖蛋白之主要類別係磷壁酸(「TA」),其係於許多聚糖結合蛋白(GPB)上發現之富磷酸鹽分子。TA分為兩種類型:(1)脂磷壁酸(「LTA」),其錨定至質膜且自細胞表面延伸至肽聚糖層中;及(2)壁TA(WTA),其共價附著至肽聚糖且延伸穿過並超出細胞壁(圖3)。WTA可佔GPB中總細胞壁質量之高達60%。因此,其呈現高度表現之細胞表面抗原。
WTA之化學結構隨生物體不同而不同。在金黃色葡萄球菌中,WTA經由N-乙醯基葡糖胺(GlcNAc)-1-P及N-乙醯基甘露糖胺(ManNAc)構成之二糖共價連接至N-乙醯基胞壁酸(MurNAc)之6-OH,之後為約兩個或三個甘油磷酸酯單元(圖4)。則實際WTA聚合物係由約11-40個核醣醇磷酸酯(Rbo-P)重複單元構成。首先藉由稱為TagO之酶起始WTA之逐步合成,且缺乏TagO基因(藉由缺失該基因)之金黃色葡萄球菌菌株不產生任何WTA。重複單元可進一步經由α-(alpha)或β-(beta)糖苷連接於C2-OH位置經D-丙胺酸(D-Ala)及/或於C4-OH位置經N-乙醯基葡糖胺(GlcNAc)調適。端視金黃色葡萄球菌菌株或該細菌之生長階段而定,糖苷連接可為α-變旋異構物、β-變旋異構物或該兩種變旋異構物之混合物。該等GlcNAc糖修飾係藉由兩種特異性金黃色葡萄球菌源糖基轉移酶(Gtf)來調適:TarM Gtf介導α-糖苷連接,而TarS Gtf介導β-(beta)糖苷連接。
鑒於有大量證據表明細胞內MRSA儲存物不受抗生素影響,研發本發明之新穎治療組合物以藉由以下方式防止此抗生素躲避法:使用金黃色葡萄球菌特異性抗體將抗生素系連至該等細菌上,使得在宿主細胞於活體內將細菌吞食或以其他方式內化時,該細菌將抗生素帶入宿主細胞中。
在一個態樣中,本發明提供為抗WTAα或抗WTAβ之抗WTA抗體。在另一態樣中,本發明提供抗金黃色葡萄球菌Ab。實例性Ab係自來自金黃色葡萄球菌感染患者之B細胞選殖(如實例21中所教示)。在一個實施例中,抗WTA及抗金黃色葡萄球菌Ab係人類單株抗體。本發明涵蓋包含本WTA Ab之CDR之嵌合Ab及人類化Ab。
對於治療用途而言,用於結合至抗生素以生成AAC之本發明WTA Ab可為除IgM以外之任何同種型。在一個實施例中,WTA Ab為人類IgG同種型。在更具體之實施例中,WTA Ab係人類IgG1。
圖6A及6B列示為抗WTAα或抗WTA β之Ab。在說明書及附圖通篇中,由4位數字指定之Ab(例如,4497)亦可以在前「S」提及,例如,S4497;兩種名稱係指為抗體之野生型(WT)未經修飾序列之相同抗體。抗體變體係藉由抗體編號後之「v」來指示,例如,4497.v8。除非指定(例如如藉由變體編號),否則所示胺基酸序列係未經修飾/未改變原始序列。該等Ab相較於野生型未經修飾抗體可於一或多個殘基處進行改變,例如以改良pK、穩定性、表現、可製造性(例如,如下文實例中所述),同時維持實質上大約相同或改良之與抗原之結合親和力。本發明涵蓋具有保守胺基酸取代之本WTA抗體變體。在下文中,除非另有指定,否則CDR編號係根據Kabat且恆定結構域編號係根據EU編號。
圖13A及圖13B提供4種人類抗WTAα抗體之分別輕鏈可變區(VL)及重鏈可變區(VH)之胺基酸序列比對。根據Kabat編號之CDR序列CDR L1、L2、L3及CDR H1、H2、H3帶下劃線。
每對VL及VH之序列如下:4461輕鏈可變區 (SEQ ID NO.25)
4461重鏈可變區 (SEQ ID NO.26)
4624輕鏈可變區 (SEQ ID NO.27)
4624重鏈可變區 (SEQ ID NO.28)
4399輕鏈可變區 (SEQ ID NO.29)
4399重鏈可變區 (SEQ ID NO.30)
6267輕鏈可變區 (SEQ ID NO.31)
6267重鏈可變區 (SEQ ID NO.32)。
本發明提供結合壁磷壁酸(WTA)之包含輕鏈及H鏈之經分離單株抗體,該L鏈包含CDR L1、L2、L3且該H鏈包含CDR H1、H2、H3,其中該等CDR L1、L2、L3及H1、H2、H3分別包含Ab 4461(SEQ ID NO.1-6)、4624(SEQ ID NO.7-12)、4399(SEQ ID NO.13-18)及6267(SEQ ID NO.19-24)中每一者之CDR之胺基酸序列,如表6A及6B中所示。
在另一實施例中,結合WTA之經分離單株Ab包含H鏈可變區(VH)及L鏈可變區(VL),其中該VH在分別抗體4461、4624、4399及6267中每一者之VH區序列之長度內包含至少95%序列一致性。在又一具體態樣中,序列一致性係96%、97%、98%、99%或100%。
本發明亦提供包含L鏈及H鏈CDR序列之抗WTAβAb,如圖14中所示。在一個實施例中,經分離抗WTAβ單株Ab包含選自由圖14中13種Ab中每一者之CDR組成之群之CDR L1、L2、L3及H1、H2、H3。在另一實施例中,本發明提供在13種抗體中每一者之V區結構域結構之長度內包含至少95%序列一致性的經分離抗WTAβAb。在又一具體態樣中,序列一致性係96%、97%、98%、99%或100%。
在13種抗WTAβAb中,6078及4497經修飾以產生以下變體:i)在L鏈及H鏈中之一者或兩者中具有經改造Cys用於結合連接體-抗生素中間體;且ii)其中H鏈中之第一殘基Q改變成E(v2)或前兩個殘基QM改變成EI或EV(v3及v4)。
圖15A-1及15A-2提供抗WTAβAb 6078(未經修飾)及其變體v2、v3、v4之全長L鏈之胺基酸序列。含有經改造Cys之L鏈變體係藉由恆定區末端黑框中之C(在此情況下於EU殘基號205處)指示。變體名稱(例如,v2LC-Cys)意指含有改造至L鏈中之Cys之變體2。HCLC-Cys意指抗體之H鏈及L鏈兩者皆含有經改造Cys。圖15B-1至15B-4顯示抗 WTAβAb 6078(未經修飾)及其在H鏈之第一個或前2個殘基中具有變化之變體v2、v3、v4之全長H鏈之比對。含有經改造Cys之H鏈變體係藉由恆定區末端黑框中之C(於EU殘基號118處)指示。
6078輕鏈可變區(VL) (SEQ ID NO.111)
6078重鏈可變區(VH) (SEQ ID NO.112)
其中X係Q或E;且X1係M、I或V。
6078輕鏈 (SEQ ID NO.113)
6078半胱胺酸改造之輕鏈 (SEQ ID NO.115)
6078 WT全長重鏈 (SEQ ID NO.114)
6078變體(v2、v3或v4)全長重鏈 (SEQ ID NO.116), 其中X可為M、I或V。
6078變體(v2、v3或v4),Cys改造之重鏈 (SEQ ID NO.117), 其中X係M、I或V。
在一個實施例中,本發明提供包含重鏈及輕鏈之經分離抗WTAβ抗體,其中該重鏈包含與SEQ ID NO.112具有至少95%序列一致性之VH。在另一實施例中,此抗體進一步包含與SEQ ID NO.111具有至少95%序列一致性之VL。在具體實施例中,抗WTAβ抗體包含輕鏈及重鏈,其中該L鏈包含SEQ ID NO.111之VL且該H鏈包含SEQ ID NO.112之VH。在再一更具體之實施例中,經分離抗WTAβ抗體包含SEQ ID NO.113之L鏈及SEQ ID NO.114之H鏈。
抗6078 Cys改造之H鏈及L鏈變體可以任一以下組合配對以形成完整Ab用於結合至連接體-Abx中間體以生成本發明之抗WTA AAC。未經修飾L鏈(SEQ ID NO.113)可與SEQ ID NO.117之Cys改造之H鏈變體配對;變體可為其中X係M、I或V者。SEQ ID NO.115之Cys改造之L鏈可與以下配對:SEQ ID NO.114之H鏈;SEQ ID NO.116之H鏈變體;或SEQ ID NO.117之Cys改造之H鏈變體(在此形式中,H鏈及L鏈兩者皆經Cys改造)。在特定實施例中,本發明之抗WTAβ抗體及抗WTAβAAC包含SEQ ID NO.115之L鏈及SEQ ID NO.116之H鏈。
圖16A-1及16A-2提供抗WTAβAb 4497(未經修飾)及其v8變體之全長L鏈。含有經改造Cys之L鏈變體係藉由恆定區末端黑框中之C(於EU殘基號205處)指示。圖16B-1、16B-2、16B-3顯示抗WTAβAb 4497 (未經修飾)及其v8變體(CDR H3位置96處之D改變成E,具有或不具有經改造Cys)之全長H鏈之比對。含有經改造Cys之H鏈變體係藉由恆定區末端黑框中之C(在此情況下於EU殘基號118處)指示。未經修飾CDR H3係GDGGLDD(SEQ ID NO.104);4497v8 CDR H3係GEGGLDD(SEQ ID NO.118)。
4497輕鏈可變區 (SEQ ID NO.119)
4497重鏈可變區 (SEQ ID NO.120)
4497.v8重鏈可變區 (SEQ ID NO.156)
4497輕鏈 (SEQ ID NO.121)
4497 v.8重鏈 (SEQ ID NO.122)
4497-Cys輕鏈 (SEQ ID NO.123)
4497.v8-重鏈 (SEQ ID NO.157;與SEQ ID NO.122相同)。
4497.v8-Cys重鏈 (SEQ ID NO.124)
藉由本發明提供之另一經分離抗WTAβ抗體包含重鏈及輕鏈,其中該重鏈包含與SEQ ID NO.120具有至少95%序列一致性之VH。在另一實施例中,此抗體進一步包含與SEQ ID NO.119具有至少95%序列一致性之VL。在具體實施例中,抗WTAβ抗體包含輕鏈及重鏈,其中該L鏈包含SEQ ID NO.119之VL且該H鏈包含SEQ ID NO.120之VH。在再一更具體之實施例中,經分離抗WTAβ抗體包含SEQ ID NO.121之L鏈及SEQ ID NO.122之H鏈。
抗4497 Cys改造之H鏈及L鏈變體可以任一以下組合配對以形成完整Ab用於結合至連接體-Abx中間體以生成本發明之抗WTA AAC。未經修飾L鏈(SEQ ID NO.121)可與SEQ ID NO.124之Cys改造之H鏈變體配對。SEQ ID NO.123之Cys改造之L鏈可與以下配對:SEQ ID NO.157之H鏈變體;或SEQ ID NO.124之Cys改造之H鏈變體(在此形式中,H鏈及L鏈兩者皆經Cys改造)。在特定實施例中,本發明之抗WTAβ抗體及抗WTAβAAC包含SEQ ID NO.123之L鏈。
又一實施例係結合與圖13A及圖13B之每一抗WTAα Ab相同之表 位之抗體。亦提供結合與圖14、圖15A及15B以及圖16A及16B之每一抗WTAβ Ab相同之表位之抗體。
WTA上GlcNAc-糖修飾之變旋異構定向影響抗WTA抗體與WTA之結合。於C4-OH位置處經由α-或β-糖苷連接分別藉由TarM糖基轉移酶或TarS糖基轉移酶藉由N-乙醯基葡糖胺(GlcNAc)糖修飾對WTA進行修飾。因此,使來自缺乏TarM(△TarM)、TarS(△TarS)或TarM與TarS兩者(△TarM/△TarS)之糖基轉移酶突變體菌株之細胞壁製劑經受利用抗WTA之抗體實施之免疫免疫印漬分析。對WTA上之α-GlcNAc修飾具有特異性之WTA抗體(S7574)不結合來自△TarM菌株之細胞壁製劑。反之亦然,對WTA上之β-GlcNAc修飾具有特異性之WTA抗體(S4462)不結合來自△TarS菌株之細胞壁製劑。如所預計,該等抗體兩者皆不結合來自缺乏兩種糖基轉移酶之缺失菌株(△TarM/△TarS)亦及缺乏任何WTA之菌株(△TagO)之細胞壁製劑。根據此分析,已將抗體表徵為抗α-GlcNAc WTA mAb或抗β-GlcNAc WTA mAb,如圖6A及6B中之表中所列示。
半胱胺酸胺基酸可於抗體中之反應性位點進行改造且其不形成鏈內或分子間二硫連接(Junutula等人,2008b Nature Biotech.,26(8):925-932;Dornan等人(2009)Blood 114(13):2721-2729;US 7521541;US 7723485;WO2009/052249;Shen等人(2012)Nature Biotech.,30(2):184-191;Junutula等人(2008)Jour of Immun.Methods 332:41-52)。經改造半胱胺酸硫硫醇可與連接體試劑或本發明之連接體-抗生素中間體(其具有硫醇反應性親電子基,例如馬來醯亞胺或α-鹵代醯胺)反應以與半胱胺酸改造抗體(硫代Mab)及抗生素(abx)部分形成AAC。因此抗生素部分之位置可經設計、控制且已知。可控制抗生素負載,此乃因經改造半胱胺酸硫醇通常以高產率與硫醇反應性連接體試劑或連接體-抗生素中間體反應。藉由於重鏈或 輕鏈上之單一位點處之取代對抗WTA抗體進行改造以引入半胱胺酸胺基酸在對稱四聚物抗體上得到兩個新半胱胺酸。可達成結合產物AAC接近2之抗生素負載及近似均質性。
在某些實施例中,可能期望產生半胱胺酸改造之抗WTA抗體,例如「硫代MAb」,其中該抗體之一或多個殘基經半胱胺酸殘基取代。在特定實施例中,經取代殘基於抗體之可及位點處出現。藉由用半胱胺酸取代彼等殘基,反應性硫醇基由此位於抗體之可及位點處且可用於使抗體結合至其他部分(例如抗生素部分或連接體-抗生素部分)以產生免疫結合物,如本文進一步所述。在某些實施例中,以下殘基中之任一或多者可經半胱胺酸取代:包括輕鏈之V205(Kabat編號)、重鏈之A118(EU編號)及重鏈Fc區之S400(EU編號)。顯示抗WTA抗體之非限制性實例性半胱胺酸改造之重鏈A118C(SEQ ID NO:149)及輕鏈V205C(SEQ ID NO:151)突變體。半胱胺酸改造之抗WTA抗體可如所述生成(Junutula等人,2008b Nature Biotech.,26(8):925-932;US 7521541;US-2011/0301334)。
在另一實施例中,本發明係關於包含重鏈及輕鏈之經分離抗WTA抗體,其中該重鏈包含野生型重鏈恆定區序列或半胱胺酸改造之突變體(硫代Mab)且該輕鏈包含野生型輕鏈恆定區序列或半胱胺酸改造之突變體(硫代Mab)。在一個態樣中,重鏈與以下具有至少95%序列一致性:重鏈(IgG1)恆定區,野生型 (SEQ ID NO:148)
重鏈(IgG1)恆定區,A118C「硫代Mab」 (SEQ ID NO:149)
且輕鏈與以下具有至少95%序列一致性:輕鏈(κ)恆定區,野生型 (SEQ ID NO:150)
輕鏈(κ)恆定區,V205C「硫代Mab」 (SEQ ID NO:151)
本發明AAC包括半胱胺酸改造之抗WTA抗體,其中野生型或母 體抗WTA抗體之一或多個胺基酸經半胱胺酸胺基酸替代。任何形式之抗體皆可如此改造,即突變。例如,母體Fab抗體片段可經改造以形成半胱胺酸改造之Fab,在本文中稱作「硫代Fab」。類似地,母體單株抗體可經改造以形成「硫代Mab」。應注意,硫代Fab中之單位點突變獲得單改造之半胱胺酸殘基,而硫代Mab中之單位點突變獲得兩個經改造半胱胺酸殘基,此乃因IgG抗體之二聚性質所致。針對新引入之經改造半胱胺酸硫醇基之反應性評估具有經替代(「經改造」)半胱胺酸(Cys)殘基之突變體。
雷福黴素型抗生素部分
本發明之抗體-抗生素結合物(AAC)之抗生素部分(abx)係具有細胞毒性或細胞生長抑制效應之雷福黴素型抗生素或群組。雷福黴素係由細菌地中海奴卡菌(Nocardia mediterranei)、地中海擬無枝菌酸菌(Amycolatopsis mediterranei)自然地或以人工方式獲得之抗生素群組。其係抑制細菌RNA聚合酶之較大安沙黴素家族之亞類(Fujii等人(1995)Antimicrob.Agents Chemother.39:1489-1492;Feklistov等人(2008)Proc Natl Acad Sci USA,105(39):14820-5)且具有抵抗革蘭氏陽性及選擇性革蘭氏陰性細菌之效能。雷福黴素尤其可有效抵抗分枝桿菌屬(mycobacteria),且因此用於治療結核病、痳瘋及鳥型複合分枝桿菌(mycobacterium avium complex)(MAC)感染。雷福黴素型群組包括「經典」雷福黴素藥物以及雷福黴素衍生物利福平(雷發平,CA登記號13292-46-1)、利福布汀(CA登記號72559-06-9;US 2011/0178001)、利福噴汀及利福拉齊(CA登記號129791-92-0,Rothstein等人(2003)Expert Opin.Investig.Drugs 12(2):255-271;Fujii等人(1994)Antimicrob.Agents Chemother.38:1118-1122。許多雷福黴素型抗生素共有產生抗性之有害性質(Wichelhaus等人(2001)J.Antimicrob.Chemother.47:153-156)。雷福黴素於1957年首先自地中 海鏈黴菌(Streptomyces mediterranei)之發酵培養物分離。發現約7種雷福黴素,命名為雷福黴素A、B、C、D、E、S及SV(US 3150046)。雷福黴素B於1960年代首先以商業方式引入且可用於治療抗藥性結核病。雷福黴素已用於治療許多疾病,最重要者係HIV相關結核病。由於雷福黴素具有大量可用類似物及衍生物,因此已將其廣泛地用於消除已對常用抗生素具有抗性之病原細菌。例如,利福平因其有效效應及防止藥物抗性之能力而為人所知。其快速殺死快速***之桿菌菌株以及「持留」細胞,該等細胞長時段保持生物非活性,從而允許其躲避抗生素活性。另外,利福布汀及利福噴汀兩者皆已用於抵抗HIV陽性患者中獲得之結核病。
式I抗體-抗生素結合物之抗生素部分(abx)係具有以下結構之雷福黴素型部分:
其中:虛線指示可選鍵;R係H、C1-C12烷基或C(O)CH3;R1係OH;R2係CH=N-(雜環基),其中該雜環基視情況經一或多個獨立地選自以下之基團取代:C(O)CH3、C1-C12烷基、C1-C12雜芳基、C2-C20雜環基、C6-C20芳基及C3-C12碳環基;或R1及R2形成5員或6員稠合雜芳基或雜環基,且視情況形成螺環 或稠合6員雜芳基環、雜環基環、芳基環或碳環基環,其中該螺環或稠合6員雜芳基環、雜環基環、芳基環或碳環基環視情況經H、F、Cl、Br、I、C1-C12烷基或OH取代;且其中肽連接體L共價附著至R2
雷福黴素型部分之實施例係:
其中R3係獨立地選自H及C1-C12烷基;R4係選自H、F、Cl、Br、I、C1-C12烷基及OH;且Z係選自NH、N(C1-C12烷基)、O及S;且其中肽連接體L共價附著至N(R3)2之氮原子。
利福平型部分之實施例係:
其中R5係選自H及C1-C12烷基;且其中肽連接體L共價附著至NR5之氮原子。
利福布汀型部分之實施例係:
其中R5係選自H及C1-C12烷基;且其中肽連接體L共價附著至NR5之氮原子。
苯并噁嗪并雷福黴素型部分之實施例係:
其中R5係選自H及C1-C12烷基;且其中肽連接體L共價附著至NR5之氮原子。
苯并噁嗪并雷福黴素型部分(在本文中稱作pipBOR)之實施例係:
其中R3係獨立地選自H及C1-C12烷基;且其中肽連接體L共價附著至N(R3)2之氮原子。
苯并噁嗪并雷福黴素型部分(在本文中稱作二甲基pipBOR)之實施例係:
其中肽連接體L共價附著至N(CH3)2之氮原子。
可在若干步驟中將半合成衍生物雷福黴素S或還原之鈉鹽形式雷福黴素SV轉化成利福拉齊型抗生素,其中R係H或Ac,R3係獨立地選自H及C1-C12烷基;R4係選自H、F、Cl、Br、I、C1-C12烷基及OH;且Z係選自NH、N(C1-C12烷基)、O及S,如圖9-11中所例示。可製備苯并噁嗪并(Z=O)雷福黴素、苯并噻嗪並(Z=S)雷福黴素、苯并二嗪並(Z=NH、N(C1-C12烷基)雷福黴素(US 7271165)。含有取代基之苯并噁嗪并雷福黴素(BOR)、苯并噻嗪並雷福黴素(BTR)及苯并二嗪並雷福黴素(BDR)類似物係根據US 7271165(其出於此目的以引用方式併入)中第28行處之式A中所提供之編號方案編號。「25-O-去乙醯基」雷福黴素意指其中已去除25位處之乙醯基之雷福黴素類似物。將此位置經進一步衍生化之類似物稱作「25-O-去乙醯基-25-(取代基)雷福黴素」,其中衍生化基團之命名替代完整化合物名稱中之「取代基」。
雷福黴素型抗生素部分可藉由類似於揭示於US 4610919;US 4983602;US 5786349;US5981522;US 4859661;US 7271165;US 2011/0178001;Seligson等人,(2001)Anti-Cancer Drugs 12:305-13;Chem.Pharm.Bull.,(1993)41:148(其每一者在此以引用方式併入)中之方法合成。可藉由使用標準MIC活體外分析量測最低抑制濃度 (MIC)來篩選雷福黴素型抗生素部分之抗微生物活性(Tomioka等人,(1993)Antimicrob.Agents Chemother.37:67)。
肽連接體
「肽連接體」(L)係共價附著至一或多個抗生素部分(abx)及抗體單元(Ab)以形成式I之抗體-抗生素結合物(AAC)之雙官能或多官能部分。AAC中之肽連接體係細胞內蛋白酶之裂解受質,包括溶酶體條件。蛋白酶包括多種組織蛋白酶及凋亡蛋白酶。AAC之肽連接體在細胞內之裂解可釋放具有抗細菌效應之雷福黴素型抗生素。
自AAC裂解釋放之活性抗生素之量可藉由實例20之凋亡蛋白酶釋放分析來量測。
抗體-抗生素結合物(AAC)可使用具有用於結合抗生素(abx)及抗體(Ab)之反應性官能基之連接體試劑或連接體-抗生素中間體方便地製備。在一個實例性實施例中,半胱胺酸改造之抗體(Ab)之半胱胺酸硫醇可與連接體試劑、抗生素部分或抗生素-連接體中間體之官能基形成鍵。
AAC之肽連接體部分,在一個態樣中,連接體試劑或連接體-抗生素中間體具有反應性位點,該反應性位點具有與存在於抗體上之親核半胱胺酸反應之親電子基。抗體之半胱胺酸硫醇與連接體試劑或連 接體-抗生素之親電子基反應,形成共價鍵。可用親電子基包括但不限於馬來醯亞胺基及鹵代乙醯胺基。
根據Klussman等人(2004),Bioconjugate Chemistry 15(4):765-773之第766頁處之結合方法且根據實例19之方案,半胱胺酸改造之抗體與具有親電子官能基(例如馬來醯亞胺或α-鹵代羰基)之連接體試劑或連接體-抗生素中間體反應。
在另一實施例中,連接體試劑或連接體-抗生素中間體之反應性基團含有可與抗體之游離半胱胺酸硫醇形成鍵之硫醇反應性官能基。硫醇反應官能基之實例包括但不限於馬來醯亞胺、α-鹵代乙醯基、活化酯基(例如琥珀醯亞胺酯基、4-硝基苯基酯基、五氟苯基酯基、四氟苯基酯基)、酸酐基、醯基氯基團、磺醯氯基團、異氰酸酯基及異硫氰酸酯基。
在另一實施例中,連接體試劑或抗生素-連接體中間體具有反應性官能基,該反應性官能基具有與存在於抗體上之親電子基反應之親核基。抗體上之可用親電子基包括但不限於吡啶基二硫化物基、醛基及酮羰基。連接體試劑或抗生素-連接體中間體之親核基之雜原子可與抗體上之親電子基反應並與抗體單元形成共價鍵。連接體試劑或抗生素-連接體中間體上之可用親核基包括但不限於醯肼基、肟基、胺基、硫醇基、肼基、硫代半卡腙基、肼羧酸酯基及芳基醯肼基。抗體上之親電子基提供用於附著至連接體試劑或抗生素-連接體中間體之方便位點。
肽連接體可包含一或多種連接體組份。實例性連接體組份包括肽單元、6-馬來醯亞胺基己醯基(「MC」)、馬來醯亞胺基丙醯基(「MP」)、纈胺酸-瓜胺酸(「val-cit」或「vc」)、丙胺酸-***酸(「ala-phe」)及對胺基苄氧基羰基(「PAB」)、4-(2-吡啶基硫代)戊酸N-琥珀醯亞胺基酯(「SPP」)及4-(N-馬來醯亞胺基甲基)環己烷-1羧酸 酯(「MCC」)。多種連接體組份為業內已知,其中一些闡述於下文中。
在另一實施例中,連接體可經調節溶解性或反應性之基團取代。例如,諸如磺酸根(-SO3 -)帶電取代基或銨等可增加試劑之水溶性並促進連接體試劑與抗體或抗生素部分之偶合反應,或促進Ab-L(抗體-連接體中間體)與abx或abx-L(抗生素-連接體中間體)與Ab之偶合反應,此取決於用於製備AAC之合成途徑。
本發明AAC明確地涵蓋但不限於彼等利用以下連接體試劑製備者:BMPEO、BMPS、EMCS、GMBS、HBVS、LC-SMCC、MBS、MPBH、SBAP、SIA、SIAB、SMCC、SMPB、SMPH、磺基-EMCS、磺基-GMBS、磺基-KMUS、磺基-MBS、磺基-SIAB、磺基-SMCC、磺基-SMPB、SVSB((4-乙烯基碸)苯甲酸琥珀醯亞胺基酯)及雙-馬來醯亞胺試劑,例如DTME、BMB、BMDB、BMH、BMOE、BM(PEG)2及BM(PEG)3。雙-馬來醯亞胺試劑允許半胱胺酸改造之抗體之硫醇基以依序或會聚方式附著至含硫醇抗生素部分、標記或連接體中間體。 除馬來醯亞胺以外與半胱胺酸改造之抗體、抗生素部分或連接體-抗生素中間體之硫醇基反應之其他官能基包括碘乙醯胺基、溴乙醯胺基、乙烯基吡啶基、二硫化物基、吡啶基二硫化物基、異氰酸酯基及異硫氰酸酯基。
可用連接體試劑亦可經由其他商業來源(例如Molecular Biosciences公司(Boulder,CO))獲得或根據闡述於以下文獻中之程序合成:Toki等人(2002)J.Org.Chem.67:1866-1872;Dubowchik等人 (1997)Tetrahedron Letters,38:5257-60;Walker,M.A.(1995)J.Org.Chem.60:5352-5355;Frisch等人(1996)Bioconjugate Chem.7:180-186;US 6214345;WO 02/088172;US 2003130189;US2003096743;WO 03/026577;WO 03/043583;及WO 04/032828。
在另一實施例中,AAC之肽連接體部分包含樹枝型連接體用於經由分支多官能連接體部分將超過一個抗生素部分共價附著至抗體(Sun等人(2002)Bioorganic & Medicinal Chemistry Letters 12:2213-2215;Sun等人(2003)Bioorganic & Medicinal Chemistry 11:1761-1768)。樹枝狀連接體可增加抗生素對抗體之莫耳比,即負載,此與AAC之效能相關。因此,倘若半胱胺酸改造之抗體僅帶有一個反應性半胱胺酸硫醇基,則可經由樹枝狀連接體附著眾多抗生素部分。
在式I AAC之某些實施例中,肽連接體具有下式:-Str-Pep-Y-
其中Str係共價附著至抗壁磷壁酸(WTA)抗體之延伸體單元;Pep係2至12個胺基酸殘基之肽,且Y係共價附著至雷福黴素型抗生素之間隔體單元。此等連接體之實例性實施例闡述於US 7498298中,該案件以引用方式明確地併入本文中。
在一個實施例中,延伸體單元「Str」具有下式:
其中R6係選自由以下組成之群:C1-C10伸烷基-、-C3-C8碳環基、-O-(C1-C8烷基)-、-伸芳基-、-C1-C10伸烷基-伸芳基-、-伸芳基-C1-C10伸烷基-、-C1-C10伸烷基-(C3-C8碳環)-、-(C3-C8碳環)-C1-C10伸烷基-、-C3-C8雜環-、-C1-C10伸烷基-(C3-C8雜環)-、-(C3-C8雜環)-C1-C10伸烷基-、-(CH2CH2O)r-及-(CH2CH2O)r-CH2-;且r係1至10範圍內之整數。
實例性延伸體單元顯示如下(其中波形線指示至抗體之共價附著位點):
肽單元「Pep」包含兩個或更多種天然存在之胺基酸殘基,包括20種主要胺基酸以及次要胺基酸,例如瓜胺酸,其為生物化學領域內所熟知。胺基酸係藉由其側鏈來區別。因此肽單元包含兩條或更多條胺基酸側鏈,包括但不限於-CH3(丙胺酸)、-CH2CH2CH2NHC(NH)NH2(精胺酸)、-CH2C(O)NH2(天冬醯胺)、-CH2CO2H(天冬胺酸)、-CH2CH2CH2NHC(O)NH2(瓜胺酸)、-CH2SH(半胱胺酸)、-CH2CH2CO2H(麩胺酸)、-CH2CH2C(O)NH2(麩醯胺酸)、-H(甘胺酸)、-CH2(咪唑基)(組胺酸)、-CH(CH3)CH2CH3(異白胺酸)、-CH2CH(CH3)CH3(白胺酸)、-CH2CH2CH2CH2NH2(離胺酸)、-CH2CH2SCH3(甲硫胺酸)、-CH2(C6H5)(***酸)、-CH2CH2CH2-(脯胺酸)、-CH2OH(絲胺酸)、-CH(OH)CH3(蘇胺酸)、-CH2(吲哚)(色胺 酸)、-CH2(p-C6H4OH)(酪胺酸)、-CHCH(CH3)CH3(纈胺酸)。參見第1076-1077頁,「Organic Chemistry」第5版,John McMurry,Brooks/Cole pub.(2000)。肽單元之胺基酸殘基包括所有立體異構物,且可呈D或L組態。在一個實施例中,Pep包含2至12個獨立地選自以下之胺基酸殘基:甘胺酸、丙胺酸、***酸、離胺酸、精胺酸、纈胺酸及瓜胺酸。在一個此實施例中,胺基酸單元允許藉由蛋白酶裂解連接體,由此促進在暴露於細胞內蛋白酶(例如溶酶體酶)後自AAC釋放抗生素(Doronina等人(2003)Nat.Biotechnol.21:778-784)。實例性胺基酸單元包括但不限於二肽、三肽、四肽、五肽及六肽。實例性二肽包括:纈胺酸-瓜胺酸(vc或val-cit)、丙胺酸-***酸(af或ala-phe);***酸-離胺酸(fk或phe-lys);或N-甲基-纈胺酸-瓜胺酸(Me-val-cit)。實例性三肽包括:甘胺酸-纈胺酸-瓜胺酸(gly-val-cit)及甘胺酸-甘胺酸-甘胺酸(gly-gly-gly)。肽連接體可藉由在兩個或更多個胺基酸及/或肽片段之間形成肽鍵來製備。可根據例如肽化學領域內所熟知之液相合成方法(E.Schröder及K.Lübke(1965),「The Peptides」,第1卷,第76-136頁,Academic Press)來製備此等肽鍵。胺基酸單元在其選擇性方面可經設計及最佳化以供藉由特定酶(例如,腫瘤相關蛋白酶、組織蛋白酶B、C及D或胞漿素蛋白酶)酶促裂解。
在一個實施例中,間隔體單元Y包含對胺基苄基或對胺基苄氧基羰基。「非自消型(non-self-immolative)」間隔體單元係其中在酶促(例如,蛋白質分解)裂解AAC後部分或全部間隔體單元保持結合抗生素部分者。非自消型間隔體單元之實例包括但不限於甘胺酸間隔體單元及甘胺酸-甘胺酸間隔體單元。亦涵蓋易受序列特異性酶促裂解之肽間隔體之其他組合。例如,腫瘤細胞相關蛋白酶對含有甘胺酸-甘胺酸間隔體單元之AAC之酶促裂解將導致自AAC之其餘部分釋放甘胺酸 -甘胺酸-抗生素部分。在一個此實施例中,然後使甘胺酸-甘胺酸-抗生素部分經受腫瘤細胞中之單獨水解步驟,由此自抗生素部***解甘胺酸-甘胺酸間隔體單元。
間隔體單元允許在沒有單獨水解步驟之情況下釋放抗生素部分。間隔體單元可為「自消型」或「非自消型」。在某些實施例中,連接體之間隔體單元包含對胺基苄基單元(PAB)。在一個此實施例中,對胺基苄醇經由對胺基苄基與抗生素部分之間之醯胺鍵、胺基甲酸酯基、胺基甲酸甲酯基或碳酸酯基附著至胺基酸單元(Hamann等人(2005)Expert Opin.Ther.Patents(2005)15:1087-1103)。在一個實施例中,間隔體單元係對胺基苄氧基羰基(PAB)。
在一個實施例中,當附著至肽連接體之PAB間隔體單元時,抗生素形成四級胺,例如二甲基胺基六氫吡啶基。此等四級胺之實例係連接體-抗生素中間體(LA)係來自表2之54、61、66、67、73、74、76、78、79、83、84。四級胺基團可調節抗生素部分之裂解以將AAC之抗細菌效應最佳化。在另一實施例中,抗生素連接至肽連接體之PABC間隔體單元,從而形成AAC中之胺基甲酸酯官能基。此等胺基甲酸酯官能基亦可將AAC之抗細菌效應最佳化。PABC胺基甲酸酯連接體-抗生素中間體(LA)之實例係來自表2之51、52、53、55、56、57、58、62、63、64、65、72、75、80、81、87。其他連接體-抗生素中間體(LA)採用醯胺(59、69、70、71、77、82、85)或酚系(60、68、86)基團。
自消型間隔體之其他實例包括但不限於電子上類似於PAB基團之芳香族化合物,例如2-胺基吡唑-5-甲醇衍生物(US 7375078;Hay等人(1999)Bioorg.Med.Chem.Lett.9:2237)及鄰-或對胺基苄基縮醛。可使用在醯胺鍵水解後經歷環化之間隔體,例如經取代及未經取代之4-胺基丁酸醯胺(Rodrigues等人(1995)Chemistry Biology 2:223)、經適 當取代之二環[2.2.1]及二環[2.2.2]環系統(Storm等人(1972)J.Amer.Chem.Soc.94:5815)及2-胺基苯基丙酸醯胺(Amsberry等人(1990)J.Org.Chem.55:5867)。消除於甘胺酸處經取代之含胺藥物(Kingsbury等人(1984)J.Med.Chem.27:1447)亦係可用於AAC中之自消型間隔體之實例。
可用於AAC之連接體-抗生素中間體
式II及表2之連接體-抗生素中間體(LA)係藉由使雷福黴素型抗生素部分與肽-連接體試劑偶合來製備,如圖23-25及實例1-17中所例示。連接體試劑係藉由WO 2012/113847;US 7659241;US 7498298;US 20090111756;US 2009/0018086;US 6214345;Dubowchik等人(2002)Bioconjugate Chem.13(4):855-869中所述之方法來製備,包括
碳酸4-((S)-2-((S)-2-(6-(2,5-二側氧基-2,5-二氫-1H-吡咯-1-基)己醯胺基)-3-甲基丁醯胺基)-5-脲基戊醯胺基)苄基酯4-硝基苯基酯6
6-(2,5-二側氧基-2,5-二氫-1H-吡咯-1-基)-N-((S)-1-((S)-1-(4-(羥基甲基)苯基胺基)-1-側氧基-5-脲基戊-2-基胺基)-3-甲基-1-側氧基丁-2-基)己醯胺8
N-((S)-1-((S)-1-(4-(氯甲基)苯基胺基)-1-側氧基-5-脲基戊-2-基胺 基)-3-甲基-1-側氧基丁-2-基)-6-(2,5-二側氧基-2,5-二氫-1H-吡咯-1-基)己醯胺9
抗體-抗生素結合物之實施例
S4497抗體經由蛋白酶可解離肽連接體連接至表3中稱為pipBOR及其他之雷福黴素衍生物。將連接體設計成藉由識別肽單元(包括纈胺酸-瓜胺酸(val-cit,vc)二肽)之溶酶體蛋白酶(包括組織蛋白酶B、D及其他)裂解(Dubowchik等人(2002)Bioconj.Chem.13:855-869)。由抗生素及MC-vc-PAB連接體及其他組成之連接體-抗生素中間體之生成詳細闡述於實例1-17中。設計連接體,使得PAB部分處之醯胺鍵之裂解將抗體與呈活性狀態之抗生素分離。
除抗生素上之二甲基化胺基及連接體上之氧基羰基外,稱為S4497-二甲基-pipBOR之AAC與S4497-pipBOR AAC相同。
圖5顯示抗體-抗生素結合物(AAC)之可能藥物活化機制。活性抗生素(Ab)僅在AAC在哺乳動物細胞內部內化後釋放。AAC中之抗體之Fab部分結合金黃色葡萄球菌,而AAC之Fc部分藉由Fc-受體介導之與吞噬細胞(包括嗜中性球及巨噬細胞)之結合來增強對細菌之攝取。在內化至吞噬溶酶體中後,Val-Cit連接體藉由溶酶體蛋白酶裂解,從而 在吞噬溶酶體內部釋放活性抗生素。
本發明之抗體-抗生素結合物(AAC)化合物之實施例包括以下:
其中AA1及AA2係獨立地選自胺基酸側鏈,包括以下各式:
本發明之抗體-抗生素結合物化合物之實施例包括以下:
其中:虛線指示可選鍵;R係H、C1-C12烷基或C(O)CH3;R1係OH;R2係CH=N-(雜環基),其中該雜環基視情況經一或多個獨立地選 自以下之基團取代:C(O)CH3、C1-C12烷基、C1-C12雜芳基、C2-C20雜環基、C6-C20芳基及C3-C12碳環基;或R1及R2形成5員或6員稠合雜芳基或雜環基,且視情況形成螺環或稠合6員雜芳基環、雜環基環、芳基環或碳環基環,其中該螺環或稠合6員雜芳基環、雜環基環、芳基環或碳環基環視情況經H、F、Cl、Br、I、C1-C12烷基或OH取代;L係附著至R2或由R1及R2形成之稠合雜芳基或雜環基之肽連接體;且Ab係抗壁磷壁酸(WTA)抗體。
本發明之抗體-抗生素結合物化合物之實施例包括以下:
其中R3係獨立地選自H及C1-C12烷基;n係1或2;R4係選自H、F、Cl、Br、I、C1-C12烷基及OH;且Z係選自NH、N(C1-C12烷基)、O及S。
本發明之抗體-抗生素結合物化合物之實施例包括以下雷發平型抗生素部分:
其中R5係選自H及C1-C12烷基;且n係0或1。
本發明之抗體-抗生素結合物化合物之實施例包括以下利福布汀型抗生素部分:
其中R5係選自H及C1-C12烷基;且n係0或1。
本發明之抗體-抗生素結合物化合物之實施例包括以下利福拉齊型抗生素部分:
其中R5係獨立地選自H及C1-C12烷基;且n係0或1。
本發明之抗體-抗生素結合物化合物之實施例包括以下pipBOR型 抗生素部分:
其中R3係獨立地選自H及C1-C12烷基;且n係1或2。
本發明之抗體-抗生素結合物化合物之實施例包括以下:
AAC之抗生素負載
將抗生素負載表示為p,即式I分子中每抗體之抗生素(abx)部分之平均數。抗生素負載可在每抗體1至20個抗生素部分(D)範圍內。式I AAC包括與1至20個範圍內之抗生素部分結合之抗體之收集物或彙集物。來自結合反應之AAC製劑中之每一抗體中抗生素部分之平均數可藉由習用手段(例如質譜、ELISA分析及HPLC)表徵。亦可測定AAC按照p之定量分佈。在一些情況下,自具有其他抗生素負載之AAC分離、純化及表徵均質AAC(其中p係一定值)可藉由諸如反相HPLC或電泳等手段來達成。
對於一些抗體-抗生素結合物而言,p可受限於抗體上之附著位點數量。例如,倘若附著係半胱胺酸硫醇,如上文實例性實施例中,則 抗體可僅具有一或若干個半胱胺酸硫醇基,或可僅具有一或若干個可附著連接體之足夠反應性之硫醇基。在某些實施例中,較高抗生素負載(例如p>5)可引起某些抗體-抗生素結合物之聚集、不溶性、毒性或細胞滲透性損失。在某些實施例中,本發明AAC之抗生素負載在1至約8;約2至約6;約2至約4;或約3至約5;約4;或約2範圍內。
在某些實施例中,少於理論最大值之抗生素部分在結合反應期間結合至抗體。抗體可含有例如不與抗生素-連接體中間體或連接體試劑反應之離胺酸殘基,如下文所述。通常,抗體不含有許多可連接至抗生素部分之游離及反應性半胱胺酸硫醇基;實際上抗體中之多數半胱胺酸硫醇殘基以二硫橋存在。在某些實施例中,可利用諸如二硫蘇糖醇(DTT)或三羰基乙膦(TCEP)等還原劑在部分或完全還原條件下將抗體還原,以生成反應性半胱胺酸硫醇基。在某些實施例中,使抗體經受變性條件以顯露諸如離胺酸或半胱胺酸等反應性親核基。
AAC之負載(抗生素/抗體比,「AAR」)可以不同方式控制,例如,藉由:(i)限制抗生素-連接體中間體或連接體試劑相對於抗體之莫耳過量,(ii)限制結合反應時間或溫度,及(iii)部分或限制用於半胱胺酸硫醇修飾之還原條件。
應理解,倘若超過一個親核基與抗生素-連接體中間體或連接體試劑反應,之後與抗生素部分試劑反應,則所得產物係具有一或多個附著至抗體之抗生素部分之分佈的AAC化合物混合物。每抗體之抗生素之平均數可藉由對抗體具有特異性且對抗生素具有特異性之雙重ELISA抗體分析自混合物計算。可藉由質譜在混合物中鑑別個別AAC分子且藉由HPLC(例如疏水相互作用層析)將其分離(例如,參見McDonagh等人(2006)Prot.Engr.Design & Selection 19(7):299-307;Hamblett等人(2004)Clin.Cancer Res.10:7063-7070;Hamblett,K.J.等人「Effect of drug loading on the pharmacology,pharmacokinetics, and toxicity of an anti-CD30 antibody-drug conjugate,」Abstract No.624,American Association for Cancer Research,2004 Annual Meeting,2004年3月27至31日,Proceedings of the AACR,第45卷,2004年3月;Alley,S.C.等人「Controlling the location of drug attachment in antibody-drug conjugates,」Abstract No.627,American Association for American Research,2004 Annual Meeting,2004年3月27至31日,Proceedings of the AACR,第45卷,2004年3月)。在某些實施例中,可藉由電泳或層析自結合混合物分離具有單一負載值之均勻AAC。本發明之半胱胺酸改造之抗體使得能夠進行更均勻地製備,此乃因抗體上之反應性位點主要限於經改造半胱胺酸硫醇基。在一個實施例中,每一抗體中抗生素部分之平均數在約1至約20範圍內。在一些實施例中,選擇該範圍且將其控制在約1至4。
製備抗體-抗生素結合物之方法
式I AAC可藉由採用熟習此項技術者已知之有機化學反應、條件及試劑之若干途徑來製備,包括:(1)抗體之親核基與二價連接體試劑反應以經由共價鍵形成Ab-L,之後與抗生素部分(abx)反應;及(2)抗生素部分之親核基與二價連接體試劑反應,以經由共價鍵形成L-abx,之後與抗體之親核基反應。經由後一途徑製備式I AAC之實例性方法闡述於US 7498298中,該案件以引用方式明確地併入本文中。
抗體上之親核基包括但不限於:(i)N末端胺基;(ii)側鏈胺基,例如,離胺酸;(iii)側鏈硫醇基,例如半胱胺酸;及(iv)糖羥基或胺基,其中抗體經糖基化。胺基、硫醇基及羥基具有親核性且能夠與連接體部分及連接體試劑上之親電子基反應以形成共價鍵,該等親電子基包括:(i)活性酯基,例如NHS酯基、HOBt酯基、鹵代甲酸酯基及醯基鹵基;(ii)烷基鹵基及苄基鹵基,例如鹵代乙醯胺基;(iii)醛基、酮基、羧基及馬來醯亞胺基。某些抗體具有可還原鏈間二硫鍵, 即半胱胺酸橋。可藉由用諸如DTT(二硫蘇糖醇)或三羰基乙膦(TCEP)等還原劑處理使抗體完全或部分還原來使該抗體具有反應性以供與連接體試劑結合。因此,每一半胱胺酸橋理論上將形成兩個反應性硫醇親核劑。可經由離胺酸殘基之修飾(例如藉由使離胺酸殘基與2-亞胺基硫雜環戊烷(Traut試劑)反應)從而將胺轉變成硫醇來將其他親核基引入抗體中。可藉由引入1個、2個、3個、4個或更多個半胱胺酸殘基將反應性硫醇基引入抗體中(例如,製備包含一或多個非天然半胱胺酸胺基酸殘基之變體抗體)。
本發明之抗體-抗生素結合物亦可藉由抗體上之親電子基(例如醛或酮羰基),與連接體試劑或抗生素上之親核基之間之反應來產生。連接體試劑上之可用親核基包括但不限於醯肼基、肟基、胺基、肼基、硫代半卡腙基、肼羧酸酯基及芳基醯肼基。在一個實施例中,對抗體進行修飾以引入能夠與連接體試劑或抗生素上之親核取代基反應之親電子部分。在另一實施例中,可利用(例如過碘酸鹽氧化試劑)氧化糖基化抗體之糖,以形成可與連接體試劑或抗生素部分之胺基反應之醛基或酮基。所得亞胺希夫鹼基(Schiff base group)可形成穩定連接,或可藉由例如氫化物試劑還原,以形成穩定胺連接。在一個實施例中,糖基化抗體之碳水化合物部分與半乳糖氧化酶或偏過碘酸鈉之反應可在抗體中產生可與抗生素上之適當基團反應之羰基(醛基及酮基)(Hermanson,Bioconjugate Techniques)。在另一實施例中,含有N末端絲胺酸或蘇胺酸殘基之抗體可與偏過碘酸鈉反應,從而產生代替第一胺基酸之醛(Geoghegan及Stroh,(1992)Bioconjugate Chem.3:138-146;US 5362852)。此一醛可與抗生素部分或連接體親核劑反應。
抗生素部分上之親核基包括但不限於:胺基、硫醇基、羥基、醯肼基、肟基、肼基、硫代半卡腙基、肼羧酸酯基及芳基醯肼基,該 等基團能夠與連接體部分及連接體試劑上之親電子基反應以形成共價鍵,該等親電子基包括:(i)活性酯基,例如NHS酯基、HOBt酯基、鹵代甲酸酯基及醯基鹵基;(ii)烷基鹵基及苄基鹵基,例如鹵代乙醯胺;(iii)醛基、酮基、羧基及馬來醯亞胺基。
表3中之抗體-抗生素結合物(AAC)係藉由所述抗WTA抗體與表2之連接體-抗生素中間體之結合且根據實例24中之所述方法來製備。藉由活體外巨噬細胞分析(實例18)及活體內小鼠腎臟模型(實例19)來測試AAC之功效。
* AAR=抗生素/抗體比平均值
野生型(「WT」)、半胱胺酸改造之突變體抗體(「硫代」)、輕鏈(「LC」)、重鏈(「HC」)、6-馬來醯亞胺基己醯基(「MC」)、馬來醯亞胺基丙醯基(「MP」)、纈胺酸-瓜胺酸(「val-cit」或「vc」)、丙胺酸-***酸(「ala-phe」)、對胺基苄基(「PAB」)及對胺基苄氧基羰基(「PABC」)
tbd=待測定
HC-A114C(Kabat)=HC-A118C(EU)
證明AAC殺死細胞內MRSA之活體外分析
活體外實驗證實AAC僅在諸如組織蛋白酶B等適當酶將抗體與抗生素之間之連接體裂解後釋放活性抗生素。將MRSA在正常細菌生長培養基中培養過夜且高達10μg/mL AAC。除非利用組織蛋白酶B對AAC進行預處理以釋放活性抗生素,否則將MRSA與S4497-pipBOR或S4497-二甲基-pipBOR AAC一起培育不會導致細菌生長抑制。利用鼠類腹膜巨噬細胞進行之活體外分析證實AAC釋放活性抗生素且殺死吞噬細胞內部之MRSA(實例18)。使包含結合細胞壁相關蛋白質家族之抗體rF1之AAC結合至雷福黴素衍生物。利用不同劑量之rF1-AAC或利用等效劑量之單獨抗體、單獨利福平或抗體與游離利福平之混合物對金黃色葡萄球菌(Newman菌株)進行處理以允許抗體與細菌結合(調理)且在培育1小時後,將經調理細菌進給至巨噬細胞中(圖7A)。
圖7A顯示證明AAC殺死細胞內MRSA之活體外巨噬細胞分析。將金黃色葡萄球菌(Newman)與單獨rF1抗體、單獨游離利福平、rF1抗體與游離利福平之簡單混合物(以在AAC或rF1-AAC中發現之相同抗體對抗生素比率組合)一起培育1小時且添加至鼠類巨噬細胞中。在37℃下將巨噬細胞培育2小時以允許吞噬作用。在吞噬作用完成後,利用補充有50μg/mL健他黴素之正常生長培養基替代感染混合物以抑制細胞外細菌之生長且在感染後2天藉由平鋪確定細胞內存活細菌總數。
使巨噬細胞感染2小時且去除感染並利用含有健他黴素之培養基替代以殺死未由巨噬細胞攝取之任何殘留之細胞外細菌。2天後,將巨噬細胞溶解且藉由在瓊脂板平鋪來確定細胞內存活細菌總數。分析揭示利用AAC進行治療相較於利用以在AAC中發現之相同抗體對抗生素比組合之rF1抗體與游離利福平之簡單混合物進行治療導致細胞內 細菌數降低至1/100以下(圖7A)。
MRSA能夠侵入諸多非吞噬細胞類型中,該等類型包括成骨細胞以及多種上皮及內皮細胞類型(Garzoni及Kelly,(2008)Trends in Microbiology)。MRSA能夠感染成骨細胞細胞系(MG63)(氣道上皮細胞系(A549))及人類內皮細胞(HUVEC)之原代培養物。圖7B顯示利用50μg/mL S4497-pipBOR AAC 102在巨噬細胞、成骨細胞(MG63)、氣道上皮細胞(A549)及人類內皮細胞(HUVEC)中對MRSA(USA300菌株)之細胞內殺死,其中裸露之未結合抗體S4497無此作用。該等細胞類型之組織蛋白酶B之總體表現程度可能低於諸如巨噬細胞等職業性吞噬細胞,然而,在內化至該等細胞系中之所有三者中後,將利用50μg/mL治療之MRSA有效地殺死。虛線指示分析用檢測極限。
實施活體外分析以比較利用接合抗體與抗生素之連接體之變化形式製得之AAC的活性。在巨噬細胞細胞內殺死分析中,S4497-二甲基-pipBOR AAC比S4497-pipBOR AAC更有效。對S4497-pipBOR AAC及S4497-二甲基-pipBOR AAC進行滴定以確定在吾人之巨噬細胞細胞內殺死分析中之最低有效劑量(圖7C)。可能必需利用至少2μg/mL AAC進行治療以達成細胞內細菌之最佳清除。
圖7C顯示利用pipBOR 51及二甲基-pipBOR(diMe-pipBOR)54製得之AAC之比較。利用單獨S4497抗體或利用AAC:S4497-pipBOR 102或S4497-二甲基-pipBOR 105(以10μg/mL至0.003μg/mL範圍內之不同濃度)來調理MRSA。該等數據揭示,對於兩種AAC而言,最佳殺死發生於以超過2μg/mL測試AAC時,其中活性之劑量依賴性損失在0.4μg/mL下變得明顯。利用S4497二甲基-pipBOR AAC 105之總體殺死程度顯著優異。利用較高劑量之S4497-二甲基-pipBOR AAC 105進行治療將細胞內細菌消除至低於檢測極限且觀察到使用0.4μg/mL次最佳劑量之AAC之超過300倍殺死。
圖7D顯示AAC殺死細胞內細菌而不損害巨噬細胞。將金黃色葡萄球菌之USA300菌株與50μg/mL S4497抗金黃色葡萄球菌抗體(抗體)或與50μg/mL硫代-S4497-HC-A118C-MC-vc-PAB-二甲基pipBOR 105 AAC一起預培育1小時以允許抗體與細菌結合。將經調理細菌以每個巨噬細胞10-20個細菌之感染複數添加至鼠類腹膜巨噬細胞中且在37℃下培育2小時以允許吞噬作用。在吞噬作用完成後,去除游離細菌且將巨噬細胞在補充有50μg/mL健他黴素之正常生長培養基中培養2天以殺死非內化細菌。在培養期結束時,藉由檢測細胞質乳酸鹽去氫酶(LDH)至培養物上清液中之釋放來評價巨噬細胞之存活。比較自各孔釋放之LDH總量與含有巨噬細胞之對照孔,該等巨噬細胞係藉由將清潔劑添加至該等孔中來溶解。量測利用清潔劑處理之孔中、未感染巨噬細胞、受到利用S4497抗體預調理之USA300感染之巨噬細胞或受到利用硫代-S4497-HC-A118C-MC-vc-PAB-二甲基pipBOR 105 AAC預調理之USA300感染之巨噬細胞之巨噬細胞細胞溶解程度。
圖7E顯示自上述巨噬細胞細胞溶解之巨噬細胞內部之活USA300的回收。將巨噬細胞溶解且平鋪細胞溶解物之連續稀釋物以計算細胞內存活細菌之數量。
圖9顯示證明除非組織蛋白酶B將連接體裂解否則AAC對金黃色葡萄球菌無毒之生長抑制分析。示意性組織蛋白酶釋放分析(實例20)顯示在左邊。利用組織蛋白酶B處理AAC以釋放游離抗生素。藉由製備所得反應物之連續稀釋物並確定能夠抑制金黃色葡萄球菌生長之AAC之最低劑量來確定完整AAC對組織蛋白酶B處理AAC中之抗生素活性總量。右上圖顯示硫代-S4497-HC-A118C-MC-vc-PAB-pipBOR 102之組織蛋白酶釋放分析且右下圖顯示硫代-S4497-HC-A118C-MC-vc-PAB-二甲基pipBOR 105之組織蛋白酶釋放分析。
抗體抗生素結合物之活體內功效:
建立小鼠活體內腹膜炎模型以測試AAC之功效。在此模型中,藉由腹膜內注射(I.P.)使小鼠感染MRSA且在感染後2天在腹膜液及腎臟中監測細菌負載。可發現自腹膜收穫之細菌作為自由浮動之細胞外細菌或內化於募集至感染部位之腹膜細胞(主要為嗜中性球及巨噬細胞)內部。儘管此模型中鑑別之細胞外細菌似乎對抗生素治療敏感,但細胞內細菌顯示對利用諸多臨床相關抗生素(包括雷發平)進行之治療無反應(Sandberg等人(2009)Antimicrobial Agents Chemother)且因此似乎為用以測試吾人AAC之功效之極佳靶標。
圖8A顯示S4497-pipBOR AAC 102之活體內功效。A/J小鼠腹膜內感染模型。藉由腹膜內注射利用5×107個CFU之MRSA感染小鼠且藉由腹膜內注射利用單獨50mg/Kg S4497抗體或利用50mg/Kg S4497-pipBOR AAC 102進行治療(方案11-2032A)。在感染後2天將小鼠處死且評價腹膜上清液(細胞外細菌)、腹膜細胞(細胞內細菌)或腎臟之總細菌負載。
利用USA300感染A/J小鼠且在感染後30分鐘投與50mg/Kg S4497抗體或S4497-pipBOR AAC 102。2天後,將小鼠處死且在腹膜洗滌物及腎臟中監測細菌負載。為了在細胞外及細胞內細菌之間進行區別,將腹膜洗滌物輕輕離心以分離含有細胞外細菌之上清液與腹膜細胞。在收穫時,利用溶葡球菌酶處理腹膜細胞以殺死任何污染性細胞外細菌且使該等腹膜細胞溶解以計算細胞內細菌總數。儘管利用單獨抗體治療之小鼠藏匿有105個CFU與106個CFU之間之細胞內與細胞外細菌兩者(腹膜洗滌物中)及104個CFU與106個CFU之間之細菌(腎臟中),但利用S4497-pipBOR AAC治療之小鼠將感染清除至低於檢測極限。該等數據揭示,儘管將AAC設計成在吞噬溶酶體內部釋放活性抗生素,但觀察到MRSA之細胞內及細胞外彙集物兩者之極佳清除。由於AAC不直接殺死細胞外細菌,因此AAC治療亦清除該等細菌之事實表明細 胞在感染期間某時攝取顯著部分之細胞外細菌,或AAC能夠增強對細胞外細菌之攝取,由此增加在其中AAC將細菌有效殺死之細胞內之相對細菌之比例。
亦檢查AAC在靜脈內感染模型中之功效。在此模型中,金黃色葡萄球菌在感染後不久由循環嗜中性球攝取,使得在感染後數分鐘內血液中發現之大部分細菌與宿主細胞締合(Rogers等人(1956)J.Exp.Med.103:713-742)。藉由靜脈內注射利用2×106個CFU之MRSA感染A/J小鼠,且然後在感染後30分鐘藉由靜脈內注射利用50mg/Kg AAC進行治療。在此模型中,主要感染部位係腎臟,且小鼠在感染後兩天產生可檢測之大膿腫且在不存在治療時長達30天不能清除。利用50mg/Kg S4497-pipBOR AAC 102進行治療清除所有測試小鼠中之感染(圖8B)。
圖8B顯示A/J小鼠靜脈內感染模型。藉由靜脈內注射利用2×106個CFU感染小鼠且利用50mg/Kg S4497抗體、50mg/Kg S4497-pipBOR AAC 102或50mg/Kg S4497抗體+0.5mg/Kg游離雷福黴素之簡單混合物進行治療。在感染後30分鐘藉由IV注射遞送治療且在感染後4天收穫腎臟。灰色虛線指示每一器官之檢測極限。利用單獨50mg/Kg S4497抗體或利用50mg/Kg S4497抗體與0.5mg/kg游離雷福黴素(存於50mg/Kg AAC中之等效劑量之抗生素)之簡單混合物治療之對照組並不有效。
在A/J小鼠靜脈內感染模型中在活體內比較利用pipBOR及二甲基-pipBOR抗生素部分製得之AAC之功效。在感染後30分鐘以50mg/Kg至2m/Kg範圍內之不同劑量投與S4497-pipBOR AAC 102(圖9A)或S4497-二甲基-pipBOR AAC 105(圖9B)且在感染後4天檢查腎臟以確定總細菌負載。圖9A藉由滴定S4497-pipBOR AAC 102顯示pipBOR AAC 102在靜脈內感染模型中之功效。藉由靜脈內注射至尾靜脈中利 用2×106個CFU之MRSA(USA300菌株)感染7週齡雌性A/J小鼠。圖9B藉由滴定S4497-二甲基-pipBOR AAC 105顯示二甲基-pipBOR AAC 105在靜脈內感染模型中之功效。在感染後30分鐘以所示劑量投與利用S4497抗體、AAC 102或AAC 105進行之治療。在感染後4天將小鼠處死且藉由平鋪確定每只小鼠(彙集2個腎臟)之存活細菌總數。
兩種AAC在50mg/Kg之最高劑量下皆有效,然而S4497-pipBOR AAC 102在較低劑量下僅部分有效。S4497-二甲基-pipBOR AAC 105在高於10mg/Kg之劑量下獲得完全細菌清除。後續實驗指示一致之細菌清除需要高於15mg/Kg之劑量。圖9A及9B顯示在靜脈內感染模型中硫代-S4497-HC-A118C-MC-vc-PAB-二甲基pipBOR 105 AAC比硫代-S4497-HC-A118C-MC-vc-PAB-pipBOR 102 AAC更有效,從而指示分別102105之間之胺基甲酸酯(51)及二甲基六氫吡啶基(54)結構差別之效應。
在感染後30分鐘利用AAC治療小鼠。為了更好地再現可能發生於尋求治療之MRSA患者中之條件,確定AAC是否可有效清除建立之感染及抗生素連接至抗金黃色葡萄球菌抗體是否提供優於利用單獨抗生素治療之確切優點。為此,比較AAC與等效劑量之抗生素二甲基-pipBOR之功效。
圖9C顯示藉由靜脈內注射利用2×107個CFU之MRSA感染之CB17.SCID小鼠(方案12-2418)。在感染後1天,利用50mg/Kg S4497抗體、50mg/Kg S4497二甲基-pipBOR AAC 105或利用0.5mg/Kg二甲基-pipBOR抗生素7(含於50mg/Kg AAC中之等效劑量之抗生素)治療小鼠。在感染後4天將小鼠處死且藉由平鋪確定每只小鼠(彙集2個腎臟)之存活細菌總數。當在感染後1天給予時,利用50mg/Kg S4497-二甲基-pipBOR AAC進行治療明顯有效,而利用單獨等效劑量之二甲基-pipBOR進行治療不能清除感染。
在人類抗體存在下利用AAC進行治療係有效的且優於利用現行護理標準(SOC)梵穀黴素進行治療
自源於金黃色葡萄球菌感染患者之B細胞選殖S4497抗體。此提出以下擔憂:正常人類血清或存於MRSA感染患者中之血清可含有將與吾人之AAC競爭結合之抗MRSA抗體。為解決此擔憂,測試源於正常健康供體及一組MRSA患者之人類血清以估計識別與AAC相同之抗原之抗MRSA抗體的總體濃度。使用來自MRSA之細胞壁製劑進行基於ELISA之分析。為了限制在該等分析中與細胞壁製劑之非抗原特異性結合,利用缺乏蛋白質A基因之MRSA菌株。蛋白質A結合IgG抗體之Fc區。相對於與缺乏由S4497抗體識別之糖修飾之MRSA菌株TarM/TarS DKO(雙剔除)突變體的結合,檢查多種野生型(WT)血清試樣與表現S4497抗原之MRSA(圖10A,WT)之結合。圖10A顯示抗金黃色葡萄球菌抗體於人類血清中之盛行率。金黃色葡萄球菌感染患者或正常對照含有與抗WTA S4497具有相同特異性之大量WTA特異性血清抗體。
使用充分結合由S4497識別之相同抗原之單株抗體生成標準曲線。藉由比較血清試樣中之結合程度與自用於生成標準曲線之抗體獲得之信號,估計存於源自正常健康供體或MRSA患者之血清試樣中或自正常血清分離之總IgG製劑中之抗MRSA抗體之濃度(圖10A)。正常人類血清含有10-15mg/mL之總IgG(Manz等人(2005)Annu Rev.Immunol.23:367)。對不同血清試樣中之抗MRSA反應性之分析揭示,高達300μg/mL之該等抗體潛在地與由S4497識別之相同抗原反應且因此可能競爭與AAC結合。
使用S4497抗體來生成用於包括對MRSA之極高結合(每個細菌估計有50,000個結合位點)在內之性質之AAC。甚至在人類血清中發現之競爭性抗體存在下,足量AAC可能仍能夠結合MRSA。為了直接對 此進行測試,對於補充有10mg/mL人類IgG(圖10B,+IGIV)之緩衝液中之S4497-二甲基-pipBOR AAC進行滴定且在巨噬細胞細胞內殺死分析中量測細胞內殺死程度。
圖10B顯示證明在生理濃度之人類IgG存在下AAC有效之活體內感染模型。利用MRSA之USA300菌株進行之活體外巨噬細胞分析顯示在10mg/mL人類IgG存在下S4497-二甲基-pipBOR AAC 105係有效的。在37℃下在振盪的同時利用單獨AAC或利用在10mg/mL人類IgG中稀釋之AAC將MRSA之USA300菌株調理1小時。將經調理細菌直接添加至鼠類腹膜巨噬細胞中且培育2小時以允許吞噬作用。在感染後,將巨噬細胞培養物維持在補充有健他黴素之完全培養基中且在感染後2天評價細胞內存活細菌總數。該等數據揭示,儘管人類IgG在較低劑量下抑制AAC殺死,但使用高於10μg/mL(在活體內可容易之抗體濃度)之劑量達成極佳殺死。正常血清IgG可降低105 AAC之功能效應。由於AAC之最大巨噬細胞細胞內殺死活性可能同時需要高抗原結合及與FcR之有效相互作用(對於調理吞噬作用),因此預先存在之血清抗體可同時競爭與WTA結合且相應形成免疫複合體競爭與巨噬細胞上之FcR結合。
為了證實AAC將在活體內在競爭性人類抗體存在下有效,修改活體內感染模型以生成在血清中表現正常濃度之人類IgG之小鼠。藉由每天給予高濃度之人類IgG(IGIV)利用10mg/mL人類IgG對缺乏T細胞及B細胞兩者且因此在血清中不具有抗體之CB17:SCID小鼠(Bosna及Carroll,(1991)Arn Rev Immunol.9:323進行重構。初步研究證實稱為SCID:huIgG之該等小鼠實際上在血清中具有至少10mg/mL持續濃度之人類IgG且該等小鼠相較於未治療對照同樣易受MRSA感染。利用MRSA感染SCID:huIgG小鼠且在感染後1天利用S4497抗體或利用S4497-二甲基-pipBOR AAC(50mg/Kg)進行治療。感染後4天,評價 腎臟中之細菌負載(圖10C)。
圖10C顯示來自使用硫代-S4497-HC-A118C-MC-vc-PAB-二甲基-pipBOR AAC 105112之2種單獨製劑進行之3次獨立實驗的組合數據。使用經最佳化給藥方案利用人類IgG對CB17.SCID小鼠進行重構以在血清中獲得至少10mg/mL恆定濃度之人類IgG。利用S4497抗體(50mg/Kg)或S4497-二甲基-pipBOR AAC(50mg/Kg)治療小鼠。利用AAC治療之小鼠具有大於4-log之細菌負載減小(司徒頓氏t-測試p=0.0005)。利用S4497-二甲基-pipBOR AAC治療之小鼠中之細菌負載相較於利用S4497抗體對照治療之小鼠平均低9999/10,000以上,指示甚至在高濃度之競爭性人類抗MRSA抗體存在下AAC仍明顯有效。
比較AAC之功效與利用梵穀黴素進行之治療(MRSA感染之現行護理標準治療)之功效。圖11A顯示在利用正常濃度之人類IgG重構之小鼠中證明AAC比現行護理標準(SOC)抗生素梵穀黴素更有效之活體內感染模型。使用經最佳化給藥方案利用人類IgG對CB17.SCID小鼠進行重構以在血清中獲得至少10mg/mL恆定濃度之人類IgG。利用S4497抗體(50mg/Kg)、梵穀黴素(100mg/Kg)、S4497-二甲基-pipBOR AAC(50mg/Kg)112或利用不識別MRSA之同種型對照抗體製得之AAC(硫代-hu-抗gD 5B5-HC-A118C-MC-vc-PAB-二甲基pipBOR AAC)110(50mg/Kg)治療小鼠。在感染後第1天藉由靜脈內注射向接受AAC之小鼠給予單劑量之AAC。藉由腹膜內注射向接受梵穀黴素治療之小鼠每天兩次給予抗生素之注射物。在感染後第4天將所有小鼠處死,且藉由平鋪確定每只小鼠(彙集2個腎臟)之存活細菌總數。
若在感染後30分鐘起始治療,則利用梵穀黴素進行治療可有效治療吾人之鼠類靜脈內感染模型中之MRSA感染。當在感染後超過1天起始治療時,每天兩次給予100mg/Kg梵穀黴素不能清除感染,且僅能夠將細菌負載降低至約1/50(圖11A)。引人注目地,在感染後1天 利用單劑量之S4497-二甲基-pipBOR AAC進行治療能夠清除大多數小鼠中之感染。令人驚訝地,利用不識別金黃色葡萄球菌之人類IgG抗體製得之對照AAC(gD-AAC)進行治療在此模型中具有一定功效。gD抗體不經由其抗原結合位點識別金黃色葡萄球菌,然而,該抗體能夠結合在金黃色葡萄球菌上發現之蛋白質A。
圖11C顯示在利用正常濃度之人類IgG重構之小鼠中根據與圖11A相同之方案證明硫代-S6078-HC A114C-LCWT-MC-vc-PAB-二甲基pipBOR 129 AAC比裸露抗WTA抗體S4497更有效的活體內感染模型。使用經最佳化給藥方案利用人類IgG對CB17.SCID小鼠進行重構以在血清中獲得至少10mg/mL恆定濃度之人類IgG。利用S4497抗體(50mg/Kg)或硫代-S6078-HC A114C-LCWT-MC-vc-PAB-二甲基pipBOR 129 AAC(50mg/Kg)治療小鼠。
FACS分析顯示,相對於抗MRSA抗體與自受感染腎臟分離之MRSA之結合,利用高濃度gD抗體對自活體內感染分離之細菌進行染色獲得與金黃色葡萄球菌之低程度結合(圖11B)。藉由靜脈內注射利用MRSA感染小鼠且在感染後3天移出受感染腎臟並將其均質化。利用Alexa-488標記抗MRSA抗體或對照抗體且在0.08μg/mL與50μg/mL之間範圍內之濃度下進行測試。S4497抗體識別金黃色葡萄球菌之細胞壁上經由β-變旋異構鍵連接至壁磷壁酸(WTA)之N-乙醯基葡糖胺修飾。S7578抗體結合經由α-變旋異構鍵接合至WTA之類似N-乙醯基葡糖胺修飾。rF1抗體係識別在含有細胞壁錨定蛋白之SDR-重複家族上發現之糖修飾之陽性對照抗MRSA抗體。gD抗體係不識別金黃色葡萄球菌之陰性對照人類IgG1。儘管gD抗體之總體結合程度顯著低於利用S4497抗體獲得者(藉由FACS分析估計低至少29/30,圖11B),但利用gD-AAC觀察到之有限功效指示甚至AAC對MRSA之低程度結合在活體內仍足以獲得似乎等效於利用梵穀黴素獲得之CFU之降低之功效。
上述數據明確地證明AAC能夠殺死細胞內MRSA且S4497-pipBOR及S4497二甲基-pipBOR AAC可有效限制活體外及活體內兩者之MRSA感染。本發明AAC藉由殺死哺乳動物細胞內部之細菌來起作用且由此提供更有效殺死抵抗梵穀黴素治療之細菌群體之獨特治療。
圖20顯示在靜脈內感染模型中利用50mg/kg游離抗體進行預治療並不有效。在利用2×107個CFU之USA300感染前30分鐘藉由靜脈內注射向Balb/c小鼠給予單劑量之媒劑對照(PBS)或50mg/Kg抗體。治療組包括不結合金黃色葡萄球菌之同種型對照抗體(gD)、針對壁磷壁酸之β修飾之抗體(4497)或針對壁磷壁酸之α修飾之抗體(7578)。藉由腹膜內注射向對照小鼠每天兩次給予利用110mg/Kg梵穀黴素(Vanco)進行之治療。在感染後第4天將所有小鼠處死,且藉由平鋪確定腎臟(彙集2個腎臟)中之存活細菌總數。儘管利用梵穀黴素進行預治療清除所有測試小鼠中之感染,但利用針對金黃色葡萄球菌之細胞壁之抗體進行預治療對細菌負載不具有效應。
圖21及圖22顯示在使用利用正常濃度之人類IgG重構之小鼠之靜脈內感染模型中針對壁磷壁酸之β修飾或壁磷壁酸之α修飾之AAC係有效的。使用經最佳化給藥方案利用人類IgG對CB17.SCID小鼠進行重構以在血清中獲得至少10mg/mL恆定濃度之人類IgG且藉由靜脈內注射利用2×107個CFU之USA300進行感染。在感染後1天起始利用僅有緩衝液之對照(PBS)、60mg/Kg β-WTA AAC(136 AAC)或60mg/Kg α-WTA AAC(155 AAC)進行治療。在感染後第4天將所有小鼠處死,且藉由平鋪確定腎臟(彙集2個腎臟,圖2)及心臟(圖22)中之存活細菌總數。相較於利用媒劑對照治療之小鼠,利用β-WTA AAC進行治療使腎臟中之細菌負載降低至1/100,000。利用α-WTA AAC進行治療使腎臟中之細菌負載平均降低至1/9,000。
迄今為止,對於當前可用之抗生素經常在殺死細胞內細菌儲存 物方面無效之原因仍不確定。抗生素可由於其未在細胞內部達到足夠濃度而失敗,此係由於其未進入其中駐有細胞內細菌儲存物之吞噬溶酶體區室中,或由於其可能經受來自哺乳動物細胞之去除抗生素之流出幫浦之活性。在吞噬溶酶體內部發現之苛刻條件(包括低pH、還原劑及特異性地釋放以殺死經吞噬細菌之氧化劑)可損害抗生素。或者,抗生素可能由於細菌上調防禦機制或不能在吞噬溶酶體內部***且因此使得對抗生素暫時不敏感而失敗。該等抗生素抗性機制之相對重要性將因不同病原體且因每一抗生素而不同。當以游離抗生素測試時,吾人之AAC之抗生素組份pipBOR及二甲基-pipBOR在殺死細胞內MRSA方面實際上比利福平更有效。該等抗生素連接至抗體提供在活體內明顯之功效之真正劑量依賴性增加(圖9C)。在此情況下,AAC優於單獨抗生素之經改良功效可能歸因於其調理細菌之能力與AAC之經改良藥物動力學之組合。多數游離抗生素在活體內快速清除且需要重複給予高濃度抗生素以在血清中維持足夠抗生素濃度。相比之下,AAC由於該分子之抗體部分而在血清中具有長半衰期。由於AAC僅在結合金黃色葡萄球菌且與該細菌一起輸送至吞噬溶酶體之有限空間中後釋放抗生素,因此其特異性地在其中多數抗生素不能到達之小生境中集中小劑量之抗生素。因此,除了靶向細胞內細菌之受保護儲庫外,AAC亦可藉由將抗生素之釋放限定至最需要其之處來促進可證明毒性過大而不能用作單一藥劑之更有效抗生素之使用。
圖35及36顯示來自硫代-S6078 AAC之活體外巨噬細胞分析之結果。將金黃色葡萄球菌(USA300 NRS384)與未結合50μg/mL之S6078抗體及50μg/mL、5μg/mL、0.5μg/mL或0.05μg/mL之AAC一起培育1小時以允許抗體與細菌結合。將所得經調理細菌進給至鼠類巨噬細胞中且在37℃下培育以允許吞噬作用。2小時後,去除感染混合物且利用補充有50μg/mL健他黴素之正常生長培養基替代以殺死任何殘留之 細胞外細菌。2天後藉由在胰蛋白酶大豆瓊脂板上平鋪巨噬細胞溶解物之連續稀釋物來確定細胞內存活細菌總數。在圖35中,硫代-S6078.v4.HC-WT LC-Cys-MC-vc-PAB-(二甲基pipBOR)AAC在0.5μg/mL或高於0.5μg/mL之劑量下可有效殺死細胞內細菌,且每硫代-S6078抗體具有2.0(AAC-173)或3.9(AAC-171)二甲基pipBOR抗生素(LA-54)之抗生素負載。在圖36中,硫代-S6078.v4.HC-WT LC-Cys-MC-vc-PAB-(六氫吡嗪基BOR)在0.5μg/mL或高於0.5μg/mL之劑量下可有效殺死細胞內細菌,且每硫代-S6078抗體具有1.8(AAC-174)或3.9(AAC-172)六氫吡嗪基BOR抗生素(LA-65)之抗生素負載。
圖37及38顯示來自硫代-S6078 AAC在鼠類靜脈內感染模型中之活體內功效之結果。使用經最佳化給藥方案利用人類IgG對CB17.SCID小鼠進行重構以在血清中獲得至少10mg/mL恆定濃度之人類IgG。利用USA300感染小鼠並利用媒劑對照(PBS)、每硫代-S6078抗體具有2.0(AAC-173)或3.9(AAC-171)二甲基pipBOR抗生素(LA-54)之抗生素負載之硫代-S6078.v4.HC-WT LC-Cys-MC-vc-PAB-(二甲基pipBOR)AAC(圖37)及每硫代-S6078抗體具有1.8(AAC-174)或3.9(AAC-172)六氫吡嗪基BOR抗生素(LA-65)之抗生素負載之硫代-S6078.v4.HC-WT LC-Cys-MC-vc-PAB-(六氫吡嗪基BOR)(圖38)進行治療。在感染後第1天藉由靜脈內注射向小鼠給予單劑量之AAC且在感染後第4天將其處死。藉由平鋪確定2個腎臟中之存活細菌總數。利用含有較低抗生素負載之AAC進行治療將細菌負載降低至大約1/1,000且利用含有較高抗生素負載之AAC進行治療將細菌負載降低至小於1/10,000。
用於抗體-抗生素結合物之葡萄球菌素B可裂解連接體
本文闡述欲藉由葡萄球菌素B(經分泌金黃色葡萄球菌肽鏈內切酶)裂解之蛋白酶可裂解連接體。為了設計藉由金黃色葡萄球菌特異 性地裂解之連接體,使用FRET肽文庫來表徵金黃色葡萄球菌培養物上清液之蛋白酶活性。自此篩選,鑑別獨特受質特異性。使用此受質,自培養物上清液純化負責活性之酶且將其鑑別為葡萄球菌素B。基於此鑑別,生成葡萄球菌素B最佳化之連接體且將其連接至六氫吡嗪基-雷福黴素:
六氫吡嗪基-雷福黴素係有效利福拉齊樣抗生素。所得AAC已在MRSA感染之活體外及活體內模型中證明功效,從而提供靶向MRSA感染之新穎機制。葡萄球菌素B係來自肽鏈內切酶之木瓜酶家族之經分泌半胱胺酸蛋白酶(CAS登記號347841-89-8,Sigma-Aldrich編號S3951,Filipek等人(2005)J.Biol.Chem.280(15):14669-74)且已逐漸演變成具有獨特受質特異性,偏好P2位置中之大芳香族側鏈。葡萄球菌素B之表現係由屬於作為葡萄球菌蛋白質分解級聯(SCP)一部分之感測系統(Janzon,L.及S.Arvidson(1990)The EMBO journal 9(5):1391-1399)之agr(或輔助基因調控物)控制。Agr調節金黃色葡萄球菌之經分泌蛋白酶及其他致病因子(包括金黃色葡萄球菌金屬蛋白酶(aureolysin)、V8及葡萄球菌素A)之表現(Shaw,L.,E.Golonka等人(2004)Microbiology 150(Pt 1):217-228)。由於降解宿主結締組織以及增強若干免疫系統蛋白質之能力而已推斷葡萄球菌素B為有效致病因子(Imamura,T.,S.Tanase等人(2005)Journal of experimental medicine 201(10):1669-1676;Potempa,J.,A.Dubin等人(1988)Journal of biological chemistry 263(6):2664-2667;Ohbayashi,T.,A.Irie等人 (2011)Microbiology 157(Pt 3):786-792;Smagur,J.,K.Guzik等人(2009);Biological chemistry 390(4):361-371;Smagur,J.,K.Guzik等人(2009);Journal of innate immunity 1(2):98-108;Kulig,P.,B.A.Zabel等人(2007);Journal of immunology 178(6):3713-3720)。葡萄球菌素B作為重要致病因子之作用使其成為用於蛋白酶介導抗生素釋放之有吸力之靶標。
鑑別藉由金黃色葡萄球菌蛋白酶裂解之受質:
為了鑑別容易藉由金黃色葡萄球菌肽鏈內切酶裂解之受質,將來自Wood46菌株金黃色葡萄球菌之過夜培養物之上清液與市售FRET肽文庫一起培育。Wood46菌株具有組成性活性agr基因座,因此Wood46菌株相較於野生型展現增加之蛋白酶表現。FRET肽文庫、快速肽鏈內切酶譜型分析(Profiling)文庫或PepSetsTM REPLi(Mimotopes,Victoria,Australia)由呈96孔板格式之512個孔組成,每孔具有8條內部淬滅螢光肽。肽在裂解後發螢光,允許即時監測蛋白質分解活性。每條肽具有三肽可變核心,其側接有任一側上之一系列甘胺酸殘基及於C末端之兩個額外離胺酸殘基用於溶解。將來自Wood46培養物之上清液添加至文庫中且將板在37℃下培育過夜。藉由LC-MS(Agilent Q-TOF)分析顯示螢光增加15倍以上之孔(總共512個孔中之12個)以確定裂解產物。基於頻率對裂解位點分級(表4)。在最高命中項(top hit)中,觀察受質特異性模式,具體而言對P2位置中Phe及Tyr之大疏水側鏈之偏好。
存於顯示最大螢光增加之孔之FRET肽中之胺基酸殘基於每一位置處的豐度。REPLi肽含有序列MCA-Gly-Gly-Gly-Xaa-Yaa-Zaa-Gly-Gly-DPA-Lys-Lys(SEQ ID NO:132),其中Xaa、Yaa及Zaa可變。存在於表中之甘胺酸殘基表示側接可變核心之Gly殘基。儘管Gly殘基在若干位置處最豐富,但其幾乎無助於理解受質特異性。當設計連接體時,較佳者係來自可變核心之胺基酸。表中省略不在任一最高命中項中之胺基酸。
藉由MRSA蛋白酶活體外裂解之FRET受質之設計及結合:
使用來自REPLi篩選之裂解肽中頻率最高之殘基使用關於P1、P2及P3之特異性資訊來設計並合成肽。該肽具有序列GGAFAGGG(SEQ ID NO:126),預計裂解在GGAFA(SEQ ID NO:131)與GGG之間。使用固相合成來合成該肽,其中併入螢光染料四甲基玫瑰紅(TAMRA)及 螢光黃作為FRET對(圖26),且將馬來醯亞胺基-丙酸添加至N末端以允許結合至抗體半胱胺酸殘基。使所得mal-FRET-肽馬來醯亞胺基-丙酸(MP)-Lys(TAMRA)-Gly-Gly-Ala-Phe-Ala-Gly-Gly-Gly-Lys(螢光黃)(揭示為SEQ ID NO:125之「核心肽」)結合至半胱胺酸改造之硫代Mab抗體硫代-S4497。亦使mal-FRET-肽結合至半胱胺酸改造之抗Her2硫代Mab曲妥珠單抗,一種非結合對照。
將硫代-S4497-MP-K(Tamra)GGAFAGGGK(螢光黃)(揭示為SEQ ID NO:125之「核心肽」)FRET結合物及非結合對照FRET結合物硫代-曲妥珠單抗-MP-K(Tamra)GGAFAGGGK(螢光黃)(揭示為SEQ ID NO:125之「核心肽」)與密度為108個細胞/ml及107個細胞/ml之Wood46(圖28)及野生型SA300(圖29)之對數期培養物一起於胰蛋白酶大豆培養液(TSB)中培育。所有孔之MP-Lys(TAMRA)-Gly-Gly-Ala-Phe-Ala-Gly-Gly-Gly-Lys(螢光黃)(揭示為SEQ ID NO:125之「核心肽」)之最終濃度係2μM。在37℃、激發λ495nm/發射λ518nm下隨時間監測螢光。在Wood46及USA300兩者中利用4497-mal-FRET-肽結合物皆觀察到螢光增加,從而指示FRET肽藉由金黃色葡萄球菌蛋白酶裂解且該蛋白酶存於兩種菌株中。當結合至結合金黃色葡萄球菌之抗體時,連接體單元MP-K(Tamra)GGAFAGGGK(螢光黃)(揭示為SEQ ID NO:125之「核心肽」)在Wood46及USA300兩者中裂解。確認此模型連接體於USA300中之裂解由於該連接體與MRSA之臨床菌株之相關性而至關重要,潛在治療性抗體-抗生素結合物(AAC)將靶向該菌株。硫代-S4497-MP-K(Tamra)GGAFAGGGK(螢光黃)(揭示為SEQ ID NO:125之「核心肽」)FRET結合物在兩種菌株中皆顯示螢光增加,從而指示該連接體藉由金黃色葡萄球菌蛋白酶裂解且該蛋白酶存於MRSA之臨床相關菌株USA300中。細胞密度影響裂解速率,其中裂解較早發生於較高細胞密度之培養物中。非結合對照硫代-曲妥珠單 抗-MP-K(Tamra)GGAFAGGGK(螢光黃)(揭示為SEQ ID NO:125之「核心肽」)結合物在任何條件測試中皆未顯示螢光增加。
基於來自基於細胞之分析之裂解受質,製備連接體-抗生素中間體LA-59(表2)且使其結合至抗體以形成表3之抗MRSA重鏈半胱胺酸改造之硫代-S4497(AAC-113)及硫代-S4462(AAC-114)以及抗HER2輕鏈硫代-曲妥珠單抗(AAC-115)。當與來自Wood46過夜培養物之濃縮上清液一起培育時,GGAFAGGG(SEQ ID NO:126)連接之AAC顯示優於FRET-肽之裂解速率,從而指示連接體-抗生素係所關注未知蛋白酶之較佳受質。裂解發生於GGAFAGGG-連接(揭示為SEQ ID NO:126之「核心肽」)AAC(AAC-113、AAC-114、AAC-115)中丙胺酸與甘胺酸之間之預計位點處。此連接體-抗生素(LA-59)並非抗生素之最佳化遞送系統,此乃因在裂解後,釋放GGG-雷福黴素而非游離雷福黴素。儘管此連接體-抗生素之治療潛力可能不明確,但其藉由蛋白酶有效裂解之能力使其成為鑑別含有所關注活性蛋白酶之部分之可用工具化合物。使連接體-抗生素中間體LA-59結合至硫代-S4497抗體之Fab部分(Scheer,J.M.,W.Sandoval等人(2012).PloS one 7(12):e51817)。半胱胺酸改造之Fab抗體「硫代FAB」具有一個反應性半胱胺酸,該反應性半胱胺酸使得能夠進行一種硫醇基反應性化合物之位點特異性結合。在室溫下使硫代FAB S-4497與相對於硫代FAB 3倍莫耳過量之LA-59在50mM TRIS(pH 7.5)、150mM NaCl中反應1hr。藉由於PBS中透析將過量LA-59與AAC分離。使用所得結合物硫代FAB S4497-MC-GGAFAGGG-(pipBOR)(揭示為SEQ ID NO:126之「核心肽」)(圖27)作為工具化合物來鑑別活性部分,其中藉由LC-MS分析檢測連接體之裂解。
將連接體最佳化以供藉由葡萄球菌素B進行有效裂解:
連接體-抗生素中間體LA-59 MC-GGAFAGGG-(pipBOR)(揭示為 SEQ ID NO:126之「核心肽」)具有經最佳化用於P1、P2及P3位置之受質殘基。使用來自REPLi篩選之結果,設計並合成兩種新連接體,其中併入對P4之殘基偏好(圖30)。使用固相合成來合成馬來醯亞胺基-丙酸-Leu-Ala-Phe-Ala-Ala(揭示為SEQ ID NO:136之「核心肽」)及馬來醯亞胺基-丙酸-Leu-Ala-Phe-Gly-Ala(揭示為SEQ ID NO:135之「核心肽」)。異白胺酸及白胺酸係REPLi篩選中P4處之頻率最高之殘基(不考慮甘胺酸)。僅選擇一個殘基白胺酸來限制所合成連接體之數量。Ala及Gly在P1位置處交替以檢查對可裂解性之效應。亦包括P1’處之殘基Ala。將QSY®7(佔噸鎓,9-[2-[[4-[[(2,5-二側氧基-1-吡咯啶基)氧基]羰基]-1-六氫吡啶基]磺醯基]苯基]-3,6-雙(甲基苯基胺基)-NHS酯氯化物,CAS登記號304014-12-8,Life Technologies)添加至兩種連接體之C末端以用作抗生素代用品(圖30)。併入QSY®7允許評估該等連接體之可裂解性而不會消耗代價高且費力之抗生素。
使實驗mal-肽-QSY7連接體結合至硫代FAB S4497以評估該等連接體之可裂解性。如前文所述實施結合。評價所得硫代FAB S4497連接體-QSY7結合物藉由葡萄球菌素B、葡萄球菌素A及人類組織蛋白酶B於pH 7.2下之可裂解性(表5)。與葡萄球菌素B一樣,葡萄球菌素A係來自蛋白酶之木瓜酶家族之金黃色葡萄球菌的經分泌半胱胺酸蛋白酶。其在結構上類似於葡萄球菌素B,但具有更廣泛之受質特異性(Filipek,R.,M.Rzychon等人(2003)。The Journal of biological chemistry 278(42):40959-40966)。組織蛋白酶B(哺乳動物半胱胺酸溶酶體蛋白酶)亦係肽鏈內切酶之木瓜酶家族之成員。認為其裂解用於本專利中所述其他AAC連接體中之纈胺酸-瓜胺酸連接體。
表5顯示來自葡萄球菌素A、葡萄球菌素B及組織蛋白酶B對結合 至硫代FAB之最佳化連接體之裂解的數據。最終連接體-抗生素MP-LAFG-六氫吡嗪基-雷福黴素(揭示為SEQ ID NO:128之「核心肽」)藉由所有三種蛋白酶有效地裂解。藉由葡萄球菌素之裂解導致釋放游離雷福黴素。藉由組織蛋白酶B之裂解釋放Phe-Gly-六氫吡嗪基-雷福黴素(實例26)。
釋放游離抗生素之葡萄球菌素B可裂解連接體之設計及結合:
自所測試實驗連接體之裂解分析,選擇mal-LAFGA(揭示為SEQ ID NO:135之「核心肽」)用於抗生素附著。需要進一步最佳化此連接體以在蛋白質分解裂解後達成游離抗生素釋放。為達成此目的,用對胺基苄基(PAB)或對胺基苄氧基羰基(PABC)替代P1’中之Ala。將六氫吡嗪基-雷福黴素添加至此連接體之C末端以完成連接體-抗生素中間體LA-88 MC-LAFG-PAB-(二甲基胺基-3-吡咯并BOR)(揭示為SEQ ID NO:128之「核心肽」)及LA-104 MP-LAFG-PABC-(六氫吡嗪基BOR)(揭示為SEQ ID NO:128之「核心肽」)。在P1位置中之Gly之後裂解後,PAB及PABC基團經設計自消解,釋放游離抗生素。結合LA-88以形成硫代-S4497-v8-LCV205C-MC-LAFG-PAB-(二甲基胺基-3-吡咯并BOR)AAC-163(揭示為SEQ ID NO:128之「核心肽」)(表3)。結合LA-104以形成AAC-193、AAC-215及AAC-222。在pH 7.2及pH 5下實施葡萄球菌素A、葡萄球菌素B及組織蛋白酶B對AAC 193之裂解分析。選擇該等pH值以模擬血漿(pH 7.2)或吞噬溶酶體之環境(pH 5)。葡萄球菌素B在pH 5及7.2兩者下皆達成100%裂解。葡萄球菌素A顯示pH5下之100%裂解及pH 7.2下之64%裂解。
用PABC取代P1’基團中之Ala改變組織蛋白酶B裂解連接體之位置。在藉由組織蛋白酶B裂解後,釋放Phe-Gly-PABC-(六氫吡嗪基BOR)。作為治療劑,組織蛋白酶B對此連接體之潛在裂解將最有可能發生於巨噬細胞之溶酶體區室中。在該等情況下,包括葡萄球菌素B 在內之其他蛋白酶可進一步處理FG-PABC-六氫吡嗪基-雷福黴素以釋放游離抗生素。
使連接體-抗生素中間體MP-LAFG-PABC-(六氫吡嗪基BOR)(揭示為SEQ ID NO:128之「核心肽」)LA-104結合至硫代MAB S4497以評估所得AAC AAC-193、AAC-215、AAC-222之活體外及活體內功效。亦藉由使LA-104結合至兩種同種型對照硫代MAB抗Her2及硫代MAB抗gD來製得兩種對照結合物。輕鏈連接之硫代MAB 4497 MP-LAFG-PABC-六氫吡嗪基-雷福黴素結合物(揭示為SEQ ID NO:128之「核心肽」)AAC-215具有1.6之藥物對抗體比(DAR),如硫代MAB抗gD對照結合物所達成。硫代MAB抗Her2 mal-LAFG-PABC-六氫吡嗪基-雷福黴素(揭示為SEQ ID NO:128之「核心肽」)結合物具有1.5之DAR。
使用FRET肽文庫篩選金黃色葡萄球菌培養物上清液來鑑別容易藉由經分泌蛋白酶裂解之受質。此篩選之結果顯示絕大部分經量測蛋白酶活性可歸因於金黃色葡萄球菌之一種經分泌半胱胺酸蛋白酶葡萄球菌素B。將設計用於藉由葡萄球菌素B裂解之肽連接體最佳化且鑑別有效裂解之釋放游離抗生素之受質。亦藉由金黃色葡萄球菌蛋白酶葡萄球菌素A及人類蛋白酶組織蛋白酶B(兩者亦係半胱胺酸蛋白酶)裂解所得連接體。
當結合至結合金黃色葡萄球菌之抗體時,所得AAC在活體外及活體內皆顯示功效。MRSA之內源性肽鏈內切酶提供以疾病特異性方式靶向MRSA感染並釋放有效載荷之機制。此連接體藉由金黃色葡萄球菌之經分泌蛋白酶裂解之能力允許靶向存於人類嗜中性球中以及細胞外存於宿主血漿/組織中之MRSA。此雙重靶向可使得能夠在細胞內及細胞外感染部位兩者處釋放高濃度抗生素。
葡萄球菌素A及B表現在人類嗜中性球中上調且視為重要致病因 子(Burlak,C.等人(2007)Cellular microbiology 9(5):1172-1190),使其成為用於蛋白酶介導之抗生素釋放之有吸收力之靶標。人類組織蛋白酶B亦裂解連接體,呈現替代釋放途徑。AAC之觀察功效可能係參與抗生素或抗生素部分之釋放之多種蛋白酶(皆來自金黃色葡萄球菌及宿主)之結果。藉由多種蛋白酶裂解之血清-穩定連接體提供可智勝(outmaneuver)細菌抗性突變之釋放機制。
利用抗體-抗生素結合物治療及預防感染之方法
本發明AAC可用作有效抵抗諸多人類及獸醫革蘭氏陽性細菌之抗微生物劑,該等革蘭氏陽性細菌包括葡萄球菌屬,例如金黃色葡萄球菌、腐生葡萄球菌(S.saprophyticus)及模仿葡萄球菌(S.simulans);李斯特菌屬(Listeria),例如單核球增多性李斯特菌(Listeria monocytogenes);腸球菌屬(Enterococci),例如糞腸球菌(E.faecalis);鏈球菌(Streptococci),例如肺炎鏈球菌(S.pneumoniae);芽胞梭菌屬(Clostridium),例如難養芽胞梭菌(C.difficile)。
持續性菌血症可源自內化至宿主細胞中。儘管不完全理解,但內化病原體能夠藉由在宿主細胞內部存活來逃避免疫識別。此等生物體包括金黃色葡萄球菌、沙門氏桿菌屬(Salmonella)(例如,傷寒沙門氏桿菌(S.typi)、豬霍亂沙門氏桿菌(S.choreraesuis)及腸炎沙門氏桿菌(S.enteritidis))、退伍軍人桿菌屬(Legionella)(例如,嗜肺性退伍軍人桿菌(L.pneumophila))、李斯特菌屬(例如,單核球增多性李斯特菌)、布氏桿菌屬(Brucella)(例如,流產布氏桿菌(B.abortus)、地中海熱布氏桿菌(B.melitensis)、豬布氏桿菌(B.suis))、披衣菌屬(Chlamydia)(肺炎披衣菌(C.pneumoniea)、沙眼披衣菌(C.trachomati))、立克次體(Rickettsia spp.)、志賀桿菌屬(Shigella)(例如,宋內氏志賀桿菌(S.flexneri))及分枝桿菌。
在進入血流中後,金黃色葡萄球菌可引起幾乎任何器官中之轉 移性感染。繼發性感染在約1/3病例中發生於開始治療前(Fowler等人,(2003)Arch.Intern.Med.163:2066-2072),且甚至在10%患者中發生於開始治療後(Khatib等人,(2006)Scand.J.Infect.Dis.,38:7-14)。感染標誌係大的膿儲庫、組織破壞及形成囊腫(全部含有大量嗜中性球)。儘管若菌血症在48小時內消失,則僅有約5%患者發生併發症,但若菌血症持續三天以上,則水準上升至40%。
儘管通常將金黃色葡萄球菌視為分泌毒素之細胞外病原體,但有證明表明其可在內皮細胞、角質細胞、纖維母細胞及蝕骨細胞內部存活(Alexander等人,(2001)Appl.Microbiol.Biotechnol.56:361-366;Garzoni等人,(2009)Trends Microbiol.17:59-65)。嗜中性球及巨噬細胞係對細菌感染之宿主先天免疫反應之關鍵組份。該等細胞藉由可由抗體、補體或宿主凝集蛋白(例如甘露糖結合蛋白)增強之吞噬作用將金黃色葡萄球菌內化,該等蛋白此可同時結合病原體及嗜中性球、巨噬細胞及其他職業性吞噬細胞。如先前所述,金黃色葡萄球菌不僅在溶酶體環境中存活,且可實際上利用其作為在宿主中產生持續性之機制。
本發明之抗體-抗生素結合物(AAC)具有用於治療細胞內病原體(包括彼等駐存於吞噬溶酶體中者)之顯著治療優點。在一個實施例中,病原體內化至白血球細胞中,且細胞內組份係吞噬溶酶體。在完整AAC中,抗體可變區結合細菌上之細胞表面抗原(調理)。不受限於任一理論,在一種機制中,藉由結合細菌細胞表面之AAC之抗體組份,將吞噬細胞吸引至細菌。抗體之Fc部分結合吞噬細胞上之Fc受體,從而促進吞噬作用。在吞噬AAC-細菌複合體後,在融合至溶酶體後,AAC連接體藉由暴露至吞噬溶酶體酶來裂解,從而釋放活性抗生素。由於有限空間及相對高之局部Abx濃度(每個細菌約104個),結果係吞噬溶酶體不再支持細胞內病原體之存活(圖5)。由於AAC基本 上係非活性前藥,因此抗生素之治療指數可相對於游離(未結合)形式擴大。抗體提供病原體特異性靶向,而可裂解連接體在病原體之細胞內位置所特有之條件下裂解。該效應可直接針對經調理病原體以及共定位於吞噬溶酶體中之其他病原體。在具體態樣中,病原體係金黃色葡萄球菌。
抗生素耐受性係引起疾病之病原體抵抗抗生素及其他抗微生物殺死之能力且機械地不同於多重抗藥性(Lewis K(2007)。「Persister cells,dormancy and infectious disease」.Nature Reviews Microbiology 5(1):48-56.doi:10.1038/nrmicro1557)。而是,此形式之耐受性係由稱為持留者之微生物細胞的小亞群引起(Bigger JW(1944年10月14日)。「Treatment of staphylococcal infections with penicillin by intermittent sterilization」.Lancet 244(6320):497-500)。該等細胞就經典意義而言並不具有多重抗藥性,而是耐受抗生素治療之休眠細胞,該等抗生素治療可殺死其遺傳上相同之同胞細胞。此抗生素耐受性係藉由非-或極緩慢***之生理狀態誘導。當抗微生物治療不能根除該等持留細胞時,其變成復發性慢性感染之儲庫。本發明之抗體-抗生素結合物具有殺死該等持留細胞且抑制出現多重耐藥性細菌群體之獨特性質。
在另一實施例中,本發明AAC可用於治療感染,不管其中病原體存活之細胞內區室如何。
在另一實施例中,AAC亦可用於藉由抗體介導之調理靶向呈浮游性或生物膜形式之細菌(實例:金黃色葡萄球菌、肺炎克雷白氏桿菌(K.pneumonia)、大腸桿菌(E.coli)、鮑氏不動桿菌(A.baumannii)、繡色假單胞菌(P.aeruginosa)及腸桿菌科(Enterobacteriaceae)),從而導致藉由職業性吞噬細胞之內化。當吞噬體與溶酶體融合時,在吞噬溶酶體之酸性或蛋白質分解環境中,足夠高濃度之游離抗生素將自AAC 釋放以殺死經吞噬病原體。
利用本發明之抗體-抗生素結合物(AAC)治療感染之方法包括治療細菌性肺部感染(例如金黃色葡萄球菌肺炎或結核病感染)、細菌性眼部感染(例如沙眼及結膜炎)、心臟、腦或皮膚感染、胃腸道感染(例如旅行者腹瀉)、骨髓炎、潰瘍性結腸炎、剌激性腸症候群(IBS)、克隆氏病(Crohn's disease)且一般而言IBD(發炎性腸病)、細菌性腦膜炎及諸如肌肉、肝臟、腦膜或肺等任何器官中之膿腫。細菌感染可在機體之其他部分(如泌尿道、血流、傷口或導管***部位)中。本發明AAC可用於涉及生物膜、植入體或庇護部位(sanctuary site)之難以治療之感染(例如,骨髓炎及假關節感染)及高死亡率感染,例如醫院獲得性肺炎及菌血症。可經治療以預防金黃色葡萄球菌感染之易感患者群體包括血液透析患者、免疫受損患者、加護病房中之患者及某些手術患者。在另一態樣中,本發明提供殺死、治療或預防動物、較佳哺乳動物且最佳人類之微生物感染之方法,其包括向該動物投與AAC或本發明AAC之醫藥調配物。本發明之特徵進一步在於治療或預防與此等微生物感染相關或伺機性地源自該等微生物感染之疾病。此等治療或預防方法可包括經口、局部、靜脈內、肌內或皮下投與本發明組合物。例如,在手術或***IV導管前、在ICU病房中、在移植醫學中、進行癌症化學療法時或之後或進行帶有高感染風險之其他活動時,可投與本發明AAC以防止感染發作或擴散。
細菌感染可由具有活性及非活性形式之細菌引起,且AAC係以一定量投與且持續足以治療活性及非活性潛在形式之細菌感染之持續時間,該持續時間長於治療活性形式之細菌感染所需時間。
對多種革蘭氏+細菌之分析發現在所有金黃色葡萄球菌(包括MRSA及MSSA)菌株以及非金黃色葡萄球菌之葡萄球菌菌株(例如腐生葡萄球菌及模仿葡萄球菌)上表現之WTAβ。WTAα(α-GLcNAc核糖 醇WTA)存在於大部分但非全部金黃色葡萄球菌上,且亦存在於單核球增多性李斯特菌上。WTA不存在於革蘭氏-細菌上。因此,本發明之一個態樣係藉由投與治療有效量之本發明之抗WTAβ-AAC來治療受金黃色葡萄球菌或腐生葡萄球菌或模仿葡萄球菌感染之患者之方法。本發明之另一態樣係藉由投與治療有效量之本發明之抗WTAα-AAC來治療受金黃色葡萄球菌或單核球增多性李斯特菌感染之患者之方法。本發明亦涵蓋藉由在諸如手術、燒傷患者及器官移植等醫院環境中投與治療有效量之本發明抗WTAβ-AAC來預防金黃色葡萄球菌或腐生葡萄球菌或模仿葡萄球菌之感染之方法。
如熟習此項技術者之醫師所確定需要治療細菌感染之患者可已經診斷帶有其所感染之細菌種類,但此並非必需。由於細菌感染患者可在大約數小時內極快惡化,因此可在患者入院後向其投與本發明之抗WTA-AAC以及一或多種標準護理Abx,例如梵穀黴素。當可獲得診斷結果且其指示感染中存在例如金黃色葡萄球菌時,可繼續利用抗WTA AAC對患者進行治療。因此,在治療細菌感染或具體而言金黃色葡萄球菌感染之方法之一個實施例中,向患者投與治療有效量之抗WTAβAAC。在本發明之治療或預防方法中,本發明AAC可作為單獨治療劑或結合其他藥劑(例如彼等下文所述者)投與。本發明AAC顯示在臨床前模型中在治療MRSA方面優於梵穀黴素。AAC與SOC之比較可藉由例如死亡率之降低來量測。將藉由多種可量測因素來評價所治療患者對AAC治療之反應性。臨床醫師可用於評價其患者之改良之體徵及症狀之實例包括以下:白血球計數之正常化(若診斷時升高);體溫正常化(若診斷時升高(發熱));血液培養物清除;傷口目視改良,包括較少紅斑及膿之引流;通氣患者之通氣機需求降低(若患者在診斷時進行通氣),例如需要較少氧或通氣速率降低,完全脫離通氣機;使用較少藥劑來支持穩定血壓(若在診斷時需要該等藥劑);表明 終末器官衰竭之實驗室異常(例如升高之肌酸酐或肝功能測試)之正常化(若其在診斷時異常);及放射成像之改良(例如先前顯示肺炎之胸部x射線顯示消退)。在ICU中之患者中,可至少每天量測該等因素。如包括絕對嗜中性球計數在內之白血球計數一樣密切監測發熱以及「左移」(出現指示因應活性感染之嗜中性球產生增加之有核血球)已消退之跡象。
在本發明之本治療方法之背景下,若前述因素中至少兩者或更多者相較於治療前或治療開始時或診斷時之值、體徵或症狀之有如熟習此項技術之醫師所評價可量測之顯著改良,則認為細菌感染患者經治療。在一些實施例中,存在上述因素中3者、4者、5者、6者或更多者之可量測改良。在一些實施例中,量測因素相較於治療前之值改良至少50%、60%、70%、80%、90%、95%或100%。通常,若患者之可量測改良包括以下,則可認為患者完全治療細菌感染(例如,金黃色葡萄球菌感染):i)重複不長出最初鑑別之細菌之血液或組織培養物(通常若干);ii)發熱正常化;iii)WBC正常;及iv)鑒於患者已患之預先存在之併存病,終末器官衰竭(肺、肝臟、腎臟、血管破壞)已完全或部分消退之跡象。
投藥
在上述態樣中任一者中,在治療感染患者時,AAC之劑量通常為約0.001mg/kg/天至1000mg/kg/天。在一個實施例中,以約1mg/kg至約100mg/kg、通常約5mg/kg至約90mg/kg、更具體而言10mg/kg至50mg/kg範圍內之AAC劑量治療細菌感染患者。可每天(例如,單劑量之5mg/kg/天至50mg/kg/天)或以更低頻率(例如,單劑量之5mg/kg/週、12.5mg/kg/週或25mg/kg/週)給予AAC。單劑量可分為2天進行,例如,一天25mg/kg及下一天25mg/kg。可每3天一次(q3D)、每週一次至每隔一週一次(qOW)向患者投與劑量,持續1-8週。在一 個實施例中,每週一次利用護理標準(SOC)經由靜脈內向患者投與本發明AAC,持續2-6週,以治療細菌感染,例如金黃色葡萄球菌感染。治療時長將由患者病況或感染程度決定,例如對於無併發症之菌血症而言,持續2週,或對於具有心內膜炎之菌血症而言,持續6週。
在一個實施例中,以2.5mg/kg至100mg/kg之初始劑量投與AAC,持續1至7天,之後為0.005mg/kg至10mg/kg之維持劑量,每1至7天一次,持續1個月。
投與途徑
對於治療細菌感染而言,可經靜脈內(i.v.)或皮下以前述劑量中之任一者投與本發明AAC。在一個實施例中,WTA-AAC係經靜脈內投與。在具體實施例中,經由靜脈內投與之WTA-AAC係WTA-β AAC,更具體而言,其中WTA-β抗體係選自具有如圖14、圖15A、圖15B、圖16A及圖16B中所揭示之胺基酸序列之Ab之群者。
組合療法
AAC可視需要結合一或多種如由治療患者之醫師所確定之其他(例如第二)治療劑或預防劑投與。
在一個實施例中,與本發明之抗體-抗生素結合物化合物組合投與之第二抗生素係選自以下結構類別:(i)胺基糖苷;(ii)β-內醯胺;(iii)巨環內酯/環肽;(iv)四環素;(v)氟喹啉/氟喹啉酮;(vi)及噁唑啶酮。參見:Shaw,K.及Barbachyn,M.(2011)Ann.N.Y.Acad.Sci.1241:48-70;Sutcliffe,J.(2011)Ann.N.Y.Acad.Sci.1241:122-152。
在一個實施例中,與本發明之抗體-抗生素結合物化合物組合投與之第二抗生素係選自克林達黴素、新生黴素、瑞他帕林、達托黴素、GSK-2140944、CG-400549、西他沙星、替考拉寧、三氯沙、萘啶酮、雷得唑來、阿黴素、安比西林、梵穀黴素、亞胺培南、多利培南、吉西他濱、達巴萬星及阿奇黴素。
該等其他治療劑或預防劑之其他實例係抗炎劑(例如,非類固醇抗炎藥物(NSAID;例如,地脫普羅芬(detoprofen)、雙氯芬酸(diclofenac)、二氟尼索(diflunisal)、艾特多雷克(etodolac)、非諾洛芬(fenoprofen)、氟白普洛芬(flurbiprofen)、布洛芬(ibuprofen)、吲美灑辛(indomethacin)、凱妥普洛芬(ketoprofen)、美洛芬鹽(meclofenameate)、邁菲那密酸(mefenamic acid)、美洛西卡(meloxicam)、萘丁美酮(nabumetone)、那普洛辛鈉(naproxen sodium)、奧沙普秦(oxaprozin)、匹洛西卡(piroxicam)、舒林達酸(sulindac)、妥美丁(tolmetin)、塞來考昔(celecoxib)、羅非考昔(rofecoxib)、阿司匹靈(aspirin)、水楊酸膽鹼、雙水楊酯以及水楊酸鈉及水楊酸鎂)及類固醇(例如,可體松(cortisone)、***(dexamethasone)、氫化可體松(hydrocortisone)、甲基培尼皮質醇(methylprednisolone)、培尼皮質醇(prednisolone)、培尼皮質酮(prednisone)、特安皮質醇(triamcinolone)))、抗細菌劑(例如,阿奇黴素、克拉黴素、紅黴素、加替沙星、左氧氟沙星、阿莫西林、甲硝唑、青黴素G、青黴素V、二甲氧苯青黴素、扼噻青黴素、氯噻青黴素、二氯噻青黴素、萘夫西林、安比西林、卡本西林、泰卡青黴素、美洛西林、必倍西林、阿洛西林、替莫西林(temocillin)、頭孢菌素、頭孢匹林(cephapirin)、頭孢華定(cephradine)、西華黴素(cephaloridine)、頭孢唑林、頭孢孟多、頭孢呋辛、頭孢力欣(cephalexin)、頭孢丙烯、頭孢可若、羅拉卡巴夫、頭孢西丁、西福每他唑(cefmatozole)、頭孢泰新、頭孢若欣、頭孢曲松、頭孢匹拉腙、頭孢他汀、希復欣敏、頭孢泊肟、頭孢布烯、頭孢地尼、頭孢匹羅(cefpirome)、頭孢吡肟、BAL5788、BAL9141、亞胺培南、厄他培南、美羅培南、氮烯內醯胺、棒酸鹽(clavulanate)、舒巴坦(sulbactam)、***巴坦(tazobactam)、鏈黴素、新黴素、康黴素、巴 龍黴素、建它黴素、妥布黴素、阿米卡星、奈替米星、觀黴素、希索黴素(sisomicin)、地貝卡星(dibekalin)、異帕米星(isepamicin)、四環素、氯四環素、去甲基氯四環素、米諾四環素、氧四環素、美他環素(methacycline)、去甲基氯四環素、泰利黴素、ABT-773、林可黴素、克林達黴素、梵穀黴素、奧利萬星(oritavancin)、達巴萬星、替考拉寧、奎奴普丁及達福普丁、磺胺、對胺基苯甲酸、磺胺嘧啶、磺胺異噁唑、磺胺甲異噁唑、酞磺胺噻唑、利奈唑胺、萘啶酮酸、歐索林酸(oxolinic acid)、諾氟沙星、甲氟哌酸(perfloxacin)、依諾沙星、氧氟沙星、環丙沙星、替馬沙星(temafloxacin)、洛美沙星(lomefloxacin)、氟羅沙星(fleroxacin)、格帕沙星(grepafloxacin)、司帕沙星(sparfloxacin)、曲伐沙星、克林沙星(clinafloxacin)、莫西沙星、吉米沙星(gemifloxacin)、西他沙星、達托黴素、加雷沙星(garenoxacin)、雷莫拉寧(ramoplanin)、法羅培南(faropenem)、多黏菌素、替吉環素(tigecycline)、AZD2563或曲美普林)、抗細菌抗體(包括結合與AAC靶向Ag相同或不同之抗原之抗體)、血小板聚集抑制劑(例如,阿昔單抗(abciximab)、阿司匹靈、西洛他唑(cilostazol)、氯吡格雷(clopidogrel)、二吡待摩(dipyridamole)、依替巴肽(eptifibatide)、梯可匹定(ticlopidine)或替羅非班(tirofiban))、抗凝血劑(例如,達肝素(dalteparin)、達那肝素(danaparoid)、依諾肝素(enoxaparin)、肝素、亭紮肝素(tinzaparin)或華法林(warfarin))、解熱劑(例如,乙醯胺酚)或降脂劑(例如,銷膽胺、膽利泊(colestipol)、菸鹼酸、健菲布旨(gemfibrozil)、普布可(probucol)、依澤替米貝(ezetimibe)或染料,例如阿伐他汀(atorvastatin)、羅蘇伐他汀(rosuvastatin)、洛伐他汀(lovastatin)、辛伐他汀(simvastatin)、普伐他汀(pravastatin)、西立伐他汀(cerivastatin)及氟伐他汀(fluvastatin))。在一個實施例中,本發明AAC係與護理標準(SOC)組合投與用於金黃色葡萄球菌(包括二甲氧苯 青黴素抗性及二甲氧苯青黴素敏感性菌株)。通常利用萘夫西林或扼噻青黴素治療MSSA且通常利用梵穀黴素或頭孢唑林治療MRSA。
該等其他藥劑可在投與AAC後14天、7天、1天、12小時或1小時內或與其同時投與。其他治療劑可作為AAC存在於相同或不同醫藥組合物中。當存在於不同醫藥組合物中時,可使用不同投與途徑。例如,AAC可經靜脈內或皮下投與,而第二藥劑可經口投與。
醫藥調配物
本發明亦提供含有AAC之醫藥組合物及使用含有AAC之醫藥組合物治療細菌感染之方法。此等組合物可進一步包含為業內所熟知且闡述於本文中之適宜賦形劑,例如醫藥上可接受之賦形劑(載劑),包括緩衝液、酸、鹼、糖、稀釋劑、防腐劑及諸如此類。本方法及組合物可單獨使用或與用於治療傳染病之其他習用方法及/或藥劑組合使用。在一個態樣中,本發明進一步提供包含至少一種本發明抗體及/或其至少一種抗體-抗生素結合物(AAC)之醫藥調配物。在一些實施例中,醫藥調配物包含1)本發明抗體及/或其AAC及2)醫藥上可接受之載劑。在一些實施例中,醫藥調配物包含1)本發明抗體及/或其AAC及視情況2)至少一種其他治療劑。
藉由將具有期望純度之抗體或AAC與可選生理上可接受之載劑、賦形劑或穩定劑(Remington's Pharmaceutical Sciences第16版,Osol,A.編輯(1980))混合來製備包含本發明抗體或AAC之醫藥調配物以用於儲存,該等調配物呈水溶液、凍乾或其他乾燥調配物之形式。可接受之載劑、賦形劑或穩定劑在所用劑量及濃度下對接受者無毒,且包括緩衝液,例如磷酸鹽、檸檬酸鹽、組胺酸及其他有機酸;抗氧化劑,包括抗壞血酸及甲硫胺酸;防腐劑(例如十八烷基二甲基苄基氯化銨;氯化六甲雙銨;苯紮氯銨、苄索氯銨;苯酚、丁醇或苄醇;對羥基苯甲酸烷基酯,例如對羥基苯甲酸甲酯或對羥基苯甲酸丙酯; 兒茶酚;間苯二酚;環己醇;3-戊醇;及間甲酚);低分子量(少於約10個殘基)多肽;蛋白質,例如血清白蛋白、明膠或免疫球蛋白;親水性聚合物,例如聚乙烯吡咯啶酮;胺基酸,例如甘胺酸、麩醯胺酸、天冬醯胺、組胺酸、精胺酸或離胺酸;單糖、二糖及其他碳水化合物,包括葡萄糖、甘露糖或糊精;鼇合劑,例如EDTA;糖,例如蔗糖、甘露醇、菌藻糖或山梨醇;鹽形成抗衡離子,例如鈉;金屬錯合物(例如Zn-蛋白質錯合物);及/或非離子型表面活性劑,例如TWEENTM、PLURONICSTM或聚乙二醇(PEG)。欲用於活體內投與之醫藥調配物通常係無菌的,容易藉由過濾經由無菌過濾膜達成。
活性成份亦可分別裝入藉由(例如)凝聚技術或界面聚合製備之微膠囊(分別例如,羥甲基纖維素或明膠微膠囊及聚-(甲基丙烯酸甲酯)微膠囊)中、膠質藥物遞送系統(例如,脂質體、白蛋白微球體、微乳液、奈米粒子及奈米膠囊)或粗滴乳液中。此等技術揭示於Remington's Pharmaceutical Sciences第16版,Osol,A.編輯(1980)中。
亦可製備持續釋放製劑。持續釋放製劑之適宜實例包括含有本發明抗體或AAC之固態疏水性聚合物之半滲透性基質,該等基質呈成形物件形式,例如薄膜或微膠囊。持續釋放基質之實例包括聚酯、水凝膠(例如聚(甲基丙烯酸-2-羥乙基酯)或聚(乙烯基醇))、聚交酯(美國專利第3,773,919號)、L-麩胺酸與L-麩胺酸γ-乙酯之共聚物、不可降解之乙烯-乙酸乙烯酯、可降解之乳酸-乙醇酸共聚物(例如LUPRON DEPOTTM(由乳酸-乙醇酸共聚物及乙酸亮丙瑞林(leuprolide acetate)構成之可注射微球體))及聚-D-(-)-3-羥基丁酸。儘管諸如乙烯-乙酸乙烯酯及乳酸-乙醇酸等聚合物使得能夠釋放分子超過100天,某些水凝膠釋放蛋白質持續較短時間段。當經囊封抗體或AAC長時間保持於機體中時,其可因暴露於37℃下之水分而變性或聚集,從而導致生物活性損失及免疫原性之可能變化。可端視所涉及之機制設計合理策略以達 成穩定化。例如,若發現聚集機制係經由硫代-二硫化物互換形成分子間S-S鍵,則可藉由對巰基殘基進行修飾、自酸性溶液凍乾、控制水分含量、使用適當添加劑及產生特定聚合物基質組合物來達成穩定化。
抗體可以任何適宜形式調配用於遞送至靶靶細胞/組織。例如,抗體可調配成脂質體,即可用於將藥物遞送至哺乳動物之由多種類型之脂質、磷脂及/或表面活性劑構成之小囊泡。脂質體之組份通常以雙層結構佈置,此類似於生物膜之脂質佈置。含有抗體之脂質體係藉由業內已知方法(例如闡述於以下文獻中之方法)製備:Epstein等人,(1985)Proc.Natl.Acad.Sci.USA 82:3688;Hwang等人,(1980)Proc.Natl Acad.Sci.USA 77:4030;US 4485045;US 4544545;WO 97/38731;US 5013556。
尤其可用之脂質體可利用包含磷脂醯膽鹼、膽固醇及PEG衍生之磷脂醯乙醇胺(PEG-PE)之脂質組合物藉由反相蒸發法來生成。經由具有界定孔徑之過濾器擠出脂質體以獲得具有期望直徑之脂質體。可經由二硫化物互換反應使本發明抗體之Fab'片段與脂質體結合,如Martin等人,(1982)J.Biol.Chem.257:286-288中所述。化學治療劑視情況含於脂質體內(Gabizon等人,(1989)J.National Cancer Inst.81(19):1484)。
診斷及檢測用方法及組合物
在某些實施例中,本文所提供抗體中之任一者皆可用於檢測生物試樣中MRSA之存在。本文所用術語「檢測」涵蓋定量或定性檢測。「生物試樣」包含例如血液、血清、血漿、組織、痰、抽吸物、拭子等。
在一個實施例中,提供用於診斷或檢測方法中之抗WTA抗體。在又一態樣中,提供檢測生物試樣中WTA之存在之方法。在某些實施 例中,該方法包含在允許抗WTA抗體結合WTA之條件下使生物試樣與本文所述抗WTA抗體接觸及檢測生物試樣中在抗WTA抗體與WTA之間是否形成複合體。此方法可為活體外或活體內方法。在一個實施例中,使用抗MRSA抗體來選擇適用於使用抗MRSA抗體之療法的個體,例如,其中MRSA係用於選擇患者之生物標記物。
在一個實例性實施例中,在活體內使用抗WTA抗體藉由例如活體內成像來檢測個體之MRSA陽性感染,例如,用於對感染之治療進行診斷、預後或分期、確定適當療程或監測感染對療法之反應之目的。一種用於活體內檢測之業內已知之方法係免疫-正電子發射斷層攝影術(免疫-PET),如例如van Dongen等人,(2007)The Oncologist 12:1379-1389及Verel等人,(2003)J.Nucl.Med.44:1271-1281中所述。在此等實施例中,提供檢測個體之金黃色葡萄球菌陽性感染之方法,該方法包含向患有或懷疑具有金黃色葡萄球菌陽性感染之個體投與經標記抗金黃色葡萄球菌抗體並檢測該個體之經標記抗金黃色葡萄球菌抗體,其中經標記抗金黃色葡萄球菌抗體之檢測指示該個體之金黃色葡萄球菌陽性感染。在此等實施例的某些中,經標記抗金黃色葡萄球菌抗體包含結合至正電子發射體(例如68Ga、18F、64Cu、86Y、76Br、89Zr及124I)之抗金黃色葡萄球菌抗體。在特定實施例中,正電子發射體係89Zr。
在其他實施例中,診斷或檢測方法包含使固定於基板上之第一抗金黃色葡萄球菌抗體與欲測試金黃色葡萄球菌之存在之生物試樣接觸,使該基板暴露於第二抗金黃色葡萄球菌抗體及檢測第二抗金黃色葡萄球菌抗體是否結合第一抗金黃色葡萄球菌抗體與生物試樣中之金黃色葡萄球菌之間之複合體。基板可為任何支持介質,例如,玻璃、金屬、陶瓷、聚合物珠粒、玻片、晶片及其他基板。在某些實施例中,生物試樣包含細胞或組織(例如,活體組織切片材料,包括癌性 或潛在癌性結腸直腸、子宮內膜、胰臟或卵巢組織)。在某些實施例中,第一或第二抗金黃色葡萄球菌抗體係本文所述任一抗體。在此等實施例中,第二抗WTA抗體可為如本文所述之抗WTA抗體S4497、S4462、S6978、S4487或源自其之抗體。
可使用諸如免疫組織化學(IHC)或原位雜交(ISH)等測試根據上述實施例中任一者診斷或檢測之實例性病症包括MRSA陽性感染。在一些實施例中,金黃色葡萄球菌陽性感染係根據檢測金黃色葡萄球菌mRNA之反轉錄酶PCR(RT-PCR)分析表現金黃色葡萄球菌之感染。在一些實施例中,RT-PCR係定量RT-PCR(Francois P及Schrenzel J(2008)。「Rapid Diagnosis and Typing of Staphylococcus aureus」.Staphylococcus:Molecular Genetics.Caister Academic Press;Mackay IM編輯(2007))及即時PCR(「Real-Time PCR in Microbiology:From Diagnosis to Characterization.」Caister Academic Press)。
在某些實施例中,提供經標記抗壁磷壁酸(WTA)抗體。標記包括但不限於直接檢測之標記或部分(例如螢光標記、發色標記、電子緻密標記、化學發光標記及放射性標記)以及經由(例如)酶反應或分子相互作用間接檢測之部分(例如酶或配體)。實例性標記包括但不限於放射性同位素32P、14C、125I、3H及131I、螢光團(例如稀土螯合物或螢光黃及其衍生物)、玫瑰紅及其衍生物、丹醯、傘形酮、螢光素酶(例如,螢火蟲螢光素酶及細菌螢光素酶)(US 4737456)、螢光素、2,3-二氫酞嗪二酮、辣根過氧化物酶(HRP)、鹼性磷酸酶、β-半乳糖苷酶、葡萄糖澱粉酶、溶菌酶、糖氧化酶(例如,葡萄糖氧化酶、半乳糖氧化酶及葡萄糖-6-磷酸脫氫酶)、雜環氧化酶(例如尿酸酶及黃嘌呤氧化酶,其與諸如HRP、乳過氧化物酶或微過氧化物酶等採用過氧化氫來氧化染料前體之酶結合)、生物素/抗生物素蛋白、自旋標記、噬菌體標記、穩定自由基及諸如此類。在另一實施例中,標記係正電子發射 體。正電子發射體包括但不限於68Ga、18F、64Cu、86Y、76Br、89Zr及124I。在特定實施例中,正電子發射體係89Zr。
臨床上,MRSA感染之症狀類似於二甲氧苯青黴素敏感性金黃色葡萄球菌(MSSA)之感染,且包括膿腫及蜂巢組織炎。通常,膿腫伴有中央壞死區域。癤(Furuncles,boil)亦係常見的,尤其在MRSA爆發之情況下。病灶亦可由於進展至壞死中央之總體發紅而誤報道為蜘蛛咬傷。另外,感染可表現為膿皰、毛囊炎、深位膿腫、膿性肌炎、骨髓炎、壞死性筋膜炎、葡萄球菌毒性休克症候群、肺炎及敗血症。嚴重全身性感染在有注射藥物使用、糖尿病或其他免疫受損病況史之患者中更為常見。
用於MRSA感染之標準治療選項包括保守機械選項,例如:(i)溫浸泡及敷布,(ii)切開及引流及(iii)去除引起感染之外來裝置(例如,導管)。對於更嚴重感染、尤其彼等展示蜂巢組織炎者而言,開抗生素(Abx)處方。對於輕度至中度感染而言,抗生素包括曲美普林-磺胺甲異噁唑(TMP-SMX)、克林達黴素、去氧羥四環素、米諾四環素、四環素、雷發平、梵穀黴素、利奈唑胺。通常,治療方案係在治療期期間及之後進行5-10次耳周再檢查及評估。
其他治療選項包括去定殖(decolonization),尤其在患者經歷復發性感染或其在MRSA爆發正在進行之環境中之環境中。去定殖係去除棲息於患者鼻孔之菌叢之程序。此係經由局部施加充分施加於兩個鼻孔內之2%莫匹羅星軟膏達5-10天及利用4%葡萄糖酸洛赫西定(chlorhexidine gluconate)局部清潔5天來進行。
製造物件
在本發明之另一態樣中,提供含有可用於治療、預防及/或診斷上述病症之材料的製品。該製造物件包含容器及位於該容器上或與該容器相連之標記或包裝插頁。適宜容器包括(例如)瓶子、小瓶、注射 器、IV溶液袋等。該等容器可由諸如玻璃或塑膠等多種材料形成。容器容納組合物自身或其與另一組合物之組合以有效用於治療、預防及/或診斷病症,且可具有無菌存取埠(例如,該容器可為靜脈內溶液袋或具有可由皮下注射針刺穿之塞子之小瓶)。該組合物中至少一種活性劑係本發明抗體或免疫結合物。標記或包裝插頁指示該組合物用於治療選定病況。此外,該製品可包括(a)其中含有組合物之第一容器,其中該組合物包含本發明抗體或免疫結合物;及(b)其中含有組合物之第二容器,其中該組合物包含又一細胞毒性劑或治療劑。本發明此實施例中之製品可進一步包含指示組合物可用於治療特定病況之包裝插頁。或者或另外,製品可進一步包含第二(或第三)容器,其包含醫藥上可接受之緩衝液,例如注射用抑菌水(BWFI)、磷酸鹽緩衝鹽水、林格氏溶液及右旋糖溶液。其可進一步包括自商業及使用者角度而言期望之其他材料,包括其他緩衝劑、稀釋劑、過濾器、針及注射器。
實例
以下係本發明方法及組合物之實例。應理解,鑒於上文所提供之一般說明可實踐多種其他實施例。
實例1 MC-vc-PAB-pipBOR 51
在乙醇溶劑中利用鈀/碳觸媒在氫氣下將2-硝基苯-1,3-二醇1氫化,得到分離為鹽酸鹽之2-胺基苯-1,3-二醇2(圖23A及23B)。利用於二氯甲烷/四氫呋喃中之第三丁基二甲基矽基氯及三乙胺對2進行單保護,得到2-胺基-3-(第三丁基二甲基矽氧基)苯酚3。在室溫下於甲苯中藉由氧化縮合利用氧化錳或氧氣使雷福黴素S(ChemShuttle公司,Fremont,CA,US 7342011;US 7271165;US 7547692)與3反應,得到TBS-保護之苯并噁嗪并雷福黴素44與六氫吡啶-4-胺及氧化錳反應得到六氫吡啶基苯并噁嗪并雷福黴素(pipBOR)5
在室溫下(RT)將六氫吡啶基苯并噁嗪并雷福黴素(pipBOR)5(0.02mmol)及碳酸4-((S)-2-((S)-2-(6-(2,5-二側氧基-2,5-二氫-1H-吡咯-1-基)己醯胺基)-3-甲基丁醯胺基)-5-脲基戊醯胺基)苄基酯4-硝基苯基酯6(0.02mmol)於DMF(0.4ml)中混合。向其中添加2.5當量N,N'-二異丙基乙胺。將溶液攪拌1至約12小時且藉由LC/MS監測。在完成後,用DMF稀釋溶液且將其注射至HPLC上並在酸性條件下純化,得到MC-vc-PAB-pipBOR 51。M/Z=1498.9。產率40%
實例2 MC-fk-PAB-pipBOR 52
依照實例1之程序,將6-(2,5-二側氧基-2,5-二氫-1H-吡咯-1-基)-N-((S)-1-((S)-5-胍基-1-(4-(羥基甲基)苯基胺基)-1-側氧基戊-2-基胺基)-1-側氧基-3-苯基丙-2-基)己醯胺12轉化成碳酸4-((S)-2-((S)-2-(6-(2,5-二側氧基-2,5-二氫-1H-吡咯-1-基)己醯胺基)-3-苯基丙醯胺基)-5-胍基戊醯胺基)苄基酯4-硝基苯基酯13
在室溫下(RT)將六氫吡啶基苯并噁嗪并雷福黴素(pipBOR)5(0.02mmol)及13(0.02mmol)於DMF(0.4ml)中混合。向其中添加2.5當量N,N'-二異丙基乙胺。將溶液攪拌1至約12小時且藉由LC/MS監 測。在完成後,用DMF稀釋溶液且將其注射至HPLC上並在酸性條件下純化,得到MC-fk-PAB-pipBOR 52。M/Z=1545.8。產率32%
實例3 MP-vc-PAB-pipBOR 53
依照實例1之程序,將6-(2-(2-(2-(2,5-二側氧基-2,5-二氫-1H-吡咯-1-基)乙氧基)乙氧基)乙醯胺基)-N-((S)-1-((S)-1-(4-(羥基甲基)苯基胺基)-1-側氧基-5-脲基戊-2-基胺基)-3-甲基-1-側氧基丁-2-基)己醯胺14轉化成碳酸4-((17S,20S)-1-(2,5-二側氧基-2,5-二氫-1H-吡咯-1-基)-17-異丙基-8,15,18-三側氧基-20-(3-脲基丙基)-3,6-二氧雜-9,16,19-三氮雜二十一烷醯胺基)苄基酯4-硝基苯基酯15
在室溫下(RT)將六氫吡啶基苯并噁嗪并雷福黴素(pipBOR)5(0.02mmol)及15(0.02mmol)於DMF(0.4ml)中混合。向其中添加2.5當量N,N'-二異丙基乙胺。將溶液攪拌1至約12小時且藉由LC/MS監測。在完成後,用DMF稀釋溶液且將其注射至HPLC上並在酸性條件下純化,得到MP-vc-PAB-pipBOR 53。M/Z=1644.8。產率57%
實例4 MC-vc-PAB-二甲基pipBOR 54
N,N-二甲基六氫吡啶-4-胺與TBS保護之苯并噁嗪并雷福黴素4反應得到二甲基六氫吡啶基苯并噁嗪并雷福黴素(二甲基pipBOR)7(圖 24)。
或者,於四氫呋喃/甲醇溶劑中利用鈀/碳觸媒在氫氣下將(5-氟-2-硝基-1,3-伸苯基)雙(氧基)雙(亞甲基)二苯9氫化以去除苄基,得到2-胺基-5-氟苯-1,3-二醇10。在60℃下於乙酸乙酯中藉由氧化縮合在空氣或鐵氰化鉀中使市售雷福黴素S或雷福黴素SV鈉鹽(ChemShuttle公司,Fremont,CA)與2-胺基-5-氟苯-1,3-二醇10反應,得到氟苯并噁嗪并雷福黴素11。利用N,N-二甲基六氫吡啶-4-胺置換氟得到二甲基pipBOR 7(圖25A及25B)。
將根據WO 2012113847;US 7659241;US 7498298;US 20090111756;US 20090018086;US 6214345;Dubowchik等人(2002)Bioconjugate Chem.13(4):855-869(1.009g,1.762mmol,1.000,1009mg)中之程序製備之6-(2,5-二側氧基-2,5-二氫-1H-吡咯-1-基)-N-((S)-1-((S)-1-(4-(羥基甲基)苯基胺基)-1-側氧基-5-脲基戊-2-基胺基)-3-甲基-1-側氧基丁-2-基)己醯胺8吸收於N,N-二甲基甲醯胺(6mL,77mmol,44,5700mg)中。分數份向其中逐滴添加亞硫醯氯(1.1當量,1.938mmol,1.100,231mg)於二氯甲烷(DCM)(1mL,15.44mmol,8.765,1325mg)中之溶液(經1小時添加1/2,在室溫(RT)下攪拌1小時,然後經另一小時添加另一半)。溶液保持黃色。小心地逐滴添加另一0.6當量亞硫醯氯作為於0.5mL DCM中之溶液。反應物保持黃色且在RT下密封攪拌過夜。藉由LC/MS監測反應至88%產物苄基氯9。逐滴添加另一0.22當量亞硫醯氯作為於0.3mL DCM中之溶液。當反應接近92%苄基氯9時,利用N2對反應鼓泡。使濃度自0.3M降低至0.6M。將產物N-((S)-1-((S)-1-(4-(氯甲基)苯基胺基)-1-側氧基-5-脲基戊-2-基胺基)-3-甲基-1-側氧基丁-2-基)-6-(2,5-二側氧基-2,5-二氫-1H-吡咯-1-基)己醯胺9儲存於冰箱中作為0.6M溶液且照此使用。M/Z 591.3,92%產率。
在燒瓶中,將N-((S)-1-((S)-1-(4-(氯甲基)苯基胺基)-1-側氧基-5-脲基戊-2-基胺基)-3-甲基-1-側氧基丁-2-基)-6-(2,5-二側氧基-2,5-二氫-1H-吡咯-1-基)己醯胺9(0.9mmol)冷卻至0℃且添加二甲基六氫吡啶基苯并噁嗪并雷福黴素(二甲基pipBOR)7(0.75g,0.81mmol,0.46,750mg)。用另一1.5mL DMF稀釋混合物以達到0.3M。對空氣敞開攪拌30分鐘。添加N,N-二異丙基乙胺(3.5mmol,3.5mmol,2.0,460mg)且將反應物對空氣敞開攪拌過夜。經4天時程,添加4次0.2當量N,N-二異丙基乙胺鹼,同時對空氣敞開攪拌反應物,直至反應似乎終止進行。用DMF稀釋反應物且分若干批次在HPLC(20-60% ACN/FA.H2O)上純化,得到MC-vc-PAB-二甲基pipBOR 54。M/Z=1482.8產率:32%
實例5 MC-vc-PAB-單甲基pip去乙醯基BOR 55
依照實例1之程序,使N-甲基六氫吡啶-4-胺及TBS保護之去乙醯基苯并噁嗪并雷福黴素與氧化錳反應,得到單甲基六氫吡啶基苯并噁嗪并雷福黴素(pipBOR)16
使碳酸4-((S)-2-((S)-2-(6-(2,5-二側氧基-2,5-二氫-1H-吡咯-1-基)己醯胺基)-3-甲基丁醯胺基)-5-脲基戊醯胺基)苄基酯4-硝基苯基酯616反應,以26%產率得到MC-vc-PAB-單甲基pip去乙醯基BOR 55(M/Z=1456.5)。
實例6 MC-vc-PAB-單甲基pipBOR 56
依照實例1之程序,使N-甲基六氫吡啶-4-胺及TBS保護之苯并噁嗪并雷福黴素4與氧化錳反應,得到單甲基六氫吡啶基苯并噁嗪并雷 福黴素(pipBOR)17
使碳酸4-((S)-2-((S)-2-(6-(2,5-二側氧基-2,5-二氫-1H-吡咯-1-基)己醯胺基)-3-甲基丁醯胺基)-5-脲基戊醯胺基)苄基酯4-硝基苯基酯617反應,以25%產率得到MC-vc-PAB-單甲基pipBOR 56(M/Z=1471.0)。
實例7 MC-vc-PAB-pip去乙醯基BOR 57
依照實例1之程序,使六氫吡啶-4-胺及TBS保護之去乙醯基苯并噁嗪并雷福黴素18與氧化錳反應,得到六氫吡啶基去乙醯基苯并噁嗪并雷福黴素(pip去乙醯基BOR)19
使六氫吡啶基去乙醯基苯并噁嗪并雷福黴素19(0.02mmol)與碳酸4-((S)-2-((S)-2-(6-(2,5-二側氧基-2,5-二氫-1H-吡咯-1-基)己醯胺基)-3-甲基丁醯胺基)-5-脲基戊醯胺基)苄基酯4-硝基苯基酯6(0.02mmol)反應,得到MC-vc-PAB-pip去乙醯基BOR 57。M/Z=1456.6。產率13%
實例8 MC-vc-PAB-利福布汀58
含量實例1之程序,使去異丁基利福布汀20(0.02mmol)與4-((S)-2-((S)-2-(6-(2,5-二側氧基-2,5-二氫-1H-吡咯-1-基)己醯胺基)-3-甲基丁醯胺基)-5-脲基戊醯胺基)苄基酯4-硝基苯基酯6(0.02mmol)反應,得到MC-vc-PAB-利福布汀58。M/Z=1389.6。產率21%
實例9 MC-GGAFAGGG-pipBOR(揭示為SEQ ID NO:126之「核心肽」)59
依照實例1之程序,使馬來醯亞胺肽21與六氫吡啶基苯并噁嗪并雷福黴素(pipBOR)5在標準醯胺鍵形成條件下偶合,得到MC-GGAFAGGG-pipBOR(揭示為SEQ ID NO:126之「核心肽」)59。M/Z=1626.0。產率13%
實例10 MC-vc-PAB-rif 60
在小瓶中,將藉由實例4之程序製備之N-((S)-1-((S)-1-(4-(氯甲基)苯基胺基)-1-側氧基-5-脲基戊-2-基胺基)-3-甲基-1-側氧基丁-2-基)-6-(2,5-二側氧基-2,5-二氫-1H-吡咯-1-基)己醯胺9之0.05mL 0.6M溶液 冷卻至0℃且添加1當量苯并噁嗪并雷福黴素22並將混合物攪拌5分鐘。向此0℃溶液中添加K2CO3(15當量)且用0.05mL DMF洗滌小瓶之側面。將反應物對空氣敞開攪拌至室溫並保持1-4小時。當所有9消耗後,濾掉固體,且用DMF稀釋所收集濾液。藉由HPLC純化以11%產率得到MC-vc-PAB-rif 60(M/Z=1356.9)。
實例11 MC-vc-PAB-二甲基pip去乙醯基BOR 61
依照實例4之程序,使N-((S)-1-((S)-1-(4-(氯甲基)苯基胺基)-1-側氧基-5-脲基戊-2-基胺基)-3-甲基-1-側氧基丁-2-基)-6-(2,5-二側氧基-2,5-二氫-1H-吡咯-1-基)己醯胺9與二甲基六氫吡啶基去乙醯基苯并噁嗪并雷福黴素(二甲基去乙醯基pipBOR)23反應,得到MC-vc-PAB-二甲基pip去乙醯基BOR 61。M/Z=1440.66
實例12 MC-vc-PAB-六氫吡嗪基BTR 62
依照實例1之程序,使碳酸4-((S)-2-((S)-2-(6-(2,5-二側氧基-2,5-二氫-1H-吡咯-1-基)己醯胺基)-3-甲基丁醯胺基)-5-脲基戊醯胺基)苄基酯4-硝基苯基酯6與六氫吡嗪基苯并噻嗪並雷福黴素(六氫吡嗪基BTR) 24反應,得到MC-vc-PAB-六氫吡嗪基BTR 62。M/Z=1483.7
實例13 MC-vc-PAB-六氫吡嗪基去乙醯基BTR 63
依照實例1之程序,使碳酸4-((S)-2-((S)-2-(6-(2,5-二側氧基-2,5-二氫-1H-吡咯-1-基)己醯胺基)-3-甲基丁醯胺基)-5-脲基戊醯胺基)苄基酯4-硝基苯基酯6與六氫吡嗪基去乙醯基苯并噻嗪並雷福黴素(pipBTR)25反應,得到MC-vc-PAB-六氫吡嗪基去乙醯基BTR 63。M/Z=1441.6
實例14 MC-vc-PAB-六氫吡嗪基去乙醯基BOR 64
依照實例1之程序,使碳酸4-((S)-2-((S)-2-(6-(2,5-二側氧基-2,5-二氫-1H-吡咯-1-基)己醯胺基)-3-甲基丁醯胺基)-5-脲基戊醯胺基)苄基酯4-硝基苯基酯6與六氫吡嗪基去乙醯基苯并噁嗪并雷福黴素(去乙醯基pipBOR)26反應,得到MC-vc-PAB-六氫吡嗪基去乙醯基BOR 64。M/Z=1441.6
實例15 MC-vc-PAB-六氫吡嗪基BOR 65
依照實例1之程序,使碳酸4-((S)-2-((S)-2-(6-(2,5-二側氧基-2,5-二氫-1H-吡咯-1-基)己醯胺基)-3-甲基丁醯胺基)-5-脲基戊醯胺基)苄基酯4-硝基苯基酯6與六氫吡嗪基苯并噁嗪并雷福黴素(六氫吡嗪基BOR)27反應,得到MC-vc-PAB-六氫吡嗪基BOR 65。M/Z=1482.7
實例16 MC-vc-雙PAB-二甲基pipBOR 66
在小瓶中,將碳酸4-((S)-2-((S)-2-(6-(2,5-二側氧基-2,5-二氫-1H-吡咯-1-基)己醯胺基)-3-甲基丁醯胺基)-5-脲基戊醯胺基)苄基酯4-硝基苯基酯6(1.56g,2.11mmol,100質量%)吸收於DMF(55當量,116mmol,55.0,8.5g)中且在RT下攪拌。向此黃色渾濁混合物中添加(4-胺基苯基)甲醇(PAB,1.1當量,2.33mmol,1.10,286mg)及1-羥基苯并***(0.37當量,0.782mmol,0.370,106mg),之後添加N,N'-二異丙基乙胺(1當量,2.11mmol,1.00,276mg)。將反應物攪拌2小時且藉由LC/MS監測。添加額外1當量N,N'-二異丙基乙胺(Hunigs鹼)及100mg(4-胺基苯基)甲醇。在RT下將反應物密封攪拌過夜。逐滴添加約0.5L***以沈澱出產物。傾析出該醚,將固體再溶解於DMF中,且分若干批次直接在HPLC上純化,以28%總體分離產率得到具有以下結構之4-(羥基甲基)苯基胺基甲酸4-((S)-2-((S)-2-(6-(2,5-二側氧基-2,5-二氫-1H-吡咯-1-基)己醯胺基)-3-甲基丁醯胺基)-5-脲基戊醯胺基)苄基酯28(0.435g)(M/Z:722.5):
依照實例4之程序,使4-(羥基甲基)苯基胺基甲酸4-((S)-2-((S)-2-(6-(2,5-二側氧基-2,5-二氫-1H-吡咯-1-基)己醯胺基)-3-甲基丁醯胺基)-5-脲基戊醯胺基)苄基酯28與亞硫醯氯反應,以47%分離產率得到具有以下結構之4-(氯甲基)苯基胺基甲酸4-((S)-2-((S)-2-(6-(2,5-二側氧基-2,5-二氫-1H-吡咯-1-基)己醯胺基)-3-甲基丁醯胺基)-5-脲基戊醯胺基)苄基酯29(M/Z:740.4):
依照實例4之程序,使4-(氯甲基)苯基胺基甲酸4-((S)-2-((S)-2-(6-(2,5-二側氧基-2,5-二氫-1H-吡咯-1-基)己醯胺基)-3-甲基丁醯胺基)-5-脲基戊醯胺基)苄基酯29與二甲基六氫吡啶基苯并噁嗪并雷福黴素(二甲基pipBOR)7反應,以5%產率得到MC-vc-雙PAB-二甲基pipBOR 66(M/Z:1632.1)
實例17 MC-vc-PAB-甲基六氫吡嗪基BOR 67
依照實例4之程序,使N-((S)-1-((S)-1-(4-(氯甲基)苯基胺基)-1-側氧基-5-脲基戊-2-基胺基)-3-甲基-1-側氧基丁-2-基)-6-(2,5-二側氧基-2,5-二氫-1H-吡咯-1-基)己醯胺9與甲基六氫吡嗪基苯并噁嗪并雷福黴素(甲基六氫吡嗪基BOR)30反應,得到MC-vc-PAB-甲基六氫吡嗪基BOR 67。M/Z=1454.68
實例18 細胞內MRSA免受抗生素影響
此實例提供MRSA可在活體內細胞內存活之證據。在感染中,細胞內MRSA免受抗生素治療(例如SOC梵穀黴素)影響且能夠在其中存活,從而使感染能夠自一個細胞轉移至另一個細胞。
細胞外細菌之MIC確定:藉由於胰蛋白酶大豆培養液中製備抗生素之連續2倍稀釋物來確定細胞外細菌之MIC。抗生素稀釋物係以一式四份於96孔培養皿中製得。自指數生長培養物獲取MRSA(USA300之NRS384菌株)且將其稀釋至1×104個CFU/mL。在37℃下在振盪的同時在抗生素存在下將細菌培養18-24小時且藉由在630nM下讀取光密度(OD)來確定細菌生長。將MIC確定為抗生素將細菌生長抑制>90%之劑量。
細胞內細菌之MIC確定:確定隔離於小鼠腹膜巨噬細胞內部之細菌之細胞內MIC。將巨噬細胞以4×105個細胞/mL之密度平鋪於24孔培養皿中且利用MRSA(USA300之NRS384菌株)以每個巨噬細胞10-20個細菌之比率進行感染。將巨噬細胞培養物維持在補充有50μg/mL健 他黴素之生長培養基中以抑制細胞外細菌之生長且在感染後1天將測試抗生素添加至生長培養基中。在添加抗生素後24小時評價細胞內細菌之存活。利用補充有0.1%牛血清白蛋白及0.1% Triton-X之漢克斯氏(Hanks)緩衝鹽水溶液溶解巨噬細胞,且在含有0.05% Tween-20之磷酸鹽緩衝鹽水溶液中製得溶解物之連續稀釋物。藉由利用5%去纖維蛋白綿羊血液在胰蛋白酶大豆瓊脂板上平鋪來確定細胞內存活細菌數。
腹膜巨噬細胞之分離:自6-8週齡Balb/c小鼠(Charles River Laboratories,Hollister,CA)之腹膜分離腹膜巨噬細胞。為了增加巨噬細胞之產率,藉由腹膜內注射利用1mL硫代甘醇酸鹽培養基(Becton Dickinson)預治療小鼠。於水中以4%之濃度製備硫代甘醇酸鹽培養基,藉由高壓蒸氣滅菌滅菌,且在使用前老化20天至6個月。在利用硫代甘醇酸鹽治療後4天,藉由用冷磷酸鹽緩衝鹽水洗滌腹腔來收穫腹膜巨噬細胞。將巨噬細胞以於24孔培養皿中4×105個細胞/孔之密度平鋪於補充有10%胎牛血清及10mM HEPES且不含抗生素之杜貝克氏改良鷹氏培養基(Dulbecco’s Modified Eagle Medium)(DMEM)中。將巨噬細胞培養過夜以允許黏附至板。亦利用此分析來測試非吞噬細胞類型中之細胞內殺死。自ATCC獲得MG63(CRL-1427)及A549(CCL185)細胞系且將其維持在補充有10mM Hepes及10%胎牛血清(RPMI-10)之RPMI 1640組織培養基中。自Lonza獲得HUVEC細胞且將其維持在EGM內皮細胞完全培養基(Lonza,Walkersville,MD)中。
利用經調理MRSA感染巨噬細胞:自NARSA儲存庫(Chantilly,Virginia)獲得MRSA之USA300菌株(NRS384)。一些實驗利用金黃色葡萄球菌之Newman菌株(ATCC25904)。在所有實驗中,在胰蛋白酶大豆培養液培養細菌。為了評價AAC之細胞內殺死,自指數生長培養物獲取USA300且在HB(補充有10mM HEPES及0.1%牛血清白蛋白之漢克斯氏平衡鹽溶液中洗滌。在HB中稀釋AAC或抗體且將其與細菌一 起培育1小時以允許抗體與細菌(調理)結合,且使用經調理細菌以每個巨噬細胞10-20個細菌之比率(每孔於250μL HB中有4×106個細菌)之比率來感染巨噬細胞。在感染前立即用無血清DMEM培養基預洗滌巨噬細胞,且藉由在37℃下在具有5% CO2之加濕組織培養培育器中培育進行感染以允許細菌之吞噬作用。2小時後,去除感染混合物且用正常生長培養基(補充有10%胎牛血清、10mM HEPES之DMEM)替代,並以50μg/ml添加健他黴素以阻止細胞外細菌生長。在培育期結束時,用無血清培養基洗滌巨噬細胞,且將細胞溶解於補充有0.1% triton-X(溶解巨噬細胞而不損害細胞內細菌)之HB中。在一些實驗中,在培養期結束時藉由使用LDH細胞毒性檢測套組(產品11644793001,Roche Diagnostics公司,Indianapolis,IN)檢測細胞質乳酸鹽去氫酶(LDH)至培養物上清液中之釋放來評價巨噬細胞活力。收集上清液且根據製造商說明書立即分析。在補充有0.05% Tween-20(以破壞細菌聚集物)之磷酸鹽緩衝鹽水溶液中製得溶解物之連續稀釋物且藉由在具有5%去纖維蛋白綿羊血液之胰蛋白酶大豆瓊脂上平鋪來確定細胞內存活細菌總數。
經MRSA感染腹膜細胞之生成. 藉由腹膜注射利用1×108個CFU之USA300之NRS384菌株感染6-8週齡雌性A/J小鼠(JAXTM Mice,Jackson Laboratories)。感染後1天收穫腹膜洗滌物,且在37℃下利用50μg/mL於補充有0.1% BSA之Hepes緩衝液(HB緩衝液)中稀釋之溶葡球菌酶將受感染腹膜細胞處理30分鐘。然後於冰冷HB緩衝液中將腹膜細胞洗滌2×。於補充有10mM Hepes及10%胎牛血清及5μg/mL梵穀黴素之RPMI 1640組織培養基中將腹膜細胞稀釋至1×106個細胞/mL。在4℃下將來自原發感染之游離MRSA於磷酸鹽緩衝鹽水溶液中儲存過夜作為未經受嗜中性球殺死之細胞外細菌之對照。
感染自腹膜細胞轉移至成骨細胞:自ATCC(CRL-1427)獲得 MG63成骨細胞細胞系且將其維持在補充有10mM Hepes及10%胎牛血清(RPMI-10)之RPMI 1640組織培養基中。將成骨細胞平鋪於24孔組織培養板中且培養以獲得鋪滿層。在實驗當天,將成骨細胞於RPMI(無補充劑)中洗滌一次。於完全RPMI-10中稀釋MRSA或受感染腹膜細胞且在感染前立即以5μg/mL添加梵穀黴素。將腹膜細胞以1×106個腹膜個細胞/mL添加至成骨細胞中。利用0.1% triton-x溶解細胞試樣以確定在感染時活的細胞內細菌之實際濃度。藉由在具有5%去纖維蛋白綿羊血液之胰蛋白酶大豆瓊脂上平鋪細菌之連續稀釋物來確定所有感染之實際滴定量。
將MG63成骨細胞平鋪於4孔腔室載玻片中且在補充有10mM Hepes及10%胎牛血清(RPMI-10)之RPMI 1640組織培養基中培養直至其形成鋪滿層。在感染當天,用無血清培養基洗滌該等孔且利用受感染腹膜細胞之懸浮液或利用於補充有5μg/mL梵穀黴素之完全RPMI-10中稀釋之MRSA之USA300菌株進行感染。感染後1天,用磷酸鹽緩衝鹽水(PBS)洗滌細胞且將其在室溫下在具有2%多聚甲醛之PBS中固定30分鐘。將孔於PBS中洗滌3×且在室溫下利用具有0.1%皂素之PBS透化30分鐘。
免疫螢光:藉由依次利用20μg/mL兔抗金黃色葡萄球菌20920(abcam,Cambridge,MA)、抗兔玫瑰紅(Jackson ImmunoResearch,711-026-152)染色來鑑別MRSA。依次利用霍亂-毒素-β亞單位-生物素(Invitrogen,Carlsbad,CA)、抗生蛋白鏈菌素(streptavidin)Cy5(BD Biosciences San Jose,CA)將腹膜細胞之細胞膜染色。藉由用抗CD11b Alexa 488純系M1/70(BD biosciences)共染色來證實霍亂-毒素與腹膜細胞之結合。利用具有DAPI之Prolong Gold(Invitrogen,Carlsbad CA)將玻片包埋。使用Leica SPE共焦顯微鏡觀察玻片。收集影像作為一系列Z-堆疊且進行編輯以生成最大所示投射影像。
金黃色葡萄球菌在哺乳動物細胞內部之存活提供允許在抗生素療法存在下持續感染之可行小生境。金黃色葡萄球菌能夠感染諸多哺乳動物細胞類型(包括嗜中性球、巨噬細胞、成骨細胞及上皮細胞)並在其中存活(Garzoni,C及W.L.Kelley(2009)Trends Microbiol 17(2):59-65)。為了直接測試細胞內MRSA是否免受抗生素影響,比較諸多臨床認可之抗生素殺死在標準細菌生長培養基中培養之細胞外MRSA之能力與其殺死隔離於鼠類巨噬細胞內部之細胞內MRSA之能力(表1)。選擇鼠類腹膜巨噬細胞用於此分析,此乃因該等細胞代表遺傳正常原代細胞類型,該細胞類型係對金黃色葡萄球菌之先天免疫反應之天然組份。分析證實該等細胞在活體外容易受到感染並培養。MRSA在感染巨噬細胞後能夠在細胞內存活長達6天(Kubica,M.,K.Guzik等人(2008)PLoS One 3(1):e1409)。為了測試抗生素之細胞內效應,利用MRSA感染巨噬細胞,且在健他黴素(已知在吞噬溶酶體內部由於抗生素之差細胞攝取而無活性之抗生素)存在下進行培養(Vaudaux,P.及F.A.Waldvogel(1979)Antimicrob Agents Chemother 16(6):743-749)。在感染後1天將測試抗生素以所選擇劑量範圍添加至培養基(以及健他黴素)中以包括臨床上可達成之血清濃度(表1中顯示為血清Cmax)。此分析揭示,儘管細胞外MRSA對液體培養物中低劑量梵穀黴素、達托黴素、利奈唑胺或利福平之生長抑制高度敏感,但所有4種抗生素皆不能殺死隔離於巨噬細胞內部之細胞內MRSA之相同菌株。顯著地,甚至報導為一種用於治療細胞內感染(例如結核病)之最佳抗生素之利福平在實驗之時間及劑量範圍內仍獲得細胞內MRSA之最低殺死。
上述數據證實細胞內細菌在其隔離於細胞內部之時間期間免受抗生素影響。然而,認為MRSA並非真正細胞內病原體,此乃因其不能夠藉由細胞至細胞之直接轉移來感染鄰近細胞,且絕大多數受感染細胞最終將溶解,從而釋放細胞內細菌。因此,即使細菌立即由鄰近細胞攝取,細胞內彙集物仍有可能在釋放後將至少暫時地不可避免地暴露於細胞外抗生素。巨噬細胞對游離MRSA之攝取需要15分鐘與90分鐘之間(數據未顯示),表明若細菌能夠抵抗對抗生素之短暫暴露,則其可藉由自瀕死細胞依序地移動至新宿主在細胞內小生境中保持受保護。為了確定對抗生素之短暫暴露是否足以殺死MRSA,對梵穀黴素、MRSA感染之現行護理標準治療及雷發平進行測試。自活躍生長培養物獲取MRSA且將其於正常生長培養基中稀釋至1×106個細菌/mL。以代表2×及10×預計最低抑制濃度(MIC)之兩個劑量添加抗生素。於30分鐘與5小時之間之各時間去除試樣,且藉由離心及稀釋去除抗生素。藉由在瓊脂板上平鋪來確定培養物中之存活細菌總數。
圖1顯示梵穀黴素(vanco)及利福平(Rifa)對活躍***之MRSA之殺死時間之比較。在存在抗生素之TSB培養基中將MRSA培養5小時。於所指示時間,獲取培養物試樣且藉由離心去除抗生素。於每一時間點 藉由平鋪確定存活細菌總數。以2μg/mL(空心正方形)及20μg/mL(實心正方形)測試梵穀黴素。以0.02μg/mL(空心三角形)及0.2μg/mL(實心三角形)測試雷發平。該等數據(圖1)揭示,儘管兩種抗生素皆能夠有效地抑制細菌生長且至5小時時觀察到活細菌之100倍損失,但在5小時觀察期內細菌係被逐漸殺死且90%細菌在抗生素治療之前2小時期間保持活力,從而允許足夠時間用於宿主細胞之潛在攝取。
分析MRSA之細胞內儲存物在梵穀黴素存在下至允許細胞內小生境之感染轉移。金黃色葡萄球菌可在成骨細胞內部存活,且已在骨髓炎(已知金黃色葡萄球菌慢性感染抵抗抗生素治療之病況)患者中觀察到金黃色葡萄球菌之細胞內儲存物(Thwaites及Gant,(2011)Nature Reviews Microbiology 9:215-222;Ellington等人,(2006)J.Orthopedic Research 24(1):87-93;Bosse等人,(2005)J.Bone and Joint Surgery,87(6):1343-1347)。使用成骨細胞細胞系MG63進行活體外分析,此乃因報導此細胞系能夠藏匿細胞內金黃色葡萄球菌(Garzoni及Kelly,(2008)Trends in Microbiology)。此分析證實MRSA能夠感染MG63細胞,且可自活體外長達6天之受感染MG63細胞回收細胞內活細菌。為了生成細胞內金黃色葡萄球菌彙集物,自藉由腹膜注射MRSA感染之小鼠收穫腹膜細胞(圖2)。
圖2顯示在梵穀黴素存在下感染自受感染腹膜細胞至成骨細胞之轉移。為了生成細胞內金黃色葡萄球菌彙集物,利用MRSA感染A/J小鼠且在感染後1天獲取受感染腹膜細胞。類似地,已報導所生成細胞藏匿有能夠在活體內感染模型中轉移感染之細胞內活細菌(Gresham等人J Immunol 2000;164:3713-3722)。受感染腹膜細胞由主要為嗜中性球與巨噬細胞之混合物及大約10%之藏匿有細胞內細菌之細胞組成。利用溶葡球菌酶處理該等細胞以去除細胞外細菌且將其懸浮於補充有5μg/mL梵穀黴素之生長培養基中。將用於感染之腹膜細胞試樣 溶解以確定在起始感染時細胞內活MRSA之精確劑量,且亦將細胞外游離MRSA之各劑量稀釋至具有梵穀黴素之培養基中用於比較。然後將腹膜細胞(細胞內MRSA)或游離細菌(細胞外MRSA)添加至MG63成骨細胞單層中且培養4小時(實心條)或1天(空心條)。藉由在瓊脂板上平鋪細胞溶解物來確定每孔中細胞內存活細菌總數。細胞內MRSA相較於細胞外MRSA對照免受梵穀黴素影響。利用3×104個細胞內細菌感染之孔在感染後1天獲得8,750個細胞內細菌(約1/3感染劑量),而細胞外細菌被有效地殺死,此乃因利用類似劑量之游離MRSA進行之感染在感染後1天僅獲得375個細胞內細菌。
免疫螢光顯微術亦證實感染自腹膜細胞轉移至MG63成骨細胞。在利用MRSA進行感染後1天自小鼠收集腹膜細胞且利用溶葡球菌酶處理以殺死任何污染性細胞外細菌(細胞內感染)。自活躍生長之培養物獲取游離MRSA且在PBS中洗滌(細胞外感染)。藉由在瓊脂板上平鋪來證實細胞內及細胞外感染試樣中之活細菌總數且在添加至在腔室玻片中培養之MG63成骨細胞之鋪滿層中之前立即將兩種試樣懸浮於補充有5μg/mL梵穀黴素之培養基中。在感染後1天,洗滌MG63細胞以去除細胞外細菌,進行透化且利用抗金黃色葡萄球菌抗體染色以鑑別細胞內MRSA及優先結合腹膜細胞膜之霍亂毒素。利用DAPI將所有細胞核共染色以證實MG63單層係完整的。藉由共焦顯微術來檢查玻片。
利用腹膜細胞感染之孔含有鋪滿單層MG63細胞且在MG63層之頂部上清晰可見腹膜巨噬細胞。許多巨噬細胞明顯感染MRSA,該MRSA作為單一色彩影像中之紅色細菌簇或覆蓋圖像中之白色粒子可見。除受感染巨噬細胞外,亦觀察到僅與MG63細胞相關之細菌之明顯實例。該等受感染MG63細胞亦在受游離MRSA感染之孔中可見。游離MRSA之感染在MG63細胞中達成類似感染程度需要顯著更高之 接種物。
上述結果確定游離MRSA與細胞內MRSA兩者皆能夠在梵穀黴素存在下存活並感染MG63細胞。來自細胞內感染之細菌在該等條件下比游離細菌顯著更好地能夠在梵穀黴素治療中存活。利用3×104個CFU之細胞內細菌進行感染在感染後1天獲得8.7×103個CFU之細胞內細菌。利用類似劑量之游離細菌進行感染在感染後1天僅獲得375個細胞內細菌,指示細胞內細菌之存活能力係游離細菌的高達20倍。當在感染後1天及4小時收穫孔時,所有感染劑量皆回收更多細胞內細菌(在1.5倍至6倍之間)。由於梵穀黴素在添加至游離MRSA中時完全抑制其生長(圖1),因此該等數據表明MRSA儘管恆定暴露於培養基中之梵穀黴素,但必定已在某時複製。儘管MRSA在鼠類巨噬細胞內部並不顯著地複製(吾人未公開之觀察結果),但有大量證據表明金黃色葡萄球菌能夠逃避吞噬溶酶體並在非吞噬細胞類型之細胞質內部複製(Jarry,T.M.,G.Memmi等人(2008)Cell Microbiol 10(9):1801-1814)。總之,上述觀察結果表明即使在恆定暴露於梵穀黴素下,游離MRSA亦可感染細胞且細胞內MRSA可自一個細胞轉移至另一細胞。該等觀察結果揭示可在恆定抗生素療法存在下發生之感染之維持及甚至擴散的潛在機制。
實例19 活體內感染模型.
腹膜炎模型. 藉由腹膜注射利用5×107個CFU之USA300感染7週齡雌性A/J小鼠(Jackson Laboratories)。在感染後2天將小鼠處死且用5mL冷磷酸鹽緩衝鹽水溶液(PBS)沖洗腹膜。將腎臟於5mL PBS中均質化,如下文針對靜脈內感染模型所述。在4℃下在臺上型離心機中將腹膜洗滌物以1,000rpm離心5分鐘。將上清液作為細胞外細菌收集且將含有腹膜細胞之細胞沈澱物作為細胞內部分收集。在37℃利用50μg/mL溶葡球菌酶將細胞處理20分鐘以殺死污染性細胞外細菌。在分 析前將腹膜細胞於冰冷PBS中洗滌3×以去除溶葡球菌酶。為了對細胞內CFU之數量進行計數,將腹膜細胞溶解於具有0.1% Triton-X之HB(補充有10mM HEPES及0.1%牛血清白蛋白之漢克斯氏平衡鹽溶液)中,且在具有0.05% tween-20之PBS中製備溶解物之連續稀釋物。
靜脈內感染模型:將7週齡雌性小鼠用於所有活體內實驗且藉由靜脈內注射至尾靜脈中實施感染。利用2×106個CFU之劑量感染A/J小鼠(Jackson Lab)。利用2×107個CFU之劑量感染Balb/c小鼠(Charles River Laboratories,Hollister,CA)。對於檢查競爭性人類IgG之作用之研究(SCID IVIG模型)而言,使用經最佳化給藥方案利用GammaGard S/D IGIV Immune Globulin(ASD Healthcare,Brooks KY)將CB17.SCID小鼠(Charles River Laboratories,Hollister,CA)重構以達成人類IgG之>10mg/mL之恆定血清濃度。以30mg/小鼠之初始靜脈內劑量投與IGIV,之後在6小時後藉由腹膜內注射投與15mg/小鼠之第二劑量,且隨後藉由腹膜內注射每天給予15mg/小鼠,連續3天。在第一劑量之IGIV後4小時藉由靜脈內注射利用2×107個CFU之於磷酸鹽緩衝鹽水中稀釋之MRSA感染小鼠。在感染後6小時與24小時之間開始利用每天兩次之100mg/Kg梵穀黴素之腹膜內注射治療接受梵穀黴素之小鼠且保持研究持續時間。在感染後30分鐘至24小時,將實驗治療劑(AAC、抗MRSA抗體或游離二甲基-pipBOR抗生素)於磷酸鹽緩衝鹽水中稀釋且以單一靜脈內注射投與。於感染後第4天將所有小鼠處死,且於5mL磷酸鹽緩衝鹽水中收穫腎臟。使用GentleMACS DissociatorTM(Miltenyi Biotec,Auburn,CA)將組織試樣均質化。藉由在具有5%去纖維蛋白綿羊血液之胰蛋白酶大豆瓊脂上平鋪組織均勻物於PBS 0.05% Tween中之連續稀釋物來確定每只小鼠(2個腎臟)回收之細菌總數。
實例20 組織蛋白酶/凋亡蛋白酶釋放分析
為了對在利用組織蛋白酶B處理後自AAC釋放之活性抗生素之量進行定量,將AAC於組織蛋白酶緩衝液(20mM乙酸鈉、1mM EDTA、5mM L-半胱胺酸)中稀釋至200μg/mL。參見:Dubowchik等人(2002)Bioconj.Chem.13:855-869之第863頁,其出於此分析之目的以引用方式併入。以10μg/mL添加組織蛋白酶B(來自牛脾臟,SIGMA C7800)且在37℃下將試樣培育1小時。作為對照,在單獨緩衝液中培育AAC。藉由添加10體積之細菌生長培養基胰蛋白酶大豆培養液(pH 7.4)(TSB)來終止反應。為了估計活性抗生素之總釋放,以一式四份於96孔板中之TSB中製得反應混合物之連續稀釋物且將金黃色葡萄球菌之USA300菌株以2×103個CFU/mL之最終密度添加至各孔中。在3℃下在振盪的同時將培養物培育過夜且藉由使用板讀取器在630nM下讀取吸光度來量測細菌生長。
實例21 抗WTA抗體之產生 抗體之生成、篩選及選擇
縮寫:MRSA(抗二甲氧苯青黴素之金黃色葡萄球菌);MSSA(二甲氧苯青黴素敏感性金黃色葡萄球菌);VISA(抗梵穀黴素中間體之金黃色葡萄球菌);LTA(脂磷壁酸);TSB(胰蛋白酶大豆培養液);CWP(細胞壁製劑)。
使用保持抗體重鏈及輕鏈之同族配對之SymplexTM技術(Symphogen,Lyngby,Denmark)在金黃色葡萄球菌感染後自患者之周邊B細胞選殖人類IgG抗體,如以下文獻中所述:US 8,283,294:「Method for cloning cognate antibodies」;Meijer PJ等人Journal of Molecular Biology 358:764-772(2006);及Lantto J等人J Virol.85(4):1820-33(2011年2月);使用血漿及記憶細胞作為重組全長IgG譜之遺傳來源。藉由轉染哺乳動物細胞來表現個別抗體純系,如Meijer PJ等人Methods in Molecular Biology 525:261-277,xiv.(2009)中所 述。在7天後收穫含有全長IgG1抗體之上清液且用於在初步篩選中藉由間接ELISA篩選抗原結合。mAb文庫顯示生成USA300或Wood46菌株金黃色葡萄球菌菌株之陽性ELISA結合細胞壁製劑。隨後於200-ml瞬時轉染物中產生抗體且利用蛋白質A層析(MabSelect SuRe,GE Life Sciences,Piscataway,NJ)純化以供進一步測試。對於較大規模抗體產生而言,抗體係在CHO細胞中產生。將編碼VL及VH之載體轉染至CHO細胞中且藉由蛋白質A親和力層析自細胞培養基純化IgG。
在製備ELISA塗層時,將CW1號及CW3號始終混合在一起:圖6匯總藉由ELISA對抗體之初步篩選。當利用USA300細胞壁製備混合物(鐵空乏:TSB,以96:4比率)進行篩選時,分離所有(4569除外)。在初步篩選中,所有GlcNAcβ(6259除外)、SDR及PGN(4479)mAb亦對PGN及WTA為陽性。藉由針對與USA300 CW混合物之結合進行篩選來排他性地發現所有GlcNAcα。藉由在Wood46 CWP上進行篩選來發現4569(LTA特異性)。
使用離體流式細胞術自文庫選擇抗WTA mAb
針對三個選擇準則查詢此文庫內之每一mAb:(1)mAb結合MRSA表面之相對強度,作為將有利於高抗生素遞送之相應同族抗原之高表現之指示;(2)mAb結合自眾多種感染組織分離之MRSA之一致性,作為感染期間在活體內於MRSA表面處之同族抗原之穩定表現的指示;及(3)mAb與一組臨床金黃色葡萄球菌菌株之結合能力,作為同族表面抗原之表現保守性之指示。為此,使用流式細胞術來測試文庫中所有該等mAb預選培養物上清液與來自多種感染組織及來自不同金黃色葡萄球菌菌株之金黃色葡萄球菌之反應性。
分析文庫中所有mAb結合來自受MRSA USA300感染之小鼠之受感染腎臟、脾臟、肝臟及肺及兔心內膜炎模型中受USA300 COL感染之兔之心臟或腎臟內之MRSA的能力。抗體識別來自多種感染組織之金黃色葡萄球菌之能力提高治療抗體在金黃色葡萄球菌之眾多種不同臨床感染中具有活性之可能性。在收穫器官後立即(即不進行繼代培養)分析細菌,以防止由活體外培養條件引起之表型變化。先前已觀察到,若干金黃色葡萄球菌表面抗原儘管在活體外培養期間表現,但喪失在受感染組織中之表現。針對此等抗原之抗體將不可能用於治療感染。在多種受感染組織上分析此mAb文庫期間,證實此觀察,其中大量抗體顯示與來自培養物之金黃色葡萄球菌細菌之顯著結合,但不存在與來自所有經測試受感染組織之細菌之結合。一些抗體結合來自一些但並非全部經測試受感染組織之細菌。因此,在本發明中,選擇能夠識別來自所有經測試感染條件之細菌之抗體。經評價參數係(1)相對螢光強度,作為抗原豐度之量度;(2)染色為陽性之器官之數量,作為抗原表現之穩定性量度;及(3)mAb結合一組臨床金黃色葡萄球菌菌株之能力,作為同族表面抗原之表現保守性之指示。相對於針對無關抗原之同種型對照抗體(例如,IgG1 mAb抗皰疹病毒 gD:5237)(參照下文)確定測試抗體之螢光強度。針對WTA-β之mAb不僅顯示最高抗原豐度,且亦顯示與來自所有經測試及上文所指定之受感染組織之MRSA的極一致結合。
另外,測試該等mAb結合在活體外於TSB中培養之以下金黃色葡萄球菌菌株之能力:USA300(MRSA)、USA400(MRSA)、COL(MRSA)、MRSA252(MRSA)、Wood46(MSSA)、Rosenbach(MSSA)、Newman(MSSA)及Mu50(VISA)。發現抗WTAβ mAb而非抗WTAα mAb與所有該等菌株反應。對與不同菌株之結合之分析指示WTAβ比WTAα更保守且因此更適於AAC。
實例22 對金黃色葡萄球菌上之壁磷壁酸具有特異性之抗體的表徵。 i)證實Ab之WTA特異性
藉由在37℃下將40mg粒狀金黃色葡萄球菌菌株與補充有30%棉子糖、100μg/ml溶葡球菌酶(Cell Sciences,Canton,MA)及無EDTA蛋白酶抑制劑混合劑(Roche,Pleasanton,CA之1mL 10mM Tris-HCl(pH 7.4))一起培育30min來生成來自金黃色葡萄球菌野生型(WT)菌株及缺乏WTA之金黃色葡萄球菌突變體菌株(△TagO;WTA-無效菌株)之細胞壁製劑(CWP)。將溶解物以11,600 x g離心5min,且收集含有細胞壁組份之上清液。對於免疫印漬分析而言,在4-12% Tris-甘胺酸凝膠上分離蛋白質,將其轉移至硝酸纖維素膜(Invitrogen,Carlsbad,CA)上,之後利用所指示針對WTA之測試抗體或利用針對PGN及LTA之對照抗體實施印漬。
免疫印漬顯示,針對WTA之抗體結合來自WT金黃色葡萄球菌之WT細胞壁製劑,而不結合來自缺乏WTA之△TagO菌株之細胞壁製劑。針對肽聚糖(抗PGN)及脂磷壁酸(抗LTA)之對照抗體充分地結合兩種細胞壁製劑。該等數據指示測試抗體針對WTA之特異性。
ii)進行流式細胞術以確定mAb與MRSA表面之結合程度
藉由流式細胞術使用以下方案分析來自感染組織之全細菌上之表面抗原表現。對於來自受感染小鼠組織之細菌之抗體染色,經靜脈內向6-8週齡雌性C57B1/6小鼠(Charles River,Wilmington,MA)注射108個CFU之對數期生長之於PBS中之USA300。在感染後兩天收穫小鼠器官。如先前於Tattevin P.等人Antimicrobial agents and chemotherapy 54:610-613(2010)中所述建立兔感染性心內膜炎(IE)。經靜脈內向兔注射5×107個CFU之靜止期生長之MRSA菌株COL,且在18小時後收穫心臟贅生物。在7×107個CFU靜止期感染後18h經靜脈內給予30mg/kg之梵穀黴素之治療,每天兩次。
為了溶解小鼠或兔細胞,使用gentleMACS細胞解離器(Miltenyi)將組織於M管(Miltenyi,Auburn,CA)中均質化,之後在RT下於含有0.1% Triton-X100(Thermo)、10μg/mL DNAseI(Roche)及Complete Mini蛋白酶抑制劑混合劑(Roche)之PBS中培育10min。使懸浮液經過40微米過濾器(BD),且利用補充有0.1%無IgG之BSA(Sigma)及10mM Hepes(pH 7.4)之無酚紅之HBSS(HB緩衝液)洗滌。接下來在室溫(RT)下將細菌懸浮液與300μg/mL兔IgG(Sigma)於HB緩衝液中培育1h以阻斷非特異性IgG結合。利用2μg/mL之一級抗體(包括rF1或同種型對照IgG1 mAb抗皰疹病毒gD:5237(Nakamura GR等人,J Virol 67:6179-6191(1993)))將細菌染色,且接下來利用螢光抗人類IgG二級抗體(Jackson Immunoresearch,West Grove,PA)將該等細菌染色。為了使得能夠區分細菌與小鼠或兔器官碎片,使用20μg/mL小鼠mAb 702抗金黃色葡萄球菌肽聚糖(Abcam,Cambridge,MA)及螢光染料標記之抗小鼠IgG二級抗體(Jackson Immunoresearch)實施雙重染色。洗滌細菌且藉由FACSCalibur(BD)進行分析。在流式細胞術分析期間,自雙重螢光曲線針對mAb 702陽性染色對細菌進行閘控。
iii)量測與金黃色葡萄球菌之結合親和力及MRSA上之抗原密度
表8顯示MRSA抗體與Newman-△SPA菌株之結合之平衡結合分析及該細菌上之抗原密度。
KD及抗原密度係使用放射性配體細胞結合分析在以下分析條件下獲得:DMEM+2.5%小鼠血清結合緩衝液;在室溫(RT)下溶液結合2hr;且使用400,000個細菌/孔。
Ab 6263係6078樣的,此乃因該等序列極為相似。除了CDR H3中之第二殘基(R對G)外,所有其他L鏈及H鏈CDR序列皆相同。
實例23 改造WTA抗體突變體
總之,選殖出每一抗WTAβAb之VH區並將其連接至人類H鏈γ 1恆定區且將VL連接至κ恆定區以作為IgG1表現Ab。在一些情況下,改變某些位置處之野生型序列以改良抗體穩定性,如下文所述。然後生成半胱胺酸改造之Ab(硫代Mab)。
i. 將可變區連接至恆定區
自上述人類抗體文庫鑑別之WTAβAb之VH區連接至人類γ1恆定區以製備全長IgG1 Ab。L鏈係κL鏈。
ii. 生成穩定性變體
對圖14(特定而言參見圖15A、15B、16A、16B)中之WTA Ab進 行改造以改良某些性質(例如以避免去醯胺、天冬胺酸異構化、氧化或N-連接糖基化)並測試在胺基酸替代後抗原結合之保留以及化學穩定性。使用QIAprep Spin M13套組(Qiagen)自生長於大腸桿菌CJ236細胞中之M13KO7噬菌體粒子純化編碼重鏈或輕鏈之純系之單鏈DNA。具有以下序列之5’磷酸化合成寡核苷酸: (SEQ ID NO.152)
(SEQ ID NO.153)
(SEQ ID NO.154);及 (SEQ ID NO.155)(IUPAC密碼)
用於藉由如藉由位點特異性誘變所述之寡核苷酸定點誘變依照如以下文獻中所述之方法使編碼抗體之純系突變:Kunkel,T.A.(1985).Rapid and efficient site-specific mutagenesis without phenotypic selection.Proceedings of the National Academy of Sciences USA 82(2):488-492。使用經誘變DNA來轉化大腸桿菌XL1-Blue細胞(Agilent Technologies)且將其平鋪於含有50μg/ml卡本西林之Luria培養液板上。個別地拾取菌落且使其於含有50μg/ml卡本西林之液體Luria培養液培養基中生長。對小量製備DNA定序以證實突變之存在。
對於Ab 6078而言,VH中之第二胺基酸met(met-2)易於氧化。因此,使met-2突變成Ile或Val,以避免該殘基之氧化。由於met-2之改 變可影響結合親和力,因此藉由ELISA測試突變體與金黃色葡萄球菌CWP之結合。
發現CDR H3「DG」或「DD」基序易於轉化成異天冬胺酸。Ab 4497在CDR H3位置96及97處含有DG(參見圖18B)且改變穩定性。CDR H3通常對於抗原結合至關重要,因此測試若干突變體之抗原結合及化學穩定性(參見圖18A)。突變體D96E(v8)保留與抗原結合,此類似於野生型Ab 4497(圖18A;圖18B),且係穩定的且不形成異天冬胺酸。
金黃色葡萄球菌CWP ELISA
對於6078抗體突變體之分析而言,將由1×109個細菌/ml組成之經溶葡球菌酶處理之USA300 △SPA金黃色葡萄球菌細胞製劑(WT)於0.05碳酸鈉(pH 9.6)中以1/100稀釋且在4℃下過夜培育期間塗佈至384孔ELISA板(Nunc;Neptune,NJ)上。利用PBS及0.05% Tween-20板洗滌且在2小時培育期間利用PBS及0.5%牛血清白蛋白(BSA)進行阻斷。在輕輕攪動的同時在室溫下實施此培育及所有後續培育。將抗體試樣於試樣/標準稀釋緩衝液(PBS,0.5% BSA,0.05% Tween 20,0.25% CHAPS,5mM EDTA,0.35M NaCl,15ppm Proclin,(pH 7.4))中稀釋,添加至洗滌板中,且培育1.5-2小時。在1小時培育期間利用於分析緩衝液(PBS,0.5% BSA,15ppm Proclin,0.05% Tween 20)中稀釋至40ng/mL之過氧化酶結合之山羊抗人類IgG(Fcγ)F(ab')2片段(Jackson ImmunoResearch;West Grove,PA)檢測板結合之抗金黃色葡萄球菌抗體。在最終洗滌後,添加四甲基聯苯胺(KPL,Gaithersburg,MD),顯色5-10分鐘,且利用1M磷酸終止反應。在450nm下利用620nm參照使用微板讀取器讀取板。
iii. 生成Cys改造之突變體(硫代Mab)
藉由於如先前所教示及下文所述之預定位置處將半胱胺酸引入H 鏈(CH1中)或L鏈(Cκ)中以允許抗體結合至連接體-抗生素中間體來產生全長硫代Mab。然後將H鏈及L鏈選殖至單獨質粒中且將H及L編碼質粒共轉染至293個細胞中,其於該等細胞中表現並組裝成完整Ab。亦可將H鏈及L鏈兩者選殖至相同表現質粒中。使IgG1具有2個經改造Cys(每一H鏈中有一個)或2個經改造Cys(每一L鏈中有一個),或藉由表現cys突變鏈及野生型鏈之期望組合來生成2條H鏈及2條L鏈之組合,每一者具有經改造Cys(HCLCCys)。
圖15A及15B顯示6078 WT及具有HC Cys及LC Cys之組合之突變體Ab。亦測試6078突變體結合來自過夜培養物之蛋白A缺陷型USA300金黃色葡萄球菌之能力。自如圖19中所顯示之FACS分析結果,突變體Ab以類似於6078 WT(未改變)抗體之方式結合USA300;突變體中之胺基酸改變不損害與金黃色葡萄球菌之結合。gD係非特異性陰性對照抗體。
實例24 抗WTA抗體-抗生素結合物之製備
藉由使抗WTA抗體結合至連接體-抗生素中間體(包括彼等來自表2者)來製備表3之抗壁磷壁酸抗體-抗生素結合物(AAC)。在結合前,使用標準方法根據WO 2004/010957中所述之方法利用TCEP將抗WTA抗體部分地還原,該等專利之教示內容出於此目的以引用方式併入。使用標準方法根據例如Doronina等人(2003)Nat.Biotechnol.21:778-784及US 2005/0238649 A1中所述之方法將部分還原之抗體結合至連接體-抗生素中間體。簡言之,將部分還原之抗體與連接體-抗生素中間體組合以允許該連接體-抗生素中間體結合至該抗體之經還原半胱胺酸殘基。淬滅結合反應,且對AAC進行純化。確定每一AAC之抗生素負載(每一抗體中抗生素部分之平均數)且對於經改造具有單一半胱胺酸突變位點之抗壁磷壁酸抗體而言在約1至約2之間。
用於結合之硫代Mab之還原/氧化:利用約20-40倍過量之於具有2 mM EDTA之50mM Tris(pH 7.5)中之TCEP(叁(2-羧基乙基)膦鹽酸鹽或DTT(二硫蘇糖醇)在37℃下保持3hr或在室溫下過夜將於CHO細胞中表現之經半胱胺酸改造之全長單株抗體(硫代Mab-Junutula等人,2008b Nature Biotech.,26(8):925-932;Dornan等人(2009)Blood 114(13):2721-2729;US 7521541;US 7723485;WO2009/052249;Shen等人(2012)Nature Biotech.,30(2):184-191;Junutula等人(2008)Jour of Immun.Methods 332:41-52)還原(Getz等人(1999)Anal.Biochem.第273卷:73-80;Soltec Ventures,Beverly,MA)。將經還原硫代Mab於10mM乙酸鈉(pH 5)中稀釋且加載至HiTrap S管柱上,且利用含有0.3M氯化鈉之PBS溶析。或者,藉由添加1/20體積之10%乙酸將抗體酸化,利用10mM琥珀酸鹽(pH 5)稀釋,加載至管柱上且然後利用10管柱體積之琥珀酸鹽緩衝液洗滌。利用50mM Tris pH7.5,2mM EDTA對管柱進行溶析。
利用15倍莫耳過量之DHAA(去氫抗壞血酸)或200nM硫酸銅水溶液(CuSO4)處理經溶析還原硫代Mab。鏈間二硫鍵之氧化在約3小時或更長時間內完成。環境空氣氧化亦有效。將再氧化之抗體透析至20mM琥珀酸鈉(pH 5)、150mM NaCl、2mM EDTA中且在-20℃下冷凍儲存。
硫代-Mab與連接體-抗生素中間體之結合:使去阻斷、再氧化之硫代-抗體(硫代Mab)與6-8倍莫耳過量之表2之連接體-抗生素中間體(來自20mM濃度之DMSO母液)於50mM Tris(pH 8)中反應,直至反應完成(16-24小時),如藉由反應混合物之LC-MS分析所確定。
在用20mM琥珀酸鈉(pH 5)稀釋後,然後將粗製抗體-抗生素結合物(AAC)施加至陽離子交換管柱。用至少10管柱體積之20mM琥珀酸鈉(pH 5)洗滌管柱,且用PBS溶析抗體。使用凝膠過濾管柱將AAC調配至具有240mM蔗糖之20mM His/乙酸鹽(pH 5)中。在利用離胺酸C 肽鏈內切酶處理之前及之後,藉由用以確定蛋白質濃度之UV光譜、用於聚集分析之分析型SEC(尺寸排除層析)及LC-MS來表徵AAC。
使用Shodex KW802.5管柱於具有0.25mM氯化鉀及15% IPA之0.2M磷酸鉀(pH 6.2)中以0.75ml/min之流速實施尺寸排除層析。藉由對280nm下之溶析峰面積吸光度之積分來確定AAC之聚集狀態。
使用Agilent QTOF 6520 ESI儀器實施LC-MS分析。作為實例,在37℃下利用1:500 w/w於Tris(pH 7.5)中之內蛋白酶Lys C(Promega)將使用此化學生成之AAC處理30min。將所得裂解片段加載至加熱至80℃之1000A,8um PLRP-S管柱上且在5分鐘內利用30% B至40% B之梯度溶析。流動相A:具有0.05% TFA之H2O。流動相B:具有0.04% TFA之乙腈。流速:0.5ml/min。在電噴霧電離及MS分析前藉由280nm下之UV吸光度檢測來監測蛋白質溶析。通常達成未結合Fc片段、殘餘未結合Fab及抗生素-Fab之層析分離。使用Mass HunterTM軟體(Agilent Technologies)將所得m/z譜去褶合以計算抗體片段之質量。
實例25 作為導致裂解之蛋白酶之葡萄球菌素B之鑑別及純化
將來自Wood46之3升過夜培養物之上清液濃縮且使用TFF(10kDa)將緩衝液交換成50mM磷酸鈉(pH 7)。將試樣加載至Q Sepaharose FF上且於50mM磷酸鈉(pH 7)中使用0-300mM NaCl之梯度以層析方式分離蛋白質。藉由與圖27之硫代FAB S4497-MC-GGAFAGGG-(pipBOR)(揭示為SEQ ID NO:126之「核心肽」)一起培育且藉由LC-MS分析評價連接體於預計位點處之裂解來鑑別活性部分。彙集活性部分且用硫酸銨補充至2M之濃度。藉由疏水相互作用層析在Phenyl Sepharose上於50mM TRIS(pH 7.5)中使用2-0M硫酸銨之梯度將蛋白質進一步純化。再次使用工具化合物鑑別活性部分。彙集該等部分且在Mono Q上於50mM乙酸鈉(pH 5.5)中使用0-1M NaCl之鹽梯度進一步純化。如上文鑑別來自此層析步驟之活性部分,進行 彙集且於PBS中施加尺寸排除層析。鑑別活性部分且藉由SDS-PAGE確定其含有所關注單一蛋白質。
對來自Q Sepharose純化之經富集活性部分進行表徵以鑑別促成活性之蛋白酶之類別。發現該蛋白酶受N-乙基馬來醯亞胺抑制,從而指示該酶可能係半胱胺酸蛋白酶。在審查金黃色葡萄球菌之已知經分泌半胱胺酸蛋白酶後,鑑別葡萄球菌素B具有類似於REPLi篩選中觀察到之特異性之受質特異性(Kalinska,M.,T.Kantyka等人(2012).Biochimie 94(2):318)。購得(Sigma-Aldrich)經純化葡萄球菌素B且將其與來自圖27之硫代FAB S4497-MC-GGAFAGGG-(pipBOR)(揭示為SEQ ID NO:126之「核心肽」)一起培育。發現葡萄球菌素B於與自Wood46上清液純化之活性蛋白酶相同之位點處裂解連接體。將葡萄球菌素B及自培養物上清液培育純化之活性蛋白酶與Alexa Fluor® 488 C5馬來醯亞胺(Invitrogen,Life Technologies,Thermo Fisher Scientific公司)一起培育以標記活性位點半胱胺酸。在SDS-PAGE上運行試樣以將該蛋白酶鑑別為葡萄球菌素B。運行來自SEC純化之活性部分之SDS-PAGE凝膠以及經純化葡萄球菌素B,且利用及不利用Alexa Fluor 488。
亦藉由蛋白質組質譜分析Q sepharose純化之經富集活性部分。在SDS-PAGE上運行10微克之活性部分B11、B12及C02以及10微克之活性部分1、2、3以及10微克之非活性部分。將條帶切下且經受藉由胰蛋白酶之過夜消化。藉由LC-MS/MS分析經消化試樣且將串聯質譜結果提交用於使用Mascot搜索算法進行數據庫搜索。葡萄球菌素B係存於活性部分中之半胱胺酸蛋白酶之最高命中項。自溶素(亦為半胱胺酸蛋白酶)亦表現為最高命中項,但由於最高豐度之獨特肽出現於非活性部分、即陰性對照中,因此不考慮自溶素。來自Q Sepharose純化之活性部分之質譜蛋白質組分析顯示高豐度之葡萄球菌素B。針對 金黃色葡萄球菌蛋白質過濾T restle數據且藉由活性部分1中肽之數量來分級。
自Wood46金黃色葡萄球菌培養物上清液純化活性蛋白酶。在37℃下於3升TSB中使細胞生長過夜。藉由以10,000 x g離心10min去除細胞。收集上清液且使其經過兩個0.22μm過濾器。接下來,將其濃縮且使用TFF利用10kD膜將其緩衝液交換成50mM磷酸鈉(pH 7)。將試樣濃縮10倍至300ml之體積。將試樣加載於Q Sepahrose FF(GE Healthcare Biosciences AB)上且於50mM磷酸鈉(pH 7)中使用0-300mM NaCl之梯度以層析方式分離蛋白質。彙集活性部分且用硫酸銨補充至2M之濃度。藉由疏水相互作用層析在Phenyl Sepharose(GE Healthcare Biosciences AB)上於50mM TRIS(pH 7.5)中使用2-0M硫酸銨之梯度將蛋白質進一步純化。彙集活性部分且在Mono Q(GE Healthcare Biosciences AB)上於50mM乙酸鈉(pH 5.5)中使用0-1M NaCl之鹽梯度進一步純化。如上文鑑別來自此層析步驟之活性部分,進行彙集且於PBS中施加尺寸排除層析(Zenix-150,Sepax Technologies)。
為了鑑別含有所關注活性蛋白酶之部分,將來自每一部分之100μl轉移至96孔板中,其中將其與25μg硫代FAB 4497 mal-GGAFAGGG-DNA31(揭示為SEQ ID NO:126之「核心肽」)一起培育。分析來自每一層析步驟之各部分之活性,且使用100μl,不管蛋白質濃度如何。在37℃下將試樣培育過夜且隨後藉由LC-MS分析以鑑別其中已發生連接體-抗生素之蛋白酶裂解之部分。將來自Q Sepharose FF層析之經彙集活性部分量測為具有14mg/ml之總蛋白質濃度。將200μg彙集物於PBS中稀釋至2mg/ml且以0.1mM之最終濃度與及不與N-乙基馬來醯亞胺(NEM,Sigma)一起培育。在室溫下將試樣培育1小時。將25μg硫代FAB 4497 mal-GGGAFAGGG-DNA31(揭示 為SEQ ID NO:126之「核心肽」)添加至兩種試樣中且在37℃下培育2小時。2小時時,藉由LC-MS分析試樣以鑑別是否已發生連接體-抗生素之蛋白酶裂解。不管蛋白質濃度如何,將來自SEC之約50μl活性部分與0.1mM Alexa Fluor 488 C5馬來醯亞胺(Invitrogen)一起培育1小時用於標記。藉由以100μl之最終體積將5μM硫代FAB結合物與50nM蛋白酶一起培育來實施利用經純化蛋白酶之裂解分析。於PBS(pH 7.2),4mM L-Cys,2.5mM EDTA或100mM檸檬酸鈉pH 5,100mM NaCl,4mM L-Cys,2.5mM EDTA中實施分析。在37℃下將試樣培育2小時。2小時時,藉由利用1% TFA以1:1稀釋來淬滅裂解反應。隨後在LC-MS上運行試樣以確定連接體裂解百分比。藉由對裂解物質及完整物質之A280層析圖進行積分來確定裂解百分比。於連接體之C末端添加之抗生素或發色團部分顯著地增加疏水性,使得可基線拆分具有完整連接體之硫代FAB及具有裂解連接體之硫代FAB。
對於經富集部分之蛋白質組分析而言,將來自Q Sepahrose®(GE Healthcare Life Sciences)純化之10微克之經富集活性部分加載至4-12% Bis-Tris凝膠(Life Technologies)上。切下整個凝膠泳道且自頂部至底部切分成11個條帶。利用50%乙腈/50mM碳酸氫銨將凝膠條帶脫色,在50℃下利用二硫蘇糖醇(50mM最終濃度)還原30分鐘,且在室溫下於黑暗中利用碘乙醯胺(50mM最終濃度)烷基化30分鐘。然後在37℃下利用於50mM碳酸氫銨中之0.02μg/μl胰蛋白酶(Promega)將試樣消化過夜。將經消化試樣注射至100μm內徑毛細管管柱(NanoAcquity UPLC管柱,100μm×100mm,1.7μm,BEH130 C18,Waters公司)上且藉由毛細管反相層析在NanoAcquity UPLC系統(Waters公司)上分離。將試樣加載於於水中之0.1%三氟乙酸且利用2-90%緩衝液B之梯度(其中緩衝液A係0.1%甲酸/2%乙腈/98%水且緩衝液B係0.1%甲酸/2%水/98%乙腈)以1.00μl/min溶析,總分析時間為45 分鐘。將肽直接溶析至LTQ-Orbitrap XL(ThermoFisher)質譜儀中且使用具有1.4kV之噴霧電壓之ADVANCE來源(Michrom-Bruker)進行電離。使用包含以下之方法獲得質譜數據:於Orbitrap中以60,000M/△M之解析度以m/z 400進行一次全MS掃描(375-1600m/z),之後在線性離子阱中在整個LC梯度內重複之週期中對全MS掃描中檢測到之前8個最豐富離子進行碰撞誘導解離(CID)。提交串聯質譜結果,用於使用針對連鎖目標-誘餌(concatenated target-decoy)數據庫Uniprot2010_12版(包括金黃色葡萄球菌蛋白質及常見實驗室污染物)之Mascot®搜索算法2.3.02版(Matrix Sciences)進行數據庫搜索。利用胰蛋白酶特異性、半胱胺酸脲甲基化(+57.0215Da)及甲硫胺酸氧化(+15.995Da)之可變修飾來搜索數據,允許指定2次錯切(miscleavage)、20ppm前體離子質量及0.5Da片段離子質量之公差。使用線性判別算法(LDA)將肽譜匹配過濾至1%之錯誤發現率(FDR)。
實例26 硫代Fab FRET肽及AAC之葡萄球菌素裂解
在37℃下將5μM硫代FAB 4497 MP-LAFGA-QSY7(揭示為SEQ ID NO:135之「核心肽」)及硫代FAB 4497 MP-LAFAA-QSY7(揭示為SEQ ID NO:136之「核心肽」)(圖30)與50nM蛋白酶於PBS(pH 7.2),4mM L-Cys,2.5mM EDTA中一起培育2小時。2小時時,通過利用1% TFA以1:1稀釋來淬滅裂解反應。隨後在LC-MS上運行試樣以確定連接體裂解百分比。所有經測試蛋白酶皆裂解兩種連接體,但程度及位置不同(表4)。葡萄球菌素A及葡萄球菌素B於相同位點裂解連接體:MP-LAFG↓A-QSY7(揭示為SEQ ID NO:135之「核心肽」)及MP-LAFA↓A-QSY7(揭示為SEQ ID NO:136之「核心肽」)。葡萄球菌素B以測試濃度達成兩種連接體之100%裂解。組織蛋白酶B亦在該等條件下達成兩種連接體之100%裂解,但混合裂解位點。組織蛋白酶B於MP-LAFG↓A-QSY7(揭示為SEQ ID NO:135之「核心肽」)處排他性 地裂解mal-LAFGA-QSY7(揭示為SEQ ID NO:135之「核心肽」),而其於MP-LAFA↓A-QSY7(揭示為SEQ ID NO:136之「核心肽」)及MP-LAFAA↓-QSY7(揭示為SEQ ID NO:136之「核心肽」)兩者處裂解mal-LAFAA-QSY7(揭示為SEQ ID NO:136之「核心肽」)。葡萄球菌素A對MP-LAFAA-QSY7(揭示為SEQ ID NO:136之「核心肽」)之裂解係23%,而m MP-LAFGA-QSY7(揭示為SEQ ID NO:135之「核心肽」)之裂解係38%。
在37℃下將5μM AAC-193與50nM蛋白酶於PBS pH 7.2,4mM L-Cys,2.5mM EDTA或100mM檸檬酸鈉pH 5,100mM NaCl,4mM L-Cys,2.5mM EDTA中一起培育2小時。2小時時,藉由利用1% TFA以1:1稀釋來淬滅裂解反應。隨後在LC-MS上運行試樣以確定連接體裂解百分比。所有經測試蛋白酶皆將經最佳化連接體-抗生素有效地裂解。在藉由葡萄球菌素A及葡萄球菌素B裂解後,釋放游離六氫吡嗪基-雷福黴素。葡萄球菌素B在pH 5及7.2兩者下皆達成100%裂解。葡萄球菌素A顯示pH5下之100%裂解及pH 7.2下之64%裂解。
實例27 抗體-抗生素結合物硫代-S4497 LC v8-MP-LAFG-PABC-(六氫吡嗪基BOR)(揭示為SEQ ID NO:128之「核心肽」)AAC-215在活體外抑制金黃色葡萄球菌:
將1×108個靜止期Wood46細菌懸浮於含有100μg/mL硫代-S4497 LC v8-MP-LAFG-PABC-(六氫吡嗪基BOR)(揭示為SEQ ID NO:128之「核心肽」)AAC-215或硫代-S4497-HC-A118C-MC-vc-PABC-(六氫吡嗪基BOR)AAC-126之10μL HB緩衝液(補充有0.1%牛血清白蛋白之漢克斯氏平衡鹽溶液)中。後者使用纈胺酸-瓜胺酸(vc)組織蛋白酶B可裂解連接體來遞送相同抗生素。
1小時後,藉由添加90μL HB或90μL組織蛋白酶B(於20mM乙酸鈉,1mM EDTA,5mM L-半胱胺酸pH 5中之10μg/mL組織蛋白酶B) 將試樣稀釋10倍且在37℃下再培育3小時。藉由確定AAC與細菌之培育是否能夠抑制後續細菌生長來推斷活性抗生素之釋放。將細菌/AAC懸浮液直接點漬至胰蛋白酶大豆瓊脂板上且在37℃下過夜培育後觀察細菌生長。自與MC-LAFG-PAB-(六氫吡嗪基BOR)(揭示為SEQ ID NO:128之「核心肽」)連接體-抗生素中間體結合之AAC釋放活性藥物。
不利用AAC培育之細菌生長良好且不受組織蛋白酶B處理影響。 利用含有組織蛋白酶B可裂解連接體纈胺酸-瓜胺酸(vc)之AAC-126處理之細菌在於單獨HB緩衝液中培育後生長良好,但在利用AAC-126+組織蛋白酶B處理後不能生長,從而指示需要該酶處理來釋放活性抗生素。相比之下,與含有葡萄球菌素可裂解連接體LAFG(SEQ ID NO:128)之AAC-215一起培育之細菌在與單獨HB緩衝液一起培育後不能生長,從而表明細菌懸浮液含有足以自葡萄球菌素可裂解連接體AAC釋放活性抗生素之酶促活性。
實例28 抗體-抗生素結合物硫代-S4497 HC v1-MP-LAFG-PABC-(六氫吡嗪基BOR)(揭示為SEQ ID NO:128之「核心肽」)AAC-193在巨噬細胞分析中殺死細胞內MRSA:
將金黃色葡萄球菌之USA300菌株與不同劑量(100μg/mL、10μg/mL、1μg/mL或0.1μg/mL)之單獨S4497抗體、硫代-S4497 HC WT(v8)(SEQ ID NO:137)、LC V205C-MC-vc-PAB-(二甲基pipBOR)(揭示為SEQ ID NO:128之「核心肽」)AAC-192或硫代-S4497 HC v1-MP-LAFG-PABC-(六氫吡嗪基BOR)AAC-193一起培育以允許AAC與細菌結合(圖31)。
S4497 HC WT(v8)446aa (SEQ ID NO:137)。
在1小時培育後,將經調理細菌進給至鼠類巨噬細胞中且在37℃下培育2小時以允許吞噬作用。在吞噬作用完成後,利用補充有50μg/mL健他黴素之正常生長培養基替代感染混合物以殺死任何殘留之細胞外細菌且在2天後藉由將巨噬細胞溶解物之連續稀釋物平鋪於胰蛋白酶大豆瓊脂板上來確定細胞內存活細菌總數(圖31)。葡萄球菌素可裂解AAC能夠以相較於組織蛋白酶B可裂解AAC類似之效能殺死細胞內USA300。灰色虛線指示分析用檢測極限(10個CFU/孔)。
實例29 AAC經由抗體之抗原特異性結合使抗生素靶向殺死金黃色葡萄球菌:
選擇金黃色葡萄球菌之Wood46菌株,此乃因其不表現蛋白質A,一種結合IgG抗體之Fc區之分子。將金黃色葡萄球菌之Wood46菌株與10μg/mL或0.5μg/mL之S4497抗體、含有組織蛋白酶B可裂解連 接體之同種型對照-AAC、硫代-曲妥珠單抗HC A118C-MC-vc-PAB-(二甲基-pipBOR)AAC-101、硫代-S4497 HC WT(v8)、LC V205C-MC-vc-PAB-(二甲基pipBOR)AAC-192、含有葡萄球菌素可裂解連接體之同種型對照-AAC、硫代-曲妥珠單抗HC A118C-MP-LAFG-PABC-(六氫吡嗪基BOR)(揭示為SEQ ID NO:128之「核心肽」)或硫代-S4497 HC v1-MP-LAFG-PABC-(六氫吡嗪基BOR)(揭示為SEQ ID NO:128之「核心肽」)AAC-193一起培育1小時以允許AAC與細菌結合(圖32)。為了限制AAC之非特異性結合,將經調理細菌離心,洗滌一次且再懸浮於緩衝液中,然後進給至鼠類巨噬細胞中。在吞噬作用完成後,利用補充有50μg/mL健他黴素之正常生長培養基替代感染混合物以殺死任何殘留之細胞外細菌且在2天後藉由將巨噬細胞溶解物之連續稀釋物平鋪於胰蛋白酶大豆瓊脂板上來確定細胞內存活細菌總數(圖32)。含有葡萄球菌素可裂解連接體之AAC(AAC-193)能夠殺死所有可檢測細胞內細菌,而同種型對照AAC顯示無活性。巨噬細胞分析證明葡萄球菌素可裂解AAC能夠殺死細胞內細菌。抗體-抗生素結合物硫代-S4497 LC v8-MP-LAFG-PABC-(六氫吡嗪基BOR)(揭示為SEQ ID NO:128之「核心肽」)AAC-215在MRSA感染模型中在活體內有效:使用經最佳化給藥方案利用人類IgG對CB17.SCID小鼠進行重構以在血清中獲得至少10mg/mL恆定濃度之人類IgG。利用4497抗體(50mg/kg)、具有葡萄球菌素可裂解連接體之AAC-215(50mg/kg)或含有葡萄球菌素可裂解連接體之同種型對照抗gD AAC(50mg/kg)治療小鼠。在感染後第1天藉由靜脈內注射向小鼠給予單劑量之AAC-215。 在感染後第4天將所有小鼠處死,且藉由平鋪確定2個腎臟(圖33)或心臟(圖34)中之存活細菌總數。利用含有葡萄球菌素可裂解連接體之AAC-215進行治療將8只測試小鼠中之6只之細菌負載降低至低於檢測 極限,而同種型對照AAC顯示有限活性。虛線指示分析用檢測極限(333個CFU/小鼠)。
實例30 金黃色葡萄球菌之生長及蛋白酶活性譜型分析:
在37℃下在胰蛋白酶大豆培養液(TSB)中在振盪的同時將金黃色葡萄球菌菌株Wood46(ATCC10832)培養過夜。將培養物以10,000 x g離心10min。收集上清液且使其經過兩個0.22μm過濾器。
金黃色葡萄球菌蛋白酶活性譜型分析:使用TFF(Millipore Pellicon XL Cassette Biomax 10kDa)將150ml培養物上清液濃縮且將緩衝液交換成磷酸鹽緩衝鹽水(PBS)至38ml之最終體積及1mg/ml之最終總蛋白質濃度。使用快速肽鏈內切酶譜型分析文庫或REPLi(Mimotopes,Victoria,Australia)實施Wood46上清液之蛋白酶活性分析。該文庫由3375條佈置於512組中呈96孔格式之內部淬滅螢光肽組成。文庫肽含有序列MCA-Gly-Gly-Gly-Xaa-Yaa-Zaa-Gly-Gly-DPA-Lys-Lys(SEQ ID NO:132),其中MCA對應於7-甲氧基香豆素-4-乙酸(螢光供體)且DPA對應於Nb-(2,4-二硝基苯基)-L-2,3-二胺基丙酸(螢光受體)。將含有5nmol FRET肽之孔溶解於5μl 50%乙腈(Sigma)中。將50μl(微升)經濃縮Wood46上清液及50μl PBS添加至每一孔中。在37℃下培育板且於0分鐘、30分鐘、60分鐘、140分鐘及170分鐘進行螢光量測。於Tecan Saphire2(激發λ320nm/發射λ400nm)上獲得螢光數據。將端點螢光強度倍數變化計算為F最終/F初始
藉由利用Agilent Q-TOF使用ESI來源實施之LC-MS確定受質裂解位點。注射來自每一孔之10μl且藉由反相層析在Waters Xbridge OST C18 2.5um管柱(4.6×50mm)上使用Agilent 1260 HPLC系統進行分離。利用2-90%緩衝液B之梯度(其中緩衝液A係0.05%三氟乙酸/99.95%水且緩衝液B係0.04%%三氟乙酸/99.96%乙腈)以500μl/min對試樣進行溶析,總分析時間為20分鐘。將肽直接溶析至Q-TOF質譜儀 中。基於比較觀測分子量與對應於每一可能位點處之裂解之計算質量來指派裂解產物。
實例31 馬來醯亞胺基FRET肽連接體之合成:
藉由標準Fmoc固相化學使用PS3肽合成器(Protein Technologies公司)來合成圖26之馬來醯亞胺基FRET肽(MP-Lys(TAMRA)-Gly-Gly-Ala-Phe-Ala-Gly-Gly-Gly-Lys(螢光黃)(揭示為SEQ ID NO:125之「核心肽」)。使用0.1mmol Fmoc-Lys(Boc)-Rink醯胺樹脂(Novabiochem)來生成C末端甲醯胺。於第一N末端殘基處添加Fmoc-Lys(Mtt)-OH(Novabiochem)以在去除Mtt基團後允許額外側鏈化學結構。在藉由1%於二氯甲烷中之TFA(具有3%三異丙基矽烷(TIS))之連續三次30min洗滌去除Mtt基團後,將螢光受體5(6)-羧基四甲基玫瑰紅或TAMRA(Novabiochem)附著至樹脂上之此側鏈胺上。使反應進行20小時。在此步驟後,藉由20%於DMF中之六氫吡啶去除末端Fmoc基團且藉由HBTU使其與馬來醯亞胺基-丙酸(Bachem AG)偶合。在室溫下在輕輕振盪的同時利用95:2.5:2.5三氟乙酸(TFA)/TIS/水(v/v/v)經2小時自樹脂裂解掉經TAMRA標記之中間體肽。將裂解溶液過濾且在氮流下蒸發以去除TFA。使溶解於水與乙腈之混合物中之粗製中間體經受進一步純化,該純化係藉由反相HPLC利用來自Phenomenex之Jupiter 5μ C4管柱(5μm,10mm×250mm)來實施。在凍乾後,然後使經純化中間體與10當量NHS-螢光黃(Thermo Scientific)於50/50磷酸鹽緩衝鹽水(PBS)/二甲基甲醯胺(DMF)(v/v)中反應20小時以於C末端離胺酸處標記游離胺。然後將FRET肽純化且凍乾,如上文所述。分析所有反應混合物及最終產物且藉由LC-MS來證實。
連接體之固相合成:使用標準Fmoc固相化學在PS3肽合成器(Protein Technologies公司)上合成所有所述連接體。將0.1mM Fmoc-胺基酸-Wang樹脂(Novabiochem)用於所有連接體以生成C末端羧基。如上文所述來純化連接體。藉由在室溫下使經純化連接體與1.1倍莫 耳過量之QSY7胺、1.1倍莫耳過量之HATU及2.2倍莫耳過量之DIEA於DMF中反應過夜來達成QSY7胺(Invitrogen)附著。然後如上文所述來純化連接體-QSY7物質。分析所有反應混合物及最終產物且藉由LC-MS來證實。
實例32 基於細胞之FRET裂解分析:
對Wood46及USA300之培養物接種於TSB中之過夜培養物之1:200稀釋物(0.1ml於20ml中)且在37℃下在振盪的同時進行培育。將菌株培養至指數生長期且以108個細胞/ml及107個細胞/ml之細胞密度平鋪於胰蛋白酶大豆培養液(TSB)中。將硫代Mab FRET肽結合物以2μM之最終FRET肽濃度添加至孔中。在37℃下培育板且隨時間以激發λ495nm/發射λ518nm監測螢光,且保持210分鐘。
濃縮活性上清液對硫代FAB FRET肽及硫代FAB mal-GGAFAGGG-DNA31(揭示為SEQ ID NO:126之「核心肽」)之裂解:將與MP-Lys(TAMRA)-Gly-Gly-Ala-Phe-Ala-Gly-Gly-Gly-Lys(螢光黃)(揭示為SEQ ID NO:125之「核心肽」)或MP-Gly-Gly-Ala-Phe-Ala-Gly-Gly-Gly-(pipBOR)LA-59(揭示為SEQ ID NO:126之「核心肽」)結合之硫代FAB S4497與已如上文所述處理之濃縮Wood46上清液一起培育。將硫代FAB S4497與上清液基於微克以1:1混合(25μg硫代FAB S4497與25μg蛋白質上清液)於PBS中。在37℃下將試樣培育2小時。2小時時,藉由利用0.1% TFA以1:1稀釋來淬滅反應。藉由LC-MS分析試樣以確定裂解及裂解產物之量。
儘管已出於清楚理解之目的藉由舉例說明及實例相當詳細地對上述發明進行了闡述,但說明及實例不應解釋為限制本發明之範圍。本文所引用所有專利及科學文獻之揭示內容皆全文以引用方式明確併入本文中。
<110> 美商建南德克公司
<120> 抗壁磷壁酸抗體(ANTI-WALL TEICHOIC ACID ANTIBODIES)及結合物
<130> P4960R1-WO
<140>
<141>
<150> 61/829,461
<151> 2013-05-31
<160> 180
<170> PatentIn version 3.5
<210> 1
<211> 17
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 1
<210> 2
<211> 7
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人序列說明:合成肽」
<400> 2
<210> 3
<211> 9
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 3
<210> 4
<211> 5
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=-「人工序列說明:合成肽」
<400> 4
<210> 5
<211> 17
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 5
<210> 6
<211> 10
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 6
<210> 7
<211> 16
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 7
<210> 8
<211> 7
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 8
<210> 9
<211> 9
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 9
<210> 10
<211> 5
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 10
<210> 11
<211> 17
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 11
<210> 12
<211> 10
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 12
<210> 13
<211> 17
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 13
<210> 14
<211> 7
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 14
<210> 15
<211> 9
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 15
<210> 16
<211> 5
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 16
<210> 17
<211> 17
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 17
<210> 18
<211> 10
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 18
<210> 19
<211> 17
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 19
<210> 20
<211> 7
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 20
<210> 21
<211> 10
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 21
<210> 22
<211> 5
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 22
<210> 23
<211> 17
<212> PRT
<213>
<220>
<221> source
<223>
<400> 23
<210> 24
<211> 29
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 24
<210> 25
<211> 113
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成多肽」
<400> 25
<210> 26
<211> 119
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成多肽」
<400> 26
<210> 27
<211> 112
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成多肽」
<400> 27
<210> 28
<211> 119
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成多肽」
<400> 28
<210> 29
<211> 113
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成多肽」
<400> 29
<210> 30
<211> 119
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成多肽」
<400> 30
<210> 31
<211> 114
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成多肽」
<400> 31
<210> 32
<211> 138
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成多肽」
<400> 32
<210> 33
<211> 11
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 33
<210> 34
<211> 7
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 34
<210> 35
<211> 9
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 35
<210> 36
<211> 5
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 36
<210> 37
<211> 17
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 37
<210> 38
<211> 15
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 38
<210> 39
<211> 11
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 39
<210> 40
<211> 7
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 40
<210> 41
<211> 9
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 41
<210> 42
<211> 5
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 42
<210> 43
<211> 17
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 43
<210> 44
<211> 15
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 44
<210> 45
<211> 12
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 45
<210> 46
<211> 7
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 46
<210> 47
<211> 9
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 47
<210> 48
<211> 5
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 48
<210> 49
<211> 17
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 49
<210> 50
<211> 10
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 50
<210> 51
<211> 12
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 51
<210> 52
<211> 7
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 52
<210> 53
<211> 9
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 53
<210> 54
<211> 5
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 54
<210> 55
<211> 17
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意「人工序列說明:合成肽」
<400> 55
<210> 56
<211> 17
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 56
<210> 57
<211> 11
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 57
<210> 58
<211> 7
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 58
<210> 59
<211> 9
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 59
<210> 60
<211> 5
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 60
<210> 61
<211> 17
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 61
<210> 62
<211> 18
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意「人工序列說明:合成肽」
<400> 62
<210> 63
<211> 12
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 63
<210> 64
<211> 7
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 64
<210> 65
<211> 10
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 65
<210> 66
<211> 5
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 66
<210> 67
<211> 17
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 67
<210> 68
<211> 10
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 68
<210> 69
<211> 11
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 69
<210> 70
<211> 7
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 70
<210> 71
<211> 9
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 71
<210> 72
<211> 5
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 72
<210> 73
<211> 17
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 73
<210> 74
<211> 18
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 74
<210> 75
<211> 11
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 75
<210> 76
<211> 7
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 76
<210> 77
<211> 9
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 77
<210> 78
<211> 5
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 78
<210> 79
<211> 17
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 79
<210> 80
<211> 18
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 80
<210> 81
<211> 11
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 81
<210> 82
<211> 7
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 82
<210> 83
<211> 9
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 83
<210> 84
<211> 5
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 84
<210> 85
<211> 17
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 85
<210> 86
<211> 7
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 86
<210> 87
<211> 11
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 87
<210> 88
<211> 7
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 88
<210> 89
<211> 9
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 89
<210> 90
<211> 5
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 90
<210> 91
<211> 17
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意「人工序列說明:合成肽」
<400> 91
<210> 92
<211> 12
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 92
<210> 93
<211> 11
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 93
<210> 94
<211> 7
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 94
<210> 95
<211> 8
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 95
<210> 96
<211> 5
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 96
<210> 97
<211> 16
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 97
<210> 98
<211> 13
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 98
<210> 99
<211> 17
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 99
<210> 100
<211> 7
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 100
<210> 101
<211> 9
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 101
<210> 102
<211> 5
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 102
<210> 103
<211> 17
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 103
<210> 104
<211> 7
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 104
<210> 105
<211> 11
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 105
<210> 106
<211> 7
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 106
<210> 107
<211> 9
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 107
<210> 108
<211> 5
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 108
<210> 109
<211> 16
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 109
<210> 110
<211> 11
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 110
<210> 111
<211> 107
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成多肽」
<400> 111
<210> 112
<211> 124
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成多肽」
<220>
<221> VARIANT
<222> (1)..(1)
<223> /替代=「Glu」
<220>
<221> VARIANT
<222> (2)..(2)
<223> /替代=「Ile」或「Val」
<220>
<221> misc_feature
<222> (1)..(124)
<223> /注意=「序列中所給出之變體殘基相對於變體位置之注釋中之殘基無優先性」
<400> 112
<210> 113
<211> 214
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成多肽」
<400> 113
<210> 114
<211> 453
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成多肽」
<400> 114
<210> 115
<211> 214
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成多肽」
<400> 115
<210> 116
<211> 453
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成多肽」
<220>
<221> VARIANT
<222> (2)..(2)
<223> /替代=「Ile」或「Val」
<220>
<221> misc_feature
<222> (1)..(453)
<223> /注意=「序列中所給出之變體殘基相對於變體位置之注釋中之殘基無優先性」
<400> 116
<210> 117
<211> 453
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成多肽」
<220>
<221> VARIANT
<222> (2)..(2)
<223> /替代=「Ile」或「Val」
<220>
<221> misc_feature
<222> (1)‥(453)
<223> /注意=「序列中所給出之變體殘基相對於變體位置之注釋中之殘基無優先性」
<400> 117
<210> 118
<211> 7
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 118
<210> 119
<211> 113
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成多肽」
<400> 119
<210> 120
<211> 116
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成多肽」
<400> 120
<210> 121
<211> 220
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成多肽」
<400> 121
<210> 122
<211> 445
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成多肽」
<400> 122
<210> 123
<211> 220
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成多肽」
<400> 123
<210> 124
<211> 444
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成多肽」
<400> 124
<210> 125
<211> 10
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<220>
<221> MOD_RES
<222> (1)..(1)
<223> Lys(TAMRA)
<220>
<221> MOD_RES
<222> (10)..(10)
<223> Lys(螢光黃)
<400> 125
<210> 126
<211> 8
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 126
<210> 127
<211> 448
<212> PRT
<213> 人工序列
<220>
<221> source
<222> /注意=「人工序列說明:合成多肽」
<400> 127
<210> 128
<211> 4
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=“人工序列說明:合成肽」
<400> 128
<210> 129
<211> 6
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明;合成肽」
<220>
<221> MOD_RES
<222> (3)..(3)
<223> Ile(me)
<400> 129
<210> 130
<211> 6
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 130
<210> 131
<211> 5
<212> PRT
<213> 人工序列
<220>
<221> source
<222> /注意=「人工序列說明:合成肽」
<400> 131
<210> 132
<211> 11
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<220>
<221> MOD_RES
<222> (4)..(6)
<223> 任何胺基酸
<220>
<222> (9)..(9)
<221> MOD_RES
<223> DPA
<400> 132
<210> 133
<211> 450
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成多肽」
<400> 133
<210> 134
<211> 450
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成多肽」
<400> 134
<210> 135
<211> 5
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 135
<210> 136
<211> 5
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 136
<210> 137
<211> 446
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成多肽」
<400> 137
<210> 138
<211> 445
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成多肽」
<400> 138
<210> 139
<211> 453
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成多肽」
<400> 139
<210> 140
<211> 453
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成多肽」
<400> 140
<210> 141
<211> 453
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成多肽」
<400> 141
<210> 142
<211> 453
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成多肽」
<400> 142
<210> 143
<211> 453
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成多肽」
<400> 143
<210> 144
<211> 453
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成多肽」
<400> 144
<210> 145
<211> 220
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意「人工序列說明:合成多肽」
<400> 145
<210> 146
<211> 445
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成多肽」
<400> 146
<210> 147
<211> 445
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成多肽」
<400> 147
<210> 148
<211> 330
<212> PRT
<213> 智人
<400> 148
<210> 149
<211> 330
<212> PRT
<213> 智人
<400> 149
<210> 150
<211> 107
<212> PRT
<213> 智人
<400> 150
<210> 151
<211> 107
<212> PRT
<213> 智人
<400> 151
<210> 152
<211> 42
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成寡核苷酸」
<400> 152
<210> 153
<211> 41
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成寡核苷酸」
<400> 153
<210> 154
<211> 61
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成寡核苷酸」
<400> 154
<210> 155
<211> 52
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成寡核苷酸」
<400> 155
<210> 156
<211> 116
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成多肽」
<400> 156
<210> 157
<211> 445
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成多肽」
<400> 157
<210> 158
<211> 214
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成多肽」
<400> 158
<210> 159
<211> 215
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成多肽」
<400> 159
<210> 160
<211> 215
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成多肽」
<400> 160
<210> 161
<211> 214
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成多肽」
<400> 161
<210> 162
<211> 216
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成多肽」
<400> 162
<210> 163
<211> 214
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成多肽」
<400> 163
<210> 164
<211> 214
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成多肽」
<400> 164
<210> 165
<211> 214
<212> PRT
<213> 人工序列
<220>
<221> sourcc
<223> /注意=「人工序列說明:合成多肽」
<400> 165
<210> 166
<211> 214
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成多肽」
<400> 166
<210> 167
<211> 213
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成多肽」
<400> 167
<210> 168
<211> 214
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成多肽」
<400> 168
<210> 169
<211> 453
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成多肽」
<400> 169
<210> 170
<211> 448
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成多肽」
<400> 170
<210> 171
<211> 455
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成多肽」
<400> 171
<210> 172
<211> 456
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成多肽」
<400> 172
<210> 173
<211> 448
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成多肽」
<400> 173
<210> 174
<211> 456
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成多肽」
<400> 174
<210> 175
<211> 456
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成多肽」
<400> 175
<210> 176
<211> 445
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成多肽」
<400> 176
<210> 177
<211> 7
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 177
<210> 178
<211> 7
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 178
<210> 179
<211> 7
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 179
<210> 180
<211> 7
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /注意=「人工序列說明:合成肽」
<400> 180

Claims (70)

  1. 一種包含輕(L)鏈及重(H)鏈之經分離抗WTA(壁磷壁酸(wall teichoic acid))單株抗體,該L鏈包含CDR L1、CDR L2及CDR L3且該H鏈包含CDR H1、CDR H2及CDR H3,其中該等CDR L1、CDR L2及CDR L3以及CDR H1、CDR H2及CDR H3分別包含Ab 4461(SEQ ID NO.1至6)、4624(SEQ ID NO.7至12)、4399(SEQ ID NO.13至18)及6267(SEQ ID NO.19至24)中每一者之CDR之胺基酸序列,如表6A及6B中所示。
  2. 一種包含重鏈可變區(VH)之經分離抗WTA單株抗體,其中該VH在分別選自抗體4461、4624、4399及6267之SEQ ID NO.26、SEQ ID NO.28、SEQ ID NO.30、SEQ ID NO.32之VH序列之VH區的長度內包含至少95%序列一致性。
  3. 如請求項2之抗體,其進一步包含L鏈可變區(VL),其中該VL在分別選自抗體4461、4624、4399及6267之SEQ ID NO.25、SEQ ID NO.27、SEQ ID NO.29、SEQ ID NO.31之VL序列之VL區的長度內包含至少95%序列一致性。
  4. 如請求項3之抗體,其中該抗體包含:(i)SEQ ID NO.25之VL及SEQ ID NO.26之VH;(ii)SEQ ID NO.27之VL及SEQ ID NO.28之VH;(iii)SEQ ID NO.29之VL及SEQ ID NO.30之VH;或(iv)SEQ ID NO.31之VL及SEQ ID NO.32之VH。
  5. 如前述請求項中任一項之抗體,其中該抗體結合WTAα。
  6. 一種包含輕鏈及H鏈之經分離抗WTA單株抗體,該L鏈包含CDR L1、CDR L2及CDR L3且該H鏈包含CDR H1、CDR H2及CDR H3,其中該等CDR L1、CDR L2及CDR L3以及CDR H1、CDR H2及CDR H3包含圖14中所示每一Ab之相應CDR之胺基酸序列(SEQ ID NO.33至110)。
  7. 一種包含L鏈可變區(VL)之經分離抗WTA單株抗體,其中該VL在選自分別對應於抗體6078、6263、4450、6297、6239、6232、6259、6292、4462、6265、6253、4497及4487中每一者之VL序列之VL區的長度內包含至少95%序列一致性,如圖17A-1、17A-2、17A-3中於Kabat位置1至107處所示。
  8. 如請求項7之抗體,其進一步包含重鏈可變區(VH),其中該VH在選自分別對應於抗體6078、6263、4450、6297、6239、6232、6259、6292、4462、6265、6253、4497及4487中每一者之VH序列之VH區的長度內包含至少95%序列一致性,如圖17B-1至17B-6中於Kabat位置1至113處所示。
  9. 如請求項8之抗體,其中該VH包含SEQ ID NO.112之序列且該VL包含SEQ ID NO.111。
  10. 如請求項7之抗體,其中該輕鏈包含SEQ ID NO.115之序列且具有經改造半胱胺酸之該H鏈包含SEQ ID NO.116。
  11. 如請求項7之抗體,其中該輕鏈包含SEQ ID NO.115之序列且具有經改造半胱胺酸之該H鏈包含SEQ ID NO.117,其中X係M、I或V。
  12. 如請求項7之抗體,其中該L鏈包含SEQ ID NO.121之序列且該H鏈包含SEQ ID NO.124之序列。
  13. 一種經分離抗WTA單株抗體,其包含SEQ ID NO.123之L鏈序列及SEQ ID NO.157或SEQ ID NO.124之H鏈序列。
  14. 如請求項6之Ab,其中該抗體結合WTAβ。
  15. 一種抗體,其結合與如前述請求項之Ab中任一者相同之表位。
  16. 一種組合物,其包含如前述請求項中任一項之抗體及醫藥上可 接受之載劑。
  17. 一種核酸,其編碼如前述請求項中任一項之抗體。
  18. 一種宿主細胞,其包含如請求項17之編碼抗體之核酸。
  19. 一種產生如請求項1至14中任一項之抗體之方法,其包含在適於表現核酸之條件下培養如請求項18之宿主細胞;及回收由該細胞產生之該抗體。
  20. 一種抗體-抗生素結合物化合物,其包含藉由肽連接體共價附著至雷福黴素(rifamycin)型抗生素之如請求項1至19中任一項之抗壁磷壁酸(WTA)抗體。
  21. 如請求項20之抗體-抗生素結合物化合物,其中該抗體包含:i)SEQ ID NO 99至104之L鏈及H鏈CDR或SEQ ID NO.33至38之L鏈及H鏈CDR;或ii)與SEQ ID NO.120或SEQ ID NO.156之VH配對之SEQ ID NO.119或SEQ ID NO.123之VL;或iii)與SEQ ID NO.112之VH配對之SEQ ID NO.111之VL。
  22. 如請求項20之抗體-抗生素結合物化合物,其中該抗壁磷壁酸(WTA)抗體結合金黃色葡萄球菌(Staphylococcus aureus)。
  23. 如請求項22之抗體-抗生素結合物化合物,其中該抗壁磷壁酸(WTA)抗體結合抗二甲氧苯青黴素之金黃色葡萄球菌(MRSA)。
  24. 如請求項20之抗體-抗生素結合物,其中該雷福黴素型抗生素係利福拉齊(rifalazil)型抗生素。
  25. 如請求項20之抗體-抗生素結合物,其中該雷福黴素型抗生素包含附著至該肽連接體之四級胺。
  26. 如請求項20之抗體-抗生素結合物,其具有下式:Ab-(L-abx)p其中:Ab係該抗壁磷壁酸抗體; L係具有下式之肽連接體:-Str-Pep-Y-其中Str係延伸體單元;Pep係2至12個胺基酸殘基之肽,且Y係間隔體單元;abx係雷福黴素型抗生素;且p係1至8之整數。
  27. 如請求項20之抗體-抗生素結合物化合物,其具有下式I: 其中:虛線指示可選鍵;R係H、C1-C12烷基或C(O)CH3;R1係OH;R2係CH=N-(雜環基),其中該雜環基視情況經一或多個獨立地選自以下之基團取代:C(O)CH3、C1-C12烷基、C1-C12雜芳基、C2-C20雜環基、C6-C20芳基及C3-C12碳環基;或R1及R2形成5員或6員稠合雜芳基或雜環基,且視情況形成螺環或稠合6員雜芳基環、雜環基環、芳基環或碳環基環,其中該螺環或稠合6員雜芳基環、雜環基環、芳基環或碳環基環視情況經H、F、Cl、Br、I、C1-C12烷基或OH取代;L係附著至R2或由R1及R2形成之該稠合雜芳基或雜環基之肽連接體;且 Ab係該抗壁磷壁酸(WTA)抗體。
  28. 如請求項27之抗體-抗生素結合物化合物,其具有下式: 其中R3係獨立地選自H及C1-C12烷基;n係1或2;R4係選自H、F、Cl、Br、I、C1-C12烷基及OH;且Z係選自NH、N(C1-C12烷基)、O及S。
  29. 如請求項27之抗體-抗生素結合物化合物,其具有下式: 其中R5係選自H及C1-C12烷基;且n係0或1。
  30. 如請求項27之抗體-抗生素結合物化合物,其具有下式: 其中R5係選自H及C1-C12烷基;且n係0或1。
  31. 如請求項27之抗體-抗生素結合物化合物,其具有下式: 其中R5係獨立地選自H及C1-C12烷基;且n係0或1。
  32. 如請求項27之抗體-抗生素結合物化合物,其具有下式: 其中 R3係獨立地選自H及C1-C12烷基;且n係1或2。
  33. 如請求項32之抗體-抗生素結合物化合物,其具有下式:
  34. 如請求項20之抗體-抗生素結合物化合物,其中該肽連接體具有下式:-Str-Pep-Y-其中Str係共價附著至該抗壁磷壁酸(WTA)抗體之延伸體單元;Pep係2至12個胺基酸殘基之肽,且Y係共價附著至該雷福黴素型抗生素之間隔體單元。
  35. 如請求項34之抗體-抗生素結合物,其中Str具有下式: 其中R6係選自由以下組成之群:C1-C10伸烷基-、-C3-C8碳環基、-O-(C1-C8烷基)-、-伸芳基-、-C1-C10伸烷基-伸芳基-、-伸芳基-C1-C10伸烷基-、-C1-C10伸烷基-(C3-C8碳環)-、-(C3-C8碳環)-C1-C10伸烷基-、-C3-C8雜環-、-C1-C10伸烷基-(C3-C8雜環)-、-(C3-C8雜環)-C1-C10伸烷基-、-(CH2CH2O)r-及-(CH2CH2O)r-CH2-;且r係1至10範圍內之整數。
  36. 如請求項35之抗體-抗生素結合物,其中R6係-(CH2)5-。
  37. 如請求項34之抗體-抗生素結合物,其中Pep包含2至12個獨立地選自以下之胺基酸殘基:甘胺酸、丙胺酸、***酸、離胺酸、精胺酸、纈胺酸及瓜胺酸。
  38. 如請求項37之抗體-抗生素結合物,其中Pep係選自纈胺酸-瓜胺酸(val-cit,vc);***酸-離胺酸(fk);GGAFAGGG(SEQ ID NO:126);tpm-cit;GPImeLFF(SEQ ID NO:129);纈胺酸-瓜胺酸-***酸(val-cit-phe);GGAFA(SEQ ID NO:131);及LAFG(SEQ ID NO:128)。
  39. 如請求項34之抗體-抗生素結合物,其中Y包含對胺基苄基或對胺基苄氧基羰基。
  40. 如請求項20之抗體-抗生素結合物,其具有下式: 其中AA1及AA2係獨立地選自胺基酸側鏈。
  41. 如請求項40之抗體-抗生素結合物,其中該胺基酸側鏈係獨立地選自H、-CH3、-CH2(C6H5)、-CH2CH2CH2CH2NH2、-CH2CH2CH2NHC(NH)NH2、-CHCH(CH3)CH3及-CH2CH2CH2NHC(O)NH2
  42. 如請求項40之抗體-抗生素結合物,其具有下式:
  43. 如請求項40之抗體-抗生素結合物,其具有下式:
  44. 如請求項42之抗體-抗生素結合物,其具有下式:
  45. 如請求項42之抗體-抗生素結合物,其具有下式:
  46. 如請求項44之抗體-抗生素結合物,其具有下式:
  47. 如請求項42之抗體-抗生素結合物,其具有下式:
  48. 如請求項47之抗體-抗生素結合物,其具有下式:
  49. 如請求項42之抗體-抗生素結合物,其具有下式: 其中R7係獨立地選自H及C1-C12烷基。
  50. 如請求項44之抗體-抗生素結合物化合物,其具有下式:
  51. 如請求項50之抗體-抗生素結合物化合物,其具有下式:
  52. 如請求項45之抗體-抗生素結合物化合物,其具有下式:
  53. 如請求項52之抗體-抗生素結合物化合物,其具有下式:
  54. 一種醫藥組合物,其包含如請求項20之抗體-抗生素結合物化合物及醫藥上可接受之載劑、助流劑、稀釋劑或賦形劑。
  55. 一種治療細菌感染之方法,其包含向患者投與治療有效量之抗體-抗生素結合物化合物,該化合物包含藉由肽連接體共價附著至雷福黴素型抗生素之抗壁磷壁酸(WTA)抗體。
  56. 一種製備如請求項20之抗體-抗生素結合物化合物之方法,其包含使雷福黴素型抗生素結合至抗壁磷壁酸(WTA)抗體。
  57. 一種用於治療細菌感染之套組,其包含:a)如請求項54之醫藥組合物;及b)使用說明書。
  58. 一種抗生素-連接體中間體,其具有下式II: 其中:虛線指示可選鍵;R係H、C1-C12烷基或C(O)CH3;R1係OH;R2係CH=N-(雜環基),其中該雜環基視情況經一或多個獨立地選自以下之基團取代:C(O)CH3、C1-C12烷基、C1-C12雜芳基、C2-C20雜環基、C6-C20芳基及C3-C12碳環基;或R1及R2形成5員或6員稠合雜芳基或雜環基,且視情況形成螺環或稠合6員雜芳基環、雜環基環、芳基環或碳環基環,其中該螺環或稠合6員雜芳基環、雜環基環、芳基環或碳環基環視情況經H、F、Cl、Br、I、C1-C12烷基或OH取代;L係附著至R2或由R1及R2形成之該稠合雜芳基或雜環基之肽連接體;且具有下式:-Str-Pep-Y-其中Str係延伸體單元;Pep係2至12個胺基酸殘基之肽,且Y係間隔體單元;且 X係選自以下之反應性官能基:馬來醯亞胺、硫醇基、胺基、溴化物、溴乙醯胺基、碘乙醯胺基、對甲苯磺酸酯基、碘化物、羥基、羧基、吡啶基二硫化物及N-羥基琥珀醯亞胺。
  59. 如請求項58之抗生素-連接體中間體,其中X係
  60. 如請求項58之抗生素-連接體中間體,其具有下式: 其中R3係獨立地選自H及C1-C12烷基;n係1或2;R4係選自H、F、Cl、Br、I、C1-C12烷基及OH;且Z係選自NH、N(C1-C12烷基)、O及S。
  61. 如請求項60之抗生素-連接體中間體,其具有下式:
  62. 如請求項60之抗生素-連接體中間體,其具有下式:
  63. 如前述請求項中任一項之抗體,其中該抗體係F(ab)或F(ab’)2
  64. 如請求項63之抗體,其中該抗體係F(ab’)2
  65. 如前述請求項中任一項之抗體-抗生素結合物化合物,其中該抗體係F(ab)或F(ab’)2
  66. 如前述請求項中任一項之抗體-抗生素結合物化合物,其中該肽連接體係金黃色葡萄球菌肽鏈內切酶可裂解連接體。
  67. 如請求項66之抗體-抗生素結合物化合物,其中該連接體係葡萄球菌素B可裂解連接體。
  68. 如請求項55之方法,其中該肽連接體係金黃色葡萄球菌肽鏈內切酶可裂解連接體。
  69. 如請求項68之方法,其中該肽連接體係金黃色葡萄球菌葡萄球菌素B可裂解連接體。
  70. 一種殺死金黃色葡萄球菌感染患者之宿主細胞中之細胞內金黃色葡萄球菌而不殺死該等宿主細胞之方法,其係藉由投與抗WTA-抗生素結合物化合物來達成。
TW103118003A 2013-05-31 2014-05-22 抗壁磷壁酸抗體(anti-wall teichoic acid antibodies)及結合物 TWI632157B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361829461P 2013-05-31 2013-05-31
US61/829,461 2013-05-31

Publications (2)

Publication Number Publication Date
TW201524997A true TW201524997A (zh) 2015-07-01
TWI632157B TWI632157B (zh) 2018-08-11

Family

ID=50983181

Family Applications (2)

Application Number Title Priority Date Filing Date
TW103118003A TWI632157B (zh) 2013-05-31 2014-05-22 抗壁磷壁酸抗體(anti-wall teichoic acid antibodies)及結合物
TW107123795A TWI692483B (zh) 2013-05-31 2014-05-22 抗壁磷壁酸抗體(anti-wall teichoic acid antibodies)及結合物

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW107123795A TWI692483B (zh) 2013-05-31 2014-05-22 抗壁磷壁酸抗體(anti-wall teichoic acid antibodies)及結合物

Country Status (4)

Country Link
US (1) US20140356375A1 (zh)
AR (1) AR096388A1 (zh)
MA (1) MA44550B1 (zh)
TW (2) TWI632157B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160015286A (ko) 2013-05-31 2016-02-12 제넨테크, 인크. 항-세포벽 테이코산 항체 및 접합체
BR112016014126B1 (pt) 2013-12-16 2023-02-14 Medimmune Limited Composto não-peptídico, conjugados de anticorpo-fármaco do mesmo, uso dos ditos conjugados para o tratamento de câncer e composição farmacêutica que compreende os mesmos
MX2016007826A (es) 2013-12-16 2017-03-31 Genentech Inc Compuestos peptidomimeticos y sus conjugados de anticuerpo-farmaco.
AU2015218949A1 (en) * 2014-02-19 2016-10-06 The Texas A&M University System Compositions and methods for drug sensitization of parasites
MX2017007055A (es) * 2014-12-03 2017-11-08 Genentech Inc Conjugados de anticuerpo rifamicina anti-staphylococcus aureus y usos de estos.
WO2016205176A1 (en) 2015-06-15 2016-12-22 Genentech, Inc. Antibodies and immunoconjugates
US11793880B2 (en) 2015-12-04 2023-10-24 Seagen Inc. Conjugates of quaternized tubulysin compounds
US11229708B2 (en) 2015-12-04 2022-01-25 Seagen Inc. Conjugates of quaternized tubulysin compounds
WO2017152083A1 (en) 2016-03-04 2017-09-08 Genentech, Inc. Process for the preparation of an antibody-rifamycin conjugate
WO2017156458A1 (en) 2016-03-11 2017-09-14 University Of South Florida Beta-lactamase inhibitors, formulations, and uses thereof
US11666658B2 (en) 2018-12-21 2023-06-06 Regeneran Pharmaceuticals, Inc. Rifamycin analogs and antibody-drug conjugates thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004050846A2 (en) * 2002-12-02 2004-06-17 Biosynexus Incorporated Wall teichoic acid as a target for anti-staphylococcal therapies and vaccines
BR122018071968B8 (pt) * 2003-11-06 2021-07-27 Seattle Genetics Inc conjugado de anticorpo-droga, composição farmacêutica, artigo de manufatura e uso de um conjugado de anticorpo-droga

Also Published As

Publication number Publication date
AR096388A1 (es) 2015-12-30
MA44550A1 (fr) 2019-06-28
TWI692483B (zh) 2020-05-01
TW201839012A (zh) 2018-11-01
US20140356375A1 (en) 2014-12-04
MA44550B1 (fr) 2021-06-30
TWI632157B (zh) 2018-08-11

Similar Documents

Publication Publication Date Title
US9895450B2 (en) Anti-wall teichoic antibodies and conjugates
JP6469094B2 (ja) 抗細胞壁タイコ酸抗体及びコンジュゲート
US10570192B2 (en) Anti-wall teichoic antibodies and conjugates
TWI692483B (zh) 抗壁磷壁酸抗體(anti-wall teichoic acid antibodies)及結合物
RU2731055C2 (ru) Конъюгаты антитела к staphylococcus aureus с рифамицином и их применение
JP6751393B2 (ja) 抗staphylococcus aureus抗体リファマイシン抱合体及びその使用

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees