TW201521439A - Manufacturing method for camera module and manufacturing apparatus for camera module - Google Patents

Manufacturing method for camera module and manufacturing apparatus for camera module Download PDF

Info

Publication number
TW201521439A
TW201521439A TW103136275A TW103136275A TW201521439A TW 201521439 A TW201521439 A TW 201521439A TW 103136275 A TW103136275 A TW 103136275A TW 103136275 A TW103136275 A TW 103136275A TW 201521439 A TW201521439 A TW 201521439A
Authority
TW
Taiwan
Prior art keywords
unit
lens
lens unit
photographic
detector
Prior art date
Application number
TW103136275A
Other languages
Chinese (zh)
Inventor
Takuro Asaoka
Tatsuya Fujinami
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Publication of TW201521439A publication Critical patent/TW201521439A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/003Alignment of optical elements
    • G02B7/005Motorised alignment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lens Barrels (AREA)
  • Studio Devices (AREA)

Abstract

The disclosure provides a manufacturing method for a camera module and a manufacturing apparatus thereof, which may precisely align an imaging element unit and a lens unit. A manufacturing apparatus 200 pushes a detector 113a to each terminal exposed from a side surface 11f of a frame body 11 of a lens unit 10 supported by a lens unit supporting portion 75, and pushes a detector 113b to each terminal exposed from a side surface 11e of the frame body 11 of the lens unit 10, and electrically energizes a lens driving device 16 inside the lens unit 10. In this status, a measuring chart 89 is imaged through the lens unit 10 and by the imaging element 27, and an alignment of the lens unit 10 and an imaging element unit 20 is performed on a basis of the imaged image.

Description

攝影模組的製造方法以及攝影模組的製造裝置 Manufacturing method of photography module and manufacturing device of photography module

本發明是有關於一種攝影模組(module)的製造方法以及攝影模組的製造裝置。 The present invention relates to a method of manufacturing a photographic module and a device for manufacturing the photographic module.

在具有攝像功能的行動電話機等便攜用電子機器中,搭載有小型且薄型的攝影模組。該攝影模組具有由透鏡單元(lens unit)及攝影元件單元一體化而成的結構,所述透鏡單元組裝有攝像用的透鏡(lens),所述攝影元件單元組裝有電荷耦合元件(Charge Coupled Device,CCD)影像感測器(image sensor)或互補金屬氧化物半導體(Complementary Metal-Oxide-Semiconductor,CMOS)影像感測器等攝影元件。 In a portable electronic device such as a mobile phone having an imaging function, a small and thin imaging module is mounted. The photographic module has a structure in which a lens unit (lens unit) and a photographic element unit are integrated, the lens unit is equipped with a lens for imaging, and the photographic element unit is assembled with a charge coupled device (Charge Coupled) Device, CCD) image sensor or complementary metal-oxide-semiconductor (CMOS) image sensor.

在攝影模組中,有:具有自動聚焦(AF,Auto Focus)機構的攝影模組,所述自動聚焦機構用於移動透鏡單元內的透鏡來進行聚焦(focus)調整;及具有光學式像抖動修正機構的攝影模組,所述光學式像抖動修正機構用於使透鏡單元及攝影元件單元沿與光軸正交的方向相對移動,以用光學方式修正所拍攝的像的抖動。 In the photographic module, there is: a photographic module having an AF (Auto Focus) mechanism for moving a lens in a lens unit for focus adjustment; and having optical image jitter The photographic module of the correction mechanism is configured to relatively move the lens unit and the photographic element unit in a direction orthogonal to the optical axis to optically correct the shake of the captured image.

例如,在專利文獻1、專利文獻2中,記載了具有AF機構的攝影模組。 For example, Patent Document 1 and Patent Document 2 describe a photographing module having an AF mechanism.

近年來,被用於攝影模組的攝影元件廣泛使用具有100萬~200萬畫素左右的低畫素數至300萬~1000萬畫素或者更高的高畫素數的攝影元件。 In recent years, photographic elements that are used for photographic modules have been widely used with low-quality elements of about 1 million to 2 million pixels to high-picture elements of 3 to 10 million pixels or higher.

當使用低畫素數的攝影元件時,對於透鏡單元與攝影元件單元的對位,並不要求特別高的精度,但當使用高畫素數的攝影元件時,必須進行高精度的對位。 When a low-picture element photographic element is used, it is not required to have a particularly high precision for the alignment of the lens unit and the photographic element unit, but when a high-picture element photographic element is used, high-precision alignment must be performed.

專利文獻1中,記載有如下技術:進行透鏡單元與攝影元件單元的對位後,進行透鏡單元與攝影元件單元的固定。 Patent Document 1 describes a technique of fixing a lens unit and a photographing element unit after performing alignment of a lens unit and a photographing element unit.

現有技術文獻 Prior art literature

專利文獻 Patent literature

專利文獻1:日本專利特開2010-88088號公報 Patent Document 1: Japanese Patent Laid-Open Publication No. 2010-88088

專利文獻2:日本專利特開2005-86659號公報 Patent Document 2: Japanese Patent Laid-Open Publication No. 2005-86659

專利文獻1所記載的相機模組(camera module)製造裝置中,在將透鏡單元保持於製造裝置時,藉由支持板來夾著保持透鏡單元的框體中的相向的2個側面。在觸碰到該2個側面的支持板中的其中一者上,設置有探測器(probe),該探測器接觸至自透鏡單元的框體露出的端子。若該探測器的推壓力破壞了2個支持板對框體的握持力的平衡(balance),則透鏡單元會在光軸傾斜 的狀態下被保持於裝置中,從而無法精度良好地進行對位。 In the camera module manufacturing apparatus described in Patent Document 1, when the lens unit is held in the manufacturing apparatus, the opposing side faces of the casing holding the lens unit are sandwiched by the support plate. On one of the support plates that touch the two sides, a probe is provided that contacts the terminal exposed from the frame of the lens unit. If the pushing force of the detector breaks the balance of the holding force of the two supporting plates against the frame, the lens unit will be inclined at the optical axis. In the state of being held in the device, the alignment cannot be performed accurately.

本發明是有鑒於所述情況而完成,其目的在於提供一種攝影模組的製造方法以及製造裝置,其能夠正確決定攝影元件單元與透鏡單元的對位時的透鏡單元的位置以提高攝影品質。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a method and a manufacturing apparatus for a photographing module capable of accurately determining a position of a lens unit when a photographing element unit and a lens unit are aligned to improve photographing quality.

本發明的攝影模組的製造方法中,所述攝影模組具有透鏡單元及攝影元件單元,所述透鏡單元具有透鏡群,所述攝影元件單元被固定於所述透鏡單元,且具有通過所述透鏡群來拍攝被攝物的攝影元件,其中,所述透鏡單元具有透鏡驅動裝置,所述透鏡驅動裝置包括使所述透鏡群中的至少一部分透鏡移動的透鏡驅動部,所述攝影模組的製造方法包括:第一步驟,在與測定圖表(chart)正交的軸上,使所述攝影元件單元、所述透鏡單元以及所述測定圖表中的至少任一處在所述軸方向上的相對位置發生變化,在各相對位置處,驅動所述攝影元件,以藉由所述攝影元件而通過所述透鏡群來拍攝所述測定圖表;以及第二步驟,基於由所述攝影元件拍攝所述測定圖表所獲得的攝影信號,調整所述攝影元件單元相對於所述透鏡單元的所述軸方向位置以及斜率中的至少一者,並將所述攝影元件單元固定於所述透鏡單元,在所述第一步驟中,在下述狀態下藉由所述攝影元件來拍攝所述測定圖表,即,將所述透鏡單元保持於所述軸上,將第一探測器推壓至設置於所述透鏡單元中並與所述透鏡驅動裝置電性連接的電性連接部,並對所述透鏡驅動裝置進行通電,以對所述透鏡單元施 加如下的力:所述力與藉由所述第一探測器的推壓而施加至所述電性連接部的且跟所述透鏡群的光軸正交的方向的力為相反方向的力。 In the manufacturing method of the photographic module of the present invention, the photographic module has a lens unit and a photographic element unit, the lens unit has a lens group, and the photographic element unit is fixed to the lens unit and has the a lens group for photographing a photographic element of a subject, wherein the lens unit has a lens driving device including a lens driving portion that moves at least a part of the lens group, the photographic module The manufacturing method includes a first step of causing at least one of the photographic element unit, the lens unit, and the measurement chart to be in the axial direction on an axis orthogonal to a measurement chart The relative position is changed, at each relative position, the photographic element is driven to capture the measurement chart by the lens group by the photographic element; and the second step is based on the imaging by the photographic element Determining a photographic signal obtained by the chart, adjusting at least one of the axial direction position and the slope of the photographic element unit relative to the lens unit And fixing the photographic element unit to the lens unit, in the first step, taking the measurement chart by the photographic element in a state of maintaining the lens unit On the shaft, the first detector is pushed to an electrical connection portion disposed in the lens unit and electrically connected to the lens driving device, and the lens driving device is energized to Lens unit Applying a force that is a force in a direction opposite to a force applied to the electrical connection portion and orthogonal to an optical axis of the lens group by the pressing of the first detector .

本發明的攝影模組的製造裝置包括:測定圖表設置部,用於設置測定圖表;攝影元件單元保持部,用於在與設置於所述測定圖表設置部中的所述測定圖表正交的軸上,保持具有攝影元件的攝影元件單元,所述攝影元件通過具有透鏡群的透鏡單元來拍攝被攝物;透鏡單元保持部,用於在所述測定圖表設置部與所述攝影元件單元保持部之間的所述軸上保持所述透鏡單元;探測器推壓部,將第一探測器推壓至由所述透鏡單元保持部所保持的所述透鏡單元;構件推壓部,向所述透鏡單元推壓構件以施加如下所述的力,所述力與在由所述探測器推壓部將所述第一探測器推壓至所述透鏡單元的狀態下施加至所述透鏡單元的且跟所述透鏡群的光軸正交的方向的力朝向相反方向;控制部,使所述測定圖表設置部、所述透鏡單元保持部及所述攝影元件單元保持部中的至少任一處在所述軸方向的相對位置發生變化,在各相對位置處,驅動所述攝影元件單元的所述攝影元件,藉由所述攝影元件而通過所述透鏡單元來拍攝所述測定圖表;調整部,基於由所述攝影元件拍攝所述測定圖表所得的攝影信號,調整所述攝影元件單元相對於所述透鏡單元的所述軸方向位置以及斜率中的至少一者;以及單元固定部,將經所述調整部調整後的所述攝影元件單元固定於所述透鏡單元。 The manufacturing apparatus of the photographic module of the present invention includes a measurement chart setting unit for providing a measurement chart, and a photographic element unit holding unit for arranging an axis orthogonal to the measurement chart provided in the measurement chart setting unit. Holding a photographic element unit having a photographic element that captures a subject through a lens unit having a lens group, and a lens unit holding portion for holding the measurement chart setting portion and the photographic element unit The lens unit is held on the shaft; the detector pressing portion pushes the first detector to the lens unit held by the lens unit holding portion; the member pressing portion, to the The lens unit pushes the member to apply a force applied to the lens unit in a state where the first detector is pushed to the lens unit by the probe pressing portion And a force in a direction orthogonal to an optical axis of the lens group faces in an opposite direction; and a control unit causes the measurement chart setting unit, the lens unit holding unit, and the imaging element unit holding unit Changing the relative position of the element in the axial direction, driving the imaging element of the photographic element unit at each relative position, and taking the measurement by the lens unit by the photographic element a graph; an adjustment unit that adjusts at least one of an axial direction position and a slope of the photographing element unit with respect to the lens unit based on an image pickup signal obtained by photographing the measurement chart by the photographing element; and a unit fixing The photographic element unit adjusted by the adjustment unit is fixed to the lens unit.

根據本發明,可提供一種能夠正確決定攝影元件單元與透鏡單元的對位時的透鏡單元的位置以提高攝影品質的攝影模組的製造方法以及製造裝置。 According to the present invention, it is possible to provide a manufacturing method and a manufacturing apparatus of a photographing module capable of accurately determining the position of the lens unit when the photographing element unit and the lens unit are aligned to improve the photographing quality.

10‧‧‧透鏡單元 10‧‧‧ lens unit

11‧‧‧框體 11‧‧‧ frame

11a‧‧‧框體的頂面 11a‧‧‧ top surface of the frame

11b、73c、75c‧‧‧開口 11b, 73c, 75c‧‧

11c、11d、11e、11f‧‧‧框體的側面 Side of the frame of 11c, 11d, 11e, 11f‧‧

12‧‧‧透鏡群 12‧‧‧ lens group

12A~12D‧‧‧透鏡 12A~12D‧‧ lens

13‧‧‧可撓性基板 13‧‧‧Flexible substrate

14‧‧‧透鏡單元端子部 14‧‧‧ lens unit terminal

14A~14F、14a~14l‧‧‧透鏡單元端子 14A~14F, 14a~14l‧‧‧ lens unit terminal

15‧‧‧透鏡鏡筒 15‧‧‧Lens tube

16‧‧‧透鏡驅動裝置 16‧‧‧Lens drive

16A‧‧‧x方向VCM(第二透鏡驅動部) 16A‧‧‧X direction VCM (second lens drive unit)

16B‧‧‧x方向霍爾元件 16B‧‧‧ direction Hall element

16C‧‧‧y方向VCM(第三透鏡驅動部) 16C‧‧‧y direction VCM (third lens drive unit)

16D‧‧‧y方向霍爾元件 16D‧‧‧y direction Hall element

16E‧‧‧z方向VCM(第一透鏡驅動部) 16E‧‧‧z direction VCM (first lens drive unit)

16F‧‧‧z方向霍爾元件 16F‧‧‧z direction Hall element

17‧‧‧構件 17‧‧‧ components

19‧‧‧底部塊體 19‧‧‧Bottom block

20‧‧‧攝影元件單元 20‧‧‧Photographic component unit

21‧‧‧基板 21‧‧‧Substrate

22‧‧‧可撓性基板 22‧‧‧Flexible substrate

23‧‧‧外部連接用端子部 23‧‧‧External connection terminal

24‧‧‧攝影元件單元端子部 24‧‧‧Photographic unit terminal

25‧‧‧保護支架 25‧‧‧Protection bracket

26‧‧‧保護玻璃 26‧‧‧protective glass

27‧‧‧攝影元件 27‧‧‧Photographic components

27a‧‧‧攝影面 27a‧‧‧Photoface

71‧‧‧圖表單元 71‧‧‧ Chart unit

71a‧‧‧框體 71a‧‧‧ frame

73‧‧‧準直單元 73‧‧‧ Collimation unit

73a、117、121‧‧‧托架 73a, 117, 121‧‧‧ brackets

73b‧‧‧準直透鏡 73b‧‧‧ Collimating lens

75‧‧‧透鏡單元保持部 75‧‧‧Lens unit holding unit

75a‧‧‧吸附頭 75a‧‧‧Adsorption head

75b‧‧‧抽吸孔 75b‧‧‧ suction hole

75d‧‧‧吸附面 75d‧‧‧Adsorption surface

75e‧‧‧抽吸部 75e‧‧‧Sucking Department

75f‧‧‧框 75f‧‧‧ box

77‧‧‧通電機構 77‧‧‧Electrified institutions

79‧‧‧攝影元件單元保持部 79‧‧‧Photographic unit holding unit

81‧‧‧黏著劑供給部 81‧‧‧Adhesive Supply Department

83a、83b‧‧‧紫外線燈 83a, 83b‧‧‧ ultraviolet light

85‧‧‧控制部 85‧‧‧Control Department

87‧‧‧面(作業台) 87‧‧‧ face (job)

89‧‧‧測定圖表 89‧‧‧Determination chart

89a‧‧‧圖表面中心 89a‧‧‧ surface center

91‧‧‧光源 91‧‧‧Light source

99‧‧‧第1滑台 99‧‧‧1st slide

99a、113A、113B、123a‧‧‧平台部 99a, 113A, 113B, 123a‧‧‧ Platform Department

100‧‧‧攝影模組 100‧‧‧Photography module

113‧‧‧探測器單元 113‧‧‧Detector unit

113a、113b‧‧‧探測器 113a, 113b‧‧ Detector

115‧‧‧夾盤手 115‧‧‧ chucker

115a‧‧‧夾持構件 115a‧‧‧Clamping members

115b‧‧‧致動器 115b‧‧‧Actuator

119‧‧‧雙軸旋轉平台 119‧‧‧Two-axis rotating platform

123‧‧‧第2滑台 123‧‧‧2nd slide

127‧‧‧連接器纜線 127‧‧‧Connector cable

131‧‧‧輸入部 131‧‧‧ Input Department

133‧‧‧顯示部 133‧‧‧Display Department

145‧‧‧透鏡驅動驅動器 145‧‧‧Lens Drive Driver

147‧‧‧攝影元件驅動器 147‧‧‧Photographic component driver

149‧‧‧合焦座標值獲取電路 149‧‧‧Focus coordinate acquisition circuit

151‧‧‧成像面計算電路 151‧‧‧Image surface calculation circuit

153‧‧‧調整值計算電路 153‧‧‧ adjustment value calculation circuit

200‧‧‧攝影模組製造裝置 200‧‧‧Photographic module manufacturing device

Ax‧‧‧光軸 Ax‧‧‧ optical axis

CH1、CH2、CH3、CH4、CH5‧‧‧圖表影像 CH1, CH2, CH3, CH4, CH5‧‧‧ chart images

L1、L2‧‧‧直線 L1, L2‧‧‧ straight line

Px‧‧‧水平圖表影像 Px‧‧‧ horizontal chart image

Py‧‧‧垂直圖表影像 Py‧‧ vertical chart image

S1~S14‧‧‧步驟 S1~S14‧‧‧Steps

x‧‧‧與z方向正交的方向(第二方向) X‧‧‧direction orthogonal to the z direction (second direction)

y‧‧‧與z方向正交的方向(第三方向) Y‧‧‧direction orthogonal to the z direction (third direction)

z‧‧‧沿著光軸的方向(第一方向) Z‧‧‧direction along the optical axis (first direction)

圖1是攝影模組100的外觀立體圖。 FIG. 1 is an external perspective view of a photographing module 100.

圖2是攝影模組100的外觀立體圖。 FIG. 2 is an external perspective view of the photographing module 100.

圖3是在圖1所示的攝影模組100中省略了透鏡單元10的狀態的攝影元件單元20的外觀立體圖。 FIG. 3 is an external perspective view of the imaging element unit 20 in a state in which the lens unit 10 is omitted in the imaging module 100 shown in FIG. 1 .

圖4是圖1所示的攝影模組100的A-A線剖面圖。 4 is a cross-sectional view taken along line A-A of the photographing module 100 shown in FIG. 1.

圖5是表示圖2所示的透鏡單元10內的電性連接結構的圖。 Fig. 5 is a view showing an electrical connection structure in the lens unit 10 shown in Fig. 2 .

圖6是表示攝影模組100的製造裝置200的概略結構的側面圖。 FIG. 6 is a side view showing a schematic configuration of a manufacturing apparatus 200 of the photographing module 100.

圖7是測定圖表的正面圖。 Fig. 7 is a front view of the measurement chart.

圖8是表示攝影模組製造裝置200對透鏡單元10與攝影元件單元20的保持狀態的說明圖。 FIG. 8 is an explanatory view showing a state in which the photographing module manufacturing apparatus 200 holds the lens unit 10 and the photographing element unit 20.

圖9是表示透鏡單元保持部75的吸附頭75a上形成的開口75c與透鏡單元10的框體11的頂面11a上形成的開口11b的關係的圖。 FIG. 9 is a view showing a relationship between an opening 75c formed in the adsorption head 75a of the lens unit holding portion 75 and an opening 11b formed in the top surface 11a of the casing 11 of the lens unit 10.

圖10是用於說明由透鏡單元保持部75吸附保持透鏡單元10時的空氣流動的圖。 FIG. 10 is a view for explaining the flow of air when the lens unit holding portion 75 sucks and holds the lens unit 10.

圖11是用於說明在圖10中,開口75c的面積比開口11a的面積小時的空氣流動的圖。 Fig. 11 is a view for explaining the flow of air in which the area of the opening 75c is smaller than the area of the opening 11a in Fig. 10 .

圖12是自攝影元件單元保持部79側觀察探測器單元113的圖。 FIG. 12 is a view of the probe unit 113 viewed from the side of the photographic element unit holding portion 79.

圖13是表示攝影模組製造裝置200的內部結構的方塊圖。 FIG. 13 is a block diagram showing the internal structure of the photographing module manufacturing apparatus 200.

圖14是用於說明攝影模組製造裝置200對攝影模組的製造步驟的流程圖。 FIG. 14 is a flowchart for explaining a manufacturing procedure of the photographing module by the photographing module manufacturing apparatus 200.

圖15是表示探測器單元113的變形例的圖。 FIG. 15 is a view showing a modification of the probe unit 113.

圖16是表示探測器單元113的變形例的圖。 FIG. 16 is a view showing a modification of the probe unit 113.

以下,參照附圖來說明本發明的實施形態。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

圖1以及圖2是攝影模組100的外觀立體圖。 1 and 2 are external perspective views of the photographing module 100.

攝影模組100包括:透鏡單元10,具有透鏡群12;攝影元件單元20,被固定於透鏡單元10,且具有通過透鏡群12來拍攝被攝物的攝影元件(圖1中未圖示)。 The photographing module 100 includes a lens unit 10 having a lens group 12, and a photographing element unit 20 fixed to the lens unit 10 and having an imaging element (not shown in FIG. 1) that images an object by the lens group 12.

圖1及圖2中,將沿著透鏡群12的光軸Ax的方向設為z方向,將與z方向正交的兩個方向且彼此正交的兩個方向分別設為x方向、y方向。圖1與圖2是自y方向上的一方向與該一方向的相反方向分別觀察時的立體圖。 In FIGS. 1 and 2, the direction along the optical axis Ax of the lens group 12 is set to the z direction, and the two directions orthogonal to the z direction and orthogonal to each other are defined as the x direction and the y direction. . 1 and 2 are perspective views when one direction from the y direction and the opposite direction of the one direction are respectively observed.

透鏡單元10具備將後述的各結構構件收容於內部的例如金屬製的框體11。框體11為立方體形狀,框體11的頂面11a為與透鏡群12的光軸Ax垂直的面。框體11的4個側面11c、11d、 11e、11f中的側面11c與側面11d為夾著光軸Ax而相向的面,側面11e與側面11f為夾著光軸Ax而相向的面。 The lens unit 10 is provided with, for example, a metal casing 11 in which each structural member to be described later is housed. The casing 11 has a cubic shape, and the top surface 11a of the casing 11 is a surface perpendicular to the optical axis Ax of the lens group 12. Four side faces 11c, 11d of the casing 11, The side surface 11c and the side surface 11d of 11e and 11f are surfaces facing each other across the optical axis Ax, and the side surface 11e and the side surface 11f are surfaces facing each other across the optical axis Ax.

在頂面11a上,形成有以透鏡群12的光軸Ax為中心的開口11b。攝影模組100將被攝物光自該開口11b導入至透鏡群12而進行攝影。 On the top surface 11a, an opening 11b centering on the optical axis Ax of the lens group 12 is formed. The photographing module 100 introduces the subject light from the opening 11b to the lens group 12 to perform photographing.

被收容於框體11中的可撓性(flexible)基板13的一部分自框體11的側面11e以及側面11f露出。在該可撓性基板13的露出部分的前端,連接有包含作為電性連接部的端子14A~14F以及端子14a~14l的透鏡單元端子部14。透鏡單元端子部14中所含的各端子自框體11露出的露出面垂直於y方向。 A part of the flexible substrate 13 housed in the casing 11 is exposed from the side surface 11e and the side surface 11f of the casing 11. A lens unit terminal portion 14 including terminals 14A to 14F and terminals 14a to 14l as electrical connecting portions is connected to the distal end of the exposed portion of the flexible substrate 13. The exposed surface of each of the terminals included in the lens unit terminal portion 14 exposed from the housing 11 is perpendicular to the y direction.

自框體11的側面11e露出的各端子的露出面的中心與自框體11的側面11f露出的各端子的露出面的中心位於與光軸Ax正交的平面上。而且,自框體11的側面11f露出的任一端子對應於自框體11的側面11e露出的各端子,將對應的2個端子的露出面的中心彼此連結的直線與正交於光軸Ax的y方向平行。 The center of the exposed surface of each terminal exposed from the side surface 11e of the casing 11 and the center of the exposed surface of each terminal exposed from the side surface 11f of the casing 11 are located on a plane orthogonal to the optical axis Ax. Further, any of the terminals exposed from the side surface 11f of the casing 11 corresponds to each terminal exposed from the side surface 11e of the casing 11, and a line connecting the centers of the exposed surfaces of the corresponding two terminals to each other is orthogonal to the optical axis Ax. The y direction is parallel.

圖3是在圖1、圖2中所示的攝影模組100中省略了透鏡單元10的狀態的外觀立體圖。 FIG. 3 is an external perspective view showing a state in which the lens unit 10 is omitted in the photographing module 100 shown in FIGS. 1 and 2 .

如圖3所示,攝影元件單元20具備:基板21,形成有CCD影像感測器或CMOS影像感測器等攝影元件27;以及可撓性基板22,與基板21電性連接。 As shown in FIG. 3, the imaging element unit 20 includes a substrate 21 on which an imaging element 27 such as a CCD image sensor or a CMOS image sensor is formed, and a flexible substrate 22 that is electrically connected to the substrate 21.

攝影元件27的畫素間距(pitch)並無特別限定,但使用1.0μm以下者。此處,所謂畫素間距,是指攝影元件27所具有 的畫素中所含的光電轉換區域的中心間距離中最小的距離。 The pixel pitch of the imaging element 27 is not particularly limited, but 1.0 μm or less is used. Here, the pixel spacing means that the imaging element 27 has The smallest distance between the centers of the photoelectric conversion regions contained in the pixels.

近年來,伴隨畫素數的增加,攝影元件的畫素間距變窄,但若畫素間距變窄,則每1個畫素的面積變小。藉此,容許彌散圓的半徑變小,聚焦深度變淺。進而,必須增多每1個畫素的聚光量,因此存在透鏡的F數(F-number)也變小的傾向。 In recent years, as the number of pixels increases, the pixel pitch of the imaging element is narrowed. However, if the pixel pitch is narrowed, the area per pixel is small. Thereby, the radius of the diffusion circle is allowed to become small, and the depth of focus becomes shallow. Further, since it is necessary to increase the amount of light collected per one pixel, the F-number of the lens tends to be small.

由於該些原因,近年來的攝影模組要求聚焦深度非常淺,且透鏡單元與攝影元件單元的對位精度高者。若畫素間距為1μm以下,則要求特別高的對位精度。 For these reasons, in recent years, the photographic module requires a very shallow depth of focus, and the alignment accuracy of the lens unit and the photographic element unit is high. If the pixel pitch is 1 μm or less, a particularly high alignment accuracy is required.

在基板21上形成有筒狀的保護支架(cover holder)25,在保護支架25內部配置有攝影元件27。在保護支架25的中空部,在攝影元件27上方嵌入有圖示省略的保護玻璃(cover glass)。 A cylindrical cover holder 25 is formed on the substrate 21, and an imaging element 27 is disposed inside the protective holder 25. In the hollow portion of the protective holder 25, a cover glass (not shown) is embedded in the imaging element 27.

在保護支架25外側的基板21表面,設置有包含多個端子的攝影元件單元端子部24,所述多個端子用於與透鏡單元10進行電性連接。攝影元件單元端子部24也夾著攝影元件27而設置在相反側的基板21表面。 On the surface of the substrate 21 outside the protective holder 25, a photographic element unit terminal portion 24 including a plurality of terminals for electrically connecting to the lens unit 10 is provided. The photographic element unit terminal portion 24 is also provided on the surface of the substrate 21 on the opposite side with the photographic element 27 interposed therebetween.

在基板21上,設置有與攝影元件27的資料(data)輸出用端子以及驅動用端子等連接的攝影元件用配線。攝影元件用配線經由設置於可撓性基板22上的配線,與設置在可撓性基板22端部的外部連接用端子部23連接。外部連接用端子部23作為與攝影元件27電性連接的電性連接部發揮功能。 The substrate 21 is provided with an imaging element wiring that is connected to a data output terminal of the imaging element 27, a driving terminal, and the like. The wiring for the imaging element is connected to the external connection terminal portion 23 provided at the end of the flexible substrate 22 via the wiring provided on the flexible substrate 22. The external connection terminal portion 23 functions as an electrical connection portion that is electrically connected to the imaging element 27.

而且,在基板21上,設置有與攝影元件單元端子部中所含的各端子連接的透鏡單元用配線。透鏡單元用配線經由設置 於可撓性基板22上的配線,與設置在可撓性基板22端部的外部連接用端子部23連接。 Further, the substrate 21 is provided with wiring for the lens unit that is connected to each terminal included in the terminal portion of the imaging element unit. Lens unit wiring via setting The wiring on the flexible substrate 22 is connected to the external connection terminal portion 23 provided at the end of the flexible substrate 22.

在將透鏡單元10與攝影元件單元20予以固定的狀態下,透鏡單元端子部14的各端子及與其對應的攝影元件單元端子部24的各端子電性連接。 In a state where the lens unit 10 and the imaging element unit 20 are fixed, the respective terminals of the lens unit terminal portion 14 and the respective terminals of the corresponding imaging element unit terminal portion 24 are electrically connected.

圖4是圖1、圖2所示的攝影模組100的A-A線剖面圖。 4 is a cross-sectional view taken along line A-A of the photographing module 100 shown in FIGS. 1 and 2.

如圖4所示,攝影元件27被配置在基板21上所設的凹部內,並且由設置於基板21上的保護支架25以及被嵌入保護支架25中的保護玻璃26予以密封。 As shown in FIG. 4, the photographic element 27 is disposed in a recess provided in the substrate 21, and is sealed by a protective bracket 25 provided on the substrate 21 and a cover glass 26 embedded in the protective bracket 25.

而且,如圖4所示,透鏡單元10包括:透鏡群12,包含被配置於保護玻璃26上方的多個(圖4的例子中為12A~12D這4個)透鏡;筒狀的透鏡鏡筒(lens barrel)15,支持透鏡群12;底部塊體(block)19,被載置於攝影元件單元20的保護支架25的上表面;可撓性基板13,被固定在底部塊體19上;透鏡單元端子部(圖4中為剖面,因此僅圖示出端子14c、14F),連接於可撓性基板13;以及透鏡驅動裝置16,形成於可撓性基板13上方。 Further, as shown in FIG. 4, the lens unit 10 includes a lens group 12 including a plurality of lenses (four of 12A to 12D in the example of FIG. 4) disposed above the cover glass 26; a cylindrical lens barrel a lens barrel 15 supporting a lens group 12; a bottom block 19 placed on an upper surface of the protective holder 25 of the photographic element unit 20; and a flexible substrate 13 fixed to the bottom block 19; The lens unit terminal portion (the cross-section in FIG. 4, only the terminals 14c and 14F are shown) is connected to the flexible substrate 13 and the lens driving device 16 is formed above the flexible substrate 13.

透鏡群12、透鏡鏡筒15、底部塊體19、可撓性基板13以及透鏡驅動裝置16被收容在框體11內。 The lens group 12, the lens barrel 15, the bottom block 19, the flexible substrate 13, and the lens driving device 16 are housed in the housing 11.

透鏡驅動裝置16具備第一透鏡驅動部、第二透鏡驅動部、第三透鏡驅動部、及作為位置檢測元件的霍爾(Hall)元件,所述霍爾元件檢測透鏡的位置。 The lens driving device 16 includes a first lens driving unit, a second lens driving unit, a third lens driving unit, and a Hall element as a position detecting element that detects the position of the lens.

第一透鏡驅動部是如下所述的驅動部,即,用於使透鏡 群12中的至少一部分透鏡(圖4的例子中,設為透鏡群12的所有透鏡)朝沿著透鏡群12的光軸Ax的第一方向(圖1的z方向)移動,以進行聚焦調整。 The first lens driving portion is a driving portion as described below, that is, for making a lens At least a part of the lenses of the group 12 (all the lenses of the lens group 12 in the example of FIG. 4) are moved in the first direction (z direction of FIG. 1) along the optical axis Ax of the lens group 12 to perform focus adjustment. .

第二透鏡驅動部以及第三透鏡驅動部是如下所述的驅動部,即,用於使透鏡群12中的至少一部分透鏡(圖4的例子中,設為透鏡群12的所有透鏡)朝與透鏡群12的光軸Ax正交的第二方向(圖1的x方向)以及第三方向(圖1的y方向)移動,對由攝影元件27所拍攝的像的抖動進行修正。 The second lens driving unit and the third lens driving unit are driving units that are used to make at least a part of the lenses of the lens group 12 (all lenses of the lens group 12 in the example of FIG. 4) The second direction (the x direction in FIG. 1) and the third direction (the y direction in FIG. 1) in which the optical axis Ax of the lens group 12 are orthogonally moved, and the shake of the image captured by the imaging element 27 is corrected.

第一透鏡驅動部與第二透鏡驅動部與第三透鏡驅動部分別為用於使透鏡移動的致動器(actuator),本實施形態中使用音圈馬達(Voice Coil Motor,VCM),但亦可採用眾所周知的其他部件。 Each of the first lens driving unit, the second lens driving unit, and the third lens driving unit is an actuator for moving the lens. In the present embodiment, a voice coil motor (VCM) is used, but Other well known components can be used.

圖5是表示圖1所示的透鏡單元10的電性連接結構的方塊圖。 Fig. 5 is a block diagram showing an electrical connection structure of the lens unit 10 shown in Fig. 1.

如圖5所示,透鏡驅動裝置16具備:x方向VCM 16A(所述第二透鏡驅動部),用於使透鏡群12朝x方向移動;x方向霍爾元件16B,用於檢測透鏡群12的x方向位置;y方向VCM 16C(所述第三透鏡驅動部),用於使透鏡群12朝y方向移動;y方向霍爾元件16D,用於檢測透鏡群12的y方向位置;z方向VCM 16E(所述第一透鏡驅動部),用於使透鏡群12朝z方向移動;以及z方向霍爾元件16F,用於檢測透鏡群12的z方向位置。 As shown in FIG. 5, the lens driving device 16 includes an x-direction VCM 16A (the second lens driving portion) for moving the lens group 12 in the x direction, and an x-direction Hall element 16B for detecting the lens group 12. The x-direction position; the y-direction VCM 16C (the third lens driving portion) for moving the lens group 12 in the y direction; the y-direction Hall element 16D for detecting the y-direction position of the lens group 12; The VCM 16E (the first lens driving unit) for moving the lens group 12 in the z direction, and the z direction Hall element 16F for detecting the z direction position of the lens group 12.

x方向VCM 16A具有2個端子,這2個端子分別經由 形成在可撓性基板13上的配線而與端子14A、端子14B電性連接。 The x-direction VCM 16A has two terminals, which are respectively via The wiring formed on the flexible substrate 13 is electrically connected to the terminal 14A and the terminal 14B.

x方向霍爾元件16B具有4個端子,這4個端子分別經由形成在可撓性基板13上的配線而與端子14a、端子14b、端子14c、端子14d電性連接。 The x-direction Hall element 16B has four terminals, and the four terminals are electrically connected to the terminal 14a, the terminal 14b, the terminal 14c, and the terminal 14d via wires formed on the flexible substrate 13, respectively.

y方向VCM 16C具有2個端子,這2個端子分別經由形成在可撓性基板13上的配線而與端子14C、端子14D電性連接。 The y-direction VCM 16C has two terminals, and the two terminals are electrically connected to the terminal 14C and the terminal 14D via wires formed on the flexible substrate 13, respectively.

y方向霍爾元件16D具有4個端子,這4個端子分別經由形成在可撓性基板13上的配線而與端子14e、端子14f、端子14g、端子14h電性連接。 The y-direction Hall element 16D has four terminals, and the four terminals are electrically connected to the terminal 14e, the terminal 14f, the terminal 14g, and the terminal 14h via wires formed on the flexible substrate 13, respectively.

z方向VCM 16E具有2個端子,這2個端子分別經由形成在可撓性基板13上的配線而與端子14E、端子14F電性連接。 The z-direction VCM 16E has two terminals, and the two terminals are electrically connected to the terminal 14E and the terminal 14F via wires formed on the flexible substrate 13, respectively.

z方向霍爾元件16F具有4個端子,這4個端子分別經由形成在可撓性基板13上的配線而與端子14i、端子14j、端子14k、端子14l電性連接。 The z-direction Hall element 16F has four terminals, and the four terminals are electrically connected to the terminal 14i, the terminal 14j, the terminal 14k, and the terminal 14l via wires formed on the flexible substrate 13, respectively.

再者,各透鏡驅動部與各霍爾元件所需的端子數僅為一例,並不限定於所述者。 In addition, the number of terminals required for each lens drive unit and each Hall element is only an example, and is not limited to the above.

對於以上結構的攝影模組100,首先分別製造透鏡單元10與攝影元件單元20。並且,進行調整步驟,該調整步驟是以藉由透鏡群12所成像的被攝物的成像面與攝影元件27的攝影面一致的方式,進行透鏡單元10與攝影元件單元20的對位,隨後,將透鏡單元10與攝影元件單元20黏著固定。 With the photography module 100 of the above configuration, the lens unit 10 and the imaging element unit 20 are first manufactured separately. Further, an adjustment step of aligning the lens unit 10 with the photographic element unit 20 in such a manner that the imaging surface of the subject imaged by the lens group 12 coincides with the photographic surface of the photographic element 27 is performed. The lens unit 10 and the photographic element unit 20 are adhered and fixed.

所述調整步驟是在藉由製造裝置來以規定的姿勢保持 透鏡單元10的狀態下,移動攝影元件單元20來進行。 The adjusting step is maintained in a prescribed posture by manufacturing the device In the state of the lens unit 10, the imaging element unit 20 is moved.

圖6是表示攝影模組100的製造裝置200的概略結構的側面圖。 FIG. 6 is a side view showing a schematic configuration of a manufacturing apparatus 200 of the photographing module 100.

攝影模組製造裝置200調整攝影元件單元20相對於透鏡單元10的位置以及斜率,在調整後,將攝影元件單元20固定於透鏡單元10而完成攝影模組100。 The photographing module manufacturing apparatus 200 adjusts the position and the inclination of the photographing element unit 20 with respect to the lens unit 10, and after the adjustment, fixes the photographing element unit 20 to the lens unit 10 to complete the photographing module 100.

攝影模組製造裝置200具備圖表單元71、準直(collimator)單元73、透鏡單元保持部75、通電機構77、攝影元件單元保持部79、黏著劑供給部81、作為光源的紫外線燈83a及紫外線燈83b、以及控制該些部分的控制部85。圖表單元71、準直單元73、透鏡單元保持部75、通電機構77以及攝影元件單元保持部79被支撐於與重力方向平行的面87,且在面87上沿一方向排列配置。 The photographing module manufacturing apparatus 200 includes a chart unit 71, a collimator unit 73, a lens unit holding unit 75, an energizing mechanism 77, a photographing element unit holding unit 79, an adhesive supply unit 81, an ultraviolet lamp 83a as a light source, and ultraviolet rays. A lamp 83b and a control unit 85 that controls the portions. The chart unit 71, the collimating unit 73, the lens unit holding portion 75, the energizing mechanism 77, and the photographic element unit holding portion 79 are supported by the surface 87 parallel to the direction of gravity, and are arranged side by side in one direction on the surface 87.

圖表單元71包含箱狀的框體71a、嵌合於框體71a內的測定圖表89及光源91,該光源91被組裝於框體71a內,並自背面以平行光來對測定圖表89進行照明。測定圖表89例如由具有光擴散性的塑膠(plastic)板所形成。測定圖表89的圖表面與重力方向垂直。測定圖表89亦可設為可拆卸,從而可更換為其他測定圖表。圖表單元71作為測定圖表設置部而發揮功能,所述測定圖表設置部用於將測定圖表89設置於測定圖表89的圖表面的垂線且通過圖表面中心89a的線即Z軸上。 The chart unit 71 includes a box-shaped housing 71a, a measurement chart 89 and a light source 91 that are fitted into the housing 71a. The light source 91 is incorporated in the housing 71a, and the measurement chart 89 is illuminated by parallel light from the back surface. . The measurement chart 89 is formed, for example, of a plastic plate having light diffusibility. The surface of the graph of the measurement chart 89 is perpendicular to the direction of gravity. The measurement chart 89 can also be detached so that it can be replaced with other measurement charts. The chart unit 71 functions as a measurement chart setting unit for setting the measurement chart 89 on the vertical axis of the graph surface of the measurement chart 89 and passing through the Z-axis which is the line of the center 89a of the drawing.

圖7是表示測定圖表89的圖表面的圖。測定圖表89為 矩形狀,在設有圖表圖案(chart pattern)的圖表面上,分別印刷有多個圖表影像CH1、CH2、CH3、CH4、CH5。 FIG. 7 is a view showing the surface of the graph of the measurement chart 89. Determination chart 89 is In a rectangular shape, a plurality of chart images CH1, CH2, CH3, CH4, and CH5 are printed on a chart surface provided with a chart pattern.

多個圖表影像全部為相同的影像,是使黑色的線以規定的固定間隔而排列的所謂階梯(ladder)狀的圖表圖案。各圖表影像分別包含沿影像的水平方向排列的水平圖表影像Px及沿影像的垂直方向排列的垂直圖表影像Py。 All of the plurality of chart images are the same image, and are a so-called ladder-like chart pattern in which black lines are arranged at a predetermined fixed interval. Each of the chart images includes a horizontal chart image Px arranged in the horizontal direction of the image and a vertical chart image Py arranged in the vertical direction of the image.

準直單元73是測定圖表89的圖表面的垂線,在通過圖表面中心89a的線即Z軸上,與圖表單元71相對配置。 The collimation unit 73 is a perpendicular line on the graph surface of the measurement chart 89, and is disposed to face the graph unit 71 on the Z axis which is a line passing through the center 89a of the drawing surface.

準直單元73包含被固定於作業台87的托架(bracket)73a與準直透鏡73b。 The collimating unit 73 includes a bracket 73a and a collimating lens 73b that are fixed to the work table 87.

準直透鏡73b對自圖表單元71放射的光進行聚光,使聚光後的光通過形成在托架73a上的開口73c而入射至透鏡單元保持部75。藉由調整圖表單元71與準直單元73的間隔,可將透鏡單元10所拍攝的測定圖表89的虛像位置配置於任意距離(例如無限遠的位置或適合於透鏡單元10的預期攝像的標準的被攝物距離)。 The collimator lens 73b condenses the light emitted from the chart unit 71, and causes the condensed light to enter the lens unit holding portion 75 through the opening 73c formed in the bracket 73a. By adjusting the interval between the chart unit 71 and the collimating unit 73, the virtual image position of the measurement chart 89 taken by the lens unit 10 can be arranged at an arbitrary distance (for example, an infinity position or a standard suitable for the intended imaging of the lens unit 10). Subject distance).

圖8是表示攝影模組製造裝置200對透鏡單元10與攝影元件單元20的保持狀態的說明圖。 FIG. 8 is an explanatory view showing a state in which the photographing module manufacturing apparatus 200 holds the lens unit 10 and the photographing element unit 20.

透鏡單元保持部75用於在圖表單元71與攝影元件單元保持部79之間的Z軸上保持透鏡單元10。 The lens unit holding portion 75 is for holding the lens unit 10 on the Z axis between the chart unit 71 and the photographic element unit holding portion 79.

如圖8所示,透鏡單元保持部75包括:吸附頭75a,具有用於吸附透鏡單元10的吸附面75d;抽吸孔75b(圖8的例子 中為4個抽吸孔),形成於吸附面75d上;以及抽吸部75e(參照圖13,圖6、圖8中未圖示),自抽吸孔75b抽吸空氣。 As shown in Fig. 8, the lens unit holding portion 75 includes a suction head 75a having an adsorption surface 75d for adsorbing the lens unit 10, and a suction hole 75b (example of Fig. 8). In the middle, four suction holes are formed on the adsorption surface 75d, and the suction portion 75e (see FIG. 13, which is not shown in FIGS. 6 and 8), and air is sucked from the suction hole 75b.

吸附頭75a例如由金屬以具有剛性的方式形成,且設置有使經準直單元73聚光後的光通過的開口75c。吸附頭75a在Z軸上與準直單元73面對面地配置,開口75c的中心與Z軸一致。 The adsorption head 75a is formed of, for example, a metal in a rigid manner, and is provided with an opening 75c through which the light condensed by the collimation unit 73 passes. The adsorption head 75a is disposed face to face with the collimation unit 73 on the Z axis, and the center of the opening 75c coincides with the Z axis.

吸附頭75a的吸附面75d為垂直於Z軸的面。吸附頭75a的吸附面75d與測定圖表89朝向相反側而配置。 The adsorption surface 75d of the adsorption head 75a is a surface perpendicular to the Z axis. The adsorption surface 75d of the adsorption head 75a is disposed on the side opposite to the measurement chart 89.

吸附頭75a的吸附面75d上形成的4個抽吸孔75b經由未圖示的配管而連結於抽吸部75e。 The four suction holes 75b formed in the adsorption surface 75d of the adsorption head 75a are connected to the suction portion 75e via a pipe (not shown).

抽吸部75e包含使負壓作用於抽吸孔75b的真空源。藉由抽吸部75e使負壓作用於抽吸孔75b,從而自抽吸孔75b抽吸空氣,接觸至吸附面75d的物體藉由該抽吸力而吸附於吸附面75d。抽吸部75e由控制部85予以控制。 The suction portion 75e includes a vacuum source that causes a negative pressure to act on the suction hole 75b. The negative pressure is applied to the suction hole 75b by the suction portion 75e, so that air is sucked from the suction hole 75b, and the object contacting the adsorption surface 75d is adsorbed to the adsorption surface 75d by the suction force. The suction unit 75e is controlled by the control unit 85.

在圖8的吸附面75d中以符號75f所示的框表示透鏡單元10的框體11的頂面11a的外緣所接觸的範圍。藉由以框75f與透鏡單元10的頂面11a的外緣一致的方式,使透鏡單元10接觸至吸附面75d,從而透鏡單元10的光軸Ax與Z軸一致。 A frame indicated by reference numeral 75f in the adsorption surface 75d of Fig. 8 indicates a range in which the outer edge of the top surface 11a of the casing 11 of the lens unit 10 is in contact. The lens unit 10 is brought into contact with the adsorption surface 75d by the frame 75f being aligned with the outer edge of the top surface 11a of the lens unit 10, whereby the optical axis Ax of the lens unit 10 coincides with the Z axis.

在以框75f與透鏡單元10的頂面11a的外緣一致的方式而使透鏡單元10接觸至吸附面75d的狀態下,框體11的頂面11a堵塞全部4個抽吸孔。藉此,當自抽吸孔75b抽吸空氣時,可使透鏡單元10穩定地吸附於吸附面75d。 In a state where the lens unit 10 is brought into contact with the adsorption surface 75d such that the frame 75f coincides with the outer edge of the top surface 11a of the lens unit 10, the top surface 11a of the frame 11 blocks all four suction holes. Thereby, when air is sucked from the suction hole 75b, the lens unit 10 can be stably adsorbed to the adsorption surface 75d.

圖9是表示透鏡單元保持部75的吸附頭75a上形成的 開口75c與透鏡單元10的框體11的頂面11a上形成的開口11b的關係的圖。 FIG. 9 shows the formation of the adsorption head 75a of the lens unit holding portion 75. A view showing the relationship between the opening 75c and the opening 11b formed in the top surface 11a of the casing 11 of the lens unit 10.

圖9是自攝影元件單元保持部79側觀察使透鏡單元10接觸至吸附面75d的狀態的圖,對於透鏡單元10,僅用虛線來表示框體11的頂面11a的外緣與開口11b。 FIG. 9 is a view showing a state in which the lens unit 10 is brought into contact with the suction surface 75d as viewed from the side of the image sensor unit holding portion 79. For the lens unit 10, the outer edge of the top surface 11a of the frame 11 and the opening 11b are indicated by broken lines.

再者,圖9中,為了用於後文的說明,亦圖示出紫外線燈83a、83b的位置。 Further, in Fig. 9, the positions of the ultraviolet lamps 83a and 83b are also illustrated for the following description.

如圖9所示,沿Z軸方向觀察開口75c時的面積比沿Z軸方向觀察開口11b時的面積大。並且,在圖9的狀態下,當沿Z軸方向觀察時,開口11b的所有區域與開口75c重疊。 As shown in FIG. 9, the area when the opening 75c is viewed in the Z-axis direction is larger than the area when the opening 11b is observed in the Z-axis direction. Further, in the state of FIG. 9, all the areas of the opening 11b overlap with the opening 75c when viewed in the Z-axis direction.

圖10是用於說明由透鏡單元保持部75吸附保持透鏡單元10時的空氣流動的圖。圖10中,一併圖示出自框體11露出的透鏡單元端子部14與後述的探測器113a、113b接觸的狀態。 FIG. 10 is a view for explaining the flow of air when the lens unit holding portion 75 sucks and holds the lens unit 10. In FIG. 10, the state in which the lens unit terminal portion 14 exposed from the casing 11 is in contact with the probes 113a and 113b to be described later is shown together.

圖11是用於說明在圖10中,沿Z軸方向觀察時的開口75c的面積比沿Z軸方向觀察時的開口11a的面積小的情况下的空氣流動的圖。 FIG. 11 is a view for explaining the flow of air when the area of the opening 75c when viewed in the Z-axis direction is smaller than the area of the opening 11a when viewed in the Z-axis direction in FIG.

圖10、圖11所示的符號17示意性地示出了被收容於透鏡單元10的框體11中的構件。 Reference numerals 17 shown in Figs. 10 and 11 schematically show members housed in the casing 11 of the lens unit 10.

如圖10所示,若開口75c的面積大於開口11b的面積,則即使在自抽吸孔75b抽吸空氣的情況下,亦會如黑箭頭所示般產生空氣流動,因此可防止框體11內部產生空氣流動。 As shown in FIG. 10, if the area of the opening 75c is larger than the area of the opening 11b, even if air is sucked from the suction hole 75b, air flow is generated as indicated by the black arrow, so that the frame 11 can be prevented. Air flow is generated inside.

另一方面,如圖11所示,如開口75c的面積小於開口 11b的面積,則在自抽吸孔75b抽吸空氣的情況下,會如黑箭頭所示般產生空氣流動,因此會在框體11內部產生空氣流動。 On the other hand, as shown in FIG. 11, the area of the opening 75c is smaller than the opening. In the case of the area of 11b, when air is sucked from the suction hole 75b, air flow occurs as indicated by the black arrow, and thus air flow is generated inside the casing 11.

透鏡群12的至少一部分透鏡可沿x方向、y方向以及z方向分別移動。因此,若在框體11內部產生空氣流動,則該透鏡會朝未意圖的方向移動,從而難以精度良好地進行透鏡單元10與攝影元件單元20的對位。因此,較佳的是,如圖10所示,使開口75c的面積大於開口11b的面積。 At least a portion of the lenses of lens group 12 are movable in the x-direction, the y-direction, and the z-direction, respectively. Therefore, when air flow occurs inside the casing 11, the lens moves in an unintended direction, and it is difficult to accurately align the lens unit 10 with the photographic element unit 20. Therefore, it is preferable that the area of the opening 75c is made larger than the area of the opening 11b as shown in FIG.

再者,即使如圖11般為開口75c的面積比開口11b的面積小的裝置結構,但只要使透鏡單元保持部75的吸附頭75a的吸附面75d包含橡膠(gum)等彈性體,便可減少吸附面75d與框體11的頂面11a的間隙中的空氣流動,因此可抑制框體11內的空氣流動的產生。 Further, even if the area of the opening 75c is smaller than the area of the opening 11b as shown in Fig. 11, the adsorption surface 75d of the adsorption head 75a of the lens unit holding portion 75 may be made of an elastic body such as rubber. Since the flow of air in the gap between the adsorption surface 75d and the top surface 11a of the casing 11 is reduced, generation of air flow in the casing 11 can be suppressed.

返回圖6的說明,通電機構77包含:第1滑台(slide stage)99;以及探測器單元113,被固定於第1滑台99的平台部99a,具有9個探測器113a(圖6中僅圖示出1個)及9個探測器113b(圖6中僅圖示出1個)。 Returning to the description of FIG. 6, the energizing mechanism 77 includes: a first slide stage 99; and a detector unit 113 fixed to the platform portion 99a of the first slide table 99, and having nine detectors 113a (in FIG. 6 Only one) and nine detectors 113b are shown (only one is shown in Fig. 6).

第1滑台99是電動式的精密平台,通過未圖示的馬達(motor)的旋轉來使滾珠螺桿(ball screw)旋轉,使嚙合於該滾珠螺桿的平台部99a朝Z軸方向移動。平台部99a的移動是由控制部85予以控制。 The first slide table 99 is an electric precision platform, and a ball screw is rotated by rotation of a motor (not shown) to move the platform portion 99a meshed with the ball screw in the Z-axis direction. The movement of the platform unit 99a is controlled by the control unit 85.

圖12是自圖表單元71側沿Z軸方向觀察圖6的探測器單元113的圖。圖12中,示出了透鏡單元10被保持於透鏡單元 保持部75中的狀態。 Fig. 12 is a view of the probe unit 113 of Fig. 6 as seen from the side of the chart unit 71 in the Z-axis direction. In Fig. 12, it is shown that the lens unit 10 is held in the lens unit. The state in the holding portion 75.

如圖12所示,探測器單元113具備由平台部99a所支持的平台部113A、113B。在平台部113A上,設置有9根朝y方向中的一方向(圖12的右朝左的方向)延伸的探測器113a,在平台部113B上,設置有9根朝y方向中的與所述一方向相反的方向(圖12的左朝右的方向)延伸的探測器113b。 As shown in FIG. 12, the probe unit 113 includes platform portions 113A and 113B supported by the platform portion 99a. On the platform portion 113A, nine detectors 113a extending in one of the y directions (the right-to-left direction of FIG. 12) are provided, and on the platform portion 113B, nine of the y directions are provided. A detector 113b extending in a direction opposite to the direction (the left-to-right direction of Fig. 12) is described.

平台部113A、113B分別可沿y方向移動地支持於平台部99a上。平台部113A、113B的移動由控制部85予以控制。 The platform portions 113A, 113B are respectively movably supported on the platform portion 99a in the y direction. The movement of the platform units 113A and 113B is controlled by the control unit 85.

平台部113A以及設置於該平台部113A上的9根探測器113a作為探測器推壓部發揮功能,該探測器推壓部將探測器113a推壓至自被透鏡單元保持部75所保持的透鏡單元10的側面11f露出的端子14A~14D、14a~14e各自的露出面。藉由探測器113a分別接觸至端子14A~14D、14a~14e,從而成為可對該些各端子進行通電的狀態。 The platform portion 113A and the nine probes 113a provided on the platform portion 113A function as a probe pressing portion that presses the probe 113a to the lens held by the lens unit holding portion 75. The exposed surfaces of the terminals 14A to 14D and 14a to 14e exposed by the side surface 11f of the unit 10 are formed. By the probes 113a contacting the terminals 14A to 14D and 14a to 14e, respectively, the terminals can be energized.

在探測器113a被分別推壓至端子14A~14D、14a~14e的狀態下,對於端子14A~14D、14a~14e,至少施加朝向y方向中的一方向(圖12的左朝右的方向)的力。 In a state where the probe 113a is pressed to the terminals 14A to 14D and 14a to 14e, at least one of the terminals 14A to 14D and 14a to 14e is oriented in the y direction (the leftward and rightward directions in Fig. 12). Force.

平台部113B以及設置於該平台部113B上的9根探測器113b將探測器113b推壓至自被透鏡單元保持部75所保持的透鏡單元10的側面11e露出的端子14f~14l、14E、14F各自的露出面。藉由探測器113b分別接觸至端子14f~14l、14E、14F,從而成為可對該些各端子進行通電的狀態。 The platform portion 113B and the nine detectors 113b provided on the platform portion 113B push the probe 113b to the terminals 14f to 14l, 14E, and 14F exposed from the side surface 11e of the lens unit 10 held by the lens unit holding portion 75. Their exposed faces. Each of the terminals can be energized by the probes 113b contacting the terminals 14f to 14l, 14E, and 14F, respectively.

在探測器113b被分別推壓至端子14f~14l、14E、14F的狀態下,對於端子14f~14l、14E、14F,至少施加朝向y方向中的與一方向相反的方向(圖12的左朝右的方向)的力。 In a state where the probe 113b is pressed to the terminals 14f to 14l, 14E, and 14F, respectively, the terminals 14f to 14l, 14E, and 14F are applied in at least one direction opposite to the y direction (the left direction of FIG. 12). The force in the right direction).

因此,平台部113B以及設置於該平台部113B上的9根探測器113b作為構件推壓部發揮功能,該構件推壓部對透鏡單元10施加如下的力,所述力與由探測器113a施加至端子14A~14D、14a~14e的朝向y方向的一方向的力為相反方向的力。 Therefore, the platform portion 113B and the nine probes 113b provided on the platform portion 113B function as a member pressing portion that applies a force to the lens unit 10 that is applied by the probe 113a. The force in one direction toward the y direction of the terminals 14A to 14D and 14a to 14e is a force in the opposite direction.

如此,藉由探測器113a、113b接觸至構成透鏡單元端子部14的各端子,從而可通過探測器單元113來驅動透鏡驅動裝置16,該透鏡驅動裝置16包含第一透鏡驅動部(z方向VCM 16E)、第二透鏡驅動部(x方向VCM 16A)以及第三透鏡驅動部(y方向VCM 16C)。 In this manner, the probes 113a, 113b are in contact with the respective terminals constituting the lens unit terminal portion 14, so that the lens driving device 16 can be driven by the detector unit 113, and the lens driving device 16 includes the first lens driving portion (z direction VCM) 16E), a second lens driving unit (x-direction VCM 16A), and a third lens driving unit (y-direction VCM 16C).

再者,在探測器113a、113b接觸至各端子的露出面的中心的狀態下,自透鏡單元10的框體11的側面11f露出的各端子與探測器113a的接觸點、以及自透鏡單元10的框體11的側面11e露出的各端子與探測器113b的接觸點,被包含在與光軸Ax垂直的平面上。 Further, in a state where the probes 113a and 113b are in contact with the center of the exposed surface of each terminal, the contact point of each terminal exposed from the side surface 11f of the housing 11 of the lens unit 10 with the probe 113a, and the self-lens unit 10 The contact point between each terminal exposed by the side surface 11e of the casing 11 and the probe 113b is included on a plane perpendicular to the optical axis Ax.

攝影元件單元保持部79用於將攝影元件單元20保持於Z軸上。而且,攝影元件單元保持部79藉由控制部85的控制,從而可變更攝影元件單元20的Z軸方向位置以及斜率。 The photographic element unit holding portion 79 is for holding the photographic element unit 20 on the Z axis. Further, the imaging element unit holding unit 79 can change the position and the slope of the imaging element unit 20 in the Z-axis direction by the control of the control unit 85.

此處,攝影元件單元20的斜率是指攝影元件27的攝影面27a相對於與Z軸正交的平面的斜率。 Here, the slope of the photographic element unit 20 refers to the slope of the imaging surface 27a of the photographic element 27 with respect to a plane orthogonal to the Z axis.

攝影元件單元保持部79包含:夾盤手(chuck hand)115,在Z軸上以攝影面27a面向圖表單元71的方式保持攝影元件單元20;雙軸旋轉平台119,保持安裝有夾盤手115的大致曲柄(crank)狀的托架(bracket)117,繞著與Z軸正交的雙軸(水平X軸、垂直Y軸)來調整斜率;以及第2滑台123,保持安裝有雙軸旋轉平台119的托架121並朝Z軸方向移動。 The photographic element unit holding portion 79 includes a chuck hand 115 that holds the photographic element unit 20 on the Z-axis with the photographic surface 27a facing the chart unit 71, and a biaxial rotating platform 119 that holds the chuck hand 115. a roughly crank-like bracket 117 that adjusts the slope about a biaxial axis (horizontal X-axis, vertical Y-axis) orthogonal to the Z-axis; and a second slide 123 that is mounted with a dual-axis The bracket 121 of the rotary table 119 is moved in the Z-axis direction.

夾盤手115如圖8所示,包含:一對夾持構件115a,彎曲成大致曲柄狀;以及致動器(actuator)115b(參照圖6),使該些夾持構件115a在與Z軸正交的X軸方向上移動。夾持構件115a包夾攝影元件單元20的外框,以保持攝影元件單元20。 As shown in FIG. 8, the chuck hand 115 includes a pair of holding members 115a bent into a substantially crank shape, and an actuator 115b (refer to FIG. 6) such that the holding members 115a are in the Z-axis Moves in the orthogonal X-axis direction. The holding member 115a covers the outer frame of the photographic element unit 20 to hold the photographic element unit 20.

而且,夾盤手115以由透鏡單元保持部75所保持的透鏡單元10的光軸Ax與攝影面27a的中心位置大致一致的方式,對由夾持構件115a所夾持的攝影元件單元20進行定位。 Further, the chucker 115 performs the photographic element unit 20 held by the sandwiching member 115a such that the optical axis Ax of the lens unit 10 held by the lens unit holding portion 75 substantially coincides with the center position of the imaging surface 27a. Positioning.

而且,夾盤手115以在沿Z軸方向觀察時,攝影元件單元20的攝影元件單元端子部24的各端子與所保持的透鏡單元10的透鏡單元端子部14的各端子重疊的方式,對由夾持構件115a所夾持的攝影元件單元20進行定位。 Further, when the chuck hand 115 is viewed in the Z-axis direction, the respective terminals of the image pickup unit terminal portion 24 of the image pickup unit 20 overlap with the respective terminals of the lens unit terminal portion 14 of the held lens unit 10, The photographic element unit 20 held by the gripping member 115a is positioned.

雙軸旋轉平台119為電動式的雙軸測角平台(gonio stage),藉由未圖示的2個馬達的旋轉,以攝影面27a的中心位置為旋轉中心,使攝影元件單元20朝向繞X軸的θx方向以及繞與Z軸及X軸正交的Y軸的θy方向傾斜。藉此,在使攝影元件單元20朝各方向傾斜時,攝影面27a的中心位置與Z軸的位置關係不 會發生偏離。 The biaxial rotating platform 119 is an electric two-axis gonio stage, and the photographic element unit 20 is oriented around the X by the rotation of the two motors (not shown) with the center position of the imaging surface 27a as the center of rotation. The θx direction of the axis and the θy direction of the Y axis orthogonal to the Z axis and the X axis are inclined. Thereby, when the photographic element unit 20 is tilted in each direction, the positional relationship between the center position of the photographic surface 27a and the Z axis is not There will be deviations.

第2滑台123是電動式的精密平台,藉由未圖示的馬達的旋轉來使滾珠螺桿旋轉,以使嚙合於該滾珠螺桿的平台部123a朝Z軸方向移動。在平台部123a上固定有托架121。 The second slide table 123 is an electric precision platform, and the ball screw is rotated by rotation of a motor (not shown) to move the platform portion 123a meshed with the ball screw in the Z-axis direction. A bracket 121 is fixed to the platform portion 123a.

在雙軸旋轉平台119上,安裝有連接器纜線(connector cable)127,該連接器纜線127與攝影元件單元20的可撓性基板22的前端所設置的外部連接用端子部23連接。該連接器纜線127輸入攝影元件27的驅動信號,或者輸出自攝影元件27輸出的攝影影像信號。 A connector cable 127 is attached to the biaxial rotating platform 119, and the connector cable 127 is connected to the external connection terminal portion 23 provided at the front end of the flexible substrate 22 of the photographic element unit 20. The connector cable 127 is input to a driving signal of the imaging element 27 or is outputted from a photographic image signal output from the imaging element 27.

黏著劑供給部81與紫外線燈83a、83b構成將透鏡單元10與攝影元件單元20予以固定的單元固定部。 The adhesive supply unit 81 and the ultraviolet lamps 83a and 83b constitute a unit fixing unit that fixes the lens unit 10 and the imaging element unit 20.

黏著劑供給部81在攝影元件單元20相對於透鏡單元10的位置及斜率的調整結束後,向透鏡單元10與攝影元件單元20的間隙中供給藉由光來固化的黏著劑(此處,作為一例,供給紫外線固化型黏著劑)。 After the adjustment of the position and the slope of the imaging element unit 20 with respect to the lens unit 10 is completed, the adhesive supply unit 81 supplies an adhesive which is cured by light to the gap between the lens unit 10 and the imaging element unit 20 (here, For example, an ultraviolet curable adhesive is supplied).

紫外線燈83a、83b對被供給至所述間隙中的紫外線固化型黏著劑照射紫外線,藉此來使黏著劑固化。再者,作為黏著劑,除了紫外線固化型黏著劑以外,亦可利用瞬間黏著劑、熱固化黏著劑、自然固化黏著劑等。 The ultraviolet lamps 83a and 83b irradiate the ultraviolet curable adhesive supplied to the gap with ultraviolet rays, thereby curing the adhesive. Further, as the adhesive, in addition to the ultraviolet curable adhesive, an instant adhesive, a heat curing adhesive, a natural curing adhesive, or the like can be used.

如圖9所示,在利用沿Z軸方向觀察時通過透鏡群12的光軸Ax且與光軸Ax正交的直線L2來將透鏡單元10一分為二時的其中一個分割區域側配置有紫外線燈83a,在另一個分割區域 側配置有紫外線燈83b。 As shown in FIG. 9, when the lens unit 10 is divided into two by the optical axis Ax of the lens group 12 and the straight line L2 orthogonal to the optical axis Ax when viewed in the Z-axis direction, one of the divided region sides is disposed. UV lamp 83a, in another divided area An ultraviolet lamp 83b is disposed on the side.

即,紫外線燈83a、83b自2個方向對被供給至所述間隙中的紫外線固化型黏著劑照射光以使其固化。藉此,與自1個方向照射紫外線的情況相比,可在整個模組中更均勻地進行紫外線固化型黏著劑的固化,從而可穩定地進行透鏡單元10與攝影元件單元20的固定。 In other words, the ultraviolet lamps 83a and 83b irradiate light to the ultraviolet curable adhesive supplied to the gap from two directions to cure the ultraviolet curable adhesive. Thereby, the curing of the ultraviolet curable adhesive can be performed more uniformly in the entire module than in the case where the ultraviolet rays are irradiated from one direction, and the fixing of the lens unit 10 and the imaging element unit 20 can be stably performed.

再者,亦可採用如下結構,即,如圖9所示,利用沿Z軸方向觀察時通過透鏡群12的光軸Ax且與光軸Ax正交的直線L1以及直線L2(該些直線彼此正交)來將透鏡單元10一分為四,在各分割區域側配置紫外線燈,從而自4個方向來照射紫外線。根據其結構,可更穩定地進行透鏡單元10與攝影元件單元20的固定。 Further, as shown in FIG. 9, a line L1 passing through the optical axis Ax of the lens group 12 and orthogonal to the optical axis Ax and a straight line L2 when viewed in the Z-axis direction may be employed (the straight lines are mutually The lens unit 10 is divided into four, and an ultraviolet lamp is disposed on each divided region side to irradiate ultraviolet rays from four directions. According to the configuration, the fixing of the lens unit 10 and the photographic element unit 20 can be performed more stably.

圖13是表示攝影模組製造裝置200的內部結構的方塊圖。 FIG. 13 is a block diagram showing the internal structure of the photographing module manufacturing apparatus 200.

如圖13所示,所述說明的各部分連接於控制部85。控制部85例如是具備中央處理單元(Central Processing Unit,CPU)及唯讀記憶體(Read Only Memory,ROM)、隨機存取記憶體(Random Access Memory,RAM)等的微電腦(micro computer),基於儲存在ROM中的控制程式(program)來控制各部分。而且,在控制部85上,連接有進行各種設定的鍵盤(keyboard)或滑鼠(mouse)等輸入部131、以及顯示設定內容或作業內容、作業結果等的顯示部133。 As shown in FIG. 13, each part of the description is connected to the control unit 85. The control unit 85 is, for example, a micro computer including a central processing unit (CPU), a read only memory (ROM), and a random access memory (RAM). A control program stored in the ROM controls each part. Further, the control unit 85 is connected to an input unit 131 such as a keyboard or a mouse that performs various settings, and a display unit 133 that displays setting contents, work contents, work results, and the like.

透鏡驅動驅動器(driver)145是用於驅動透鏡驅動裝置16的驅動電路,經由探測器單元113而對第一透鏡驅動部、第二透鏡驅動部、第三透鏡驅動部、x方向霍爾(Hall)元件16B、y方向霍爾元件16D以及z方向霍爾元件16F分別供給驅動電流。 The lens driving driver 145 is a driving circuit for driving the lens driving device 16, and the first lens driving portion, the second lens driving portion, the third lens driving portion, and the x-direction Hall (Hall) via the detector unit 113 The element 16B, the y-direction Hall element 16D, and the z-direction Hall element 16F supply drive currents, respectively.

攝影元件驅動器147是用於驅動攝影元件27的驅動電路,經由連接器纜線127而對攝影元件27輸入驅動信號。 The photographic element driver 147 is a drive circuit for driving the photographic element 27, and a drive signal is input to the photographic element 27 via the connector cable 127.

合焦座標值獲取電路149對於在攝影元件27的攝影面27a上設定的多個攝影位置(與測定圖表89的各圖表影像CH1、CH2、CH3、CH4、CH5對應的位置),分別獲取Z軸方向上的合焦程度高的位置即合焦座標值。 The focus coordinate value acquisition circuit 149 acquires the Z axis for each of the plurality of imaging positions (the positions corresponding to the respective image images CH1, CH2, CH3, CH4, and CH5 of the measurement chart 89) set on the imaging surface 27a of the imaging device 27, respectively. The position with a high degree of focus in the direction is the focus coordinate value.

控制部85在獲取多個攝影位置的合焦座標值時,控制第2滑台123,使攝影元件單元20依序移動至在Z軸上預先離散地設定的多個測定位置(Z0、Z1、Z2、...)。 When acquiring the focus coordinate values of the plurality of imaging positions, the control unit 85 controls the second stage 123 to sequentially move the imaging element unit 20 to a plurality of measurement positions (Z0, Z1, which are discretely set in advance on the Z axis. Z2,...).

而且,控制部85對攝影元件驅動器147進行控制,使攝影元件27在各測定位置拍攝透鏡群12所成像的測定圖表89的多個圖表影像CH1、CH2、CH3、CH4、CH5的圖表像。 Further, the control unit 85 controls the imaging device driver 147 to cause the imaging device 27 to capture the graphic images of the plurality of graphic images CH1, CH2, CH3, CH4, and CH5 of the measurement chart 89 imaged by the lens group 12 at the respective measurement positions.

合焦座標值獲取電路149自經由連接器纜線127而輸入的攝影信號提取與所述多個攝影位置對應的畫素的信號,並自該畫素信號分別算出相對於多個攝影位置的各別的合焦評價值。並且,將對於各攝影位置獲得規定的合焦評價值時的測定位置作為Z軸上的合焦座標值。 The focus coordinate value acquisition circuit 149 extracts a pixel signal corresponding to the plurality of imaging positions from the imaging signal input via the connector cable 127, and calculates each of the plurality of imaging positions from the pixel signal. Other focus evaluation values. Then, the measurement position when a predetermined focus evaluation value is obtained for each imaging position is taken as a focal coordinate value on the Z-axis.

作為合焦評價值,例如可使用對比度傳遞函數值 (Contrast Transfer Function,以下稱作CTF值)。CTF值是表示像相對於空間頻率的對比度的值,當CTF值高時,視為合焦度高。 As a focus evaluation value, for example, a contrast transfer function value can be used. (Contrast Transfer Function, hereinafter referred to as CTF value). The CTF value is a value indicating the contrast of the image with respect to the spatial frequency, and when the CTF value is high, it is regarded as a high degree of focus.

合焦座標值獲取電路149分別對於多個攝影位置,對Z軸上設定的多個測定位置(Z0、Z1、Z2、...)的每個測定位置,針對在XY座標平面上設定的多個方向分別算出CTF值。 The focus coordinate value acquisition circuit 149 sets the measurement position for each of the plurality of measurement positions (Z0, Z1, Z2, ...) set on the Z axis for the plurality of imaging positions for the XY coordinate plane. The CTF values are calculated for each direction.

作為算出CTF值的方向,例如設為攝影面27a的橫方向即水平方向(X軸方向)及與其正交的垂直方向(Y軸方向),分別算出各方向的CTF值即X-CTF值以及Y-CTF值。 The direction in which the CTF value is calculated is, for example, the horizontal direction (X-axis direction) which is the lateral direction of the imaging surface 27a and the vertical direction (Y-axis direction) orthogonal thereto, and the X-CTF value which is the CTF value in each direction and the X-CTF value are calculated. Y-CTF value.

合焦座標值獲取電路149對於與各圖表影像CH1、CH2、CH3、CH4、CH5對應的多個攝影位置,獲取X-CTF值達到最大的測定位置在Z軸上的座標(Zp1、Zp2、Zp3、Zp4、Zp5)來作為水平合焦座標值。而且,同樣地獲取Y-CTF值達到最大的測定位置在Z軸上的座標來作為垂直合焦座標值。 The focus coordinate value acquisition circuit 149 acquires the coordinates (Zp1, Zp2, Zp3) of the measurement position at which the X-CTF value reaches the maximum on the Z-axis for a plurality of imaging positions corresponding to the respective chart images CH1, CH2, CH3, CH4, and CH5. , Zp4, Zp5) as the horizontal focus coordinate value. Further, the coordinates of the measurement position where the Y-CTF value reaches the maximum on the Z-axis are acquired in the same manner as the vertical focus coordinate value.

對於成像面計算電路151,自合焦座標值獲取電路149輸入各攝影位置的水平合焦座標值以及垂直合焦座標值。 For the imaging plane calculation circuit 151, the self-focusing coordinate value acquisition circuit 149 inputs the horizontal focus coordinate value and the vertical focus coordinate value of each of the photographing positions.

成像面計算電路151在將XY座標平面與Z軸組合而成的三維座標系中,將多個評價點展開,基於該些評價點的相對位置來算出在三維座標系中作為一平面而表示的近似成像面,所述多個評價點是以使攝影面27a對應於XY座標平面時的各攝影位置的XY座標值、與針對各個攝影位置而獲得的Z軸上的水平合焦座標值以及垂直合焦座標值的組合來表示。 The imaging plane calculation circuit 151 expands a plurality of evaluation points in a three-dimensional coordinate system in which an XY coordinate plane and a Z-axis are combined, and calculates a plane represented as a plane in the three-dimensional coordinate system based on the relative positions of the evaluation points. Approximating the imaging plane, the plurality of evaluation points are the XY coordinate values of the respective photographing positions when the photographing surface 27a corresponds to the XY coordinate plane, the horizontal focus coordinate values on the Z-axis obtained for the respective photographing positions, and the vertical A combination of focal coordinate values is represented.

對於調整值計算電路153,自成像面計算電路151輸入 近似成像面的資訊。 For the adjustment value calculation circuit 153, input from the imaging surface calculation circuit 151 Approximate information on the imaging surface.

調整值計算電路153算出近似成像面與Z軸的交點即Z軸上的成像面座標值F1、與近似成像面相對於XY座標平面的X軸轉動以及Y軸轉動的斜率即XY方向旋轉角度,並輸入至控制部85。 The adjustment value calculation circuit 153 calculates an imaging surface coordinate value F1 on the Z-axis which is the intersection of the imaging plane and the Z-axis, and an X-axis rotation of the approximate imaging plane with respect to the XY coordinate plane and a slope of the Y-axis rotation, that is, an XY-direction rotation angle, and It is input to the control unit 85.

控制部85基於自調整值計算電路153輸入的成像面座標值以及XY方向旋轉角度來驅動攝影元件單元保持部79,以調整攝影元件單元20的Z軸方向位置以及斜率,使攝影面27a與近似成像面一致。控制部85作為調整部發揮功能,該調整部基於由攝影元件27拍攝測定圖表89所得的攝影信號,來對使攝影元件單元20相對於透鏡單元10的Z軸方向位置以及斜率進行調整。 The control unit 85 drives the photographic element unit holding unit 79 based on the imaging plane coordinate value and the XY direction rotation angle input from the adjustment value calculation circuit 153 to adjust the Z-axis direction position and the slope of the photographic element unit 20 so that the photographic surface 27a and the approximation are made. The imaging surface is consistent. The control unit 85 functions as an adjustment unit that adjusts the position and the slope of the imaging element unit 20 in the Z-axis direction with respect to the lens unit 10 based on the imaging signal obtained by the imaging element 27 capturing the measurement chart 89.

以上的攝影模組製造裝置200大致實施以下的步驟。 The above-described photographic module manufacturing apparatus 200 basically performs the following steps.

(1)在與測定圖表89的圖表面正交的Z軸上,保持透鏡單元10與攝影元件單元20的步驟 (1) Step of Holding the Lens Unit 10 and the Photographic Element Unit 20 on the Z-axis orthogonal to the surface of the graph of the measurement chart 89

(2)使保持於Z軸上的攝影元件單元20的Z軸方向位置發生變化,在各位置處,在對被保持於Z軸上的透鏡單元10的透鏡驅動裝置16通電的狀態下,驅動攝影元件27,藉由攝影元件27來拍攝測定圖表89的步驟 (2) The position of the imaging element unit 20 held in the Z-axis is changed in the Z-axis direction, and at each position, the lens driving device 16 of the lens unit 10 held by the Z-axis is energized, and driven. The photographing element 27, the step of photographing the measurement chart 89 by the photographing element 27

(3)基於由攝影元件27拍攝測定圖表89所得的攝影信號,調整攝影元件單元20相對於透鏡單元10的位置以及斜率,並將攝影元件單元20固定於透鏡單元10的步驟 (3) The step of fixing the position and the inclination of the imaging element unit 20 with respect to the lens unit 10 based on the imaging signal obtained by the imaging element 27 in the measurement chart 89, and fixing the imaging element unit 20 to the lens unit 10

以下,依照圖14的流程圖來說明攝影模組製造裝置200 對攝影模組100的製造步驟的詳細情況。 Hereinafter, the photography module manufacturing apparatus 200 will be described with reference to the flowchart of FIG. Details of the manufacturing steps of the photographing module 100.

首先,說明透鏡保持機構77對透鏡單元10的吸附保持(S1)。 First, the adsorption holding of the lens unit 10 by the lens holding mechanism 77 will be described (S1).

未圖示的機器人(robot)(搬送部)搬送透鏡單元10,並使透鏡單元10的頂面11a接觸至透鏡單元保持部75的吸附面75d。在此狀態下,框75f與框體11的頂面11a的外緣一致。 A robot (transporting unit) (not shown) transports the lens unit 10, and the top surface 11a of the lens unit 10 is brought into contact with the adsorption surface 75d of the lens unit holding portion 75. In this state, the frame 75f coincides with the outer edge of the top surface 11a of the casing 11.

當透鏡單元10的頂面11a接觸至透鏡單元保持部75的吸附面75d時,控制部85藉由抽吸部75e來進行空氣的抽吸。藉此,自抽吸孔75b抽吸空氣,使透鏡單元10的頂面11a吸附於吸附面75d,以保持透鏡單元10。 When the top surface 11a of the lens unit 10 comes into contact with the suction surface 75d of the lens unit holding portion 75, the control portion 85 suctions the air by the suction portion 75e. Thereby, air is sucked from the suction hole 75b, and the top surface 11a of the lens unit 10 is adsorbed to the adsorption surface 75d to hold the lens unit 10.

繼而,控制部85使第1滑台99的平台部99a朝接近透鏡單元保持部75的方向移動。進而,控制部85使平台部113A與平台部113B分別接近透鏡單元保持部75,將探測器113a分別推壓至透鏡單元10的端子14A~14D、14a~14e,並將探測器113b分別推壓至透鏡單元10的端子14E~14F、14f~14l(S2)。藉此,透鏡驅動裝置16與透鏡驅動驅動器145電性連接。 Then, the control unit 85 moves the land portion 99a of the first slide table 99 in the direction approaching the lens unit holding portion 75. Further, the control unit 85 causes the platform unit 113A and the platform unit 113B to approach the lens unit holding unit 75, respectively, and pushes the probe 113a to the terminals 14A to 14D and 14a to 14e of the lens unit 10, respectively, and pushes the detector 113b, respectively. The terminals 14E to 14F and 14f to 14l (S2) of the lens unit 10. Thereby, the lens driving device 16 is electrically connected to the lens driving driver 145.

接下來,說明攝影元件單元保持部79對攝影元件單元20的保持(S3)。 Next, the holding of the photographic element unit 20 by the photographic element unit holding unit 79 will be described (S3).

控制部85控制第2滑台123以使雙軸旋轉平台119沿著Z軸方向移動,藉此,在透鏡單元保持部75與雙軸旋轉平台119之間形成可***攝影元件單元20的空間(space)。攝影元件單元20由未圖示的機器人予以保持,並被移送至透鏡單元保持部75 與雙軸旋轉平台119之間。 The control unit 85 controls the second stage 123 to move the biaxial rotation stage 119 in the Z-axis direction, whereby a space in which the photographic element unit 20 can be inserted is formed between the lens unit holding portion 75 and the biaxial rotation stage 119 ( Space). The photographic element unit 20 is held by a robot (not shown) and transferred to the lens unit holding portion 75. Between the two-axis rotating platform 119.

控制部85利用光學感測器(sensor)等來偵測攝影元件單元20的移動,使第2滑台123的平台部123a朝接近透鏡單元保持部75的方向移動。並且,作業者使用夾盤手115的夾持構件115a來保持攝影元件單元20。而且,將連接器纜線127連接於攝影元件單元20的外部連接用端子部23。藉此,攝影元件27與控制部85成為電性連接的狀態。隨後,解除未圖示的機器人對攝影元件單元20的保持。 The control unit 85 detects the movement of the imaging element unit 20 by an optical sensor or the like, and moves the land portion 123a of the second stage 123 toward the lens unit holding unit 75. Further, the operator holds the photographic element unit 20 using the grip member 115a of the chuck hand 115. Further, the connector cable 127 is connected to the external connection terminal portion 23 of the imaging element unit 20. Thereby, the imaging element 27 and the control unit 85 are electrically connected. Subsequently, the holding of the photographic element unit 20 by the robot (not shown) is released.

如此般使透鏡單元10以及攝影元件單元20保持於Z軸上後,藉由合焦座標值獲取電路149來獲取攝影面27a的各攝影位置的水平合焦座標值以及垂直合焦座標值(S4)。 After the lens unit 10 and the photographic element unit 20 are held on the Z-axis, the horizontal focus coordinate value and the vertical focus coordinate value of each photographic position of the photographic surface 27a are acquired by the focus coordinate value acquisition circuit 149 (S4). ).

具體而言,控制部85控制第2滑台123以使雙軸旋轉平台119朝接近透鏡單元保持部75的方向移動,使攝影元件單元20移動至攝影元件27最接近透鏡單元10的最初的測定位置。 Specifically, the control unit 85 controls the second stage 123 to move the biaxial rotation stage 119 in the direction approaching the lens unit holding unit 75, and moves the imaging element unit 20 to the first measurement in which the imaging element 27 is closest to the lens unit 10. position.

控制部85使圖表單元71的光源91發光。而且,控制部85將來自透鏡驅動驅動器145的驅動信號輸入至端子14A~14F,驅動第一透鏡驅動部至第三透鏡驅動部,以將透鏡群12的光軸Ax的x方向位置、y方向位置、z方向位置保持於基準位置(例如實際使用時的初始位置)。 The control unit 85 causes the light source 91 of the chart unit 71 to emit light. Further, the control unit 85 inputs a drive signal from the lens drive driver 145 to the terminals 14A to 14F, and drives the first to third lens drive units to position the optical axis Ax of the lens group 12 in the x direction and the y direction. The position and position in the z direction are maintained at the reference position (for example, the initial position at the time of actual use).

此時,控制部85自透鏡驅動驅動器145獲取x方向霍爾元件16B、y方向霍爾元件16D以及z方向霍爾元件16F的輸出信號,利用該輸出信號來進行透鏡群12的光軸Ax的x方向位置、 y方向位置、z方向位置的控制。 At this time, the control unit 85 acquires the output signals of the x-direction Hall element 16B, the y-direction Hall element 16D, and the z-direction Hall element 16F from the lens drive driver 145, and performs the optical axis Ax of the lens group 12 using the output signal. Position in the x direction, Control of position in the y direction and position in the z direction.

接下來,控制部85控制攝影元件驅動器147,使攝影元件27拍攝由透鏡單元10所成像的圖表影像CH1、CH2、CH3、CH4、CH5。攝影元件27將所拍攝的攝影信號經由連接器纜線127而輸入至合焦座標值獲取電路149。 Next, the control unit 85 controls the imaging device driver 147 to cause the imaging device 27 to capture the chart images CH1, CH2, CH3, CH4, and CH5 imaged by the lens unit 10. The photographing element 27 inputs the photographed photographing signal to the focus coordinate value acquisition circuit 149 via the connector cable 127.

合焦座標值獲取電路149自所輸入的攝影信號中提取與各圖表影像CH1、CH2、CH3、CH4、CH5對應的攝影位置處的畫素的信號,並由該畫素信號算出對於各攝影位置的X-CTF值以及Y-CTF值。控制部85將X-CTF值以及Y-CTF值的資訊例如儲存於控制部85內的RAM中。 The focus coordinate value acquisition circuit 149 extracts a signal of a pixel at a photographing position corresponding to each of the graph images CH1, CH2, CH3, CH4, and CH5 from the input photographing signal, and calculates a photographing position for each photographing position from the pixel signal. The X-CTF value and the Y-CTF value. The control unit 85 stores information of the X-CTF value and the Y-CTF value, for example, in the RAM in the control unit 85.

控制部85使攝影元件單元20依序移動至沿Z軸方向設定的多個測定位置(Z0、Z1、Z2、...),在各測定位置處,驅動透鏡驅動裝置16,在將透鏡群12的光軸Ax的x方向位置、y方向位置、z方向位置維持為基準位置的狀態下,使攝影元件27拍攝測定圖表89的圖表像。合焦座標值獲取電路149在各測定位置算出各攝影位置處的X-CTF值以及Y-CTF值。 The control unit 85 sequentially moves the imaging element unit 20 to a plurality of measurement positions (Z0, Z1, Z2, ...) set in the Z-axis direction, and drives the lens driving device 16 at each measurement position to When the x-direction position, the y-direction position, and the z-direction position of the optical axis Ax of 12 are maintained at the reference position, the imaging element 27 is caused to capture the chart image of the measurement chart 89. The focus coordinate value acquisition circuit 149 calculates the X-CTF value and the Y-CTF value at each imaging position at each measurement position.

合焦座標值獲取電路149對於各攝影位置,自算出的多個X-CTF值以及Y-CTF值中選擇最大值,獲取獲得最大值的測定位置的Z軸座標來作為該攝影位置的水平合焦座標值以及垂直合焦座標值。 The focus coordinate value acquisition circuit 149 selects the maximum value from the plurality of calculated X-CTF values and the Y-CTF values for each of the photographing positions, and acquires the Z-axis coordinate of the measurement position at which the maximum value is obtained as the horizontal joint of the photographing position. The focal coordinate value and the vertical focus coordinate value.

在合焦座標值獲取電路149中獲取的水平合焦座標值以及垂直合焦座標值被輸入至成像面計算電路151。成像面計算電路 151例如藉由最小自乘法來算出平面近似的近似成像面F(S6)。 The horizontal focus coordinate value and the vertical focus coordinate value acquired in the focus coordinate value acquisition circuit 149 are input to the imaging plane calculation circuit 151. Imaging surface calculation circuit 151 calculates an approximate imaging plane F of the plane approximation by, for example, a minimum self-multiplication method (S6).

由成像面計算電路151算出的近似成像面F的資訊被輸入至調整值計算電路153。調整值計算電路153算出近似成像面F與Z軸的交點即成像面座標值F1、與近似成像面相對於XY座標平面的X軸轉動以及Y軸轉動的斜率即XY方向旋轉角度,並輸入至控制部85(S7)。 The information of the approximate imaging plane F calculated by the imaging plane calculation circuit 151 is input to the adjustment value calculation circuit 153. The adjustment value calculation circuit 153 calculates an intersection angle of the imaging plane F and the Z-axis, that is, an imaging plane coordinate value F1, an X-axis rotation of the approximate imaging plane with respect to the XY coordinate plane, and a slope of the Y-axis rotation, that is, an XY-direction rotation angle, and inputs it to the control. Section 85 (S7).

控制部85基於成像面座標值F1與XY方向旋轉角度來控制雙軸旋轉平台119以及第2滑台123,以攝影元件27的攝影面27a的中心位置與成像面座標值F1一致的方式來使攝影元件單元20朝Z軸方向移動,且以攝影面27a的斜率與近似成像面F一致的方式來調整攝影元件單元20的θx方向以及θy方向的角度(S8)。 The control unit 85 controls the biaxial rotation stage 119 and the second stage 123 based on the imaging plane coordinate value F1 and the XY direction rotation angle, so that the center position of the imaging surface 27a of the imaging element 27 coincides with the imaging surface coordinate value F1. The photographic element unit 20 moves in the Z-axis direction, and adjusts the angles of the θx direction and the θy direction of the photographic element unit 20 such that the slope of the photographic surface 27a coincides with the approximate imaging plane F (S8).

控制部85在攝影元件單元20的位置以及斜率調整後,實施確認各攝影位置的合焦位置的確認步驟(S9)。 After the position of the imaging element unit 20 and the slope are adjusted, the control unit 85 performs a confirmation step of confirming the focus position of each imaging position (S9).

在該確認步驟中,再次執行所述S4的步驟。在攝影元件單元20的位置以及斜率調整後,對於各攝影位置,在水平方向以及垂直方向上對應的評價值的偏差變小。 In the confirmation step, the step of S4 is performed again. After the position of the photographic element unit 20 and the slope are adjusted, the deviation of the evaluation values corresponding to the horizontal direction and the vertical direction for each of the imaging positions becomes small.

控制部85在確認步驟結束後(S5:是(YES)),以攝影面27a的中心位置與成像面座標值F1一致的方式而使攝影元件單元20朝Z軸方向移動(S10)。 After the confirmation step is completed (S5: YES), the control unit 85 moves the imaging element unit 20 in the Z-axis direction so that the center position of the imaging surface 27a coincides with the imaging surface coordinate value F1 (S10).

而且,控制部85自黏著劑供給部81向透鏡單元10與攝影元件單元20的間隙中供給紫外線固化黏著劑(S11),並使紫 外線燈83a、83b點燈,藉此來使紫外線固化型黏著劑固化(S12)。 Further, the control unit 85 supplies the ultraviolet curable adhesive to the gap between the lens unit 10 and the photographic element unit 20 from the adhesive supply unit 81 (S11), and causes the purple The external light lamps 83a and 83b are turned on, whereby the ultraviolet curable adhesive is cured (S12).

在黏著劑固化而透鏡單元10與攝影元件單元20被固定後,當藉由未圖示的機器人來握持攝影模組時,控制部85停止抽吸部75e對空氣的抽吸,並使平台部113A、113B朝遠離透鏡單元10的方向移動。藉此,解除透鏡單元10的頂面11a的吸附,從而解除探測器單元113的各探測器與透鏡單元10的各端子的接觸(S13)。並且,完成的攝影模組100由未圖示的機器人自攝影模組製造裝置200中取出(S14)。 After the adhesive is cured and the lens unit 10 and the photographic element unit 20 are fixed, when the photographic module is held by a robot (not shown), the control unit 85 stops the suction of the air by the suction unit 75e, and causes the platform to The portions 113A, 113B move in a direction away from the lens unit 10. Thereby, the suction of the top surface 11a of the lens unit 10 is released, and the contact of each detector of the probe unit 113 with each terminal of the lens unit 10 is released (S13). Then, the completed photographing module 100 is taken out from the photographing module manufacturing apparatus 200 by a robot (not shown) (S14).

再者,透鏡單元10與攝影元件單元20可藉由紫外線固化型黏著劑而固定,但亦可將藉助紫外線固化型黏著劑的固化用作透鏡單元10與攝影元件單元20的暫時固定。 Further, the lens unit 10 and the photographic element unit 20 can be fixed by the ultraviolet curable adhesive, but the curing by the ultraviolet curable adhesive can also be used as the temporary fixation of the lens unit 10 and the photographic element unit 20.

例如,攝影模組100亦可在將透鏡單元10與攝影元件單元20暫時固定的狀態下自攝影模組製造裝置200取出,進行清潔處理等所需的步驟後,將透鏡單元10與攝影元件單元20藉由熱固化型黏著劑等而完全固定。 For example, the photographing module 100 may take out the lens unit 10 and the photographing element unit after taking out the steps required for the cleaning process or the like from the photographing module manufacturing apparatus 200 in a state where the lens unit 10 and the photographing element unit 20 are temporarily fixed. 20 is completely fixed by a heat curing type adhesive or the like.

以上的製造裝置200藉由將探測器113a推壓至自透鏡單元10的框體11的側面11f露出的9個端子,將探測器113b推壓至自與該側面11f相向的框體11的側面11e露出的9個端子,從而進行對由透鏡單元保持部75所保持的透鏡單元10的透鏡驅動裝置16的通電。 The above-described manufacturing apparatus 200 presses the probe 113a to the nine terminals exposed from the side surface 11f of the casing 11 of the lens unit 10, and presses the probe 113b to the side of the casing 11 facing the side surface 11f. The nine terminals that are exposed at 11e are energized to the lens driving device 16 of the lens unit 10 held by the lens unit holding portion 75.

藉由探測器113a的推壓而對透鏡單元10施加的y方向中的一方向的力,藉由將探測器113b推壓至自框體11的側面11e 露出的9個端子而抵消。因此,可防止因將探測器推壓至透鏡單元10時的力而透鏡單元10的光軸Ax相對於Z軸傾斜,可高精度地進行透鏡單元10與攝影元件單元20的對位。 The force in one direction in the y direction applied to the lens unit 10 by the pressing of the probe 113a is pushed to the side 11e of the self-frame 11 by the probe 113b The exposed 9 terminals are offset. Therefore, it is possible to prevent the optical axis Ax of the lens unit 10 from being inclined with respect to the Z axis due to the force when the probe is pushed to the lens unit 10, and the alignment of the lens unit 10 and the photographic element unit 20 can be performed with high precision.

再者,至此為止,是在對透鏡驅動裝置中所含的各透鏡驅動部與各霍爾元件通電的狀態下拍攝測定圖表89而獲得合焦評價值。然而,作為進行通電的對象的透鏡驅動裝置16內的結構要素亦可無須設為各透鏡驅動部與各霍爾元件,而是根據對位的精度來僅對必要的部分進行通電。 In the meantime, the measurement chart 89 is taken in a state where the respective lens driving units and the Hall elements included in the lens driving device are energized, and the focus evaluation value is obtained. However, the constituent elements in the lens driving device 16 that is the target of energization do not need to be provided as the respective lens driving portions and the respective Hall elements, but only the necessary portions are energized according to the accuracy of the alignment.

例如,亦可採用如下結構,即,在第一透鏡驅動~第三透鏡驅動時進行通電,而對x方向霍爾元件16B、y方向霍爾元件16D以及z方向霍爾元件16F不通電。或者,亦可採用如下結構,即,對x方向VCM 16A、x方向霍爾元件16B、y方向VCM 16C及y方向霍爾元件16D通電,對z方向VCM 16E以及z方向霍爾元件16F不通電。 For example, a configuration may be employed in which energization is performed when the first lens drive to the third lens are driven, and the x-direction Hall element 16B, the y-direction Hall element 16D, and the z-direction Hall element 16F are not energized. Alternatively, a configuration may be employed in which the x-direction VCM 16A, the x-direction Hall element 16B, the y-direction VCM 16C, and the y-direction Hall element 16D are energized, and the z-direction VCM 16E and the z-direction Hall element 16F are not energized. .

在製造時與作為通電對象的透鏡驅動裝置16的結構要素電性連接的端子的配置只要如下即可,即,可利用藉由探測器113b的推壓而施加至透鏡單元10的y方向的力來稍許抵消藉由探測器113a的推壓而施加至透鏡單元10的y方向的力。 The arrangement of the terminals electrically connected to the constituent elements of the lens driving device 16 to be energized at the time of manufacture may be as follows, that is, the force applied to the y direction of the lens unit 10 by the pressing of the probe 113b The force applied to the y direction of the lens unit 10 by the pressing of the probe 113a is slightly offset.

例如,當作為通電對象的端子為2個時,製造如下所述的透鏡單元10,即,將該2個端子中的其中一個設置於自框體11的側面11e露出的位置,將該2個端子中的另一個設置於自框體11的側面11f露出的位置。並且,製造裝置200的探測器單元113 將1根探測器113b推壓至所述2個端子中的其中一個端子的露出面,將1根探測器113b推壓至所述2個端子中的另一個端子的露出面。即使在連結該2個端子的露出面的中心的直線不平行於y方向的情況下,亦可利用藉由探測器113b的推壓而施加至透鏡單元10的y方向的力來稍許抵消藉由探測器113a的推壓而施加至透鏡單元10的y方向的力。 For example, when there are two terminals to be energized, the lens unit 10 as described below is manufactured, that is, one of the two terminals is provided at a position exposed from the side surface 11e of the casing 11, and the two are The other of the terminals is disposed at a position exposed from the side surface 11f of the casing 11. And, the detector unit 113 of the manufacturing apparatus 200 One probe 113b is pressed to the exposed surface of one of the two terminals, and one probe 113b is pressed to the exposed surface of the other of the two terminals. Even when the straight line connecting the centers of the exposed surfaces of the two terminals is not parallel to the y direction, the force applied to the y direction of the lens unit 10 by the pressing of the probe 113b can be slightly offset by the force in the y direction. The force in the y direction of the lens unit 10 is applied by the pressing of the probe 113a.

再者,藉由以連結所述2個端子的露出面的中心的直線平行於y方向的方式來配置2個端子,從而可使因探測器113a、113b受到推壓而作用於透鏡單元10的力矩(moment)成為零(zero),從而可確實地防止光軸Ax的位置偏離。 In addition, by arranging the two terminals so that the straight line connecting the centers of the exposed surfaces of the two terminals is parallel to the y direction, the probes 113a and 113b can be pressed against the lens unit 10 by being pressed. The moment becomes zero, so that the positional deviation of the optical axis Ax can be surely prevented.

在探測器單元113中,探測器113b亦可設為虛設(dummy)的探測器,即,不與透鏡驅動驅動器145電性連接,或者,雖與透鏡驅動驅動器145電性連接,但在攝影模組100的製造時不通電。 In the detector unit 113, the detector 113b can also be set as a dummy detector, that is, not electrically connected to the lens driving driver 145, or, although electrically connected to the lens driving driver 145, but in the photography mode Group 100 is not energized during manufacture.

例如,在透鏡單元10中,當僅將x方向VCM 16A與y方向VCM 16C設為通電對象時,將探測器單元113設為圖15所示的結構。 For example, in the lens unit 10, when only the x-direction VCM 16A and the y-direction VCM 16C are set as the energization targets, the probe unit 113 is configured as shown in FIG.

圖15所示的探測器單元113在平台部113A上設置有4個探測器113a,在平台部113B上設置有4個虛設的探測器113b。 The detector unit 113 shown in Fig. 15 is provided with four detectors 113a on the platform portion 113A, and four dummy detectors 113b are provided on the platform portion 113B.

4個探測器113a被分別推壓至端子14D、端子14C、端子14B、端子14A。 The four detectors 113a are pushed to the terminals 14D, 14C, 14B, and 14A, respectively.

4個虛設的探測器113b中的最上方的探測器被推壓至端 子14g,該端子14g的露出面中心處於自端子14D的露出面的中心朝y方向延伸的直線上。 The uppermost detector of the four dummy detectors 113b is pushed to the end In the sub- 14g, the center of the exposed surface of the terminal 14g is on a straight line extending from the center of the exposed surface of the terminal 14D in the y direction.

4個虛設的探測器113b中的自上算起的第2個探測器被推壓至端子14h,該端子14h的露出面中心位於自端子14C的露出面的中心朝y方向延伸的直線上。 The second detector from the top of the four dummy detectors 113b is pushed to the terminal 14h, and the center of the exposed surface of the terminal 14h is located on a straight line extending from the center of the exposed surface of the terminal 14C toward the y direction.

4個虛設的探測器113b中的自上算起的第3個探測器被推壓至端子14k,該端子14k的露出面中心位於自端子14B的露出面的中心朝y方向延伸的直線上。 The third detector from the top of the four dummy detectors 113b is pushed to the terminal 14k, and the center of the exposed surface of the terminal 14k is located on a straight line extending from the center of the exposed surface of the terminal 14B toward the y direction.

4個虛設的探測器113b中的最下方的探測器被推壓至端子14l,該端子14l的露出面中心位於自端子14A的露出面的中心朝y方向延伸的直線上。 The lowermost one of the four dummy detectors 113b is pushed to the terminal 14l, and the center of the exposed face of the terminal 14l is located on a straight line extending from the center of the exposed face of the terminal 14A toward the y direction.

如此,利用由未用於驅動透鏡驅動裝置16的虛設的探測器113b施加至端子的y方向的力,來抵消由探測器113a施加至作為通電對象的端子的y方向的力,藉此,可防止透鏡單元10的光軸Ax的位置偏離。 Thus, the force applied to the terminal in the y direction by the dummy detector 113b that is not used to drive the lens driving device 16 is used to cancel the force applied to the y direction of the terminal to be energized by the probe 113a, whereby The positional deviation of the optical axis Ax of the lens unit 10 is prevented.

再者,在圖15中,設置於平台部113B上的虛設的探測器113b的數量或虛設的探測器113b的位置只要如下即可,即,可利用藉由虛設的探測器113b的推壓而施加至透鏡單元10的y方向的力來稍許抵消藉由探測器113a的推壓而施加至透鏡單元10的y方向的力即可,可適當變更。 Furthermore, in FIG. 15, the number of dummy detectors 113b provided on the land portion 113B or the position of the dummy detector 113b may be as follows, that is, the pressing by the dummy detector 113b may be utilized. The force applied to the y direction of the lens unit 10 slightly cancels the force applied to the y direction of the lens unit 10 by the pressing of the probe 113a, and can be appropriately changed.

而且,圖15中採用了虛設的探測器113b,但虛設的探測器113b不需要與透鏡驅動裝置16進行電性連接,因此使用任 何材質以及形狀的構件皆可。即,不需要為探測器,只要包含可對透鏡單元10的端子施加力的某些構件即可。 Moreover, the dummy detector 113b is employed in FIG. 15, but the dummy detector 113b does not need to be electrically connected to the lens driving device 16, so Any material and shape of the components are acceptable. That is, it is not necessary to be a probe as long as it includes some members that can apply a force to the terminals of the lens unit 10.

而且,圖15中,將虛設的探測器113b(或者其他構件)推壓至透鏡單元10中所設的端子,但虛設的探測器113b的推壓部分亦可為端子以外的部分。例如,藉由將4個虛設的探測器113b推壓至框體11的側面11e,亦可抵消自探測器113a對作為通電對象的端子施加的y方向的力。 Further, in Fig. 15, the dummy detector 113b (or other member) is pushed to the terminal provided in the lens unit 10, but the pressing portion of the dummy detector 113b may be a portion other than the terminal. For example, by pushing the four dummy detectors 113b to the side surface 11e of the casing 11, the force in the y direction applied from the probe 113a to the terminal to be energized can be canceled.

例如,在製造搭載透鏡單元10的攝影模組的製造裝置中,探測器單元113如圖16所示,將探測器113a分別推壓至自框體11的側面11f露出的端子14E、14F、14i~14l,所述透鏡單元10在透鏡驅動裝置16中僅搭載z方向VCM 16E以及z方向霍爾元件16F。 For example, in the manufacturing apparatus for manufacturing the image pickup module in which the lens unit 10 is mounted, the probe unit 113 pushes the probe 113a to the terminals 14E, 14F, 14i exposed from the side surface 11f of the casing 11 as shown in Fig. 16 . In the lens unit 10, only the z-direction VCM 16E and the z-direction Hall element 16F are mounted in the lens driving device 16.

而且,探測器單元113將虛設的探測器113b推壓至自光軸Ax方向觀察時的、自側面11f側的各端子的露出面的中心朝y方向延伸的直線與框體11的側面11e的交點。藉由此種結構,可利用虛設的探測器113b對側面11e的推壓力來抵消由探測器113a對作為通電對象的端子施加的y方向的力。再者,如上所述,虛設的探測器113b的數量或推壓該探測器113b的位置可適當變更。 Further, the detector unit 113 pushes the dummy probe 113b to a straight line extending in the y direction from the center of the exposed surface of each terminal on the side surface 11f side and the side surface 11e of the casing 11 when viewed from the optical axis Ax direction. Intersection. With such a configuration, the y-direction force applied to the terminal to be energized by the probe 113a can be canceled by the urging force of the dummy probe 113b on the side surface 11e. Further, as described above, the number of dummy detectors 113b or the position at which the detector 113b is pushed can be appropriately changed.

根據製造裝置200,藉由吸附來保持透鏡單元10,因此無須在透鏡單元10的框體11側面的周圍配置用於保持透鏡單元10的部件(背景技術中所述的保持臂等)。 According to the manufacturing apparatus 200, since the lens unit 10 is held by suction, it is not necessary to arrange a member for holding the lens unit 10 around the side surface of the casing 11 of the lens unit 10 (a holding arm or the like as described in the background art).

其結果,可提高用於固定透鏡單元10與攝影元件單元20的裝置(黏著劑供給部81、紫外線燈83a、83b)或用於對透鏡單元10通電的裝置(通電機構77)等的配置的自由度,可實現製造裝置200的設計成本的削減以及維護(maintenance)性的提高。 As a result, it is possible to improve the arrangement of the means for fixing the lens unit 10 and the photographic element unit 20 (adhesive supply unit 81, ultraviolet lamps 83a and 83b) or the means for energizing the lens unit 10 (energizing means 77). The degree of freedom can reduce the design cost of the manufacturing apparatus 200 and improve the maintenance.

在如攝影模組100般,透鏡單元10搭載第二透鏡驅動部以及第三透鏡驅動部的機型中,透鏡群12處於容易朝x方向以及y方向移動的狀態。而且,此種機型中,透鏡單元10的框體11內部的機構變得複雜,框體11的剛性存在下降的傾向。因此,若利用以往的方法而藉由臂來保持透鏡單元10的框體側面,則光軸Ax容易產生傾斜。因此,在此種機型中,有效的是採用藉由頂面11a的吸附來保持透鏡單元10的方法。 In the model in which the lens unit 10 mounts the second lens driving unit and the third lens driving unit as in the imaging module 100, the lens group 12 is in a state of being easily moved in the x direction and the y direction. Further, in such a model, the mechanism inside the casing 11 of the lens unit 10 becomes complicated, and the rigidity of the casing 11 tends to decrease. Therefore, when the side surface of the casing of the lens unit 10 is held by the arm by the conventional method, the optical axis Ax is likely to be inclined. Therefore, in such a model, it is effective to employ a method of holding the lens unit 10 by the adsorption of the top surface 11a.

而且,此種機型中,透鏡單元10中所設的端子的數量如圖5中例示般,最大為18個。因此,較之端子少的機型,作為通電對象的端子存在增加的傾向。若作為通電對象的端子增加,則當利用以往方式而朝向一方向將探測器推壓至透鏡單元時,施加至透鏡單元10的力會變大,透鏡單元10的光軸Ax的位置容易發生偏離。尤其,如圖1所示的透鏡單元10般,在1個側面11f側具有4個以上的作為通電對象的端子的情況下,位置偏離變得顯著。因此,本實施形態中說明的方法變得有效。 Further, in this model, the number of terminals provided in the lens unit 10 is as large as 18 as illustrated in FIG. Therefore, there is a tendency for the terminal to be energized to increase as compared with a model having fewer terminals. When the terminal to be energized is increased, when the probe is pressed to the lens unit in one direction by the conventional method, the force applied to the lens unit 10 becomes large, and the position of the optical axis Ax of the lens unit 10 is likely to deviate. . In the case of the lens unit 10 shown in FIG. 1 , when there are four or more terminals to be energized on one side surface 11 f side, the positional deviation becomes remarkable. Therefore, the method described in the embodiment becomes effective.

製造裝置200中,透鏡單元保持部75藉由吸附來保持透鏡單元10,但亦可如專利文獻1所記載般,採用藉由側面的握持來保持透鏡單元10的結構。或者,亦可採用如下結構,即,藉 由某些構件來夾持透鏡單元10的頂面11a與底部塊體19,從而保持透鏡單元10。 In the manufacturing apparatus 200, the lens unit holding unit 75 holds the lens unit 10 by suction. However, as described in Patent Document 1, the lens unit 10 can be held by the side grip. Alternatively, the following structure may also be adopted, that is, borrowing The top surface 11a of the lens unit 10 and the bottom block 19 are held by some members, thereby holding the lens unit 10.

在如製造裝置200般,藉由吸附來保持透鏡單元10的結構中,若與藉由握持等的保持來比較,由於僅藉由空氣的抽吸來進行保持,因此容易產生透鏡單元10相對於探測器的推壓力的位置偏離。因此,有效的是採用通電機構77的結構。 In the structure in which the lens unit 10 is held by adsorption as in the manufacturing apparatus 200, if it is held by suction of air only by comparison with holding by gripping or the like, it is easy to cause the lens unit 10 to be relatively opposed. The position of the pushing force of the detector is deviated. Therefore, it is effective to adopt the structure of the energizing mechanism 77.

圖14的S4的步驟中,藉由在透鏡單元10的Z軸方向位置為固定的狀態下移動攝影元件單元20,從而獲取合焦座標值。然而,亦可使透鏡單元保持部75可朝Z軸方向移動,在攝影元件單元保持部79的Z軸方向位置固定的狀態下使透鏡單元保持部75朝Z軸方向移動,或者使透鏡單元保持部75與攝影元件單元保持部79分別朝Z軸方向移動,從而改變測定位置,並在各測定位置處獲取合焦座標值。 In the step S4 of Fig. 14, the photographic element unit 20 is moved in a state where the position of the lens unit 10 in the Z-axis direction is fixed, thereby obtaining the focus coordinate value. However, the lens unit holding portion 75 can be moved in the Z-axis direction, and the lens unit holding portion 75 can be moved in the Z-axis direction in a state where the position of the photographic element unit holding portion 79 in the Z-axis direction is fixed, or the lens unit can be held. The portion 75 and the photographic element unit holding portion 79 move in the Z-axis direction, respectively, to change the measurement position, and acquire the focus coordinate value at each measurement position.

而且,亦可在透鏡單元保持部75與攝影元件單元保持部79的Z軸方向位置固定的狀態下,使圖表單元71朝Z軸方向移動,藉此來改變測定位置而獲取合焦座標值。而且,亦可改變透鏡單元保持部75、攝影元件單元保持部79與圖表單元71各自的Z軸方向位置,藉此來改變測定位置而獲取合焦座標值。 In addition, in a state where the lens unit holding portion 75 and the imaging element unit holding portion 79 are fixed in the Z-axis direction, the chart unit 71 is moved in the Z-axis direction, whereby the measurement position is changed to obtain the focus coordinate value. Further, the position of the lens unit holding portion 75, the photographic element unit holding portion 79, and the chart unit 71 in the Z-axis direction can be changed, whereby the measurement position can be changed to obtain the focus coordinate value.

即,只要為如下結構即可,即,藉由改變透鏡單元10、攝影元件單元20以及測定圖表89的Z軸方向的相對位置,從而改變測定位置,並在各相對位置處,藉由攝影元件27來拍攝測定圖表89,以獲取合焦座標值。 In other words, the measurement unit may be changed by changing the relative positions of the lens unit 10, the imaging element unit 20, and the measurement chart 89 in the Z-axis direction, and at each relative position, by the imaging element. 27 to take the measurement chart 89 to obtain the focus coordinate value.

而且,圖14的說明中,藉由改變所述相對位置而實現多個測定位置,在到達各測定位置時拍攝測定圖表,但亦可持續進行測定圖表的攝影(即進行動畫攝影),在該攝影過程中使所述相對位置發生變化以到達各測定位置。 Further, in the description of FIG. 14, a plurality of measurement positions are realized by changing the relative position, and when the measurement chart is captured when each measurement position is reached, the measurement chart is continuously taken (that is, animated image is taken). The relative position is changed during photography to reach each measurement position.

而且,圖14的S8的步驟中,藉由在透鏡單元10的Z軸方向位置為固定的狀態下移動攝影元件單元20,從而調整攝影元件單元20相對於透鏡單元10的Z軸方向位置,但亦可使透鏡單元保持部75可朝Z軸方向移動,在攝影元件單元保持部79位置固定的狀態下使透鏡單元保持部75移動,或者使透鏡單元保持部75與攝影元件單元保持部79分別移動,從而進行位置調整。 In the step S8 of FIG. 14, the photographic element unit 20 is moved in a state where the position of the lens unit 10 in the Z-axis direction is fixed, thereby adjusting the position of the photographic element unit 20 in the Z-axis direction with respect to the lens unit 10, but The lens unit holding portion 75 can be moved in the Z-axis direction, and the lens unit holding portion 75 can be moved in a state where the photographic element unit holding portion 79 is fixed in position, or the lens unit holding portion 75 and the photographic element unit holding portion 79 can be respectively moved. Move to make position adjustments.

而且,圖14的S8的步驟中,不僅調整攝影元件單元20相對於透鏡單元10的Z軸方向位置,亦調整斜率,但該斜率的調整亦可省略。例如,在攝影元件27的畫素數少的情況下,即使不進行該斜率的調整亦可維持攝影品質。而且,Z軸方向位置亦可藉由周知的方法而預先調整,而在製造裝置200中僅調整斜率。 Further, in the step S8 of FIG. 14, not only the position of the imaging element unit 20 with respect to the Z-axis direction of the lens unit 10 but also the slope is adjusted, but the adjustment of the slope may be omitted. For example, when the number of pixels of the imaging element 27 is small, the imaging quality can be maintained without performing the adjustment of the slope. Further, the Z-axis direction position can be adjusted in advance by a known method, and only the slope is adjusted in the manufacturing apparatus 200.

而且,在圖14的S8的步驟中,若僅調整攝影元件單元20相對於透鏡單元10的Z軸方向位置,則測定圖表89的圖表面上所設的圖表影像只要至少為1個即可。 Further, in the step S8 of FIG. 14 , if only the position of the imaging element unit 20 in the Z-axis direction with respect to the lens unit 10 is adjusted, the chart image set on the graph surface of the measurement chart 89 may be at least one.

而且,在圖14的S8的步驟中,若要調整攝影元件單元20相對於透鏡單元10的Z軸方向位置與斜率,則測定圖表89的圖表面上所設的圖表影像只要至少為3個即可。 Further, in the step S8 of FIG. 14, if the position and the inclination of the imaging element unit 20 in the Z-axis direction with respect to the lens unit 10 are to be adjusted, the chart image set on the graph surface of the measurement chart 89 is at least three. can.

如上所述,當使用4個以上的圖表影像時,可更高精度 地進行攝影元件單元20相對於透鏡單元10的斜率調整。 As described above, when four or more chart images are used, higher precision is possible. The slope adjustment of the photographic element unit 20 with respect to the lens unit 10 is performed.

而且,較佳的是,在透鏡單元保持部75的吸附面75d上,預先設置用於使開口75c的中心與透鏡單元10的開口11b的中心一致的定位部。 Further, it is preferable that a positioning portion for matching the center of the opening 75c with the center of the opening 11b of the lens unit 10 is provided in advance on the adsorption surface 75d of the lens unit holding portion 75.

至此為止,將透鏡單元10的框體11的頂面11a設為與透鏡群12的光軸Ax垂直的面而進行了說明。該垂直未必是嚴格意義上的垂直,當使製造裝置具備相對於透鏡單元10調整攝影元件單元20的斜率的機構時,只要處於斜率調整的行程(stroke)內即可。在無斜率調整機構的情況下,允許1°左右的偏離。 Up to this point, the top surface 11a of the casing 11 of the lens unit 10 has been described as being perpendicular to the optical axis Ax of the lens group 12. This vertical direction is not necessarily vertical in a strict sense, and when the manufacturing apparatus is provided with a mechanism for adjusting the slope of the imaging element unit 20 with respect to the lens unit 10, it is sufficient to be within the stroke of the slope adjustment. In the case of no slope adjustment mechanism, a deviation of about 1° is allowed.

如以上所說明般,本說明書中揭示了以下事項。 As described above, the following matters are disclosed in the present specification.

所揭示的攝影模組的製造方法中,所述攝影模組具有透鏡單元及攝影元件單元,所述透鏡單元具有透鏡群,所述攝影元件單元被固定於所述透鏡單元,且具有通過所述透鏡群來拍攝被攝物的攝影元件,其中,所述透鏡單元具有透鏡驅動裝置,所述透鏡驅動裝置包括使所述透鏡群中的至少一部分透鏡移動的透鏡驅動部,所述攝影模組的製造方法包括:第一步驟,在與測定圖表正交的軸上,使所述攝影元件單元、所述透鏡單元以及所述測定圖表中的至少任一處在所述軸方向上的相對位置發生變化,在各相對位置處,驅動所述攝影元件,以藉由所述攝影元件而通過所述透鏡群來拍攝所述測定圖表;以及第二步驟,基於由所述攝影元件拍攝所述測定圖表所獲得的攝影信號,調整所述攝影元件單元相對於所述透鏡單元的所述軸方向位置以及斜率中的至少一 者,並將所述攝影元件單元固定於所述透鏡單元,在所述第一步驟中,在下述狀態下藉由所述攝影元件來拍攝所述測定圖表,即,將所述透鏡單元保持於所述軸上,將第一探測器推壓至設置於所述透鏡單元中並與所述透鏡驅動裝置電性連接的電性連接部,並對所述透鏡驅動裝置進行通電,以對所述透鏡單元施加如下的力:所述力與藉由所述第一探測器的推壓而施加至所述電性連接部的且跟所述透鏡群的光軸正交的方向的力為相反方向的力。 In the method for manufacturing a photographic module, the photographic module has a lens unit and a photographic element unit, the lens unit has a lens group, the photographic element unit is fixed to the lens unit, and has the a lens group for photographing a photographic element of a subject, wherein the lens unit has a lens driving device including a lens driving portion that moves at least a part of the lens group, the photographic module The manufacturing method includes: a first step of causing at least one of the photographic element unit, the lens unit, and the measurement chart to be in a relative position in the axial direction on an axis orthogonal to the measurement chart Changing, at each relative position, driving the photographic element to capture the measurement chart by the lens group by the photographic element; and a second step of capturing the measurement chart based on the photographic element Obtaining at least one of the axial direction position and the slope of the photographic element unit with respect to the lens unit And fixing the photographic element unit to the lens unit, in the first step, taking the measurement chart by the photographic element in a state of holding the lens unit at Pushing on the shaft to an electrical connection portion disposed in the lens unit and electrically connected to the lens driving device, and energizing the lens driving device to The lens unit applies a force that is opposite to a force applied to the electrical connection by the pressing of the first detector and orthogonal to the optical axis of the lens group Force.

根據該方法,可藉由與第一探測器的推壓力為相反方向的力來抵消用於對透鏡驅動裝置通電的第一探測器的推壓力,從而可將透鏡單元的保持姿勢維持為所需的狀態。其結果,可精度良好地進行透鏡單元與攝影元件單元的對位。 According to this method, the pressing force of the first detector for energizing the lens driving device can be cancelled by the force in the opposite direction to the pressing force of the first detector, so that the holding posture of the lens unit can be maintained as needed status. As a result, the alignment of the lens unit and the imaging element unit can be performed with high precision.

所揭示的攝影模組的製造方法中,所述透鏡單元的框體具有夾著所述透鏡群的光軸而相向的2個面,自所述2個面分別露出有所述電性連接部,在所述第一步驟中,在下述狀態下藉由所述攝影元件來拍攝所述測定圖表,即,將所述透鏡單元保持於所述軸上,將所述第一探測器推壓至自所述2個面中的其中一個面露出的所述電性連接部並對所述透鏡驅動裝置進行通電,且將第二探測器推壓至自所述2個面中的另一個面露出的所述電性連接部並對所述透鏡驅動裝置進行通電。 In the method for manufacturing a photographic module, the frame of the lens unit has two faces facing each other across an optical axis of the lens group, and the electrical connection portion is exposed from the two faces. In the first step, the measurement chart is photographed by the photographic element in a state in which the lens unit is held on the shaft and the first detector is pushed to The electrical connection portion exposed from one of the two faces and energizing the lens driving device, and pushing the second detector to expose from the other of the two faces The electrical connection portion energizes the lens driving device.

根據該方法,可藉由用於對透鏡驅動部通電的第二探測器的推壓力來抵消用於對透鏡驅動部通電的第一探測器的推壓力,從而可將透鏡單元的保持姿勢維持為所需的狀態。其結果, 可精度良好地進行透鏡單元與攝影元件單元的對位。 According to this method, the pressing force of the first detector for energizing the lens driving portion can be canceled by the pressing force of the second detector for energizing the lens driving portion, so that the holding posture of the lens unit can be maintained as The state required. the result, The alignment of the lens unit and the photographic element unit can be performed with high precision.

所揭示的攝影模組的製造方法中,在所述第一步驟中,將4個以上的所述第一探測器推壓至自所述2個面中的其中一個面露出的所述電性連接部。 In the disclosed method of manufacturing a photographic module, in the first step, four or more of the first detectors are pressed to the electrical property exposed from one of the two faces Connection.

當將4個以上的第一探測器推壓至電性連接部時,按壓力變大,因此尤為有效的是對透鏡單元施加所述相反方向的力。 When the four or more first detectors are pressed to the electrical connection portion, the pressing force becomes large, so it is particularly effective to apply the force in the opposite direction to the lens unit.

所揭示的攝影模組的製造方法中,所述透鏡單元具備框體,所述框體***述透鏡群且在被攝物側具有與所述透鏡群的光軸垂直的面,在所述第一步驟中,自具有與所述軸垂直的吸附面的吸附頭的所述吸附面上所設的抽吸孔來抽吸空氣,使所述框體的所述面吸附於所述吸附面以保持所述透鏡單元。 In the method for manufacturing a photographic module, the lens unit includes a housing that accommodates the lens group and has a surface perpendicular to an optical axis of the lens group on a subject side, In the first step, air is sucked from a suction hole provided on the adsorption surface of the adsorption head having an adsorption surface perpendicular to the axis, and the surface of the frame is adsorbed to the adsorption surface. To maintain the lens unit.

根據該方法,透鏡單元的框體的被攝物側的面吸附於吸附頭而保持透鏡單元,因此可防止透鏡單元內的透鏡群的光軸相對於與測定圖表正交的軸而傾斜,可正確決定攝影元件單元與透鏡單元的對位時的透鏡單元的位置而提高攝影品質。 According to this method, since the surface on the object side of the casing of the lens unit is adsorbed to the adsorption head and holds the lens unit, it is possible to prevent the optical axis of the lens group in the lens unit from being inclined with respect to the axis orthogonal to the measurement chart. The position of the lens unit when the photographic element unit and the lens unit are aligned is correctly determined to improve the photographic quality.

而且,根據該方法,由於無須在透鏡單元的框體側面的周圍配置用於保持透鏡單元的部件,因此容易確保透鏡單元周圍的空間。其結果,例如能夠容易地進行用於固定透鏡單元與攝影元件單元的裝置或用於對透鏡單元通電的裝置等的配置,可實現製造裝置的設計成本的削減以及維護性的向上。 Moreover, according to this method, since it is not necessary to arrange a member for holding the lens unit around the side surface of the casing of the lens unit, it is easy to secure a space around the lens unit. As a result, for example, it is possible to easily arrange the apparatus for fixing the lens unit and the imaging element unit or the apparatus for energizing the lens unit, and the like, and it is possible to reduce the design cost of the manufacturing apparatus and the maintenance performance.

而且,該方法中,利用透鏡單元的框體的被攝物側的面來吸附保持透鏡單元,因此容易產生因碰到第一探測器而造成的 框體的傾斜,尤為有效的是對透鏡單元施加所述相反方向的力。 Further, in this method, the lens unit is sucked and held by the surface on the object side of the casing of the lens unit, so that it is likely to be caused by hitting the first detector. It is particularly effective to tilt the frame to apply the force in the opposite direction to the lens unit.

所揭示的攝影模組的製造方法中,在所述第二步驟中,自利用沿所述軸方向觀察時通過所述透鏡群的光軸且與所述光軸正交的直線來將所述透鏡單元一分為二時的其中一個分割區域側與另一個分割區域側分別照射光,使被供給至所述透鏡單元與所述攝影元件單元的間隙中的光固化性黏著劑固化,以將所述透鏡單元與所述攝影元件單元予以固定。 In the manufacturing method of the disclosed photographic module, in the second step, the self is made by using a straight line passing through the optical axis of the lens group and orthogonal to the optical axis when viewed in the axial direction One of the divided region sides and the other divided region side of the lens unit are separately irradiated with light, and the photocurable adhesive supplied to the gap between the lens unit and the photographic element unit is cured to be The lens unit is fixed to the photographic element unit.

根據該方法,至少自2個方向對透鏡單元與攝影元件單元之間照射光,因此可使所塗佈的黏著劑在整個模組中均勻地固化,從而可穩定地進行透鏡單元與攝影元件單元的固定。而且,該方法中,透鏡單元的框體側面的周圍必須配置至少2個光源等,但由於透鏡單元藉由吸附來保持被攝物側的頂面,因此可容易地在透鏡單元的框體側面的周圍配置該光源等。 According to this method, light is irradiated between the lens unit and the photographic element unit from at least two directions, so that the applied adhesive can be uniformly cured throughout the module, so that the lens unit and the photographic element unit can be stably performed. Fixed. Further, in this method, at least two light sources and the like are required to be disposed around the side surface of the casing of the lens unit. However, since the lens unit holds the top surface on the object side by suction, it can be easily attached to the side of the frame of the lens unit. The light source and the like are arranged around.

所揭示的攝影模組的製造方法中,所述透鏡驅動裝置包括:第一透鏡驅動部,使所述透鏡群中的至少一部分透鏡朝沿著所述透鏡群的光軸的第一方向移動;以及第二透鏡驅動部以及第三透鏡驅動部,使所述透鏡群中的至少一部分透鏡朝與所述透鏡群的光軸正交的第二方向以及第三方向分別移動。 In the disclosed method of manufacturing a photographic module, the lens driving device includes: a first lens driving portion that moves at least a part of the lenses of the lens group in a first direction along an optical axis of the lens group; And the second lens driving unit and the third lens driving unit move at least a part of the lenses in the second direction and the third direction orthogonal to the optical axis of the lens group.

若使用此種透鏡單元,則作為通電對象的透鏡驅動部增加而應觸碰到探測器的電性連接部的數量增加。其結果,容易產生因觸碰到探測器而造成的透鏡單元的傾斜,尤為有效的是對透鏡單元施加與所述一方向為相反方向的力。 When such a lens unit is used, the number of electrical connection portions that should be touched by the probe increases as the lens drive portion to be energized. As a result, it is easy to cause the tilt of the lens unit due to the touch of the probe, and it is particularly effective to apply a force in the opposite direction to the one direction to the lens unit.

所揭示的攝影模組的製造方法包含所述攝影元件的畫素間距為1.0μm以下者。 The method for manufacturing a photographing module disclosed includes a pixel pitch of the imaging element of 1.0 μm or less.

當攝影元件的畫素間距為1.0μm以下時,尤其要求對位精度,因此尤為有效的是,對透鏡單元施加與所述一方向為相反方向的力。 When the pixel pitch of the photographic element is 1.0 μm or less, the alignment accuracy is particularly required, and therefore it is particularly effective to apply a force in the opposite direction to the one direction to the lens unit.

所揭示的攝影模組的製造裝置包括:測定圖表設置部,用於設置測定圖表;攝影元件單元保持部,用於在與設置於所述測定圖表設置部中的所述測定圖表正交的軸上,保持具有攝影元件的攝影元件單元,所述攝影元件通過具有透鏡群的透鏡單元來拍攝被攝物;透鏡單元保持部,用於在所述測定圖表設置部與所述攝影元件單元保持部之間的所述軸上保持所述透鏡單元;探測器推壓部,將第一探測器推壓至由所述透鏡單元保持部所保持的所述透鏡單元;構件推壓部,向所述透鏡單元推壓構件以施加如下所述的力,所述力與在由所述探測器推壓部將所述第一探測器推壓至所述透鏡單元的狀態下施加至所述透鏡單元的跟所述透鏡群的光軸正交的方向的力朝向相反方向;控制部,使所述測定圖表設置部、所述透鏡單元保持部及所述攝影元件單元保持部中的至少任一處在所述軸方向的相對位置發生變化,在各相對位置處,驅動所述攝影元件單元的所述攝影元件,藉由所述攝影元件而通過所述透鏡單元來拍攝所述測定圖表;調整部,基於由所述攝影元件拍攝所述測定圖表所得的攝影信號,調整所述攝影元件單元相對於所述透鏡單元的所述軸方向位置以及斜率中的至少一 者;以及單元固定部,將經所述調整部調整後的所述攝影元件單元固定於所述透鏡單元。 The apparatus for manufacturing a photographic module includes a measurement chart setting unit for providing a measurement chart, and a photographic element unit holding unit for arranging an axis orthogonal to the measurement chart provided in the measurement chart setting unit. Holding a photographic element unit having a photographic element that captures a subject through a lens unit having a lens group, and a lens unit holding portion for holding the measurement chart setting portion and the photographic element unit The lens unit is held on the shaft; the detector pressing portion pushes the first detector to the lens unit held by the lens unit holding portion; the member pressing portion, to the The lens unit pushes the member to apply a force applied to the lens unit in a state where the first detector is pushed to the lens unit by the probe pressing portion a force in a direction orthogonal to an optical axis of the lens group faces in an opposite direction; and a control unit causes the measurement chart setting unit, the lens unit holding unit, and the imaging element unit holding unit to Changing the relative position in the axial direction at any position, driving the photographic element of the photographic element unit at each relative position, and taking the measurement chart through the lens unit by the photographic element And an adjustment unit that adjusts at least one of the axial direction position and the slope of the imaging element unit with respect to the lens unit based on an imaging signal obtained by the imaging element capturing the measurement chart And a unit fixing unit that fixes the photographic element unit adjusted by the adjustment unit to the lens unit.

根據該結構,可藉由與第一探測器的推壓力為相反方向的力來抵消用於對透鏡驅動裝置通電的第一探測器的推壓力,從而可將透鏡單元的保持姿勢維持為所需的狀態。其結果,可精度良好地進行透鏡單元與攝影元件單元的對位。 According to this configuration, the pressing force of the first detector for energizing the lens driving device can be canceled by the force in the opposite direction to the pressing force of the first detector, so that the holding posture of the lens unit can be maintained as needed status. As a result, the alignment of the lens unit and the imaging element unit can be performed with high precision.

所揭示的攝影模組的製造裝置中,所述探測器推壓部將所述第一探測器推壓至電性連接部,所述電性連接部是自被所述透鏡單元保持部所保持的所述透鏡單元的框體中的夾著所述透鏡群的光軸而相向的2個面中的其中一個面露出,所述構件推壓部將作為所述構件的第二探測器推壓至自所述2個面中的另一個面露出的電性連接部。 In the disclosed manufacturing apparatus of the photographic module, the detector urging portion pushes the first detector to an electrical connection portion, and the electrical connection portion is held by the lens unit holding portion One of the two faces facing each other across the optical axis of the lens group is exposed in the frame of the lens unit, and the member pressing portion urges the second detector as the member An electrical connection portion that is exposed from the other of the two faces.

根據該結構,可藉由第二探測器的推壓力來抵消用於對透鏡驅動部通電的第一探測器的推壓力,從而可將透鏡單元的保持姿勢維持為所需的狀態。其結果,可精度良好地進行透鏡單元與攝影元件單元的對位。 According to this configuration, the pressing force of the first probe for energizing the lens driving portion can be canceled by the pressing force of the second detector, so that the holding posture of the lens unit can be maintained in a desired state. As a result, the alignment of the lens unit and the imaging element unit can be performed with high precision.

所揭示的攝影模組的製造裝置中,在所述第一探測器與所述第二探測器接觸至所述透鏡單元的狀態下,包含所述透鏡單元與所述第一探測器的接觸點以及所述透鏡單元與所述第二探測器的接觸點的平面垂直於所述光軸。 In the manufacturing apparatus of the disclosed photographic module, in a state where the first detector and the second detector are in contact with the lens unit, the contact point of the lens unit and the first detector is included And a plane of a contact point of the lens unit and the second detector is perpendicular to the optical axis.

根據該結構,可藉由第二探測器的推壓力來確實地抵消用於對透鏡驅動部通電的第一探測器的推壓力。 According to this configuration, the urging force of the first probe for energizing the lens driving portion can be surely canceled by the urging force of the second detector.

所揭示的攝影模組的製造裝置中,所述第一探測器與所述第二探測器的數量相同,在所述第一探測器與所述第二探測器接觸至所述透鏡單元的狀態下,所述透鏡單元與1個所述第一探測器的接觸點以及所述透鏡單元與1個所述第二探測器的接觸點成對地排列在朝與所述光軸正交的方向延伸的直線上,且所述成對的接觸點在與所述直線正交的方向上排列有多個。 In the manufacturing apparatus of the disclosed photographic module, the number of the first detector and the second detector is the same, and the state in which the first detector and the second detector are in contact with the lens unit And a contact point of the lens unit with one of the first detectors and a contact point of the lens unit and one of the second detectors are arranged in a direction orthogonal to the optical axis On the extended straight line, the pair of contact points are arranged in a plurality in a direction orthogonal to the straight line.

根據該結構,可藉由第二探測器的推壓力來確實地抵消用於對透鏡驅動部通電的第一探測器的推壓力。 According to this configuration, the urging force of the first probe for energizing the lens driving portion can be surely canceled by the urging force of the second detector.

所揭示的攝影模組的製造裝置中,所述探測器推壓部具有4個以上的所述第一探測器。 In the apparatus for manufacturing a photographing module disclosed, the probe pressing portion has four or more of the first detectors.

當將4個以上的第一探測器推壓至透鏡單元時,按壓力變大,因此尤為有效的是,對透鏡單元施加所述相反方向的力。 When more than four first detectors are pressed to the lens unit, the pressing force becomes large, so it is particularly effective to apply the force in the opposite direction to the lens unit.

所揭示的攝影模組的製造裝置中,所述透鏡單元保持部包括具有與所述軸正交的吸附面的吸附頭、形成在所述吸附面上的抽吸孔、及自所述抽吸孔抽吸空氣的抽吸部,藉由所述抽吸部而自所述抽吸孔抽吸空氣,使***述透鏡群且在被攝物側具有與所述透鏡群的光軸垂直的面的所述透鏡單元的框體的所述面吸附於所述吸附面,以將所述透鏡單元保持於所述軸上。 In the apparatus for manufacturing a photographic module, the lens unit holding portion includes an adsorption head having an adsorption surface orthogonal to the axis, a suction hole formed on the adsorption surface, and the suction a suction portion that sucks air from the hole, and suctions air from the suction hole by the suction portion to accommodate the lens group and has a perpendicular to an optical axis of the lens group on a subject side The face of the frame of the lens unit of the face is adsorbed to the adsorption face to hold the lens unit on the shaft.

所揭示的攝影模組的製造裝置中,所述單元固定部包含光源,所述光源分別配置在利用沿所述軸方向觀察時通過所述透鏡群的光軸且與所述光軸正交的直線來將所述透鏡單元一分為二時的其中一個分割區域側與另一個分割區域側,對所述透鏡單元 與所述攝影元件單元的間隙照射光,使被供給至所述間隙中的光固化性黏著劑固化。 In the apparatus for manufacturing a photographing module, the unit fixing portion includes a light source, and the light sources are respectively disposed through an optical axis of the lens group and orthogonal to the optical axis when viewed in the axial direction. Straight line to divide the lens unit into one of the divided area side and the other divided area side, to the lens unit The gap with the photographic element unit is irradiated with light to cure the photocurable adhesive supplied to the gap.

[產業上之可利用性] [Industrial availability]

本發明的攝影模組的製造方法尤其可有效地適用於行動電話機、眼鏡型電子機器、手錶型電子機器等電子機器中搭載的攝影模組的製造。 In particular, the method for manufacturing a photographic module of the present invention can be effectively applied to the manufacture of a photographic module mounted in an electronic device such as a mobile phone, a glasses-type electronic device, or a watch-type electronic device.

以上,藉由特定的實施形態對本發明進行了說明,但本發明並不限定於該實施形態,可在不脫離所揭示的發明的技術思想的範圍內進行各種變更。 The present invention has been described with respect to the specific embodiments thereof, and the invention is not limited thereto, and various modifications can be made without departing from the spirit and scope of the invention.

本申請案是基於2013年10月22日申請的日本專利申請案(日本專利特願2013-219244)者,其內容被引用於本文中。 The present application is based on Japanese Patent Application No. 2013-219244, filed on Oct. 22, 2013, the content of which is incorporated herein.

10‧‧‧透鏡單元 10‧‧‧ lens unit

73c、75c‧‧‧開口 73c, 75c‧‧‧ openings

12‧‧‧透鏡群 12‧‧‧ lens group

14‧‧‧透鏡單元端子部 14‧‧‧ lens unit terminal

20‧‧‧攝影元件單元 20‧‧‧Photographic component unit

22‧‧‧可撓性基板 22‧‧‧Flexible substrate

23‧‧‧外部連接用端子部 23‧‧‧External connection terminal

27a‧‧‧攝影面 27a‧‧‧Photoface

71‧‧‧圖表單元 71‧‧‧ Chart unit

71a‧‧‧框體 71a‧‧‧ frame

73‧‧‧準直單元 73‧‧‧ Collimation unit

73a、117、121‧‧‧托架 73a, 117, 121‧‧‧ brackets

73b‧‧‧準直透鏡 73b‧‧‧ Collimating lens

75‧‧‧透鏡單元保持部 75‧‧‧Lens unit holding unit

75a‧‧‧吸附頭 75a‧‧‧Adsorption head

75b‧‧‧抽吸孔 75b‧‧‧ suction hole

75d‧‧‧吸附面 75d‧‧‧Adsorption surface

77‧‧‧通電機構 77‧‧‧Electrified institutions

79‧‧‧攝影元件單元保持部 79‧‧‧Photographic unit holding unit

81‧‧‧黏著劑供給部 81‧‧‧Adhesive Supply Department

83a、83b‧‧‧紫外線燈 83a, 83b‧‧‧ ultraviolet light

85‧‧‧控制部 85‧‧‧Control Department

87‧‧‧面(作業台) 87‧‧‧ face (job)

89‧‧‧測定圖表 89‧‧‧Determination chart

89a‧‧‧圖表面中心 89a‧‧‧ surface center

91‧‧‧光源 91‧‧‧Light source

99‧‧‧第1滑台 99‧‧‧1st slide

99a、123a‧‧‧平台部 99a, 123a‧‧‧ Platform Department

113‧‧‧探測器單元 113‧‧‧Detector unit

113a、113b‧‧‧探測器 113a, 113b‧‧ Detector

115‧‧‧夾盤手 115‧‧‧ chucker

115a‧‧‧夾持構件 115a‧‧‧Clamping members

115b‧‧‧致動器 115b‧‧‧Actuator

119‧‧‧雙軸旋轉平台 119‧‧‧Two-axis rotating platform

123‧‧‧第2滑台 123‧‧‧2nd slide

127‧‧‧連接器纜線 127‧‧‧Connector cable

200‧‧‧攝影模組製造裝置 200‧‧‧Photographic module manufacturing device

z‧‧‧沿著光軸的方向(第一方向) Z‧‧‧direction along the optical axis (first direction)

Claims (14)

一種攝影模組的製造方法,所述攝影模組具有透鏡單元及攝影元件單元,所述透鏡單元具有透鏡群,所述攝影元件單元被固定於所述透鏡單元,且具有通過所述透鏡群來拍攝被攝物的攝影元件,其中,所述透鏡單元具有透鏡驅動裝置,所述透鏡驅動裝置包括使所述透鏡群中的至少一部分透鏡移動的透鏡驅動部,所述攝影模組的製造方法包括:第一步驟,在與測定圖表正交的軸上,使所述攝影元件單元、所述透鏡單元以及所述測定圖表中的至少任一處在所述軸方向上的相對位置發生變化,在各相對位置處,驅動所述攝影元件,以藉由所述攝影元件而通過所述透鏡群來拍攝所述測定圖表;以及第二步驟,基於由所述攝影元件拍攝所述測定圖表所獲得的攝影信號,調整所述攝影元件單元相對於所述透鏡單元的所述軸方向位置以及斜率中的至少一者,並將所述攝影元件單元固定於所述透鏡單元,在所述第一步驟中,在下述狀態下藉由所述攝影元件來拍攝所述測定圖表,即,將所述透鏡單元保持於所述軸上,將第一探測器推壓至設置於所述透鏡單元中並與所述透鏡驅動裝置電性連接的電性連接部,並對所述透鏡驅動裝置進行通電,以對所述透鏡單元施加如下的力:所述力與藉由所述第一探測器的推壓而施加至所述電性連接部的且跟所述透鏡群的光軸正交的方向的力為 相反方向的力。 A manufacturing method of a photographic module, the photographic module having a lens unit and a photographic element unit, the lens unit having a lens group, the photographic element unit being fixed to the lens unit, and having a lens group Shooting a photographic element of a subject, wherein the lens unit has a lens driving device including a lens driving portion that moves at least a part of the lens group, and the manufacturing method of the photographic module includes a first step of changing a relative position of at least one of the photographic element unit, the lens unit, and the measurement chart in the axial direction on an axis orthogonal to the measurement chart, Driving the photographic element at each relative position to capture the measurement chart by the lens group by the photographic element; and a second step of obtaining the measurement chart based on the photographic element a photographic signal that adjusts at least one of the axial direction position and the slope of the photographic element unit relative to the lens unit, and The photographic element unit is fixed to the lens unit, and in the first step, the measurement chart is captured by the photographic element in a state in which the lens unit is held on the shaft, Pushing a first detector to an electrical connection portion disposed in the lens unit and electrically connected to the lens driving device, and energizing the lens driving device to apply the following to the lens unit Force: the force applied to the electrical connection portion by the pushing of the first detector and in a direction orthogonal to the optical axis of the lens group is The force in the opposite direction. 如申請專利範圍第1項所述的攝影模組的製造方法,其中所述透鏡單元的框體具有夾著所述透鏡群的光軸而相向的2個面,自所述2個面分別露出有所述電性連接部,在所述第一步驟中,在下述狀態下藉由所述攝影元件來拍攝所述測定圖表,即,將所述透鏡單元保持於所述軸上,將所述第一探測器推壓至自所述2個面中的其中一個面露出的所述電性連接部並對所述透鏡驅動裝置進行通電,且將第二探測器推壓至自所述2個面中的另一個面露出的所述電性連接部並對所述透鏡驅動裝置進行通電。 The method of manufacturing a photographic module according to the first aspect of the invention, wherein the frame of the lens unit has two faces facing each other across an optical axis of the lens group, and is exposed from the two faces. There is the electrical connection portion, and in the first step, the measurement chart is captured by the imaging element in a state in which the lens unit is held on the shaft, The first detector pushes the electrical connection portion exposed from one of the two faces and energizes the lens driving device, and pushes the second detector to the two The electrical connection portion exposed on the other side of the surface energizes the lens driving device. 如申請專利範圍第2項所述的攝影模組的製造方法,其中在所述第一步驟中,將4個以上的所述第一探測器推壓至自所述2個面中的其中一個面露出的所述電性連接部。 The method of manufacturing a photographic module according to claim 2, wherein in the first step, four or more of the first detectors are pushed to one of the two faces The electrical connection portion exposed. 如申請專利範圍第1項至第3項中任一項所述的攝影模組的製造方法,其中所述透鏡單元具備框體,所述框體***述透鏡群且在被攝物側具有與所述透鏡群的光軸垂直的面,在所述第一步驟中,自具有與所述軸垂直的吸附面的吸附頭的所述吸附面上所設的抽吸孔來抽吸空氣,使所述框體的所述面吸附於所述吸附面以保持所述透鏡單元。 The method of manufacturing a photographic module according to any one of the preceding claims, wherein the lens unit includes a housing that accommodates the lens group and has a subject on a subject side a surface perpendicular to the optical axis of the lens group, in the first step, sucking air from a suction hole provided on the adsorption surface of the adsorption head having an adsorption surface perpendicular to the axis, The face of the frame is adsorbed to the adsorption face to hold the lens unit. 如申請專利範圍第4項所述的攝影模組的製造方法,其中 在所述第二步驟中,自利用沿所述軸方向觀察時通過所述透鏡群的光軸且與所述光軸正交的直線來將所述透鏡單元一分為二時的其中一個分割區域側與另一個分割區域側分別照射光,使被供給至所述透鏡單元與所述攝影元件單元的間隙中的光固化性黏著劑固化,以將所述透鏡單元與所述攝影元件單元予以固定。 A method of manufacturing a photographic module according to claim 4, wherein In the second step, one of the lens units is divided into two when utilizing a line passing through the optical axis of the lens group and orthogonal to the optical axis when viewed in the axial direction. The region side and the other divided region side are respectively irradiated with light, and the photocurable adhesive supplied to the gap between the lens unit and the photographic element unit is cured to apply the lens unit and the photographic element unit fixed. 如申請專利範圍第1項至第5項中任一項所述的攝影模組的製造方法,其中所述透鏡驅動裝置包括:第一透鏡驅動部,使所述透鏡群中的至少一部分透鏡朝沿著所述透鏡群的光軸的第一方向移動;以及第二透鏡驅動部以及第三透鏡驅動部,使所述透鏡群中的至少一部分透鏡朝與所述透鏡群的光軸正交的第二方向以及第三方向分別移動。 The method of manufacturing a photographic module according to any one of the preceding claims, wherein the lens driving device comprises: a first lens driving portion that causes at least a part of the lens group to face Moving along a first direction of the optical axis of the lens group; and the second lens driving portion and the third lens driving portion causing at least a portion of the lenses of the lens group to be orthogonal to an optical axis of the lens group The second direction and the third direction are respectively moved. 如申請專利範圍第1項至第6項中任一項所述的攝影模組的製造方法,其中所述攝影元件的畫素間距為1.0μm以下。 The method of manufacturing a photographic module according to any one of claims 1 to 6, wherein the photographic element has a pixel pitch of 1.0 μm or less. 一種攝影模組的製造裝置,包括:測定圖表設置部,用於設置測定圖表;攝影元件單元保持部,用於在與設置於所述測定圖表設置部中的所述測定圖表正交的軸上,保持具有攝影元件的攝影元件單元,所述攝影元件通過具有透鏡群的透鏡單元來拍攝被攝物;透鏡單元保持部,用於在所述測定圖表設置部與所述攝影元件單元保持部之間的所述軸上保持所述透鏡單元; 探測器推壓部,將第一探測器推壓至由所述透鏡單元保持部所保持的所述透鏡單元;構件推壓部,向所述透鏡單元推壓構件以施加如下所述的力,所述力與在由所述探測器推壓部將所述第一探測器推壓至所述透鏡單元的狀態下施加至所述透鏡單元的跟所述透鏡群的光軸正交的方向的力朝向相反方向;控制部,使所述測定圖表設置部、所述透鏡單元保持部及所述攝影元件單元保持部中的至少任一處在所述軸方向的相對位置發生變化,在各相對位置處,驅動所述攝影元件單元的所述攝影元件,藉由所述攝影元件而通過所述透鏡單元來拍攝所述測定圖表;調整部,基於由所述攝影元件拍攝所述測定圖表所得的攝影信號,至少調整所述攝影元件單元相對於所述透鏡單元的所述軸方向位置以及斜率中的至少一者;以及單元固定部,將經所述調整部調整後的所述攝影元件單元固定於所述透鏡單元。 A manufacturing apparatus of a photographic module, comprising: a measurement chart setting unit for providing a measurement chart; and a photographic element unit holding unit for arranging on an axis orthogonal to the measurement chart provided in the measurement chart setting unit Holding a photographic element unit having a photographic element that captures a subject through a lens unit having a lens group; a lens unit holding portion for holding the measurement chart setting portion and the photographic element unit holding portion Holding the lens unit on the shaft; a detector pressing portion that presses the first detector to the lens unit held by the lens unit holding portion; a member pressing portion that presses the member toward the lens unit to apply a force as described below, The force is applied to a direction orthogonal to an optical axis of the lens group of the lens unit in a state where the first detector is pushed to the lens unit by the detector pressing portion The force is directed in the opposite direction; the control unit changes the relative position of at least one of the measurement chart setting unit, the lens unit holding unit, and the imaging element unit holding unit in the axial direction. a position at which the photographic element of the photographic element unit is driven, the measurement unit is captured by the lens unit by the photographic element; and an adjustment unit based on the measurement of the measurement chart by the photographic element a photographing signal for adjusting at least one of the axial direction position and a slope of the photographic element unit with respect to the lens unit; and a unit fixing portion that is adjusted by the adjustment unit Photographic element unit is fixed to the lens unit. 如申請專利範圍第8項所述的攝影模組的製造裝置,其中所述探測器推壓部將所述第一探測器推壓至電性連接部,所述電性連接部是自被所述透鏡單元保持部所保持的所述透鏡單元的框體中的夾著所述透鏡群的光軸而相向的2個面中的其中一個面露出,所述構件推壓部將作為所述構件的第二探測器推壓至自所述 2個面中的另一個面露出的電性連接部。 The apparatus for manufacturing a photographic module according to claim 8, wherein the detector urging portion pushes the first detector to an electrical connection portion, and the electrical connection portion is a self-contained portion One of the two faces facing each other across the optical axis of the lens group in the housing of the lens unit held by the lens unit holding portion is exposed, and the member pressing portion serves as the member The second detector is pushed to the An electrical connection portion exposed on the other of the two faces. 如申請專利範圍第9項所述的攝影模組的製造裝置,其中在所述第一探測器與所述第二探測器接觸至所述透鏡單元的狀態下,包含所述透鏡單元與所述第一探測器的接觸點以及所述透鏡單元與所述第二探測器的接觸點的平面垂直於所述光軸。 The manufacturing apparatus of the photographic module according to claim 9, wherein the lens unit and the lens are included in a state where the first detector and the second detector are in contact with the lens unit A contact point of the first detector and a plane of the contact point of the lens unit and the second detector are perpendicular to the optical axis. 如申請專利範圍第9項或第10項所述的攝影模組的製造裝置,其中所述第一探測器與所述第二探測器的數量相同,在所述第一探測器與所述第二探測器接觸至所述透鏡單元的狀態下,所述透鏡單元與1個所述第一探測器的接觸點以及所述透鏡單元與1個所述第二探測器的接觸點成對地排列在朝與所述光軸正交的方向延伸的直線上,且成對的所述接觸點在與所述直線正交的方向上排列有多個。 The manufacturing apparatus of the photographic module according to claim 9 or 10, wherein the first detector and the second detector are the same number, and the first detector and the first In a state where the two detectors are in contact with the lens unit, the contact points of the lens unit with one of the first detectors and the contact points of the lens unit and one of the second detectors are arranged in pairs On the straight line extending in a direction orthogonal to the optical axis, a plurality of the pair of contact points are arranged in a direction orthogonal to the straight line. 如申請專利範圍第8項至第11項中任一項所述的攝影模組的製造裝置,其中所述探測器推壓部具有4個以上的所述第一探測器。 The apparatus for manufacturing a photographic module according to any one of claims 8 to 11, wherein the detector urging portion has four or more of the first detectors. 如申請專利範圍第8項至第12項中任一項所述的攝影模組的製造裝置,其中所述透鏡單元保持部包括具有與所述軸正交的吸附面的吸附頭、形成在所述吸附面上的抽吸孔、及自所述抽吸孔抽吸空氣的抽吸部,藉由所述抽吸部而自所述抽吸孔抽吸空氣,使***述透鏡群且在被攝物側具有與所述透鏡群的光軸垂直的面的所述透 鏡單元的框體的所述面吸附於所述吸附面,以將所述透鏡單元保持於所述軸上。 The manufacturing apparatus of the photographic module according to any one of the preceding claims, wherein the lens unit holding portion includes an adsorption head having an adsorption surface orthogonal to the axis, formed in the same a suction hole on the adsorption surface, and a suction portion that sucks air from the suction hole, and suctioning air from the suction hole by the suction portion to accommodate the lens group and The surface of the object having a face perpendicular to the optical axis of the lens group The face of the frame of the mirror unit is attracted to the adsorption face to hold the lens unit on the shaft. 如申請專利範圍第13項所述的攝影模組的製造裝置,其中所述單元固定部包含光源,所述光源分別配置在利用沿所述軸方向觀察時通過所述透鏡群的光軸且與所述光軸正交的直線來將所述透鏡單元一分為二時的其中一個分割區域側與另一個分割區域側,對所述透鏡單元與所述攝影元件單元的間隙照射光,使被供給至所述間隙中的光固化性黏著劑固化。 The apparatus for manufacturing a photographic module according to claim 13, wherein the unit fixing portion includes a light source, and the light sources are respectively disposed through an optical axis of the lens group when viewed in the axial direction and a straight line orthogonal to the optical axis to split the lens unit into one of the divided region side and the other divided region side, and illuminate the gap between the lens unit and the photographic element unit to cause light to be The photocurable adhesive supplied to the gap is cured.
TW103136275A 2013-10-22 2014-10-21 Manufacturing method for camera module and manufacturing apparatus for camera module TW201521439A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013219244 2013-10-22

Publications (1)

Publication Number Publication Date
TW201521439A true TW201521439A (en) 2015-06-01

Family

ID=52992787

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103136275A TW201521439A (en) 2013-10-22 2014-10-21 Manufacturing method for camera module and manufacturing apparatus for camera module

Country Status (2)

Country Link
TW (1) TW201521439A (en)
WO (1) WO2015060188A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109773474B (en) * 2017-11-13 2021-07-13 宁波舜宇光电信息有限公司 Assembling equipment and assembling method for optical assembly
CN113805025A (en) * 2020-06-01 2021-12-17 均豪精密工业股份有限公司 Photoelectric detection system and method for detecting crystal grains

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH052866Y2 (en) * 1987-05-22 1993-01-25
JPH0550368U (en) * 1991-12-04 1993-07-02 株式会社アイシーティ IC mounting board inspection device
EP1494055A1 (en) * 2002-04-11 2005-01-05 Matsushita Electric Industrial Co., Ltd. Zoom lens and electronic still camera using it
JP2004080774A (en) * 2002-08-02 2004-03-11 Rohm Co Ltd Method of manufacturing image sensors module
JP2006081007A (en) * 2004-09-10 2006-03-23 Sony Corp Solid-state imaging unit
JP5198295B2 (en) * 2008-01-15 2013-05-15 富士フイルム株式会社 Image sensor position adjustment method, camera module manufacturing method and apparatus, and camera module
JP2010088088A (en) * 2008-10-03 2010-04-15 Fujifilm Corp Camera module
JP2012088393A (en) * 2010-10-15 2012-05-10 Sumitomo Electric Ind Ltd Collet and method for manufacturing optical device
JP2012122972A (en) * 2010-12-10 2012-06-28 Ngk Spark Plug Co Ltd Electric inspection device, and manufacturing method for wiring board

Also Published As

Publication number Publication date
WO2015060188A1 (en) 2015-04-30

Similar Documents

Publication Publication Date Title
US9927594B2 (en) Image pickup module manufacturing method and image pickup module manufacturing device
JP6262536B2 (en) Manufacturing method of camera module
WO2015129120A1 (en) Method for manufacturing image-capturing module, and device for manufacturing image-capturing module
TW201523058A (en) Manufacturing method for camera module and manufacturing apparatus for camera module
JP5957621B2 (en) Imaging module manufacturing method and imaging module manufacturing apparatus
JP5851075B2 (en) Imaging module manufacturing method and imaging module manufacturing apparatus
TW201521439A (en) Manufacturing method for camera module and manufacturing apparatus for camera module
JP5990655B2 (en) Imaging module, imaging module manufacturing method, electronic device
JP5895105B2 (en) Imaging module manufacturing method, imaging module, and electronic apparatus
JP2011151551A (en) Method of manufacturing camera module and device
WO2015194396A1 (en) Lens element transfer mechanism, lens drive device, optical axis adjustment device, and equipment and method for manufacturing optical module
JP5887468B2 (en) Imaging module and electronic device
US10015401B2 (en) Imaging module, manufacturing method of imaging module, and electronic device
WO2015056720A1 (en) Method for manufacturing imaging module and device for manufacturing imaging module
JP5857163B2 (en) Imaging module manufacturing method and imaging module manufacturing apparatus
WO2014141497A1 (en) Positional adjustment device for imaging component