TW201519460A - Heat conduction sealed composite layer and solar module including the same - Google Patents

Heat conduction sealed composite layer and solar module including the same Download PDF

Info

Publication number
TW201519460A
TW201519460A TW102140839A TW102140839A TW201519460A TW 201519460 A TW201519460 A TW 201519460A TW 102140839 A TW102140839 A TW 102140839A TW 102140839 A TW102140839 A TW 102140839A TW 201519460 A TW201519460 A TW 201519460A
Authority
TW
Taiwan
Prior art keywords
thermally conductive
resin layer
layer
solar module
inorganic particles
Prior art date
Application number
TW102140839A
Other languages
Chinese (zh)
Other versions
TWI511314B (en
Inventor
Fu-Min Wang
Yi-Ling Deng
Zong-Tai Hong
yu-xian Li
zi-jing Hong
zheng-xin Huang
Original Assignee
Taiflex Scient Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiflex Scient Co Ltd filed Critical Taiflex Scient Co Ltd
Priority to TW102140839A priority Critical patent/TW201519460A/en
Publication of TW201519460A publication Critical patent/TW201519460A/en
Application granted granted Critical
Publication of TWI511314B publication Critical patent/TWI511314B/zh

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

The invention provides a heat conduction sealed composite layer, which comprises a heat conduction resin layer with thermal conductivity from 0.5 W/mK to 8 W/mK and an adhesive resin layer with thermal conductivity from 0.05 W/mK to 0.4 W/mK; wherein the thickness of the adhesive resin layer relative to the thickness sum of the adhesive resin layer and the heat conduction resin layer is between 0.1% and 10%, and total heat resistance value of the adhesive resin layer and the heat conduction resin layer is less than 0.72DEG C -in 2 /W. According, the heat conduction sealed composite layer can replace sealed resin layer of existing solar module for not only possessing functions of maintaining sealing, isolating moisture, and adhesion, but also reducing working temperature of solar module and raising photoelectric conversion efficiency and power generation output without increasing the thickness and volume of the solar module.

Description

導熱密封複合層及包含其之太陽能模組Thermally conductive sealing composite layer and solar module containing the same

本發明關於半導體裝置相關領域,尤指一種導熱密封複合層及包含其之太陽能模組。The invention relates to the field of semiconductor devices, in particular to a heat-conductive sealing composite layer and a solar module comprising the same.

現有技術之太陽能模組由上而下依序為透明基板、第一密封樹脂層、光電轉換元件、第二密封樹脂層及背板,其中該光電轉換元件係由第一、第二密封樹脂層所包覆,以避免光電轉換元件受到外界環境中水氣的影響。The solar module of the prior art is a transparent substrate, a first sealing resin layer, a photoelectric conversion element, a second sealing resin layer and a backing plate in order from top to bottom, wherein the photoelectric conversion element is composed of first and second sealing resin layers It is coated to prevent the photoelectric conversion element from being affected by moisture in the external environment.

然而,由於現有技術之光電轉換元件將太陽光轉換為電能之轉換效率僅有約14至22%,剩餘的能量則轉換為熱能或反射至外界環境中,致使太陽能模組之工作溫度不當提高,而降低太陽能模組之光電轉換率。However, since the photoelectric conversion element of the prior art converts sunlight into electric energy with a conversion efficiency of only about 14 to 22%, the remaining energy is converted into heat energy or reflected to the external environment, resulting in an improper increase in the operating temperature of the solar module. And reduce the photoelectric conversion rate of the solar module.

為克服前述問題,現有技術提供一種改良式太陽能模組,其係於背板相對於第二密封樹脂層之一側上設置散熱鰭片,藉由在太陽能模組之疊層結構的外部設置散熱鰭片提高散熱面積,以試圖降低太陽能模組的工作溫度。In order to overcome the foregoing problems, the prior art provides an improved solar module, which is provided with a heat dissipating fin on a side of the back plate opposite to the second sealing resin layer, and is disposed on the outside of the laminated structure of the solar module. The fins increase the heat sink area in an attempt to reduce the operating temperature of the solar module.

然而,以此方式改良太陽能模組具備下列問題:(1) 需改變現有量產太陽能模組之封裝製程,徒增製程上之不便利性;(2) 裝設散熱鰭片後將增加整體太陽能模組之體積與厚度大小,而限制太陽能模組與其他電子元件的應用性;(3) 光電轉換元件之外圍皆被二材料相同且低熱傳導係數的第一、第二密封樹脂層所包覆,致使光電轉換元件所產生的熱能仍無從經由第二密封樹脂層及背板傳導至外部的散熱鰭片,故即便於太陽能模組之外圍設置散熱鰭片,也無法具體達到降低太陽能模組的工作溫度之目的。However, improving the solar module in this way has the following problems: (1) the packaging process of the existing mass production solar module needs to be changed, and the manufacturing process is inconvenient; (2) the solar energy is added to increase the overall solar energy The size and thickness of the module limit the application of the solar module and other electronic components; (3) the periphery of the photoelectric conversion element is covered by the first and second sealing resin layers of the same material and low thermal conductivity Therefore, the thermal energy generated by the photoelectric conversion element is not transmitted from the second sealing resin layer and the back plate to the external heat dissipation fins, so even if the heat dissipation fins are disposed on the periphery of the solar module, the solar module cannot be specifically reduced. The purpose of the working temperature.

有鑑於現有技術所面臨之技術缺陷,本發明之目的在於發展另一種能有效逸散光電轉換元件所產生之熱能的途徑,以達到降低太陽能模組之工作溫度及提升太陽能模組之光電轉換效率及發電輸出量等功效。In view of the technical defects faced by the prior art, the object of the present invention is to develop another way to effectively dissipate the thermal energy generated by the photoelectric conversion element, so as to reduce the operating temperature of the solar module and improve the photoelectric conversion efficiency of the solar module. And power output and other effects.

本發明之另一目的在於以不需額外增加太陽能模組之體積及不需改變太陽能模組之封裝製程的情況下,達到減緩太陽能模組之內部元件因長期處於高工作溫度下所造成的老化現象。Another object of the present invention is to reduce the aging of the internal components of the solar module due to long-term high operating temperature without additionally increasing the volume of the solar module and without changing the packaging process of the solar module. phenomenon.

為達成前述目的,本發明提供一種導熱密封複合層,其包含:一導熱樹脂層,其包括一熱可塑性樹脂及分散於該熱可塑性樹脂中的複數無機粒子,該等無機粒子相對於整體導熱樹脂層之含量係介於10體積百分比至70體積百分比之間,且該導熱樹脂層之熱傳導係數係介於0.5 W/mK至8 W/mK之間;以及一接著樹脂層,其係設置於該導熱樹脂層上,該接著樹脂層之熱傳導係數係介於0.05 W/mK至0.4 W/mK之間;其中,該接著樹脂層之厚度相對於該接著樹脂層與該導熱樹脂層之厚度和係介於0.1%至10%之間,且該接著樹脂層與該導熱樹脂層之總熱阻抗值係小於0.72°C-in2 /W。In order to achieve the above object, the present invention provides a thermally conductive sealing composite layer comprising: a thermally conductive resin layer comprising a thermoplastic resin and a plurality of inorganic particles dispersed in the thermoplastic resin, the inorganic particles being relative to the integral thermally conductive resin The content of the layer is between 10% by volume and 70% by volume, and the thermal conductivity of the thermally conductive resin layer is between 0.5 W/mK and 8 W/mK; and a resin layer is disposed thereon. On the thermally conductive resin layer, the thermal conductivity of the adhesive resin layer is between 0.05 W/mK and 0.4 W/mK; wherein the thickness of the adhesive resin layer is relative to the thickness and the thickness of the adhesive resin layer and the thermal conductive resin layer Between 0.1% and 10%, and the total thermal resistance value of the adhesive resin layer and the thermally conductive resin layer is less than 0.72 ° C - in 2 /W.

依據本發明,藉由合併控制無機粒子相對於整體導熱樹脂層之含量以及接著樹脂層之厚度相對於接著樹脂層與該導熱樹脂層之厚度和等範圍,能確保導熱密封複合層之總熱阻抗值小於0.72°C-in2 /W。據此,將本發明之導熱密封複合層應用於太陽能模組能有效逸散散光電轉換元件所產生之熱能,藉此減緩太陽能模組之高溫老化現象、降低太陽能模組之工作溫度,同時提升太陽能模組之光電轉換效率及發電輸出量。According to the present invention, the total thermal impedance of the thermally conductive sealing composite layer can be ensured by combining and controlling the content of the inorganic particles relative to the entire thermally conductive resin layer and then the thickness of the resin layer relative to the thickness and the range of the resin layer and the thermally conductive resin layer. The value is less than 0.72 ° C - in 2 /W. Accordingly, the heat-conductive sealing composite layer of the invention can be applied to the solar module to effectively dissipate the heat energy generated by the photoelectric conversion component, thereby slowing down the high-temperature aging phenomenon of the solar module, reducing the working temperature of the solar module, and simultaneously improving Photoelectric conversion efficiency and power generation output of solar modules.

較佳的,該接著樹脂層可以熱熔加工或濕式塗佈加工等方法形成於導熱樹脂層上。Preferably, the adhesive resin layer is formed on the thermally conductive resin layer by a method such as hot melt processing or wet coating processing.

較佳的,該等無機粒子相對於整體導熱樹脂層之含量係介於20體積百分比至70體積百分比之間。Preferably, the content of the inorganic particles relative to the integral thermally conductive resin layer is between 20 volume percent and 70 volume percent.

較佳的,該導熱樹脂層中熱可塑性樹脂的熱傳導係數係介於0.05 W/mK至0.4 W/mK之間。Preferably, the thermal conductive resin in the thermally conductive resin layer has a thermal conductivity of between 0.05 W/mK and 0.4 W/mK.

較佳的,該接著樹脂層與該導熱樹脂層之厚度和係介於20微米至600微米之間。Preferably, the thickness and the thickness of the adhesive resin layer and the heat conductive resin layer are between 20 micrometers and 600 micrometers.

較佳的,於該導熱密封複合層中,該導熱樹脂層與該接著樹脂層之總熱阻抗值係介於0.01°C-in2 /W至0.72°C-in2 /W之間。於較可實行的一態樣中,該導熱密封複合層之導熱樹脂層與該接著樹脂層之總熱阻抗值係介於0.1°C-in2 /W至0.72°C-in2 /W之間。較佳的,該導熱密封複合層具有大於1.0×1014 Ω*cm之電阻值、22 kV/mm之破壞電壓、小於0.1%之絕緣破壞電壓吸水率(20°C/24小時)、小於3%之縱向收縮率(依據ASTMD1204檢測方法所測得)及小於1.0%之橫向收縮率(120°C/3分鐘,依據ASTMD1204檢測方法所測得)等特性。Preferably, in the thermally conductive sealing composite layer, the total thermal resistance value of the thermally conductive resin layer and the adhesive resin layer is between 0.01 ° C - in 2 /W and 0.72 ° C - in 2 /W. In a more practical aspect, the total thermal resistance value of the thermally conductive resin layer and the adhesive resin layer of the thermally conductive sealing composite layer is between 0.1 ° C - in 2 /W and 0.72 ° C - in 2 /W between. Preferably, the thermally conductive sealing composite layer has a resistance value greater than 1.0×10 14 Ω*cm, a breakdown voltage of 22 kV/mm, an insulation breakdown voltage water absorption ratio of less than 0.1% (20° C./24 hours), and less than 3 % of the longitudinal shrinkage (measured according to the ASTM D1204 test method) and a lateral shrinkage of less than 1.0% (120 ° C / 3 minutes, measured according to ASTM D1204 test method) and other characteristics.

此外,本發明另提供一種太陽能模組,其包含:一透明基板;一密封樹脂層,其係設置於該透明基板上;一光電轉換元件,其係設置於該密封樹脂層上;一如前所述之導熱密封複合層,其係設置於該光電轉換元件及該密封樹脂層上,且該導熱密封複合層之接著樹脂層係與該光電轉換元件接觸;以及一背板,其係設置於該導熱密封複合層之導熱樹脂層上。In addition, the present invention further provides a solar module comprising: a transparent substrate; a sealing resin layer disposed on the transparent substrate; a photoelectric conversion element disposed on the sealing resin layer; The heat-conductive sealing composite layer is disposed on the photoelectric conversion element and the sealing resin layer, and the resin layer of the heat-conductive sealing composite layer is in contact with the photoelectric conversion element; and a back plate is disposed on the back plate The thermally conductive sealing composite layer is on the thermally conductive resin layer.

較佳的,於其中一實施態樣中,該太陽能模組包含另一導熱樹脂層,該另一導熱樹脂層係形成於該導熱密封複合層及該背板之外圍並與該光電轉換元件接觸。據此,該太陽能模組能藉由導熱密封複合層之導熱樹脂層及另一導熱樹脂層之傳導路徑或直接藉由另一導熱樹脂層之作用,將光電轉換元件所產生之熱能逸散至太陽能模組外,藉此降低太陽能模組的工作溫度。Preferably, in one embodiment, the solar module includes another thermal conductive resin layer formed on the periphery of the thermally conductive sealing composite layer and the back plate and in contact with the photoelectric conversion element. . Accordingly, the solar module can dissipate the thermal energy generated by the photoelectric conversion element by the conduction path of the thermally conductive resin layer of the thermally conductive sealing composite layer and the conductive layer of the other thermally conductive resin layer or directly by another thermal conductive resin layer. Outside the solar module, thereby reducing the operating temperature of the solar module.

較佳的,該太陽能模組包含一導熱密封黏著層及一金屬外框,該金屬外框係透過該導熱密封黏著層貼合於該透明基板、該密封樹脂層、該導熱密封複合層及該背板之外圍。據此,該太陽能模組能經由導熱密封複合層之導熱樹脂層、導熱密封黏著層及金屬外框的傳導路徑,將光電轉換元件所產生之熱能逸散至太陽能模組外,藉此降低太陽能模組的工作溫度。Preferably, the solar module comprises a heat-seal sealing adhesive layer and a metal outer frame, and the metal outer frame is adhered to the transparent substrate, the sealing resin layer, the heat-conductive sealing composite layer and the thermal conductive sealing adhesive layer The periphery of the backplane. Accordingly, the solar module can dissipate the heat generated by the photoelectric conversion element to the outside of the solar module through the conductive path of the heat conductive resin layer, the heat conductive sealing adhesive layer and the metal outer frame of the heat conductive sealing composite layer, thereby reducing the solar energy The operating temperature of the module.

更佳的,該另一導熱樹脂層係形成於該導熱密封複合層與該導熱密封黏著層之間以及形成於該背板與該導熱密封黏著層之間,且該另一導熱樹脂層係與該光電轉換元件接觸。據此,該太陽能模組能經由導熱密封複合層之導熱樹脂層、導熱密封黏著層及金屬外框的傳導路徑或直接藉由另一導熱樹脂層之作用,將光電轉換元件所產生之熱能逸散至太陽能模組外,藉此降低太陽能模組的工作溫度。More preferably, the other thermally conductive resin layer is formed between the thermally conductive sealing composite layer and the thermally conductive sealing adhesive layer and between the backing plate and the thermally conductive sealing adhesive layer, and the other thermally conductive resin layer is The photoelectric conversion element is in contact. Accordingly, the solar module can thermally dissipate the photoelectric conversion element through the conductive resin layer of the heat-conductive sealing composite layer, the conductive sealing adhesive layer and the conductive path of the metal frame or directly by another thermal conductive resin layer. Dissipated outside the solar module to reduce the operating temperature of the solar module.

較佳的,另一導熱樹脂層包括一熱可塑性樹脂及分散於該熱可塑性樹脂中的複數無機粒子,該等無機粒子相對於整體另一導熱樹脂層之含量係介於10體積百分比至70體積百分比之間,且該另一導熱樹脂層之熱傳導係數係介於0.5 W/mK至8 W/mK之間。更佳的,該等無機粒子相對於整體另一導熱樹脂層之含量係介於20體積百分比至70體積百分比之間。Preferably, the other thermally conductive resin layer comprises a thermoplastic resin and a plurality of inorganic particles dispersed in the thermoplastic resin, and the inorganic particles are contained in an amount of from 10% by volume to 70% by volume relative to the entire thermally conductive resin layer. Between the percentages, and the thermal conductivity coefficient of the other thermally conductive resin layer is between 0.5 W/mK and 8 W/mK. More preferably, the content of the inorganic particles relative to the entire thermally conductive resin layer is between 20 volume percent and 70 volume percent.

較佳的,該導熱密封黏著層之熱傳導係數係介於0.05 W/mK至0.4 W/mK之間。Preferably, the thermally conductive sealing adhesive layer has a thermal conductivity of between 0.05 W/mK and 0.4 W/mK.

依據本發明,該接著樹脂層包含一熱可塑性樹脂。該導熱樹脂層、該另一導熱樹脂層及該接著樹脂層中的熱可塑性樹脂可為聚烯烴化合物,例如:聚乙烯及丙烯共聚物、聚丙烯及乙烯共聚物、聚乙烯離子聚合物、乙烯及乙烯乙酸乙烯酯共聚物、交聯的聚乙烯聚合物,但並非僅限於此。舉例而言,該熱可塑性樹脂可為:乙烯丙烯酸共聚樹脂、乙烯丙三醇共聚樹脂、乙烯醋酸乙烯共聚樹脂(ethylene-vinylacetate copolymer resin,EVA)、聚乙烯醇縮丁醛樹脂(polyvinyl butyral,PVB)、熱可塑性聚氨酯(thermoplastic polyurethane,TPU)或聚乙烯-甲基丙烯酸缩水甘油酯(polyethylene-glycidyl methacrylate,EGMA)。According to the invention, the adhesive resin layer comprises a thermoplastic resin. The thermally conductive resin layer, the other thermally conductive resin layer, and the thermoplastic resin in the adhesive resin layer may be a polyolefin compound, for example, a polyethylene and propylene copolymer, a polypropylene and an ethylene copolymer, a polyethylene ion polymer, and ethylene. And ethylene vinyl acetate copolymer, crosslinked polyethylene polymer, but not limited thereto. For example, the thermoplastic resin may be: ethylene acrylic copolymer resin, ethylene glycerol copolymer resin, ethylene vinyl acetate copolymer resin (EVA), polyvinyl butyral resin (PVB). ), thermoplastic polyurethane (TPU) or polyethylene-glycidyl methacrylate (EGMA).

依據本發明,該黏著材料可為矽膠或熱熔膠。According to the invention, the adhesive material can be silicone or hot melt adhesive.

依據本發明,該密封樹脂層為光穿透率大於92%以上之樹脂層,例如:乙烯丙烯酸共聚樹脂、乙烯丙三醇共聚樹脂、乙烯醋酸乙烯共聚樹脂(ethylene-vinylacetate copolymer resin,EVA)、聚乙烯醇縮丁醛樹脂(polyvinyl butyral,PVB)、熱可塑性聚氨酯(thermoplastic polyurethane,TPU)或聚乙烯-甲基丙烯酸缩水甘油酯(polyethylene-glycidyl methacrylate,EGMA)。According to the present invention, the sealing resin layer is a resin layer having a light transmittance of more than 92%, for example, an ethylene acrylic acid copolymer resin, an ethylene glycerol copolymer resin, an ethylene vinyl acetate copolymer resin (EVA), Polyvinyl butyral (PVB), thermoplastic polyurethane (TPU) or polyethylene-glycidyl methacrylate (EGMA).

依據本發明,該透明基板可為光穿透率大於92%以上之基板,例如:玻璃基板。According to the present invention, the transparent substrate may be a substrate having a light transmittance of more than 92%, such as a glass substrate.

依據本發明,該光電轉換元件可為單晶矽太陽能電池晶片或多晶矽太陽能電池晶片。According to the present invention, the photoelectric conversion element may be a single crystal germanium solar cell wafer or a polycrystalline germanium solar cell wafer.

依據本發明,該背板為具有良好耐候絕緣性的塑膠背板,其材料例如:聚氟乙烯(polyvinylfluoride,PVF)或聚對苯二甲酸乙二酯(polyethylene terephthalate,PET)。According to the present invention, the back sheet is a plastic back sheet having good weathering insulation, and the material thereof is, for example, polyvinyl fluoride (PVF) or polyethylene terephthalate (PET).

較佳的,該等無機粒子之粒徑係小於或等於20微米;更佳的,該等無機粒子之粒徑係介於1微米至20微米之間。Preferably, the inorganic particles have a particle size of less than or equal to 20 microns; more preferably, the inorganic particles have a particle size of between 1 and 20 microns.

再更佳的,該等無機粒子之粒徑係介於1微米至3微米之間,故該等無機粒子能於熱可塑性樹脂中獲得良好的分散性,並使包含其之導熱樹脂層與另一導熱樹脂層獲得較高的熱傳導係數。More preferably, the inorganic particles have a particle size of between 1 micrometer and 3 micrometers, so that the inorganic particles can obtain good dispersibility in the thermoplastic resin, and the thermally conductive resin layer containing the same can be used. A thermally conductive resin layer obtains a higher heat transfer coefficient.

較佳的,該等無機粒子之材料包含無機氧化物、無機氮化物或其組合。更具體而言,該等無機粒子之材料包含三氧化二鋁、氮化鋁、氮化硼或其組合。更佳的,該無機粒子為氮化硼或氮化鋁。Preferably, the materials of the inorganic particles comprise an inorganic oxide, an inorganic nitride or a combination thereof. More specifically, the material of the inorganic particles comprises aluminum oxide, aluminum nitride, boron nitride or a combination thereof. More preferably, the inorganic particles are boron nitride or aluminum nitride.

於太陽能模組之封裝製程中,其可先將透明基板、密封樹脂層、光電轉換元件、前述導熱密封複合層及背板相互堆疊形成一疊層結構後,再將矽膠漿料或熱熔膠漿料灌入金屬外框中,並以金屬外框密封前述疊層結構之四周,裝上接線盒及導線後,即完成太陽能模組之封裝製程。或者,該疊層結構亦可使用各種封裝膠帶(例如:壓克力發泡膠帶、聚乙烯發泡膠帶、丁基橡膠發泡膠帶等)包覆於疊層結構之外圍,再將其壓入金屬外框中,完成太陽能模組之封裝製程。In the packaging process of the solar module, the transparent substrate, the sealing resin layer, the photoelectric conversion component, the heat-conductive sealing composite layer and the backing plate are stacked on each other to form a laminated structure, and then the silicone resin or the hot melt adhesive is further disposed. The slurry is poured into the metal outer frame, and the periphery of the laminated structure is sealed with a metal outer frame, and the junction box and the wires are installed to complete the packaging process of the solar module. Alternatively, the laminate structure may be coated on the periphery of the laminate structure using various packaging tapes (for example, acrylic foam tape, polyethylene foam tape, butyl rubber foam tape, etc.), and then pressed into it. In the metal frame, complete the packaging process of the solar module.

綜上所述,本發明藉由在導熱樹脂層中混摻有一定含量比例之無機粒子、控制具有一定熱傳導係數之導熱樹脂層及接著樹脂層二者間的厚度比例,藉此獲得總熱阻抗值小於0.72°C-in2 /W的導熱密封複合層。因此,利用該導熱密封複合層取代現有技術太陽能模組之密封樹脂層,不僅能維持原有密封、隔絕水氣及接著光電轉換元件之功能外,更能在不額外增加太陽能模組之厚度與體積及不改變太陽能模組之封裝製程的情況下,進一步將光電轉換元所產生的熱能逸散至太陽能模組外,藉此降低太陽能模組之工作溫度,減緩太陽能模組之內部元件因長期處於高工作溫度下所造成的老化現象,同時提高太陽能模組之光電轉換效率及發電輸出量。In summary, the present invention obtains the total thermal impedance by blending a certain proportion of inorganic particles in the thermally conductive resin layer, controlling the thickness ratio between the thermally conductive resin layer having a certain thermal conductivity and the subsequent resin layer. A thermally conductive sealing composite layer having a value of less than 0.72 ° C - in 2 /W. Therefore, the sealing resin layer of the prior art solar module is replaced by the heat-conductive sealing composite layer, which not only maintains the original sealing, the moisture barrier and the function of the photoelectric conversion component, but also increases the thickness of the solar module without additional The volume and the packaging process of the solar module are not changed, and the heat energy generated by the photoelectric conversion element is further dissipated outside the solar module, thereby reducing the operating temperature of the solar module and slowing down the internal components of the solar module due to the long-term The aging phenomenon caused by high working temperature, while improving the photoelectric conversion efficiency and power generation output of the solar module.

以下,將藉由具體實施例說明本發明之實施方式,熟習此技藝者可經由本說明書之內容輕易地了解本發明所能達成之優點與功效,並且於不悖離本之精神下進行各種修飾與變更,以施行或應用本發明之內容。In the following, the embodiments of the present invention will be described by way of specific examples, and those skilled in the art can readily understand the advantages and effects of the present invention, and make various modifications without departing from the spirit of the present invention. And changes to implement or apply the content of the present invention.

《製備例1:導熱樹脂漿料》Preparation Example 1: Thermal Conductive Resin Slurry

首先,準備乙烯甲基丙烯酸酯樹脂(ethylenemethacrylic acid resin,EMA)及三氧化二鋁,該乙烯甲基丙烯酸酯樹脂於190°C下之熔體指數(melting index,MI)為8,熱傳導係數為0.29 W/mK;且三氧化二鋁之平均粒徑為5微米。First, ethylenemethacrylic acid resin (EMA) and aluminum oxide are prepared. The ethylene methacrylate resin has a melt index (MI) of 8 at 190 ° C and a heat transfer coefficient of 0.29 W/mK; and the average particle size of the aluminum oxide is 5 μm.

接著,以表1所示之混合比例,分別將乙烯甲基丙烯酸酯樹脂及三氧化二鋁以雙螺桿混練壓出設備相互混合,以獲得實驗組1至4之導熱樹脂漿料。各實驗組之導熱樹脂漿料的熱傳導係數經由導熱儀(檢測規範:ASTM E1461)檢測之結果係如下表1所示。Next, ethylene methacrylate resin and alumina were separately mixed with each other in a twin-screw kneading apparatus at a mixing ratio shown in Table 1 to obtain a thermally conductive resin slurry of Experimental Groups 1 to 4. The results of the thermal conductivity of the thermally conductive resin paste of each experimental group as measured by a thermal conductivity meter (test specification: ASTM E1461) are shown in Table 1 below.

如上表1所示,經由提升三氧化二鋁相對於整體導熱樹脂漿料的比例,導熱樹脂漿料的熱傳導係數可逐漸由0.32 W/mK (實驗組1)提升至1.51 W/m*K (實驗組4)。As shown in Table 1 above, the thermal conductivity of the thermally conductive resin slurry can be gradually increased from 0.32 W/mK (experimental group 1) to 1.51 W/m*K by increasing the ratio of the aluminum oxide to the overall thermally conductive resin slurry. Experimental group 4).

《比較例1:現有技術密封層》Comparative Example 1: Prior Art Seal Layer

本比較例係以純乙烯醋酸乙烯共聚樹脂作為原料,且未於乙烯醋酸乙烯共聚樹脂添加任何無機粒子,以吹膜方法直接將純乙烯醋酸乙烯共聚樹脂製成面積為15公分*15公分、厚度為220微米之現有技術密封層,其總熱阻抗值亦如下表2所示。In this comparative example, a pure ethylene vinyl acetate copolymer resin is used as a raw material, and any inorganic particles are not added to the ethylene vinyl acetate copolymer resin, and the pure ethylene vinyl acetate copolymer resin is directly formed into an area of 15 cm * 15 cm by a blown film method, and the thickness is The total thermal resistance of the 220 micron prior art sealing layer is also shown in Table 2 below.

《實施例1至3:導熱密封複合層》Embodiments 1 to 3: Thermally Conductive Sealed Composite Layer

於實施例1至3中,其係分別選用前述製備例1之實驗組2至4所製得之導熱樹脂漿料,製作導熱密封複合層之導熱樹脂層。導熱密封複合層之詳細製作方法如下:In the first to third embodiments, the thermally conductive resin pastes obtained in the experimental groups 2 to 4 of the above Preparation Example 1 were respectively selected to prepare a thermally conductive resin layer of a thermally conductive sealing composite layer. The detailed manufacturing method of the heat-conductive sealing composite layer is as follows:

以吹膜方法將前述導熱樹脂漿料製成面積為15公分*15公分、厚度為200微米之導熱樹脂層;再經由熱熔加工方法於該導熱樹脂層上將聚乙烯-甲基丙烯酸缩水甘油酯,製成厚度為20微米之接著樹脂層,即完成導熱密封複合層之製備。The thermally conductive resin slurry is formed into a thermally conductive resin layer having an area of 15 cm * 15 cm and a thickness of 200 μm by a blown film method; and polyethylene-methacrylic acid glycidol is further applied to the thermally conductive resin layer by a hot melt processing method. The ester was formed into a resin layer having a thickness of 20 μm, that is, the preparation of the thermally conductive sealing composite layer was completed.

請參閱圖1所示,經由上述方法所製得之導熱密封複合層包含一導熱樹脂層10及一接著樹脂層20。Referring to FIG. 1 , the thermally conductive sealing composite layer obtained by the above method comprises a thermal conductive resin layer 10 and a subsequent resin layer 20 .

該導熱樹脂層10包括一熱可塑性樹脂101及分散於該熱可塑性樹脂101中的複數無機粒子102。The thermally conductive resin layer 10 includes a thermoplastic resin 101 and a plurality of inorganic particles 102 dispersed in the thermoplastic resin 101.

該接著樹脂層20係設置於該導熱樹脂層10上,且該接著樹脂層之熱傳導係數為0.27 W/mK。The adhesive resin layer 20 is provided on the heat conductive resin layer 10, and the heat transfer coefficient of the adhesive resin layer is 0.27 W/mK.

於實施例1至3之導熱密封複合層中,該導熱樹脂層10與該接著樹脂層10之總熱阻抗值皆小於0.72°C-in2 /W,其詳細測試結果係如下表2所示。In the thermally conductive sealing composite layers of Examples 1 to 3, the total thermal resistance values of the thermally conductive resin layer 10 and the adhesive resin layer 10 are both less than 0.72 ° C-in 2 /W, and the detailed test results are shown in Table 2 below. .

《試驗例1:導熱密封複合層之熱傳導性》"Test Example 1: Thermal Conductivity of Thermally Conductive Sealed Composite Layer"

為驗證導熱密封複合層的熱傳導性,本試驗例另分別選用實施例1及3之導熱密封複合層及比較例1之現有技術密封層,由下至上依序堆疊背板、導熱密封複合層或現有技術密封層、密封樹脂層及透明玻璃基板,以獲得檢測導熱密封複合層之熱傳導性的樣品。In order to verify the thermal conductivity of the heat-conductive sealing composite layer, the thermal sealing composite layer of Examples 1 and 3 and the prior art sealing layer of Comparative Example 1 were separately selected in this test example, and the backing plate, the heat-conductive sealing composite layer or the bottom layer was sequentially stacked from bottom to top. The prior art sealing layer, sealing resin layer and transparent glass substrate are used to obtain a sample for detecting the thermal conductivity of the thermally conductive sealing composite layer.

為確保實驗的準確性,各樣品中堆疊之背板、密封樹脂層及透明玻璃基板的材料與厚度完全相同;並於相同檢測環境中,經由如下述相同測試方法檢測各樣品之熱傳導性。因此,所測得之各樣品的熱傳導性即代表現有技術密封層、實施例1及3之導熱密封複合層的熱傳導性。詳細測試方法如下:In order to ensure the accuracy of the experiment, the materials of the back sheet, the sealing resin layer and the transparent glass substrate stacked in each sample were exactly the same in thickness; and in the same test environment, the thermal conductivity of each sample was examined by the same test method as described below. Therefore, the measured thermal conductivity of each sample represents the thermal conductivity of the prior art sealing layer and the thermally conductive sealing composite layers of Examples 1 and 3. The detailed test method is as follows:

首先,將同一熱源分別施予各樣品之透明玻璃基板,該熱源與透明玻璃基板之間距為20公分,熱源面積為10平方公分;並於各樣品之背板處,以紅外線偵測方法量測該熱源自透明玻璃基板傳導至背板所歷經之傳導時間,其結果如圖2所示。First, the same heat source is applied to each sample of the transparent glass substrate, the distance between the heat source and the transparent glass substrate is 20 cm, and the heat source area is 10 cm 2 ; and is measured by the infrared detection method at the back plate of each sample. This heat originates from the conduction time experienced by the transparent glass substrate to the backsheet, and the results are shown in FIG.

請參閱圖2所示,含有現有技術密封層的樣品將熱源由透明玻璃基板傳導至背板使背板處量測到的溫度上升至30°C所需之時間需接近300秒;相較之下,含有實施例1及3之導熱密封複合層的樣品將熱源由透明玻璃基板傳導至背板使背板處量測到的溫度上升至30°C所需之時間可減少至約250秒,甚至是90至100秒之間。實驗結果顯示,實施例1及3之導熱密封複合層確實能提供良好的熱傳導性。Referring to FIG. 2, the sample containing the prior art sealing layer is conducted from the transparent glass substrate to the backing plate, and the time required for the temperature measured at the backing plate to rise to 30 ° C is required to be close to 300 seconds; Next, the sample containing the thermally conductive sealing composite layers of Examples 1 and 3 can reduce the time required for the heat source to be transferred from the transparent glass substrate to the backing plate to raise the temperature measured at the backing plate to 30 ° C to about 250 seconds. Even between 90 and 100 seconds. The experimental results show that the thermally conductive sealing composite layers of Examples 1 and 3 do provide good thermal conductivity.

《實施例4至6:含有導熱密封複合層之太陽能模組》Embodiments 4 to 6: Solar Modules Containing Thermally Sealed Composite Layers

實施例4至6之太陽能模組係分別包含實施例1至3的導熱密封複合層,該等太陽能模組係大致上經由如同下列所述之製作方法所製得:The solar modules of Examples 4 to 6 respectively comprise the thermally conductive sealing composite layers of Examples 1 to 3, which are substantially produced by a manufacturing method as described below:

首先,依序堆疊透明玻璃基板、乙烯醋酸乙烯共聚樹脂層、72片單晶太陽能電池晶片(茂迪公司販售)、總厚度為220微米之導熱密封複合層及聚酯塑膠背板;再於140°C下層壓該乙烯醋酸乙烯共聚樹脂層,藉以令乙烯醋酸乙烯共聚樹脂進行交聯固化反應(thermal setting)直至其交聯密度達到85%以上,以獲得一疊層結構。First, a transparent glass substrate, an ethylene vinyl acetate copolymer resin layer, 72 single crystal solar cell wafers (sold by Motech), a thermal sealing composite layer having a total thickness of 220 μm, and a polyester plastic back sheet are sequentially stacked; The ethylene vinyl acetate copolymer resin layer was laminated at 140 ° C, whereby the ethylene vinyl acetate copolymer resin was subjected to a thermal setting until its crosslinking density reached 85% or more to obtain a laminated structure.

接著,將含有三氧化二鋁之矽膠漿料灌入鋁框中,獲得一含有矽膠漿料之鋁框。Next, a tantalum rubber slurry containing aluminum oxide is poured into an aluminum frame to obtain an aluminum frame containing a silicone resin slurry.

之後,利用前述含有矽膠漿料的鋁框密封前述疊層結構,再經由熟化步驟後,即完成太陽能模組之封裝製程。Thereafter, the laminated structure is sealed by the aluminum frame containing the silicone resin slurry, and after the curing step, the packaging process of the solar module is completed.

經由上述方法所製得之實施例4至6的太陽能模組1皆具有類似之結構,其不同之處為太陽能模組中導熱樹脂層的材料。The solar modules 1 of Examples 4 to 6 obtained by the above methods all have a similar structure, which differs in the material of the thermally conductive resin layer in the solar module.

請參閱圖3所示,該太陽能模組1包含前述之圖1所示之一導熱樹脂層10、一接著樹脂層20、一透明基板30、一密封樹脂層40、複數光電轉換元件50、一背板60、一金屬外框70及一導熱密封黏著層80。Referring to FIG. 3 , the solar module 1 includes one of the heat conductive resin layer 10 , a resin layer 20 , a transparent substrate 30 , a sealing resin layer 40 , and a plurality of photoelectric conversion elements 50 , as shown in FIG. 1 . The back plate 60, a metal outer frame 70 and a heat-seal sealing adhesive layer 80.

該透明基板30為光穿透率大於92%且厚度為3毫米之透明玻璃基板。The transparent substrate 30 is a transparent glass substrate having a light transmittance of more than 92% and a thickness of 3 mm.

該密封樹脂層40為乙烯醋酸乙烯共聚樹脂層,其係設置於該透明基板30上,並且具有約450微米之厚度及0.32 W/mK的熱傳導係數。The sealing resin layer 40 is an ethylene vinyl acetate copolymer resin layer which is provided on the transparent substrate 30 and has a thickness of about 450 μm and a heat transfer coefficient of 0.32 W/mK.

該等光電轉換元件50為72片厚度約180微米的單晶太陽能電池晶片,其係排列於該密封樹脂層40上。The photoelectric conversion elements 50 are 72 single crystal solar cell wafers having a thickness of about 180 μm, which are arranged on the sealing resin layer 40.

該接著樹脂層20為聚乙烯-甲基丙烯酸缩水甘油酯,其具有約20微米之厚度,該接著樹脂層20之部份表面係直接接著於該等光電轉換元件50相對密封樹脂層40之表面,該接著樹脂層20之其餘表面則直接接著於該密封樹脂層40未接觸該等光電轉換元件50之下表面,藉此經由該接著樹脂層20及該密封樹脂層40係共同密封各個光電轉換元件50,以避免光電轉換元件50受到外界環境中水氣的影響。The adhesive resin layer 20 is polyethylene-glycidyl methacrylate having a thickness of about 20 μm, and a portion of the surface of the subsequent resin layer 20 is directly adhered to the surface of the photoelectric conversion element 50 opposite to the sealing resin layer 40. The remaining surface of the subsequent resin layer 20 is directly followed by the sealing resin layer 40 not contacting the lower surface of the photoelectric conversion elements 50, thereby collectively sealing the respective photoelectric conversions via the bonding resin layer 20 and the sealing resin layer 40. Element 50 prevents the photoelectric conversion element 50 from being affected by moisture in the external environment.

該導熱樹脂層10為一混摻有三氧化二鋁之乙烯甲基丙烯酸酯樹脂層,其具有約200微米之厚度,且該導熱樹脂層10係貼合於該接著樹脂層20相對於該等光電轉換元件50之表面上。The thermally conductive resin layer 10 is a layer of ethylene methacrylate resin mixed with aluminum oxide having a thickness of about 200 μm, and the thermally conductive resin layer 10 is adhered to the subsequent resin layer 20 relative to the photovoltaic On the surface of the conversion element 50.

該背板60為聚酯塑膠背板,其具有約350微米之厚度及0.28 W/mK的熱傳導係數,且該背板60係設置於該導熱樹脂層10相對於該接著樹脂層20之表面上。The back sheet 60 is a polyester plastic back sheet having a thickness of about 350 μm and a heat transfer coefficient of 0.28 W/mK, and the back sheet 60 is disposed on the surface of the heat conductive resin layer 10 with respect to the adhesive resin layer 20. .

該金屬外框70為散熱鋁框,其具有一凹槽結構,且該導熱密封黏著層80係形成於該金屬外框70之凹槽結構中,該金屬外框70係透過該導熱密封黏著層80貼合於該透明基板30、該密封樹脂層40、該接著樹脂層20、該導熱樹脂層10及該背板60等元件之外圍。其中,該導熱密封黏著層80為混摻有三氧化二鋁之矽膠,且其具有約1.0 W/mK的熱傳導係數。The metal frame 70 is a heat-dissipating aluminum frame having a groove structure, and the heat-seal sealing adhesive layer 80 is formed in the groove structure of the metal frame 70, and the metal frame 70 is transmitted through the heat-conductive sealing adhesive layer. 80 is bonded to the periphery of the transparent substrate 30, the sealing resin layer 40, the adhesive resin layer 20, the thermally conductive resin layer 10, and the backing plate 60. Wherein, the heat conductive sealing adhesive layer 80 is a tantalum rubber doped with aluminum oxide, and has a heat conduction coefficient of about 1.0 W/mK.

《實施例7:含有導熱密封複合層之太陽能模組》Embodiment 7: Solar Module Containing Thermally Conductive Sealed Composite Layer

請參閱圖4所示,實施例7之太陽能模組的結構係大致與實施例4至6所述之太陽能模組的結構雷同,包含有一導熱樹脂層10、一接著樹脂層20、一透明基板30、一密封樹脂層40、複數光電轉換元件50、一背板60、一金屬外框70及一導熱密封黏著層80。其不同之處在於,本實施例之太陽能模組1更包含另一導熱樹脂層90,且該另一導熱樹脂層90之材料係同於前述實施例1之導熱樹脂層10的材料。Referring to FIG. 4, the structure of the solar module of Embodiment 7 is substantially the same as the structure of the solar module described in Embodiments 4 to 6, and includes a heat conductive resin layer 10, a resin layer 20, and a transparent substrate. 30. A sealing resin layer 40, a plurality of photoelectric conversion elements 50, a back sheet 60, a metal outer frame 70, and a heat conductive sealing adhesive layer 80. The difference is that the solar module 1 of the present embodiment further includes another thermally conductive resin layer 90, and the material of the other thermally conductive resin layer 90 is the same as that of the thermally conductive resin layer 10 of the foregoing embodiment 1.

該另一導熱樹脂層90係夾置於該導熱樹脂層10與該導熱密封黏著層80之間、夾置於接著樹脂層20與該導熱密封黏著層80之間以及夾置於該背板60與該導熱密封黏著層80之間,且該另一導熱樹脂層90係與該光電轉換元件50接觸。The other thermally conductive resin layer 90 is interposed between the thermally conductive resin layer 10 and the thermally conductive sealing adhesive layer 80, sandwiched between the adhesive resin layer 20 and the thermally conductive sealing adhesive layer 80, and sandwiched between the backing plate 60. The heat conductive sealing layer 80 is in contact with the photoelectric conversion element 50.

更具體而言,該另一導熱樹脂層90具有二導熱延伸部91、92及一導熱本部93,該等導熱延伸部91、92係延伸成型於該導熱本部93之相反二側。其中,該另一導熱樹脂層90之導熱延伸部91係與光電轉換元件50直接接觸,並且夾置於該密封樹脂層40與接著樹脂層20之間;該導熱本部93係形成於該導熱密封複合層及該背板60之側面,並且夾置於該導熱樹脂層10與該導熱密封黏著層80之間、夾置於接著樹脂層20與該導熱密封黏著層80之間以及夾置於該背板60與該導熱密封黏著層80之間;且該導熱延伸部93係夾置於該背板60之底面與該導熱密封黏著層80之間。More specifically, the other thermally conductive resin layer 90 has two thermally conductive extensions 91, 92 and a thermally conductive portion 93 extending from opposite sides of the thermally conductive portion 93. The thermally conductive extension 91 of the other thermally conductive resin layer 90 is in direct contact with the photoelectric conversion element 50 and is interposed between the sealing resin layer 40 and the adhesive layer 20; the thermally conductive portion 93 is formed in the thermally conductive seal. a composite layer and a side surface of the backing plate 60, and sandwiched between the heat conductive resin layer 10 and the heat conductive sealing adhesive layer 80, sandwiched between the adhesive resin layer 20 and the heat conductive sealing adhesive layer 80, and sandwiched therebetween The back plate 60 is interposed between the heat conductive sealing adhesive layer 80; and the heat conductive extending portion 93 is sandwiched between the bottom surface of the back plate 60 and the heat conductive sealing adhesive layer 80.

《比較例2:現有技術太陽能模組》Comparative Example 2: Prior Art Solar Module

本比較例之現有技術太陽能模組係以厚度約450微米的單一乙烯醋酸乙烯共聚樹脂層取代實施例4之太陽能模組的導熱樹脂層與接著樹脂層,該乙烯醋酸乙烯共聚樹脂層係夾置於光電轉換元件及背板之間,且該乙烯醋酸乙烯共聚樹脂層與該密封樹脂層40係共同密封各個光電轉換元件50。The prior art solar module of the comparative example replaces the heat conductive resin layer and the adhesive resin layer of the solar module of Example 4 with a single ethylene vinyl acetate copolymer resin layer having a thickness of about 450 μm, and the ethylene vinyl acetate copolymer resin layer is interposed. Between the photoelectric conversion element and the back sheet, the ethylene vinyl acetate copolymer resin layer and the sealing resin layer 40 collectively seal the respective photoelectric conversion elements 50.

此外,本比較例之現有技術太陽能電池另以熱傳導係數僅有0.36W/mK的一般矽膠層取代實施例4之太陽能模組的導熱密封黏著層。In addition, the prior art solar cell of the comparative example replaces the thermally conductive sealing adhesive layer of the solar module of the fourth embodiment with a general silicone layer having a heat transfer coefficient of only 0.36 W/mK.

《試驗例2:太陽能模組之工作溫度》Test Example 2: Operating Temperature of Solar Modules

為驗證導熱密封複合層是否具備降低太陽能模組之工作溫度的功效,本試驗例係選用實施例5之太陽能模組與比較例2之現有技術太陽能模組進行比較,以相同日照量分別照射二太陽能模組,並以測試環境溫度約29°C至31°C、本發明之實施例及比較例所使用太陽能模組之標準輸出率為230 W/1.7 m2 等條件,於正午12點至下午1點間,利用紅外線溫度量測儀,量測實施例5之太陽能模組與比較例2之現有技術太陽能模組於不同日照量下的太陽能模組之工作溫度值,其結果係如圖5所示。圖中所示之工作溫度值為9組取樣結果的平均值。In order to verify whether the heat-conductive sealing composite layer has the effect of lowering the operating temperature of the solar module, the solar module of the embodiment 5 is compared with the prior art solar module of the comparative example 2, and the same amount of sunshine is respectively irradiated. The solar module, with a test environment temperature of about 29 ° C to 31 ° C, the standard output rate of the solar module used in the examples and comparative examples of the present invention is 230 W / 1.7 m 2 , at 12 noon At 1 o'clock in the afternoon, the operating temperature values of the solar modules of the solar module of Example 5 and the prior art solar module of Comparative Example 2 under different amounts of sunlight were measured using an infrared temperature measuring instrument. 5 is shown. The operating temperature values shown in the figure are the average of 9 sets of sampling results.

由圖5之結果證實,比較例2之現有技術太陽能模組的乙烯醋酸乙烯共聚樹脂層僅具有0.32 W/mK的熱傳導係數,故未被光電轉換元件轉換為電能的熱能難以經由乙烯醋酸乙烯共聚樹脂層之作用將熱能傳導至與其相鄰的一般矽膠層或背板,致使所產生之熱能不斷累積於太陽能模組內。It is confirmed from the results of FIG. 5 that the ethylene vinyl acetate copolymer resin layer of the prior art solar module of Comparative Example 2 has a heat transfer coefficient of only 0.32 W/mK, so that heat energy not converted into electrical energy by the photoelectric conversion element is difficult to be copolymerized via ethylene vinyl acetate. The action of the resin layer conducts thermal energy to a common silicone layer or backsheet adjacent thereto, so that the generated thermal energy is continuously accumulated in the solar module.

相反地,實施例5之太陽能模組因含有熱傳導係數為0.87 W/mK的導熱樹脂層,且其接著樹脂層與導熱樹脂層之總熱阻抗值為0.36°C-in2 /W,故實施例5之太陽能模組得以藉由導熱密封複合層之作用,有效地將未被光電轉換元件轉換為電能的熱能傳導至與其相鄰的背板,另可經由導熱密封黏著層及金屬外框,將熱能傳導至與導熱密封複合層相鄰的導熱密封黏著層,再藉由導熱密封黏著層將熱能傳導至金屬外框,以進一步經由導熱密封黏著層與金屬外框輔助逸散光電轉換元件散發之熱能,藉此大幅降低太陽能模組之工作溫度。On the contrary, the solar module of the fifth embodiment has a thermally conductive resin layer having a thermal conductivity of 0.87 W/mK, and the total thermal resistance value of the resin layer and the thermally conductive resin layer is 0.36 ° C-in 2 /W. The solar module of Example 5 can effectively transfer thermal energy not converted into electrical energy by the photoelectric conversion element to the adjacent back plate by the function of the heat-conductive sealing composite layer, and can also seal the adhesive layer and the metal frame through the heat conduction. Conducting thermal energy to a thermally conductive sealing adhesive layer adjacent to the thermally conductive sealing composite layer, and conducting thermal energy to the metal outer frame by thermally sealing the adhesive layer to further dissipate through the thermally conductive sealing adhesive layer and the metal outer frame auxiliary escape photoelectric conversion element The heat energy, thereby greatly reducing the operating temperature of the solar module.

《試驗例3:太陽能模組之發電輸出量》Test Example 3: Power Generation Output of Solar Modules

為驗證導熱密封複合層是否具備提升太陽能模組之發電輸出量的功效,本試驗例係選用實施例5之太陽能模組與比較例2之現有技術太陽能模組進行比較,以相同日照量分別照射二太陽能模組,並以測試環境溫度約29°C至31°C、本發明之實施例及比較例所使用太陽能模組之標準輸出率為230 W/1.7 m2 等條件,於正午12點至下午1點間,利用太陽能發電量即時監控系統量測實施例5之太陽能模組與比較例2之現有技術太陽能模組於不同日照量下的發電輸出量,其結果係如圖6所示。In order to verify whether the heat-conductive sealing composite layer has the effect of improving the power generation output of the solar module, the solar module of the embodiment 5 is compared with the prior art solar module of the comparative example 2, and respectively irradiated with the same amount of sunshine. The solar module has a test environment temperature of about 29 ° C to 31 ° C, and the standard output rate of the solar module used in the embodiment and the comparative example of the present invention is 230 W/1.7 m 2 at 12 noon. The power generation output of the solar module of Example 5 and the prior art solar module of Comparative Example 2 under different amounts of sunlight was measured by the solar power generation instantaneous monitoring system at 1 pm, and the result is shown in FIG. .

請參閱圖6所示,比較實施例5之太陽能模組的發電輸出量與比較例2之現有技術太陽能模組的發電輸出量發現,於正午12點至下午1點間進行測試,實施例6之太陽能模組的發電輸出量多半高於比較例2之現有技術太陽能模組的發電輸出量約6.4W。若比較全天累積的太陽能組件之發電輸出量,實施例5之太陽能模組的發電輸出量則平均高於比較例2之現有技術太陽能模組的發電輸出量約4W。Referring to FIG. 6 , the power generation output of the solar module of Comparative Example 5 and the power generation output of the prior art solar module of Comparative Example 2 were found to be tested between 12 noon and 1 pm, and Example 6 The power output of the solar module is mostly higher than the power output of the prior art solar module of Comparative Example 2 by about 6.4W. If the power generation output of the solar module accumulated throughout the day is compared, the power output of the solar module of the fifth embodiment is on average higher than that of the prior art solar module of Comparative Example 2 by about 4 W.

《試驗例4:太陽能模組之發電輸出量》Test Example 4: Power Generation Output of Solar Modules

本試驗例係選用實施例4及6之太陽能模組與比較例2之現有技術太陽能模組進行比較,以1000瓦的日照量照射三太陽能模組,並以測試環境溫度約31°C至33°C、早上10點至下午3點間,利用太陽能發電量即時監控系統量測實施例4及6之太陽能模組與比較例2之現有技術太陽能模組於各時間點之發電輸出量,其結果係如下表3所示。於表3中,比較例2、實施例4及實施例6之發電輸出量差值係以比較例2之實際發電輸出量所計算而得。In this test example, the solar modules of Examples 4 and 6 were compared with the prior art solar modules of Comparative Example 2, and the three solar modules were irradiated with 1000 watts of sunshine, and the test ambient temperature was about 31 ° C to 33. °C, 10:00 am to 3:00 pm, using the solar power generation instantaneous monitoring system to measure the power output of the solar modules of Examples 4 and 6 and the prior art solar modules of Comparative Example 2 at each time point, The results are shown in Table 3 below. In Table 3, the difference in power generation output of Comparative Example 2, Example 4, and Example 6 was calculated based on the actual power generation output of Comparative Example 2.

如上表3所示,實施例4及6之太陽能模組藉由導熱密封複合層搭配導熱密封黏著層之作用,能有利於將光電轉換元件所產生之熱能經由導熱密封複合層之導熱樹脂層往側面方向傳導至導熱密封黏著層及金屬外框,藉此提升散熱速率與效能。因此,相較於比較例2之太陽能模組的發電輸出量檢測結果,實施例4及6之太陽能模組能具有顯著提升的當日最高發電輸出量及累積發電輸出量。As shown in the above Table 3, the solar modules of the embodiments 4 and 6 can facilitate the thermal energy generated by the photoelectric conversion element via the thermally conductive resin layer of the heat-conductive sealing composite layer by the function of the heat-conductive sealing composite layer and the heat-conductive sealing adhesive layer. The side direction is conducted to the thermally conductive sealing adhesive layer and the metal frame to enhance the heat dissipation rate and performance. Therefore, compared with the power generation output detection result of the solar module of Comparative Example 2, the solar modules of Embodiments 4 and 6 can have significantly improved current maximum power generation output and cumulative power generation output.

合併試驗例2至4之結果顯示,實施例4至6之太陽能模組中的導熱密封複合層不僅皆能有效幫助逸散光電轉換元件所散發之熱能,藉以降低太陽能模組之工作溫度外,更能提升包含其之太陽能模組的光電轉換率,藉此獲得較高的發電輸出量。The results of the combined test examples 2 to 4 show that the heat-conductive sealing composite layers in the solar modules of the embodiments 4 to 6 can not only effectively help the heat energy emitted from the photoelectric conversion element, thereby reducing the operating temperature of the solar module. The photoelectric conversion rate of the solar module including the same can be improved, thereby obtaining a higher power output.

1‧‧‧太陽能模組
10‧‧‧導熱樹脂層
101‧‧‧熱可塑性樹脂
102‧‧‧無機粒子
20‧‧‧接著樹脂層
30‧‧‧透明基板
40‧‧‧密封樹脂層
50‧‧‧光電轉換元件
60‧‧‧背板
70‧‧‧金屬外框
80‧‧‧導熱密封黏著層
90‧‧‧另一導熱樹脂層
91‧‧‧導熱延伸部
92‧‧‧導熱延伸部
93‧‧‧導熱本部
1‧‧‧Solar module
10‧‧‧ Thermally conductive resin layer
101‧‧‧ thermoplastic resin
102‧‧‧Inorganic particles
20‧‧‧Next resin layer
30‧‧‧Transparent substrate
40‧‧‧ sealing resin layer
50‧‧‧ photoelectric conversion components
60‧‧‧ Backplane
70‧‧‧Metal frame
80‧‧‧thermal seal adhesive layer
90‧‧‧Another thermally conductive resin layer
91‧‧‧Transfer extension
92‧‧‧Transfer extension
93‧‧‧ Thermal Conductive Department

圖1為導熱密封複合層之結構示意圖。圖2為測試含有現有技術密封層、實施例1之導熱密封複合層及實施例3之導熱密封複合層的樣品之熱傳導性的實驗結果圖。圖3為太陽能模組之結構示意圖。圖4為另一太陽能模組之結構示意圖。圖5為實施例5之太陽能模組與比較例2之現有技術太陽能模組於不同日照量下的工作溫度之比較結果圖。圖6為實施例5之太陽能模組與比較例2之現有技術太陽能模組於不同日照量下的發電輸出量之比較結果圖。1 is a schematic structural view of a thermally conductive sealing composite layer. 2 is a graph showing experimental results of testing the thermal conductivity of a sample containing a prior art sealing layer, the thermally conductive sealing composite layer of Example 1, and the thermally conductive sealing composite layer of Example 3. 3 is a schematic structural view of a solar module. 4 is a schematic structural view of another solar module. 5 is a graph showing a comparison result of operating temperatures of the solar module of Example 5 and the prior art solar module of Comparative Example 2 under different amounts of sunlight. 6 is a graph showing a comparison result of power generation output of a solar module of Example 5 and a prior art solar module of Comparative Example 2 under different amounts of solar radiation.

10‧‧‧導熱樹脂層 10‧‧‧ Thermally conductive resin layer

101‧‧‧熱可塑性樹脂 101‧‧‧ thermoplastic resin

102‧‧‧無機粒子 102‧‧‧Inorganic particles

20‧‧‧接著樹脂層 20‧‧‧Next resin layer

Claims (15)

一種導熱密封複合層,其包含:一導熱樹脂層,其包括一熱可塑性樹脂及分散於該熱可塑性樹脂中的複數無機粒子,該等無機粒子相對於整體導熱樹脂層之含量係介於10體積百分比至70體積百分比之間,且該導熱樹脂層之熱傳導係數係介於0.5 W/mK至8 W/mK之間;以及一接著樹脂層,其係設置於該導熱樹脂層上,該接著樹脂層之熱傳導係數係介於0.05 W/mK至0.4 W/mK之間;其中,該接著樹脂層之厚度相對於該接著樹脂層與該導熱樹脂層之厚度和係介於0.1%至10%之間,且該接著樹脂層與該導熱樹脂層之總熱阻抗值係介於0.01°C-in2 /W 至0.72°C-in2 /W之間。A thermally conductive sealing composite layer comprising: a thermally conductive resin layer comprising a thermoplastic resin and a plurality of inorganic particles dispersed in the thermoplastic resin, the content of the inorganic particles relative to the integral thermally conductive resin layer being 10 volumes a percentage to 70% by volume, and the thermal conductivity resin layer has a thermal conductivity of between 0.5 W/mK and 8 W/mK; and a resin layer disposed on the thermally conductive resin layer, the resin The thermal conductivity of the layer is between 0.05 W/mK and 0.4 W/mK; wherein the thickness of the adhesive layer is between 0.1% and 10% relative to the thickness of the adhesive resin layer and the thermal conductive resin layer. The total thermal resistance value of the adhesive layer and the thermally conductive resin layer is between 0.01 ° C - in 2 /W and 0.72 ° C - in 2 /W. 如請求項1所述之導熱密封複合層,其中該導熱樹脂層中熱可塑性樹脂的熱傳導係數係介於0.05 W/mK至0.4 W/mK之間。The thermally conductive sealing composite layer according to claim 1, wherein the thermal conductive resin in the thermally conductive resin layer has a thermal conductivity of between 0.05 W/mK and 0.4 W/mK. 如請求項1所述之導熱密封複合層,其中該等無機粒子之粒徑係小於或等於20微米,且該等無機粒子之材料包含無機氧化物、無機氮化物或其組合。The thermally conductive sealing composite layer according to claim 1, wherein the inorganic particles have a particle diameter of less than or equal to 20 μm, and the materials of the inorganic particles comprise an inorganic oxide, an inorganic nitride or a combination thereof. 如請求項1所述之導熱密封複合層,其中該等無機粒子之粒徑係小於或等於20微米,且該等無機粒子之材料包含碳化矽。The thermally conductive sealing composite layer according to claim 1, wherein the inorganic particles have a particle diameter of less than or equal to 20 μm, and the materials of the inorganic particles comprise niobium carbide. 如請求項3所述之導熱密封複合層,其中該等無機粒子之材料包含碳化矽。The thermally conductive sealing composite layer of claim 3, wherein the material of the inorganic particles comprises niobium carbide. 如請求項3所述之導熱密封複合層,其中該等無機粒子相對於整體導熱樹脂層之含量係介於20體積百分比至70體積百分比之間。The thermally conductive sealing composite layer according to claim 3, wherein the content of the inorganic particles relative to the integral thermally conductive resin layer is between 20% by volume and 70% by volume. 如請求項3所述之導熱密封複合層,其中該等無機粒子之粒徑係介於1微米至3微米之間,且該等無機粒子之材料包含三氧化二鋁、氮化鋁、氮化硼或其組合。The thermally conductive sealing composite layer according to claim 3, wherein the inorganic particles have a particle diameter of between 1 micrometer and 3 micrometers, and the materials of the inorganic particles comprise aluminum oxide, aluminum nitride, and nitride. Boron or a combination thereof. 如請求項1至7中任一項所述之導熱密封複合層,其中該接著樹脂層與該導熱樹脂層之厚度和係介於20微米至600微米之間。The thermally conductive sealing composite layer according to any one of claims 1 to 7, wherein the thickness and the thickness of the adhesive resin layer and the thermally conductive resin layer are between 20 μm and 600 μm. 一種太陽能模組,其包含:一透明基板;一密封樹脂層,其係設置於該透明基板上;一光電轉換元件,其係設置於該密封樹脂層上;一如請求項1至8中任一項所述之導熱密封複合層,其係設置於該光電轉換元件及該密封樹脂層上,且該導熱密封複合層之接著樹脂層係與該光電轉換元件接觸;以及一背板,其係設置於該導熱密封複合層之導熱樹脂層上。A solar module comprising: a transparent substrate; a sealing resin layer disposed on the transparent substrate; a photoelectric conversion element disposed on the sealing resin layer; as claimed in claims 1 to 8 A thermally conductive sealing composite layer disposed on the photoelectric conversion element and the sealing resin layer, wherein a resin layer of the thermally conductive sealing composite layer is in contact with the photoelectric conversion element; and a backing plate And disposed on the heat conductive resin layer of the heat conductive sealing composite layer. 如請求項9所述之太陽能模組,其中該太陽能模組包含另一導熱樹脂層,該另一導熱樹脂層係形成於該導熱密封複合層及該背板之外圍並與該光電轉換元件接觸。The solar module of claim 9, wherein the solar module comprises another thermally conductive resin layer formed on the periphery of the thermally conductive sealing composite layer and the backing plate and in contact with the photoelectric conversion element . 如請求項9所述之太陽能模組,其中該太陽能模組包含一導熱密封黏著層及一金屬外框,該金屬外框係透過該導熱密封黏著層貼合於該透明基板、該密封樹脂層、該導熱密封複合層及該背板之外圍。The solar module of claim 9, wherein the solar module comprises a heat-conductive sealing adhesive layer and a metal outer frame, and the metal outer frame is adhered to the transparent substrate and the sealing resin layer through the heat-conductive sealing adhesive layer. The thermally conductive sealing composite layer and the periphery of the backing plate. 如請求項11所述之太陽能模組,其中該太陽能模組包含另一導熱樹脂層,該另一導熱樹脂層係形成於該導熱密封複合層與該導熱密封黏著層之間以及形成於該背板與該導熱密封黏著層之間,且該另一導熱樹脂層係與該光電轉換元件接觸。The solar module of claim 11, wherein the solar module comprises another thermally conductive resin layer formed between the thermally conductive sealing composite layer and the thermally conductive sealing adhesive layer and formed on the back The plate is interposed between the thermally conductive sealing adhesive layer and the other thermally conductive resin layer is in contact with the photoelectric conversion element. 如請求項10所述之太陽能模組,其中該另一導熱樹脂層包括一熱可塑性樹脂及分散於該熱可塑性樹脂中的複數無機粒子,該等無機粒子相對於整體另一導熱樹脂層之含量係介於10體積百分比至70體積百分比之間,且該另一導熱樹脂層之熱傳導係數係介於0.5 W/mK至8 W/mK之間。The solar module according to claim 10, wherein the other thermally conductive resin layer comprises a thermoplastic resin and a plurality of inorganic particles dispersed in the thermoplastic resin, and the content of the inorganic particles relative to the entire thermally conductive resin layer The system is between 10% by volume and 70% by volume, and the thermal conductivity coefficient of the other thermally conductive resin layer is between 0.5 W/mK and 8 W/mK. 如請求項12所述之太陽能模組,其中該另一導熱樹脂層包括一熱可塑性樹脂及分散於該熱可塑性樹脂中的複數無機粒子,該等無機粒子相對於整體另一導熱樹脂層之含量係介於10體積百分比至70體積百分比之間,且該另一導熱樹脂層之熱傳導係數係介於0.5 W/mK至8 W/mK之間。The solar module according to claim 12, wherein the other thermally conductive resin layer comprises a thermoplastic resin and a plurality of inorganic particles dispersed in the thermoplastic resin, and the content of the inorganic particles relative to the entire thermally conductive resin layer The system is between 10% by volume and 70% by volume, and the thermal conductivity coefficient of the other thermally conductive resin layer is between 0.5 W/mK and 8 W/mK. 如請求項11所述之太陽能模組,其中該導熱密封黏著層之熱傳導係數係介於0.05 W/mK至0.4 W/mK之間。The solar module of claim 11, wherein the thermally conductive sealing adhesive layer has a thermal conductivity of between 0.05 W/mK and 0.4 W/mK.
TW102140839A 2013-11-11 2013-11-11 Heat conduction sealed composite layer and solar module including the same TW201519460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102140839A TW201519460A (en) 2013-11-11 2013-11-11 Heat conduction sealed composite layer and solar module including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102140839A TW201519460A (en) 2013-11-11 2013-11-11 Heat conduction sealed composite layer and solar module including the same

Publications (2)

Publication Number Publication Date
TW201519460A true TW201519460A (en) 2015-05-16
TWI511314B TWI511314B (en) 2015-12-01

Family

ID=53721055

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102140839A TW201519460A (en) 2013-11-11 2013-11-11 Heat conduction sealed composite layer and solar module including the same

Country Status (1)

Country Link
TW (1) TW201519460A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI614909B (en) * 2015-08-07 2018-02-11 有成精密股份有限公司 Lightweight solar cell module

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090255571A1 (en) * 2008-04-14 2009-10-15 Bp Corporation North America Inc. Thermal Conducting Materials for Solar Panel Components
US20140014182A1 (en) * 2011-06-06 2014-01-16 Shin-Etsu Chemical Co., Ltd. Solar cell module and method for manufacturing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI614909B (en) * 2015-08-07 2018-02-11 有成精密股份有限公司 Lightweight solar cell module

Also Published As

Publication number Publication date
TWI511314B (en) 2015-12-01

Similar Documents

Publication Publication Date Title
KR101070871B1 (en) Back sheet of solar cell module for photovoltaic power generation
US20090255571A1 (en) Thermal Conducting Materials for Solar Panel Components
KR20110084218A (en) Thermally conducting materials for solar panel components
TW200910614A (en) Solar cell and solar cell module
JP2010073720A (en) Solar cell module
TW201349529A (en) Back contact solar cell module
CN104241424A (en) Heat dissipation solar cell back membrane
CN103000728A (en) Solar cell back panel assembly and solar cell assembly
JP2017153195A (en) Solar cell module with snow melting function
US20180038158A1 (en) Thermoelectricity Harvested from Infrared Absorbing Coatings
EP2405489B1 (en) High-efficiency solar cell and method for its production
WO2013145116A1 (en) Solar cell module sealing film, and solar cell module using same
US20110197950A1 (en) Photovoltaic module and method for manufacturing the same
TW201519460A (en) Heat conduction sealed composite layer and solar module including the same
US20150194553A1 (en) Thermally conductive encapsulate and solar cell module comprising the same
KR20130017690A (en) Solar cell module
CN104659128B (en) Include the solar energy module of conduction heat sealable composite bed
TWM362979U (en) Solar cell packaging structure having heat dissipating function and heat dissipating metal sheet thereof
JP5828921B2 (en) Heat transfer sealing composite laminated member and solar cell module having the same
CN108389923A (en) A kind of monocrystalline silicon battery component
EP2894675B1 (en) Thermally conductive encapsulate and solar cell module comprising the same
KR101575177B1 (en) Solar cell module with internal heat-transfer element
CN102201474A (en) Solar photoelectric module and manufacturing method thereof
KR101327092B1 (en) Structure of building applied photovoltaic
JP6776118B2 (en) Solar cell module

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees