TW201447667A - Touch position determining apparatus and method thereof - Google Patents

Touch position determining apparatus and method thereof Download PDF

Info

Publication number
TW201447667A
TW201447667A TW102121185A TW102121185A TW201447667A TW 201447667 A TW201447667 A TW 201447667A TW 102121185 A TW102121185 A TW 102121185A TW 102121185 A TW102121185 A TW 102121185A TW 201447667 A TW201447667 A TW 201447667A
Authority
TW
Taiwan
Prior art keywords
pressure
center point
coordinate
variation region
pressure variation
Prior art date
Application number
TW102121185A
Other languages
Chinese (zh)
Inventor
Ching-Chin Huang
Tsahn-Yih Chang
Yang-Chih Huang
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW102121185A priority Critical patent/TW201447667A/en
Priority to CN201310415551.XA priority patent/CN104238803A/en
Priority to US14/083,394 priority patent/US20140367911A1/en
Publication of TW201447667A publication Critical patent/TW201447667A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F9/00Games not otherwise provided for
    • A63F9/18Question-and-answer games
    • A63F9/181Fortune-telling games
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F9/00Games not otherwise provided for
    • A63F9/24Electric games; Games using electronic circuits not otherwise provided for
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H33/00Other toys
    • A63H33/22Optical, colour, or shadow toys
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • G06F3/04144Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position using an array of force sensing means
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F9/00Games not otherwise provided for
    • A63F9/24Electric games; Games using electronic circuits not otherwise provided for
    • A63F2009/2401Detail of input, input devices
    • A63F2009/2402Input by manual operation
    • A63F2009/241Touch screen
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F9/00Games not otherwise provided for
    • A63F9/24Electric games; Games using electronic circuits not otherwise provided for
    • A63F2009/2401Detail of input, input devices
    • A63F2009/2436Characteristics of the input
    • A63F2009/2442Sensors or detectors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04105Pressure sensors for measuring the pressure or force exerted on the touch surface without providing the touch position

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

A touch position determining apparatus and method thereof are provided. The touch position determining apparatus is adapted to a sphere. The touch position determining apparatus includes a pressure sensing array and a processing unit. The pressure sensing array is coupled below the sphere and includes a plurality of pressure sensing nodes. The pressure sensing array generates a pressure deformation area in response to a touch occurring on a surface of the sphere, and generates a pressure signal set by the pressure sensing nodes corresponding to the pressure deformation area. The processing unit is connected with the pressure sensing array and determines a touch position where the touch occurs on the surface of the sphere according to the pressure signal set.

Description

觸碰位置判斷裝置及其方法 Touch position judging device and method thereof

本揭露是有關於一種判斷裝置及其判斷方法,且特別是有關於一種觸碰位置判斷裝置及其方法。 The present disclosure relates to a judging device and a judging method thereof, and more particularly to a touch position judging device and a method thereof.

目前市面上流通的水晶球產品,大部分是以作為靜態擺設、裝飾等功能作為主要訴求。其中部分水晶球產品具有較簡單的動態功能,如內嵌音樂盒及內嵌有簡單機械式動作的玩偶的水晶球。舉例而言,寶貝搖籃水晶球、芭蕾女孩音樂盒水晶球以及老鼠直昇機音樂盒等皆屬這一類產品。此類具有簡單動態功能的水晶球,其玩偶的動態,及音樂的播放,是來自於發條與齒輪的組合,以機械式驅動。此種類型的動態為已設定好的固定動作及音樂,多數缺乏與使用者之間的互動能力。 Most of the crystal ball products currently on the market are mainly used as functions such as static display and decoration. Some of these crystal ball products have simpler dynamic functions, such as a crystal ball with a built-in music box and a doll with simple mechanical movements. For example, baby cradle crystal ball, ballet girl music box crystal ball and mouse helicopter music box are all such products. This kind of crystal ball with simple dynamic function, the dynamics of the doll, and the music playing, are from the combination of the clockwork and the gear, driven mechanically. This type of dynamics is fixed motion and music that has been set, and most lack the ability to interact with the user.

另一類型的有互動功能的水晶球,可以具有感測器與制動器及大型底座的水晶球,如3D魔幻水晶球及i-ball等。此類具有互動功能的水晶球,裝置有壓力感測器或鏡頭感測器等,用來偵測使用者的行為。而在其大型底座裡,具有訊號處理裝置及影 像辨識軟體等,用以偵測使用者的行為(例如,觸碰等操作)。因此,可以依據使用者的行為而進行對應的操作,進而讓使用者產生與水晶球裝置互動的操作體驗。但一般市面流通的水晶球產品,較難做到此種類型的互動功能。 Another type of interactive crystal ball can be used with sensors and brakes and large base crystal balls, such as 3D magic crystal ball and i-ball. This kind of interactive crystal ball is equipped with a pressure sensor or a lens sensor to detect the user's behavior. In its large base, it has a signal processing device and a shadow. It is used to identify the user's behavior (for example, touch, etc.). Therefore, the corresponding operation can be performed according to the behavior of the user, thereby allowing the user to generate an operation experience of interacting with the crystal ball device. However, crystal ball products that are generally circulated in the market are difficult to achieve this type of interactive function.

一般的感測器是以紅外線或是超音波等非觸碰感測器來偵測使用者在水晶球表面的觸碰位置。然而,由於水晶球中常裝滿例如水等物質,因此在以紅外線或超音波等機制偵測所述觸碰位置時,將可能因偵測上的死角而導致無法精準判斷所述觸碰位置。 A typical sensor uses a non-touch sensor such as infrared or ultrasonic to detect the user's touch position on the surface of the crystal ball. However, since the crystal ball is often filled with a substance such as water, when the touch position is detected by a mechanism such as infrared rays or ultrasonic waves, the touch position may not be accurately determined due to the detected dead angle.

有鑑於此,本揭露提供一種觸碰位置判斷裝置及其方法,可用於判斷球體表面上所被觸碰的觸碰位置。 In view of the above, the present disclosure provides a touch position determining device and a method thereof, which can be used to determine a touched position on a surface of a sphere that is touched.

本揭露提供一種觸碰位置判斷裝置,其適於球體。觸碰位置判斷裝置包括壓力感測陣列以及處理單元。壓力感測陣列耦接球體的下方且具有多個壓力感測點。壓力感測陣列反應於發生在球體的表面上的觸碰而形成壓力變異區域,並且由對應於壓力變異區域的壓力感測點產生壓力信號組。處理單元耦接壓力感測陣列,依據壓力信號組判斷觸碰在球體的表面上發生的觸碰位置。 The present disclosure provides a touch position determining device that is adapted to a sphere. The touch position determining device includes a pressure sensing array and a processing unit. The pressure sensing array is coupled below the sphere and has a plurality of pressure sensing points. The pressure sensing array forms a region of pressure variation in response to a touch occurring on the surface of the sphere, and generates a set of pressure signals from pressure sensing points corresponding to the region of pressure variation. The processing unit is coupled to the pressure sensing array, and determines the touch position that occurs on the surface of the sphere according to the pressure signal group.

根據本揭露另一實施範例提供一種觸碰位置判斷方法,適於球體。球體的下方耦接至壓力感測陣列,且壓力感測陣列包括多個壓力感測點。所述方法包括下列步驟。當球體的表面上發 生觸碰時,壓力感測陣列反應於觸碰而形成壓力變異區域,並且由對應於壓力變異區域的壓力感測點產生壓力信號組。依據壓力信號組判斷觸碰在球體的表面上發生的觸碰位置。 According to another embodiment of the present disclosure, a touch position determining method is provided, which is suitable for a sphere. The lower side of the sphere is coupled to the pressure sensing array, and the pressure sensing array includes a plurality of pressure sensing points. The method includes the following steps. When the surface of the sphere is made Upon contact, the pressure sensing array reacts to a touch to form a region of pressure variation, and a set of pressure signals is generated by pressure sensing points corresponding to the region of pressure variation. The touch position at which the touch occurs on the surface of the sphere is judged based on the pressure signal group.

基於上述,本揭露實施例提出的觸碰位置判斷裝置及其方法可在球體表面上發生觸碰時,依據壓力感測陣列上對應的壓力變異區域之壓力感測點產生之壓力信號組來找出所述觸碰在球體表面上的觸碰位置。 Based on the above, the touch position determining device and the method thereof according to the embodiments of the present disclosure can find a pressure signal group generated by a pressure sensing point of a corresponding pressure variation region on the pressure sensing array when a touch occurs on the surface of the sphere. The touched position on the surface of the sphere is touched.

為讓本揭露的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the present invention will be more apparent from the following description.

100‧‧‧觸碰位置判斷裝置 100‧‧‧Touch position judging device

110‧‧‧球體 110‧‧‧ sphere

120‧‧‧壓力感測陣列 120‧‧‧ Pressure Sensing Array

125‧‧‧壓力感測點 125‧‧‧ Pressure sensing point

130‧‧‧處理單元 130‧‧‧Processing unit

140‧‧‧加速度感測器 140‧‧‧Acceleration sensor

310、710‧‧‧壓力變異區域 310, 710‧‧‧ Pressure Variance Area

312‧‧‧原點 312‧‧‧ origin

730‧‧‧壓力中心點 730‧‧‧pressure center point

A、D‧‧‧參考方向 A, D‧‧‧ reference direction

B‧‧‧施力方向 B‧‧‧ Direction of force

B’‧‧‧參考施力方向 B’‧‧‧Refer to the direction of force

DI‧‧‧特定距離 DI‧‧‧Specific distance

E、F‧‧‧壓力中心點 E, F‧‧‧ pressure center point

PSS‧‧‧壓力信號組 PSS‧‧‧Pressure Signal Group

P‧‧‧觸碰位置 P‧‧‧Touch position

P’‧‧‧位置 P’‧‧‧ position

R2‧‧‧壓力變異區半徑 R 2 ‧‧‧ radius of pressure variation zone

r‧‧‧球體半徑 r‧‧‧Sphere radius

S202~S220‧‧‧步驟 S202~S220‧‧‧Steps

X1‧‧‧最小值 X1‧‧‧min

X2、XA‧‧‧X座標 X2, X A ‧‧‧X coordinates

X3‧‧‧最大值 X3‧‧‧max

Y1‧‧‧最大值 Y1‧‧‧max

Y2、YA‧‧‧Y座標 Y2, Y A ‧‧‧Y coordinates

Y3‧‧‧最小值 Y3‧‧‧min

ZA‧‧‧Z座標 Z A ‧‧‧Z coordinates

φA‧‧‧第一方位角 φ A ‧‧‧first azimuth

φB’‧‧‧第一夾角 φ B '‧‧‧ first angle

φ‧‧‧第一修正角度 φ‧‧‧First correction angle

φ1、φ2、φ1’、φ2’、φA’、θ1、θ2、θ1’、θ2’、θA’‧‧‧夾角 φ 1 , φ 2 , φ 1 ', φ 2 ', φ A ', θ 1 , θ 2 , θ 1 ', θ 2 ', θ A '‧‧‧ angle

θA‧‧‧第二方位角 θ A ‧‧‧second azimuth

θB’‧‧‧第二夾角 θ B '‧‧‧second angle

θ‧‧‧第二修正角度 Θ‧‧‧second correction angle

圖1是依據本揭露之一實施例繪示的觸碰位置判斷裝置。 FIG. 1 is a touch position determining apparatus according to an embodiment of the present disclosure.

圖2是依據本揭露之一實施例繪示的觸碰位置判斷方法流程圖。 2 is a flow chart of a method for judging a touch position according to an embodiment of the present disclosure.

圖3是依據圖1實施例繪示的觸碰位置判斷裝置的俯視圖。 3 is a top plan view of the touch position determining device according to the embodiment of FIG. 1.

圖4A為依據圖3實施例繪示的球體俯視圖。 4A is a top view of a sphere according to the embodiment of FIG. 3.

圖4B為依據圖3實施例繪示的球體側視圖。 4B is a side view of the sphere according to the embodiment of FIG. 3.

圖5A是依據本揭露之一實施例繪示的當觸碰的施力方向與垂直球面的施力方向之間的夾角是向左增加時,修正壓力中心點的示意圖。 FIG. 5A is a schematic diagram of correcting a pressure center point when an angle between a biasing direction of a touch and a direction of application of a vertical spherical surface is increased to the left according to an embodiment of the present disclosure.

圖5B是依據本揭露之一實施例繪示的當觸碰的施力方向與 垂直球面的施力方向之間的夾角是向右增加時,修正壓力中心點的示意圖。 FIG. 5B is a diagram showing the direction of force applied when touched according to an embodiment of the present disclosure. The angle between the direction of the force applied to the vertical sphere is a schematic diagram of the correction of the center point of the pressure when increasing to the right.

圖5C是依據本揭露之一實施例繪示的當觸碰的施力方向垂直於觸碰位置處的切面時,修正壓力中心點的示意圖。 FIG. 5C is a schematic diagram of correcting the pressure center point when the direction of the applied force of the touch is perpendicular to the cut surface at the touch position according to an embodiment of the present disclosure.

圖6A是依據本揭露之一實施例繪示的當觸碰的施力方向與垂直球面的施力方向之間的夾角是向下增加時,修正壓力中心點的示意圖。 FIG. 6A is a schematic diagram showing the correction of the center point of the pressure when the angle between the direction of the applied force of the touch and the direction of the force applied by the vertical spherical surface is increased downward according to an embodiment of the present disclosure.

圖6B是依據本揭露之一實施例繪示的當觸碰的施力方向與垂直球面的施力方向之間的夾角是向上增加時,修正壓力中心點的示意圖。 FIG. 6B is a schematic diagram of correcting the pressure center point when the angle between the applied direction of the touch and the direction of application of the vertical spherical surface is increased upwards according to an embodiment of the present disclosure.

圖6C是依據本揭露之一實施例繪示的當觸碰的施力方向垂直於觸碰位置處的切面時,修正壓力中心點的示意圖。 FIG. 6C is a schematic diagram of correcting the pressure center point when the direction of the applied force of the touch is perpendicular to the cut surface at the touch position according to an embodiment of the present disclosure.

圖7是依據本揭露之一實施例繪示的觸碰位置判斷裝置的俯視圖。 FIG. 7 is a top plan view of a touch position determining device according to an embodiment of the present disclosure.

圖1是依據本揭露之一實施例所繪示的觸碰位置判斷裝置。在本實施例中,觸碰位置判斷裝置100包括壓力感測陣列120以及處理單元130。觸碰位置判斷裝置100適於球體110。球體110可以是具有任意材質的圓球狀或近似圓球狀物體,例如水晶球、塑膠球、玻璃球或其類似者。此外,球體110中的內容物亦可以包括任意的物質,例如水、玩偶以及模型等。壓力感測陣列120 耦接球體110,且具有多個壓力感測點125。所述多個壓力感測點125可用以依據施於球體110上的觸碰而對應產生壓力信號組PSS。所述壓力信號組可包括多個壓力感測信號,而這些壓力感測信號例如是當壓力感測點125偵測到來自於球體110的壓力時,所產生的電位變化訊號。 FIG. 1 is a touch position determining apparatus according to an embodiment of the present disclosure. In the present embodiment, the touch position determining device 100 includes a pressure sensing array 120 and a processing unit 130. The touch position determining device 100 is adapted to the sphere 110. The sphere 110 may be a spherical or approximately spherical object of any material, such as a crystal ball, a plastic ball, a glass ball or the like. In addition, the contents of the sphere 110 may also include any substance such as water, dolls, models, and the like. Pressure sensing array 120 The ball 110 is coupled and has a plurality of pressure sensing points 125. The plurality of pressure sensing points 125 can be used to generate a pressure signal group PSS corresponding to the touch applied to the sphere 110. The pressure signal group may include a plurality of pressure sensing signals, for example, the potential change signals generated when the pressure sensing point 125 detects the pressure from the ball 110.

在一實施例中,在這些壓力感測信號產生電位變化訊號之後,可更經由一信號讀取單元(未繪示)來將這些電位變化訊號由類比訊號轉換為數位訊號,進而組成壓力信號組PSS。信號讀取單元可包括信號緩衝器、信號放大器、多個通道切換開關以及類比/數位轉換器。信號緩衝器用以執行阻抗匹配,並接收電位變化訊號。信號放大器耦接信號緩衝器,用以放大電位變化訊號。所述多個通道切換開關個別耦接信號放大器,用以切換用於傳送放大後的電位變化訊號的多個傳送路徑。類比/數位轉換器耦接所述多個通道切換開關,用以將放大後的電位變化訊號進行類比至數位的轉換。 In an embodiment, after the potential sensing signals generate the potential change signals, the signal reading units (not shown) can further convert the potential change signals from the analog signals to the digital signals to form the pressure signal group. PSS. The signal reading unit may include a signal buffer, a signal amplifier, a plurality of channel switching switches, and an analog/digital converter. The signal buffer is used to perform impedance matching and receive a potential change signal. The signal amplifier is coupled to the signal buffer for amplifying the potential change signal. The plurality of channel switching switches are individually coupled to the signal amplifiers for switching a plurality of transmission paths for transmitting the amplified potential change signals. The analog/digital converter is coupled to the plurality of channel switchers for analog-to-digital conversion of the amplified potential change signal.

在其他實施例中,壓力感測陣列120亦可採用壓電薄膜或壓阻薄膜來實現。並且,壓力感測陣列120可以具有任意的面積、形狀及大小。壓力感測陣列120可配置於球體110下方,用以在球體110上發生觸碰時,反應於此觸碰而形成壓力變異區域。詳細而言,當球體110的表面發生觸碰(例如,使用者以手指按壓球體110)時,球體110將對應產生位移,因而使得配置於球體110下方的壓力感測陣列120接收到對應於所述觸碰的壓力。此 時,壓力感測陣列120上的薄膜將反應於所述觸碰的壓力而產生凹陷的現象,進而對應形成前述的壓力變異區域。在所述壓力變異區域形成的同時,此壓力變異區域的位置所對應的壓力感測點125可依據觸碰的壓力而產生壓力感測信號,進而組成壓力信號組PSS。 In other embodiments, the pressure sensing array 120 can also be implemented using a piezoelectric film or a piezoresistive film. Also, the pressure sensing array 120 can have any area, shape, and size. The pressure sensing array 120 can be disposed under the sphere 110 to form a pressure variation region in response to the touch when the ball 110 is touched. In detail, when a touch occurs on the surface of the sphere 110 (for example, the user presses the sphere 110 with a finger), the sphere 110 will correspondingly generate a displacement, thereby causing the pressure sensing array 120 disposed under the sphere 110 to receive the corresponding The pressure of touching. this At this time, the film on the pressure sensing array 120 will react to the pressure of the touch to cause a depression, thereby correspondingly forming the aforementioned pressure variation region. At the same time as the pressure variation region is formed, the pressure sensing point 125 corresponding to the position of the pressure variation region can generate a pressure sensing signal according to the pressure of the touch, thereby forming the pressure signal group PSS.

一般而言,壓電薄膜(或壓阻薄膜)的厚度較薄,因此設計者可在壓電薄膜(或壓阻薄膜)的下方配置固定厚度的軟性材料,以增加壓力感測陣列120反應於所述觸碰的壓力所產生的凹陷程度。此時,若選擇所述軟性材料為某一固定厚度,使得當所述觸碰的壓力增加到一定的程度時,壓力感測陣列120的凹陷程度將可能會因為已凹陷至軟性材料及壓電薄膜(或壓阻薄膜)的底部而不再增加。換言之,此時所述壓力變異區域的面積將不會隨著壓力的增加而繼續變大。因此,在設計壓力感測陣列120時,設計者可依據可能施加於壓電薄膜(或壓阻薄膜)上的壓力(例如使用者按壓的力量)來選擇具有適當厚度的軟性材料,以讓壓力變異區域可在存在所述觸碰的情況下維持一固定半徑(可定義為壓力變異區半徑)。 In general, the thickness of the piezoelectric film (or piezoresistive film) is thin, so the designer can arrange a soft material of a fixed thickness under the piezoelectric film (or piezoresistive film) to increase the pressure sensing array 120 reaction. The degree of depression caused by the pressure of the touch. At this time, if the soft material is selected to be a certain fixed thickness, when the pressure of the touch increases to a certain extent, the degree of depression of the pressure sensing array 120 may be due to depression to the soft material and the piezoelectric The bottom of the film (or piezoresistive film) does not increase. In other words, the area of the pressure variation region at this time will not continue to increase as the pressure increases. Therefore, when designing the pressure sensing array 120, the designer can select a soft material having an appropriate thickness according to the pressure that may be applied to the piezoelectric film (or the piezoresistive film) (for example, the force pressed by the user) to allow the pressure The variability region can maintain a fixed radius (which can be defined as the radius of the pressure variability zone) in the presence of the touch.

處理單元130耦接壓力感測陣列120,可依據壓力信號組PSS判斷所述觸碰在球體110上所發生的觸碰位置。處理單元130例如是微控制器單元(Micro controller unit,MCU)、中央處理器或是其他可程式化之微處理器(Microprocessor)。 The processing unit 130 is coupled to the pressure sensing array 120, and can determine the touch position of the touch on the ball 110 according to the pressure signal group PSS. The processing unit 130 is, for example, a microcontroller unit (MCU), a central processing unit, or other programmable microprocessor (Microprocessor).

圖2是依據本揭露之一實施例繪示的觸碰位置判斷方法 流程圖。圖3是依據圖1實施例繪示的觸碰位置判斷裝置的俯視圖。圖2實施例提出的方法適用於圖3的觸碰位置判斷裝置100。請同時參照圖2及圖3,以下即搭配圖3中的各個參數的來說明圖2實施例的詳細步驟。 2 is a touch position determination method according to an embodiment of the disclosure flow chart. 3 is a top plan view of the touch position determining device according to the embodiment of FIG. 1. The method proposed in the embodiment of Fig. 2 is applicable to the touch position determining apparatus 100 of Fig. 3. Please refer to FIG. 2 and FIG. 3 at the same time, and the detailed steps of the embodiment of FIG. 2 will be described below with reference to the respective parameters in FIG. 3.

在本實施例中,假設使用者在球體110的某觸碰位置進行了觸碰。因此,在步驟S202中,當球體110上發生觸碰時,壓力感測陣列120可反應於觸碰而形成壓力變異區域310,並且由對應於壓力變異區域310的多個壓力感測點125(此處以位於壓力變異區域310中的各個圓圈表示)產生壓力信號組PSS。為了方便說明,球體110可對應至一座標系統,而此座標系統可包括原點312、X軸、Y軸以及Z軸。 In the present embodiment, it is assumed that the user makes a touch at a certain touch position of the sphere 110. Therefore, in step S202, when a touch occurs on the sphere 110, the pressure sensing array 120 may form a pressure variation region 310 in response to the touch, and a plurality of pressure sensing points 125 corresponding to the pressure variation region 310 ( Here, the pressure signal group PSS is generated by the respective circles located in the pressure variation region 310. For convenience of explanation, the sphere 110 may correspond to a standard system, and the coordinate system may include an origin 312, an X-axis, a Y-axis, and a Z-axis.

接著,在步驟S204中,處理單元130可依據壓力信號組PSS計算壓力變異區域310在X-Y平面上的壓力變異區中心點(以座標(X2,Y2)表示)以及壓力變異區中心點(X2,Y2)在X-Y平面上相對於X軸的第一方位角φA。其中,X2為壓力變異區中心點在X軸上的座標,Y2為壓力變異區中心點在Y軸上的座標,所述X-Y平面可由X軸及Y軸所定義。 Next, in step S204, the processing unit 130 may calculate the center point of the pressure variation region (represented by coordinates (X 2 , Y 2 )) and the center of the pressure variation region of the pressure variation region 310 on the XY plane according to the pressure signal group PSS ( X 2 , Y 2 ) a first azimuth angle φ A with respect to the X axis in the XY plane. Where X 2 is the coordinate of the center point of the pressure variation zone on the X axis, and Y 2 is the coordinate of the center point of the pressure variation zone on the Y axis, and the XY plane can be defined by the X axis and the Y axis.

詳細而言,在取得壓力信號組PSS之後,處理單元130可據以得知壓力變異區域310所對應的各個壓力感測點125(即,壓力變異區域310中的各個圓圈)。並且,處理單元130可進而依據這些壓力感測點125的位置來計算壓力變異區域310的涵蓋範圍,並據以得知壓力變異區域310在X軸上的最大值(以X3表示) 和最小值(以X1表示),以及在Y軸上的最大值(以Y1表示)和最小值(以Y3表示)。因此,處理單元130即可以壓力變異區域在X軸上的最大值和最小值的平均值作為壓力變異區中心點的X座標(即,X2=(X1+X3)/2)。並且,處理單元130可以壓力變異區域在Y軸上的最大值和最小值的平均值作為壓力變異區中心點的Y座標(即,Y2=(Y1+Y3)/2)。在求得壓力變異區中心點(X2,Y2)之後,處理單元130可依據三角函數公式求得壓力變異區中心點(X2,Y2)與X軸之間的夾角(即,第一方位角φA)。因此,當壓力變異區中心點(X2,Y2)的X座標大於0(即,X2>0)時,第一方位角φA為tan-1(Y2/X2);當壓力變異區中心點的X座標不大於0(即,X2≦0)時,第一方位角φA為180+tan-1(Y2/X2)。 In detail, after the pressure signal group PSS is obtained, the processing unit 130 can know the respective pressure sensing points 125 corresponding to the pressure variation region 310 (ie, the respective circles in the pressure variation region 310). Moreover, the processing unit 130 can further calculate the coverage of the pressure variation region 310 according to the positions of the pressure sensing points 125, and learn the maximum value (indicated by X 3 ) and the minimum of the pressure variation region 310 on the X axis. The value (represented by X 1 ), and the maximum value (represented by Y 1 ) and the minimum value (represented by Y 3 ) on the Y-axis. Therefore, the processing unit 130 can use the average value of the maximum value and the minimum value of the pressure variation region on the X-axis as the X coordinate of the center point of the pressure variation region (ie, X 2 = (X 1 + X 3 )/2). Also, the processing unit 130 may use the average value of the maximum value and the minimum value of the pressure variation region on the Y-axis as the Y coordinate of the center point of the pressure variation region (ie, Y 2 = (Y 1 + Y 3 )/2). After the center point (X 2 , Y 2 ) of the pressure variation region is obtained, the processing unit 130 can obtain an angle between the center point (X 2 , Y 2 ) of the pressure variation region and the X axis according to the trigonometric function formula (ie, the first An azimuth angle φ A ). Therefore, when the X coordinate of the center point (X 2 , Y 2 ) of the pressure variation zone is greater than 0 (ie, X 2 >0), the first azimuth angle φ A is tan -1 (Y 2 /X 2 ); When the X coordinate of the center point of the variation region is not greater than 0 (i.e., X 2 ≦ 0), the first azimuth angle φ A is 180 + tan -1 (Y 2 /X 2 ).

在步驟S206中,處理單元130可計算壓力變異區中心點的X座標至壓力變異區域的邊界在X軸上的第一最大距離,以及壓力變異區中心點的Y座標至壓力變異區域的邊界在Y軸上的第二最大距離,並設定第一最大距離以及第二最大距離中的最大值為特定距離DI。換言之,處理單元130可計算壓力變異區中心點(X2,Y2)之X2分別至X1或X3之距離(即,第一最大距離),和Y2分別至Y1或Y3之距離(即,第二最大距離),然後取第一最大距離以及第二最大距離中的最大值為特定距離DI。在圖3的實施例中,處理單元130可分別計算X2分別與X1及X3之距離和Y2分別與Y1及Y3之距離,並且取這些距離的最大值為特定距離DI。 In step S206, the processing unit 130 may calculate a first maximum distance of the boundary of the X-coordinate of the pressure variation zone center point to the pressure variation zone on the X-axis, and a boundary of the Y-coordinate of the pressure variation zone center point to the pressure variation zone. A second maximum distance on the Y axis, and setting a maximum of the first maximum distance and the second maximum distance to be a specific distance DI. In other words, the processing unit 130 may calculate the pressure variation region center point (X 2, Y 2), respectively, to the X X X 2 1 or 3 of the distance (i.e., the first maximum distance), and Y 2 are respectively Y 1 to Y 3, or The distance (ie, the second maximum distance) then takes the maximum of the first maximum distance and the second maximum distance as the specific distance DI. In the embodiment of FIG. 3, the processing unit 130 may calculate the distance between X 2 and X 1 and X 3 and the distance between Y 2 and Y 1 and Y 3 , respectively, and take the maximum of these distances as the specific distance DI.

接著,在步驟S208中,處理單元130可判斷壓力變異區 域310的壓力變異區半徑R2是否實質上等於或大於特定距離DI。依據先前所教示的內容,壓力變異區域310可在存在所述觸碰的情況下維持固定的壓力變異區半徑R2。依據圖3所繪示的壓力變異區域310,其特定距離DI即實質上等於壓力變異區半徑R2。在其他實施例中,由於上述各種座標參數及計算而得的數值皆會因壓力感測點125在壓力感測陣列110中的配置密度而出現些許誤差,因此,在執行步驟S208中的判斷操作時,處理單元130可更依據設計者所設定的誤差範圍來進行。亦即,當特定距離DI與壓力變異區半徑R2之間的差值小於所述誤差範圍時,處理單元130仍可將此二者視為實質上相等,但本揭露可不限於此。因此,在特定距離DI與壓力變異區半徑R2實質上相等的情況下,在步驟S208之後將接續進行步驟S212。然而,在其他實施例中,當特定距離DI與壓力變異區半徑R2實質上不相等時,可接續進行步驟S210,而此情形將在之後另舉實施例說明。 Next, in step S208, the processing unit 130 may determine whether the pressure variation region radius R 2 of the pressure variation region 310 is substantially equal to or greater than the specific distance DI. Depending on the content previously taught, the pressure variation in the area 310 may be present to maintain a fixed pressure variable region where the radius R 2 of the touch. According to the pressure variation region 310 illustrated in FIG. 3, the specific distance DI is substantially equal to the pressure variation region radius R 2 . In other embodiments, since the various coordinate parameters and the calculated values may cause some errors due to the arrangement density of the pressure sensing points 125 in the pressure sensing array 110, the determination operation in step S208 is performed. The processing unit 130 can be further performed according to the error range set by the designer. That is, when the difference between the specific distance DI and the pressure variation region radius R 2 is smaller than the error range, the processing unit 130 may still treat the two as substantially equal, but the disclosure may not be limited thereto. Therefore, in a case where the specific distance DI is substantially equal to the pressure variation region radius R 2 , the step S212 is continued after the step S208. However, in other embodiments, when the specific distance DI and the pressure variation zone radius R 2 are substantially unequal, step S210 may be continued, and this situation will be explained later by way of example.

在步驟S212中,處理單元130可依據壓力變異區中心點(X2,Y2)設定壓力中心點的X座標及Y座標。所述壓力中心點例如是球體110反應於觸碰而在壓力變異區域310中所對應產生的主要壓力點。在步驟S214中,處理單元130即可依據壓力中心點的X座標(以XA表示)、Y座標(以YA表示)以及球體110的球體半徑計算壓力中心點的Z座標(以ZA表示)。在本實施例中,由於在步驟S212中已設定壓力變異區中心點為壓力中心點,因此,壓力中心點的X座標(XA)和Y座標(YA)即分別為X2和 Y2。因此,所述壓力中心點的Z座標(ZA)即可依據公式來求得。舉例而言,所述壓力中心點的Z座標(ZA)可以是(r2-XA 2-YA 2)1/2,其中球體半徑r為球體110的半徑。 In step S212, the processing unit 130 may set the X coordinate and the Y coordinate of the pressure center point according to the center point (X 2 , Y 2 ) of the pressure variation region. The pressure center point is, for example, a main pressure point corresponding to the ball 110 in response to a touch in the pressure variation region 310. In step S214, the processing unit 130 can calculate the Z coordinate of the pressure center point according to the X coordinate (indicated by X A ), the Y coordinate (represented by Y A ) of the pressure center point, and the sphere radius of the sphere 110 (indicated by Z A ). In the present embodiment, since the center point of the pressure variation zone is set as the pressure center point in step S212, the X coordinate (X A ) and the Y coordinate (Y A ) of the pressure center point are X 2 and Y 2 , respectively. . Therefore, the Z coordinate (Z A ) of the pressure center point can be obtained according to the formula. For example, the Z coordinate (Z A ) of the pressure center point may be (r 2 -X A 2 -Y A 2 ) 1/2 , wherein the sphere radius r is the radius of the sphere 110.

在步驟S216中,處理單元130可依據壓力中心點的X座標(XA)、Y座標(YA)以及Z座標(ZA)計算壓力中心點相對於Z軸的第二方位角(以θA表示)。其中,第二方位角(θA)例如可由tan-1((XA 2+YA 2)1/2/ZA)的公式而求得。 In step S216, the processing unit 130 may calculate a second azimuth angle of the pressure center point with respect to the Z axis according to the X coordinate (X A ), the Y coordinate (Y A ), and the Z coordinate (Z A ) of the pressure center point (in θ A indicates). Here, the second azimuth angle (θ A ) can be obtained, for example, from the formula of tan -1 ((X A 2 +Y A 2 ) 1/2 /Z A ).

為了更清楚地標示前述各種參數在球體110中的關係,以下特繪示圖4A及圖4B。圖4A為依據圖3實施例繪示的球體俯視圖。請參照圖4A,當發生觸碰時,處理單元130可依據前述教示而求出壓力中心點的X座標(XA)、Y座標(YA)以及Z座標(ZA)。因此,壓力中心點在所述座標系統中可表示為(XA,YA,ZA)。並且,由於壓力中心點在X-Y平面中與X軸之間的夾角與第一方位角φA相等,因此可用圖4A中所繪示的方式來表示。 In order to more clearly indicate the relationship of the aforementioned various parameters in the sphere 110, FIG. 4A and FIG. 4B are specifically illustrated below. 4A is a top view of a sphere according to the embodiment of FIG. 3. Referring to FIG. 4A, when a touch occurs, the processing unit 130 can determine the X coordinate (X A ), the Y coordinate (Y A ), and the Z coordinate (Z A ) of the pressure center point according to the foregoing teachings. Thus, the pressure center point can be expressed as (X A , Y A , Z A ) in the coordinate system. Also, since the angle between the pressure center point and the X-axis in the XY plane is equal to the first azimuth angle φ A , it can be expressed in the manner illustrated in FIG. 4A.

圖4B為依據圖3實施例繪示的球體側視圖。請參照圖4B,在求出壓力中心點在所述座標系統中的座標之後,處理單元130可依據前述教示求得壓力中心點相對於Z軸的第二方位角θA。所述第二方位角可用圖4B中所繪示的方式來表示。 4B is a side view of the sphere according to the embodiment of FIG. 3. Referring to FIG. 4B, after determining the coordinates of the pressure center point in the coordinate system, the processing unit 130 can determine the second azimuth angle θ A of the pressure center point with respect to the Z axis according to the foregoing teaching. The second azimuth angle can be represented in the manner illustrated in Figure 4B.

本領域具通常知識者應可了解,在球體半徑(r)、壓力中心點的座標、第一方位角φA以及第二方位角θA為已知的情況下,壓力中心點的X座標(XA)、Y座標(YA)以及Z座標(ZA)可用以下數學式來表示: XA=r˙sinθA cosφA It should be understood by those of ordinary skill in the art that the X coordinate of the pressure center point (in the case where the sphere radius (r), the coordinates of the pressure center point, the first azimuth angle φ A, and the second azimuth angle θ A are known ( X A ), Y coordinate (Y A ), and Z coordinate (Z A ) can be expressed by the following mathematical formula: X A =r ̇sinθ A cosφ A

YA=r˙sinθA sinφAY A = r ̇ sin θ A sinφ A .

ZA=r˙cosθA Z A =r ̇cosθ A

值得注意的是,當觸碰的施力方向垂直於球體110的切面時,處理單元130即可直接將在球體110的表面上與壓力中心點對稱於原點312的位置設定為觸碰的觸碰位置。然而,當觸碰的施力方向不垂直於球體110的切面時,其對應求出的壓力中心點將可能因施力方向的偏移,而導致處理單元130無法直接依據前述方式找出正確的觸碰位置。因此,處理單元130可在求出壓力中心點之後,接續進行圖2的步驟S218。 It should be noted that when the direction of the applied force of the touch is perpendicular to the cut surface of the sphere 110, the processing unit 130 can directly set the position on the surface of the sphere 110 and the pressure center point symmetrically to the origin 312 as a touch touch. Touch the location. However, when the direction of the applied force of the touch is not perpendicular to the cut surface of the sphere 110, the corresponding pressure center point may be offset by the direction of the force application, and the processing unit 130 cannot directly find the correct touch according to the foregoing manner. Touch the location. Therefore, the processing unit 130 can continue to perform step S218 of FIG. 2 after determining the pressure center point.

請再次參照圖2,在步驟S218中,處理單元130可依據參考施力方向、第一方位角φA以及第二方位角θA修正壓力中心點。其中,所述參考施力方向平行於觸碰的施力方向且通過原點312,且可由耦接於球體110以及處理單元130的加速度感測器140(g-sensor)或其類似元件測量而得。為了更詳細說明步驟S218的相關細節,以下特繪示圖5A至圖5C以及圖6A至圖6C。 Referring again to FIG. 2, in step S218, the processing unit 130 may correct the pressure center point according to the reference urging direction, the first azimuth angle φ A, and the second azimuth angle θ A . Wherein, the reference urging direction is parallel to the urging direction of the touch and passes through the origin 312, and may be measured by an acceleration sensor 140 (g-sensor) coupled to the sphere 110 and the processing unit 130 or the like. Got it. In order to explain the details of step S218 in more detail, FIGS. 5A to 5C and FIGS. 6A to 6C are specifically illustrated below.

圖5A是依據本揭露之一實施例繪示的當觸碰的施力方向與垂直球面的施力方向之間的夾角是向左增加時,修正壓力中心點的示意圖。在本實施例中,假設所述觸碰是依據施力方向B發生於觸碰位置P處。此時,壓力感測陣列120上所產生的壓力變異區域(未繪示)將使得處理單元130依據前述教示的步驟S202~S214而對應地求出壓力中心點E。然而,若處理單元130直接將與壓力中心點E對稱於原點312的位置P’設定為觸碰的觸 碰位置,將導致錯誤的觸碰位置判斷結果(因位置P’與觸碰位置P相異)。其原因在於,當觸碰是依據參考方向A(垂直於位置P’處的切面)發生於位置P’處時,將產生與壓力中心點E所對應的壓力變異區域實質上相等的壓力變異區域。因此,若欲找出正確的觸碰位置P,則處理單元130可以將壓力中心點E修正至壓力中心點F處,並據以反推得正確的觸碰位置P。其中,壓力中心點F可視為當觸碰依據參考方向D(垂直於觸碰位置P處的切面)發生於觸碰位置P時,處理單元130可對應求出的壓力中心點。 FIG. 5A is a schematic diagram of correcting a pressure center point when an angle between a biasing direction of a touch and a direction of application of a vertical spherical surface is increased to the left according to an embodiment of the present disclosure. In the present embodiment, it is assumed that the touch occurs at the touch position P in accordance with the biasing direction B. At this time, the pressure variation region (not shown) generated on the pressure sensing array 120 causes the processing unit 130 to correspondingly determine the pressure center point E according to the steps S202 to S214 of the above teaching. However, if the processing unit 130 directly sets the position P' symmetrical with the pressure center point E to the origin 312 as a touch touch Touching the position will result in an erroneous touch position judgment result (since the position P' is different from the touch position P). The reason is that when the touch occurs at the position P' according to the reference direction A (the section perpendicular to the position P'), a pressure variation region which is substantially equal to the pressure variation region corresponding to the pressure center point E is generated. . Therefore, if the correct touch position P is to be found, the processing unit 130 can correct the pressure center point E to the pressure center point F, and accordingly push back the correct touch position P. Wherein, the pressure center point F can be regarded as the pressure center point which can be determined by the processing unit 130 when the touch occurs at the touch position P according to the reference direction D (the cutting plane perpendicular to the touch position P).

為了求出可用於將壓力中心點E修正至壓力中心點F的第一修正角度φ,特在圖5A中定義數個參數,以便於理解本實施例的精神。首先,參考施力方向B’平行於施力方向B且通過原點312。夾角φ1為參考方向D和參考施力方向B’之間的夾角。夾角φ2為參考方向A和參考施力方向B’之間的夾角。夾角φA’為參考方向A與X軸之間的夾角。第一夾角φB’為參考施力方向B’與X軸之間的夾角,其可由所述加速度感測器140依據參考施力方向B’在X軸及Y軸的分量而求得。從圖5A可看出,第一修正角度φ相等於夾角φ1和φ2的總和(即,φ=φ12)。此外,夾角φ1相等於夾角φ1’(因互為內錯角)。並且,由於壓力中心點E、原點312及觸碰位置P可構成等腰三角形,因而可得知夾角φ1’相等於夾角φ2’。再者,夾角φ2相等於夾角φ2’(因互為同位角)。換言之,φ11’=φ22’。其中,夾角φ2可由第一夾角φB’減去夾角φA’而得(即,φ2B’-φA’),而夾角φA’可由對應於壓力 中心點E的第一方位角φA對應求得(在此例中,φA’=φA-180)。因此,處理單元130可依據第一夾角φB’以及第一方位角φA計算第一修正角度φ。第一修正角度φ可用下式表示:φ=φ12=2×φ2=2×(φB’-φA’)。接著,處理單元130即可將第一方位角φA加上第一修正角度φ,以對應地修正第一方位角,進而將壓力中心點E修正至壓力中心點F。 In order to find a first correction angle φ that can be used to correct the pressure center point E to the pressure center point F, several parameters are defined in Fig. 5A in order to understand the spirit of the embodiment. First, the reference force direction B' is parallel to the force application direction B and passes through the origin 312. The angle φ 1 is an angle between the reference direction D and the reference urging direction B'. The angle φ 2 is an angle between the reference direction A and the reference force application direction B'. The angle φ A ' is the angle between the reference direction A and the X axis. The first angle φ B ' is an angle between the reference urging direction B' and the X axis, which can be obtained by the acceleration sensor 140 according to the components of the reference urging direction B' on the X axis and the Y axis. As can be seen from Fig. 5A, the first correction angle φ is equal to the sum of the included angles φ 1 and φ 2 (i.e., φ = φ 1 + φ 2 ). Further, the angle φ 1 is equal to the angle φ 1 ' (since the internal error angle is mutual). Further, since the pressure center point E, the origin 312, and the touch position P can constitute an isosceles triangle, it can be known that the angle φ 1 ' is equal to the angle φ 2 '. Furthermore, the angle φ 2 is equal to the angle φ 2 ' (because of the mutual angle). In other words, φ 1 = φ 1 '= φ 2 = φ 2 '. Wherein the angle φ 2 may be obtained by subtracting the angle φ A ' from the first angle φ B ' (ie, φ 2 = φ B '- φ A '), and the angle φ A ' may be the first corresponding to the pressure center point E The azimuth angle φ A is obtained correspondingly (in this example, φ A '= φ A - 180). Therefore, the processing unit 130 can calculate the first correction angle φ according to the first angle φ B ' and the first azimuth angle φ A . The first correction angle φ can be expressed by the following equation: φ = φ 1 + φ 2 = 2 × φ 2 = 2 × (φ B ' - φ A '). Next, the processing unit 130 may add the first azimuth angle φ A to the first correction angle φ to correspondingly correct the first azimuth angle, thereby correcting the pressure center point E to the pressure center point F.

簡言之,當觸碰的施力方向B朝左偏移時,處理單元130可依據第一修正角度φ而將壓力中心點E向右修正至壓力中心點F。值得注意的是,當觸碰的施力方向朝右偏移時,處理單元130亦可進行相似的操作來修正壓力中心點。 In short, when the biasing direction B of the touch is shifted to the left, the processing unit 130 can correct the pressure center point E to the right to the pressure center point F according to the first correction angle φ. It should be noted that when the direction of the force applied by the touch is shifted to the right, the processing unit 130 can perform a similar operation to correct the pressure center point.

圖5B是依據本揭露之一實施例繪示的當觸碰的施力方向與垂直球面的施力方向之間的夾角是向右增加時,修正壓力中心點的示意圖。在本實施例中,各個參數的定義可參照圖5A實施例的說明,在此不再贅述。依據相似於圖5A實施例中所描述的推導過程,本領域具通常知識者應可推得如下的關係式:φ=φ12=2×φ2=2×(φB’-φA’)。接著,處理單元130即可將第一方位角φA加上第一修正角度φ,以將壓力中心點E修正至壓力中心點F。值得注意的是,由於第一夾角φB’小於夾角φA’,因此在處理單元130將第一方位角φA加上第一修正角度φ時,實質上是進行φA-| φ |的運算。簡言之,當觸碰的施力方向B朝右偏移時,處理單元130仍可依據第一修 正角度φ而將壓力中心點E向左修正至壓力中心點F。 FIG. 5B is a schematic diagram of correcting the pressure center point when the angle between the applied direction of the touch and the direction of application of the vertical spherical surface is increased to the right according to an embodiment of the present disclosure. In this embodiment, the definition of each parameter may refer to the description of the embodiment of FIG. 5A, and details are not described herein again. According to the derivation process similar to that described in the embodiment of Fig. 5A, those skilled in the art should be able to derive the following relationship: φ = φ 1 + φ 2 = 2 × φ 2 = 2 × (φ B '- φ A '). Next, the processing unit 130 may add the first azimuth angle φ A to the first correction angle φ to correct the pressure center point E to the pressure center point F. It should be noted that since the first angle φ B ' is smaller than the angle φ A ', when the processing unit 130 adds the first azimuth angle φ A to the first correction angle φ, substantially φ A −| φ | Operation. In short, when the biasing direction B of the touch is shifted to the right, the processing unit 130 can still correct the pressure center point E to the left to the pressure center point F according to the first correction angle φ.

從另一觀點而言,無論觸碰的施力方向是朝左或是朝右偏移,皆可透過同一數學式來計算第一修正角度,進而對應地修正壓力中心點。為了進一步驗證此結果,以下再舉圖5C實施例進行說明 From another point of view, regardless of whether the direction of the force applied by the touch is shifted to the left or to the right, the first correction angle can be calculated by the same mathematical expression, and the pressure center point is correspondingly corrected. In order to further verify this result, the following further illustrates the embodiment of FIG. 5C.

圖5C是依據本揭露之一實施例繪示的當觸碰的施力方向垂直於觸碰位置處的切面時,修正壓力中心點的示意圖。在本實施例中,各個參數的定義可參照圖5A實施例的說明,在此不再贅述。從圖5C中可看出,第一夾角φB’相等於夾角φA’。因此,處理單元130即可對應求得第一修正角度φ為0(即,φ=2×(φB’-φA’)=0)。換言之,壓力中心點E即等於壓力中心點F。 FIG. 5C is a schematic diagram of correcting the pressure center point when the direction of the applied force of the touch is perpendicular to the cut surface at the touch position according to an embodiment of the present disclosure. In this embodiment, the definition of each parameter may refer to the description of the embodiment of FIG. 5A, and details are not described herein again. As can be seen from Fig. 5C, the first angle φ B 'is equal to the angle φ A '. Therefore, the processing unit 130 can correspondingly determine that the first correction angle φ is 0 (ie, φ=2×(φ B '−φ A ')=0). In other words, the pressure center point E is equal to the pressure center point F.

依據圖5A至圖5C實施例中的教示,處理單元130可在觸碰的施力方向出現水平方向(即,朝左或朝右)的偏移時,將壓力中心點水平地進行修正。接著,以下將透過圖6A至圖6C實施例來說明當觸碰的施力方向出現垂直方向(即,朝上或朝下)的偏移時,處理單元130對於壓力中心點所進行的另一種修正方式。 According to the teachings in the embodiment of FIGS. 5A to 5C, the processing unit 130 can horizontally correct the pressure center point when an offset of the horizontal direction (ie, leftward or rightward) occurs in the direction of the applied force of the touch. Next, an embodiment of the pressure center point of the processing unit 130 when the biasing direction of the touch occurs in the vertical direction (ie, upward or downward) will be described below through the embodiment of FIGS. 6A to 6C. Correction method.

圖6A是依據本揭露之一實施例繪示的當觸碰的施力方向與垂直球面的施力方向之間的夾角是向下增加時,修正壓力中心點的示意圖。在本實施例中,與圖5A中相同的參數皆具有相同的定義,在此不再贅述。此外,夾角θ1為參考方向D和參考施力方向B’之間的夾角。夾角θ2為參考方向A和參考施力方向B’之 間的夾角。夾角θA’為參考方向A與X-Y平面之間的夾角。第二夾角θB’為參考施力方向B’與X-Y平面之間的夾角,其可由所述加速度感測器140依據參考施力方向B’在Z軸及X-Y平面的分量而求得。從圖6A可看出,第二修正角度θ相等於夾角θ1和θ2的總和(即,θ=θ12)。此外,夾角θ1相等於夾角θ1’(因互為內錯角)。並且,由於壓力中心點E、原點312及觸碰位置P可構成等腰三角形,因而可得知夾角θ1’相等於夾角θ2’。再者,夾角θ2相等於夾角θ2’(因互為同位角)。換言之,θ11’=θ22’。其中,夾角θ2可由第二夾角θB’減去夾角θA’而得(即,θ2B’-θA’),而夾角θA’可由對應於壓力中心點E的第二方位角θA對應求得(在此例中,θA’=θA-90)。因此,處理單元130可依據第二夾角θB’以及第二方位角θA計算第二修正角度θ。第二修正角度θ可用下式表示:θ=θ12=2×θ2=2×(θB’-θA’)。接著,處理單元130即可將第二方位角θA加上第二修正角度θ,以對應地修正第二方位角,進而將壓力中心點E修正至壓力中心點F。 FIG. 6A is a schematic diagram showing the correction of the center point of the pressure when the angle between the direction of the applied force of the touch and the direction of the force applied by the vertical spherical surface is increased downward according to an embodiment of the present disclosure. In this embodiment, the same parameters as those in FIG. 5A have the same definitions, and are not described herein again. Further, the included angle θ 1 is an angle between the reference direction D and the reference applied force direction B'. The included angle θ 2 is an angle between the reference direction A and the reference applied force direction B'. The angle θ A ' is an angle between the reference direction A and the XY plane. The second angle θ B ' is an angle between the reference urging direction B' and the XY plane, which can be obtained by the acceleration sensor 140 according to the components of the reference urging direction B' in the Z axis and the XY plane. As can be seen from FIG. 6A, the second correction angle θ is equal to the sum of the included angles θ 1 and θ 2 (ie, θ = θ 1 + θ 2 ). Further, the included angle θ 1 is equal to the included angle θ 1 ' (since the internal error angle is mutual). Further, since the pressure center point E, the origin 312, and the touch position P can constitute an isosceles triangle, it can be known that the angle θ 1 ' is equal to the angle θ 2 '. Furthermore, the included angle θ 2 is equal to the included angle θ 2 ' (since the mutual angle is the same). In other words, θ 1 = θ 1 ' = θ 2 = θ 2 '. Wherein the angle θ 2 may be obtained by subtracting the included angle θ A ' from the second included angle θ B ' (ie, θ 2 = θ B '- θ A '), and the included angle θ A ' may be the second corresponding to the pressure center point E The azimuth angle θ A is obtained correspondingly (in this example, θ A '=θ A -90). Therefore, the processing unit 130 can calculate the second correction angle θ according to the second angle θ B ' and the second azimuth angle θ A . The second correction angle θ can be expressed by the following equation: θ = θ 1 + θ 2 = 2 × θ 2 = 2 × (θ B ' - θ A '). Next, the processing unit 130 may add the second azimuth angle θ A to the second correction angle θ to correspondingly correct the second azimuth angle, thereby correcting the pressure center point E to the pressure center point F.

簡言之,當觸碰的施力方向B朝下偏移時,處理單元130可依據第二修正角度θ而將壓力中心點E向下修正至壓力中心點F。值得注意的是,當觸碰的施力方向朝上偏移時,處理單元130亦可進行相似的操作來修正壓力中心點。 In short, when the biasing direction B of the touch is shifted downward, the processing unit 130 can correct the pressure center point E downward to the pressure center point F according to the second correction angle θ. It should be noted that when the direction of the force applied by the touch is upward, the processing unit 130 can perform a similar operation to correct the pressure center point.

圖6B是依據本揭露之一實施例繪示的當觸碰的施力方 向與垂直球面的施力方向之間的夾角是向上增加時,修正壓力中心點的示意圖。在本實施例中,各個參數的定義可參照圖6A實施例的說明,在此不再贅述。依據相似於圖6A實施例中所描述的推導過程,本領域具通常知識者應可推得如下的關係式:θ=θ12=2×θ2=2×(θB’-θA’)。接著,處理單元130即可將第二方位角θA加上第二修正角度θ,以將壓力中心點E修正至壓力中心點F。值得注意的是,由於第二夾角θB’小於夾角θA’,因此在處理單元130將第二方位角θA加上第二修正角度θ時,實質上是進行θA-| θ |的運算。簡言之,當觸碰的施力方向B朝上偏移時,處理單元130仍可依據第二修正角度θ而將壓力中心點E向上修正至壓力中心點F。 FIG. 6B is a schematic diagram of correcting the pressure center point when the angle between the applied direction of the touch and the direction of application of the vertical spherical surface is increased upwards according to an embodiment of the present disclosure. In this embodiment, the definition of each parameter may refer to the description of the embodiment of FIG. 6A, and details are not described herein again. According to a derivation process similar to that described in the embodiment of Fig. 6A, one of ordinary skill in the art should be able to derive the following relationship: θ = θ 1 + θ 2 = 2 × θ 2 = 2 × (θ B '- θ A '). Next, the processing unit 130 may add the second azimuth angle θ A to the second correction angle θ to correct the pressure center point E to the pressure center point F. It should be noted that since the second angle θ B ' is smaller than the angle θ A ', when the processing unit 130 adds the second azimuth angle θ A to the second correction angle θ, substantially θ A −| θ | Operation. In short, when the biasing direction B of the touch is shifted upward, the processing unit 130 can still correct the pressure center point E upward to the pressure center point F according to the second correction angle θ.

從另一觀點而言,無論觸碰的施力方向是朝上或是朝下偏移,皆可透過同一數學式來計算第二修正角度,進而對應地修正壓力中心點。為了進一步驗證此結果,以下再舉圖6C實施例進行說明。 From another point of view, whether the direction of the force applied by the touch is upward or downward, the second correction angle can be calculated through the same mathematical expression, thereby correspondingly correcting the pressure center point. In order to further verify this result, the following description will be made with reference to the embodiment of Fig. 6C.

圖6C是依據本揭露之一實施例繪示的當觸碰的施力方垂直於觸碰位置處的切面時,修正壓力中心點的示意圖。在本實施例中,各個參數的定義可參照圖6A實施例的說明,在此不再贅述。從圖6C中可看出,第二夾角θB’相等於夾角θA’。因此,處理單元130即可對應求得第二修正角度θ為0(即,θ=2×(θB’-θA’)=0)。換言之,壓力中心點E即等於壓力中心點F。 FIG. 6C is a schematic diagram of correcting the pressure center point when the applied force of the touch is perpendicular to the cut surface at the touch position according to an embodiment of the present disclosure. In this embodiment, the definition of each parameter may refer to the description of the embodiment of FIG. 6A, and details are not described herein again. As can be seen from Fig. 6C, the second included angle θ B 'is equal to the included angle θ A '. Therefore, the processing unit 130 can correspondingly determine that the second correction angle θ is 0 (ie, θ=2×(θ B '−θ A ')=0). In other words, the pressure center point E is equal to the pressure center point F.

結合圖5A至圖5C以及圖6A至圖6C的教示,處理單元 130即可依據修正後的第一方位角以及第二方位角來修正壓力中心點。而壓力中心點的X座標(以XA’表示)、Y座標(以YA’表示)以及Z座標(以ZA’表示)可表示為:XA'=r˙sin(θA+θ)cos(φA+φ) 5A to FIG. 5C and FIG. 6A to FIG. 6C, the processing unit 130 can correct the pressure center point according to the corrected first azimuth angle and the second azimuth angle. The X coordinate of the pressure center point (indicated by X A '), the Y coordinate (indicated by Y A '), and the Z coordinate (indicated by Z A ') can be expressed as: X A '=r ̇sin(θ A +θ )cos(φ A +φ)

YA'=r˙sin(θA+θ)sin(φA+φ)。 Y A '=r ̇sin(θ A + θ) sin(φ A + φ).

ZA'=r˙cos(θA+θ) Z A '=r ̇cos(θ A +θ)

請再次參照圖2,在依據圖5A至圖5C以及圖6A至圖6C的教示內容完成壓力中心點的修正操作(步驟S218)之後,在步驟S220中,處理單元130可將在球體110的表面上與修正後的壓力中心點對稱於原點312的位置設定為觸碰的觸碰位置。在一實施例中,可依據圖5A至圖5C及/或圖6A至圖6C的教示內容計算觸碰位置P的X座標(以XD表示)、Y座標(以YD表示)以及Z座標(以ZD表示)可表示為:XD=r˙sin(180°-(θA+θ))cos(φA+φ-180°) Referring again to FIG. 2, after the correction operation of the pressure center point is completed in accordance with the teachings of FIGS. 5A to 5C and FIGS. 6A to 6C (step S218), in step S220, the processing unit 130 may be on the surface of the sphere 110. The position of the upper point 312 symmetrical with the corrected pressure center point is set as the touched touch position. In an embodiment, the X coordinate (represented by X D ), the Y coordinate (represented by Y D ), and the Z coordinate of the touch position P can be calculated according to the teachings of FIGS. 5A to 5C and/or 6A to 6C . (indicated by Z D ) can be expressed as: X D = r ̇ sin (180 ° - (θ A + θ)) cos (φ A + φ - 180 °)

YD=r˙sin(180°-(θA+θ))sin(φA+φ-180°)。 Y D = r ̇ sin (180 ° - (θ A + θ)) sin (φ A + φ - 180 °).

ZD=r˙cos(180°-(θA+θ)) Z D =r ̇cos(180°-(θ A +θ))

簡言之,本揭露實施例提出的觸碰位置判斷裝置及其方法可在球體上發生觸碰時,依據壓力感測陣列上對應的壓力變異區域來找出所述觸碰在球體表面上的觸碰位置。並且,當觸碰的施力方向出現偏移時,觸碰位置判斷裝置更可對應地將壓力中心點進行修正,進而求得正確的觸碰位置。如此一來,無論球體是以何種材質製造,皆可透過本揭露實施例提出的裝置及方法來求得觸碰位置。相似地,無論球體中的內容物為何,本揭露實施例 提出的裝置及方法亦皆能對應地找出觸碰位置。 Briefly, the touch position determining apparatus and the method thereof according to the embodiments of the present disclosure can find the touch on the surface of the sphere according to the corresponding pressure variation area on the pressure sensing array when the touch occurs on the sphere. Touch the location. Moreover, when the direction of the applied force of the touch is shifted, the touch position determining device can correspondingly correct the pressure center point to obtain the correct touch position. In this way, regardless of the material of the sphere, the device and method proposed by the embodiment of the present invention can be used to obtain the touch position. Similarly, the disclosed embodiment, regardless of the content in the sphere The proposed device and method can also find the touch position correspondingly.

圖7是依據本揭露之一實施例繪示的觸碰位置判斷裝置的俯視圖。在本實施例中,假設觸碰可在壓力感測陣列120上對應地形成壓力變異區域710。此時,由於球體110的受力方式不同於圖3實施例所繪示的情形,因此其觸碰位置的判斷操作雖亦可透過圖2提出的方法來進行,但其細節與圖3實施例略有不同。以下將進行詳細說明。 FIG. 7 is a top plan view of a touch position determining device according to an embodiment of the present disclosure. In the present embodiment, it is assumed that the touch may form a pressure variation region 710 correspondingly on the pressure sensing array 120. At this time, since the force of the ball 110 is different from that of the embodiment of FIG. 3, the determination operation of the touch position can also be performed by the method proposed in FIG. 2, but the details thereof and the embodiment of FIG. Slightly different. The details will be described below.

請同時參照圖2與圖7。首先,觸碰位置判斷裝置100可進行步驟S202至步驟S206,而各步驟的詳細內容可參照圖2實施例中的說明,在此不再贅述。在執行步驟S202至步驟S206之後,可對應求得壓力變異區中心點(以座標(X2,Y2)表示)、壓力變異區中心點(X2,Y2)在X-Y平面上相對於X軸的第一方位角φA以及特定距離DI。在圖7中,特定距離DI的相關設定方式可參照圖3實施例中的說明,在此不再贅述。 Please refer to FIG. 2 and FIG. 7 at the same time. First, the touch position determining apparatus 100 can perform step S202 to step S206, and the details of each step can be referred to the description in the embodiment of FIG. 2, and details are not described herein again. After performing step S202 to step S206, the center point of the pressure variation zone (represented by coordinates (X 2 , Y 2 )) and the center point of the pressure variation zone (X 2 , Y 2 ) can be correspondingly determined on the XY plane with respect to X. The first azimuth angle φ A of the shaft and the specific distance DI. In FIG. 7, the related setting manner of the specific distance DI can be referred to the description in the embodiment of FIG. 3, and details are not described herein again.

接著,在步驟S208中,處理單元130可判斷壓力變異區域710的壓力變異區半徑R2是否實質上等於或大於特定距離DI。依據圖7所繪示的情形,壓力變異區半徑R2大於特定距離DI。因此,在步驟S208之後,將接續進行步驟S210。在步驟S210中,處理單元130可依據第一方位角φA、壓力變異區半徑R2以及在壓力變異區域710中最接近於原點312的特定壓力感測點720設定壓力中心點730的X座標(XA)及Y座標(YA)。其中,特定壓力感測點720可在包括於壓力變異區域710中的壓力感測點為 已知時,依據這些壓力感測點與原點312的相對位置找到。在本實施例中,特定壓力感測點720的X座標(以XC表示)以及Y座標(以YC表示)可用於推得壓力中心點730的X座標(XA)及Y座標(YA)。詳細而言,從圖7中可看出,壓力中心點730的X座標(XA)可表示為(R2×cos φA)+XC,而壓力中心點730的Y座標(YA)可表示為(R2×sin φA)+YCNext, in step S208, the processing unit 130 may determine whether the pressure variation region radius R 2 of the pressure variation region 710 is substantially equal to or greater than the specific distance DI. According to the situation illustrated in FIG. 7, the pressure variation zone radius R 2 is greater than the specific distance DI. Therefore, after step S208, step S210 is continued. In step S210, the processing unit 130 may set the X of the pressure center point 730 according to the first azimuth angle φ A , the pressure variation zone radius R 2 , and the specific pressure sensing point 720 closest to the origin 312 in the pressure variation region 710. Coordinate (X A ) and Y coordinate (Y A ). Wherein, the specific pressure sensing point 720 can be found according to the relative positions of the pressure sensing points and the origin 312 when the pressure sensing points included in the pressure variation region 710 are known. In the present embodiment, the X coordinate (indicated by X C ) and the Y coordinate (indicated by Y C ) of the specific pressure sensing point 720 can be used to derive the X coordinate (X A ) and the Y coordinate (Y of the pressure center point 730). A ). In detail, as can be seen from FIG. 7, the X coordinate (X A ) of the pressure center point 730 can be expressed as (R 2 ×cos φ A )+X C , and the Y coordinate (Y A ) of the pressure center point 730. It can be expressed as (R 2 × sin φ A ) + Y C .

在求得壓力中心點730的X座標(XA)及Y座標(YA)之後,處理單元130可接續進行步驟S214至步驟S220,以找出觸碰的觸碰位置。其中,步驟S214至步驟S220的細節可參照先前實施例中所教示的內容,在此不再贅述。 After the X coordinate (X A ) and the Y coordinate (Y A ) of the pressure center point 730 are obtained, the processing unit 130 may continue to perform steps S214 to S220 to find the touched touch position. The details of the steps S214 to S220 can be referred to the content taught in the previous embodiment, and details are not described herein again.

在一實施例中,由於特定距離DI的實質最大值不會大於壓力變異區半徑R2,因此,在步驟S208中僅需判斷壓力變異區半徑R2是否實質上等於特定距離DI即可。當壓力變異區域710的壓力變異區半徑R2實質上不等於特定距離DI時,即代表特定距離DI為不大於壓力變異區半徑R2。因此,可接續進行步驟S210,其細節可參照先前實施例中所教示的內容,在此不再贅述。 In an embodiment, since the substantial maximum value of the specific distance DI is not greater than the pressure variation region radius R 2 , it is only necessary to determine in step S208 whether the pressure variation region radius R 2 is substantially equal to the specific distance DI. When the pressure variation region radius R 2 of the pressure variation region 710 is substantially not equal to the specific distance DI, that is, the specific distance DI is not greater than the pressure variation region radius R 2 . Therefore, the step S210 can be continued. For details, refer to the content taught in the previous embodiment, and details are not described herein again.

綜上所述,本揭露實施例提出的觸碰位置判斷裝置及其方法可在球體上發生觸碰時,依據壓力感測陣列上對應的壓力變異區域來找出所述觸碰在球體表面上的觸碰位置。並且,當觸碰的施力方向出現偏移時,觸碰位置判斷裝置可更對應地將壓力中心點進行修正,進而求得正確的觸碰位置。 In summary, the touch position determining apparatus and the method thereof according to the embodiments of the present disclosure can find the touch on the surface of the sphere according to the corresponding pressure variation area on the pressure sensing array when the touch occurs on the sphere. Touch position. Moreover, when the direction of the applied force of the touch is shifted, the touch position determining means can correct the pressure center point more correspondingly, thereby obtaining the correct touch position.

雖然本揭露已以實施例揭露如上,然其並非用以限定本 揭露,任何所屬技術領域中具有通常知識者,在不脫離本揭露的精神和範圍內,當可作些許的更動與潤飾,故本揭露的保護範圍當視後附的申請專利範圍所界定者為準。 Although the disclosure has been disclosed above by way of example, it is not intended to limit the present. It is to be understood that those skilled in the art will be able to make a few changes and modifications without departing from the spirit and scope of the disclosure, and the scope of the disclosure is defined by the scope of the appended claims. quasi.

100‧‧‧觸碰位置判斷裝置 100‧‧‧Touch position judging device

110‧‧‧球體 110‧‧‧ sphere

120‧‧‧壓力感測陣列 120‧‧‧ Pressure Sensing Array

125‧‧‧壓力感測點 125‧‧‧ Pressure sensing point

130‧‧‧處理單元 130‧‧‧Processing unit

140‧‧‧加速度感測器 140‧‧‧Acceleration sensor

PSS‧‧‧壓力信號組 PSS‧‧‧Pressure Signal Group

Claims (14)

一種觸碰位置判斷裝置,適於一球體,該觸碰位置判斷裝置包括:一壓力感測陣列,耦接該球體的下方且具有複數個壓力感測點,其中,該壓力感測陣列反應於在該球體的一表面上的一觸碰而形成一壓力變異區域,並且由對應於該壓力變異區域的該些壓力感測點產生一壓力信號組;以及一處理單元,耦接該壓力感測陣列,依據該壓力信號組判斷該觸碰在該球體的該表面之一觸碰位置。 A touch position determining device is adapted to a sphere, the touch position determining device comprising: a pressure sensing array coupled to the lower side of the sphere and having a plurality of pressure sensing points, wherein the pressure sensing array is responsive to Forming a pressure variation region on a surface of the sphere, and generating a pressure signal group from the pressure sensing points corresponding to the pressure variation region; and a processing unit coupling the pressure sensing The array determines, according to the pressure signal group, the touch position of the touch on one of the surfaces of the sphere. 如申請專利範圍第1項所述的觸碰位置判斷裝置,其中該球體對應至一座標系統,其中該座標系統具有一原點、一X軸、一Y軸以及一Z軸,且該處理單元經配置以:依據該壓力信號組計算該壓力變異區域在一X-Y平面上的一壓力變異區中心點以及該壓力變異區中心點在該X-Y平面上相對於該X軸的一第一方位角,其中該X-Y平面由該X軸以及該Y軸所定義;依據該壓力變異區中心點設定一壓力中心點的X座標及Y座標,其中該壓力中心點為該球體反應於該觸碰而在該壓力變異區域中所對應產生的一主要壓力點;依據該壓力中心點的X座標、Y座標以及該球體的一球體半徑計算該壓力中心點的Z座標;依據該壓力中心點的X座標、Y座標以及Z座標計算該壓力 中心點相對於該Z軸的一第二方位角;依據一參考施力方向、該第一方位角以及該第二方位角修正該壓力中心點,其中該參考施力方向平行於該觸碰的一施力方向且通過該原點;以及將在該球體的一表面上與修正後的該壓力中心點對稱於該原點的一位置設定為該觸碰的該觸碰位置。 The touch position determining device according to claim 1, wherein the ball corresponds to a standard system, wherein the coordinate system has an origin, an X axis, a Y axis, and a Z axis, and the processing unit Configuring, according to the pressure signal group, calculating a pressure variability region center point of the pressure variability region on an XY plane and a first azimuth angle of the pressure variability region center point on the XY plane relative to the X axis, Wherein the XY plane is defined by the X axis and the Y axis; the X coordinate and the Y coordinate of a pressure center point are set according to the center point of the pressure variation zone, wherein the pressure center point is that the sphere reacts to the touch a main pressure point corresponding to the pressure variation region; calculating the Z coordinate of the pressure center point according to the X coordinate, the Y coordinate of the pressure center point, and a sphere radius of the sphere; according to the X coordinate of the pressure center point, Y The coordinates and the Z coordinate calculate the pressure a second azimuth angle of the center point relative to the Z axis; correcting the pressure center point according to a reference force applying direction, the first azimuth angle, and the second azimuth angle, wherein the reference force applying direction is parallel to the touch a direction of force passing through the origin; and a position on the surface of the sphere that is symmetric with the corrected center point of the pressure to the origin is set to the touch position of the touch. 如申請專利範圍第2項所述的觸碰位置判斷裝置,其中該處理單元經配置以:計算該壓力變異區中心點的X座標至該壓力變異區域的一邊界在該X軸上的一第一最大距離,以及該壓力變異區中心點的Y座標至該壓力變異區域的該邊界在該Y軸上的一第二最大距離,並設定該第一最大距離以及該第二最大距離中的一最大值為一特定距離;以及判斷該壓力變異區域的一壓力變異區半徑是否實質上等於該特定距離,若是,則依據該壓力變異區中心點設定該壓力中心點的X座標及Y座標。 The touch position determining device according to claim 2, wherein the processing unit is configured to: calculate an X coordinate of a center point of the pressure variation region to a boundary of the pressure variation region on the X axis a maximum distance, and a second maximum distance of the Y coordinate of the center point of the pressure variation region to the boundary of the pressure variation region on the Y axis, and setting one of the first maximum distance and the second maximum distance The maximum value is a specific distance; and determining whether a radius of the pressure variation region of the pressure variation region is substantially equal to the specific distance, and if so, setting the X coordinate and the Y coordinate of the pressure center point according to the center point of the pressure variation region. 如申請專利範圍第2項所述的觸碰位置判斷裝置,其中該處理單元以該壓力變異區域在該X軸上的最大值與最小值的平均值為該壓力變異區中心點的X座標;該處理單元以該壓力變異區域在該Y軸上的最大值與最小值的平均值為該壓力變異區中心點的Y座標;以及其中當該壓力變異區中心點的X座標大於0時,該第一方位 角φA為tan-1(Y2/X2),而當該壓力變異區中心點的X座標不大於0時,該第一方位角φA為180+tan-1(Y2/X2),其中,X2為該壓力變異區中心點的X座標,Y2為該壓力變異區中心點的Y座標。 The touch position determining device according to claim 2, wherein the processing unit uses the average value of the maximum value and the minimum value of the pressure variation region on the X axis as the X coordinate of the center point of the pressure variation region; The processing unit uses the average value of the maximum value and the minimum value of the pressure variation region on the Y axis as the Y coordinate of the center point of the pressure variation region; and wherein when the X coordinate of the center point of the pressure variation region is greater than 0, The first azimuth angle φ A is tan -1 (Y 2 /X 2 ), and when the X coordinate of the center point of the pressure variation region is not greater than 0, the first azimuth angle φ A is 180+tan -1 (Y 2 /X 2 ), wherein X 2 is the X coordinate of the center point of the pressure variation zone, and Y 2 is the Y coordinate of the center point of the pressure variation zone. 如申請專利範圍第3項所述的觸碰位置判斷裝置,其中當該壓力變異區域的該壓力變異區半徑實質上不等於該特定距離時,該處理單元依據該第一方位角、該壓力變異區半徑以及在該壓力變異區域中最接近於該原點的一特定壓力感測點設定該壓力中心點的X座標及Y座標。 The touch position determining device according to claim 3, wherein when the radius of the pressure variation region of the pressure variation region is substantially not equal to the specific distance, the processing unit according to the first azimuth, the pressure variation The zone radius and a specific pressure sensing point closest to the origin in the pressure variation zone set the X coordinate and the Y coordinate of the pressure center point. 如申請專利範圍第5項所述的觸碰位置判斷裝置,其中當該處理單元依據該第一方位角、該壓力變異區半徑以及該特定壓力感測點設定該壓力中心點時,該壓力中心點的X座標XA為(R2×cos φA)+XC,該壓力中心點的Y座標YA為(R2×sin φA)+YC,其中R2為該壓力變異區半徑,φA為該第一方位角,XC與YC分別為該特定壓力感測點的X座標以及Y座標。 The touch position determining device according to claim 5, wherein the pressure center is set when the processing unit sets the pressure center point according to the first azimuth angle, the pressure variation region radius, and the specific pressure sensing point. The X coordinate X A of the point is (R 2 ×cos φ A )+X C , and the Y coordinate Y A of the pressure center point is (R 2 ×sin φ A )+Y C , where R 2 is the radius of the pressure variation region , φ A is the first azimuth angle, and X C and Y C are respectively the X coordinate and the Y coordinate of the specific pressure sensing point. 如申請專利範圍第2項所述的觸碰位置判斷裝置,更包括一加速度感測器,耦接該球體以及該處理單元,計算該參考施力方向與該X軸之間的一第一夾角;該處理單元依據該第一夾角以及該第一方位角計算一第一修正角度;該加速度感測器計算該參考施力方向與該X-Y平面之間的一第二夾角; 該處理單元依據該第二夾角以及該第二方位角計算一第二修正角度;該處理單元依據該第一修正角度以及該第二修正角度分別修正該第一方位角以及該第二方位角;以及該處理單元依據修正後的該第一方位角以及修正後的該第二方位角修正該壓力中心點。 The touch position determining device according to claim 2, further comprising an acceleration sensor coupled to the ball and the processing unit, and calculating a first angle between the reference force applying direction and the X axis The processing unit calculates a first correction angle according to the first angle and the first azimuth angle; the acceleration sensor calculates a second angle between the reference force application direction and the XY plane; The processing unit calculates a second correction angle according to the second angle and the second azimuth angle; the processing unit respectively corrects the first azimuth angle and the second azimuth angle according to the first correction angle and the second correction angle; And the processing unit corrects the pressure center point according to the corrected first azimuth angle and the corrected second azimuth angle. 一種觸碰位置判斷方法,適於一球體,其中該球體的下方耦接至一壓力感測陣列,該壓力感測陣列包括多個壓力感測點,所述方法包括:當該球體的一表面上發生一觸碰時,該壓力感測陣列反應於該觸碰而形成一壓力變異區域,並且由對應於該壓力變異區域的該些壓力感測點產生一壓力信號組;以及依據該壓力信號組判斷該觸碰在該球體的該表面之一觸碰位置。 A touch position determining method is suitable for a sphere, wherein a lower side of the sphere is coupled to a pressure sensing array, the pressure sensing array includes a plurality of pressure sensing points, and the method includes: when a surface of the sphere When a touch occurs, the pressure sensing array forms a pressure variation region in response to the touch, and generates a pressure signal group from the pressure sensing points corresponding to the pressure variation region; and according to the pressure signal The group determines that the touch is at a touched position on one of the surfaces of the sphere. 如申請專利範圍第8項所述的觸碰位置判斷方法,其中該球體對應至一座標系統,該座標系統具有一原點、一X軸、一Y軸以及一Z軸,而依據該壓力信號組判斷該觸碰在該球體上發生的該觸碰位置的步驟包括:依據該壓力信號組計算該壓力變異區域在一X-Y平面上的一壓力變異區中心點以及該壓力變異區中心點在該X-Y平面上相對於該X軸的一第一方位角,其中該X-Y平面由該X軸以及該Y軸所設定; 依據該壓力變異區中心點設定一壓力中心點的X座標及Y座標,其中該壓力中心點為該球體反應於該觸碰而在該壓力變異區域中所對應產生的一主要壓力點;依據該壓力中心點的X座標、Y座標以及該球體的一球體半徑計算該壓力中心點的Z座標;依據該壓力中心點的X座標、Y座標以及Z座標計算該壓力中心點相對於該Z軸的一第二方位角;依據一參考施力方向、該第一方位角以及該第二方位角修正該壓力中心點,其中該參考施力方向平行於該觸碰的一施力方向且通過該原點;以及將在該球體的一表面上與修正後的該壓力中心點對稱於該原點的一位置設定為該觸碰的該觸碰位置。 The touch position determining method according to claim 8, wherein the sphere corresponds to a standard system, the coordinate system has an origin, an X axis, a Y axis, and a Z axis, and according to the pressure signal The step of determining, by the group, the touch position occurring on the sphere comprises: calculating a pressure variation region center point of the pressure variation region on an XY plane according to the pressure signal group, and the center of the pressure variation region a first azimuth angle with respect to the X axis in the XY plane, wherein the XY plane is set by the X axis and the Y axis; Setting an X coordinate and a Y coordinate of a pressure center point according to the center point of the pressure variation region, wherein the pressure center point is a main pressure point corresponding to the ball in the pressure variation region in response to the touch; Calculating the Z coordinate of the pressure center point of the X coordinate of the pressure center point and the Y coordinate of the sphere; calculating the pressure center point relative to the Z axis according to the X coordinate, the Y coordinate and the Z coordinate of the pressure center point a second azimuth angle; the pressure center point is corrected according to a reference force applying direction, the first azimuth angle, and the second azimuth angle, wherein the reference force applying direction is parallel to a biasing direction of the touch and passes through the original a point; and a position on the surface of the sphere that is symmetrical with the corrected center point of the pressure to the origin is set to the touch position of the touch. 如申請專利範圍第9項所述的觸碰位置判斷方法,其中依據該壓力變異區中心點設定該壓力中心點的X座標及Y座標的步驟包括:計算該壓力變異區中心點的X座標至該壓力變異區域的一邊界在該X軸上的一第一最大距離,以及該壓力變異區中心點的Y座標至該壓力變異區域的該邊界在該Y軸上的一第二最大距離,並設定該第一最大距離以及該第二最大距離中的一最大值為一特定距離;以及判斷該壓力變異區域的一壓力變異區半徑是否實質上等於該特定距離,若是,則依據該壓力變異區中心點設定一壓力中心點 的X座標及Y座標,其中該壓力中心點為該球體反應於該觸碰而在該壓力變異區域中所對應產生的一主要壓力點。 The touch position determining method according to claim 9, wherein the step of setting the X coordinate and the Y coordinate of the pressure center point according to the center point of the pressure variation region comprises: calculating the X coordinate of the center point of the pressure variation region to a first maximum distance of a boundary of the pressure variation region on the X axis, and a second maximum distance of the Y coordinate of the center point of the pressure variation region to the boundary of the pressure variation region on the Y axis, and Setting a maximum value of the first maximum distance and the second maximum distance to be a specific distance; and determining whether a pressure variation region radius of the pressure variation region is substantially equal to the specific distance, and if so, according to the pressure variation region Center point to set a pressure center point The X coordinate and the Y coordinate, wherein the pressure center point is a main pressure point corresponding to the sphere in response to the touch in the pressure variation region. 如申請專利範圍第9項所述的觸碰位置判斷方法,其中依據該壓力信號組計算該壓力變異區域在該X-Y平面上的該壓力變異區中心點以及該壓力變異區中心點在該X-Y平面上相對於該X軸的該第一方位角的步驟包括:以該壓力變異區域在該X軸上的最大值與最小值的平均值為該壓力變異區中心點的X座標;以該壓力變異區域在該Y軸上的最大值與最小值的平均值為該壓力變異區中心點的Y座標;以及其中,當該壓力變異區中心點的X座標大於0時,該第一方位角φA為tan-1(Y2/X2),而當該壓力變異區中心點的X座標不大於0時,該第一方位角φA為180+tan-1(Y2/X2),其中,X2為該壓力變異區中心點的X座標,Y2為該壓力變異區中心點的Y座標。 The touch position determining method according to claim 9, wherein the pressure variation region center point of the pressure variation region on the XY plane and the pressure variation region center point are in the XY plane according to the pressure signal group The step of the first azimuth angle with respect to the X axis includes: an average value of a maximum value and a minimum value of the pressure variation region on the X axis as an X coordinate of a center point of the pressure variation region; The average value of the maximum value and the minimum value of the region on the Y-axis is the Y coordinate of the center point of the pressure variation region; and wherein, when the X coordinate of the center point of the pressure variation region is greater than 0, the first azimuth angle φ A Is tan -1 (Y 2 /X 2 ), and when the X coordinate of the center point of the pressure variation region is not greater than 0, the first azimuth angle φ A is 180+tan -1 (Y 2 /X 2 ), wherein X 2 is the X coordinate of the center point of the pressure variation zone, and Y 2 is the Y coordinate of the center point of the pressure variation zone. 如申請專利範圍第10項所述的觸碰位置判斷方法,其中在判斷該壓力變異區域的該壓力變異區半徑是否實質上等於該特定距離的步驟之後,更包括:當該壓力變異區域的該壓力變異區半徑實質上不等於該特定距離時,依據該第一方位角、該壓力變異區半徑以及在該壓力變異區域中最接近於該原點的一特定壓力感測點設定該壓力中心點的X座標及Y座標。 The method for determining a touch position according to claim 10, wherein after the step of determining whether the radius of the pressure variation region of the pressure variation region is substantially equal to the specific distance, the method further comprises: when the pressure variation region is When the radius of the pressure variation zone is substantially not equal to the specific distance, the pressure center point is set according to the first azimuth angle, the radius of the pressure variation zone, and a specific pressure sensing point closest to the origin in the pressure variation region. The X coordinates and the Y coordinates. 如申請專利範圍第12項所述的觸碰位置判斷方法,其中該依據該第一方位角、該壓力變異區半徑以及在該壓力變異區域中最接近於該原點的該特定壓力感測點設定該壓力中心點的X座標及Y座標的步驟包括:當依據該第一方位角、該壓力變異區半徑以及該特定壓力感測點設定該壓力中心點時,該壓力中心點的X座標XA為(R2×cos φA+XC,該壓力中心點的Y座標YA為(R2×sin φA)+YC,其中R2為該壓力變異區半徑,φA為該第一方位角,XC與YC分別為該特定壓力感測點的X座標以及Y座標。 The method for determining a touch position according to claim 12, wherein the specific azimuth angle, the radius of the pressure variation region, and the specific pressure sensing point closest to the origin in the pressure variation region are The step of setting the X coordinate and the Y coordinate of the pressure center point includes: when the pressure center point is set according to the first azimuth angle, the pressure variation zone radius, and the specific pressure sensing point, the X coordinate X of the pressure center point A is (R 2 ×cos φ A +X C , and the Y coordinate Y A of the pressure center point is (R 2 ×sin φ A )+Y C , where R 2 is the radius of the pressure variation zone, and φ A is the first At an azimuth angle, X C and Y C are the X coordinate and the Y coordinate of the specific pressure sensing point, respectively. 如申請專利範圍第9項所述的觸碰位置判斷方法,其中依據該參考施力方向、該第一方位角以及該第二方位角修正該壓力中心點的步驟包括:透過耦接於該球體以及該處理單元的一加速度感測器計算該參考施力方向與該X軸之間的一第一夾角;依據該第一夾角以及該第一方位角計算一第一修正角度;透過該加速度感測器計算該參考施力方向與該X-Y平面之間的一第二夾角;依據該第二夾角以及該第二方位角計算一第二修正角度;依據該第一修正角度以及該第二修正角度分別修正該第一方位角以及該第二方位角;以及依據修正後的該第一方位角以及修正後的該第二方位角修正該壓力中心點。 The method for determining a touch position according to the reference range of claim 9, wherein the step of modifying the pressure center point according to the reference force direction, the first azimuth angle and the second azimuth angle comprises: transmitting and coupling to the sphere And an acceleration sensor of the processing unit calculates a first angle between the reference force application direction and the X axis; calculates a first correction angle according to the first angle and the first azimuth angle; The controller calculates a second angle between the reference urging direction and the XY plane; calculating a second correction angle according to the second angle and the second azimuth; according to the first correction angle and the second correction angle Correcting the first azimuth angle and the second azimuth angle respectively; and correcting the pressure center point according to the corrected first azimuth angle and the corrected second azimuth angle.
TW102121185A 2013-06-14 2013-06-14 Touch position determining apparatus and method thereof TW201447667A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW102121185A TW201447667A (en) 2013-06-14 2013-06-14 Touch position determining apparatus and method thereof
CN201310415551.XA CN104238803A (en) 2013-06-14 2013-09-12 Touch position judging device and method
US14/083,394 US20140367911A1 (en) 2013-06-14 2013-11-18 Touch position determining apparatus and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102121185A TW201447667A (en) 2013-06-14 2013-06-14 Touch position determining apparatus and method thereof

Publications (1)

Publication Number Publication Date
TW201447667A true TW201447667A (en) 2014-12-16

Family

ID=52018566

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102121185A TW201447667A (en) 2013-06-14 2013-06-14 Touch position determining apparatus and method thereof

Country Status (3)

Country Link
US (1) US20140367911A1 (en)
CN (1) CN104238803A (en)
TW (1) TW201447667A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10369459B2 (en) * 2013-11-04 2019-08-06 The Regents Of The University Of California Tactile, interactive neuromorphic robots
US9975038B2 (en) * 2013-11-04 2018-05-22 The Regents Of The University Of California Tactile, interactive neuromorphic robots
TWI653552B (en) * 2015-02-13 2019-03-11 禾瑞亞科技股份有限公司 Method, touch sensitive electronics, and system for adjusting pressure signal parameter of stylus
CN106293187B (en) * 2015-06-08 2019-03-29 摩托罗拉移动通信软件(武汉)有限公司 A kind of method of toch control, device and terminal
CN107977124B (en) * 2017-11-28 2020-11-03 友达光电(苏州)有限公司 Three-dimensional touch panel
CN109011651B (en) * 2018-07-25 2020-06-09 上海葡萄纬度科技有限公司 Interactive toy
CN109164934B (en) * 2018-08-10 2021-07-27 业成科技(成都)有限公司 Spherical touch device and curved surface touch device
CN110347291B (en) * 2019-07-11 2023-04-11 业成科技(成都)有限公司 Ball for sensing pressure and position

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5673066A (en) * 1992-04-21 1997-09-30 Alps Electric Co., Ltd. Coordinate input device
TWI306054B (en) * 2006-12-19 2009-02-11 Ind Tech Res Inst Tactile sensing device and an robotic apparatus using thereof
US20100137079A1 (en) * 2007-06-11 2010-06-03 Timothy Andrew Burke Method and device for sports skill training
KR101562827B1 (en) * 2008-10-23 2015-10-23 삼성전자주식회사 Apparatus and method for manipulating virtual object
TW201039209A (en) * 2009-04-27 2010-11-01 Compal Electronics Inc Method for operating electronic device using touch pad

Also Published As

Publication number Publication date
US20140367911A1 (en) 2014-12-18
CN104238803A (en) 2014-12-24

Similar Documents

Publication Publication Date Title
TW201447667A (en) Touch position determining apparatus and method thereof
US20220244830A1 (en) Sensor Having a Set of Plates, and Method
TWI461975B (en) Electronic device and method for correcting touch position
US9746971B2 (en) Touch sensing device and driving method thereof
CN108089772B (en) Projection touch method and device
WO2019019606A1 (en) Ultrasonic touch apparatus and method, and display apparatus
US20120249440A1 (en) method of identifying a multi-touch rotation gesture and device using the same
TWI553508B (en) Apparatus and method for object sensing
TWI547788B (en) Electronic device and gravity sensing calibration method thereof
WO2015139427A1 (en) Laser virtual touch control method and system
JP2014153936A (en) Touch position detection device and touch position detection method
CN107533409B (en) Coordinate detection device and coordinate detection method
CN101890237A (en) Game controller and control method thereof
JP6515998B2 (en) Position detection method of moving body
KR101672731B1 (en) 3d hovering digitizer system using pen tilt
TW201602839A (en) Optical touch-control system
CN204121689U (en) Mutual table tennis bat
JP2005316763A (en) Information input device and method for inputting information in the same
CN103176671B (en) Touch electronic device and touch track correction method
JP2013539126A (en) Object detection method and apparatus using the same
US20170343429A1 (en) Stress sensing device
CN102866808A (en) Method and system for self-correcting of specially-shaped touch screen
TWI465981B (en) Touch device and touch point location calibration method thereof
TWM537259U (en) Three dimensional touch control apparatus
TW201823942A (en) Handwriting-gesture notification method and electronic system using the same