TW201446020A - Dynamic shared spectrum methods enabling secondary user coexistence with primary user - Google Patents

Dynamic shared spectrum methods enabling secondary user coexistence with primary user Download PDF

Info

Publication number
TW201446020A
TW201446020A TW103103902A TW103103902A TW201446020A TW 201446020 A TW201446020 A TW 201446020A TW 103103902 A TW103103902 A TW 103103902A TW 103103902 A TW103103902 A TW 103103902A TW 201446020 A TW201446020 A TW 201446020A
Authority
TW
Taiwan
Prior art keywords
pulse
primary user
phase
information
shared channel
Prior art date
Application number
TW103103902A
Other languages
Chinese (zh)
Inventor
Scott Laughlin
Jean-Louis Gauvreau
Martino Freda
Virgil Comsa
Yuying Dai
Angelo Cuffaro
Mihaela C Beluri
Original Assignee
Interdigital Patent Holdings
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Interdigital Patent Holdings filed Critical Interdigital Patent Holdings
Publication of TW201446020A publication Critical patent/TW201446020A/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1215Wireless traffic scheduling for collaboration of different radio technologies

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Measuring Volume Flow (AREA)

Abstract

Systems, methods and instrumentalities are provided to implement a mechanism of a secondary user (SU) system coexisting with a primary user (PU) system. The SU system may gather information associated with the operation cycle of the PU of a shared channel. The operation cycle includes a quiet phase and a pulse phase. For example, the SU system may gather a set of data, such as pulse duration, pulse duty cycle, allowed hopping sequences, about the operation cycle of the PU.

Description

致能次要使用者與主使用者共存之動態共享頻譜方法Dynamic shared spectrum method that enables secondary users to coexist with the primary user

相關申請的交叉引用
本申請要求2013年02月06日遞交的美國臨時專利申請No.61/761,636的權益,該申請的內容以引用的方式結合於此。
CROSS-REFERENCE TO RELATED APPLICATIONS [0001] This application claims the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit.

使用正在實施的規則,由美國政府、其機構和/或美國軍事海軍雷達系統當前使用的多個頻帶(例如3550-3650 MHz頻帶)可以變得對電信營運商可用。例如,小胞元營運商可以使用這些頻帶。當這樣的頻譜變得可用於共享時,可以存在開發可以與可用頻帶共存的無線技術的機會。例如,對於使次使用者與主使用者在政府持有的頻譜上共存,當前的無線共存技術可能是不充足的。Using the rules being implemented, multiple frequency bands currently used by the US government, its agencies, and/or the US military naval radar system (eg, the 3550-3650 MHz band) can become available to telecommunications carriers. For example, small cell operators can use these bands. As such spectrum becomes available for sharing, there may be opportunities to develop wireless technologies that can coexist with the available frequency bands. For example, current wireless coexistence techniques may not be sufficient for the secondary user to coexist with the primary user on the government-held spectrum.

提供了系統、方法和工具來實施次要使用者(SU)系統與主使用者(PU)系統的共存的機制。SU系統可以收集與該共享通道的PU系統的一個或多個操作週期相關聯的資訊。PU系統的操作週期可以包括安靜(quiet)相位和脈衝相位。例如,SU系統可以收集與PU系統的操作週期相關聯的資訊。這樣的資訊可以包括脈衝相位持續時間、脈衝工作週期、允許的跳頻序列等。
基於與PU系統的操作週期相關聯的資訊,SU系統可以在PU操作週期的沉靜相位期間在共享通道上傳送或排程傳輸。SU系統可以確定SU和PU受影響區域狀態,且基於受影響區域狀態,SU系統可以應用干擾抑制解決方案,例如包括主動解決方案和被動解決方案。SU系統可以基於脈衝相位的定時執行干擾抑制。例如,SU系統可以在脈衝相位期間排程一個或多個空白訊框。例如,SU系統可以在脈衝相位期間排程一個或多個幾乎空白子訊框。幾乎空白子訊框可以包括在特定參考符號中的傳輸。例如,幾乎空白子訊框可以包括僅在特定參考符號中的傳輸。
在由脈衝間時段隔開的脈衝相位中可以有多個脈衝。SU系統可以確定脈衝相位中的脈衝間時段的定時和持續時間,且在脈衝間時段期間排程共享通道上的傳輸。SU系統可以基於脈衝相位的定時偏置鏈路適應。SU系統可以確定其可能花費了多長時間(例如,傳送封包所需的時段)傳送封包,以及排程封包傳輸時間以便封包能夠在脈衝相位開始之前被傳送。
SU系統可以從頻譜存取系統或經由感測機制收集與PU系統的操作週期相關聯的資訊。例如,頻譜存取系統可以接收與聯邦主使用者系統操作相關聯的解密資訊並提供頻譜可用資訊至SU系統。例如,頻譜存取系統可以接收在地理位置處存取一個或多個共享通道的請求,且可以基於該解密資訊識別在該地理位置處的一個或多個可用共享通道和一個或多個相關聯的主使用者。頻譜存取系統可以基於該解密資訊確定與一個或多個該主使用者系統的一個或多個操作週期相關聯的資訊,且可以發送一個或多個可用共享通道和與各個主使用者系統的一個或多個操作週期相關聯的資訊至請求SU系統。
Systems, methods, and tools are provided to implement the mechanism for coexistence of a secondary user (SU) system with a primary user (PU) system. The SU system can collect information associated with one or more operational cycles of the PU system of the shared channel. The operating cycle of the PU system can include quiet phase and pulse phase. For example, the SU system can collect information associated with the operating cycle of the PU system. Such information may include pulse phase duration, pulse duty cycle, allowed frequency hopping sequences, and the like.
Based on the information associated with the operating cycle of the PU system, the SU system can transmit or schedule transmissions on the shared channel during the quiet phase of the PU operating cycle. The SU system can determine the SU and PU affected area status, and based on the affected area status, the SU system can apply an interference suppression solution, including, for example, a proactive solution and a passive solution. The SU system can perform interference suppression based on the timing of the pulse phase. For example, the SU system can schedule one or more blank frames during the pulse phase. For example, the SU system can schedule one or more almost blank sub-frames during the pulse phase. Almost blank subframes can include transmissions in specific reference symbols. For example, an almost blank subframe can include transmissions only in a particular reference symbol.
There may be multiple pulses in the pulse phase separated by the interpulse period. The SU system can determine the timing and duration of the interpulse period in the pulse phase and schedule the transmission on the shared channel during the interpulse period. The SU system can be adapted based on the timing of the pulse phase bias link. The SU system can determine how long it may take (e.g., the time period required to transmit the packet) to transmit the packet, and schedule the packet transmission time so that the packet can be transmitted before the pulse phase begins.
The SU system may collect information associated with the operating cycle of the PU system from the spectrum access system or via a sensing mechanism. For example, the spectrum access system can receive decryption information associated with the operation of the federal primary user system and provide spectrum available information to the SU system. For example, the spectrum access system can receive a request to access one or more shared channels at a geographic location, and can identify one or more available shared channels and one or more associated locations at the geographic location based on the decrypted information The main user. The spectrum access system may determine information associated with one or more operational cycles of the one or more primary user systems based on the decrypted information, and may transmit one or more available shared channels and to each of the primary user systems Information associated with one or more operational cycles to the requesting SU system.

100...通信系統100. . . Communication Systems

102、102a、102b、102c、102d...無線發射/接收單元(WTRU)102, 102a, 102b, 102c, 102d. . . Wireless transmit/receive unit (WTRU)

103、104、105...無線電存取網路(RAN)103, 104, 105. . . Radio access network (RAN)

106、107、109...核心網路106, 107, 109. . . Core network

108...公共交換電話網路(PSTN)108. . . Public switched telephone network (PSTN)

110...網際網路110. . . Internet

112...其他網路112. . . Other network

114a、114b、180a、180b、180c...基地台114a, 114b, 180a, 180b, 180c. . . Base station

116...空中介面116. . . Empty intermediary

118...處理器118. . . processor

120...收發器120. . . transceiver

122...發射/接收元件122. . . Transmitting/receiving element

124...揚聲器/麥克風124. . . Speaker/microphone

126...數字鍵盤126. . . Numeric keypad

128...顯示器/觸控板128. . . Display/trackpad

130...不可移除記憶體130. . . Non-removable memory

132...可移除記憶體132. . . Removable memory

134...電源134. . . power supply

136...全球定位系統(GPS)晶片組136. . . Global Positioning System (GPS) chipset

138...週邊設備138. . . Peripherals

140a、140b、140c...節點B140a, 140b, 140c. . . Node B

142a、142b...無線電網路控制器(RNC)142a, 142b. . . Radio Network Controller (RNC)

144...媒體閘道(MGW)144. . . Media Gateway (MGW)

146...移動交換中心(MSC)146. . . Mobile switching center (MSC)

148...服務GPRS支援節點(SGSN)148. . . Serving GPRS Support Node (SGSN)

150...閘道GPRS支持節點(GGSN)150. . . Gateway GPRS Support Node (GGSN)

160a、160b、160c...e節點B160a, 160b, 160c. . . eNodeB

162...移動性管理閘道(MME)162. . . Mobility Management Gateway (MME)

164...服務閘道164. . . Service gateway

166...封包資料網路(PDN)閘道166. . . Packet Data Network (PDN) gateway

180...存取點(AP)180. . . Access point (AP)

182...存取服務網路(ASN)閘道182. . . Access Service Network (ASN) Gateway

184...IP本地代理(MIP-HA)184. . . IP Local Agent (MIP-HA)

186...認證、授權、記帳(AAA)伺服器186. . . Authentication, Authorization, Accounting (AAA) Server

190A、190B、190C...站(STA)190A, 190B, 190C. . . Station (STA)

310...脈衝寬度310. . . Pulse Width

320...脈衝接收週期320. . . Pulse reception period

510...雷達PU510. . . Radar PU

520...PU潛在受影響區域520. . . Potentially affected area of PU

530...SU潛在受影響區域530. . . SU potentially affected area

610A、610B、610C、710A、710B、710C...脈衝相位610A, 610B, 610C, 710A, 710B, 710C. . . Pulse phase

620A、620B...沉靜相位620A, 620B. . . Quiet phase

720A、720B、720C...脈衝間時段720A, 720B, 720C. . . Interpulse period

730A、730B、730C、730D、1910A、1910B、1910C、2010A、2010B、2010C、2020A、2020B、2020C...脈衝730A, 730B, 730C, 730D, 1910A, 1910B, 1910C, 2010A, 2010B, 2010C, 2020A, 2020B, 2020C. . . pulse

1710A...PU脈衝相位1710A. . . PU pulse phase

1710B...PU雷達脈衝相位1710B. . . PU radar pulse phase

1830...PU脈衝時段1830. . . PU pulse period

2110A、2110B...PU脈衝2110A, 2110B. . . PU pulse

2130、2150...回退時段2130, 2150. . . Rollback period

2170、2180、2190、2195...子訊框2170, 2180, 2190, 2195. . . Child frame

2320...資源塊(RB)2320. . . Resource block (RB)

2310A、2310B...雷達脈衝2310A, 2310B. . . Radar pulse

ABS...幾乎空白子訊框ABS. . . Almost blank frame

CTS...自我清除發送CTS. . . Self-clearing

eNB...e節點BeNB. . . eNodeB

IP...網際網路協定IP. . . Internet protocol

lub、luCS、luPS、iur、S1、X2...介面Lub, luCS, luPS, iur, S1, X2. . . interface

MBSFN...多播單頻網路MBSFN. . . Multicast single frequency network

PDCCH...實體下行鏈路控制通道PDCCH. . . Physical downlink control channel

PU...主使用者PU. . . Primary user

R1、R3、R6、R8...參考點R1, R3, R6, R8. . . Reference point

SAS...聯邦頻譜存取系統SAS. . . Federal spectrum access system

SU...次要使用者SU. . . Secondary user

從以下以示例方式給出的描述並結合附圖可以獲得更詳細的理解。
第1A圖是可以實施所揭露的一個或多個實施方式的示例通信系統的系統圖式。
第1B圖是可以在第1A圖示出的通信系統內使用的示例無線發射/接收單元(WTRU)的系統圖式。
第1C圖是可以在第1A圖示出的通信系統內使用的示例無線電存取網路和示例核心網路的系統圖式。
第1D圖是可以在第1A圖所示的通信系統內使用的另一個示例無線電存取網路和另一個示例核心網路的系統圖式。
第1E圖是可以在第1A圖所示的通信系統內使用的另一個示例無線電存取網路和另一個示例核心網路的系統圖式。
第1F圖是通信系統100的實施方式的系統圖式。
第2圖示出了聯邦頻譜存取系統(SAS)的示例。
第3圖示出了示例雷達信號。
第4圖示出了幾乎空白子訊框(ABS)和多播單頻網路(MBSFN)。
第5圖示出了用於次使用者(SU)沿海岸線操作的示例解決方案空間(solution space)。
第6圖示出了雷達脈衝週期的示例脈衝相位和安靜(quiet)相位。
第7圖示出了表示SU操作的機會的示例宏觀或旋轉週期以及微觀或脈衝週期。
第8圖示出了能夠查詢干擾抑制過程的示例。
第9圖示出了SU操作的示例流程圖。
第10圖示出了SU可以在脈衝相位期間停止傳輸的示例SU操作。
第11圖示出了SU可以在PU系統的脈衝相位期間跳頻以避免使用共享通道的示例SU操作。
第12圖示出了多種示例軍事區域。
第13圖示出了主使用者排除區的示例細分。
第14圖示出了使用基於感測的干擾抑制的示例SU操作。
第15圖示出了一個或多個空白訊框的示例使用。
第16圖示出了聚合雷達通道與另一個通道的長期演進(LTE)的示例。
第17A圖和第17B圖示出了鏈路適應偏置的示例效果。
第18圖示出了示例自我清除發送(CTS)(clear to send (CTS)-to-self)機制。
第19圖示出了示例雷達回退週期機制。
第20圖示出了在檢測到交錯的雷達信號時的示例解決方案。
第21圖示出了LTE系統傳送增加的子訊框定時限制的示例。
第22圖示出了可以避免在雷達脈衝期間排程傳輸的e節點B(eNB)排程器的示例。
第23圖示出了在雷達脈衝存在的情況下增強型實體資料控制通道(ePDCCH)的示例。
A more detailed understanding can be obtained from the following description given by way of example and the accompanying drawings.
FIG. 1A is a system diagram of an example communication system in which one or more of the disclosed embodiments may be implemented.
FIG. 1B is a system diagram of an example wireless transmit/receive unit (WTRU) that may be used within the communication system illustrated in FIG. 1A.
Figure 1C is a system diagram of an example radio access network and an example core network that can be used within the communication system illustrated in Figure 1A.
Figure 1D is a system diagram of another example radio access network and another example core network that may be used within the communication system illustrated in Figure 1A.
Figure 1E is a system diagram of another example radio access network and another example core network that may be used within the communication system illustrated in Figure 1A.
FIG. 1F is a system diagram of an embodiment of communication system 100.
Figure 2 shows an example of a Federal Spectrum Access System (SAS).
Figure 3 shows an example radar signal.
Figure 4 shows an almost blank subframe (ABS) and a multicast single frequency network (MBSFN).
Figure 5 shows an example solution space for a secondary user (SU) operating along the shoreline.
Figure 6 shows an example pulse phase and quiet phase of the radar pulse period.
Figure 7 shows an example macro or spin cycle and micro or pulse period representing the opportunity for SU operation.
Figure 8 shows an example of the ability to query the interference suppression process.
Figure 9 shows an example flow chart of the SU operation.
Figure 10 shows an example SU operation in which the SU can stop transmission during the pulse phase.
Figure 11 shows an example SU operation in which the SU can hop during the pulse phase of the PU system to avoid using shared channels.
Figure 12 shows various example military zones.
Figure 13 shows an example subdivision of the primary user exclusion zone.
Figure 14 shows an example SU operation using sensing-based interference suppression.
Figure 15 shows an example use of one or more blank frames.
Figure 16 shows an example of Long Term Evolution (LTE) of an aggregated radar channel with another channel.
Example effects of link adaptation bias are illustrated in Figures 17A and 17B.
Figure 18 shows an example clear to send (CTS)-to-self mechanism.
Figure 19 shows an example radar backoff period mechanism.
Figure 20 shows an example solution when interlaced radar signals are detected.
Figure 21 shows an example of an LTE system transmitting an increased subframe timing limit.
Figure 22 shows an example of an eNodeB (eNB) scheduler that can avoid scheduled transmissions during radar pulses.
Figure 23 shows an example of an enhanced entity data control channel (ePDCCH) in the presence of radar pulses.

現在參考不同附圖對說明性實施方式的詳細說明進行描述。儘管該說明提供可能實施方式的詳細示例,但是應該注意的是,這些細節被確定為示例性的並且不以任何方式限制本申請的範圍。
第1A圖是可以實施所揭露的一個或多個實施方式的例示通信系統100的圖式。通信系統100可以是為多個無線使用者提供如語音、資料、視訊、消息傳遞、廣播等內容的多重存取系統。該通信系統100通過共享包括無線頻寬在內的系統資源來允許多個無線使用者存取此類內容。舉例來說,通信系統100可以採用一種或多種通道存取方法,例如分碼多重存取(CDMA)、分時多重存取(TDMA)、分頻多重存取(FDMA)、正交FDMA(OFDMA)、單載波FDMA(SC-FDMA)等等。
如第1A圖所示,通信系統100可以包括無線發射/接收單元(WTRU)102a、102b、102c、和/或102d(通常或共同地可以被稱為WTRU 102),無線電存取網路(RAN)103/104/105,核心網路106/107/109,公共交換電話網路(PSTN)108,網際網路110以及其他網路112,但是應該瞭解,所揭露的實施方式設想了任意數量的WTRU、基地台、網路和/或網路元件。每一個WTRU 102a、102b、102c、102d可以是被配置成在無線環境中工作和/或通信的任意類型的裝置。例如,WTRU 102a、102b、102c、102d可以被配置成發射和/或接收無線信號,並且可以包括使用者設備(UE)、移動站、固定或移動訂戶單元、傳呼機、行動電話、個人數位助理(PDA)、智慧型電話、膝上型電腦、上網本、個人電腦、無線感測器、消費類電子裝置等等。
通信系統100還可以包括基地台114a和基地台114b。每一個基地台114a、114b可以是被配置成通過與WTRU 102a、102b、102c、102d中的至少一個無線對接來促使存取一個或多個通信網路的任意類型的裝置,該網路諸如核心網路106/107/109、網際網路110和/或網路112。作為示例,基地台114a、114b可以是基地台收發台(BTS)、節點B、e節點B、家庭節點B、家庭e節點B、網站控制器、存取點(AP)、無線路由器等等。雖然每一個基地台114a、114b都被描述成是單個元件,但是應該瞭解,基地台114a、114b可以包括任意數量的互連基地台和/或網路元件。
基地台114a可以是RAN 103/104/105的一部分,該RAN 103/104/105還可以包括其他基地台和/或網路元件(未顯示),例如基地台控制器(BSC)、無線電網路控制器(RNC)、中繼節點等等。基地台114a和/或基地台114b可以被配置成在被稱為胞元(未顯示)的特定地理區域內部發射和/或接收無線信號。胞元可被進一步劃分成胞元扇區。例如,與基地台114a關聯的胞元可分為三個扇區。由此,在一個實施方式中,基地台114a可以包括三個收發器,也就是說,每一個收發器對應於胞元的一個扇區。在另一個實施方式中,基地台114a可以採用多輸入多輸出(MIMO)技術,由此可以將多個收發器用於胞元的每個扇區。
基地台114a、114b可以經由空中介面115/116/117來與一個或多個WTRU 102a、102b、102c、102d進行通信,該空中介面115/116/117可以是任意適當的無線通訊鏈路(例如射頻(RF)、微波、紅外線(IR)、紫外線(UV)、可見光等等)。該空中介面115/116/117可以使用任意適當的無線電存取技術(RAT)來建立。
更具體地說,如上所述,通信系統100可以是多重存取系統,並且可以採用一種或多種通道存取方案,例如CDMA、TDMA、FDMA、OFDMA、SC-FDMA等等。舉例來說,RAN 103/104/105中的基地台114a與WTRU 102a、102b、102c可以實施諸如通用移動電信系統(UMTS)陸地無線電存取(UTRA)之類的無線電技術,並且該技術可以使用寬頻CDMA(WCDMA)來建立空中介面115/116/117。WCDMA可以包括諸如高速封包存取(HSPA)和/或演進型HSPA(HSPA+)之類的通信協定。HSPA可以包括高速下行鏈路封包存取(HSDPA)和/或高速上行鏈路封包存取(HSUPA)。
在另一個實施方式中,基地台114a與WTRU 102a、102b、102c可以實施演進型UMTS陸地無線電存取(E-UTRA)之類的無線電技術,該技術可以使用長期演進(LTE)和/或高級LTE(LTE-A)來建立空中介面115/116/117。
在其他實施方式中,基地台114a和WTRU 102a、102b、102c可以實施無線電技術,該無線電技術諸如IEEE 802.16(全球互通微波存取(WiMAX))、CDMA2000、CDMA2000 1X、CDMA2000 EV-DO、臨時標準2000(IS-2000)、臨時標準95(IS-95)、臨時標準856(IS-856)、全球移動通信系統(GSM)、GSM增強資料速率演進(EDGE)、GSM EDGE(GERAN)等。
第1A圖中的基地台114b可以是例如無線路由器、家庭節點B、家庭e節點B或存取點,並且可以使用任意適當的RAT來促成局部區域中的無線連接,例如營業場所、住宅、交通工具、校園等等。在一個實施方式中,基地台114b與WTRU 102c、102d可以通過實施諸如IEEE 802.11之類的無線電技術來建立無線區域網路(WLAN)。在另一個實施方式中,基地台114b與WTRU 102c、102d可以通過實施諸如IEEE 802.15之類的無線電技術來建立無線個人區域網路(WPAN)。在再一個實施方式中,基地台114b和WTRU 102c、102d可以通過使用基於蜂巢的RAT(例如WCDMA、CDMA2000、GSM、LTE、LTE-A等等)來建立微微胞元或毫微微胞元。如第1A圖所示,基地台114b可以直接連接到網際網路110。由此,基地台114b不需要經由核心網路106/107/109來存取網際網路110。
RAN 103/104/105可以與核心網路106/107/109通信,該核心網路106/107/109可以是被配置成向一個或多個WTRU 102a、102b、102c、102d提供語音、資料、應用和/或通過網際網路協定的語音(VoIP)服務的任意類型的網路。例如,核心網路106/107/109可以提供呼叫控制、記帳服務、基於移動位置的服務、預付費呼叫、網際網路連接、視訊分發等等,和/或執行使用者認證之類的高級安全功能。雖然在第1A圖中沒有顯示,但是應該瞭解,RAN 103/104/105和/或核心網路106/107/109可以直接或間接地和其他那些與RAN 103/104/105使用相同RAT或不同RAT的RAN進行通信。例如,除了與可以使用E-UTRA無線電技術的RAN 103/104/105連接之外,核心網路106/107/109還可以與使用GSM無線電技術的另一RAN(未顯示)通信。
核心網路106/107/109還可以充當供WTRU 102a、102b、102c、102d存取PSTN 108、網際網路110和/或其他網路112的閘道。PSTN 108可以包括提供簡易老式電話服務(POTS)的電路交換電話網路。網際網路110可以包括使用公共通信協定的全球性互聯電腦網路裝置系統,該協定可以是如傳輸控制協定(TCP)/網際網路協定(IP)網際網路協定族中的TCP、使用者資料包通訊協定(UDP)和IP。網路112可以包括由其他服務供應商擁有和/或營運的有線或無線通訊網路。例如,網路112可以包括與一個或多個RAN相連的另一個核心網路,該一個或多個RAN可以與RAN 103/104/105使用相同RAT或不同RAT。
通信系統100中一些或所有WTRU 102a、102b、102c、102d可以包括多模式能力,即,WTRU 102a、102b、102c、102d可以包括通過不同無線鏈路與不同無線網路通信的多個收發器。例如,第1A圖所示的WTRU 102c可以被配置成與可以使用基於蜂巢的無線電技術的基地台114a通信,以及與可以使用IEEE 802無線電技術的基地台114b通信。
第1B圖是示例WTRU 102的系統圖式。如第1B圖所示,WTRU 102可以包括處理器118、收發器120、發射/接收元件122、揚聲器/麥克風124、數字鍵盤126、顯示器/觸控板128、不可移除記憶體130、可移除記憶體132、電源134、全球定位系統(GPS)晶片組136以及其他週邊設備138。應該瞭解的是,在保持與實施方式一致的同時,WTRU 102還可以包括前述元件的任意子組合。而且,實施方式考慮了基地台114a和114b、和/或基地台114a和114b可以表示的節點可以包括第1B圖中描繪的及於此描述的某些或所有元件,該節點諸如但不限於收發台(BTS)、節點B、網站控制器、存取點(AP)、家庭節點B、演進型家庭節點B(e節點B)、家庭演進型節點B(HeNB)、家庭演進型節點B閘道、及代理節點等等。
處理器118可以是通用處理器、專用處理器、常規處理器、數位訊號處理器(DSP)、多個微處理器、與DSP核心關聯的一個或多個微處理器、控制器、微控制器、專用積體電路(ASIC)、現場可程式設計閘陣列(FPGA)電路、其他任意類型的積體電路(IC)、狀態機等等。處理器118可以執行信號編碼、資料處理、功率控制、輸入/輸出處理和/或其他任意能使WTRU 102在無線環境中工作的功能。處理器118可以耦合至收發器120,收發器120可以耦合至發射/接收元件122。雖然第1B圖將處理器118和收發器120描述成是分別組件,但是應該瞭解,處理器118和收發器120可以整合在一個電子封裝或晶片中。
發射/接收元件122可以被配置成經由空中介面115/116/117來傳送信號至基地台(例如基地台114a)或從基地台(例如基地台114a)接收信號。例如,在另一個實施方式中,發射/接收元件122可以是被配置成傳送和/或接收RF信號的天線。在另一個實施方式中,作為示例,發射/接收元件122可以是被配置成發射和/或接收IR、UV或可見光信號的發射器/檢測器。在再一個實施方式中,發射/接收元件122可以被配置成發射和接收RF和光信號。應該瞭解的是,發射/接收元件122可以被配置成發射和/或接收無線信號的任意組合。
此外,雖然在第1B圖中將發射/接收元件122被描述成是單個元件,但是WTRU 102可以包括任意數量的發射/接收元件122。更具體地說,WTRU 102可以使用MIMO技術。因此,在一個實施方式中,WTRU 102可以包括兩個或更多個經由空中介面115/116/117來傳送和接收無線信號的發射/接收元件122(例如多個天線)。
收發器120可以被配置成對發射/接收元件122將要傳送的信號進行調變,以及對發射/接收元件122接收的信號進行解調。如上所述,WTRU 102可以具有多模能力。因此,收發器120可以包括允許WTRU 102藉助諸如UTRA和IEEE 802.11之類的多種RAT來進行通信的多個收發器。
WTRU 102的處理器118可以耦合至揚聲器/麥克風124、數字鍵盤126和/或顯示器/觸控板128(例如液晶顯示器(LCD)顯示單元或有機發光二極體(OLED)顯示單元),並且可以接收來自這些元件的使用者輸入資料。處理器118還可以向揚聲器/麥克風124、數字鍵盤126和/或顯示器/觸控板128輸出使用者資料。此外,處理器118可以從任意類型的適當的記憶體、例如不可移除記憶體130和/或可移除記憶體132中存取資訊,以及將資料存入這些記憶體。該不可移除記憶體130可以包括隨機存取記憶體(RAM)、唯讀記憶體(ROM)、硬碟或是其他任意類型的記憶體存放裝置。可移除記憶體132可以包括訂戶身份模組(SIM)卡、記憶棒、安全數位(SD)記憶卡等等。在其他實施方式中,處理器118可以從那些並非實體上位於WTRU 102上的記憶體存取資訊,以及將資料存入這些記憶體中,其中舉例來說,該記憶體可以位於伺服器或家用電腦(未顯示)上。
處理器118可以接收來自電源134的電力,並且可以被配置成分發和/或控制用於WTRU 102中的其他組件的電力。電源134可以是為WTRU 102供電的任意適當的裝置。舉例來說,電源134可以包括一個或多個乾電池(如鎳鎘(Ni-Cd)、鎳鋅(Ni-Zn)、鎳氫(NiMH)、鋰離子(Li-ion)等等)、太陽能電池、燃料電池等等。
處理器118還可以與GPS晶片組136耦合,該晶片組可以被配置成提供與WTRU 102的當前位置相關的位置資訊(例如經度和緯度)。WTRU 102可以經由空中介面115/116/117接收來自基地台(例如基地台114a、114b)的加上或取代GPS晶片組136資訊之位置資訊,和/或根據從兩個或多個附近基地台接收的信號定時來確定其位置。應該瞭解的是,在保持與實施方式相符同時,WTRU 102可以藉助任意適當的定位方法來獲取位置資訊。
處理器118還可以耦合到其他週邊設備138,這其中可以包括提供附加特徵、功能和/或有線或無線連接的一個或多個軟體和/或硬體模組。例如,週邊設備138可以包括加速度計、電子指南針、衛星收發器、數位相機(用於照片和視訊)、通用序列匯流排(USB)埠、振動裝置、電視收發器、免持耳機、藍芽R模組、調頻(FM)無線電單元、數位音樂播放機、媒體播放機、視訊遊戲機模組、網際網路瀏覽器等等。
第1C圖是根據一實施方式的RAN 103和核心網路106的系統圖式。如上所述,RAN 103可以使用UTRA無線電技術經由空中介面115來與WTRU 102a、102b、102c進行通信。RAN 103還可以與核心網路106通信。如第1C圖所示,RAN 103可以包括節點B 140a、140b、140c,節點B 140a、140b、140c都可以包括經由空中介面115與WTRU 102a、102b、102c通信的一個或多個收發器。節點B 140a、140b、140c中的每一個都可以與RAN 103中的特定胞元(未顯示)相關聯。RAN 103還可以包括RNC 142a、142b。應該理解的是,在保持與實施方式相符的同時,RAN 103可以包括任何數量的節點B和RNC。
如第1C圖所示,節點B 140a、140b可以與RNC 142a進行通信。此外,節點B 140c可以與RNC 142b進行通信。節點B 140a、140b、140c可以經由Iub介面來與相應的RNC 142a、142b進行通信。RNC 142a、142b可以經由Iur介面彼此通信。每一個RNC 142a、142b都可以被配置成控制與之相連的相應節點B 140a、140b、140c。另外,每一個RNC 142a、142b可被配置成執行或支援其他功能,例如外環功率控制、負載控制、准入控制、封包排程、切換控制、巨集分集、安全功能、資料加密等等。
第1C圖所示的核心網路106可以包括媒體閘道(MGW)144、移動交換中心(MSC)146、服務GPRS支援節點(SGSN)148、和/或閘道GPRS支持節點(GGSN)150。雖然前述每個元件都被描述成是核心網路106的一部分,但是應該瞭解,核心網路營運商之外的其他實體也可以擁有和/或營運這其中的任一元件。
RAN 103中的RNC 142a可以經由IuCS介面連接到核心網路106中的MSC 146。MSC 146可以連接到MGW 144。MSC 146和MGW 144可以為WTRU 102a、102b、102c提供針對PSTN 108之類的電路切換式網路的存取,以便促成WTRU 102a、102b、102c與傳統陸線通信裝置間的通信。
RAN 103中的RNC 142a還可以經由IuPS介面連接到核心網路106中的SGSN 148。該SGSN 148可以連接到GGSN 150。SGSN 148和GGSN 150可以為WTRU 102a、102b、102c提供針對網際網路110之類的封包交換網路的存取,以便促成WTRU 102a、102b、102c與IP致能裝置之間的通信。
如上所述,核心網路106還可以連接到網路112,該網路可以包括其他服務供應商擁有和/或營運的其他有線或無線網路。
第1D圖是根據一個實施方式的RAN 104以及核心網路107的系統圖式。如上所述,RAN 104可以使用E-UTRA無線電技術經由空中介面116來與WTRU 102a、102b、102c進行通信。RAN 104還可以與核心網路107通信。
RAN 104可以包括e節點B 160a、160b、160c,但是應該瞭解,在保持與實施方式相符的同時,RAN 104可以包括任意數量的e節點B。每一個e節點B 160a、160b、160c可以包括一個或多個收發器,以便經由空中介面116來與WTRU 102a、102b、102c通信。在一個實施方式中,e節點B 160a、160b、160c可以實施MIMO技術。由此,舉例來說,e節點B 160a可以使用多個天線來向WTRU 102a發射無線信號,以及接收來自WTRU 102a的無線信號。
每一個e節點B 160a、160b、160c可以關聯於特定胞元(未顯示),並且可以被配置成處理無線電資源管理決策、切換決策、上行鏈路和/或下行鏈路中的使用者排程等等。如第1D圖所示,e節點B 160a、160b、160c可以經由X2介面彼此通信。
第1D圖所示的核心網路107可以包括移動性管理閘道(MME)162[j1]、服務閘道164以及封包資料網路(PDN)閘道166。雖然上述每一個元件都被描述成是核心網路107的一部分,但是應該瞭解,核心網路營運商之外的其他實體同樣可以擁有和/或營運這其中的任一元件。
MME 162可以經由S1介面來與RAN 104中的每一個e節點B 160a、160b、160c相連,並且可以充當控制節點。例如,MME 162可以負責認證WTRU 102a、102b、102c的使用者,承載啟動/去啟動,在WTRU 102a、102b、102c的初始附著期間選擇特定服務閘道等等。該MME 162還可以提供控制平面功能,以便在RAN 104與使用了GSM或WCDMA之類的其他無線電技術的其他RAN(未顯示)之間執行切換。
服務閘道164可以經由S1介面連接到RAN 104中e節點B 160a、160b、160c之每一個。該服務閘道164通常可以路由和轉發通往/來自WTRU 102a、102b、102c的使用者資料封包。服務閘道164還可以執行其他功能,例如在e節點B間的切換期間錨定使用者平面,在下行鏈路資料可供WTRU 102a、102b、102c使用時觸發傳呼,管理和儲存WTRU 102a、102b、102c的上下文等等。
服務閘道164還可以連接到PDN閘道166,可以為WTRU 102a、102b、102c提供針對諸如網際網路110之類的封包交換網路的存取,以便促成WTRU 102a、102b、102c與IP致能裝置之間的通信。
核心網路107可以促成與其他網路的通信。例如,核心網路107可以為WTRU 102a、102b、102c提供針對PSTN 108之類的電路切換式網路的存取,以便促成WTRU 102a、102b、102c與傳統陸線通信裝置之間的通信。作為示例,核心網路107可以包括IP閘道(例如IP多媒體子系統(IMS)伺服器)或與之通信,其中該IP閘道充當了核心網路107與PSTN 108之間的介面。此外,核心網路107可以為WTRU 102a、102b、102c提供針對網路112的存取,其中該網路可以包括其他服務供應商擁有和/或營運的其他有線或無線網路。
第1E圖是根據一實施方式的RAN 105和核心網路109的系統圖式。RAN 105可以是使用IEEE 802.16無線電技術通過空中介面117與WTRU 102a、102b、102c通信的存取服務網路(ASN)。如以下進一步論述的那樣,WTRU 102a、102b、102c,RAN 105以及核心網路109的不同功能實體之間的通信鏈路可被定義成參考點。
如第1E圖所示,RAN 105可以包括基地台180a、180b、180c以及ASN閘道182,但是應該瞭解,在保持與實施方式相符的同時,RAN 105可以包括任意數量的基地台及ASN閘道。每一個基地台180a、180b、180c可以關聯於RAN 105中的特定胞元(未顯示),並且每個基地台可以包括一個或多個收發器,以便經由空中介面117來與WTRU 102a、102b、102c進行通信。在一個實施方式中,基地台180a、180b、180c可以實施MIMO技術。由此,舉例來說,基地台180a可以使用多個天線來向WTRU 102a發射無線信號,以及接收來自WTRU 102a的無線信號。基地台180a、180b、180c還可以提供移動性管理功能,例如切換觸發、隧道建立、無線電資源管理、訊務分類、服務品質(QoS)策略實施等等。ASN閘道182可以充當訊務聚集點,並且可以負責傳呼、訂戶簡檔快取、針對核心網路109的路由等等。
WTRU 102a、102b、102c與RAN 105之間的空中介面117可被定義成實施IEEE 802.16規範的R1參考點。另外,每一個WTRU 102a、102b、102c可以與核心網路109建立邏輯介面(未顯示)。WTRU 102a、102b、102c與核心網路109之間的邏輯介面可被定義成R2參考點,該參考點可以用於認證、授權、IP主機配置管理和/或移動性管理。
每一個基地台180a、180b、180c之間的通信鏈路可被定義成R8參考點,該參考點包含了用於促成WTRU切換以及基地台之間的資料傳送的協定。基地台180a、180b、180c與ASN閘道182之間的通信鏈路可被定義成R6參考點。該R6參考點可以包括用於促成基於與每一個WTRU 102a、102b、102c相關聯的移動性事件的移動性管理。
如第1E圖所示,RAN 105可以連接到核心網路109。RAN 105與核心網路109之間的通信鏈路可以被定義成R3參考點,作為示例,該參考點包含了用於促成資料傳送和移動性管理能力的協定。核心網路109可以包括移動IP本地代理(MIP-HA)184、認證、授權、記帳(AAA)伺服器186以及閘道188。雖然前述每個元件都被描述成是核心網路109的一部分,但是應該瞭解,核心網路營運商以外的實體也可以擁有和/或營運這其中的任一元件。
MIP-HA可以負責IP位址管理,並且可以允許WTRU 102a、102b、102c在不同的ASN和/或不同的核心網路之間漫遊。MIP-HA 184可以為WTRU 102a、102b、102c提供針對網際網路110之類的封包交換網路的存取,以便促成WTRU 102a、102b、102c與IP致能裝置之間的通信。AAA伺服器186可以負責使用者認證以及支援使用者服務。閘道188可以促成與其他網路的交互工作。例如,閘道188可以為WTRU 102a、102b、102c提供對於PSTN 108之類的電路切換式網路的存取,以便促成WTRU 102a、102b、102c與傳統陸線通信裝置之間的通信。另外,閘道188可以為WTRU 102a、102b、102c提供針對網路112的存取,其中該網路可以包括其他服務供應商擁有和/或營運的其他有線或無線網路。
雖然在第1E圖中沒有顯示,但是應該瞭解,RAN 105可以連接到其他ASN,並且核心網路109可以連接到其他核心網路。RAN 105與其他ASN之間的通信鏈路可被定義成R4參考點,該參考點可以包括用於協調WTRU 102a、102b、102c在RAN 105與其他ASN之間的移動的協定。核心網路109與其他核心網路之間的通信鏈路可以被定義成R5參考點,該參考點可以包括用於促成歸屬核心網路與被訪核心網路之間互通的協定。
第1F圖是通信系統100的實施方式的系統圖式。基礎設施基本服務集(IBSS)模式中的WLAN可以具有基本服務集(BSS)的存取點(AP)180和與第1F圖中所示的AP相關聯的一個或多個站(STA)190。AP 180可以具有至分散式系統(DS)或可以將訊務(traffic)運載入和運載出BSS的另一種類型的有線/無線網路的存取或介面。至STA的訊務可以源於BSS的外部,可以通過AP到達且可以被傳遞至STA。源於STA的至BSS外部的目的地的訊務可以被發送給AP以被傳遞至各個目的地。BSS內的STA之間的訊務可以通過AP發送,其中源STA可以發送訊務至AP,而AP可以傳遞訊務至目的地STA。BSS內的STA之間的訊務可以是端對端訊務。這樣的端對端訊務可以直接在源STA和目的地STA之間發送,例如,使用利用IEEE 802.11e DLS或IEEE 802.11z隧道化DLS(TDLS)的直接鏈路建立(DLS)。使用獨立BSS(IBSS)模式的WLAN可以沒有AP,且STA 190可以彼此直接通信。該通信模式可以是專設(ad-hoc)模式。
使用IEEE 802.11基礎設施操作模式,AP 180可以在固定通道上傳送信標,通常是主通道。該通道可以是20 MHz寬,且可以是BSS的操作通道。該通道還可以由STA用來建立與AP 180的連接。IEEE 802.11系統中的通道存取可以是避免衝突的載波偵聽多重存取(CSMA/CA)。在該操作模式中,STA 190,包括AP 180,可以感測主通道。如果通道被檢測為繁忙,則STA 190可以回退(back off)。一個STA 190可以在給定BSS中在任意給定時間傳送。
在IEEE 802.11n中,高流通量(HT)STA可以使用40 MHz寬的通道用於通信。這例如可以通過將主20 MHz通道與鄰近20 MHz通道組合形成40 MHz寬的相鄰(contiguous)通道而被達成。
在IEEE 802.11ac中,甚高流通量(VHT)STA可以支援例如20MHz、40 MHz、80 MHz和/或160 MHz寬通道。40 MHz和80 MHz通道例如可以通過將相鄰的20 MHz通道組合來形成。160 MHz例如可以通過將八個相鄰的20 MHz通道組合或通過將兩個非相鄰的80 MHz通道(例如,被稱為80+80配置)組合來形成。對於80+80配置,通道編碼之後的資料可以通過分段解析,該分段解析可以將其分成兩個串流。逆快速傅利葉轉換(IFFT)和時間域處理可以在每個流上分別進行。串流可以映射到兩個通道上,且資料可以被傳送。在接收機處,該機制可以是相反的,且組合的資料可以被發送至MAC。
IEEE 802.11af和IEEE 802.11ah可以支援1 GHz操作模式。對於這些規範,通道操作頻寬相對於在IEEE 802.11n和IEEE 802.11ac中使用的那些可以是減小的。IEEE 802.11af可以支援TV白空間(TVWS)頻譜中的5 MHz、10 MHz和/或20 MHz頻寬,而IEEE 802.11ah可以支援1 MHz、2 MHz、4 MHz、8 MHz和/或16 MHz頻寬(例如,使用非TVWS頻譜)。IEEE 802.11ah可以支援巨集覆蓋區域中的儀錶類型控制(MTC)裝置。MTC裝置可以具有包括例如支援有限頻寬的能力和對非常長的電池壽命的要求。
在可以支援多通道和通道頻寬的WLAN系統中,例如,IEEE 802.11n、IEEE 802.11ac、IEEE 802.11af和/或IEEE 802.11ah可以包括可以被指定為主通道的通道。主通道可以具有可以等於BSS中STA支援的最大公共操作頻寬的頻寬。主通道的頻寬可以受STA 190限制,例如在BSS中操作的STA的STA 190A、190B、190C,其可以支援最小頻寬操作模式。例如,在IEEE 802.11ah,主通道可以為1 MHz寬,如果可以存在可以支援1 MHz模式的STA 190(例如,MTC類型裝置),即使BSS中的AP 180和其他STA 190可以支援2 MHz、4 MHz、8 MHz、16 MHz或其他通道頻寬操作模式。載波感測和NAV設置可以依賴於主通道的狀態。如果主通道為繁忙,例如,由於支援1 MHz操作模式的STA 190向AP 180傳送,即使他們中的多數保持空閒和可用,可用頻帶也可以被考慮。
在美國,例如,可以由IEEE 802.11ah使用的可用頻帶可以是從902 MHz到928 MHz。在韓國,例如其可以是從917.5 MHz到923.5 MHz。在日本,例如其可以是從916.5 MHz到927.5 MHz。可用於IEEE 802.11ah的總頻寬可以是可以取決於國家代碼的6 MHz到26 MHz。
第2圖示出了諸如聯邦頻譜存取系統的示例頻譜存取系統(SAS)。如所示的,SAS可以包括資料庫,諸如可以儲存頻譜可用性資訊的頻譜資料庫。頻譜可用性資訊可以包括但不限於感測資訊、策略資訊、定價資訊、限制和傳統要求。頻譜資料庫可以儲存關於何種頻譜可以由主(例如,聯邦系統)或次要使用者在給定位置和時間佔用的資訊;信號參數,諸如功率和頻寬;特定位置的束縛,諸如在***區域(blasting zones)或沿著國際寄宿者(international boarders)沒有傳輸;以及存取頻譜的價格。SAS可以包括可以提供頻率分配和授權的無線電存取協調和管理和優化功能。該功能可以優化給定區域的整個頻譜效率,且可以確保傳統聯邦系統保持存取頻譜的優先順序。
若使用SAS,頻譜的主使用者可以與常規存取使用者(例如Wi-Fi或毫微微胞元使用者)共享他們的頻譜。主使用者可以提供動態許可,例如,頻譜的出租或租賃。次使用者可以發送存取請求至SAS,且SAS可以為次使用者分配頻譜來使用。當使用共享頻譜時,諸如裝置的次要使用者和他們的基地台可以週期性地與SAS通信。
可以在USA變得可用的頻帶可以包括3550至3650 MHz頻帶。3550至3650 MHz頻帶可以在指定的排除區域之外共享,該區域的大小可以隨次使用者和第三級使用者的功率等級和天線高度變化。SAS可以具有可以用於查詢關於可用共享頻譜和操作參數之資料以及管理次使用者頻譜租賃協定等的介面。
雷達系統可以以於百萬瓦特級的高功率脈衝操作。典型系統可以以具有130dBm的EIRP的40dB級的大天線增益的90dBm脈衝為特色。第3圖示出了示例雷達信號。如所示出的,信號的特徵在於針對脈衝寬度310的持續時間的高功率脈衝週期,之後是在下一個脈衝週期之前的更長的安靜週期。脈衝寬度310和/或脈衝接收週期320可以基於期望的範圍、解析度、精度、調變類型等變化。脈衝週期和脈衝相位可以在此交換使用,且安靜週期和沉靜相位可以在此交換使用。脈衝寬度和安靜週期可以從一個脈衝接收週期到另一個脈衝接收週期不同,因為電子天線操控可以修改脈衝寬度。出於抗干擾目的,用於從一個脈衝接收週期至另一個脈衝接收週期的頻率可以改變。出於抗干擾目的,雷達脈衝持續時間或週期性的隨機性可以被引入。脈衝週期可以包括PU在共享通道上操作的週期,例如,在SU系統的位置處指向雷達。
雷達信號可以干擾通信裝置(communicator)操作所在的通道和/或鄰近操作通道的通道上的一個或多個通信裝置。由於雷達信號的高功率,旁瓣可以引起干擾,例如,2.8GHz雷達頻帶旁之在2.6GHz移動頻帶的移動服務的情況下的干擾。
由於國家安全考慮,軍事雷達的細節可以被分類。分類後的雷達信號的詳情是不可獲得的。許多軍事類型的雷達可以被設計為避免檢測。為了避免檢測,雷達系統可以例如隨機或偽隨機改變他們的調變類型、脈衝接收週期和/或脈衝寬度、和/或採用跳頻等。但是可以獲得一些基本共存資訊。如果頻帶中的頻譜,例如3.1至3.7GHz頻帶,可用於共享使用,則政府可以以更動態的方式經由SAS選擇以使附加資訊公開。
頻譜共享可以在5GHz頻帶中被允許。動態頻率選擇被執行。未許可裝置在傳送之前可以執行感測以確定雷達是否低於-64dBm。3.5GHz頻帶可以被輕度許可以允許諸如長期演進(LTE)的RAT具有有保證的QoS。5GHz Wi-Fi技術的發展可以允許組合資料庫查詢和地理定位的解決方案。說前先聽(listen-before-talk)技術的進展可以縮短數十微秒級的訊框間間隔。
第4圖示出了示例多播單頻網路(MBSFN)和幾乎空白子訊框(ABS)。MBSFN和/或ABS可以允許eNB避免在給定子訊框中的資料傳輸。MBSFN可以與ABS子訊框組合以進一步減少在給定子訊框中的傳輸。eNB可以在雷達傳輸期望發生以避免對雷達信號的干擾/來自雷達信號的干擾時的時間示例期間發送MBSFN子訊框或ABS子訊框。
新載波類型(NCT)可以包括非向後相容載波,包括例如擴展載波。這樣的載波可以包括具有完全空白子訊框的能力。NCT可以使用增強型實體下行鏈路控制通道(ePDCCH),該ePDCCH可以允許控制空間在用於資料的空間上發送,該資料避免專用於該控制空間的OFDM符號。在該空間中的一組實體資源塊(PRB)可以針對每個子訊框中的ePDCCH傳輸被擱置,且剩餘的PRB可以用於實體下行鏈路共享通道(PDSCH)。eNB可以在雷達傳輸預期的頻帶或通道中操作NCT。出現在雷達信號的頻率位置處的特定PRB可以取消,以避免LTE控制資訊和雷達信號之間的干擾。
監管改變可以提供小胞元動態共享頻譜使用由軍事應用(例如海軍雷達)使用的包括3.5GHz頻帶中的多達100MHz聯邦頻譜的機會。
雷達可以以可以達到高達130dBm的峰值功率的甚高功率脈衝和大天線增益操作,且可以干擾次使用者或常規存取使用者(例如通過使接收機機的低雜訊放大器(LNA)飽和)。高功率等級可以導致對鄰近頻帶和大距離處的干擾。
主使用者雷達系統可以使用可以旋轉RF能量的聚焦波束以掃描地平線的機械天線系統。雷達可以使用電子天線操縱系統,其中方向性可以電子方式被改變。電子天線操縱系統可以與機械操縱系統耦合。所關注的系統可以從1至100 rpm在任意地方旋轉。次許可或常規存取系統可以被允許在主使用者(PU)頻率上操作(在他們不干擾雷達PU接收機的情況下)。次系統可以操作(在該系統足夠遠離雷達PU的情況下,或者在該系統使用避免干擾(例如不在雷達的波束指向該系統時傳送)的機制的情況下)。
當動態頻譜共享(DSS)小胞元在雷達頻譜上操作時,使用即時服務可能存在問題。例如,雷達干擾每次可以存在長達數十微秒,這可能在即時應用(例如,通過網際網路協定的語音(VoIP))中引起明顯的中斷,產生不可接受的使用者體驗。該中斷可以從一個脈衝週期至另一個脈衝週期不同以對雷達信號引入隨機性。
這裡提供的方法、系統和工具可以允許DSS小胞元次使用者(SU)在共享頻帶中與雷達系統(諸如3.5GHz頻帶中的US軍事海軍雷達)共存。SU可以是層(tier)2或層3使用者,或者可以是可以受PU系統影響的許可的或未許可的使用者。
第5圖示出了沿海岸線的次使用者(SU)的示例解決方案空間。SU或SU系統可以包括這裡描述的WTRU和/或基地台(例如,eNB)。SU系統可以包括相對於第1A圖、第1C圖、第1D圖、第1E圖和第1F圖在這裡描述的通信系統。SU和SU系統在這裡可以交換使用。PU和PU系統在這裡可以交換使用。
解決方案空間可以包括SU受影響的區域,其中SU可以聯繫SAS並被允許傳送。SU影響區域可以包括PU潛在受影響區域520和SU潛在受影響區域530。在PU潛在受影響區域520中,雷達PU 510可以經歷來自SU的干擾。如果SU在SU潛在影響區域530中操作,雷達PU可以不經歷來自SU的干擾。在SU潛在受影響區域530和PU潛在受影響區域520中,SU可以受來自雷達PU 510的干擾的影響。被動解決方案和主動解決方案可以在SU潛在受影響區域530中使用,而主動解決方案可以在PU潛在受影響區域520中使用。DSS小胞元可以在雷達的干擾週期的沉靜相位期間操作,例如,在旋轉雷的達指向偏離(電子地或機械地)DSS小胞元時。這樣的安排可以被稱為宏觀或旋轉週期解決方案(例如,如第7圖中的示例所示)。
第6圖示出了雷達脈衝週期的示例脈衝相位和沉靜相位。如所示出的,脈衝相位610A、610B和610C可以由沉靜相位620A和620B隔開。諸如沉靜相位620A和620B的沉靜相位可以為SU提供使用頻帶的機會。
第7圖示出了表示SU操作的機會的示例宏觀或旋轉週期以及微觀或脈衝週期。如所示出的,從宏觀週期的角度來看,SU可能在脈衝相位710A、710B和710C期間經歷來自PU的干擾。DSS小胞元可以在雷達信號的沉靜相位(諸如脈衝相位710A、710B和710C之間的沉靜相位)期間使用頻譜。在沉靜相位期間,SU可以不經歷來自PU的干擾。DSS小胞元可以在雷達的波束指向其時在脈衝相位期間使用頻譜。這樣的佈置可以被稱為微觀或脈衝週期解決方案。如第7圖所示,從微觀週期的角度來看,在脈衝相位內可以存在SU使用頻譜的機會。例如,在脈衝相位710A內,可以存在多個脈衝,諸如脈衝730A、730B、730C和730D。DSS小胞元可以在脈衝間時段(諸如脈衝間時段720A、720B和720C)期間使用頻譜。微觀或脈衝週期方案可以用於在脈衝相位期間避免或減少緩衝資料(允許諸如VOIP的即時應用)。
這裡提供的方法、系統和工具用於SU無線電存取網路獲取關於雷達PU操作參數的解密(declassified)資訊和適應干擾情況。該資訊可以經由資料庫查詢獲取。SU無線電存取網路可以查詢SAS或共享頻譜資料庫,例如,經由網際網路、回程鏈路等。PU可以具有與共享頻譜資料庫的介面,以便其可以為SU系統公佈(post)關於雷達PU頻譜的使用資訊(例如,操作週期資訊)來查詢。操作資訊可以由SU系統通過感測機制獲取。該資訊可以由SU裝置用來管理雷達干擾對SU系統的影響。
第8圖示出了能夠查詢干擾抑制過程的示例。在810處,SU可以聯繫SAS。在820處,可以確定SU是否處於SU受影響區域。確定可以在SAS處進行,或者其可以基於SAS發送的資訊在SU處進行。SU可以通過詢問SAS來確定其是否處於SU受影響區域。例如,SU可以發送其地理位置資訊至SAS。SAS可以基於於此儲存的資訊確定SU是否處於SU受影響區域,並發送資訊至SU。SAS可以發送與SU的位置中和/或附近的潛在雷達系統相關聯的資訊至SU。SU可以基於來自SAS的資訊確定SU是否處於SU受影響區域。如果SU在SU受影響區域之外,在830處,SU可以使用通道。
如果確定SU處於SU受影響區域,在835處,可以確定SU是否處於PU受影響區域。確定可以在SAS處進行,或者其可以基於SAS發送的資訊在SU處進行。例如,SU可以發送其地理位置資訊至SAS。SAS可以基於於此儲存的資訊確定SU是否處於PU受影響區域,並發送資訊至SU。SAS可以發送與SU的位置中和/或附近的潛在雷達系統相關聯的資訊至SU。SAS可以基於於此儲存的資訊確定SU是否處於PU受影響區域,並發送資訊至SU。SU可以基於來自SAS的資訊確定SU是否處於PU受影響區域。
如果確定SU未處於PU受影響區域,在840處,可以應用主動或者被動干擾抑制。例如,被動SU解決方案(如在此描述的)可以適應PU干擾,而主動SU技術可以避免與PU的相互干擾。如果確定SU處於PU受影響區域,在850處,可以使用高級主動解決方案。於此描述了針對特定RAT的這些解決方案的應用,例如LTE或Wi-Fi。
SU可以在脈衝相位之間操作。SU可以獲得關於雷達PU的宏觀或旋轉週期的資訊。SU可以從SAS獲得這樣的資訊。SU可以感測所接收的RF信號而不傳送,並且可以取得脈衝接收時段、脈衝寬度和安靜時段的開始。SU可以從SAS或於此描述的RF感測技術獲得關於一個或多個單獨的脈衝定時的資訊。可以存在機會以在脈衝相位的單獨的雷達脈衝之間操作,從而增加的流通量和QoS可以跨越整個宏觀或旋轉週期。SU可以在雷達操作期間傳送,且可以使用偏置鏈路適應和/或在雷達操作時段期間的排程抑制干擾。SU可以不使用偏置鏈路適應和/或脈衝相位之間的排程。
第9圖示出了SU操作的示例流程圖,包括例如宏觀和微觀解決方案。如所示出的,在910處,SU可以確定與PU雷達相關聯的資訊是否可用。在雷達共存中,SAS(例如,頻譜代理系統(spectrum broker system),或者頻譜資料庫)可以收集關於通道的資訊。例如,SU可以確定提供這樣的資訊的資料庫是否可存取,或者資料庫是否包含這樣的資訊。如果確定與PU雷達系統相關聯的資訊可用,在920處,SU可以從資料庫收集關於雷達PU的資訊,和/或使用感測技術收集關於通道和/或通道的PU的資訊。如果確定與PU雷達系統相關聯的資訊不可用,在930處,SU可以使用感測技術收集關於通道和/或通道的雷達PU的資訊。
SU可以基於收集的關於通道可用區域和雷達宏觀和/或微觀週期的資訊應用適當的解決方案。在SU收集關於共享通道的雷達PU的資料之後,其可以選擇解決方案。在940處,SU可以確定通道是否與PU相關聯。如果通道無主使用者(或者,例如,潛在的次許可使用者),通道可以針對完整使用是可接受的。在980處,SU可以使用通道。如果通道與PU相關聯,在950處,可以確定與PU的宏觀或旋轉週期相關聯的資訊是否可用。如果SU具有宏觀或旋轉週期的知識,在960處,可以確定與PU的微觀或脈衝週期相關聯的資訊是否可用。如果SU可以收集關於雷達PU的微觀或脈衝週期的資訊,在982處,SU可以針對微觀週期應用共存解決方案(例如,還有針對宏觀週期的共存解決方案)。如果關於雷達PU的微觀或脈衝週期的資訊對於SU不可用,在985處,SU可以使用針對宏觀週期的共存解決方案。例如,SU可以僅使用針對宏觀週期的共存解決方案。
如果與PU的宏觀或旋轉週期相關聯的資訊對於SU不可用,在970處,可以確定SU操作是否干擾PU操作。例如,這可以基於關於SU是否處於SU潛在受影響區域或PU潛在受影響區域中的資訊來確定。如果確定SU操作可以不干擾PU操作,於此描述的被動解決方案可以在987處被應用。被動解決方案可能不提供保護雷達PU的機制。如果確定SU操作可以干擾PU操作,主動解決方案可以在990處被應用。例如,於此描述的主動解決方案可以用於SU受影響和PU受影響區域。被動解決方案可以不被應用於PU受影響區域。
SU系統在雷達PU的波束偏離SU的位置聚焦時使用共享通道,以便干擾可以被保持低於臨界值。雷達脈衝相位的定時可以被確定。通過緩衝資料、切換通道和/或使用干擾抑制機制可以避免干擾。SU可以通過資料庫輔助的技術或經由感測和/或資料庫和感測技術的組合確定雷達脈衝的特性。
第10圖示出了SU可以在PU脈衝相位(例如,雷達脈衝相位)期間停止傳送的示例SU操作。如第10圖中的示例所示的,在主動解決方案中,SU可以在脈衝相位外的時段期間使用通道。例如,SU在宏觀或旋轉相位的脈衝週期期間可以不傳送。在可以避免傳輸的脈衝相位之前和/或之後可以存在一時段。SU可以經由資料庫和/或經由感測收集關於一個或多個雷達操作週期的資訊。
第11圖示出了示例SU操作。SU可以確定雷達脈衝相位定時和/或頻率的改變。如第11圖中所示,在1110處,SU可以在通道的PU系統的沉靜相位期間使用通道。SU基地台可以向其關聯的一個或多個交替的通道的WTRU通知基地台在脈衝相位開始時跳頻。在1120處,SU可以在PU系統1140的脈衝相位期間使用交替的通道。在1130處,SU系統可以保持在交替的通道上,或者可以跳頻回第一共享通道。
關於雷達PU的資訊可以通過基礎設施鏈路被收集。SU系統可以具有至頻譜資料庫的存取,例如,經由參考第2圖描述的SAS。
軍事PU可以不公然地揭露其信號源的位置。軍隊可能希望動態控制可以用於SU使用的區域,包括例如潛在誘餌區域。第12圖示出了多種軍事區域的示例,包括例如可用區域、軍事訓練區域和/或誘餌區域。PU可以利用至SAS的解密介面來提供該資訊。基於SAS中的資訊,SU可以確定區域是否被允許或不被允許用於SU存取。不允許的區域可以大於PU雷達的操作範圍,例如,以允許PU艦(vessel)的可操作性。PU可以將這樣的區域定義為“模糊”區域或誘餌區域。PU可以沿著海岸線定義該區域(指定雷達穿透陸地的深度)。沿海區域可以被定義為“最糟情況”區域。
第13圖示出了主使用者排除區的示例細分。如所示出的,該區域可以被細分以包括PU潛在受影響區域和/或SU潛在受影響區域。PU可以指派活動區域作為最糟情況(例如,在艦接近海濱時)。當船遠離海濱時,活動區域的指派可以依賴於PU可能需要的靈活量或者PU可以公然可用的資訊量。
頻譜存取系統可以允許分類資料庫以提供資料至民用資料庫並通知次存取使用者和/或常規存取使用者。進入海軍區域“#n”的船可以被定義為沿著海岸線“y”英里乘以“x”英里深度的海岸線區域。分類的資料庫和相關聯的共享頻譜管理(SSM)可以通知該事件。分類的資料庫資訊可以映射到使用公共公開功能公然揭露的資訊,例如可以改變用於民用使用的分類資訊和/或增加誘餌等。該資訊可以被發送至諸如民用SSM或頻譜資料庫的SAS。SAS可以請求在海軍區域“#n”的PU潛在受影響區域中操作的DSS使用者以終止操作。SAS可以通知層2和層3使用者操作在“解密”雷達特性的SU潛在受影響區域中以輔助使用者抑制PU信號。
當接收到資訊的指示時,SU可以根據PU的雷達特性來操作。SU可以使用介面收集資訊以與雷達PU系統共存。資訊元素可以由雷達PU通過介面提供並用於輔助共存。頻譜資料庫可以包括在表1中列出的資訊元素或者他們的子組合。
SU可以針對表1中列出SU參數中的至少一者查詢頻譜資料庫。例如,SU可以發送關於SU的當前位置的位置資訊(例如,緯度和經度)。基於位置資訊,頻譜資料庫可以提供與位置相關聯的PU系統的資訊。資訊可以用於微觀週期解決方案和/或宏觀週期解決方案。
表1


SU可以基於從SAS獲取的資訊避免與PU系統的相互干擾。例如,SU系統可以通過跳頻通道、通過排程已知脈衝時段周圍的傳輸和/或使用速度臨界值之下的雷達系統的都卜勒消除能力避免來自雷達PU的干擾和/或干擾雷達PU。
聯邦使用者可以通過至SAS(例如,共享頻譜管理器)的解密介面分配特定操作指令。頻譜資料庫中的資訊可以反映這些指令。SU可以通過資料庫查詢發現這些指令。SU可以遵循這些指令以獲得對通道的存取。
例如,SAS可以提供SU可以使用的頻率、頻率跳頻序列和訊框定時。SAS可以在允許的跳頻序列資訊元素(IE)中提供這樣的資訊。PU可以在其他時間操作,或者可以調整其自身的接收機以使用指定的跳頻序列消除來自民用使用者的干擾。SAS可以提供SU頻率跳頻選項。例如,SU可以接收在可能有所允許的不同序列相位的多個頻率跳頻序列之中的選擇。SU可以選擇跳頻序列,並且因此可以執行頻率跳頻。跳頻序列可以被分配至一個SU裝置或可以在給定位置共享跳頻序列的多個SU裝置。
PU可以在脈衝相位之前切換至不是目前共享通道的另一通道。例如,SU系統的eNB可以在通道改變之前使用SIB塊、MAC CE或RRC消息通知其關聯的SU WTRU通道切換。
PU(例如,軍事PU)可以偽隨機改變其脈衝週期性(例如,以避免干擾(jamming)),跳頻序列剛好可以以及時方式應用。PU可以經由解密介面使一組時間序列可用,其中SU可以被允許傳送。例如,跳頻同步IE可以用於實現同步。SU可以使用跳頻同步資訊以基於可以在跳頻同步IE中被發送的跳頻序列和定時資訊確定多個共享頻譜通道可用的準確時間。SU可以避免主使用者的方式使用該定時來選擇在給定時間操作所在的通道,以及通道切換定時。聯邦使用者可以引導SU避免特定時槽(例如,包括誘餌時槽)以允許PU傳送。可用共享通道資訊可以包括誘餌資訊。
SU可以使用從資料庫獲取的脈衝資訊元素來設置其計時器用於宏觀週期解決方案。例如,SU可以使用諸如同步相位(Synchronization Phase)、同步時間(Synchronization Time)、轉速IE(Rotation Speed IE)和脈衝工作週期IE(Pulse Duty Cycle IE)的同步資訊來確定哪個或哪些訊框、信標時段和/或時間單位可能受雷達干擾影響。SU可以調整其計時器和/或排程器以適應干擾。SU可以在該時段期間應用其共存解決方案。例如,SU可以相對於SU的地理位置確定PU的脈衝時段的定時,和/或相對於SU的地理位置確定脈衝的定時。
SU可以基於雷達的都卜勒取消能力傳送以用於共存。如果SU查詢SAS(例如,指派的頻譜資料庫),且都卜勒檢測能力IE指示頻帶上的雷達配備有都卜勒取消能力,則SU可以在都卜勒效應可以被檢測到在特定臨界值之上時在特定速度限制下在通道上操作。
在被動解決方案中,SU可以基於PU操作資訊(諸如表1中描述的一種或多種IE)或基於感測結果避免PU干擾。SU可以通過收集關於重傳或叢發差錯統計資料確定PU雷達週期。SU可以檢測雷達PU的模式(pattern)特性,例如,旋轉時段,以幫助確定宏觀特性。基於這些確定,SU可以應用鏈路適應偏置技術。排程器可以避免發送資料或改變頻率以避免干擾。
感測結果可以用於選擇通道和/或獲得附加的資訊以替代、增強資料庫資訊或與資料庫資訊結合使用。例如,感測技術可以與資料庫資訊組合以確定PU雷達的相位資訊。SU可以根據基於感測資訊的演算法選擇共享通道。
例如,與宏觀或旋轉週期相關聯的資訊可以經由感測被確定。軍事雷達可以利用使其很難感測的技術。能量檢測可以用來檢測軍事雷達PU。針對宏觀週期解決方案,這樣的檢測可以足夠確定脈衝相位定時。如果PU以偽隨機方式使用頻率跳頻,SU可以修改其潛在頻率的使用。示例感測技術可以包括在長時段監測操作通道和執行能量檢測。例如,諸如高能量等級(之後是沉靜時段(silent period)(例如低能量等級))的週期性活動模式可以被檢測。週期性活動模式可以用來確定與PU的宏觀或旋轉週期相關聯的資訊。諸如在操作通道內的濾波的附加後處理可以被用來確定所使用的雷達頻寬,因為雷達可能佔用比通信系統小的頻寬。假定的PU信號的頻寬可以是所接收的信號為雷達的指示,因為SAS能夠提供該資訊。所檢測的雷達的特性可以被發送回SAS。SAS可以與鄰近的其他SU共享這樣的資訊。
SU系統可以在PU系統的安靜時段期間使用通道。在微觀週期開始之前,SU可以切換至交替的通道或使用更精細的微觀相位演算法在脈衝之間傳送。如果SU離開通道,其可以在脈衝相位結束時返回原始通道。
相比於軍事雷達,諸如天氣雷達和/或無線電導航的民用雷達源可以是更確定性的。民用雷達的感測可以提供單個脈衝的準確時段和接收時段,以及致能微觀週期解決方案之微觀或脈衝週期定時能力。
為了使解決方案與PU操作同步,SU無線電可以檢測可能受雷達PU影響的訊框和/或一個或多個子訊框號或一個或多個信標時段或其他一個或多個時間單位。SU可以報告訊框和/或子訊框號至SU中的軟體實體,其中SU可以使用週期性確定可能被影響的下一個訊框號或信標時段。預測方法可以應用於微觀週期解決方案。
如第14圖中的示例所示,SU可以基於感測確定合適的通道。例如,SU可以確定其是否位於PU受影響區域,且如果是,則SU可以不在雷達通道上操作。SU可以確定其是否位於SU受影響區域中,如果是,則SU可以執行感測以確定要操作的通道。
如第14圖所示,在1410處,SU可以執行對通道的快速感測。例如,SU可以感測通道一段時間(例如,10毫秒或者8-12毫秒)以估計是否在通道上存在PU干擾(例如,PU是否使用共享通道)。在1420處,可以確定從PU到SU的潛在干擾是否是可容忍的。當確定來自PU的潛在干擾是不可容忍的,在1410處,SU可以執行對下一通道的快速感測。當確定來自PU的潛在干擾是可容忍的,在1430處,SU可以執行對通道的長時間感測。如果活動的等級是可容忍的,SU可以掃描達延長的一段時間以檢測雷達PU的存在。雷達的機械旋轉可以是大約每轉10秒的等級。感測時段可以是每通道10至60秒。例如,SU可以對通道執行感測達長於8秒、長於10秒、長於12秒等等。如果檢測到雷達PU,在1450處,SU可以估計在通道上操作是否會引起對PU的干擾。當確定在通道上操作將引起對PU的干擾,在1410處,SU可以執行對下一通道的快速感測。當確定在通道上操作不會引起對PU的干擾時,在1460處,SU可以估計對SU的PU干擾是否是可容忍的。如果對SU的PU干擾是不可容忍的,在1410處,SU可以執行對下一通道的快速感測。如果對SU的PU干擾是可容忍的,在1470處,SU可以確定是否需要更多頻譜。
如果在1410處,基於長時間感測沒有檢測到雷達PU,在1470處,SU可以確定是否需要更多頻譜。如果需要更多頻譜,在1480處,SU可以開始使用通道並更新可用通道清單。SU可以使用宏觀和/或微觀共存解決方案。如果不需要更多頻譜,在1490處,SU可以更新可用通道清單,並在1410處執行對下一通道的快速感測。
如果檢測到雷達PU,SU可能不會引起干擾,且對SU的PU干擾是可容忍的,SU可以開始使用通道並且可以使用宏觀和/或微觀共存解決方案。例如,如果SU具有充分的感測解決方案來準確預測雷達宏觀週期,SU可以在沉靜相位期間傳送,避免相互干擾。
基地台(例如eNB或Wi-Fi存取點)可以對操作雷達PU執行感測和收集資料。如果SU系統在通道上操作,其可以通知其相關聯的WTRU,而不干擾雷達PU。當WTRU可以嘗試存取通道時基地台可以在特定時間廣播。廣播例如可以使用系統資訊廣播(SIB)和/或信標信號被執行。在初始存取感測之後,基地台可以發送結果或操作參數至其相關聯的WTRU。
在長期演進(LTE)網路中,由於雷達PU,eNB可以廣播針對通道存取的允許的訊框號和/或不允許的訊框號。這樣的資訊可以在SIB消息中被發送。當WTRU處於連接模式時,eNB可以使用MAC CE或RRC配置信號發送詳細的感測資訊或指令引數。如果在操作期間檢測到PU,基地台可以通知其相關聯的WTRU他們各自的通道疏散時間(evacuation time)。
空白訊框(例如,透明訊框)可以用於避免干擾雷達傳輸。例如,eNB可以基於雷達PU的脈衝相位的定時排程一個或多個空白訊框。如果脈衝相位與多於一個單個空白訊框重疊,多個連續空白訊框可以被排程。第15圖示出了使用一個或多個空白訊框避免干擾雷達PU的示例。
如第15圖中的示例所示,eNB可以在雷達PU的脈衝相位期間排程一個空白訊框或多個空白訊框。空白訊框可以完全空白以便在PU和SU之間的相互干擾抑制可以被實現。空白訊框解決方案可以在SU受影響和/或PU受影響區域中使用。空白訊框可以被排程以覆蓋脈衝相位。在eNB和UE處的操作的定時可以在空白訊框期間被凍結。
例如,在訊框(10ms)的開始處或在訊框的結束處,基地台可以偵聽操作通道達少的持續時間(例如,少於一子訊框)。基地台可以確定雷達脈衝是否被觀察到。如果檢測到雷達脈衝,基地台可以不在LTE訊框中使用操作通道。
載波聚合可以被執行。第16圖示出了聚合雷達頻帶上的一個通道與另一個通道的示例LTE。如所示出的,許可主載波可以與使用雷達頻帶的次載波結合使用。在雷達PU的脈衝相位期間,eNB可以不排程次載波上的傳輸。系統可以在雷達信號的脈衝相位期間維持QoS,且SU和PU之間的相互干擾可以被實現。
在被動解決方案中,一個或多個幾乎空白子訊框(ABS)可以基於雷達PU的脈衝相位被排程。例如,SU系統可以在雷達脈衝時段期間傳送ABS子訊框。在一個實施方式中,在SU系統可能不會引起對雷達PU的干擾的情況下,SU系統可以傳送一個或多個ABS子訊框。ABS子訊框可以攜帶參考符號且可以不攜帶資料。可以不存在任何過度的重傳,且雷達脈衝可以落入參考符號之間的資料空間內。eNB可以通知相關聯的WTRU以避免在雷達脈衝時段期間進行參考信號(RS)測量,因為由於高功率雷達脈衝他們可能受干擾影響。信令可以經由RRC消息或MAC消息發送,用於指示ABS子訊框的識別。
SU系統可以被動地保留在相同通道上並修改其操作以與PU系統共存。例如,SU可以確定PU系統的宏觀週期定時。SU系統可以基於脈衝相位的定時偏置鏈路適應。例如,在脈衝相位開始之前、正好在脈衝相位結束之後和/或在PU系統的脈衝相位期間,調變和編碼方案(MCS)可以被偏置以便可以選擇更強健的方案。例如,糾錯編碼可以被執行以恢復可能受單個脈衝影響的符號。當脈衝相位結束時,或者在脈衝相位之後經過預定時段之後,偏置可以被移除以便系統可以轉變回在脈衝相位之前使用的MCS。
第17A圖和第17B圖示出了示例鏈路適應機制。SU系統,諸如基地台,可以基於移動平均數(moving average)確定鏈路適應(例如,MCS)。第17A圖示出了在鏈路適應偏置被利用之前的示例鏈路適應。如第17A圖中所示,如果鏈路適應偏置沒有被利用,由於來自PU脈衝相位1710A的干擾,在1720處鏈路適應可以抑制傳輸率。第17B圖示出了具有鏈路適應偏置的鏈路適應。如所示出的,在1730處,可以執行鏈路適應偏置。鏈路適應偏置可以被施加以便速率壓制(例如,由PU干擾引起的)可以在PU脈衝時段結束時被取消(lift)。例如,如第17B圖所示,在PU雷達脈衝相位1710B之後,速率抑制可以被取消。較不強健的MCS可以在PU雷達脈衝相位之後被選擇,且傳輸速率可以被增加以便SU系統可以繼續其正常操作。脈衝相位的定時可以提前從基地台被發送至WTRU。WTRU可以知道在適當的時間使用何種MCS方案。這可以避免在減小和/或增加速率的過程中的延時,且可以在該相位期間顯著提高即時性能。
通道可以在雷達脈衝叢發之前被切換。eNB可以在通道改變之前使用SIB塊、MAC CE或RRC消息通知WTRU通道切換。
在Wi-Fi系統中,若干方法可以被用於避免在雷達脈衝時段期間傳輸。例如,Wi-Fi存取點(AP)可以用信號發送PU的宏觀週期定時資訊至站(STA)。STA和/或AP可以包括可以排程封包傳輸時間的排程器。排程器可以避免排程將與PU脈衝時段重疊的任何封包。
例如,排程器可以排程封包傳輸以便封包可以在PU的脈衝時段開始之前被傳送。例如,如果緩衝封包花費例如X微秒來傳送,STA可以避免在例如等於P-X微秒的時間存取通道,其中例如P可以是脈衝時段的開始時間。AP可以經由資料庫或感測或一些混合技術來獲取PU的宏觀週期定時資訊。AP可以使用信標或單獨發送的管理訊框用信號發送脈衝相位定時至STA。
第18圖示出了諸如自我清除發送(CTS)機制的示例管理訊框機制。自我CTS機制可以被用於阻止STA在PU脈衝時段期間傳送。AP可以使用自我CTS消息實行沉靜時段。如所示出的,Wi-Fi系統可以在1810處執行正常操作。在1820處,AP可以在PU脈衝時段1830之前(例如,立即)發送自我CTS消息。自我CTS消息可以不針對任何一者被定址。自我CTS消息可以具有AP本身的位址。自我CTS消息可以與延長回退持續時間相關聯,由此其他STA可以不傳送。自我CTS消息可以指示沉靜時段。沉靜時段可以包括PU的雷達脈衝時段。如所示出的,沉靜時段可以在PU的雷達脈衝時段之前開始,並且可以持續直到脈衝時段之後。在1840處,Wi-Fi系統可以恢復正常操作。
Wi-Fi系統可以在雷達微觀週期期間在雷達通道上操作。例如,排程器可以基於PU的微觀週期的定時在PU系統的單個脈衝之間排程傳輸。AP和/或STA可以減小封包大小以便封包可以在PU系統的單個脈衝之間被發送。例如,脈衝相位的脈衝間時段的定時和持續時間可以被確定,且將被傳送的封包的封包大小可以基於脈衝間時段的定時和持續時間被確定,以便封包的傳輸能夠在下一脈衝之前完成。
AP可以發送自我CTS消息以指示覆蓋單個雷達脈衝的持續時間的沉靜時段。沉靜時段包括補償雷達傳播時間的額外回退時段。
額外的流通量和QoS可以通過使用脈衝相位期間的單個雷達脈衝之間的時段來獲得。SU裝置可以經由感測或經由封包丟失統計資料從頻譜資料庫或其組合收集關於雷達脈衝的統計資料來以雷達的微觀週期行為確定模式。
基於PU的微觀模式,SU可以在脈衝之間傳送。例如,SU可以在期望產生脈衝時避免排程任意封包。如果在基地台處執行感測,基地台可以在微觀週期期間在傳送之前發送消息至其相關聯的WTRU。
第19圖示出了示例雷達回退週期機制。SU可以在單個脈衝之間在通道上操作。如果在PU受影響區域中操作,SU可以等待回退時段T回退以允許雷達脈衝跨越其操作範圍傳播。例如,如果PU雷達具有150 km的範圍,回退時段可以大約是1ms。
如第19圖中所示,PU系統可以在脈衝相位期間在1910A、1910B和1910C處具有脈衝。在1920處,SU裝置可以進入通道並對一個或多個雷達週期執行感測。SU裝置可以檢測脈衝1910B,且可以設置回退計時器。在1930處,回退計時器可以在回退時段T回退之後期滿,且SU裝置可以在1940期間在通道上傳送。SU裝置可以檢測脈衝1910C,且可以停止在通道上傳輸。SU裝置可以設置回退計時器。當回退計時器在1950處期滿時,SU裝置可以在1960處使用通道。
SU裝置可以與多個PU雷達系統一起在通道上操作。第20圖示出了SU使用回退時段機制在通道上與多個雷達共存的情況。如所示出的,第一PU雷達可以在2010A、2010B和2010C脈衝,且第二PU雷達可以在2020A、2020B和2020C脈衝。在2030處,SU裝置可以進入通道並對一個或多個全雷達週期執行感測。SU裝置可以檢測脈衝2020A和2020B。對於每個雷達系統,SU可以在這些脈衝期間保持追蹤雷達脈衝以避免傳送。例如,SU可以確定每個PU雷達的回退時段,諸如第一PU雷達的T1回退和第二PU雷達的T2回退。在2040處,SU裝置可以在通道上傳送。SU裝置可以在檢測脈衝2010C時設置回退計時器。在2050處,SU系統可以等待多個PU雷達的較長/最長雷達週期。回退計時器可以被設置為在T1回退和T2回退的較長回退時段之後期滿。SU裝置可以在回退計時器期滿時使用通道。
LTE系統可以通過適應單個雷達脈衝與雷達PU共存。粗略宏觀週期同步可以針對LTE微觀週期解決方案被假定,由此粗略同步可以允許一些漂移。
例如,操作在雷達頻帶上的小胞元LTE系統可以主動地避免在子訊框期間傳送,該子訊框可以與雷達脈衝加上他們的回退時間一致。第21圖示出了LTE系統以增加的子訊框定時限制傳送的示例。如第21圖所示,LTE系統可以在2120處,稍稍在期望的PU脈衝2110A之前,停止在雷達通道上傳送以允許漂移。LTE系統可以在2140再次使用通道之前等待回退時段2130。如所示出的,LTE系統可以由其子訊框定時來限制,且可以在可以完全與可用傳送疊加的子訊框期間傳送。例如,LTE系統可以跳過子訊框2170,例如,LTE系統可以不在子訊框2170期間在雷達通道上傳送。在回退時段結束之後,LTE系統可以在子訊框2180中傳送直到稍稍在下一個期望PU脈衝2110B之前。LTE系統可以在2160再次使用通道之前等待回退時段2150。例如,LTE系統可以跳過子訊框2190,且在回退時段結束之後,LTE系統可以在子訊框2195中傳送。LTE系統可以跳過單個子訊框而不會中斷HARQ過程、漏掉SI元素等。
eNB排程器可以避免在可以被確定為可能包含雷達脈衝的子訊框上排程任何傳輸(包括UL和DL)。第22圖示出了eNB可以如何避免在已知雷達脈衝子訊框上排程傳輸的示例。
eNB可以在可以存在雷達脈衝時排程ABS和/或MBSFN子訊框。這可以防止任何重傳和相關聯的流通量損耗。解決方案可以在存在非對稱UL/DL配置時有用,因為封包的ACK可以出現,這樣雷達脈衝可能引起將被重傳的資料的多個子訊框價值損耗。
獨立的小胞元的LTE新載波類型(NCT)可以被用來允許空白子訊框被排程。如果回退時間達到過去的原始空白子訊框,eNB可以在期望的雷達脈衝或兩個空白子訊框期間排程一個空白子訊框。NCT可以在子訊框0和5期間要求控制信令。如果訊框定時可以被修改為在非雷達脈衝子訊框期間包括0和5,這可以提高這樣的系統的性能。如果雷達脈衝時段不是10ms的倍數,脈衝可以落於子訊框0或5上,且eNB可以向相關聯的UE通知一個或多個特殊子訊框可以與修改後的定時一起發生。對於一個或多個特殊子訊框,控制信號可以被移動至不同的子訊框(諸如子訊框2和7)。eNB可以在傳送該一個或多個特定子訊框之後返回其正常定時。
如果LTE系統與其干擾雷達PU的操作無關,其可以在處理干擾的過程中是靈活的。主動解決方案可以被用來提高性能。
ABS子訊框可以被排程為與一個或多個PU脈衝一致。資料可以不在ABS子訊框中被傳送。通過在ABS子訊框期間不傳送資料,由於重傳引起的流通量損耗可以被避免。ABS子訊框可以繼續傳送參考符號,該參考符號可以被雷達信號干擾。MBSFN子訊框可以在雷達脈衝可以出現的任何時間被排程。MBSFN子訊框可以與例如版本8 LTE裝置相容。MBSFN和ABS可以在MBSFN ABS子訊框中組合,且可以提供理想子訊框以在雷達子訊框期間使用(當最少符號被干擾時)。
單獨小胞元的LTE新載波類型(NCT)可以包含ePDCCH控制通道和使一些子訊框保留為空的能力。第23圖示出了可能被雷達脈衝干擾的ePDCCH資源塊(RB)的示例。如所示出的,PU雷達系統的脈衝2310A和2310B可以阻止LTE信令的特定資源塊(RB)。例如,雷達脈衝2310A可以阻止可以被分配至PDCCH的一個或多個RB。增強型PDCCH控制通道,例如ePDCCH控制通道可以在頻率和/或時間上擴展(spread)。如第23圖所示,分散式ePDCCH可以在RB 2320中被分配。分散式ePDCCH可以提供頻率擴展和/或時間擴展以避免雷達脈衝。該解決方案可以與鏈路適應組合。
資料的映射可以針對OFDM符號可能被影響的子訊框被動態修改。由於雷達脈衝的持續時間可能是短的(例如,兩微秒),一至兩個OFDM符號可能被影響。當雷達脈衝被期望時,eNB可以臨時改變資料元素的映射以避免干擾高功率雷達脈衝。
在ePDCCH內可以有控制元素,例如以指示下一雷達脈衝的位置。當ePDCCH在時間上擴展時,相比於常規PDCCH可能存在WTRU由於另一雷達脈衝而漏掉該指示的可能性,其中雷達脈衝可能使整個PDCCH惡化。MAC CE信號可以被用來在脈衝時段之前指示將來的雷達定時。RRC消息可以用來在脈衝時段之前指示將來的雷達定時。
Wi-Fi系統可以在PU系統的微觀週期下操作。能避免衝突的載波偵聽多重存取(CSMA-CA)系統可以允許在雷達脈衝之間的間隔內操作。如在此的宏觀週期解決方案中描述的,AP可以經由信標或單個管理訊框通知站台(STA)宏觀定時。
在脈衝週期之前,可以經由例如Wi-Fi裝置(諸如STA/WTRU)中的媒體存取控制(MAC)層發送指示以針對該時段的持續時間用信號發送修改的MAC行為。當封包大小可以長於脈衝持續時間時,MAC層可以就避免與下一雷達脈衝衝突而排程減小大小的封包。在脈衝相位期間的封包的最大大小可以基於PU雷達脈衝資訊被確定。例如,封包大小可以在從SAS(例如,頻譜資料庫)接收到資訊時被計算。最大封包大小可以經由例如發送至每個STA的信標或單個消息被傳達。MAC層可以將訊框分段為較小訊框以符合減小的傳送機會。
在脈衝時段期間,Wi-Fi系統可以使用修改的媒體存取方案,由此STA或AP可以在嘗試存取媒體之前偵聽雷達。在PU受影響區域中,Wi-Fi系統可以等待對應於在存取通道之前通過空中(air)的雷達的傳播時間的回退時間。例如,希望存取通道以發送ACK的STA可以偵聽雷達脈衝。當檢測到脈衝時,STA可以等待回退時間Tb。STA可以等待時間SIFS(例如,根據802.11標準的短訊框間間隔)。如果媒體空閒,STA可以發送ACK。如果在下一雷達脈衝之前仍然存在充足的時間,另一STA或AP可以嘗試存取通道並發送另一消息。封包大小可以夠小以不與下一雷達脈衝重疊。
AP可以在檢測到雷達脈衝之後立即發送優先順序管理訊框,其可以指示修改的操作。這樣的操作例如可以在偽隨機軍用雷達的操作中使用,且其中可能需要被動解決方案。
自我CTS機制可以由AP用來協調STA。在協調STA之前AP可以確定在脈衝之間的間隔是否是大的。自我CTS消息可以指示覆蓋單個雷達脈衝的持續時間的沉靜時段,且可以包括補償雷達傳播時間的額外回退時段。STA可以知道脈衝相位以便他們可以使用減小的封包大小。
雖然上面以特定的組合描述了特徵和元件,但是本領域普通技術人員可以理解,每個特徵或元件可以單獨的使用或與其他的特徵和元件中的任意進行組合使用。此外,這裡描述的方法可以在被引入到電腦可讀媒體中並供電腦或處理器運行的電腦程式、軟體或韌體中實施。電腦可讀媒體的示例包括電子信號(通過有線或無線連接傳送)和電腦可讀儲存媒體。電腦可讀儲存媒體的示例包括,但不限於,唯讀記憶體(ROM)、隨機存取記憶體(RAM)、寄存器、緩衝記憶體、半導體記憶體裝置、磁性媒體(例如內部硬碟和抽取式磁碟),磁光媒體和例如CD-ROM碟片和數位通用碟片(DVD)的光媒體。與軟體關聯的處理器可以用於實施在WTRU、UE、終端、基地台、RNC或任何主機電腦中使用的射頻收發器。
A detailed description of the illustrative embodiments will now be described with reference to the various drawings. While the description provides a detailed example of possible embodiments, it should be noted that the details are not to be construed as limiting the scope of the application.
FIG. 1A is a diagram of an exemplary communication system 100 in which one or more of the disclosed embodiments may be implemented. Communication system 100 can be a multiple access system that provides content for multiple wireless users, such as voice, data, video, messaging, broadcast, and the like. The communication system 100 allows multiple wireless users to access such content by sharing system resources including wireless bandwidth. For example, communication system 100 can employ one or more channel access methods, such as code division multiple access (CDMA), time division multiple access (TDMA), frequency division multiple access (FDMA), orthogonal FDMA (OFDMA). ), single carrier FDMA (SC-FDMA) and the like.
As shown in FIG. 1A, communication system 100 can include wireless transmit/receive units (WTRUs) 102a, 102b, 102c, and/or 102d (generally or collectively referred to as WTRU 102), a radio access network (RAN) 103/104/105, core network 106/107/109, public switched telephone network (PSTN) 108, internet 110 and other networks 112, but it should be understood that the disclosed embodiments contemplate any number of WTRU, base station, network, and/or network element. Each of the WTRUs 102a, 102b, 102c, 102d may be any type of device configured to operate and/or communicate in a wireless environment. For example, the WTRUs 102a, 102b, 102c, 102d may be configured to transmit and/or receive wireless signals, and may include user equipment (UE), mobile stations, fixed or mobile subscriber units, pagers, mobile phones, personal digital assistants (PDA), smart phones, laptops, netbooks, personal computers, wireless sensors, consumer electronics, and more.
Communication system 100 can also include a base station 114a and a base station 114b. Each of the base stations 114a, 114b may be any type of device configured to facilitate access to one or more communication networks by wirelessly interfacing with at least one of the WTRUs 102a, 102b, 102c, 102d, such as a core Network 106/107/109, Internet 110, and/or network 112. By way of example, base stations 114a, 114b may be base station transceiver stations (BTS), node B, eNodeB, home node B, home eNodeB, website controller, access point (AP), wireless router, and the like. While each base station 114a, 114b is depicted as a single component, it should be understood that the base stations 114a, 114b can include any number of interconnected base stations and/or network elements.
The base station 114a may be part of the RAN 103/104/105, which may also include other base stations and/or network elements (not shown), such as a base station controller (BSC), radio network Controller (RNC), relay node, and so on. Base station 114a and/or base station 114b may be configured to transmit and/or receive wireless signals within a particular geographic area known as a cell (not shown). The cell can be further divided into cell sectors. For example, a cell associated with base station 114a can be divided into three sectors. Thus, in one embodiment, base station 114a may include three transceivers, that is, each transceiver corresponds to one sector of a cell. In another embodiment, base station 114a may employ multiple input multiple output (MIMO) technology whereby multiple transceivers may be used for each sector of a cell.
The base stations 114a, 114b may communicate with one or more of the WTRUs 102a, 102b, 102c, 102d via the null planes 115/116/117, which may be any suitable wireless communication link (e.g., Radio frequency (RF), microwave, infrared (IR), ultraviolet (UV), visible light, etc.). The null intermediaries 115/116/117 can be established using any suitable radio access technology (RAT).
More specifically, as noted above, communication system 100 can be a multiple access system and can employ one or more channel access schemes such as CDMA, TDMA, FDMA, OFDMA, SC-FDMA, and the like. For example, base station 114a and WTRUs 102a, 102b, 102c in RAN 103/104/105 may implement a radio technology such as Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access (UTRA), and the technology may be used Broadband CDMA (WCDMA) is used to establish the null plane 115/116/117. WCDMA may include communication protocols such as High Speed Packet Access (HSPA) and/or Evolved HSPA (HSPA+). HSPA may include High Speed Downlink Packet Access (HSDPA) and/or High Speed Uplink Packet Access (HSUPA).
In another embodiment, the base station 114a and the WTRUs 102a, 102b, 102c may implement a radio technology such as Evolved UMTS Terrestrial Radio Access (E-UTRA), which may use Long Term Evolution (LTE) and/or Advanced LTE (LTE-A) to establish an empty intermediate plane 115/116/117.
In other embodiments, base station 114a and WTRUs 102a, 102b, 102c may implement radio technologies such as IEEE 802.16 (Worldwide Interoperability for Microwave Access (WiMAX)), CDMA2000, CDMA2000 1X, CDMA2000 EV-DO, interim standards 2000 (IS-2000), Provisional Standard 95 (IS-95), Provisional Standard 856 (IS-856), Global System for Mobile Communications (GSM), GSM Enhanced Data Rate Evolution (EDGE), GSM EDGE (GERAN), etc.
The base station 114b in FIG. 1A may be, for example, a wireless router, a home node B, a home eNodeB, or an access point, and may use any suitable RAT to facilitate wireless connections in local areas, such as business premises, residential, transportation Tools, campus, etc. In one embodiment, base station 114b and WTRUs 102c, 102d may establish a wireless local area network (WLAN) by implementing a radio technology such as IEEE 802.11. In another embodiment, base station 114b and WTRUs 102c, 102d may establish a wireless personal area network (WPAN) by implementing a radio technology such as IEEE 802.15. In still another embodiment, base station 114b and WTRUs 102c, 102d may establish picocells or femtocells by using a cellular based RAT (eg, WCDMA, CDMA2000, GSM, LTE, LTE-A, etc.). As shown in FIG. 1A, the base station 114b can be directly connected to the Internet 110. Thus, the base station 114b does not need to access the Internet 110 via the core network 106/107/109.
The RAN 103/104/105 may be in communication with a core network 106/107/109, which may be configured to provide voice, data, to one or more of the WTRUs 102a, 102b, 102c, 102d, Any type of network that applies and/or over the Internet Protocol Voice over IP (VoIP) service. For example, the core network 106/107/109 can provide call control, billing services, mobile location based services, prepaid calling, internet connectivity, video distribution, etc., and/or perform advanced security such as user authentication. Features. Although not shown in FIG. 1A, it should be appreciated that the RAN 103/104/105 and/or the core network 106/107/109 may directly or indirectly use the same RAT or different from those of the RAN 103/104/105. The RAN of the RAT communicates. For example, in addition to being connected to the RAN 103/104/105, which may use the E-UTRA radio technology, the core network 106/107/109 may also be in communication with another RAN (not shown) that uses the GSM radio technology.
The core network 106/107/109 may also serve as a gateway for the WTRUs 102a, 102b, 102c, 102d to access the PSTN 108, the Internet 110, and/or other networks 112. The PSTN 108 may include a circuit switched telephone network that provides Plain Old Telephone Service (POTS). The Internet 110 may include a global interconnected computer network device system using a public communication protocol, such as TCP, users in the Transmission Control Protocol (TCP)/Internet Protocol (IP) Internet Protocol suite. Packet Protocol (UDP) and IP. Network 112 may include wired or wireless communication networks that are owned and/or operated by other service providers. For example, network 112 may include another core network connected to one or more RANs that may use the same RAT or a different RAT as RAN 103/104/105.
Some or all of the WTRUs 102a, 102b, 102c, 102d in the communication system 100 may include multi-mode capabilities, i.e., the WTRUs 102a, 102b, 102c, 102d may include multiple transceivers that communicate with different wireless networks over different wireless links. For example, the WTRU 102c shown in FIG. 1A can be configured to communicate with a base station 114a that can use a cellular-based radio technology, and with a base station 114b that can use an IEEE 802 radio technology.
FIG. 1B is a system diagram of an example WTRU 102. As shown in FIG. 1B, the WTRU 102 may include a processor 118, a transceiver 120, a transmit/receive element 122, a speaker/microphone 124, a numeric keypad 126, a display/touchpad 128, a non-removable memory 130, and a removable In addition to memory 132, power source 134, global positioning system (GPS) chipset 136, and other peripheral devices 138. It should be appreciated that the WTRU 102 may also include any sub-combination of the aforementioned elements while remaining consistent with the embodiments. Moreover, embodiments contemplate that nodes that may be represented by base stations 114a and 114b, and/or base stations 114a and 114b may include some or all of the elements depicted in FIG. 1B and described herein, such as but not limited to Station (BTS), Node B, Website Controller, Access Point (AP), Home Node B, Evolved Home Node B (eNode B), Home Evolved Node B (HeNB), Home Evolved Node B Gateway , and proxy nodes, and so on.
The processor 118 can be a general purpose processor, a special purpose processor, a conventional processor, a digital signal processor (DSP), a plurality of microprocessors, one or more microprocessors associated with the DSP core, a controller, a microcontroller , dedicated integrated circuit (ASIC), field programmable gate array (FPGA) circuit, any other type of integrated circuit (IC), state machine, and so on. Processor 118 may perform signal coding, data processing, power control, input/output processing, and/or any other functionality that enables WTRU 102 to operate in a wireless environment. The processor 118 can be coupled to a transceiver 120 that can be coupled to the transmit/receive element 122. Although FIG. 1B depicts processor 118 and transceiver 120 as separate components, it should be understood that processor 118 and transceiver 120 can be integrated into an electronic package or wafer.
The transmit/receive element 122 can be configured to transmit signals to or receive signals from a base station (e.g., base station 114a) via the null planes 115/116/117. For example, in another embodiment, the transmit/receive element 122 can be an antenna configured to transmit and/or receive RF signals. In another embodiment, as an example, the transmit/receive element 122 can be a transmitter/detector configured to transmit and/or receive IR, UV, or visible light signals. In still another embodiment, the transmit/receive element 122 can be configured to transmit and receive RF and optical signals. It should be appreciated that the transmit/receive element 122 can be configured to transmit and/or receive any combination of wireless signals.
Moreover, although the transmit/receive element 122 is depicted as a single element in FIG. 1B, the WTRU 102 may include any number of transmit/receive elements 122. More specifically, the WTRU 102 may use MIMO technology. Thus, in one embodiment, the WTRU 102 may include two or more transmit/receive elements 122 (e.g., multiple antennas) that transmit and receive wireless signals via the null intermediaries 115/116/117.
The transceiver 120 can be configured to modulate the signal to be transmitted by the transmit/receive element 122 and to demodulate the signal received by the transmit/receive element 122. As noted above, the WTRU 102 may have multi-mode capabilities. Accordingly, transceiver 120 may include multiple transceivers that allow WTRU 102 to communicate via a variety of RATs, such as UTRA and IEEE 802.11.
The processor 118 of the WTRU 102 may be coupled to a speaker/microphone 124, a numeric keypad 126, and/or a display/touchpad 128 (eg, a liquid crystal display (LCD) display unit or an organic light emitting diode (OLED) display unit), and may Receive user input from these components. The processor 118 can also output user profiles to the speaker/microphone 124, the numeric keypad 126, and/or the display/trackpad 128. In addition, processor 118 can access information from any type of suitable memory, such as non-removable memory 130 and/or removable memory 132, and store the data in these memories. The non-removable memory 130 can include random access memory (RAM), read only memory (ROM), hard disk, or any other type of memory storage device. The removable memory 132 can include a Subscriber Identity Module (SIM) card, a memory stick, a secure digital (SD) memory card, and the like. In other embodiments, the processor 118 may access information from, and store data in, memory that is not physically located on the WTRU 102, where, for example, the memory may be located in a server or home. On the computer (not shown).
The processor 118 can receive power from the power source 134 and can be configured to generate and/or control power for other components in the WTRU 102. Power source 134 can be any suitable device that powers WTRU 102. For example, the power source 134 may include one or more dry cells (such as nickel-cadmium (Ni-Cd), nickel-zinc (Ni-Zn), nickel-hydrogen (NiMH), lithium-ion (Li-ion), etc.), solar cells. , fuel cells, etc.
The processor 118 can also be coupled to a GPS chipset 136 that can be configured to provide location information (e.g., longitude and latitude) related to the current location of the WTRU 102. The WTRU 102 may receive location information from base stations (e.g., base stations 114a, 114b) plus or in place of GPS chipset 136 information via null intermediaries 115/116/117, and/or from two or more nearby base stations The received signal is timed to determine its position. It should be appreciated that the WTRU 102 may obtain location information by any suitable positioning method while remaining consistent with the implementation.
The processor 118 may also be coupled to other peripheral devices 138, which may include one or more software and/or hardware modules that provide additional features, functionality, and/or wired or wireless connections. For example, peripherals 138 may include accelerometers, electronic compasses, satellite transceivers, digital cameras (for photos and video), universal serial bus (USB) ports, vibrating devices, television transceivers, hands-free headsets, Bluetooth R Modules, FM radio units, digital music players, media players, video game console modules, Internet browsers, and more.
1C is a system diagram of RAN 103 and core network 106, in accordance with an embodiment. As described above, the RAN 103 can communicate with the WTRUs 102a, 102b, 102c via the null plane 115 using UTRA radio technology. The RAN 103 can also communicate with the core network 106. As shown in FIG. 1C, RAN 103 may include Node Bs 140a, 140b, 140c, and Node Bs 140a, 140b, 140c may each include one or more transceivers in communication with WTRUs 102a, 102b, 102c via null intermediaries 115. Each of the Node Bs 140a, 140b, 140c can be associated with a particular cell (not shown) in the RAN 103. The RAN 103 may also include RNCs 142a, 142b. It should be understood that the RAN 103 may include any number of Node Bs and RNCs while remaining consistent with the implementation.
As shown in FIG. 1C, Node Bs 140a, 140b can communicate with RNC 142a. Additionally, Node B 140c can communicate with RNC 142b. Node Bs 140a, 140b, 140c may communicate with respective RNCs 142a, 142b via an Iub interface. The RNCs 142a, 142b can communicate with each other via the Iur interface. Each RNC 142a, 142b can be configured to control a respective Node B 140a, 140b, 140c to which it is connected. In addition, each RNC 142a, 142b can be configured to perform or support other functions, such as outer loop power control, load control, admission control, packet scheduling, handover control, macro diversity, security functions, data encryption, and the like.
The core network 106 shown in FIG. 1C may include a media gateway (MGW) 144, a mobile switching center (MSC) 146, a Serving GPRS Support Node (SGSN) 148, and/or a Gateway GPRS Support Node (GGSN) 150. While each of the foregoing elements is described as being part of the core network 106, it should be understood that other entities other than the core network operator may also own and/or operate any of these components.
The RNC 142a in the RAN 103 can be connected to the MSC 146 in the core network 106 via an IuCS interface. The MSC 146 can be connected to the MGW 144. MSC 146 and MGW 144 may provide WTRUs 102a, 102b, 102c with access to circuit switched networks such as PSTN 108 to facilitate communication between WTRUs 102a, 102b, 102c and conventional landline communication devices.
The RNC 142a in the RAN 103 can also be connected to the SGSN 148 in the core network 106 via an IuPS interface. The SGSN 148 can be connected to the GGSN 150. The SGSN 148 and GGSN 150 may provide the WTRUs 102a, 102b, 102c with access to a packet switched network, such as the Internet 110, to facilitate communication between the WTRUs 102a, 102b, 102c and IP enabled devices.
As noted above, the core network 106 can also be connected to the network 112, which can include other wired or wireless networks owned and/or operated by other service providers.
1D is a system diagram of RAN 104 and core network 107, in accordance with one embodiment. As described above, the RAN 104 can communicate with the WTRUs 102a, 102b, 102c via the null plane 116 using E-UTRA radio technology. The RAN 104 can also communicate with the core network 107.
The RAN 104 may include eNodeBs 160a, 160b, 160c, but it should be appreciated that the RAN 104 may include any number of eNodeBs while remaining consistent with the implementation. Each eNodeB 160a, 160b, 160c may include one or more transceivers to communicate with the WTRUs 102a, 102b, 102c via the null plane 116. In one embodiment, the eNodeBs 160a, 160b, 160c may implement MIMO technology. Thus, for example, eNodeB 160a may use multiple antennas to transmit wireless signals to, and receive wireless signals from, WTRU 102a.
Each eNodeB 160a, 160b, 160c may be associated with a particular cell (not shown) and may be configured to handle radio resource management decisions, handover decisions, user scheduling in the uplink and/or downlink and many more. As shown in FIG. 1D, the eNodeBs 160a, 160b, 160c can communicate with each other via the X2 interface.
The core network 107 shown in FIG. 1D may include a mobility management gateway (MME) 162 [j1], a service gateway 164, and a packet data network (PDN) gateway 166. While each of the above components is described as being part of the core network 107, it should be understood that other entities other than the core network operator may also own and/or operate any of these components.
The MME 162 may be connected to each of the eNodeBs 160a, 160b, 160c in the RAN 104 via an S1 interface and may act as a control node. For example, the MME 162 may be responsible for authenticating the users of the WTRUs 102a, 102b, 102c, bearer activation/deactivation, selecting a particular service gateway during initial attachment of the WTRUs 102a, 102b, 102c, and the like. The MME 162 may also provide control plane functionality to perform handover between the RAN 104 and other RANs (not shown) that employ other radio technologies such as GSM or WCDMA.
Service gateway 164 may be coupled to each of eNodeBs 160a, 160b, 160c in RAN 104 via an S1 interface. The service gateway 164 can typically route and forward user data packets to/from the WTRUs 102a, 102b, 102c. The service gateway 164 may also perform other functions, such as anchoring the user plane during handover between eNodeBs, triggering paging when the downlink information is available to the WTRUs 102a, 102b, 102c, managing and storing the WTRUs 102a, 102b , the context of 102c, and so on.
The service gateway 164 can also be coupled to the PDN gateway 166 to provide the WTRUs 102a, 102b, 102c with access to a packet switched network, such as the Internet 110, to facilitate the WTRUs 102a, 102b, 102c and IP. Can communicate between devices.
The core network 107 can facilitate communication with other networks. For example, core network 107 may provide WTRUs 102a, 102b, 102c with access to circuit switched networks such as PSTN 108 to facilitate communication between WTRUs 102a, 102b, 102c and conventional landline communication devices. As an example, core network 107 may include or be in communication with an IP gateway, such as an IP Multimedia Subsystem (IMS) server, where the IP gateway acts as an interface between core network 107 and PSTN 108. In addition, core network 107 can provide WTRUs 102a, 102b, 102c with access to network 112, which can include other wired or wireless networks owned and/or operated by other service providers.
FIG. 1E is a system diagram of RAN 105 and core network 109, in accordance with an embodiment. The RAN 105 may be an Access Service Network (ASN) that communicates with the WTRUs 102a, 102b, 102c over the null plane 117 using an IEEE 802.16 radio technology. As discussed further below, the communication links between the different functional entities of the WTRUs 102a, 102b, 102c, RAN 105, and core network 109 may be defined as reference points.
As shown in FIG. 1E, the RAN 105 may include base stations 180a, 180b, 180c and ASN gateway 182, but it should be understood that the RAN 105 may include any number of base stations and ASN gateways while remaining consistent with the implementation. . Each of the base stations 180a, 180b, 180c may be associated with a particular cell (not shown) in the RAN 105, and each base station may include one or more transceivers to communicate with the WTRUs 102a, 102b via the null plane 117, 102c communicates. In one embodiment, base stations 180a, 180b, 180c may implement MIMO technology. Thus, for example, base station 180a can use multiple antennas to transmit wireless signals to, and receive wireless signals from, WTRU 102a. Base stations 180a, 180b, 180c may also provide mobility management functions such as handover triggering, tunnel establishment, radio resource management, traffic classification, quality of service (QoS) policy enforcement, and the like. The ASN gateway 182 can act as a traffic aggregation point and can be responsible for paging, subscriber profile caching, routing to the core network 109, and the like.
The null interfacing plane 117 between the WTRUs 102a, 102b, 102c and the RAN 105 may be defined as an Rl reference point that implements the IEEE 802.16 specification. In addition, each of the WTRUs 102a, 102b, 102c can establish a logical interface (not shown) with the core network 109. The logical interface between the WTRUs 102a, 102b, 102c and the core network 109 can be defined as an R2 reference point that can be used for authentication, authorization, IP host configuration management, and/or mobility management.
The communication link between each of the base stations 180a, 180b, 180c can be defined as an R8 reference point that contains protocols for facilitating WTRU handover and data transfer between base stations. The communication link between the base stations 180a, 180b, 180c and the ASN gateway 182 can be defined as an R6 reference point. The R6 reference point can include mobility management for facilitating mobility events based on each of the WTRUs 102a, 102b, 102c.
As shown in FIG. 1E, the RAN 105 can be connected to the core network 109. The communication link between the RAN 105 and the core network 109 can be defined as an R3 reference point, which, by way of example, includes protocols for facilitating data transfer and mobility management capabilities. The core network 109 may include a Mobile IP Home Agent (MIP-HA) 184, an Authentication, Authorization, Accounting (AAA) server 186, and a gateway 188. While each of the foregoing elements is described as being part of the core network 109, it should be understood that entities other than the core network operator may also own and/or operate any of these components.
The MIP-HA may be responsible for IP address management and may allow the WTRUs 102a, 102b, 102c to roam between different ASNs and/or different core networks. The MIP-HA 184 may provide the WTRUs 102a, 102b, 102c with access to a packet switched network, such as the Internet 110, to facilitate communication between the WTRUs 102a, 102b, 102c and IP enabled devices. The AAA server 186 can be responsible for user authentication and support for user services. Gateway 188 can facilitate interaction with other networks. For example, gateway 188 may provide WTRUs 102a, 102b, 102c with access to a circuit-switched network, such as PSTN 108, to facilitate communication between WTRUs 102a, 102b, 102c and conventional landline communication devices. In addition, gateway 188 can provide WTRUs 102a, 102b, 102c with access to network 112, which may include other wired or wireless networks owned and/or operated by other service providers.
Although not shown in Figure 1E, it should be understood that the RAN 105 can be connected to other ASNs and the core network 109 can be connected to other core networks. The communication link between the RAN 105 and the other ASNs may be defined as an R4 reference point, which may include a protocol for coordinating the movement of the WTRUs 102a, 102b, 102c between the RAN 105 and other ASNs. The communication link between the core network 109 and other core networks may be defined as an R5 reference point, which may include an agreement for facilitating interworking between the home core network and the visited core network.
FIG. 1F is a system diagram of an embodiment of communication system 100. A WLAN in an Infrastructure Basic Service Set (IBSS) mode may have an Access Point (AP) 180 of a Basic Service Set (BSS) and one or more Stations (STA) 190 associated with the AP shown in Figure 1F. . The AP 180 may have access or interface to a distributed system (DS) or another type of wired/wireless network that can carry traffic into and out of the BSS. The traffic to the STA can originate from outside the BSS, can be reached through the AP and can be delivered to the STA. Traffic originating from the STA to the destination outside the BSS may be transmitted to the AP to be delivered to the respective destinations. The traffic between STAs in the BSS can be sent through the AP, where the source STA can send traffic to the AP, and the AP can deliver traffic to the destination STA. The traffic between STAs in the BSS can be end-to-end traffic. Such end-to-end traffic can be sent directly between the source STA and the destination STA, for example, using Direct Link Setup (DLS) utilizing IEEE 802.11e DLS or IEEE 802.11z Tunneled DLS (TDLS). A WLAN using an Independent BSS (IBSS) mode may have no APs, and STAs 190 may communicate directly with each other. The communication mode can be an ad-hoc mode.
Using the IEEE 802.11 infrastructure operating mode, the AP 180 can transmit beacons on a fixed channel, typically the primary channel. The channel can be 20 MHz wide and can be the operating channel of the BSS. The channel can also be used by the STA to establish a connection with the AP 180. Channel access in an IEEE 802.11 system may be carrier sense multiple access (CSMA/CA) to avoid collisions. In this mode of operation, STA 190, including AP 180, can sense the primary channel. If the channel is detected as busy, the STA 190 may back off. A STA 190 can transmit at any given time in a given BSS.
In IEEE 802.11n, high throughput (HT) STAs can use 40 MHz wide channels for communication. This can be achieved, for example, by combining a primary 20 MHz channel with an adjacent 20 MHz channel to form a 40 MHz wide contiguous channel.
In IEEE 802.11ac, very high throughput (VHT) STAs can support, for example, 20 MHz, 40 MHz, 80 MHz, and/or 160 MHz wide channels. 40 MHz and 80 MHz channels can be formed, for example, by combining adjacent 20 MHz channels. 160 MHz can be formed, for example, by combining eight adjacent 20 MHz channels or by combining two non-adjacent 80 MHz channels (eg, referred to as 80+80 configurations). For the 80+80 configuration, the data after channel encoding can be parsed by segmentation, which can be split into two streams. Inverse Fast Fourier Transform (IFFT) and time domain processing can be performed separately on each stream. Streams can be mapped to two channels and data can be transferred. At the receiver, the mechanism can be reversed and the combined data can be sent to the MAC.
IEEE 802.11af and IEEE 802.11ah can support 1 GHz mode of operation. For these specifications, the channel operation bandwidth can be reduced relative to those used in IEEE 802.11n and IEEE 802.11ac. IEEE 802.11af can support 5 MHz, 10 MHz, and/or 20 MHz bandwidth in the TV White Space (TVWS) spectrum, while IEEE 802.11ah can support 1 MHz, 2 MHz, 4 MHz, 8 MHz, and/or 16 MHz frequencies. Wide (for example, using a non-TVWS spectrum). IEEE 802.11ah can support Meter Type Control (MTC) devices in the macro coverage area. MTC devices may have the ability to include, for example, support for limited bandwidth and for very long battery life.
In a WLAN system that can support multiple channels and channel bandwidths, for example, IEEE 802.11n, IEEE 802.11ac, IEEE 802.11af, and/or IEEE 802.11ah can include channels that can be designated as primary channels. The primary channel may have a bandwidth that may be equal to the maximum common operating bandwidth supported by the STAs in the BSS. The bandwidth of the primary channel may be limited by STA 190, such as STA 190A, 190B, 190C of STAs operating in the BSS, which may support a minimum bandwidth mode of operation. For example, in IEEE 802.11ah, the primary channel can be 1 MHz wide, if there can be STAs 190 (eg, MTC type devices) that can support 1 MHz mode, even if AP 180 and other STAs 190 in the BSS can support 2 MHz, 4 MHz, 8 MHz, 16 MHz or other channel bandwidth mode of operation. Carrier sensing and NAV settings can depend on the state of the primary channel. If the primary channel is busy, for example, because the STA 190 supporting the 1 MHz mode of operation transmits to the AP 180, the available frequency band can be considered even if most of them remain idle and available.
In the United States, for example, the available frequency bands that can be used by IEEE 802.11ah can range from 902 MHz to 928 MHz. In Korea, for example, it can be from 917.5 MHz to 923.5 MHz. In Japan, for example, it can be from 916.5 MHz to 927.5 MHz. The total bandwidth available for IEEE 802.11ah can be 6 MHz to 26 MHz, which can depend on the country code.
Figure 2 shows an example spectrum access system (SAS) such as the Federal Spectrum Access System. As shown, the SAS can include a database, such as a library of spectrum data that can store spectrum availability information. Spectrum availability information may include, but is not limited to, sensing information, strategic information, pricing information, restrictions, and traditional requirements. The spectrum database can store information about which spectrum can be occupied by the primary (eg, federal system) or secondary users at a given location and time; signal parameters such as power and bandwidth; constraints at specific locations, such as in blasting There are no transmissions of blasting zones or along international boarders; and the price of access to the spectrum. The SAS may include radio access coordination and management and optimization functions that may provide frequency allocation and authorization. This feature optimizes the overall spectral efficiency of a given area and ensures that the traditional federated system maintains the priority of accessing the spectrum.
With SAS, the primary user of the spectrum can share their spectrum with regular access users (such as Wi-Fi or femtocell users). The primary user can provide a dynamic license, for example, a rental or lease of the spectrum. The secondary user can send an access request to the SAS, and the SAS can allocate spectrum for the secondary user to use. When a shared spectrum is used, secondary users such as devices and their base stations can periodically communicate with the SAS.
Bands that may become available in the USA may include the 3550 to 3650 MHz band. The 3550 to 3650 MHz band can be shared outside of the designated exclusion zone, which can vary in size with the power level and antenna height of the secondary and tertiary users. The SAS may have an interface that can be used to query information about available shared spectrum and operational parameters, as well as to manage secondary user spectrum lease agreements and the like.
Radar systems can operate at high power pulses of megawatts. A typical system can feature a 90 dBm pulse with a large antenna gain of 40 dB level with an EIRP of 130 dBm. Figure 3 shows an example radar signal. As shown, the signal is characterized by a high power pulse period for the duration of the pulse width 310, followed by a longer quiet period before the next pulse period. Pulse width 310 and/or pulse reception period 320 may vary based on desired range, resolution, precision, modulation type, and the like. The pulse period and the pulse phase can be used interchangeably here, and the quiet period and the quiet phase can be used interchangeably here. The pulse width and quiet period can vary from one pulse reception period to another, since the electronic antenna manipulation can modify the pulse width. For anti-interference purposes, the frequency used for one pulse reception period to another pulse reception period may vary. Radar pulse duration or periodic randomness can be introduced for anti-jamming purposes. The pulse period may include a period during which the PU operates on the shared channel, for example, pointing to the radar at the location of the SU system.
The radar signal can interfere with the channel in which the communicator operates and/or one or more communication devices on the channel adjacent to the operational channel. Due to the high power of the radar signal, side lobes can cause interference, for example, in the case of mobile services in the 2.6 GHz mobile band next to the 2.8 GHz radar band.
Due to national security considerations, the details of military radar can be classified. Details of the classified radar signal are not available. Many military types of radar can be designed to avoid detection. To avoid detection, the radar system can, for example, randomly or pseudo-randomly change their modulation type, pulse reception period and/or pulse width, and/or employ frequency hopping and the like. But you can get some basic coexistence information. If the spectrum in the frequency band, such as the 3.1 to 3.7 GHz band, is available for shared use, the government can choose via SAS in a more dynamic manner to make the additional information public.
Spectrum sharing can be allowed in the 5 GHz band. Dynamic frequency selection is performed. The unlicensed device can perform sensing prior to transmission to determine if the radar is below -64 dBm. The 3.5 GHz band can be lightly licensed to allow RATs such as Long Term Evolution (LTE) to have guaranteed QoS. The development of 5GHz Wi-Fi technology allows for a combination of database query and geolocation solutions. The advancement of the listen-before-talk technique can reduce the inter-frame spacing of tens of microseconds.
Figure 4 shows an example multicast single frequency network (MBSFN) and an almost blank subframe (ABS). MBSFN and/or ABS may allow the eNB to avoid data transmission in a given subframe. The MBSFN can be combined with the ABS subframe to further reduce the transmission in the given subframe. The eNB may transmit the MBSFN subframe or ABS subframe during a time instance in which the radar transmission is expected to occur to avoid interference with/from the radar signal.
The new carrier type (NCT) may include a non-backward compatible carrier including, for example, an extension carrier. Such a carrier may include the ability to have a completely blank subframe. The NCT may use an Enhanced Physical Downlink Control Channel (ePDCCH), which may allow control space to be transmitted over the space for data that avoids OFDM symbols dedicated to the control space. A set of physical resource blocks (PRBs) in the space may be placed for ePDCCH transmissions in each subframe, and the remaining PRBs may be used for a Physical Downlink Shared Channel (PDSCH). The eNB can operate the NCT in the frequency band or channel expected by the radar transmission. The specific PRB appearing at the frequency position of the radar signal can be cancelled to avoid interference between the LTE control information and the radar signal.
Regulatory changes can provide small cells to dynamically share spectrum using opportunities for military applications (such as naval radar) that include up to 100 MHz of the federal spectrum in the 3.5 GHz band.
The radar can operate with very high power pulses and large antenna gains that can achieve peak powers of up to 130 dBm and can interfere with secondary users or regular access users (eg by saturating the receiver's low noise amplifier (LNA)) . High power levels can result in interference to adjacent frequency bands and large distances.
The primary user radar system can use a focused beam that can rotate the RF energy to scan the horizon's mechanical antenna system. The radar can use an electronic antenna to manipulate the system, where the directionality can be changed electronically. The electronic antenna steering system can be coupled to a mechanical steering system. The system of interest can be rotated anywhere from 1 to 100 rpm. Secondary or conventional access systems may be allowed to operate on the primary user (PU) frequency (in case they do not interfere with the radar PU receiver). The secondary system can operate (in the case where the system is sufficiently far away from the radar PU, or where the system uses mechanisms to avoid interference (eg, not when the beam of the radar is directed to the system).
When dynamic spectrum sharing (DSS) cells are operating on the radar spectrum, there may be problems with using instant services. For example, radar interference can exist for up to tens of microseconds at a time, which can cause significant disruptions in instant applications (eg, over Voice over Internet Protocol (VoIP)), resulting in an unacceptable user experience. The interrupt can vary from one pulse period to another to introduce randomness into the radar signal.
The methods, systems, and tools provided herein may allow a DSS small cell sub-user (SU) to coexist in a shared frequency band with a radar system, such as the US military naval radar in the 3.5 GHz band. The SU can be a tier 2 or tier 3 user, or can be a licensed or unlicensed user that can be affected by the PU system.
Figure 5 shows an example solution space for a secondary user (SU) along the shoreline. The SU or SU system may include the WTRUs and/or base stations (e.g., eNBs) described herein. The SU system may include the communication system described herein with respect to FIGS. 1A, 1C, 1D, 1E, and 1F. The SU and SU systems can be exchanged here. The PU and PU systems can be used interchangeably here.
The solution space can include the SU affected area, where the SU can contact the SAS and be allowed to transmit. The SU affected area may include a PU potential affected area 520 and a SU potential affected area 530. In PU potential affected area 520, radar PU 510 may experience interference from the SU. If the SU is operating in the SU Potential Impact Area 530, the radar PU may not experience interference from the SU. In SU potential affected area 530 and PU potential affected area 520, the SU may be affected by interference from radar PU 510. The passive solution and the active solution can be used in the SU Potentially Affected Area 530, while the active solution can be used in the PU Potential Affected Area 520. The DSS small cells can operate during the quiet phase of the radar's interference period, for example, when the rotating lightning reaches a pointing (electronically or mechanically) DSS small cell. Such an arrangement may be referred to as a macro or spin cycle solution (eg, as shown in the example in FIG. 7).
Figure 6 shows an example pulse phase and quiet phase for a radar pulse period. As shown, pulse phases 610A, 610B, and 610C can be separated by quiet phases 620A and 620B. The quiet phase, such as the quiet phases 620A and 620B, can provide the SU with an opportunity to use the frequency band.
Figure 7 shows an example macro or spin cycle and micro or pulse period representing the opportunity for SU operation. As shown, from a macro cycle perspective, the SU may experience interference from the PU during pulse phases 710A, 710B, and 710C. The DSS cells can use the spectrum during the quiet phase of the radar signal, such as the quiet phase between pulse phases 710A, 710B, and 710C. During the quiet phase, the SU may not experience interference from the PU. The DSS small cell can use the spectrum during the pulse phase when the radar beam is directed at it. Such an arrangement may be referred to as a micro or pulse period solution. As shown in Figure 7, from the perspective of the microcycle, there may be an opportunity for the SU to use the spectrum within the pulse phase. For example, within pulse phase 710A, there may be multiple pulses, such as pulses 730A, 730B, 730C, and 730D. The DSS cells can use the spectrum during interpulse periods, such as interpulse periods 720A, 720B, and 720C. A micro or pulse period scheme can be used to avoid or reduce buffering data during pulse phase (allowing instant applications such as VOIP).
The methods, systems, and tools provided herein are used in the SU radio access network to obtain declassified information about radar PU operating parameters and to accommodate interference conditions. This information can be obtained through database queries. The SU radio access network can query the SAS or shared spectrum database, for example, via the Internet, backhaul links, and the like. The PU may have an interface with a shared spectrum database so that it can post information about the radar PU spectrum usage information (eg, operational cycle information) for the SU system to query. Operational information can be obtained by the SU system through a sensing mechanism. This information can be used by the SU device to manage the effects of radar interference on the SU system.
Figure 8 shows an example of the ability to query the interference suppression process. At 810, the SU can contact the SAS. At 820, it can be determined if the SU is in the SU affected area. The determination can be made at the SAS, or it can be done at the SU based on the information sent by the SAS. The SU can determine if it is in the SU affected area by asking SAS. For example, a SU can send its geographic location information to SAS. The SAS can determine whether the SU is in the SU affected area based on the information stored therein and send information to the SU. The SAS may send information associated with the potential radar system in and/or near the location of the SU to the SU. The SU can determine whether the SU is in the SU affected area based on information from the SAS. If the SU is outside the affected area of the SU, at 830, the SU can use the channel.
If it is determined that the SU is in the SU affected area, at 835, it may be determined if the SU is in the PU affected area. The determination can be made at the SAS, or it can be done at the SU based on the information sent by the SAS. For example, a SU can send its geographic location information to SAS. The SAS can determine whether the SU is in the PU affected area based on the information stored therein and send information to the SU. The SAS may send information associated with the potential radar system in and/or near the location of the SU to the SU. The SAS can determine whether the SU is in the PU affected area based on the information stored therein and send information to the SU. The SU can determine whether the SU is in the PU affected area based on information from the SAS.
If it is determined that the SU is not in the PU affected area, at 840, active or passive interference suppression may be applied. For example, a passive SU solution (as described herein) can accommodate PU interference, while an active SU technique can avoid mutual interference with the PU. If it is determined that the SU is in the PU affected area, at 850, an advanced active solution can be used. Applications for these solutions for a particular RAT, such as LTE or Wi-Fi, are described herein.
SU can operate between pulse phases. SU can obtain information about the macro or rotation period of the radar PU. SU can get such information from SAS. The SU can sense the received RF signal without transmitting, and can take the start of the pulse reception period, the pulse width, and the quiet period. The SU may obtain information about one or more individual pulse timings from SAS or the RF sensing techniques described herein. There may be opportunities to operate between separate radar pulses of the pulse phase such that increased throughput and QoS may span the entire macro or spin cycle. The SU can be transmitted during radar operation and can be offset using a bias link adaptation and/or scheduling during the radar operating period. The SU may not use bias link adaptation and/or scheduling between pulse phases.
Figure 9 shows an example flow diagram of SU operation including, for example, macro and micro solutions. As shown, at 910, the SU can determine if information associated with the PU radar is available. In radar coexistence, SAS (eg, a spectrum broker system, or a spectral database) can collect information about a channel. For example, the SU can determine if the repository providing such information is accessible, or if the repository contains such information. If it is determined that information associated with the PU radar system is available, at 920, the SU may collect information about the radar PU from the repository and/or collect information about the PUs of the channel and/or channel using sensing techniques. If it is determined that information associated with the PU radar system is not available, at 930, the SU can use sensing techniques to gather information about the radar PUs of the channels and/or channels.
The SU can apply the appropriate solution based on the collected information about the available area of the channel and the radar macro and/or micro period. After the SU collects information about the radar PU sharing the channel, it can choose a solution. At 940, the SU can determine if the channel is associated with the PU. If the channel has no primary user (or, for example, a potential secondary licensed user), the channel can be acceptable for full use. At 980, the SU can use the channel. If the channel is associated with a PU, at 950, it may be determined whether information associated with the macro or rotation period of the PU is available. If the SU has knowledge of macro or rotation periods, at 960, it may be determined if information associated with the micro or pulse period of the PU is available. If the SU can collect information about the micro or pulse period of the radar PU, at 982, the SU can apply a coexistence solution for the microcycle (eg, there is also a coexistence solution for the macrocycle). If information about the microscopic or pulse period of the radar PU is not available to the SU, at 985, the SU can use a coexistence solution for the macrocycle. For example, the SU can only use a coexistence solution for the macrocycle.
If the information associated with the macro or rotation period of the PU is not available to the SU, at 970, it may be determined whether the SU operation interferes with the PU operation. For example, this can be determined based on information about whether the SU is in a potentially affected area of the SU or a potentially affected area of the PU. The passive solution described herein can be applied at 987 if it is determined that the SU operation may not interfere with the PU operation. Passive solutions may not provide a mechanism to protect the radar PU. If it is determined that the SU operation can interfere with the PU operation, the active solution can be applied at 990. For example, the active solution described herein can be used for SU affected and PU affected areas. Passive solutions can be applied to PU affected areas.
The SU system uses a shared channel when the beam of the radar PU is focused from the position of the SU so that the interference can be kept below a threshold. The timing of the radar pulse phase can be determined. Interference can be avoided by buffering data, switching channels, and/or using interference suppression mechanisms. The SU can determine the characteristics of the radar pulse either through database assisted techniques or via a combination of sensing and/or database and sensing techniques.
Figure 10 shows an example SU operation in which the SU can stop transmitting during PU pulse phase (e.g., radar pulse phase). As shown in the example in Figure 10, in an active solution, the SU can use the channel during periods outside the pulse phase. For example, the SU may not transmit during a pulse period of macro or rotational phase. There may be a period of time before and/or after the pulse phase at which transmission can be avoided. The SU may collect information about one or more radar operational cycles via the database and/or via sensing.
Figure 11 shows an example SU operation. SU can determine the change in radar pulse phase timing and/or frequency. As shown in Figure 11, at 1110, the SU can use the channel during the quiet phase of the PU system of the channel. The SU base station may inform the WTRU of its associated one or more alternate channels that the base station hops at the beginning of the pulse phase. At 1120, the SU can use alternate channels during the pulse phase of the PU system 1140. At 1130, the SU system can remain on alternate channels or can be hopped back to the first shared channel.
Information about the radar PU can be collected through the infrastructure link. The SU system may have access to a spectral database, for example, via the SAS described with reference to Figure 2.
Military PUs can unobtrusively reveal the location of their signal source. The military may wish to dynamically control the areas that can be used for SU use, including, for example, potential bait areas. Figure 12 shows an example of various military zones including, for example, available zones, military training zones, and/or bait zones. The PU can utilize the decryption interface to the SAS to provide this information. Based on the information in the SAS, the SU can determine if the zone is allowed or not allowed for SU access. The area that is not allowed can be larger than the operating range of the PU radar, for example, to allow for the operability of the PU. The PU can define such an area as a "fuzzy" area or a bait area. The PU can define this area along the shoreline (specifying the depth of the radar penetrating the land). Coastal areas can be defined as “worst case” areas.
Figure 13 shows an example subdivision of the primary user exclusion zone. As shown, the region can be subdivided to include the PU potentially affected area and/or the SU potentially affected area. The PU can assign the active area as the worst case (eg, when the ship approaches the waterfront). When the ship is away from the waterfront, the assignment of the active area may depend on the amount of flexibility that the PU may require or the amount of information that the PU may be publicly available.
The spectrum access system may allow the classification database to provide data to the civilian database and notify the secondary access user and/or the regular access user. A ship entering the naval area "#n" can be defined as a coastline area "y" miles along the coastline multiplied by an "x" mile depth. The classified database and associated Shared Spectrum Management (SSM) can notify the event. Classified database information can be mapped to information that is publicly disclosed using public disclosure features, such as changing classified information for civilian use and/or adding bait. This information can be sent to SAS such as a civilian SSM or spectrum database. The SAS may request a DSS user operating in a potentially affected area of the PU of the naval area "#n" to terminate the operation. The SAS can notify the Layer 2 and Layer 3 users to operate in the potentially affected area of the SU that "decrypts" the radar characteristics to assist the user in suppressing the PU signal.
When receiving an indication of the information, the SU can operate according to the radar characteristics of the PU. SU can use the interface to gather information to coexist with the radar PU system. Information elements can be provided by the radar PU through the interface and used to assist in coexistence. The spectrum library may include the information elements listed in Table 1 or their sub-combinations.
The SU may query the spectrum database for at least one of the SU parameters listed in Table 1. For example, the SU can send location information (eg, latitude and longitude) about the current location of the SU. Based on the location information, the spectrum database can provide information about the PU system associated with the location. Information can be used for micro-cycle solutions and/or macro-cycle solutions.
Table 1


The SU can avoid mutual interference with the PU system based on information obtained from the SAS. For example, the SU system can avoid interference from the radar PU and/or interfere with the radar PU through the frequency hopping channel, by scheduling transmissions around the known pulse period and/or using the Doppler cancellation capability of the radar system below the speed threshold. .
A federated user can assign specific operational instructions through a decryption interface to a SAS (eg, a shared spectrum manager). The information in the spectrum database can reflect these instructions. SU can discover these instructions through database queries. The SU can follow these instructions to gain access to the channel.
For example, the SAS can provide the frequency, frequency hopping sequence, and frame timing that the SU can use. The SAS can provide such information in an allowed hopping sequence information element (IE). The PU can operate at other times or can adjust its own receiver to eliminate interference from civilian users using the specified frequency hopping sequence. SAS can provide SU frequency hopping options. For example, the SU can receive a selection among a plurality of frequency hopping sequences that may have different sequence phases allowed. The SU can select a frequency hopping sequence and thus can perform frequency hopping. The hopping sequence can be assigned to one SU device or multiple SU devices that can share a hopping sequence at a given location.
The PU can switch to another channel that is not currently sharing the channel before the pulse phase. For example, an eNB of an SU system may notify its associated SU WTRU channel switch using an SIB block, MAC CE, or RRC message prior to channel change.
A PU (eg, a military PU) can pseudo-randomly change its pulse periodicity (eg, to avoid jamming), and the frequency hopping sequence can be applied in a timely manner. The PU can make a set of time series available via the decryption interface, where the SU can be allowed to transmit. For example, a frequency hopping synchronization IE can be used to achieve synchronization. The SU can use the frequency hopping synchronization information to determine the exact time available for multiple shared spectrum channels based on the hopping sequence and timing information that can be sent in the frequency hopping synchronization IE. The SU can avoid the primary user's way of using this timing to select the channel in which the operation is to be performed at a given time, as well as the channel switching timing. The federated user can direct the SU to avoid specific time slots (eg, including the bait time slot) to allow PU transmission. Available shared channel information can include bait information.
SU can use the pulse information element obtained from the database to set its timer for the macro cycle solution. For example, the SU can use synchronization information such as Synchronization Phase, Synchronization Time, Rotation Speed IE, and Pulse Duty Cycle IE to determine which frame or letter. The time period and/or time unit may be affected by radar interference. SU can adjust its timer and/or scheduler to accommodate interference. SU can apply its coexistence solution during this time period. For example, the SU may determine the timing of the PU's pulse period relative to the geographic location of the SU, and/or determine the timing of the pulses relative to the geographic location of the SU.
The SU can be transmitted based on the Doppler cancellation capability of the radar for coexistence. If the SU queries the SAS (eg, the assigned spectrum database) and the Doppler detection capability IE indicates that the radar on the frequency band is equipped with a Doppler cancellation capability, the SU can be detected at a certain threshold in the Doppler effect. Above it operates on the channel at a specific speed limit.
In a passive solution, the SU may avoid PU interference based on PU operational information (such as one or more IEs described in Table 1) or based on the sensing results. SU can determine the PU radar period by collecting statistics on retransmissions or burst errors. The SU can detect the pattern characteristics of the radar PU, for example, the rotation period to help determine the macro characteristics. Based on these determinations, the SU can apply link adaptation biasing techniques. The scheduler can avoid sending data or changing frequencies to avoid interference.
Sensing results can be used to select channels and/or obtain additional information to replace, enhance, or use in conjunction with database information. For example, sensing techniques can be combined with database information to determine phase information for a PU radar. SU can select a shared channel based on an algorithm based on sensing information.
For example, information associated with a macro or spin cycle can be determined via sensing. Military radars can take advantage of technologies that make them difficult to sense. Energy detection can be used to detect military radar PU. For macro cycle solutions, such detection can be sufficient to determine pulse phase timing. If the PU uses frequency hopping in a pseudo-random manner, the SU can modify the use of its potential frequency. Example sensing techniques can include monitoring operational channels and performing energy detection over long periods of time. For example, a periodic activity pattern such as a high energy level (followed by a silent period (eg, low energy level)) can be detected. The periodic activity mode can be used to determine information associated with the macro or rotation period of the PU. Additional post processing such as filtering within the operational channel can be used to determine the radar bandwidth used, as the radar may occupy a smaller bandwidth than the communication system. The bandwidth of the assumed PU signal may be an indication that the received signal is a radar because the SAS can provide this information. The characteristics of the detected radar can be sent back to the SAS. The SAS can share such information with other neighboring SUs.
The SU system can use the channel during quiet periods of the PU system. Prior to the start of the microscopic cycle, the SU can switch to alternating channels or use a finer microscopic phase algorithm to transmit between pulses. If the SU leaves the channel, it can return to the original channel at the end of the pulse phase.
Civil radar sources such as weather radar and/or radio navigation can be more deterministic than military radars. Sensing of civil radar can provide accurate periods and reception periods for a single pulse, as well as micro or pulse period timing capabilities that enable microscopic periodic solutions.
In order to synchronize the solution with the PU operation, the SU radio can detect frames and/or one or more subframe numbers or one or more beacon periods or other one or more time units that may be affected by the radar PU. The SU may report the frame and/or subframe number to the software entity in the SU, where the SU may periodically determine the next frame number or beacon period that may be affected. The prediction method can be applied to the micro cycle solution.
As shown in the example in Figure 14, the SU can determine the appropriate channel based on the sensing. For example, the SU can determine if it is located in the PU affected area, and if so, the SU can not operate on the radar channel. The SU can determine if it is in the SU affected area, and if so, the SU can perform sensing to determine the channel to operate.
As shown in Figure 14, at 1410, the SU can perform a fast sensing of the channel. For example, the SU can sense the channel for a period of time (eg, 10 milliseconds or 8-12 milliseconds) to estimate if there is PU interference on the channel (eg, whether the PU uses a shared channel). At 1420, it can be determined if the potential interference from the PU to the SU is tolerable. When it is determined that the potential interference from the PU is intolerable, at 1410, the SU can perform a fast sensing of the next channel. When it is determined that potential interference from the PU is tolerable, at 1430, the SU can perform long-term sensing of the channel. If the level of activity is tolerable, the SU can scan for an extended period of time to detect the presence of the radar PU. The mechanical rotation of the radar can be on the order of about 10 seconds per revolution. The sensing period can be 10 to 60 seconds per channel. For example, the SU can perform sensing on the channel for longer than 8 seconds, longer than 10 seconds, longer than 12 seconds, and the like. If a radar PU is detected, at 1450, the SU can estimate whether operation on the channel will cause interference to the PU. When it is determined that operation on the channel will cause interference to the PU, at 1410, the SU can perform a fast sensing of the next channel. When it is determined that operation on the channel does not cause interference to the PU, at 1460, the SU can estimate whether PU interference to the SU is tolerable. If the PU interference to the SU is not tolerable, at 1410, the SU can perform a fast sensing of the next channel. If the PU interference to the SU is tolerable, at 1470, the SU can determine if more spectrum is needed.
If at 1410, no radar PU is detected based on long-term sensing, at 1470, the SU can determine if more spectrum is needed. If more spectrum is needed, at 1480, the SU can start using the channel and update the list of available channels. SU can use macro and/or micro coexistence solutions. If more spectrum is not needed, at 1490, the SU can update the list of available channels and perform a fast sensing of the next channel at 1410.
If a radar PU is detected, the SU may not cause interference, and the PU interference to the SU is tolerable, the SU may begin to use the channel and may use a macro and/or micro coexistence solution. For example, if the SU has a sufficient sensing solution to accurately predict the radar macrocycle, the SU can transmit during the quiet phase to avoid mutual interference.
A base station (e.g., an eNB or a Wi-Fi access point) can perform sensing and data collection on the operational radar PU. If the SU system is operating on a channel, it can inform its associated WTRU without interfering with the radar PU. The base station can broadcast at a particular time when the WTRU can attempt to access the channel. The broadcast can be performed, for example, using System Information Broadcast (SIB) and/or beacon signals. After initial access sensing, the base station can transmit results or operational parameters to its associated WTRU.
In a Long Term Evolution (LTE) network, due to the radar PU, the eNB may broadcast allowed frame numbers and/or disallowed frame numbers for channel access. Such information can be sent in the SIB message. When the WTRU is in connected mode, the eNB may send detailed sensing information or instruction arguments using the MAC CE or RRC configuration signal. If a PU is detected during operation, the base station can inform its associated WTRU of their respective channel evacuation time.
Blank frames (eg, transparent frames) can be used to avoid interfering with radar transmissions. For example, the eNB may schedule one or more blank frames based on the timing of the pulse phase of the radar PU. If the pulse phase overlaps with more than one single blank frame, multiple consecutive blank frames can be scheduled. Figure 15 shows an example of using one or more blank frames to avoid interfering with the radar PU.
As shown in the example in Figure 15, the eNB may schedule a blank frame or multiple blank frames during the pulse phase of the radar PU. The blank frame can be completely blank so that mutual interference suppression between the PU and the SU can be achieved. The blank frame solution can be used in SU affected and/or PU affected areas. The blank frame can be scheduled to cover the pulse phase. The timing of the operations at the eNB and the UE may be frozen during the blank frame.
For example, at the beginning of the frame (10ms) or at the end of the frame, the base station can listen for less duration of the operating channel (eg, less than one subframe). The base station can determine if the radar pulse is observed. If a radar pulse is detected, the base station may not use the operating channel in the LTE frame.
Carrier aggregation can be performed. Figure 16 shows an example LTE of one channel and another channel on the aggregate radar band. As shown, the licensed primary carrier can be used in conjunction with a secondary carrier using a radar band. During the pulse phase of the radar PU, the eNB may not schedule transmissions on the secondary carrier. The system can maintain QoS during the pulse phase of the radar signal, and mutual interference between the SU and the PU can be achieved.
In a passive solution, one or more almost blank subframes (ABS) can be scheduled based on the pulse phase of the radar PU. For example, the SU system can transmit an ABS subframe during the radar pulse period. In one embodiment, the SU system may transmit one or more ABS subframes if the SU system may not cause interference to the radar PU. The ABS subframe can carry reference symbols and can carry no data. There may be no excessive retransmissions and the radar pulses may fall within the data space between the reference symbols. The eNB may inform the associated WTRU to avoid reference signal (RS) measurements during the radar pulse period because they may be affected by interference due to high power radar pulses. The signaling may be sent via an RRC message or a MAC message to indicate the identification of the ABS subframe.
The SU system can passively remain on the same channel and modify its operation to coexist with the PU system. For example, the SU can determine the macrocycle timing of the PU system. The SU system can be adapted based on the timing of the pulse phase bias link. For example, the modulation and coding scheme (MCS) can be biased before the start of the pulse phase, just after the end of the pulse phase and/or during the pulse phase of the PU system so that a more robust solution can be selected. For example, error correction coding can be performed to recover symbols that may be affected by a single pulse. When the pulse phase ends, or after a predetermined period of time has elapsed after the pulse phase, the bias can be removed so that the system can transition back to the MCS used before the pulse phase.
An example link adaptation mechanism is illustrated in Figures 17A and 17B. A SU system, such as a base station, can determine link adaptation (e.g., MCS) based on a moving average. Figure 17A shows an example link adaptation before the link adaptation bias is utilized. As shown in FIG. 17A, if the link adaptation bias is not utilized, the link adaptation at 1720 can suppress the transmission rate due to interference from the PU pulse phase 1710A. Figure 17B shows link adaptation with link adaptation bias. As shown, at 1730, a link adaptation bias can be performed. The link adaptation bias can be applied such that rate suppression (eg, caused by PU interference) can be lifted at the end of the PU pulse period. For example, as shown in FIG. 17B, rate suppression may be cancelled after PU radar pulse phase 1710B. The less robust MCS can be selected after the PU radar pulse phase, and the transmission rate can be increased so that the SU system can continue its normal operation. The timing of the pulse phase can be sent from the base station to the WTRU in advance. The WTRU may know which MCS scheme to use at the appropriate time. This can avoid delays in the process of reducing and/or increasing the rate, and can significantly improve immediate performance during this phase.
Channels can be switched before the burst of radar pulses. The eNB may inform the WTRU channel switch using an SIB block, MAC CE, or RRC message before the channel change.
In a Wi-Fi system, several methods can be used to avoid transmission during the radar pulse period. For example, a Wi-Fi access point (AP) can signal the PU's macro periodic timing information to a station (STA). The STA and/or AP may include a scheduler that can schedule the transmission time of the packet. The scheduler can avoid any packets whose schedule will overlap with the PU pulse period.
For example, the scheduler can schedule the packet transmission so that the packet can be transmitted before the start of the PU pulse period. For example, if the buffered packet takes, for example, X microseconds to transmit, the STA can avoid accessing the channel at a time equal to, for example, PX microseconds, where, for example, P can be the start time of the pulse period. The AP may obtain macro periodic timing information of the PU via a database or sensing or some hybrid technology. The AP can signal the pulse phase timing to the STA using a beacon or a separately transmitted management frame.
Figure 18 shows an example management frame mechanism such as a Self-Clear to Send (CTS) mechanism. The self CTS mechanism can be used to prevent the STA from transmitting during the PU pulse period. The AP can use the self CTS message to perform a quiet period. As shown, the Wi-Fi system can perform normal operations at 1810. At 1820, the AP may send a self CTS message before (eg, immediately) the PU pulse period 1830. The self CTS message may not be addressed for either. The self CTS message may have the address of the AP itself. The self CTS message may be associated with an extended backoff duration, whereby other STAs may not transmit. The self CTS message can indicate a quiet period. The quiet period may include a radar pulse period of the PU. As shown, the quiet period may begin before the radar pulse period of the PU and may continue until after the pulse period. At 1840, the Wi-Fi system can resume normal operation.
Wi-Fi systems can operate on radar channels during radar microscopic periods. For example, the scheduler can schedule transmissions between individual pulses of the PU system based on the timing of the microscopic period of the PU. The AP and/or STA may reduce the packet size so that the packet can be sent between a single pulse of the PU system. For example, the timing and duration of the interpulse period of the pulse phase can be determined, and the packet size of the packet to be transmitted can be determined based on the timing and duration of the interpulse period so that the transmission of the packet can be completed before the next pulse.
The AP may send a self CTS message to indicate a quiet period of time that covers the duration of a single radar pulse. The quiet period includes an additional backoff period that compensates for radar propagation time.
Additional throughput and QoS can be obtained by using the period between individual radar pulses during the pulse phase. The SU device may determine statistics on the microscopic periodic behavior of the radar by sensing or collecting statistics on radar pulses from the spectral database or a combination thereof via packet loss statistics.
Based on the micro mode of the PU, the SU can be transmitted between pulses. For example, the SU can avoid scheduling arbitrary packets when it is desired to generate a pulse. If sensing is performed at the base station, the base station can send a message to its associated WTRU prior to transmission during the micro period.
Figure 19 shows an example radar backoff period mechanism. SU can operate on a channel between individual pulses. If operating in the PU affected area, the SU can wait for the backoff period T go back To allow radar pulses to propagate across their operating range. For example, if the PU radar has a range of 150 km, the backoff period can be approximately 1 ms.
As shown in Figure 19, the PU system can have pulses at 1910A, 1910B, and 1910C during the pulse phase. At 1920, the SU device can enter the channel and perform sensing on one or more radar cycles. The SU device can detect the pulse 1910B and can set a backoff timer. At 1930, the backoff timer can be in the backoff period T go back It then expires and the SU device can be transmitted over the channel during 1940. The SU device can detect the pulse 1910C and can stop transmitting on the channel. The SU device can set a backoff timer. When the backoff timer expires at 1950, the SU device can use the channel at 1960.
The SU device can operate on the channel with multiple PU radar systems. Figure 20 shows the SU coexisting with multiple radars on the channel using a backoff period mechanism. As shown, the first PU radar can be pulsed at 2010A, 2010B, and 2010C, and the second PU radar can be pulsed at 2020A, 2020B, and 2020C. At 2030, the SU device can enter the channel and perform sensing on one or more full radar cycles. The SU device can detect pulses 2020A and 2020B. For each radar system, the SU can keep track of the radar pulses during these pulses to avoid transmission. For example, the SU can determine the backoff period for each PU radar, such as the T1 of the first PU radar. go back And the second PU radar T2 go back . At 2040, the SU device can be transmitted over the channel. The SU device can set a backoff timer when detecting pulse 2010C. At 2050, the SU system can wait for the longer/longest radar period of multiple PU radars. The fallback timer can be set to T1 go back And T2 go back The expiration of the longer retreat period. The SU device can use the channel when the backoff timer expires.
The LTE system can coexist with the radar PU by adapting to a single radar pulse. The coarse macrocycle synchronization can be assumed for the LTE microcycle solution, whereby coarse synchronization can allow some drift.
For example, a small cell LTE system operating on the radar band can actively avoid transmission during sub-frames, which can be consistent with radar pulses plus their back-off time. Figure 21 shows an example of an LTE system transmitting with increased subframe timing restrictions. As shown in FIG. 21, the LTE system may stop transmitting on the radar channel to allow drift at 2120, slightly before the desired PU pulse 2110A. The LTE system may wait for the backoff period 2130 before the 2140 reuses the channel. As shown, the LTE system can be limited by its subframe timing and can be transmitted during subframes that can be fully overlaid with available transmissions. For example, the LTE system may skip subframe 2170, for example, the LTE system may not transmit on the radar channel during subframe 2170. After the end of the backoff period, the LTE system can transmit in subframe 2180 until slightly before the next desired PU burst 2110B. The LTE system may wait for the backoff period 2150 before the 2160 reuses the channel. For example, the LTE system may skip subframe 2190, and after the fallback period ends, the LTE system may transmit in subframe 2195. The LTE system can skip a single subframe without interrupting the HARQ process, missing the SI element, and the like.
The eNB scheduler can avoid scheduling any transmissions (including UL and DL) on subframes that can be determined to possibly include radar pulses. Figure 22 shows an example of how an eNB can avoid scheduling transmissions on known radar burst subframes.
The eNB may schedule ABS and/or MBSFN subframes when radar pulses may be present. This prevents any retransmissions and associated flux loss. The solution can be useful in the presence of an asymmetric UL/DL configuration, since the ACK of the packet can occur, so that the radar pulse can cause multiple sub-frame value loss of the data to be retransmitted.
The LTE New Carrier Type (NCT) of independent small cells can be used to allow blank subframes to be scheduled. If the backoff time reaches the past original blank subframe, the eNB may schedule a blank subframe during the desired radar pulse or two blank subframes. The NCT can request control signaling during subframes 0 and 5. This can improve the performance of such a system if the frame timing can be modified to include 0 and 5 during non-radar pulse subframes. If the radar pulse period is not a multiple of 10 ms, the pulse may fall on subframe 0 or 5, and the eNB may inform the associated UE that one or more special subframes may occur with the modified timing. For one or more special subframes, the control signals can be moved to different subframes (such as subframes 2 and 7). The eNB may return to its normal timing after transmitting the one or more specific subframes.
If the LTE system is independent of the operation of its interfering radar PU, it can be flexible in the process of handling interference. Proactive solutions can be used to improve performance.
The ABS subframe can be scheduled to coincide with one or more PU pulses. The data may not be transmitted in the ABS subframe. By not transmitting data during the ABS subframe, the loss of flux due to retransmission can be avoided. The ABS subframe can continue to transmit reference symbols, which can be interfered by radar signals. The MBSFN sub-frame can be scheduled at any time when a radar pulse can occur. The MBSFN subframe can be compatible with, for example, a Release 8 LTE device. MBSFN and ABS can be combined in the MBSFN ABS subframe and can provide an ideal subframe for use during the radar subframe (when the least symbol is disturbed).
The LTE New Carrier Type (NCT) of individual small cells may contain ePDCCH control channels and the ability to leave some subframes empty. Figure 23 shows an example of an ePDCCH resource block (RB) that may be interfered by radar pulses. As shown, the pulses 2310A and 2310B of the PU radar system can block specific resource blocks (RBs) for LTE signaling. For example, radar pulse 2310A can block one or more RBs that can be allocated to the PDCCH. The enhanced PDCCH control channel, such as the ePDCCH control channel, may be spread in frequency and/or time. As shown in FIG. 23, the decentralized ePDCCH may be allocated in the RB 2320. The decentralized ePDCCH can provide frequency spreading and/or time spreading to avoid radar pulses. This solution can be combined with link adaptation.
The mapping of the data may be dynamically modified for subframes in which the OFDM symbols may be affected. Since the duration of the radar pulse may be short (eg, two microseconds), one to two OFDM symbols may be affected. When radar pulses are expected, the eNB can temporarily change the mapping of the data elements to avoid interfering with high power radar pulses.
There may be control elements within the ePDCCH, for example to indicate the location of the next radar pulse. When the ePDCCH is extended in time, there may be a possibility that the WTRU misses the indication due to another radar pulse compared to the regular PDCCH, where the radar pulse may degrade the entire PDCCH. The MAC CE signal can be used to indicate future radar timing before the pulse period. The RRC message can be used to indicate future radar timing before the pulse period.
The Wi-Fi system can operate under the microscopic cycle of the PU system. A carrier sense multiple access (CSMA-CA) system that avoids collisions can allow operation within the interval between radar pulses. As described in the macrocycle solution herein, the AP can inform the station (STA) macro timing via a beacon or a single management frame.
Prior to the pulse period, an indication may be sent via a Medium Access Control (MAC) layer, such as in a Wi-Fi device (such as a STA/WTRU), to signal the modified MAC behavior for the duration of the time period. When the packet size can be longer than the pulse duration, the MAC layer can avoid packets that are reduced in size by collision with the next radar pulse. The maximum size of the packet during the pulse phase can be determined based on the PU radar pulse information. For example, the packet size can be calculated when receiving information from a SAS (eg, a spectral database). The maximum packet size may be conveyed via, for example, a beacon or a single message sent to each STA. The MAC layer can segment the frame into smaller frames to accommodate reduced transmission opportunities.
During the pulse period, the Wi-Fi system can use a modified media access scheme whereby the STA or AP can listen to the radar before attempting to access the media. In the PU affected area, the Wi-Fi system can wait for a fallback time corresponding to the propagation time of the radar passing through the air before accessing the channel. For example, an STA wishing to access a channel to send an ACK can listen for radar pulses. When a pulse is detected, the STA can wait for the backoff time Tb. The STA may wait for the time SIFS (eg, the inter-frame spacing according to the 802.11 standard). If the media is idle, the STA can send an ACK. If there is still sufficient time before the next radar pulse, another STA or AP may attempt to access the channel and send another message. The packet size can be small enough to not overlap with the next radar pulse.
The AP may send a priority management frame immediately after detecting the radar pulse, which may indicate the modified operation. Such operations can be used, for example, in the operation of pseudo-random military radars, and passive solutions may be required therein.
The self CTS mechanism can be used by the AP to coordinate STAs. The AP can determine if the interval between pulses is large before coordinating the STA. The self CTS message may indicate a quiet period covering the duration of a single radar pulse, and may include an additional backoff period that compensates for radar propagation time. The STA can know the pulse phase so that they can use the reduced packet size.
Although features and elements are described above in a particular combination, one of ordinary skill in the art will appreciate that each feature or element can be used alone or in combination with any of the other features and elements. Moreover, the methods described herein can be implemented in a computer program, software or firmware that is incorporated into a computer readable medium and executed by a computer or processor. Examples of computer readable media include electronic signals (transmitted over a wired or wireless connection) and computer readable storage media. Examples of computer readable storage media include, but are not limited to, read only memory (ROM), random access memory (RAM), registers, buffer memory, semiconductor memory devices, magnetic media (eg, internal hard drives and extraction) Disk), magneto-optical media and optical media such as CD-ROM discs and digital versatile discs (DVD). A processor associated with the software can be used to implement a radio frequency transceiver for use in a WTRU, UE, terminal, base station, RNC, or any host computer.

no

Claims (1)

1、一種使用與一主使用者相關聯的共享通道的方法,該方法包括:
收集與該共享通道的該主使用者的一操作週期相關聯的資訊,其中該操作週期包括一沉靜相位和一脈衝相位;
在該沉靜相位期間排程在該共享通道上的傳輸;以及
基於該脈衝相位的一定時執行干擾抑制。
2、如申請專利範圍第1項所述的方法,其中執行干擾抑制還包括:
在該脈衝相位期間排程至少一個空白訊框。
3、如申請專利範圍第1項所述的方法,其中執行干擾抑制還包括:
在該脈衝相位期間排程至少一個幾乎空白子訊框,其中幾乎空白子訊框是用於特定參考符號的傳輸。
4、如申請專利範圍第1項所述的方法,其中執行干擾抑制還包括:
在該脈衝相位中確定一脈衝間時段的一定時和一持續時間;以及
在該脈衝間時段期間排程在該共享通道上的傳輸。
5、如申請專利範圍第1項所述的方法,其中執行干擾抑制還包括:
在該脈衝相位期間偏置鏈路適應。
6、如申請專利範圍第1項所述的方法,其中在該沉靜相位期間排程在該共享通道上的傳輸還包括:
確定用於傳送封包的時段;以及
排程封包傳輸時間以便該封包在該脈衝相位之開始之前被傳送。
7、如申請專利範圍第1項所述的方法,其中收集與該共享通道的該主使用者的一操作週期相關聯的資訊還包括:
發送一地理位置的一指示符至一頻譜存取系統;以及
接收與關聯於該地理位置的該主使用者的該操作週期相關聯的資訊。
8、如申請專利範圍第7項所述的方法,其中與關聯於該地理位置的該主使用者的該操作週期相關聯的該資訊包括該主使用者的同步資訊和該主使用者的脈衝週期資訊,且該方法還包括:
相對於該地理位置確定該主使用者的該脈衝相位的一定時。
9、如申請專利範圍第7項所述的方法,其中與關聯於該地理位置的該主使用者的該操作週期相關聯的該資訊包括該主使用者的同步資訊和該主使用者的脈衝週期資訊,且該方法還包括:
相對於該地理位置確定該脈衝相位的至少一個脈衝的一定時;以及
發送該脈衝相位的該定時至一相關聯的無線發射和接收單元。
10、一種用於提供對與一主使用者相關聯的一共享通道的存取的基地台,該基地台包括:
一處理器,該處理器被配置成:
收集與該共享通道的該主使用者的一操作週期相關聯的資訊,其中該操作週期包括一沉靜相位和一脈衝相位;
在該沉靜相位之期間排程在該共享通道上的傳輸;以及
基於該脈衝相位的一定時執行干擾抑制。
11、如申請專利範圍第10項所述的基地台,其中該處理器還被配置成執行以下中的至少一者:
在該脈衝相位期間排程至少一個空白訊框;
在該脈衝相位期間排程至少一個幾乎空白子訊框,其中幾乎空白子訊框是用於僅特定參考符號的傳輸;以及
在該脈衝相位期間排程至少一個MBSFN子訊框。
12、如申請專利範圍第10項所述的基地台,其中該處理器還被配置成:
在該共享通道不可用時接收指示用於執行頻率跳頻的資訊的跳頻序列;
接收指示用於指示與該跳頻序列相關聯的定時的資訊的跳頻同步資訊;以及
在該共享通道不可用時基於該跳頻序列和該跳頻同步資訊選擇用於操作的一第二共享通道。
13、如申請專利範圍第10項所述的基地台,其中該處理器還被配置成:
在該脈衝相位中確定脈衝間時段的一定時和一持續時間;以及
在該脈衝間時段期間排程在該共享通道上的傳輸。
14、如申請專利範圍第10項所述的基地台,其中該處理器還被配置成:
在該脈衝相位期間偏置鏈路適應。
15、如申請專利範圍第10項所述的基地台,其中該處理器還被配置成:
確定傳送封包所需的一時段;以及
排程封包傳輸時間以便該封包在該脈衝相位開始之前被傳送。
16、如申請專利範圍第10項所述的基地台,其中該處理器還被配置成:
發送一地理位置的一指示符至一頻譜存取系統;以及
接收與關聯於該地理位置的該主使用者的該操作週期相關聯的資訊。
17、如申請專利範圍第16項所述的基地台,其中與關聯於該地理位置的該主使用者的該操作週期相關聯的該資訊包括該主使用者的同步資訊和該主使用者的脈衝週期資訊,且該處理器還被配置成:
相對於該地理位置確定該主使用者的該脈衝相位的該定時。
18、如申請專利範圍第17項所述的基地台,其中與關聯於該地理位置的該主使用者的該操作週期相關聯的該資訊包括該主使用者的同步資訊和該主使用者的脈衝週期資訊,且該處理器還被配置成:
相對於該地理位置確定該脈衝相位的至少一個脈衝的一定時;以及
發送該脈衝相位的該定時至一相關聯的無線發射和接收單元。
19、一種用於提供頻譜可用資訊的頻譜存取系統,該頻譜存取系統包括:
一處理器,該處理器被配置成:
接收與聯邦主使用者系統操作相關聯的解密資訊;
接收在地理位置處存取一共享通道的一請求;
基於該解密資訊識別該地理位置處的一可用共享通道和該可用共享通道的一主使用者;
基於該解密資訊確定與該主使用者的一操作週期相關聯的該資訊;以及
發送該可用共享通道和與該主使用者的一操作週期相關聯的資訊。
20、如申請專利範圍第19項所述的頻譜存取系統,其中與該共享通道的該主使用者的該操作週期相關聯的該資訊包括以下中的至少一者:
該共享通道的狀態資訊;
該主使用者的傳輸功率;
該主使用者的天線增益;
該主使用者的波束寬度;
與該主使用者相關聯的安全裕度;
該主使用者的轉速;
一脈衝持續時間最小值;
一脈衝持續時間最大值;
一脈衝週期最小值;
一脈衝週期最大值;
該主使用者的一調變類型;
該主使用者的範圍;
該主使用者的一中心頻率;
該主使用者的一頻寬;
該主使用者的都卜勒消除能力;以及
一都卜勒速度臨界值。
21、如申請專利範圍第19項所述的頻譜存取系統,其中該處理器被配置成:
為一次要使用者系統分配在該共享通道對該次要使用者系統不可用時使用的一頻率和一存取時間;以及
發送指示所分配的頻率和存取時間的資訊至該次要使用者。
22、如申請專利範圍第19項所述的頻譜存取系統,其中與該共享通道的該主使用者的該操作週期相關聯的該資訊包括:
指示所確定的頻率的序列和相關聯的存取時間的頻率跳頻序列;
指示用於指示與該跳頻序列相關聯的定時的資訊的跳頻同步資訊;以及該處理器被配置成:
確定在該共享通道對該次要使用者系統不可用時該次要使用者系統使用的頻率的序列和相關聯的存取時間。
23、如申請專利範圍第19項所述的頻譜存取系統,其中與該共享通道的該主使用者的該操作週期相關聯的該資訊包括誘餌資訊。
24、一種用於存取與一主使用者相關聯的一共享通道無線發射和接收單元(WTRU),該WTRU包括:
一處理器,該處理器被配置成:
接收與該共享通道的該主使用者的操作週期相關聯的資訊,其中該操作週期包括一沉靜相位和一脈衝相位;
在該沉靜相位期間在該共享通道上發送資料;以及
在該脈衝相位期間執行干擾抑制。
25、如申請專利範圍第24項所述的WTRU,該處理器還被配置成:
識別該脈衝相位中的一脈衝間時段的一定時和一持續時間;以及
確定將在該脈衝間時段期間傳送的封包的一封包大小,其中該確定是基於該脈衝間時段的該定時和該持續時間,以便該封包的該傳輸在下一脈衝之前完成。
26、一種用於提供對與一主使用者相關聯的一共享通道的存取的存取點,該存取點包括:
一處理器,該處理器被配置成:
收集與該共享通道的該主使用者的一操作週期相關聯的資訊,其中該操作週期包括一沉靜相位和一脈衝相位;
發送與該主使用者的該操作週期相關聯的資訊至與該存取點相關聯的多個無線發射和接收單元(WTRU);以及
在該沉靜相位期間排程在該共享通道上的傳輸;以及
基於該脈衝相位的一定時執行干擾抑制。
27、如申請專利範圍第26項所述的存取點,其中該處理器還被配置成:
通過以下方式基於該脈衝相位的一定時執行干擾抑制:
與和該脈衝相位一致的回退持續時間一起發送一自我清除發送(CTS)消息。
28、如申請專利範圍第27項所述的存取點,其中該自我CTS消息在該脈衝相位之前立即發送。
A method of using a shared channel associated with a primary user, the method comprising:
Collecting information associated with an operational cycle of the primary user of the shared channel, wherein the operational cycle includes a quiet phase and a pulse phase;
Scheduling the transmission on the shared channel during the quiet phase; and performing interference suppression based on the timing of the pulse phase.
2. The method of claim 1, wherein performing interference suppression further comprises:
At least one blank frame is scheduled during the pulse phase.
3. The method of claim 1, wherein performing interference suppression further comprises:
At least one almost blank sub-frame is scheduled during the phase of the pulse, wherein the almost blank sub-frame is for transmission of a particular reference symbol.
4. The method of claim 1, wherein performing interference suppression further comprises:
A certain time and a duration of an interpulse period are determined in the pulse phase; and the transmission of the schedule on the shared channel is scheduled during the interpulse period.
5. The method of claim 1, wherein performing interference suppression further comprises:
The bias link is adapted during this pulse phase.
6. The method of claim 1, wherein the scheduling of the transmission on the shared channel during the quiet phase further comprises:
Determining a time period for transmitting the packet; and scheduling the packet transmission time such that the packet is transmitted before the beginning of the pulse phase.
7. The method of claim 1, wherein collecting information associated with an operational period of the primary user of the shared channel further comprises:
Sending an indicator of a geographic location to a spectrum access system; and receiving information associated with the operational period of the primary user associated with the geographic location.
8. The method of claim 7, wherein the information associated with the operational period of the primary user associated with the geographic location comprises synchronization information of the primary user and a pulse of the primary user Cycle information, and the method also includes:
A certain time of the pulse phase of the primary user is determined relative to the geographic location.
9. The method of claim 7, wherein the information associated with the operational period of the primary user associated with the geographic location comprises synchronization information of the primary user and pulses of the primary user Cycle information, and the method also includes:
Determining a certain time of at least one pulse of the pulse phase relative to the geographic location; and transmitting the timing of the pulse phase to an associated wireless transmit and receive unit.
10. A base station for providing access to a shared channel associated with a primary user, the base station comprising:
A processor configured to:
Collecting information associated with an operational cycle of the primary user of the shared channel, wherein the operational cycle includes a quiet phase and a pulse phase;
Scheduling the transmission on the shared channel during the quiet phase; and performing interference suppression based on the timing of the pulse phase.
11. The base station of claim 10, wherein the processor is further configured to perform at least one of the following:
Scheduling at least one blank frame during the phase of the pulse;
At least one almost blank subframe is scheduled during the phase of the pulse, wherein an almost blank subframe is for transmission of only a particular reference symbol; and at least one MBSFN subframe is scheduled during the phase of the pulse.
12. The base station of claim 10, wherein the processor is further configured to:
Receiving a frequency hopping sequence indicating information for performing frequency hopping when the shared channel is unavailable;
Receiving frequency hopping synchronization information indicating information indicating timing associated with the frequency hopping sequence; and selecting a second sharing for operation based on the hopping sequence and the frequency hopping synchronization information when the shared channel is unavailable aisle.
13. The base station of claim 10, wherein the processor is further configured to:
A certain time and a duration of the interpulse period are determined in the pulse phase; and the transmission of the schedule on the shared channel is scheduled during the interpulse period.
14. The base station of claim 10, wherein the processor is further configured to:
The bias link is adapted during this pulse phase.
15. The base station of claim 10, wherein the processor is further configured to:
Determining a time period required to transmit the packet; and scheduling the packet transmission time so that the packet is transmitted before the phase of the pulse begins.
16. The base station of claim 10, wherein the processor is further configured to:
Sending an indicator of a geographic location to a spectrum access system; and receiving information associated with the operational period of the primary user associated with the geographic location.
17. The base station of claim 16, wherein the information associated with the operational period of the primary user associated with the geographic location comprises synchronization information of the primary user and the primary user's Pulse period information, and the processor is also configured to:
The timing of the pulse phase of the primary user is determined relative to the geographic location.
18. The base station of claim 17, wherein the information associated with the operational period of the primary user associated with the geographic location comprises synchronization information of the primary user and the primary user's Pulse period information, and the processor is also configured to:
Determining a certain time of at least one pulse of the pulse phase relative to the geographic location; and transmitting the timing of the pulse phase to an associated wireless transmit and receive unit.
19. A spectrum access system for providing spectrum available information, the spectrum access system comprising:
A processor configured to:
Receiving decryption information associated with operation of the federal primary user system;
Receiving a request to access a shared channel at a geographic location;
Identifying an available shared channel at the geographic location and a primary user of the available shared channel based on the decrypted information;
Determining, based on the decrypted information, the information associated with an operational period of the primary user; and transmitting the available shared channel and information associated with an operational period of the primary user.
20. The spectrum access system of claim 19, wherein the information associated with the operational period of the primary user of the shared channel comprises at least one of:
Status information of the shared channel;
The transmission power of the primary user;
The antenna gain of the primary user;
The beam width of the primary user;
The safety margin associated with the primary user;
The speed of the main user;
a pulse duration minimum;
a pulse duration maximum;
a pulse period minimum;
a pulse period maximum;
a type of modulation of the primary user;
The scope of the primary user;
a central frequency of the primary user;
a bandwidth of the primary user;
The Doppler elimination capability of the primary user; and a Doppler velocity threshold.
21. The spectrum access system of claim 19, wherein the processor is configured to:
Assigning to the secondary user a frequency and an access time used when the shared channel is unavailable to the secondary user system; and transmitting information indicating the assigned frequency and access time to the secondary user .
22. The spectrum access system of claim 19, wherein the information associated with the operational period of the primary user of the shared channel comprises:
a frequency hopping sequence indicating a sequence of determined frequencies and associated access times;
Having frequency hopping synchronization information indicating information indicative of timing associated with the hopping sequence; and the processor is configured to:
A sequence of frequencies and associated access times used by the secondary user system when the shared channel is unavailable to the secondary user system is determined.
23. The spectrum access system of claim 19, wherein the information associated with the operational period of the primary user of the shared channel comprises bait information.
24. A shared channel wireless transmit and receive unit (WTRU) for accessing a primary user, the WTRU comprising:
A processor configured to:
Receiving information associated with an operation cycle of the primary user of the shared channel, wherein the operation cycle includes a quiet phase and a pulse phase;
Transmitting data on the shared channel during the quiet phase; and performing interference suppression during the phase of the pulse.
25. The WTRU as claimed in claim 24, wherein the processor is further configured to:
Identifying a certain time and a duration of an interpulse period in the phase of the pulse; and determining a packet size of the packet to be transmitted during the interpulse period, wherein the determining is based on the timing and the duration of the interpulse period Time so that the transmission of the packet is completed before the next pulse.
26. An access point for providing access to a shared channel associated with a primary user, the access point comprising:
A processor configured to:
Collecting information associated with an operational cycle of the primary user of the shared channel, wherein the operational cycle includes a quiet phase and a pulse phase;
Transmitting information associated with the primary user's operational period to a plurality of wireless transmit and receive units (WTRUs) associated with the access point; and scheduling transmissions on the shared channel during the quiet phase; And performing interference suppression based on the timing of the pulse phase.
27. The access point of claim 26, wherein the processor is further configured to:
Interference suppression is performed based on the timing of the pulse phase in the following manner:
A Self-Clear to Send (CTS) message is sent along with the back-off duration consistent with the phase of the pulse.
28. The access point of claim 27, wherein the self CTS message is sent immediately prior to the pulse phase.
TW103103902A 2013-02-06 2014-02-06 Dynamic shared spectrum methods enabling secondary user coexistence with primary user TW201446020A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201361761636P 2013-02-06 2013-02-06

Publications (1)

Publication Number Publication Date
TW201446020A true TW201446020A (en) 2014-12-01

Family

ID=50190753

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103103902A TW201446020A (en) 2013-02-06 2014-02-06 Dynamic shared spectrum methods enabling secondary user coexistence with primary user

Country Status (2)

Country Link
TW (1) TW201446020A (en)
WO (1) WO2014124131A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108476410A (en) * 2015-10-22 2018-08-31 瑞典爱立信有限公司 Method and system for the detections of radar in shared frequency spectrum
TWI754740B (en) * 2017-09-20 2022-02-11 日商索尼股份有限公司 Wireless communication method and wireless communication device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9813914B2 (en) * 2013-12-06 2017-11-07 Qualcomm Incorporated System and method for management of spectrum interference rights and secondary use permissions
US9451627B1 (en) 2014-12-16 2016-09-20 Silvus Technologies, Inc. Single transceiver-DSA via MAC-underlay sensing and signaling
CN107430184A (en) 2015-03-27 2017-12-01 瑞典爱立信有限公司 Detections of radar and/or protection in the wireless communication system operated in the frequency spectrum shared with least one radar system
EP3742789B1 (en) 2015-05-29 2022-11-16 Apple Inc. Evolved node-b, spectrum access system (sas) controller and method for communication in shared spectrum
CN107371165A (en) 2016-05-13 2017-11-21 索尼公司 Spectrum management apparatus and method, electronic installation and method and wireless communication system
US10194438B2 (en) 2016-09-29 2019-01-29 The Mitre Corporation Systems and methods for radio frequency spectrum sharing
US11317305B2 (en) 2019-09-03 2022-04-26 Silvus Technologies, Inc. User interface for MIMO networks

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007005897A (en) * 2005-06-21 2007-01-11 Toshiba Corp Wireless communication apparatus, method and system
US8116687B2 (en) * 2007-07-25 2012-02-14 Freescale Semiconductor, Inc. Dynamic frequency selection in wireless devices

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108476410A (en) * 2015-10-22 2018-08-31 瑞典爱立信有限公司 Method and system for the detections of radar in shared frequency spectrum
CN108476410B (en) * 2015-10-22 2022-07-29 瑞典爱立信有限公司 Method and system for radar detection in shared spectrum
TWI754740B (en) * 2017-09-20 2022-02-11 日商索尼股份有限公司 Wireless communication method and wireless communication device

Also Published As

Publication number Publication date
WO2014124131A3 (en) 2014-10-16
WO2014124131A2 (en) 2014-08-14

Similar Documents

Publication Publication Date Title
Naik et al. Next generation Wi-Fi and 5G NR-U in the 6 GHz bands: Opportunities and challenges
TW201446020A (en) Dynamic shared spectrum methods enabling secondary user coexistence with primary user
CN111727657B (en) Physical random access for NR-U
ES2899686T3 (en) Group ACK/NACK for LTE in unlicensed spectrum
US20180084580A1 (en) Method and apparatus for supporting wideband and multiple bandwidth transmission protocols
CN107769900B (en) Carrier aggregation method
US9750019B2 (en) Channel access systems and methods for cognitive relaying for cellular systems
JP2022188297A (en) Initial access and channel access in new radio/new radio-unlicensed (nr/nr-u)
JP2021500791A (en) Channel access procedures for directional systems in unlicensed bands
CN112154706A (en) Method for channel access management
JP2018523428A (en) Contention-based coexistence on shared communication media
JP2018530935A (en) Contention-based coexistence on shared communication media
CN111656748A (en) Techniques for managing a new type of internet of vehicles (V2X) capability convergence protocol in radio (NR)
US10111122B2 (en) Collaborative sensing using coordinated silencing of user equipment in license-exempt bands
CN113728715A (en) Method and apparatus for msg-A transmission in two-step RACH
TW202025657A (en) Reliable sidelink data transmission
US10701729B2 (en) Protected CET transmission and reception
TW201340758A (en) Random access in dynamic and shared spectrums
KR102153203B1 (en) Techniques for reporting radio resource management (RTM) measurements over a shared radio frequency spectrum band
WO2015017463A2 (en) Method and apparatus for shared spectrum access by ieee 802.11 systems with dynamic spectrum availability
TW201937971A (en) Methods and apparatuses for Non-Orthogonal Multiple Access
CN113711686B (en) Method for broadband unlicensed channel access
CN114365448A (en) Method for receiving CSI-RS (channel state information-reference signal) and CSI feedback in NR-U (noise-noise unit)
TW201448621A (en) Scheduling fractional frequency gaps to enable sub band sensing
CN116547914A (en) Method for wireless communication in higher frequencies